Merge branch 'clk-next' into v4.3-rc1
[platform/kernel/linux-rpi.git] / drivers / spi / spi-fsl-espi.c
1 /*
2  * Freescale eSPI controller driver.
3  *
4  * Copyright 2010 Freescale Semiconductor, Inc.
5  *
6  * This program is free software; you can redistribute  it and/or modify it
7  * under  the terms of  the GNU General  Public License as published by the
8  * Free Software Foundation;  either version 2 of the  License, or (at your
9  * option) any later version.
10  */
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/fsl_devices.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/of.h>
19 #include <linux/of_address.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/spi/spi.h>
24 #include <linux/pm_runtime.h>
25 #include <sysdev/fsl_soc.h>
26
27 #include "spi-fsl-lib.h"
28
29 /* eSPI Controller registers */
30 struct fsl_espi_reg {
31         __be32 mode;            /* 0x000 - eSPI mode register */
32         __be32 event;           /* 0x004 - eSPI event register */
33         __be32 mask;            /* 0x008 - eSPI mask register */
34         __be32 command;         /* 0x00c - eSPI command register */
35         __be32 transmit;        /* 0x010 - eSPI transmit FIFO access register*/
36         __be32 receive;         /* 0x014 - eSPI receive FIFO access register*/
37         u8 res[8];              /* 0x018 - 0x01c reserved */
38         __be32 csmode[4];       /* 0x020 - 0x02c eSPI cs mode register */
39 };
40
41 struct fsl_espi_transfer {
42         const void *tx_buf;
43         void *rx_buf;
44         unsigned len;
45         unsigned n_tx;
46         unsigned n_rx;
47         unsigned actual_length;
48         int status;
49 };
50
51 /* eSPI Controller mode register definitions */
52 #define SPMODE_ENABLE           (1 << 31)
53 #define SPMODE_LOOP             (1 << 30)
54 #define SPMODE_TXTHR(x)         ((x) << 8)
55 #define SPMODE_RXTHR(x)         ((x) << 0)
56
57 /* eSPI Controller CS mode register definitions */
58 #define CSMODE_CI_INACTIVEHIGH  (1 << 31)
59 #define CSMODE_CP_BEGIN_EDGECLK (1 << 30)
60 #define CSMODE_REV              (1 << 29)
61 #define CSMODE_DIV16            (1 << 28)
62 #define CSMODE_PM(x)            ((x) << 24)
63 #define CSMODE_POL_1            (1 << 20)
64 #define CSMODE_LEN(x)           ((x) << 16)
65 #define CSMODE_BEF(x)           ((x) << 12)
66 #define CSMODE_AFT(x)           ((x) << 8)
67 #define CSMODE_CG(x)            ((x) << 3)
68
69 /* Default mode/csmode for eSPI controller */
70 #define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(3))
71 #define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
72                 | CSMODE_AFT(0) | CSMODE_CG(1))
73
74 /* SPIE register values */
75 #define SPIE_NE         0x00000200      /* Not empty */
76 #define SPIE_NF         0x00000100      /* Not full */
77
78 /* SPIM register values */
79 #define SPIM_NE         0x00000200      /* Not empty */
80 #define SPIM_NF         0x00000100      /* Not full */
81 #define SPIE_RXCNT(reg)     ((reg >> 24) & 0x3F)
82 #define SPIE_TXCNT(reg)     ((reg >> 16) & 0x3F)
83
84 /* SPCOM register values */
85 #define SPCOM_CS(x)             ((x) << 30)
86 #define SPCOM_TRANLEN(x)        ((x) << 0)
87 #define SPCOM_TRANLEN_MAX       0xFFFF  /* Max transaction length */
88
89 #define AUTOSUSPEND_TIMEOUT 2000
90
91 static void fsl_espi_change_mode(struct spi_device *spi)
92 {
93         struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
94         struct spi_mpc8xxx_cs *cs = spi->controller_state;
95         struct fsl_espi_reg *reg_base = mspi->reg_base;
96         __be32 __iomem *mode = &reg_base->csmode[spi->chip_select];
97         __be32 __iomem *espi_mode = &reg_base->mode;
98         u32 tmp;
99         unsigned long flags;
100
101         /* Turn off IRQs locally to minimize time that SPI is disabled. */
102         local_irq_save(flags);
103
104         /* Turn off SPI unit prior changing mode */
105         tmp = mpc8xxx_spi_read_reg(espi_mode);
106         mpc8xxx_spi_write_reg(espi_mode, tmp & ~SPMODE_ENABLE);
107         mpc8xxx_spi_write_reg(mode, cs->hw_mode);
108         mpc8xxx_spi_write_reg(espi_mode, tmp);
109
110         local_irq_restore(flags);
111 }
112
113 static u32 fsl_espi_tx_buf_lsb(struct mpc8xxx_spi *mpc8xxx_spi)
114 {
115         u32 data;
116         u16 data_h;
117         u16 data_l;
118         const u32 *tx = mpc8xxx_spi->tx;
119
120         if (!tx)
121                 return 0;
122
123         data = *tx++ << mpc8xxx_spi->tx_shift;
124         data_l = data & 0xffff;
125         data_h = (data >> 16) & 0xffff;
126         swab16s(&data_l);
127         swab16s(&data_h);
128         data = data_h | data_l;
129
130         mpc8xxx_spi->tx = tx;
131         return data;
132 }
133
134 static int fsl_espi_setup_transfer(struct spi_device *spi,
135                                         struct spi_transfer *t)
136 {
137         struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
138         int bits_per_word = 0;
139         u8 pm;
140         u32 hz = 0;
141         struct spi_mpc8xxx_cs *cs = spi->controller_state;
142
143         if (t) {
144                 bits_per_word = t->bits_per_word;
145                 hz = t->speed_hz;
146         }
147
148         /* spi_transfer level calls that work per-word */
149         if (!bits_per_word)
150                 bits_per_word = spi->bits_per_word;
151
152         if (!hz)
153                 hz = spi->max_speed_hz;
154
155         cs->rx_shift = 0;
156         cs->tx_shift = 0;
157         cs->get_rx = mpc8xxx_spi_rx_buf_u32;
158         cs->get_tx = mpc8xxx_spi_tx_buf_u32;
159         if (bits_per_word <= 8) {
160                 cs->rx_shift = 8 - bits_per_word;
161         } else {
162                 cs->rx_shift = 16 - bits_per_word;
163                 if (spi->mode & SPI_LSB_FIRST)
164                         cs->get_tx = fsl_espi_tx_buf_lsb;
165         }
166
167         mpc8xxx_spi->rx_shift = cs->rx_shift;
168         mpc8xxx_spi->tx_shift = cs->tx_shift;
169         mpc8xxx_spi->get_rx = cs->get_rx;
170         mpc8xxx_spi->get_tx = cs->get_tx;
171
172         bits_per_word = bits_per_word - 1;
173
174         /* mask out bits we are going to set */
175         cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
176
177         cs->hw_mode |= CSMODE_LEN(bits_per_word);
178
179         if ((mpc8xxx_spi->spibrg / hz) > 64) {
180                 cs->hw_mode |= CSMODE_DIV16;
181                 pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 16 * 4);
182
183                 WARN_ONCE(pm > 33, "%s: Requested speed is too low: %d Hz. "
184                           "Will use %d Hz instead.\n", dev_name(&spi->dev),
185                                 hz, mpc8xxx_spi->spibrg / (4 * 16 * (32 + 1)));
186                 if (pm > 33)
187                         pm = 33;
188         } else {
189                 pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 4);
190         }
191         if (pm)
192                 pm--;
193         if (pm < 2)
194                 pm = 2;
195
196         cs->hw_mode |= CSMODE_PM(pm);
197
198         fsl_espi_change_mode(spi);
199         return 0;
200 }
201
202 static int fsl_espi_cpu_bufs(struct mpc8xxx_spi *mspi, struct spi_transfer *t,
203                 unsigned int len)
204 {
205         u32 word;
206         struct fsl_espi_reg *reg_base = mspi->reg_base;
207
208         mspi->count = len;
209
210         /* enable rx ints */
211         mpc8xxx_spi_write_reg(&reg_base->mask, SPIM_NE);
212
213         /* transmit word */
214         word = mspi->get_tx(mspi);
215         mpc8xxx_spi_write_reg(&reg_base->transmit, word);
216
217         return 0;
218 }
219
220 static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
221 {
222         struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
223         struct fsl_espi_reg *reg_base = mpc8xxx_spi->reg_base;
224         unsigned int len = t->len;
225         int ret;
226
227         mpc8xxx_spi->len = t->len;
228         len = roundup(len, 4) / 4;
229
230         mpc8xxx_spi->tx = t->tx_buf;
231         mpc8xxx_spi->rx = t->rx_buf;
232
233         reinit_completion(&mpc8xxx_spi->done);
234
235         /* Set SPCOM[CS] and SPCOM[TRANLEN] field */
236         if ((t->len - 1) > SPCOM_TRANLEN_MAX) {
237                 dev_err(mpc8xxx_spi->dev, "Transaction length (%d)"
238                                 " beyond the SPCOM[TRANLEN] field\n", t->len);
239                 return -EINVAL;
240         }
241         mpc8xxx_spi_write_reg(&reg_base->command,
242                 (SPCOM_CS(spi->chip_select) | SPCOM_TRANLEN(t->len - 1)));
243
244         ret = fsl_espi_cpu_bufs(mpc8xxx_spi, t, len);
245         if (ret)
246                 return ret;
247
248         wait_for_completion(&mpc8xxx_spi->done);
249
250         /* disable rx ints */
251         mpc8xxx_spi_write_reg(&reg_base->mask, 0);
252
253         return mpc8xxx_spi->count;
254 }
255
256 static inline void fsl_espi_addr2cmd(unsigned int addr, u8 *cmd)
257 {
258         if (cmd) {
259                 cmd[1] = (u8)(addr >> 16);
260                 cmd[2] = (u8)(addr >> 8);
261                 cmd[3] = (u8)(addr >> 0);
262         }
263 }
264
265 static inline unsigned int fsl_espi_cmd2addr(u8 *cmd)
266 {
267         if (cmd)
268                 return cmd[1] << 16 | cmd[2] << 8 | cmd[3] << 0;
269
270         return 0;
271 }
272
273 static void fsl_espi_do_trans(struct spi_message *m,
274                                 struct fsl_espi_transfer *tr)
275 {
276         struct spi_device *spi = m->spi;
277         struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
278         struct fsl_espi_transfer *espi_trans = tr;
279         struct spi_message message;
280         struct spi_transfer *t, *first, trans;
281         int status = 0;
282
283         spi_message_init(&message);
284         memset(&trans, 0, sizeof(trans));
285
286         first = list_first_entry(&m->transfers, struct spi_transfer,
287                         transfer_list);
288         list_for_each_entry(t, &m->transfers, transfer_list) {
289                 if ((first->bits_per_word != t->bits_per_word) ||
290                         (first->speed_hz != t->speed_hz)) {
291                         espi_trans->status = -EINVAL;
292                         dev_err(mspi->dev,
293                                 "bits_per_word/speed_hz should be same for the same SPI transfer\n");
294                         return;
295                 }
296
297                 trans.speed_hz = t->speed_hz;
298                 trans.bits_per_word = t->bits_per_word;
299                 trans.delay_usecs = max(first->delay_usecs, t->delay_usecs);
300         }
301
302         trans.len = espi_trans->len;
303         trans.tx_buf = espi_trans->tx_buf;
304         trans.rx_buf = espi_trans->rx_buf;
305         spi_message_add_tail(&trans, &message);
306
307         list_for_each_entry(t, &message.transfers, transfer_list) {
308                 if (t->bits_per_word || t->speed_hz) {
309                         status = -EINVAL;
310
311                         status = fsl_espi_setup_transfer(spi, t);
312                         if (status < 0)
313                                 break;
314                 }
315
316                 if (t->len)
317                         status = fsl_espi_bufs(spi, t);
318
319                 if (status) {
320                         status = -EMSGSIZE;
321                         break;
322                 }
323
324                 if (t->delay_usecs)
325                         udelay(t->delay_usecs);
326         }
327
328         espi_trans->status = status;
329         fsl_espi_setup_transfer(spi, NULL);
330 }
331
332 static void fsl_espi_cmd_trans(struct spi_message *m,
333                                 struct fsl_espi_transfer *trans, u8 *rx_buff)
334 {
335         struct spi_transfer *t;
336         u8 *local_buf;
337         int i = 0;
338         struct fsl_espi_transfer *espi_trans = trans;
339
340         local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL);
341         if (!local_buf) {
342                 espi_trans->status = -ENOMEM;
343                 return;
344         }
345
346         list_for_each_entry(t, &m->transfers, transfer_list) {
347                 if (t->tx_buf) {
348                         memcpy(local_buf + i, t->tx_buf, t->len);
349                         i += t->len;
350                 }
351         }
352
353         espi_trans->tx_buf = local_buf;
354         espi_trans->rx_buf = local_buf;
355         fsl_espi_do_trans(m, espi_trans);
356
357         espi_trans->actual_length = espi_trans->len;
358         kfree(local_buf);
359 }
360
361 static void fsl_espi_rw_trans(struct spi_message *m,
362                                 struct fsl_espi_transfer *trans, u8 *rx_buff)
363 {
364         struct fsl_espi_transfer *espi_trans = trans;
365         unsigned int total_len = espi_trans->len;
366         struct spi_transfer *t;
367         u8 *local_buf;
368         u8 *rx_buf = rx_buff;
369         unsigned int trans_len;
370         unsigned int addr;
371         unsigned int tx_only;
372         unsigned int rx_pos = 0;
373         unsigned int pos;
374         int i, loop;
375
376         local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL);
377         if (!local_buf) {
378                 espi_trans->status = -ENOMEM;
379                 return;
380         }
381
382         for (pos = 0, loop = 0; pos < total_len; pos += trans_len, loop++) {
383                 trans_len = total_len - pos;
384
385                 i = 0;
386                 tx_only = 0;
387                 list_for_each_entry(t, &m->transfers, transfer_list) {
388                         if (t->tx_buf) {
389                                 memcpy(local_buf + i, t->tx_buf, t->len);
390                                 i += t->len;
391                                 if (!t->rx_buf)
392                                         tx_only += t->len;
393                         }
394                 }
395
396                 /* Add additional TX bytes to compensate SPCOM_TRANLEN_MAX */
397                 if (loop > 0)
398                         trans_len += tx_only;
399
400                 if (trans_len > SPCOM_TRANLEN_MAX)
401                         trans_len = SPCOM_TRANLEN_MAX;
402
403                 /* Update device offset */
404                 if (pos > 0) {
405                         addr = fsl_espi_cmd2addr(local_buf);
406                         addr += rx_pos;
407                         fsl_espi_addr2cmd(addr, local_buf);
408                 }
409
410                 espi_trans->len = trans_len;
411                 espi_trans->tx_buf = local_buf;
412                 espi_trans->rx_buf = local_buf;
413                 fsl_espi_do_trans(m, espi_trans);
414
415                 /* If there is at least one RX byte then copy it to rx_buf */
416                 if (tx_only < SPCOM_TRANLEN_MAX)
417                         memcpy(rx_buf + rx_pos, espi_trans->rx_buf + tx_only,
418                                         trans_len - tx_only);
419
420                 rx_pos += trans_len - tx_only;
421
422                 if (loop > 0)
423                         espi_trans->actual_length += espi_trans->len - tx_only;
424                 else
425                         espi_trans->actual_length += espi_trans->len;
426         }
427
428         kfree(local_buf);
429 }
430
431 static int fsl_espi_do_one_msg(struct spi_master *master,
432                                struct spi_message *m)
433 {
434         struct spi_transfer *t;
435         u8 *rx_buf = NULL;
436         unsigned int n_tx = 0;
437         unsigned int n_rx = 0;
438         unsigned int xfer_len = 0;
439         struct fsl_espi_transfer espi_trans;
440
441         list_for_each_entry(t, &m->transfers, transfer_list) {
442                 if (t->tx_buf)
443                         n_tx += t->len;
444                 if (t->rx_buf) {
445                         n_rx += t->len;
446                         rx_buf = t->rx_buf;
447                 }
448                 if ((t->tx_buf) || (t->rx_buf))
449                         xfer_len += t->len;
450         }
451
452         espi_trans.n_tx = n_tx;
453         espi_trans.n_rx = n_rx;
454         espi_trans.len = xfer_len;
455         espi_trans.actual_length = 0;
456         espi_trans.status = 0;
457
458         if (!rx_buf)
459                 fsl_espi_cmd_trans(m, &espi_trans, NULL);
460         else
461                 fsl_espi_rw_trans(m, &espi_trans, rx_buf);
462
463         m->actual_length = espi_trans.actual_length;
464         m->status = espi_trans.status;
465         spi_finalize_current_message(master);
466         return 0;
467 }
468
469 static int fsl_espi_setup(struct spi_device *spi)
470 {
471         struct mpc8xxx_spi *mpc8xxx_spi;
472         struct fsl_espi_reg *reg_base;
473         int retval;
474         u32 hw_mode;
475         u32 loop_mode;
476         struct spi_mpc8xxx_cs *cs = spi_get_ctldata(spi);
477
478         if (!spi->max_speed_hz)
479                 return -EINVAL;
480
481         if (!cs) {
482                 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
483                 if (!cs)
484                         return -ENOMEM;
485                 spi_set_ctldata(spi, cs);
486         }
487
488         mpc8xxx_spi = spi_master_get_devdata(spi->master);
489         reg_base = mpc8xxx_spi->reg_base;
490
491         pm_runtime_get_sync(mpc8xxx_spi->dev);
492
493         hw_mode = cs->hw_mode; /* Save original settings */
494         cs->hw_mode = mpc8xxx_spi_read_reg(
495                         &reg_base->csmode[spi->chip_select]);
496         /* mask out bits we are going to set */
497         cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
498                          | CSMODE_REV);
499
500         if (spi->mode & SPI_CPHA)
501                 cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
502         if (spi->mode & SPI_CPOL)
503                 cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
504         if (!(spi->mode & SPI_LSB_FIRST))
505                 cs->hw_mode |= CSMODE_REV;
506
507         /* Handle the loop mode */
508         loop_mode = mpc8xxx_spi_read_reg(&reg_base->mode);
509         loop_mode &= ~SPMODE_LOOP;
510         if (spi->mode & SPI_LOOP)
511                 loop_mode |= SPMODE_LOOP;
512         mpc8xxx_spi_write_reg(&reg_base->mode, loop_mode);
513
514         retval = fsl_espi_setup_transfer(spi, NULL);
515
516         pm_runtime_mark_last_busy(mpc8xxx_spi->dev);
517         pm_runtime_put_autosuspend(mpc8xxx_spi->dev);
518
519         if (retval < 0) {
520                 cs->hw_mode = hw_mode; /* Restore settings */
521                 return retval;
522         }
523         return 0;
524 }
525
526 static void fsl_espi_cleanup(struct spi_device *spi)
527 {
528         struct spi_mpc8xxx_cs *cs = spi_get_ctldata(spi);
529
530         kfree(cs);
531         spi_set_ctldata(spi, NULL);
532 }
533
534 void fsl_espi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events)
535 {
536         struct fsl_espi_reg *reg_base = mspi->reg_base;
537
538         /* We need handle RX first */
539         if (events & SPIE_NE) {
540                 u32 rx_data, tmp;
541                 u8 rx_data_8;
542
543                 /* Spin until RX is done */
544                 while (SPIE_RXCNT(events) < min(4, mspi->len)) {
545                         cpu_relax();
546                         events = mpc8xxx_spi_read_reg(&reg_base->event);
547                 }
548
549                 if (mspi->len >= 4) {
550                         rx_data = mpc8xxx_spi_read_reg(&reg_base->receive);
551                 } else {
552                         tmp = mspi->len;
553                         rx_data = 0;
554                         while (tmp--) {
555                                 rx_data_8 = in_8((u8 *)&reg_base->receive);
556                                 rx_data |= (rx_data_8 << (tmp * 8));
557                         }
558
559                         rx_data <<= (4 - mspi->len) * 8;
560                 }
561
562                 mspi->len -= 4;
563
564                 if (mspi->rx)
565                         mspi->get_rx(rx_data, mspi);
566         }
567
568         if (!(events & SPIE_NF)) {
569                 int ret;
570
571                 /* spin until TX is done */
572                 ret = spin_event_timeout(((events = mpc8xxx_spi_read_reg(
573                                 &reg_base->event)) & SPIE_NF), 1000, 0);
574                 if (!ret) {
575                         dev_err(mspi->dev, "tired waiting for SPIE_NF\n");
576
577                         /* Clear the SPIE bits */
578                         mpc8xxx_spi_write_reg(&reg_base->event, events);
579                         complete(&mspi->done);
580                         return;
581                 }
582         }
583
584         /* Clear the events */
585         mpc8xxx_spi_write_reg(&reg_base->event, events);
586
587         mspi->count -= 1;
588         if (mspi->count) {
589                 u32 word = mspi->get_tx(mspi);
590
591                 mpc8xxx_spi_write_reg(&reg_base->transmit, word);
592         } else {
593                 complete(&mspi->done);
594         }
595 }
596
597 static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
598 {
599         struct mpc8xxx_spi *mspi = context_data;
600         struct fsl_espi_reg *reg_base = mspi->reg_base;
601         irqreturn_t ret = IRQ_NONE;
602         u32 events;
603
604         /* Get interrupt events(tx/rx) */
605         events = mpc8xxx_spi_read_reg(&reg_base->event);
606         if (events)
607                 ret = IRQ_HANDLED;
608
609         dev_vdbg(mspi->dev, "%s: events %x\n", __func__, events);
610
611         fsl_espi_cpu_irq(mspi, events);
612
613         return ret;
614 }
615
616 #ifdef CONFIG_PM
617 static int fsl_espi_runtime_suspend(struct device *dev)
618 {
619         struct spi_master *master = dev_get_drvdata(dev);
620         struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(master);
621         struct fsl_espi_reg *reg_base = mpc8xxx_spi->reg_base;
622         u32 regval;
623
624         regval = mpc8xxx_spi_read_reg(&reg_base->mode);
625         regval &= ~SPMODE_ENABLE;
626         mpc8xxx_spi_write_reg(&reg_base->mode, regval);
627
628         return 0;
629 }
630
631 static int fsl_espi_runtime_resume(struct device *dev)
632 {
633         struct spi_master *master = dev_get_drvdata(dev);
634         struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(master);
635         struct fsl_espi_reg *reg_base = mpc8xxx_spi->reg_base;
636         u32 regval;
637
638         regval = mpc8xxx_spi_read_reg(&reg_base->mode);
639         regval |= SPMODE_ENABLE;
640         mpc8xxx_spi_write_reg(&reg_base->mode, regval);
641
642         return 0;
643 }
644 #endif
645
646 static struct spi_master * fsl_espi_probe(struct device *dev,
647                 struct resource *mem, unsigned int irq)
648 {
649         struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
650         struct spi_master *master;
651         struct mpc8xxx_spi *mpc8xxx_spi;
652         struct fsl_espi_reg *reg_base;
653         struct device_node *nc;
654         const __be32 *prop;
655         u32 regval, csmode;
656         int i, len, ret = 0;
657
658         master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi));
659         if (!master) {
660                 ret = -ENOMEM;
661                 goto err;
662         }
663
664         dev_set_drvdata(dev, master);
665
666         mpc8xxx_spi_probe(dev, mem, irq);
667
668         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
669         master->setup = fsl_espi_setup;
670         master->cleanup = fsl_espi_cleanup;
671         master->transfer_one_message = fsl_espi_do_one_msg;
672         master->auto_runtime_pm = true;
673
674         mpc8xxx_spi = spi_master_get_devdata(master);
675
676         mpc8xxx_spi->reg_base = devm_ioremap_resource(dev, mem);
677         if (IS_ERR(mpc8xxx_spi->reg_base)) {
678                 ret = PTR_ERR(mpc8xxx_spi->reg_base);
679                 goto err_probe;
680         }
681
682         reg_base = mpc8xxx_spi->reg_base;
683
684         /* Register for SPI Interrupt */
685         ret = devm_request_irq(dev, mpc8xxx_spi->irq, fsl_espi_irq,
686                           0, "fsl_espi", mpc8xxx_spi);
687         if (ret)
688                 goto err_probe;
689
690         if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
691                 mpc8xxx_spi->rx_shift = 16;
692                 mpc8xxx_spi->tx_shift = 24;
693         }
694
695         /* SPI controller initializations */
696         mpc8xxx_spi_write_reg(&reg_base->mode, 0);
697         mpc8xxx_spi_write_reg(&reg_base->mask, 0);
698         mpc8xxx_spi_write_reg(&reg_base->command, 0);
699         mpc8xxx_spi_write_reg(&reg_base->event, 0xffffffff);
700
701         /* Init eSPI CS mode register */
702         for_each_available_child_of_node(master->dev.of_node, nc) {
703                 /* get chip select */
704                 prop = of_get_property(nc, "reg", &len);
705                 if (!prop || len < sizeof(*prop))
706                         continue;
707                 i = be32_to_cpup(prop);
708                 if (i < 0 || i >= pdata->max_chipselect)
709                         continue;
710
711                 csmode = CSMODE_INIT_VAL;
712                 /* check if CSBEF is set in device tree */
713                 prop = of_get_property(nc, "fsl,csbef", &len);
714                 if (prop && len >= sizeof(*prop)) {
715                         csmode &= ~(CSMODE_BEF(0xf));
716                         csmode |= CSMODE_BEF(be32_to_cpup(prop));
717                 }
718                 /* check if CSAFT is set in device tree */
719                 prop = of_get_property(nc, "fsl,csaft", &len);
720                 if (prop && len >= sizeof(*prop)) {
721                         csmode &= ~(CSMODE_AFT(0xf));
722                         csmode |= CSMODE_AFT(be32_to_cpup(prop));
723                 }
724                 mpc8xxx_spi_write_reg(&reg_base->csmode[i], csmode);
725
726                 dev_info(dev, "cs=%d, init_csmode=0x%x\n", i, csmode);
727         }
728
729         /* Enable SPI interface */
730         regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
731
732         mpc8xxx_spi_write_reg(&reg_base->mode, regval);
733
734         pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_TIMEOUT);
735         pm_runtime_use_autosuspend(dev);
736         pm_runtime_set_active(dev);
737         pm_runtime_enable(dev);
738         pm_runtime_get_sync(dev);
739
740         ret = devm_spi_register_master(dev, master);
741         if (ret < 0)
742                 goto err_pm;
743
744         dev_info(dev, "at 0x%p (irq = %d)\n", reg_base, mpc8xxx_spi->irq);
745
746         pm_runtime_mark_last_busy(dev);
747         pm_runtime_put_autosuspend(dev);
748
749         return master;
750
751 err_pm:
752         pm_runtime_put_noidle(dev);
753         pm_runtime_disable(dev);
754         pm_runtime_set_suspended(dev);
755 err_probe:
756         spi_master_put(master);
757 err:
758         return ERR_PTR(ret);
759 }
760
761 static int of_fsl_espi_get_chipselects(struct device *dev)
762 {
763         struct device_node *np = dev->of_node;
764         struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
765         const u32 *prop;
766         int len;
767
768         prop = of_get_property(np, "fsl,espi-num-chipselects", &len);
769         if (!prop || len < sizeof(*prop)) {
770                 dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
771                 return -EINVAL;
772         }
773
774         pdata->max_chipselect = *prop;
775         pdata->cs_control = NULL;
776
777         return 0;
778 }
779
780 static int of_fsl_espi_probe(struct platform_device *ofdev)
781 {
782         struct device *dev = &ofdev->dev;
783         struct device_node *np = ofdev->dev.of_node;
784         struct spi_master *master;
785         struct resource mem;
786         unsigned int irq;
787         int ret = -ENOMEM;
788
789         ret = of_mpc8xxx_spi_probe(ofdev);
790         if (ret)
791                 return ret;
792
793         ret = of_fsl_espi_get_chipselects(dev);
794         if (ret)
795                 goto err;
796
797         ret = of_address_to_resource(np, 0, &mem);
798         if (ret)
799                 goto err;
800
801         irq = irq_of_parse_and_map(np, 0);
802         if (!irq) {
803                 ret = -EINVAL;
804                 goto err;
805         }
806
807         master = fsl_espi_probe(dev, &mem, irq);
808         if (IS_ERR(master)) {
809                 ret = PTR_ERR(master);
810                 goto err;
811         }
812
813         return 0;
814
815 err:
816         return ret;
817 }
818
819 static int of_fsl_espi_remove(struct platform_device *dev)
820 {
821         pm_runtime_disable(&dev->dev);
822
823         return 0;
824 }
825
826 #ifdef CONFIG_PM_SLEEP
827 static int of_fsl_espi_suspend(struct device *dev)
828 {
829         struct spi_master *master = dev_get_drvdata(dev);
830         int ret;
831
832         ret = spi_master_suspend(master);
833         if (ret) {
834                 dev_warn(dev, "cannot suspend master\n");
835                 return ret;
836         }
837
838         ret = pm_runtime_force_suspend(dev);
839         if (ret < 0)
840                 return ret;
841
842         return 0;
843 }
844
845 static int of_fsl_espi_resume(struct device *dev)
846 {
847         struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
848         struct spi_master *master = dev_get_drvdata(dev);
849         struct mpc8xxx_spi *mpc8xxx_spi;
850         struct fsl_espi_reg *reg_base;
851         u32 regval;
852         int i, ret;
853
854         mpc8xxx_spi = spi_master_get_devdata(master);
855         reg_base = mpc8xxx_spi->reg_base;
856
857         /* SPI controller initializations */
858         mpc8xxx_spi_write_reg(&reg_base->mode, 0);
859         mpc8xxx_spi_write_reg(&reg_base->mask, 0);
860         mpc8xxx_spi_write_reg(&reg_base->command, 0);
861         mpc8xxx_spi_write_reg(&reg_base->event, 0xffffffff);
862
863         /* Init eSPI CS mode register */
864         for (i = 0; i < pdata->max_chipselect; i++)
865                 mpc8xxx_spi_write_reg(&reg_base->csmode[i], CSMODE_INIT_VAL);
866
867         /* Enable SPI interface */
868         regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
869
870         mpc8xxx_spi_write_reg(&reg_base->mode, regval);
871
872         ret = pm_runtime_force_resume(dev);
873         if (ret < 0)
874                 return ret;
875
876         return spi_master_resume(master);
877 }
878 #endif /* CONFIG_PM_SLEEP */
879
880 static const struct dev_pm_ops espi_pm = {
881         SET_RUNTIME_PM_OPS(fsl_espi_runtime_suspend,
882                            fsl_espi_runtime_resume, NULL)
883         SET_SYSTEM_SLEEP_PM_OPS(of_fsl_espi_suspend, of_fsl_espi_resume)
884 };
885
886 static const struct of_device_id of_fsl_espi_match[] = {
887         { .compatible = "fsl,mpc8536-espi" },
888         {}
889 };
890 MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
891
892 static struct platform_driver fsl_espi_driver = {
893         .driver = {
894                 .name = "fsl_espi",
895                 .of_match_table = of_fsl_espi_match,
896                 .pm = &espi_pm,
897         },
898         .probe          = of_fsl_espi_probe,
899         .remove         = of_fsl_espi_remove,
900 };
901 module_platform_driver(fsl_espi_driver);
902
903 MODULE_AUTHOR("Mingkai Hu");
904 MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
905 MODULE_LICENSE("GPL");