2 * Driver for Cirrus Logic EP93xx SPI controller.
4 * Copyright (C) 2010-2011 Mika Westerberg
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
10 * For more information about the SPI controller see documentation on Cirrus
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/sched.h>
31 #include <linux/scatterlist.h>
32 #include <linux/spi/spi.h>
34 #include <linux/platform_data/dma-ep93xx.h>
35 #include <linux/platform_data/spi-ep93xx.h>
38 #define SSPCR0_MODE_SHIFT 6
39 #define SSPCR0_SCR_SHIFT 8
42 #define SSPCR1_RIE BIT(0)
43 #define SSPCR1_TIE BIT(1)
44 #define SSPCR1_RORIE BIT(2)
45 #define SSPCR1_LBM BIT(3)
46 #define SSPCR1_SSE BIT(4)
47 #define SSPCR1_MS BIT(5)
48 #define SSPCR1_SOD BIT(6)
53 #define SSPSR_TFE BIT(0)
54 #define SSPSR_TNF BIT(1)
55 #define SSPSR_RNE BIT(2)
56 #define SSPSR_RFF BIT(3)
57 #define SSPSR_BSY BIT(4)
58 #define SSPCPSR 0x0010
61 #define SSPIIR_RIS BIT(0)
62 #define SSPIIR_TIS BIT(1)
63 #define SSPIIR_RORIS BIT(2)
66 /* timeout in milliseconds */
68 /* maximum depth of RX/TX FIFO */
69 #define SPI_FIFO_SIZE 8
72 * struct ep93xx_spi - EP93xx SPI controller structure
73 * @lock: spinlock that protects concurrent accesses to fields @running,
74 * @current_msg and @msg_queue
75 * @pdev: pointer to platform device
76 * @clk: clock for the controller
77 * @regs_base: pointer to ioremap()'d registers
78 * @sspdr_phys: physical address of the SSPDR register
79 * @min_rate: minimum clock rate (in Hz) supported by the controller
80 * @max_rate: maximum clock rate (in Hz) supported by the controller
81 * @running: is the queue running
82 * @wq: workqueue used by the driver
83 * @msg_work: work that is queued for the driver
84 * @wait: wait here until given transfer is completed
85 * @msg_queue: queue for the messages
86 * @current_msg: message that is currently processed (or %NULL if none)
87 * @tx: current byte in transfer to transmit
88 * @rx: current byte in transfer to receive
89 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
90 * frame decreases this level and sending one frame increases it.
91 * @dma_rx: RX DMA channel
92 * @dma_tx: TX DMA channel
93 * @dma_rx_data: RX parameters passed to the DMA engine
94 * @dma_tx_data: TX parameters passed to the DMA engine
95 * @rx_sgt: sg table for RX transfers
96 * @tx_sgt: sg table for TX transfers
97 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
100 * This structure holds EP93xx SPI controller specific information. When
101 * @running is %true, driver accepts transfer requests from protocol drivers.
102 * @current_msg is used to hold pointer to the message that is currently
103 * processed. If @current_msg is %NULL, it means that no processing is going
106 * Most of the fields are only written once and they can be accessed without
107 * taking the @lock. Fields that are accessed concurrently are: @current_msg,
108 * @running, and @msg_queue.
112 const struct platform_device *pdev;
114 void __iomem *regs_base;
115 unsigned long sspdr_phys;
116 unsigned long min_rate;
117 unsigned long max_rate;
119 struct workqueue_struct *wq;
120 struct work_struct msg_work;
121 struct completion wait;
122 struct list_head msg_queue;
123 struct spi_message *current_msg;
127 struct dma_chan *dma_rx;
128 struct dma_chan *dma_tx;
129 struct ep93xx_dma_data dma_rx_data;
130 struct ep93xx_dma_data dma_tx_data;
131 struct sg_table rx_sgt;
132 struct sg_table tx_sgt;
137 * struct ep93xx_spi_chip - SPI device hardware settings
138 * @spi: back pointer to the SPI device
139 * @rate: max rate in hz this chip supports
140 * @div_cpsr: cpsr (pre-scaler) divider
141 * @div_scr: scr divider
142 * @dss: bits per word (4 - 16 bits)
143 * @ops: private chip operations
145 * This structure is used to store hardware register specific settings for each
146 * SPI device. Settings are written to hardware by function
147 * ep93xx_spi_chip_setup().
149 struct ep93xx_spi_chip {
150 const struct spi_device *spi;
155 struct ep93xx_spi_chip_ops *ops;
158 /* converts bits per word to CR0.DSS value */
159 #define bits_per_word_to_dss(bpw) ((bpw) - 1)
162 ep93xx_spi_write_u8(const struct ep93xx_spi *espi, u16 reg, u8 value)
164 __raw_writeb(value, espi->regs_base + reg);
168 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
170 return __raw_readb(spi->regs_base + reg);
174 ep93xx_spi_write_u16(const struct ep93xx_spi *espi, u16 reg, u16 value)
176 __raw_writew(value, espi->regs_base + reg);
180 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
182 return __raw_readw(spi->regs_base + reg);
185 static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
190 err = clk_enable(espi->clk);
194 regval = ep93xx_spi_read_u8(espi, SSPCR1);
195 regval |= SSPCR1_SSE;
196 ep93xx_spi_write_u8(espi, SSPCR1, regval);
201 static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
205 regval = ep93xx_spi_read_u8(espi, SSPCR1);
206 regval &= ~SSPCR1_SSE;
207 ep93xx_spi_write_u8(espi, SSPCR1, regval);
209 clk_disable(espi->clk);
212 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
216 regval = ep93xx_spi_read_u8(espi, SSPCR1);
217 regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
218 ep93xx_spi_write_u8(espi, SSPCR1, regval);
221 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
225 regval = ep93xx_spi_read_u8(espi, SSPCR1);
226 regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
227 ep93xx_spi_write_u8(espi, SSPCR1, regval);
231 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
232 * @espi: ep93xx SPI controller struct
233 * @chip: divisors are calculated for this chip
234 * @rate: desired SPI output clock rate
236 * Function calculates cpsr (clock pre-scaler) and scr divisors based on
237 * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
238 * for some reason, divisors cannot be calculated nothing is stored and
239 * %-EINVAL is returned.
241 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
242 struct ep93xx_spi_chip *chip,
245 unsigned long spi_clk_rate = clk_get_rate(espi->clk);
249 * Make sure that max value is between values supported by the
250 * controller. Note that minimum value is already checked in
251 * ep93xx_spi_transfer().
253 rate = clamp(rate, espi->min_rate, espi->max_rate);
256 * Calculate divisors so that we can get speed according the
258 * rate = spi_clock_rate / (cpsr * (1 + scr))
260 * cpsr must be even number and starts from 2, scr can be any number
263 for (cpsr = 2; cpsr <= 254; cpsr += 2) {
264 for (scr = 0; scr <= 255; scr++) {
265 if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
266 chip->div_scr = (u8)scr;
267 chip->div_cpsr = (u8)cpsr;
276 static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
278 struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
279 int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
281 if (chip->ops && chip->ops->cs_control)
282 chip->ops->cs_control(spi, value);
286 * ep93xx_spi_setup() - setup an SPI device
287 * @spi: SPI device to setup
289 * This function sets up SPI device mode, speed etc. Can be called multiple
290 * times for a single device. Returns %0 in case of success, negative error in
291 * case of failure. When this function returns success, the device is
294 static int ep93xx_spi_setup(struct spi_device *spi)
296 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
297 struct ep93xx_spi_chip *chip;
299 chip = spi_get_ctldata(spi);
301 dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
304 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
309 chip->ops = spi->controller_data;
311 if (chip->ops && chip->ops->setup) {
312 int ret = chip->ops->setup(spi);
319 spi_set_ctldata(spi, chip);
322 if (spi->max_speed_hz != chip->rate) {
325 err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz);
327 spi_set_ctldata(spi, NULL);
331 chip->rate = spi->max_speed_hz;
334 chip->dss = bits_per_word_to_dss(spi->bits_per_word);
336 ep93xx_spi_cs_control(spi, false);
341 * ep93xx_spi_transfer() - queue message to be transferred
342 * @spi: target SPI device
343 * @msg: message to be transferred
345 * This function is called by SPI device drivers when they are going to transfer
346 * a new message. It simply puts the message in the queue and schedules
347 * workqueue to perform the actual transfer later on.
349 * Returns %0 on success and negative error in case of failure.
351 static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg)
353 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
354 struct spi_transfer *t;
357 if (!msg || !msg->complete)
360 /* first validate each transfer */
361 list_for_each_entry(t, &msg->transfers, transfer_list) {
362 if (t->speed_hz && t->speed_hz < espi->min_rate)
367 * Now that we own the message, let's initialize it so that it is
368 * suitable for us. We use @msg->status to signal whether there was
369 * error in transfer and @msg->state is used to hold pointer to the
370 * current transfer (or %NULL if no active current transfer).
374 msg->actual_length = 0;
376 spin_lock_irqsave(&espi->lock, flags);
377 if (!espi->running) {
378 spin_unlock_irqrestore(&espi->lock, flags);
381 list_add_tail(&msg->queue, &espi->msg_queue);
382 queue_work(espi->wq, &espi->msg_work);
383 spin_unlock_irqrestore(&espi->lock, flags);
389 * ep93xx_spi_cleanup() - cleans up master controller specific state
390 * @spi: SPI device to cleanup
392 * This function releases master controller specific state for given @spi
395 static void ep93xx_spi_cleanup(struct spi_device *spi)
397 struct ep93xx_spi_chip *chip;
399 chip = spi_get_ctldata(spi);
401 if (chip->ops && chip->ops->cleanup)
402 chip->ops->cleanup(spi);
403 spi_set_ctldata(spi, NULL);
409 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
410 * @espi: ep93xx SPI controller struct
411 * @chip: chip specific settings
413 * This function sets up the actual hardware registers with settings given in
414 * @chip. Note that no validation is done so make sure that callers validate
415 * settings before calling this.
417 static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
418 const struct ep93xx_spi_chip *chip)
422 cr0 = chip->div_scr << SSPCR0_SCR_SHIFT;
423 cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
426 dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
427 chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss);
428 dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
430 ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr);
431 ep93xx_spi_write_u16(espi, SSPCR0, cr0);
434 static inline int bits_per_word(const struct ep93xx_spi *espi)
436 struct spi_message *msg = espi->current_msg;
437 struct spi_transfer *t = msg->state;
439 return t->bits_per_word;
442 static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
444 if (bits_per_word(espi) > 8) {
448 tx_val = ((u16 *)t->tx_buf)[espi->tx];
449 ep93xx_spi_write_u16(espi, SSPDR, tx_val);
450 espi->tx += sizeof(tx_val);
455 tx_val = ((u8 *)t->tx_buf)[espi->tx];
456 ep93xx_spi_write_u8(espi, SSPDR, tx_val);
457 espi->tx += sizeof(tx_val);
461 static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
463 if (bits_per_word(espi) > 8) {
466 rx_val = ep93xx_spi_read_u16(espi, SSPDR);
468 ((u16 *)t->rx_buf)[espi->rx] = rx_val;
469 espi->rx += sizeof(rx_val);
473 rx_val = ep93xx_spi_read_u8(espi, SSPDR);
475 ((u8 *)t->rx_buf)[espi->rx] = rx_val;
476 espi->rx += sizeof(rx_val);
481 * ep93xx_spi_read_write() - perform next RX/TX transfer
482 * @espi: ep93xx SPI controller struct
484 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
485 * called several times, the whole transfer will be completed. Returns
486 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
488 * When this function is finished, RX FIFO should be empty and TX FIFO should be
491 static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
493 struct spi_message *msg = espi->current_msg;
494 struct spi_transfer *t = msg->state;
496 /* read as long as RX FIFO has frames in it */
497 while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
498 ep93xx_do_read(espi, t);
502 /* write as long as TX FIFO has room */
503 while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
504 ep93xx_do_write(espi, t);
508 if (espi->rx == t->len)
514 static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
517 * Now everything is set up for the current transfer. We prime the TX
518 * FIFO, enable interrupts, and wait for the transfer to complete.
520 if (ep93xx_spi_read_write(espi)) {
521 ep93xx_spi_enable_interrupts(espi);
522 wait_for_completion(&espi->wait);
527 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
528 * @espi: ep93xx SPI controller struct
529 * @dir: DMA transfer direction
531 * Function configures the DMA, maps the buffer and prepares the DMA
532 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
533 * in case of failure.
535 static struct dma_async_tx_descriptor *
536 ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
538 struct spi_transfer *t = espi->current_msg->state;
539 struct dma_async_tx_descriptor *txd;
540 enum dma_slave_buswidth buswidth;
541 struct dma_slave_config conf;
542 struct scatterlist *sg;
543 struct sg_table *sgt;
544 struct dma_chan *chan;
545 const void *buf, *pbuf;
549 if (bits_per_word(espi) > 8)
550 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
552 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
554 memset(&conf, 0, sizeof(conf));
555 conf.direction = dir;
557 if (dir == DMA_DEV_TO_MEM) {
562 conf.src_addr = espi->sspdr_phys;
563 conf.src_addr_width = buswidth;
569 conf.dst_addr = espi->sspdr_phys;
570 conf.dst_addr_width = buswidth;
573 ret = dmaengine_slave_config(chan, &conf);
578 * We need to split the transfer into PAGE_SIZE'd chunks. This is
579 * because we are using @espi->zeropage to provide a zero RX buffer
580 * for the TX transfers and we have only allocated one page for that.
582 * For performance reasons we allocate a new sg_table only when
583 * needed. Otherwise we will re-use the current one. Eventually the
584 * last sg_table is released in ep93xx_spi_release_dma().
587 nents = DIV_ROUND_UP(len, PAGE_SIZE);
588 if (nents != sgt->nents) {
591 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
597 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
598 size_t bytes = min_t(size_t, len, PAGE_SIZE);
601 sg_set_page(sg, virt_to_page(pbuf), bytes,
602 offset_in_page(pbuf));
604 sg_set_page(sg, virt_to_page(espi->zeropage),
613 dev_warn(&espi->pdev->dev, "len = %d expected 0!", len);
614 return ERR_PTR(-EINVAL);
617 nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
619 return ERR_PTR(-ENOMEM);
621 txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
623 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
624 return ERR_PTR(-ENOMEM);
630 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
631 * @espi: ep93xx SPI controller struct
632 * @dir: DMA transfer direction
634 * Function finishes with the DMA transfer. After this, the DMA buffer is
637 static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
638 enum dma_transfer_direction dir)
640 struct dma_chan *chan;
641 struct sg_table *sgt;
643 if (dir == DMA_DEV_TO_MEM) {
651 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
654 static void ep93xx_spi_dma_callback(void *callback_param)
656 complete(callback_param);
659 static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
661 struct spi_message *msg = espi->current_msg;
662 struct dma_async_tx_descriptor *rxd, *txd;
664 rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
666 dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
667 msg->status = PTR_ERR(rxd);
671 txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
673 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
674 dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
675 msg->status = PTR_ERR(txd);
679 /* We are ready when RX is done */
680 rxd->callback = ep93xx_spi_dma_callback;
681 rxd->callback_param = &espi->wait;
683 /* Now submit both descriptors and wait while they finish */
684 dmaengine_submit(rxd);
685 dmaengine_submit(txd);
687 dma_async_issue_pending(espi->dma_rx);
688 dma_async_issue_pending(espi->dma_tx);
690 wait_for_completion(&espi->wait);
692 ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
693 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
697 * ep93xx_spi_process_transfer() - processes one SPI transfer
698 * @espi: ep93xx SPI controller struct
699 * @msg: current message
700 * @t: transfer to process
702 * This function processes one SPI transfer given in @t. Function waits until
703 * transfer is complete (may sleep) and updates @msg->status based on whether
704 * transfer was successfully processed or not.
706 static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
707 struct spi_message *msg,
708 struct spi_transfer *t)
710 struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
715 * Handle any transfer specific settings if needed. We use
716 * temporary chip settings here and restore original later when
717 * the transfer is finished.
719 if (t->speed_hz || t->bits_per_word) {
720 struct ep93xx_spi_chip tmp_chip = *chip;
725 err = ep93xx_spi_calc_divisors(espi, &tmp_chip,
728 dev_err(&espi->pdev->dev,
729 "failed to adjust speed\n");
735 if (t->bits_per_word)
736 tmp_chip.dss = bits_per_word_to_dss(t->bits_per_word);
739 * Set up temporary new hw settings for this transfer.
741 ep93xx_spi_chip_setup(espi, &tmp_chip);
748 * There is no point of setting up DMA for the transfers which will
749 * fit into the FIFO and can be transferred with a single interrupt.
750 * So in these cases we will be using PIO and don't bother for DMA.
752 if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
753 ep93xx_spi_dma_transfer(espi);
755 ep93xx_spi_pio_transfer(espi);
758 * In case of error during transmit, we bail out from processing
764 msg->actual_length += t->len;
767 * After this transfer is finished, perform any possible
768 * post-transfer actions requested by the protocol driver.
770 if (t->delay_usecs) {
771 set_current_state(TASK_UNINTERRUPTIBLE);
772 schedule_timeout(usecs_to_jiffies(t->delay_usecs));
775 if (!list_is_last(&t->transfer_list, &msg->transfers)) {
777 * In case protocol driver is asking us to drop the
778 * chipselect briefly, we let the scheduler to handle
781 ep93xx_spi_cs_control(msg->spi, false);
783 ep93xx_spi_cs_control(msg->spi, true);
787 if (t->speed_hz || t->bits_per_word)
788 ep93xx_spi_chip_setup(espi, chip);
792 * ep93xx_spi_process_message() - process one SPI message
793 * @espi: ep93xx SPI controller struct
794 * @msg: message to process
796 * This function processes a single SPI message. We go through all transfers in
797 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
798 * asserted during the whole message (unless per transfer cs_change is set).
800 * @msg->status contains %0 in case of success or negative error code in case of
803 static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
804 struct spi_message *msg)
806 unsigned long timeout;
807 struct spi_transfer *t;
811 * Enable the SPI controller and its clock.
813 err = ep93xx_spi_enable(espi);
815 dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
821 * Just to be sure: flush any data from RX FIFO.
823 timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
824 while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
825 if (time_after(jiffies, timeout)) {
826 dev_warn(&espi->pdev->dev,
827 "timeout while flushing RX FIFO\n");
828 msg->status = -ETIMEDOUT;
831 ep93xx_spi_read_u16(espi, SSPDR);
835 * We explicitly handle FIFO level. This way we don't have to check TX
836 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
838 espi->fifo_level = 0;
841 * Update SPI controller registers according to spi device and assert
844 ep93xx_spi_chip_setup(espi, spi_get_ctldata(msg->spi));
845 ep93xx_spi_cs_control(msg->spi, true);
847 list_for_each_entry(t, &msg->transfers, transfer_list) {
848 ep93xx_spi_process_transfer(espi, msg, t);
854 * Now the whole message is transferred (or failed for some reason). We
855 * deselect the device and disable the SPI controller.
857 ep93xx_spi_cs_control(msg->spi, false);
858 ep93xx_spi_disable(espi);
861 #define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
864 * ep93xx_spi_work() - EP93xx SPI workqueue worker function
867 * Workqueue worker function. This function is called when there are new
868 * SPI messages to be processed. Message is taken out from the queue and then
869 * passed to ep93xx_spi_process_message().
871 * After message is transferred, protocol driver is notified by calling
872 * @msg->complete(). In case of error, @msg->status is set to negative error
873 * number, otherwise it contains zero (and @msg->actual_length is updated).
875 static void ep93xx_spi_work(struct work_struct *work)
877 struct ep93xx_spi *espi = work_to_espi(work);
878 struct spi_message *msg;
880 spin_lock_irq(&espi->lock);
881 if (!espi->running || espi->current_msg ||
882 list_empty(&espi->msg_queue)) {
883 spin_unlock_irq(&espi->lock);
886 msg = list_first_entry(&espi->msg_queue, struct spi_message, queue);
887 list_del_init(&msg->queue);
888 espi->current_msg = msg;
889 spin_unlock_irq(&espi->lock);
891 ep93xx_spi_process_message(espi, msg);
894 * Update the current message and re-schedule ourselves if there are
895 * more messages in the queue.
897 spin_lock_irq(&espi->lock);
898 espi->current_msg = NULL;
899 if (espi->running && !list_empty(&espi->msg_queue))
900 queue_work(espi->wq, &espi->msg_work);
901 spin_unlock_irq(&espi->lock);
903 /* notify the protocol driver that we are done with this message */
904 msg->complete(msg->context);
907 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
909 struct ep93xx_spi *espi = dev_id;
910 u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
913 * If we got ROR (receive overrun) interrupt we know that something is
914 * wrong. Just abort the message.
916 if (unlikely(irq_status & SSPIIR_RORIS)) {
917 /* clear the overrun interrupt */
918 ep93xx_spi_write_u8(espi, SSPICR, 0);
919 dev_warn(&espi->pdev->dev,
920 "receive overrun, aborting the message\n");
921 espi->current_msg->status = -EIO;
924 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
925 * simply execute next data transfer.
927 if (ep93xx_spi_read_write(espi)) {
929 * In normal case, there still is some processing left
930 * for current transfer. Let's wait for the next
938 * Current transfer is finished, either with error or with success. In
939 * any case we disable interrupts and notify the worker to handle
940 * any post-processing of the message.
942 ep93xx_spi_disable_interrupts(espi);
943 complete(&espi->wait);
947 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
949 if (ep93xx_dma_chan_is_m2p(chan))
952 chan->private = filter_param;
956 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
961 espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
966 dma_cap_set(DMA_SLAVE, mask);
968 espi->dma_rx_data.port = EP93XX_DMA_SSP;
969 espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
970 espi->dma_rx_data.name = "ep93xx-spi-rx";
972 espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
979 espi->dma_tx_data.port = EP93XX_DMA_SSP;
980 espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
981 espi->dma_tx_data.name = "ep93xx-spi-tx";
983 espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
987 goto fail_release_rx;
993 dma_release_channel(espi->dma_rx);
996 free_page((unsigned long)espi->zeropage);
1001 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
1004 dma_release_channel(espi->dma_rx);
1005 sg_free_table(&espi->rx_sgt);
1008 dma_release_channel(espi->dma_tx);
1009 sg_free_table(&espi->tx_sgt);
1013 free_page((unsigned long)espi->zeropage);
1016 static int ep93xx_spi_probe(struct platform_device *pdev)
1018 struct spi_master *master;
1019 struct ep93xx_spi_info *info;
1020 struct ep93xx_spi *espi;
1021 struct resource *res;
1025 info = pdev->dev.platform_data;
1027 master = spi_alloc_master(&pdev->dev, sizeof(*espi));
1029 dev_err(&pdev->dev, "failed to allocate spi master\n");
1033 master->setup = ep93xx_spi_setup;
1034 master->transfer = ep93xx_spi_transfer;
1035 master->cleanup = ep93xx_spi_cleanup;
1036 master->bus_num = pdev->id;
1037 master->num_chipselect = info->num_chipselect;
1038 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1039 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1041 platform_set_drvdata(pdev, master);
1043 espi = spi_master_get_devdata(master);
1045 espi->clk = clk_get(&pdev->dev, NULL);
1046 if (IS_ERR(espi->clk)) {
1047 dev_err(&pdev->dev, "unable to get spi clock\n");
1048 error = PTR_ERR(espi->clk);
1049 goto fail_release_master;
1052 spin_lock_init(&espi->lock);
1053 init_completion(&espi->wait);
1056 * Calculate maximum and minimum supported clock rates
1057 * for the controller.
1059 espi->max_rate = clk_get_rate(espi->clk) / 2;
1060 espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
1063 irq = platform_get_irq(pdev, 0);
1066 dev_err(&pdev->dev, "failed to get irq resources\n");
1067 goto fail_put_clock;
1070 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1072 dev_err(&pdev->dev, "unable to get iomem resource\n");
1074 goto fail_put_clock;
1077 espi->sspdr_phys = res->start + SSPDR;
1079 espi->regs_base = devm_ioremap_resource(&pdev->dev, res);
1080 if (IS_ERR(espi->regs_base)) {
1081 error = PTR_ERR(espi->regs_base);
1082 goto fail_put_clock;
1085 error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
1086 0, "ep93xx-spi", espi);
1088 dev_err(&pdev->dev, "failed to request irq\n");
1089 goto fail_put_clock;
1092 if (info->use_dma && ep93xx_spi_setup_dma(espi))
1093 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
1095 espi->wq = create_singlethread_workqueue("ep93xx_spid");
1097 dev_err(&pdev->dev, "unable to create workqueue\n");
1101 INIT_WORK(&espi->msg_work, ep93xx_spi_work);
1102 INIT_LIST_HEAD(&espi->msg_queue);
1103 espi->running = true;
1105 /* make sure that the hardware is disabled */
1106 ep93xx_spi_write_u8(espi, SSPCR1, 0);
1108 error = spi_register_master(master);
1110 dev_err(&pdev->dev, "failed to register SPI master\n");
1111 goto fail_free_queue;
1114 dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
1115 (unsigned long)res->start, irq);
1120 destroy_workqueue(espi->wq);
1122 ep93xx_spi_release_dma(espi);
1125 fail_release_master:
1126 spi_master_put(master);
1131 static int ep93xx_spi_remove(struct platform_device *pdev)
1133 struct spi_master *master = platform_get_drvdata(pdev);
1134 struct ep93xx_spi *espi = spi_master_get_devdata(master);
1136 spin_lock_irq(&espi->lock);
1137 espi->running = false;
1138 spin_unlock_irq(&espi->lock);
1140 destroy_workqueue(espi->wq);
1143 * Complete remaining messages with %-ESHUTDOWN status.
1145 spin_lock_irq(&espi->lock);
1146 while (!list_empty(&espi->msg_queue)) {
1147 struct spi_message *msg;
1149 msg = list_first_entry(&espi->msg_queue,
1150 struct spi_message, queue);
1151 list_del_init(&msg->queue);
1152 msg->status = -ESHUTDOWN;
1153 spin_unlock_irq(&espi->lock);
1154 msg->complete(msg->context);
1155 spin_lock_irq(&espi->lock);
1157 spin_unlock_irq(&espi->lock);
1159 ep93xx_spi_release_dma(espi);
1162 spi_unregister_master(master);
1166 static struct platform_driver ep93xx_spi_driver = {
1168 .name = "ep93xx-spi",
1169 .owner = THIS_MODULE,
1171 .probe = ep93xx_spi_probe,
1172 .remove = ep93xx_spi_remove,
1174 module_platform_driver(ep93xx_spi_driver);
1176 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1177 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1178 MODULE_LICENSE("GPL");
1179 MODULE_ALIAS("platform:ep93xx-spi");