cpufreq: governor: Use kobject release() method to free dbs_data
[platform/kernel/linux-rpi.git] / drivers / spi / spi-fsi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // Copyright (C) IBM Corporation 2020
3
4 #include <linux/bitfield.h>
5 #include <linux/bits.h>
6 #include <linux/fsi.h>
7 #include <linux/jiffies.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/spi/spi.h>
12
13 #define FSI_ENGID_SPI                   0x23
14 #define FSI_MBOX_ROOT_CTRL_8            0x2860
15 #define  FSI_MBOX_ROOT_CTRL_8_SPI_MUX    0xf0000000
16
17 #define FSI2SPI_DATA0                   0x00
18 #define FSI2SPI_DATA1                   0x04
19 #define FSI2SPI_CMD                     0x08
20 #define  FSI2SPI_CMD_WRITE               BIT(31)
21 #define FSI2SPI_RESET                   0x18
22 #define FSI2SPI_STATUS                  0x1c
23 #define  FSI2SPI_STATUS_ANY_ERROR        BIT(31)
24 #define FSI2SPI_IRQ                     0x20
25
26 #define SPI_FSI_BASE                    0x70000
27 #define SPI_FSI_INIT_TIMEOUT_MS         1000
28 #define SPI_FSI_MAX_RX_SIZE             8
29 #define SPI_FSI_MAX_TX_SIZE             40
30
31 #define SPI_FSI_ERROR                   0x0
32 #define SPI_FSI_COUNTER_CFG             0x1
33 #define SPI_FSI_CFG1                    0x2
34 #define SPI_FSI_CLOCK_CFG               0x3
35 #define  SPI_FSI_CLOCK_CFG_MM_ENABLE     BIT_ULL(32)
36 #define  SPI_FSI_CLOCK_CFG_ECC_DISABLE   (BIT_ULL(35) | BIT_ULL(33))
37 #define  SPI_FSI_CLOCK_CFG_RESET1        (BIT_ULL(36) | BIT_ULL(38))
38 #define  SPI_FSI_CLOCK_CFG_RESET2        (BIT_ULL(37) | BIT_ULL(39))
39 #define  SPI_FSI_CLOCK_CFG_MODE          (BIT_ULL(41) | BIT_ULL(42))
40 #define  SPI_FSI_CLOCK_CFG_SCK_RECV_DEL  GENMASK_ULL(51, 44)
41 #define   SPI_FSI_CLOCK_CFG_SCK_NO_DEL    BIT_ULL(51)
42 #define  SPI_FSI_CLOCK_CFG_SCK_DIV       GENMASK_ULL(63, 52)
43 #define SPI_FSI_MMAP                    0x4
44 #define SPI_FSI_DATA_TX                 0x5
45 #define SPI_FSI_DATA_RX                 0x6
46 #define SPI_FSI_SEQUENCE                0x7
47 #define  SPI_FSI_SEQUENCE_STOP           0x00
48 #define  SPI_FSI_SEQUENCE_SEL_SLAVE(x)   (0x10 | ((x) & 0xf))
49 #define  SPI_FSI_SEQUENCE_SHIFT_OUT(x)   (0x30 | ((x) & 0xf))
50 #define  SPI_FSI_SEQUENCE_SHIFT_IN(x)    (0x40 | ((x) & 0xf))
51 #define  SPI_FSI_SEQUENCE_COPY_DATA_TX   0xc0
52 #define  SPI_FSI_SEQUENCE_BRANCH(x)      (0xe0 | ((x) & 0xf))
53 #define SPI_FSI_STATUS                  0x8
54 #define  SPI_FSI_STATUS_ERROR            \
55         (GENMASK_ULL(31, 21) | GENMASK_ULL(15, 12))
56 #define  SPI_FSI_STATUS_SEQ_STATE        GENMASK_ULL(55, 48)
57 #define   SPI_FSI_STATUS_SEQ_STATE_IDLE   BIT_ULL(48)
58 #define  SPI_FSI_STATUS_TDR_UNDERRUN     BIT_ULL(57)
59 #define  SPI_FSI_STATUS_TDR_OVERRUN      BIT_ULL(58)
60 #define  SPI_FSI_STATUS_TDR_FULL         BIT_ULL(59)
61 #define  SPI_FSI_STATUS_RDR_UNDERRUN     BIT_ULL(61)
62 #define  SPI_FSI_STATUS_RDR_OVERRUN      BIT_ULL(62)
63 #define  SPI_FSI_STATUS_RDR_FULL         BIT_ULL(63)
64 #define  SPI_FSI_STATUS_ANY_ERROR        \
65         (SPI_FSI_STATUS_ERROR | \
66          SPI_FSI_STATUS_TDR_OVERRUN | SPI_FSI_STATUS_RDR_UNDERRUN | \
67          SPI_FSI_STATUS_RDR_OVERRUN)
68 #define SPI_FSI_PORT_CTRL               0x9
69
70 struct fsi_spi {
71         struct device *dev;     /* SPI controller device */
72         struct fsi_device *fsi; /* FSI2SPI CFAM engine device */
73         u32 base;
74 };
75
76 struct fsi_spi_sequence {
77         int bit;
78         u64 data;
79 };
80
81 static int fsi_spi_check_mux(struct fsi_device *fsi, struct device *dev)
82 {
83         int rc;
84         u32 root_ctrl_8;
85         __be32 root_ctrl_8_be;
86
87         rc = fsi_slave_read(fsi->slave, FSI_MBOX_ROOT_CTRL_8, &root_ctrl_8_be,
88                             sizeof(root_ctrl_8_be));
89         if (rc)
90                 return rc;
91
92         root_ctrl_8 = be32_to_cpu(root_ctrl_8_be);
93         dev_dbg(dev, "Root control register 8: %08x\n", root_ctrl_8);
94         if ((root_ctrl_8 & FSI_MBOX_ROOT_CTRL_8_SPI_MUX) ==
95              FSI_MBOX_ROOT_CTRL_8_SPI_MUX)
96                 return 0;
97
98         return -ENOLINK;
99 }
100
101 static int fsi_spi_check_status(struct fsi_spi *ctx)
102 {
103         int rc;
104         u32 sts;
105         __be32 sts_be;
106
107         rc = fsi_device_read(ctx->fsi, FSI2SPI_STATUS, &sts_be,
108                              sizeof(sts_be));
109         if (rc)
110                 return rc;
111
112         sts = be32_to_cpu(sts_be);
113         if (sts & FSI2SPI_STATUS_ANY_ERROR) {
114                 dev_err(ctx->dev, "Error with FSI2SPI interface: %08x.\n", sts);
115                 return -EIO;
116         }
117
118         return 0;
119 }
120
121 static int fsi_spi_read_reg(struct fsi_spi *ctx, u32 offset, u64 *value)
122 {
123         int rc;
124         __be32 cmd_be;
125         __be32 data_be;
126         u32 cmd = offset + ctx->base;
127
128         *value = 0ULL;
129
130         if (cmd & FSI2SPI_CMD_WRITE)
131                 return -EINVAL;
132
133         cmd_be = cpu_to_be32(cmd);
134         rc = fsi_device_write(ctx->fsi, FSI2SPI_CMD, &cmd_be, sizeof(cmd_be));
135         if (rc)
136                 return rc;
137
138         rc = fsi_spi_check_status(ctx);
139         if (rc)
140                 return rc;
141
142         rc = fsi_device_read(ctx->fsi, FSI2SPI_DATA0, &data_be,
143                              sizeof(data_be));
144         if (rc)
145                 return rc;
146
147         *value |= (u64)be32_to_cpu(data_be) << 32;
148
149         rc = fsi_device_read(ctx->fsi, FSI2SPI_DATA1, &data_be,
150                              sizeof(data_be));
151         if (rc)
152                 return rc;
153
154         *value |= (u64)be32_to_cpu(data_be);
155         dev_dbg(ctx->dev, "Read %02x[%016llx].\n", offset, *value);
156
157         return 0;
158 }
159
160 static int fsi_spi_write_reg(struct fsi_spi *ctx, u32 offset, u64 value)
161 {
162         int rc;
163         __be32 cmd_be;
164         __be32 data_be;
165         u32 cmd = offset + ctx->base;
166
167         if (cmd & FSI2SPI_CMD_WRITE)
168                 return -EINVAL;
169
170         dev_dbg(ctx->dev, "Write %02x[%016llx].\n", offset, value);
171
172         data_be = cpu_to_be32(upper_32_bits(value));
173         rc = fsi_device_write(ctx->fsi, FSI2SPI_DATA0, &data_be,
174                               sizeof(data_be));
175         if (rc)
176                 return rc;
177
178         data_be = cpu_to_be32(lower_32_bits(value));
179         rc = fsi_device_write(ctx->fsi, FSI2SPI_DATA1, &data_be,
180                               sizeof(data_be));
181         if (rc)
182                 return rc;
183
184         cmd_be = cpu_to_be32(cmd | FSI2SPI_CMD_WRITE);
185         rc = fsi_device_write(ctx->fsi, FSI2SPI_CMD, &cmd_be, sizeof(cmd_be));
186         if (rc)
187                 return rc;
188
189         return fsi_spi_check_status(ctx);
190 }
191
192 static int fsi_spi_data_in(u64 in, u8 *rx, int len)
193 {
194         int i;
195         int num_bytes = min(len, 8);
196
197         for (i = 0; i < num_bytes; ++i)
198                 rx[i] = (u8)(in >> (8 * ((num_bytes - 1) - i)));
199
200         return num_bytes;
201 }
202
203 static int fsi_spi_data_out(u64 *out, const u8 *tx, int len)
204 {
205         int i;
206         int num_bytes = min(len, 8);
207         u8 *out_bytes = (u8 *)out;
208
209         /* Unused bytes of the tx data should be 0. */
210         *out = 0ULL;
211
212         for (i = 0; i < num_bytes; ++i)
213                 out_bytes[8 - (i + 1)] = tx[i];
214
215         return num_bytes;
216 }
217
218 static int fsi_spi_reset(struct fsi_spi *ctx)
219 {
220         int rc;
221
222         dev_dbg(ctx->dev, "Resetting SPI controller.\n");
223
224         rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
225                                SPI_FSI_CLOCK_CFG_RESET1);
226         if (rc)
227                 return rc;
228
229         rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
230                                SPI_FSI_CLOCK_CFG_RESET2);
231         if (rc)
232                 return rc;
233
234         return fsi_spi_write_reg(ctx, SPI_FSI_STATUS, 0ULL);
235 }
236
237 static void fsi_spi_sequence_add(struct fsi_spi_sequence *seq, u8 val)
238 {
239         /*
240          * Add the next byte of instruction to the 8-byte sequence register.
241          * Then decrement the counter so that the next instruction will go in
242          * the right place. Return the index of the slot we just filled in the
243          * sequence register.
244          */
245         seq->data |= (u64)val << seq->bit;
246         seq->bit -= 8;
247 }
248
249 static void fsi_spi_sequence_init(struct fsi_spi_sequence *seq)
250 {
251         seq->bit = 56;
252         seq->data = 0ULL;
253 }
254
255 static int fsi_spi_transfer_data(struct fsi_spi *ctx,
256                                  struct spi_transfer *transfer)
257 {
258         int rc = 0;
259         u64 status = 0ULL;
260
261         if (transfer->tx_buf) {
262                 int nb;
263                 int sent = 0;
264                 u64 out = 0ULL;
265                 const u8 *tx = transfer->tx_buf;
266
267                 while (transfer->len > sent) {
268                         nb = fsi_spi_data_out(&out, &tx[sent],
269                                               (int)transfer->len - sent);
270
271                         rc = fsi_spi_write_reg(ctx, SPI_FSI_DATA_TX, out);
272                         if (rc)
273                                 return rc;
274
275                         do {
276                                 rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS,
277                                                       &status);
278                                 if (rc)
279                                         return rc;
280
281                                 if (status & SPI_FSI_STATUS_ANY_ERROR) {
282                                         rc = fsi_spi_reset(ctx);
283                                         if (rc)
284                                                 return rc;
285
286                                         return -EREMOTEIO;
287                                 }
288                         } while (status & SPI_FSI_STATUS_TDR_FULL);
289
290                         sent += nb;
291                 }
292         } else if (transfer->rx_buf) {
293                 int recv = 0;
294                 u64 in = 0ULL;
295                 u8 *rx = transfer->rx_buf;
296
297                 while (transfer->len > recv) {
298                         do {
299                                 rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS,
300                                                       &status);
301                                 if (rc)
302                                         return rc;
303
304                                 if (status & SPI_FSI_STATUS_ANY_ERROR) {
305                                         rc = fsi_spi_reset(ctx);
306                                         if (rc)
307                                                 return rc;
308
309                                         return -EREMOTEIO;
310                                 }
311                         } while (!(status & SPI_FSI_STATUS_RDR_FULL));
312
313                         rc = fsi_spi_read_reg(ctx, SPI_FSI_DATA_RX, &in);
314                         if (rc)
315                                 return rc;
316
317                         recv += fsi_spi_data_in(in, &rx[recv],
318                                                 (int)transfer->len - recv);
319                 }
320         }
321
322         return 0;
323 }
324
325 static int fsi_spi_transfer_init(struct fsi_spi *ctx)
326 {
327         int rc;
328         bool reset = false;
329         unsigned long end;
330         u64 seq_state;
331         u64 clock_cfg = 0ULL;
332         u64 status = 0ULL;
333         u64 wanted_clock_cfg = SPI_FSI_CLOCK_CFG_ECC_DISABLE |
334                 SPI_FSI_CLOCK_CFG_SCK_NO_DEL |
335                 FIELD_PREP(SPI_FSI_CLOCK_CFG_SCK_DIV, 19);
336
337         end = jiffies + msecs_to_jiffies(SPI_FSI_INIT_TIMEOUT_MS);
338         do {
339                 if (time_after(jiffies, end))
340                         return -ETIMEDOUT;
341
342                 rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, &status);
343                 if (rc)
344                         return rc;
345
346                 seq_state = status & SPI_FSI_STATUS_SEQ_STATE;
347
348                 if (status & (SPI_FSI_STATUS_ANY_ERROR |
349                               SPI_FSI_STATUS_TDR_FULL |
350                               SPI_FSI_STATUS_RDR_FULL)) {
351                         if (reset)
352                                 return -EIO;
353
354                         rc = fsi_spi_reset(ctx);
355                         if (rc)
356                                 return rc;
357
358                         reset = true;
359                         continue;
360                 }
361         } while (seq_state && (seq_state != SPI_FSI_STATUS_SEQ_STATE_IDLE));
362
363         rc = fsi_spi_write_reg(ctx, SPI_FSI_COUNTER_CFG, 0ULL);
364         if (rc)
365                 return rc;
366
367         rc = fsi_spi_read_reg(ctx, SPI_FSI_CLOCK_CFG, &clock_cfg);
368         if (rc)
369                 return rc;
370
371         if ((clock_cfg & (SPI_FSI_CLOCK_CFG_MM_ENABLE |
372                           SPI_FSI_CLOCK_CFG_ECC_DISABLE |
373                           SPI_FSI_CLOCK_CFG_MODE |
374                           SPI_FSI_CLOCK_CFG_SCK_RECV_DEL |
375                           SPI_FSI_CLOCK_CFG_SCK_DIV)) != wanted_clock_cfg)
376                 rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
377                                        wanted_clock_cfg);
378
379         return rc;
380 }
381
382 static int fsi_spi_transfer_one_message(struct spi_controller *ctlr,
383                                         struct spi_message *mesg)
384 {
385         int rc;
386         u8 seq_slave = SPI_FSI_SEQUENCE_SEL_SLAVE(mesg->spi->chip_select + 1);
387         unsigned int len;
388         struct spi_transfer *transfer;
389         struct fsi_spi *ctx = spi_controller_get_devdata(ctlr);
390
391         rc = fsi_spi_check_mux(ctx->fsi, ctx->dev);
392         if (rc)
393                 goto error;
394
395         list_for_each_entry(transfer, &mesg->transfers, transfer_list) {
396                 struct fsi_spi_sequence seq;
397                 struct spi_transfer *next = NULL;
398
399                 /* Sequencer must do shift out (tx) first. */
400                 if (!transfer->tx_buf || transfer->len > SPI_FSI_MAX_TX_SIZE) {
401                         rc = -EINVAL;
402                         goto error;
403                 }
404
405                 dev_dbg(ctx->dev, "Start tx of %d bytes.\n", transfer->len);
406
407                 rc = fsi_spi_transfer_init(ctx);
408                 if (rc < 0)
409                         goto error;
410
411                 fsi_spi_sequence_init(&seq);
412                 fsi_spi_sequence_add(&seq, seq_slave);
413
414                 len = transfer->len;
415                 while (len > 8) {
416                         fsi_spi_sequence_add(&seq,
417                                              SPI_FSI_SEQUENCE_SHIFT_OUT(8));
418                         len -= 8;
419                 }
420                 fsi_spi_sequence_add(&seq, SPI_FSI_SEQUENCE_SHIFT_OUT(len));
421
422                 if (!list_is_last(&transfer->transfer_list,
423                                   &mesg->transfers)) {
424                         next = list_next_entry(transfer, transfer_list);
425
426                         /* Sequencer can only do shift in (rx) after tx. */
427                         if (next->rx_buf) {
428                                 u8 shift;
429
430                                 if (next->len > SPI_FSI_MAX_RX_SIZE) {
431                                         rc = -EINVAL;
432                                         goto error;
433                                 }
434
435                                 dev_dbg(ctx->dev, "Sequence rx of %d bytes.\n",
436                                         next->len);
437
438                                 shift = SPI_FSI_SEQUENCE_SHIFT_IN(next->len);
439                                 fsi_spi_sequence_add(&seq, shift);
440                         } else {
441                                 next = NULL;
442                         }
443                 }
444
445                 fsi_spi_sequence_add(&seq, SPI_FSI_SEQUENCE_SEL_SLAVE(0));
446
447                 rc = fsi_spi_write_reg(ctx, SPI_FSI_SEQUENCE, seq.data);
448                 if (rc)
449                         goto error;
450
451                 rc = fsi_spi_transfer_data(ctx, transfer);
452                 if (rc)
453                         goto error;
454
455                 if (next) {
456                         rc = fsi_spi_transfer_data(ctx, next);
457                         if (rc)
458                                 goto error;
459
460                         transfer = next;
461                 }
462         }
463
464 error:
465         mesg->status = rc;
466         spi_finalize_current_message(ctlr);
467
468         return rc;
469 }
470
471 static size_t fsi_spi_max_transfer_size(struct spi_device *spi)
472 {
473         return SPI_FSI_MAX_RX_SIZE;
474 }
475
476 static int fsi_spi_probe(struct device *dev)
477 {
478         int rc;
479         struct device_node *np;
480         int num_controllers_registered = 0;
481         struct fsi_device *fsi = to_fsi_dev(dev);
482
483         rc = fsi_spi_check_mux(fsi, dev);
484         if (rc)
485                 return -ENODEV;
486
487         for_each_available_child_of_node(dev->of_node, np) {
488                 u32 base;
489                 struct fsi_spi *ctx;
490                 struct spi_controller *ctlr;
491
492                 if (of_property_read_u32(np, "reg", &base))
493                         continue;
494
495                 ctlr = spi_alloc_master(dev, sizeof(*ctx));
496                 if (!ctlr) {
497                         of_node_put(np);
498                         break;
499                 }
500
501                 ctlr->dev.of_node = np;
502                 ctlr->num_chipselect = of_get_available_child_count(np) ?: 1;
503                 ctlr->flags = SPI_CONTROLLER_HALF_DUPLEX;
504                 ctlr->max_transfer_size = fsi_spi_max_transfer_size;
505                 ctlr->transfer_one_message = fsi_spi_transfer_one_message;
506
507                 ctx = spi_controller_get_devdata(ctlr);
508                 ctx->dev = &ctlr->dev;
509                 ctx->fsi = fsi;
510                 ctx->base = base + SPI_FSI_BASE;
511
512                 rc = devm_spi_register_controller(dev, ctlr);
513                 if (rc)
514                         spi_controller_put(ctlr);
515                 else
516                         num_controllers_registered++;
517         }
518
519         if (!num_controllers_registered)
520                 return -ENODEV;
521
522         return 0;
523 }
524
525 static const struct fsi_device_id fsi_spi_ids[] = {
526         { FSI_ENGID_SPI, FSI_VERSION_ANY },
527         { }
528 };
529 MODULE_DEVICE_TABLE(fsi, fsi_spi_ids);
530
531 static struct fsi_driver fsi_spi_driver = {
532         .id_table = fsi_spi_ids,
533         .drv = {
534                 .name = "spi-fsi",
535                 .bus = &fsi_bus_type,
536                 .probe = fsi_spi_probe,
537         },
538 };
539 module_fsi_driver(fsi_spi_driver);
540
541 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
542 MODULE_DESCRIPTION("FSI attached SPI controller");
543 MODULE_LICENSE("GPL");