1 // SPDX-License-Identifier: GPL-2.0+
3 // Copyright 2013 Freescale Semiconductor, Inc.
6 // Freescale DSPI driver
7 // This file contains a driver for the Freescale DSPI
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/of_device.h>
17 #include <linux/pinctrl/consumer.h>
18 #include <linux/regmap.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-fsl-dspi.h>
22 #define DRIVER_NAME "fsl-dspi"
25 #define SPI_MCR_MASTER BIT(31)
26 #define SPI_MCR_PCSIS(x) ((x) << 16)
27 #define SPI_MCR_CLR_TXF BIT(11)
28 #define SPI_MCR_CLR_RXF BIT(10)
29 #define SPI_MCR_XSPI BIT(3)
30 #define SPI_MCR_DIS_TXF BIT(13)
31 #define SPI_MCR_DIS_RXF BIT(12)
32 #define SPI_MCR_HALT BIT(0)
35 #define SPI_TCR_GET_TCNT(x) (((x) & GENMASK(31, 16)) >> 16)
37 #define SPI_CTAR(x) (0x0c + (((x) & GENMASK(1, 0)) * 4))
38 #define SPI_CTAR_FMSZ(x) (((x) << 27) & GENMASK(30, 27))
39 #define SPI_CTAR_CPOL BIT(26)
40 #define SPI_CTAR_CPHA BIT(25)
41 #define SPI_CTAR_LSBFE BIT(24)
42 #define SPI_CTAR_PCSSCK(x) (((x) << 22) & GENMASK(23, 22))
43 #define SPI_CTAR_PASC(x) (((x) << 20) & GENMASK(21, 20))
44 #define SPI_CTAR_PDT(x) (((x) << 18) & GENMASK(19, 18))
45 #define SPI_CTAR_PBR(x) (((x) << 16) & GENMASK(17, 16))
46 #define SPI_CTAR_CSSCK(x) (((x) << 12) & GENMASK(15, 12))
47 #define SPI_CTAR_ASC(x) (((x) << 8) & GENMASK(11, 8))
48 #define SPI_CTAR_DT(x) (((x) << 4) & GENMASK(7, 4))
49 #define SPI_CTAR_BR(x) ((x) & GENMASK(3, 0))
50 #define SPI_CTAR_SCALE_BITS 0xf
52 #define SPI_CTAR0_SLAVE 0x0c
55 #define SPI_SR_TCFQF BIT(31)
56 #define SPI_SR_TFUF BIT(27)
57 #define SPI_SR_TFFF BIT(25)
58 #define SPI_SR_CMDTCF BIT(23)
59 #define SPI_SR_SPEF BIT(21)
60 #define SPI_SR_RFOF BIT(19)
61 #define SPI_SR_TFIWF BIT(18)
62 #define SPI_SR_RFDF BIT(17)
63 #define SPI_SR_CMDFFF BIT(16)
64 #define SPI_SR_CLEAR (SPI_SR_TCFQF | \
65 SPI_SR_TFUF | SPI_SR_TFFF | \
66 SPI_SR_CMDTCF | SPI_SR_SPEF | \
67 SPI_SR_RFOF | SPI_SR_TFIWF | \
68 SPI_SR_RFDF | SPI_SR_CMDFFF)
70 #define SPI_RSER_TFFFE BIT(25)
71 #define SPI_RSER_TFFFD BIT(24)
72 #define SPI_RSER_RFDFE BIT(17)
73 #define SPI_RSER_RFDFD BIT(16)
76 #define SPI_RSER_TCFQE BIT(31)
77 #define SPI_RSER_CMDTCFE BIT(23)
79 #define SPI_PUSHR 0x34
80 #define SPI_PUSHR_CMD_CONT BIT(15)
81 #define SPI_PUSHR_CMD_CTAS(x) (((x) << 12 & GENMASK(14, 12)))
82 #define SPI_PUSHR_CMD_EOQ BIT(11)
83 #define SPI_PUSHR_CMD_CTCNT BIT(10)
84 #define SPI_PUSHR_CMD_PCS(x) (BIT(x) & GENMASK(5, 0))
86 #define SPI_PUSHR_SLAVE 0x34
90 #define SPI_TXFR0 0x3c
91 #define SPI_TXFR1 0x40
92 #define SPI_TXFR2 0x44
93 #define SPI_TXFR3 0x48
94 #define SPI_RXFR0 0x7c
95 #define SPI_RXFR1 0x80
96 #define SPI_RXFR2 0x84
97 #define SPI_RXFR3 0x88
99 #define SPI_CTARE(x) (0x11c + (((x) & GENMASK(1, 0)) * 4))
100 #define SPI_CTARE_FMSZE(x) (((x) & 0x1) << 16)
101 #define SPI_CTARE_DTCP(x) ((x) & 0x7ff)
103 #define SPI_SREX 0x13c
105 #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1)
106 #define SPI_FRAME_EBITS(bits) SPI_CTARE_FMSZE(((bits) - 1) >> 4)
108 #define DMA_COMPLETION_TIMEOUT msecs_to_jiffies(3000)
114 enum dspi_trans_mode {
119 struct fsl_dspi_devtype_data {
120 enum dspi_trans_mode trans_mode;
138 static const struct fsl_dspi_devtype_data devtype_data[] = {
140 .trans_mode = DSPI_DMA_MODE,
141 .max_clock_factor = 2,
145 /* Has A-011218 DMA erratum */
146 .trans_mode = DSPI_XSPI_MODE,
147 .max_clock_factor = 8,
151 /* Has A-011218 DMA erratum */
152 .trans_mode = DSPI_XSPI_MODE,
153 .max_clock_factor = 8,
157 .trans_mode = DSPI_XSPI_MODE,
158 .max_clock_factor = 8,
162 /* Has A-011218 DMA erratum */
163 .trans_mode = DSPI_XSPI_MODE,
164 .max_clock_factor = 8,
168 /* Has A-011218 DMA erratum */
169 .trans_mode = DSPI_XSPI_MODE,
170 .max_clock_factor = 8,
174 .trans_mode = DSPI_XSPI_MODE,
175 .max_clock_factor = 8,
179 .trans_mode = DSPI_XSPI_MODE,
180 .max_clock_factor = 8,
184 .trans_mode = DSPI_XSPI_MODE,
185 .max_clock_factor = 8,
189 .trans_mode = DSPI_DMA_MODE,
190 .max_clock_factor = 8,
195 struct fsl_dspi_dma {
197 struct dma_chan *chan_tx;
198 dma_addr_t tx_dma_phys;
199 struct completion cmd_tx_complete;
200 struct dma_async_tx_descriptor *tx_desc;
203 struct dma_chan *chan_rx;
204 dma_addr_t rx_dma_phys;
205 struct completion cmd_rx_complete;
206 struct dma_async_tx_descriptor *rx_desc;
210 struct spi_controller *ctlr;
211 struct platform_device *pdev;
213 struct regmap *regmap;
214 struct regmap *regmap_pushr;
218 struct spi_transfer *cur_transfer;
219 struct spi_message *cur_msg;
220 struct chip_data *cur_chip;
226 const struct fsl_dspi_devtype_data *devtype_data;
228 struct completion xfer_done;
230 struct fsl_dspi_dma *dma;
233 int oper_bits_per_word;
238 * Offsets for CMD and TXDATA within SPI_PUSHR when accessed
239 * individually (in XSPI mode)
244 void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata);
245 void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata);
248 static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
250 switch (dspi->oper_word_size) {
252 *txdata = *(u8 *)dspi->tx;
255 *txdata = *(u16 *)dspi->tx;
258 *txdata = *(u32 *)dspi->tx;
261 dspi->tx += dspi->oper_word_size;
264 static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
266 switch (dspi->oper_word_size) {
268 *(u8 *)dspi->rx = rxdata;
271 *(u16 *)dspi->rx = rxdata;
274 *(u32 *)dspi->rx = rxdata;
277 dspi->rx += dspi->oper_word_size;
280 static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
282 *txdata = cpu_to_be32(*(u32 *)dspi->tx);
283 dspi->tx += sizeof(u32);
286 static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
288 *(u32 *)dspi->rx = be32_to_cpu(rxdata);
289 dspi->rx += sizeof(u32);
292 static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
294 *txdata = cpu_to_be16(*(u16 *)dspi->tx);
295 dspi->tx += sizeof(u16);
298 static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
300 *(u16 *)dspi->rx = be16_to_cpu(rxdata);
301 dspi->rx += sizeof(u16);
304 static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
306 u16 hi = *(u16 *)dspi->tx;
307 u16 lo = *(u16 *)(dspi->tx + 2);
309 *txdata = (u32)hi << 16 | lo;
310 dspi->tx += sizeof(u32);
313 static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
315 u16 hi = rxdata & 0xffff;
316 u16 lo = rxdata >> 16;
318 *(u16 *)dspi->rx = lo;
319 *(u16 *)(dspi->rx + 2) = hi;
320 dspi->rx += sizeof(u32);
324 * Pop one word from the TX buffer for pushing into the
325 * PUSHR register (TX FIFO)
327 static u32 dspi_pop_tx(struct fsl_dspi *dspi)
332 dspi->host_to_dev(dspi, &txdata);
333 dspi->len -= dspi->oper_word_size;
337 /* Prepare one TX FIFO entry (txdata plus cmd) */
338 static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
340 u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
342 if (spi_controller_is_slave(dspi->ctlr))
346 cmd |= SPI_PUSHR_CMD_CONT;
347 return cmd << 16 | data;
350 /* Push one word to the RX buffer from the POPR register (RX FIFO) */
351 static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
355 dspi->dev_to_host(dspi, rxdata);
358 static void dspi_tx_dma_callback(void *arg)
360 struct fsl_dspi *dspi = arg;
361 struct fsl_dspi_dma *dma = dspi->dma;
363 complete(&dma->cmd_tx_complete);
366 static void dspi_rx_dma_callback(void *arg)
368 struct fsl_dspi *dspi = arg;
369 struct fsl_dspi_dma *dma = dspi->dma;
373 for (i = 0; i < dspi->words_in_flight; i++)
374 dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
377 complete(&dma->cmd_rx_complete);
380 static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
382 struct device *dev = &dspi->pdev->dev;
383 struct fsl_dspi_dma *dma = dspi->dma;
387 for (i = 0; i < dspi->words_in_flight; i++)
388 dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
390 dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
392 dspi->words_in_flight *
393 DMA_SLAVE_BUSWIDTH_4_BYTES,
395 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
397 dev_err(dev, "Not able to get desc for DMA xfer\n");
401 dma->tx_desc->callback = dspi_tx_dma_callback;
402 dma->tx_desc->callback_param = dspi;
403 if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
404 dev_err(dev, "DMA submit failed\n");
408 dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
410 dspi->words_in_flight *
411 DMA_SLAVE_BUSWIDTH_4_BYTES,
413 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
415 dev_err(dev, "Not able to get desc for DMA xfer\n");
419 dma->rx_desc->callback = dspi_rx_dma_callback;
420 dma->rx_desc->callback_param = dspi;
421 if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
422 dev_err(dev, "DMA submit failed\n");
426 reinit_completion(&dspi->dma->cmd_rx_complete);
427 reinit_completion(&dspi->dma->cmd_tx_complete);
429 dma_async_issue_pending(dma->chan_rx);
430 dma_async_issue_pending(dma->chan_tx);
432 if (spi_controller_is_slave(dspi->ctlr)) {
433 wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
437 time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
438 DMA_COMPLETION_TIMEOUT);
439 if (time_left == 0) {
440 dev_err(dev, "DMA tx timeout\n");
441 dmaengine_terminate_all(dma->chan_tx);
442 dmaengine_terminate_all(dma->chan_rx);
446 time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
447 DMA_COMPLETION_TIMEOUT);
448 if (time_left == 0) {
449 dev_err(dev, "DMA rx timeout\n");
450 dmaengine_terminate_all(dma->chan_tx);
451 dmaengine_terminate_all(dma->chan_rx);
458 static void dspi_setup_accel(struct fsl_dspi *dspi);
460 static int dspi_dma_xfer(struct fsl_dspi *dspi)
462 struct spi_message *message = dspi->cur_msg;
463 struct device *dev = &dspi->pdev->dev;
467 * dspi->len gets decremented by dspi_pop_tx_pushr in
468 * dspi_next_xfer_dma_submit
471 /* Figure out operational bits-per-word for this chunk */
472 dspi_setup_accel(dspi);
474 dspi->words_in_flight = dspi->len / dspi->oper_word_size;
475 if (dspi->words_in_flight > dspi->devtype_data->fifo_size)
476 dspi->words_in_flight = dspi->devtype_data->fifo_size;
478 message->actual_length += dspi->words_in_flight *
479 dspi->oper_word_size;
481 ret = dspi_next_xfer_dma_submit(dspi);
483 dev_err(dev, "DMA transfer failed\n");
491 static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
493 int dma_bufsize = dspi->devtype_data->fifo_size * 2;
494 struct device *dev = &dspi->pdev->dev;
495 struct dma_slave_config cfg;
496 struct fsl_dspi_dma *dma;
499 dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
503 dma->chan_rx = dma_request_chan(dev, "rx");
504 if (IS_ERR(dma->chan_rx)) {
505 dev_err(dev, "rx dma channel not available\n");
506 ret = PTR_ERR(dma->chan_rx);
510 dma->chan_tx = dma_request_chan(dev, "tx");
511 if (IS_ERR(dma->chan_tx)) {
512 dev_err(dev, "tx dma channel not available\n");
513 ret = PTR_ERR(dma->chan_tx);
517 dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev,
518 dma_bufsize, &dma->tx_dma_phys,
520 if (!dma->tx_dma_buf) {
525 dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev,
526 dma_bufsize, &dma->rx_dma_phys,
528 if (!dma->rx_dma_buf) {
533 memset(&cfg, 0, sizeof(cfg));
534 cfg.src_addr = phy_addr + SPI_POPR;
535 cfg.dst_addr = phy_addr + SPI_PUSHR;
536 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
537 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
538 cfg.src_maxburst = 1;
539 cfg.dst_maxburst = 1;
541 cfg.direction = DMA_DEV_TO_MEM;
542 ret = dmaengine_slave_config(dma->chan_rx, &cfg);
544 dev_err(dev, "can't configure rx dma channel\n");
546 goto err_slave_config;
549 cfg.direction = DMA_MEM_TO_DEV;
550 ret = dmaengine_slave_config(dma->chan_tx, &cfg);
552 dev_err(dev, "can't configure tx dma channel\n");
554 goto err_slave_config;
558 init_completion(&dma->cmd_tx_complete);
559 init_completion(&dma->cmd_rx_complete);
564 dma_free_coherent(dma->chan_rx->device->dev,
565 dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys);
567 dma_free_coherent(dma->chan_tx->device->dev,
568 dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys);
570 dma_release_channel(dma->chan_tx);
572 dma_release_channel(dma->chan_rx);
574 devm_kfree(dev, dma);
580 static void dspi_release_dma(struct fsl_dspi *dspi)
582 int dma_bufsize = dspi->devtype_data->fifo_size * 2;
583 struct fsl_dspi_dma *dma = dspi->dma;
589 dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize,
590 dma->tx_dma_buf, dma->tx_dma_phys);
591 dma_release_channel(dma->chan_tx);
595 dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize,
596 dma->rx_dma_buf, dma->rx_dma_phys);
597 dma_release_channel(dma->chan_rx);
601 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
602 unsigned long clkrate)
604 /* Valid baud rate pre-scaler values */
605 int pbr_tbl[4] = {2, 3, 5, 7};
606 int brs[16] = { 2, 4, 6, 8,
608 256, 512, 1024, 2048,
609 4096, 8192, 16384, 32768 };
610 int scale_needed, scale, minscale = INT_MAX;
613 scale_needed = clkrate / speed_hz;
614 if (clkrate % speed_hz)
617 for (i = 0; i < ARRAY_SIZE(brs); i++)
618 for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
619 scale = brs[i] * pbr_tbl[j];
620 if (scale >= scale_needed) {
621 if (scale < minscale) {
630 if (minscale == INT_MAX) {
631 pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
633 *pbr = ARRAY_SIZE(pbr_tbl) - 1;
634 *br = ARRAY_SIZE(brs) - 1;
638 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
639 unsigned long clkrate)
641 int scale_needed, scale, minscale = INT_MAX;
642 int pscale_tbl[4] = {1, 3, 5, 7};
646 scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
651 for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
652 for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
653 scale = pscale_tbl[i] * (2 << j);
654 if (scale >= scale_needed) {
655 if (scale < minscale) {
664 if (minscale == INT_MAX) {
665 pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
667 *psc = ARRAY_SIZE(pscale_tbl) - 1;
668 *sc = SPI_CTAR_SCALE_BITS;
672 static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd)
675 * The only time when the PCS doesn't need continuation after this word
676 * is when it's last. We need to look ahead, because we actually call
677 * dspi_pop_tx (the function that decrements dspi->len) _after_
678 * dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One
679 * word is enough. If there's more to transmit than that,
680 * dspi_xspi_write will know to split the FIFO writes in 2, and
681 * generate a new PUSHR command with the final word that will have PCS
682 * deasserted (not continued) here.
684 if (dspi->len > dspi->oper_word_size)
685 cmd |= SPI_PUSHR_CMD_CONT;
686 regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd);
689 static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata)
691 regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata);
694 static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words)
696 int num_bytes = num_words * dspi->oper_word_size;
697 u16 tx_cmd = dspi->tx_cmd;
700 * If the PCS needs to de-assert (i.e. we're at the end of the buffer
701 * and cs_change does not want the PCS to stay on), then we need a new
702 * PUSHR command, since this one (for the body of the buffer)
703 * necessarily has the CONT bit set.
704 * So send one word less during this go, to force a split and a command
705 * with a single word next time, when CONT will be unset.
707 if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len)
708 tx_cmd |= SPI_PUSHR_CMD_EOQ;
711 regmap_write(dspi->regmap, SPI_CTARE(0),
712 SPI_FRAME_EBITS(dspi->oper_bits_per_word) |
713 SPI_CTARE_DTCP(num_words));
716 * Write the CMD FIFO entry first, and then the two
717 * corresponding TX FIFO entries (or one...).
719 dspi_pushr_cmd_write(dspi, tx_cmd);
721 /* Fill TX FIFO with as many transfers as possible */
722 while (num_words--) {
723 u32 data = dspi_pop_tx(dspi);
725 dspi_pushr_txdata_write(dspi, data & 0xFFFF);
726 if (dspi->oper_bits_per_word > 16)
727 dspi_pushr_txdata_write(dspi, data >> 16);
731 static u32 dspi_popr_read(struct fsl_dspi *dspi)
735 regmap_read(dspi->regmap, SPI_POPR, &rxdata);
739 static void dspi_fifo_read(struct fsl_dspi *dspi)
741 int num_fifo_entries = dspi->words_in_flight;
743 /* Read one FIFO entry and push to rx buffer */
744 while (num_fifo_entries--)
745 dspi_push_rx(dspi, dspi_popr_read(dspi));
748 static void dspi_setup_accel(struct fsl_dspi *dspi)
750 struct spi_transfer *xfer = dspi->cur_transfer;
751 bool odd = !!(dspi->len & 1);
753 /* No accel for frames not multiple of 8 bits at the moment */
754 if (xfer->bits_per_word % 8)
757 if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) {
758 dspi->oper_bits_per_word = 16;
759 } else if (odd && dspi->len <= dspi->devtype_data->fifo_size) {
760 dspi->oper_bits_per_word = 8;
762 /* Start off with maximum supported by hardware */
763 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
764 dspi->oper_bits_per_word = 32;
766 dspi->oper_bits_per_word = 16;
769 * And go down only if the buffer can't be sent with
773 if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8))
776 dspi->oper_bits_per_word /= 2;
777 } while (dspi->oper_bits_per_word > 8);
780 if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) {
781 dspi->dev_to_host = dspi_8on32_dev_to_host;
782 dspi->host_to_dev = dspi_8on32_host_to_dev;
783 } else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) {
784 dspi->dev_to_host = dspi_8on16_dev_to_host;
785 dspi->host_to_dev = dspi_8on16_host_to_dev;
786 } else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) {
787 dspi->dev_to_host = dspi_16on32_dev_to_host;
788 dspi->host_to_dev = dspi_16on32_host_to_dev;
791 dspi->dev_to_host = dspi_native_dev_to_host;
792 dspi->host_to_dev = dspi_native_host_to_dev;
793 dspi->oper_bits_per_word = xfer->bits_per_word;
796 dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8);
799 * Update CTAR here (code is common for XSPI and DMA modes).
800 * We will update CTARE in the portion specific to XSPI, when we
801 * also know the preload value (DTCP).
803 regmap_write(dspi->regmap, SPI_CTAR(0),
804 dspi->cur_chip->ctar_val |
805 SPI_FRAME_BITS(dspi->oper_bits_per_word));
808 static void dspi_fifo_write(struct fsl_dspi *dspi)
810 int num_fifo_entries = dspi->devtype_data->fifo_size;
811 struct spi_transfer *xfer = dspi->cur_transfer;
812 struct spi_message *msg = dspi->cur_msg;
813 int num_words, num_bytes;
815 dspi_setup_accel(dspi);
817 /* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */
818 if (dspi->oper_word_size == 4)
819 num_fifo_entries /= 2;
822 * Integer division intentionally trims off odd (or non-multiple of 4)
823 * numbers of bytes at the end of the buffer, which will be sent next
824 * time using a smaller oper_word_size.
826 num_words = dspi->len / dspi->oper_word_size;
827 if (num_words > num_fifo_entries)
828 num_words = num_fifo_entries;
830 /* Update total number of bytes that were transferred */
831 num_bytes = num_words * dspi->oper_word_size;
832 msg->actual_length += num_bytes;
833 dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8);
836 * Update shared variable for use in the next interrupt (both in
837 * dspi_fifo_read and in dspi_fifo_write).
839 dspi->words_in_flight = num_words;
841 spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq);
843 dspi_xspi_fifo_write(dspi, num_words);
845 * Everything after this point is in a potential race with the next
846 * interrupt, so we must never use dspi->words_in_flight again since it
847 * might already be modified by the next dspi_fifo_write.
850 spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
851 dspi->progress, !dspi->irq);
854 static int dspi_rxtx(struct fsl_dspi *dspi)
856 dspi_fifo_read(dspi);
862 dspi_fifo_write(dspi);
867 static int dspi_poll(struct fsl_dspi *dspi)
873 regmap_read(dspi->regmap, SPI_SR, &spi_sr);
874 regmap_write(dspi->regmap, SPI_SR, spi_sr);
876 if (spi_sr & SPI_SR_CMDTCF)
883 return dspi_rxtx(dspi);
886 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
888 struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
891 regmap_read(dspi->regmap, SPI_SR, &spi_sr);
892 regmap_write(dspi->regmap, SPI_SR, spi_sr);
894 if (!(spi_sr & SPI_SR_CMDTCF))
897 if (dspi_rxtx(dspi) == 0)
898 complete(&dspi->xfer_done);
903 static int dspi_transfer_one_message(struct spi_controller *ctlr,
904 struct spi_message *message)
906 struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
907 struct spi_device *spi = message->spi;
908 struct spi_transfer *transfer;
911 message->actual_length = 0;
913 list_for_each_entry(transfer, &message->transfers, transfer_list) {
914 dspi->cur_transfer = transfer;
915 dspi->cur_msg = message;
916 dspi->cur_chip = spi_get_ctldata(spi);
917 /* Prepare command word for CMD FIFO */
918 dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
919 SPI_PUSHR_CMD_PCS(spi->chip_select);
920 if (list_is_last(&dspi->cur_transfer->transfer_list,
921 &dspi->cur_msg->transfers)) {
922 /* Leave PCS activated after last transfer when
925 if (transfer->cs_change)
926 dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
928 /* Keep PCS active between transfers in same message
929 * when cs_change is not set, and de-activate PCS
930 * between transfers in the same message when
933 if (!transfer->cs_change)
934 dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
937 dspi->tx = transfer->tx_buf;
938 dspi->rx = transfer->rx_buf;
939 dspi->len = transfer->len;
942 regmap_update_bits(dspi->regmap, SPI_MCR,
943 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
944 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
946 spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
947 dspi->progress, !dspi->irq);
949 if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
950 status = dspi_dma_xfer(dspi);
952 dspi_fifo_write(dspi);
955 wait_for_completion(&dspi->xfer_done);
956 reinit_completion(&dspi->xfer_done);
959 status = dspi_poll(dspi);
960 } while (status == -EINPROGRESS);
966 spi_transfer_delay_exec(transfer);
969 message->status = status;
970 spi_finalize_current_message(ctlr);
975 static int dspi_setup(struct spi_device *spi)
977 struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
978 unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
979 u32 cs_sck_delay = 0, sck_cs_delay = 0;
980 struct fsl_dspi_platform_data *pdata;
981 unsigned char pasc = 0, asc = 0;
982 struct chip_data *chip;
983 unsigned long clkrate;
985 /* Only alloc on first setup */
986 chip = spi_get_ctldata(spi);
988 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
993 pdata = dev_get_platdata(&dspi->pdev->dev);
996 of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
999 of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
1002 cs_sck_delay = pdata->cs_sck_delay;
1003 sck_cs_delay = pdata->sck_cs_delay;
1006 clkrate = clk_get_rate(dspi->clk);
1007 hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
1009 /* Set PCS to SCK delay scale values */
1010 ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
1012 /* Set After SCK delay scale values */
1013 ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
1016 if (spi->mode & SPI_CPOL)
1017 chip->ctar_val |= SPI_CTAR_CPOL;
1018 if (spi->mode & SPI_CPHA)
1019 chip->ctar_val |= SPI_CTAR_CPHA;
1021 if (!spi_controller_is_slave(dspi->ctlr)) {
1022 chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
1023 SPI_CTAR_CSSCK(cssck) |
1024 SPI_CTAR_PASC(pasc) |
1029 if (spi->mode & SPI_LSB_FIRST)
1030 chip->ctar_val |= SPI_CTAR_LSBFE;
1033 spi_set_ctldata(spi, chip);
1038 static void dspi_cleanup(struct spi_device *spi)
1040 struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
1042 dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
1043 spi->controller->bus_num, spi->chip_select);
1048 static const struct of_device_id fsl_dspi_dt_ids[] = {
1050 .compatible = "fsl,vf610-dspi",
1051 .data = &devtype_data[VF610],
1053 .compatible = "fsl,ls1021a-v1.0-dspi",
1054 .data = &devtype_data[LS1021A],
1056 .compatible = "fsl,ls1012a-dspi",
1057 .data = &devtype_data[LS1012A],
1059 .compatible = "fsl,ls1028a-dspi",
1060 .data = &devtype_data[LS1028A],
1062 .compatible = "fsl,ls1043a-dspi",
1063 .data = &devtype_data[LS1043A],
1065 .compatible = "fsl,ls1046a-dspi",
1066 .data = &devtype_data[LS1046A],
1068 .compatible = "fsl,ls2080a-dspi",
1069 .data = &devtype_data[LS2080A],
1071 .compatible = "fsl,ls2085a-dspi",
1072 .data = &devtype_data[LS2085A],
1074 .compatible = "fsl,lx2160a-dspi",
1075 .data = &devtype_data[LX2160A],
1079 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
1081 #ifdef CONFIG_PM_SLEEP
1082 static int dspi_suspend(struct device *dev)
1084 struct fsl_dspi *dspi = dev_get_drvdata(dev);
1087 disable_irq(dspi->irq);
1088 spi_controller_suspend(dspi->ctlr);
1089 clk_disable_unprepare(dspi->clk);
1091 pinctrl_pm_select_sleep_state(dev);
1096 static int dspi_resume(struct device *dev)
1098 struct fsl_dspi *dspi = dev_get_drvdata(dev);
1101 pinctrl_pm_select_default_state(dev);
1103 ret = clk_prepare_enable(dspi->clk);
1106 spi_controller_resume(dspi->ctlr);
1108 enable_irq(dspi->irq);
1112 #endif /* CONFIG_PM_SLEEP */
1114 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
1116 static const struct regmap_range dspi_volatile_ranges[] = {
1117 regmap_reg_range(SPI_MCR, SPI_TCR),
1118 regmap_reg_range(SPI_SR, SPI_SR),
1119 regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1122 static const struct regmap_access_table dspi_volatile_table = {
1123 .yes_ranges = dspi_volatile_ranges,
1124 .n_yes_ranges = ARRAY_SIZE(dspi_volatile_ranges),
1127 static const struct regmap_config dspi_regmap_config = {
1131 .max_register = 0x88,
1132 .volatile_table = &dspi_volatile_table,
1135 static const struct regmap_range dspi_xspi_volatile_ranges[] = {
1136 regmap_reg_range(SPI_MCR, SPI_TCR),
1137 regmap_reg_range(SPI_SR, SPI_SR),
1138 regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1139 regmap_reg_range(SPI_SREX, SPI_SREX),
1142 static const struct regmap_access_table dspi_xspi_volatile_table = {
1143 .yes_ranges = dspi_xspi_volatile_ranges,
1144 .n_yes_ranges = ARRAY_SIZE(dspi_xspi_volatile_ranges),
1147 static const struct regmap_config dspi_xspi_regmap_config[] = {
1152 .max_register = 0x13c,
1153 .volatile_table = &dspi_xspi_volatile_table,
1160 .max_register = 0x2,
1164 static int dspi_init(struct fsl_dspi *dspi)
1168 /* Set idle states for all chip select signals to high */
1169 mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->max_native_cs - 1, 0));
1171 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1172 mcr |= SPI_MCR_XSPI;
1173 if (!spi_controller_is_slave(dspi->ctlr))
1174 mcr |= SPI_MCR_MASTER;
1176 regmap_write(dspi->regmap, SPI_MCR, mcr);
1177 regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1179 switch (dspi->devtype_data->trans_mode) {
1180 case DSPI_XSPI_MODE:
1181 regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE);
1184 regmap_write(dspi->regmap, SPI_RSER,
1185 SPI_RSER_TFFFE | SPI_RSER_TFFFD |
1186 SPI_RSER_RFDFE | SPI_RSER_RFDFD);
1189 dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
1190 dspi->devtype_data->trans_mode);
1197 static int dspi_slave_abort(struct spi_master *master)
1199 struct fsl_dspi *dspi = spi_master_get_devdata(master);
1202 * Terminate all pending DMA transactions for the SPI working
1205 if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1206 dmaengine_terminate_sync(dspi->dma->chan_rx);
1207 dmaengine_terminate_sync(dspi->dma->chan_tx);
1210 /* Clear the internal DSPI RX and TX FIFO buffers */
1211 regmap_update_bits(dspi->regmap, SPI_MCR,
1212 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1213 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1218 static int dspi_probe(struct platform_device *pdev)
1220 struct device_node *np = pdev->dev.of_node;
1221 const struct regmap_config *regmap_config;
1222 struct fsl_dspi_platform_data *pdata;
1223 struct spi_controller *ctlr;
1224 int ret, cs_num, bus_num = -1;
1225 struct fsl_dspi *dspi;
1226 struct resource *res;
1230 dspi = devm_kzalloc(&pdev->dev, sizeof(*dspi), GFP_KERNEL);
1234 ctlr = spi_alloc_master(&pdev->dev, 0);
1238 spi_controller_set_devdata(ctlr, dspi);
1239 platform_set_drvdata(pdev, dspi);
1244 ctlr->setup = dspi_setup;
1245 ctlr->transfer_one_message = dspi_transfer_one_message;
1246 ctlr->dev.of_node = pdev->dev.of_node;
1248 ctlr->cleanup = dspi_cleanup;
1249 ctlr->slave_abort = dspi_slave_abort;
1250 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1252 pdata = dev_get_platdata(&pdev->dev);
1254 ctlr->num_chipselect = ctlr->max_native_cs = pdata->cs_num;
1255 ctlr->bus_num = pdata->bus_num;
1257 /* Only Coldfire uses platform data */
1258 dspi->devtype_data = &devtype_data[MCF5441X];
1262 ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1264 dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1267 ctlr->num_chipselect = ctlr->max_native_cs = cs_num;
1269 of_property_read_u32(np, "bus-num", &bus_num);
1270 ctlr->bus_num = bus_num;
1272 if (of_property_read_bool(np, "spi-slave"))
1275 dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1276 if (!dspi->devtype_data) {
1277 dev_err(&pdev->dev, "can't get devtype_data\n");
1282 big_endian = of_device_is_big_endian(np);
1285 dspi->pushr_cmd = 0;
1288 dspi->pushr_cmd = 2;
1292 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1293 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1295 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1297 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1298 base = devm_ioremap_resource(&pdev->dev, res);
1300 ret = PTR_ERR(base);
1304 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1305 regmap_config = &dspi_xspi_regmap_config[0];
1307 regmap_config = &dspi_regmap_config;
1308 dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1309 if (IS_ERR(dspi->regmap)) {
1310 dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1311 PTR_ERR(dspi->regmap));
1312 ret = PTR_ERR(dspi->regmap);
1316 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) {
1317 dspi->regmap_pushr = devm_regmap_init_mmio(
1318 &pdev->dev, base + SPI_PUSHR,
1319 &dspi_xspi_regmap_config[1]);
1320 if (IS_ERR(dspi->regmap_pushr)) {
1322 "failed to init pushr regmap: %ld\n",
1323 PTR_ERR(dspi->regmap_pushr));
1324 ret = PTR_ERR(dspi->regmap_pushr);
1329 dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1330 if (IS_ERR(dspi->clk)) {
1331 ret = PTR_ERR(dspi->clk);
1332 dev_err(&pdev->dev, "unable to get clock\n");
1335 ret = clk_prepare_enable(dspi->clk);
1339 ret = dspi_init(dspi);
1343 dspi->irq = platform_get_irq(pdev, 0);
1344 if (dspi->irq <= 0) {
1345 dev_info(&pdev->dev,
1346 "can't get platform irq, using poll mode\n");
1351 init_completion(&dspi->xfer_done);
1353 ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL,
1354 IRQF_SHARED, pdev->name, dspi);
1356 dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1362 if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1363 ret = dspi_request_dma(dspi, res->start);
1365 dev_err(&pdev->dev, "can't get dma channels\n");
1370 ctlr->max_speed_hz =
1371 clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1373 if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE)
1374 ctlr->ptp_sts_supported = true;
1376 ret = spi_register_controller(ctlr);
1378 dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1379 goto out_release_dma;
1385 dspi_release_dma(dspi);
1388 free_irq(dspi->irq, dspi);
1390 clk_disable_unprepare(dspi->clk);
1392 spi_controller_put(ctlr);
1397 static int dspi_remove(struct platform_device *pdev)
1399 struct fsl_dspi *dspi = platform_get_drvdata(pdev);
1401 /* Disconnect from the SPI framework */
1402 spi_unregister_controller(dspi->ctlr);
1404 /* Disable RX and TX */
1405 regmap_update_bits(dspi->regmap, SPI_MCR,
1406 SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF,
1407 SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF);
1410 regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT);
1412 dspi_release_dma(dspi);
1414 free_irq(dspi->irq, dspi);
1415 clk_disable_unprepare(dspi->clk);
1420 static void dspi_shutdown(struct platform_device *pdev)
1425 static struct platform_driver fsl_dspi_driver = {
1426 .driver.name = DRIVER_NAME,
1427 .driver.of_match_table = fsl_dspi_dt_ids,
1428 .driver.owner = THIS_MODULE,
1429 .driver.pm = &dspi_pm,
1430 .probe = dspi_probe,
1431 .remove = dspi_remove,
1432 .shutdown = dspi_shutdown,
1434 module_platform_driver(fsl_dspi_driver);
1436 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1437 MODULE_LICENSE("GPL");
1438 MODULE_ALIAS("platform:" DRIVER_NAME);