Merge tag 'dax-fixes-6.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm...
[platform/kernel/linux-starfive.git] / drivers / spi / spi-dw-dma.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Special handling for DW DMA core
4  *
5  * Copyright (c) 2009, 2014 Intel Corporation.
6  */
7
8 #include <linux/completion.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmaengine.h>
11 #include <linux/irqreturn.h>
12 #include <linux/jiffies.h>
13 #include <linux/module.h>
14 #include <linux/pci.h>
15 #include <linux/platform_data/dma-dw.h>
16 #include <linux/spi/spi.h>
17 #include <linux/types.h>
18
19 #include "spi-dw.h"
20
21 #define DW_SPI_RX_BUSY          0
22 #define DW_SPI_RX_BURST_LEVEL   16
23 #define DW_SPI_TX_BUSY          1
24 #define DW_SPI_TX_BURST_LEVEL   16
25
26 static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
27 {
28         struct dw_dma_slave *s = param;
29
30         if (s->dma_dev != chan->device->dev)
31                 return false;
32
33         chan->private = s;
34         return true;
35 }
36
37 static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
38 {
39         struct dma_slave_caps caps;
40         u32 max_burst, def_burst;
41         int ret;
42
43         def_burst = dws->fifo_len / 2;
44
45         ret = dma_get_slave_caps(dws->rxchan, &caps);
46         if (!ret && caps.max_burst)
47                 max_burst = caps.max_burst;
48         else
49                 max_burst = DW_SPI_RX_BURST_LEVEL;
50
51         dws->rxburst = min(max_burst, def_burst);
52         dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
53
54         ret = dma_get_slave_caps(dws->txchan, &caps);
55         if (!ret && caps.max_burst)
56                 max_burst = caps.max_burst;
57         else
58                 max_burst = DW_SPI_TX_BURST_LEVEL;
59
60         /*
61          * Having a Rx DMA channel serviced with higher priority than a Tx DMA
62          * channel might not be enough to provide a well balanced DMA-based
63          * SPI transfer interface. There might still be moments when the Tx DMA
64          * channel is occasionally handled faster than the Rx DMA channel.
65          * That in its turn will eventually cause the SPI Rx FIFO overflow if
66          * SPI bus speed is high enough to fill the SPI Rx FIFO in before it's
67          * cleared by the Rx DMA channel. In order to fix the problem the Tx
68          * DMA activity is intentionally slowed down by limiting the SPI Tx
69          * FIFO depth with a value twice bigger than the Tx burst length.
70          */
71         dws->txburst = min(max_burst, def_burst);
72         dw_writel(dws, DW_SPI_DMATDLR, dws->txburst);
73 }
74
75 static void dw_spi_dma_sg_burst_init(struct dw_spi *dws)
76 {
77         struct dma_slave_caps tx = {0}, rx = {0};
78
79         dma_get_slave_caps(dws->txchan, &tx);
80         dma_get_slave_caps(dws->rxchan, &rx);
81
82         if (tx.max_sg_burst > 0 && rx.max_sg_burst > 0)
83                 dws->dma_sg_burst = min(tx.max_sg_burst, rx.max_sg_burst);
84         else if (tx.max_sg_burst > 0)
85                 dws->dma_sg_burst = tx.max_sg_burst;
86         else if (rx.max_sg_burst > 0)
87                 dws->dma_sg_burst = rx.max_sg_burst;
88         else
89                 dws->dma_sg_burst = 0;
90 }
91
92 static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
93 {
94         struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
95         struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
96         struct pci_dev *dma_dev;
97         dma_cap_mask_t mask;
98
99         /*
100          * Get pci device for DMA controller, currently it could only
101          * be the DMA controller of Medfield
102          */
103         dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
104         if (!dma_dev)
105                 return -ENODEV;
106
107         dma_cap_zero(mask);
108         dma_cap_set(DMA_SLAVE, mask);
109
110         /* 1. Init rx channel */
111         rx->dma_dev = &dma_dev->dev;
112         dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
113         if (!dws->rxchan)
114                 goto err_exit;
115
116         /* 2. Init tx channel */
117         tx->dma_dev = &dma_dev->dev;
118         dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
119         if (!dws->txchan)
120                 goto free_rxchan;
121
122         dws->master->dma_rx = dws->rxchan;
123         dws->master->dma_tx = dws->txchan;
124
125         init_completion(&dws->dma_completion);
126
127         dw_spi_dma_maxburst_init(dws);
128
129         dw_spi_dma_sg_burst_init(dws);
130
131         pci_dev_put(dma_dev);
132
133         return 0;
134
135 free_rxchan:
136         dma_release_channel(dws->rxchan);
137         dws->rxchan = NULL;
138 err_exit:
139         pci_dev_put(dma_dev);
140         return -EBUSY;
141 }
142
143 static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
144 {
145         int ret;
146
147         dws->rxchan = dma_request_chan(dev, "rx");
148         if (IS_ERR(dws->rxchan)) {
149                 ret = PTR_ERR(dws->rxchan);
150                 dws->rxchan = NULL;
151                 goto err_exit;
152         }
153
154         dws->txchan = dma_request_chan(dev, "tx");
155         if (IS_ERR(dws->txchan)) {
156                 ret = PTR_ERR(dws->txchan);
157                 dws->txchan = NULL;
158                 goto free_rxchan;
159         }
160
161         dws->master->dma_rx = dws->rxchan;
162         dws->master->dma_tx = dws->txchan;
163
164         init_completion(&dws->dma_completion);
165
166         dw_spi_dma_maxburst_init(dws);
167
168         dw_spi_dma_sg_burst_init(dws);
169
170         return 0;
171
172 free_rxchan:
173         dma_release_channel(dws->rxchan);
174         dws->rxchan = NULL;
175 err_exit:
176         return ret;
177 }
178
179 static void dw_spi_dma_exit(struct dw_spi *dws)
180 {
181         if (dws->txchan) {
182                 dmaengine_terminate_sync(dws->txchan);
183                 dma_release_channel(dws->txchan);
184         }
185
186         if (dws->rxchan) {
187                 dmaengine_terminate_sync(dws->rxchan);
188                 dma_release_channel(dws->rxchan);
189         }
190 }
191
192 static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
193 {
194         dw_spi_check_status(dws, false);
195
196         complete(&dws->dma_completion);
197
198         return IRQ_HANDLED;
199 }
200
201 static bool dw_spi_can_dma(struct spi_controller *master,
202                            struct spi_device *spi, struct spi_transfer *xfer)
203 {
204         struct dw_spi *dws = spi_controller_get_devdata(master);
205
206         return xfer->len > dws->fifo_len;
207 }
208
209 static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
210 {
211         if (n_bytes == 1)
212                 return DMA_SLAVE_BUSWIDTH_1_BYTE;
213         else if (n_bytes == 2)
214                 return DMA_SLAVE_BUSWIDTH_2_BYTES;
215
216         return DMA_SLAVE_BUSWIDTH_UNDEFINED;
217 }
218
219 static int dw_spi_dma_wait(struct dw_spi *dws, unsigned int len, u32 speed)
220 {
221         unsigned long long ms;
222
223         ms = len * MSEC_PER_SEC * BITS_PER_BYTE;
224         do_div(ms, speed);
225         ms += ms + 200;
226
227         if (ms > UINT_MAX)
228                 ms = UINT_MAX;
229
230         ms = wait_for_completion_timeout(&dws->dma_completion,
231                                          msecs_to_jiffies(ms));
232
233         if (ms == 0) {
234                 dev_err(&dws->master->cur_msg->spi->dev,
235                         "DMA transaction timed out\n");
236                 return -ETIMEDOUT;
237         }
238
239         return 0;
240 }
241
242 static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
243 {
244         return !(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_TF_EMPT);
245 }
246
247 static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
248                                    struct spi_transfer *xfer)
249 {
250         int retry = DW_SPI_WAIT_RETRIES;
251         struct spi_delay delay;
252         u32 nents;
253
254         nents = dw_readl(dws, DW_SPI_TXFLR);
255         delay.unit = SPI_DELAY_UNIT_SCK;
256         delay.value = nents * dws->n_bytes * BITS_PER_BYTE;
257
258         while (dw_spi_dma_tx_busy(dws) && retry--)
259                 spi_delay_exec(&delay, xfer);
260
261         if (retry < 0) {
262                 dev_err(&dws->master->dev, "Tx hanged up\n");
263                 return -EIO;
264         }
265
266         return 0;
267 }
268
269 /*
270  * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
271  * channel will clear a corresponding bit.
272  */
273 static void dw_spi_dma_tx_done(void *arg)
274 {
275         struct dw_spi *dws = arg;
276
277         clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
278         if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy))
279                 return;
280
281         complete(&dws->dma_completion);
282 }
283
284 static int dw_spi_dma_config_tx(struct dw_spi *dws)
285 {
286         struct dma_slave_config txconf;
287
288         memset(&txconf, 0, sizeof(txconf));
289         txconf.direction = DMA_MEM_TO_DEV;
290         txconf.dst_addr = dws->dma_addr;
291         txconf.dst_maxburst = dws->txburst;
292         txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
293         txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
294         txconf.device_fc = false;
295
296         return dmaengine_slave_config(dws->txchan, &txconf);
297 }
298
299 static int dw_spi_dma_submit_tx(struct dw_spi *dws, struct scatterlist *sgl,
300                                 unsigned int nents)
301 {
302         struct dma_async_tx_descriptor *txdesc;
303         dma_cookie_t cookie;
304         int ret;
305
306         txdesc = dmaengine_prep_slave_sg(dws->txchan, sgl, nents,
307                                          DMA_MEM_TO_DEV,
308                                          DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
309         if (!txdesc)
310                 return -ENOMEM;
311
312         txdesc->callback = dw_spi_dma_tx_done;
313         txdesc->callback_param = dws;
314
315         cookie = dmaengine_submit(txdesc);
316         ret = dma_submit_error(cookie);
317         if (ret) {
318                 dmaengine_terminate_sync(dws->txchan);
319                 return ret;
320         }
321
322         set_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
323
324         return 0;
325 }
326
327 static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
328 {
329         return !!(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_RF_NOT_EMPT);
330 }
331
332 static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
333 {
334         int retry = DW_SPI_WAIT_RETRIES;
335         struct spi_delay delay;
336         unsigned long ns, us;
337         u32 nents;
338
339         /*
340          * It's unlikely that DMA engine is still doing the data fetching, but
341          * if it's let's give it some reasonable time. The timeout calculation
342          * is based on the synchronous APB/SSI reference clock rate, on a
343          * number of data entries left in the Rx FIFO, times a number of clock
344          * periods normally needed for a single APB read/write transaction
345          * without PREADY signal utilized (which is true for the DW APB SSI
346          * controller).
347          */
348         nents = dw_readl(dws, DW_SPI_RXFLR);
349         ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
350         if (ns <= NSEC_PER_USEC) {
351                 delay.unit = SPI_DELAY_UNIT_NSECS;
352                 delay.value = ns;
353         } else {
354                 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
355                 delay.unit = SPI_DELAY_UNIT_USECS;
356                 delay.value = clamp_val(us, 0, USHRT_MAX);
357         }
358
359         while (dw_spi_dma_rx_busy(dws) && retry--)
360                 spi_delay_exec(&delay, NULL);
361
362         if (retry < 0) {
363                 dev_err(&dws->master->dev, "Rx hanged up\n");
364                 return -EIO;
365         }
366
367         return 0;
368 }
369
370 /*
371  * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
372  * channel will clear a corresponding bit.
373  */
374 static void dw_spi_dma_rx_done(void *arg)
375 {
376         struct dw_spi *dws = arg;
377
378         clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
379         if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy))
380                 return;
381
382         complete(&dws->dma_completion);
383 }
384
385 static int dw_spi_dma_config_rx(struct dw_spi *dws)
386 {
387         struct dma_slave_config rxconf;
388
389         memset(&rxconf, 0, sizeof(rxconf));
390         rxconf.direction = DMA_DEV_TO_MEM;
391         rxconf.src_addr = dws->dma_addr;
392         rxconf.src_maxburst = dws->rxburst;
393         rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
394         rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
395         rxconf.device_fc = false;
396
397         return dmaengine_slave_config(dws->rxchan, &rxconf);
398 }
399
400 static int dw_spi_dma_submit_rx(struct dw_spi *dws, struct scatterlist *sgl,
401                                 unsigned int nents)
402 {
403         struct dma_async_tx_descriptor *rxdesc;
404         dma_cookie_t cookie;
405         int ret;
406
407         rxdesc = dmaengine_prep_slave_sg(dws->rxchan, sgl, nents,
408                                          DMA_DEV_TO_MEM,
409                                          DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
410         if (!rxdesc)
411                 return -ENOMEM;
412
413         rxdesc->callback = dw_spi_dma_rx_done;
414         rxdesc->callback_param = dws;
415
416         cookie = dmaengine_submit(rxdesc);
417         ret = dma_submit_error(cookie);
418         if (ret) {
419                 dmaengine_terminate_sync(dws->rxchan);
420                 return ret;
421         }
422
423         set_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
424
425         return 0;
426 }
427
428 static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
429 {
430         u16 imr, dma_ctrl;
431         int ret;
432
433         if (!xfer->tx_buf)
434                 return -EINVAL;
435
436         /* Setup DMA channels */
437         ret = dw_spi_dma_config_tx(dws);
438         if (ret)
439                 return ret;
440
441         if (xfer->rx_buf) {
442                 ret = dw_spi_dma_config_rx(dws);
443                 if (ret)
444                         return ret;
445         }
446
447         /* Set the DMA handshaking interface */
448         dma_ctrl = DW_SPI_DMACR_TDMAE;
449         if (xfer->rx_buf)
450                 dma_ctrl |= DW_SPI_DMACR_RDMAE;
451         dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
452
453         /* Set the interrupt mask */
454         imr = DW_SPI_INT_TXOI;
455         if (xfer->rx_buf)
456                 imr |= DW_SPI_INT_RXUI | DW_SPI_INT_RXOI;
457         dw_spi_umask_intr(dws, imr);
458
459         reinit_completion(&dws->dma_completion);
460
461         dws->transfer_handler = dw_spi_dma_transfer_handler;
462
463         return 0;
464 }
465
466 static int dw_spi_dma_transfer_all(struct dw_spi *dws,
467                                    struct spi_transfer *xfer)
468 {
469         int ret;
470
471         /* Submit the DMA Tx transfer */
472         ret = dw_spi_dma_submit_tx(dws, xfer->tx_sg.sgl, xfer->tx_sg.nents);
473         if (ret)
474                 goto err_clear_dmac;
475
476         /* Submit the DMA Rx transfer if required */
477         if (xfer->rx_buf) {
478                 ret = dw_spi_dma_submit_rx(dws, xfer->rx_sg.sgl,
479                                            xfer->rx_sg.nents);
480                 if (ret)
481                         goto err_clear_dmac;
482
483                 /* rx must be started before tx due to spi instinct */
484                 dma_async_issue_pending(dws->rxchan);
485         }
486
487         dma_async_issue_pending(dws->txchan);
488
489         ret = dw_spi_dma_wait(dws, xfer->len, xfer->effective_speed_hz);
490
491 err_clear_dmac:
492         dw_writel(dws, DW_SPI_DMACR, 0);
493
494         return ret;
495 }
496
497 /*
498  * In case if at least one of the requested DMA channels doesn't support the
499  * hardware accelerated SG list entries traverse, the DMA driver will most
500  * likely work that around by performing the IRQ-based SG list entries
501  * resubmission. That might and will cause a problem if the DMA Tx channel is
502  * recharged and re-executed before the Rx DMA channel. Due to
503  * non-deterministic IRQ-handler execution latency the DMA Tx channel will
504  * start pushing data to the SPI bus before the Rx DMA channel is even
505  * reinitialized with the next inbound SG list entry. By doing so the DMA Tx
506  * channel will implicitly start filling the DW APB SSI Rx FIFO up, which while
507  * the DMA Rx channel being recharged and re-executed will eventually be
508  * overflown.
509  *
510  * In order to solve the problem we have to feed the DMA engine with SG list
511  * entries one-by-one. It shall keep the DW APB SSI Tx and Rx FIFOs
512  * synchronized and prevent the Rx FIFO overflow. Since in general the tx_sg
513  * and rx_sg lists may have different number of entries of different lengths
514  * (though total length should match) let's virtually split the SG-lists to the
515  * set of DMA transfers, which length is a minimum of the ordered SG-entries
516  * lengths. An ASCII-sketch of the implemented algo is following:
517  *                  xfer->len
518  *                |___________|
519  * tx_sg list:    |___|____|__|
520  * rx_sg list:    |_|____|____|
521  * DMA transfers: |_|_|__|_|__|
522  *
523  * Note in order to have this workaround solving the denoted problem the DMA
524  * engine driver should properly initialize the max_sg_burst capability and set
525  * the DMA device max segment size parameter with maximum data block size the
526  * DMA engine supports.
527  */
528
529 static int dw_spi_dma_transfer_one(struct dw_spi *dws,
530                                    struct spi_transfer *xfer)
531 {
532         struct scatterlist *tx_sg = NULL, *rx_sg = NULL, tx_tmp, rx_tmp;
533         unsigned int tx_len = 0, rx_len = 0;
534         unsigned int base, len;
535         int ret;
536
537         sg_init_table(&tx_tmp, 1);
538         sg_init_table(&rx_tmp, 1);
539
540         for (base = 0, len = 0; base < xfer->len; base += len) {
541                 /* Fetch next Tx DMA data chunk */
542                 if (!tx_len) {
543                         tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg);
544                         sg_dma_address(&tx_tmp) = sg_dma_address(tx_sg);
545                         tx_len = sg_dma_len(tx_sg);
546                 }
547
548                 /* Fetch next Rx DMA data chunk */
549                 if (!rx_len) {
550                         rx_sg = !rx_sg ? &xfer->rx_sg.sgl[0] : sg_next(rx_sg);
551                         sg_dma_address(&rx_tmp) = sg_dma_address(rx_sg);
552                         rx_len = sg_dma_len(rx_sg);
553                 }
554
555                 len = min(tx_len, rx_len);
556
557                 sg_dma_len(&tx_tmp) = len;
558                 sg_dma_len(&rx_tmp) = len;
559
560                 /* Submit DMA Tx transfer */
561                 ret = dw_spi_dma_submit_tx(dws, &tx_tmp, 1);
562                 if (ret)
563                         break;
564
565                 /* Submit DMA Rx transfer */
566                 ret = dw_spi_dma_submit_rx(dws, &rx_tmp, 1);
567                 if (ret)
568                         break;
569
570                 /* Rx must be started before Tx due to SPI instinct */
571                 dma_async_issue_pending(dws->rxchan);
572
573                 dma_async_issue_pending(dws->txchan);
574
575                 /*
576                  * Here we only need to wait for the DMA transfer to be
577                  * finished since SPI controller is kept enabled during the
578                  * procedure this loop implements and there is no risk to lose
579                  * data left in the Tx/Rx FIFOs.
580                  */
581                 ret = dw_spi_dma_wait(dws, len, xfer->effective_speed_hz);
582                 if (ret)
583                         break;
584
585                 reinit_completion(&dws->dma_completion);
586
587                 sg_dma_address(&tx_tmp) += len;
588                 sg_dma_address(&rx_tmp) += len;
589                 tx_len -= len;
590                 rx_len -= len;
591         }
592
593         dw_writel(dws, DW_SPI_DMACR, 0);
594
595         return ret;
596 }
597
598 static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
599 {
600         unsigned int nents;
601         int ret;
602
603         nents = max(xfer->tx_sg.nents, xfer->rx_sg.nents);
604
605         /*
606          * Execute normal DMA-based transfer (which submits the Rx and Tx SG
607          * lists directly to the DMA engine at once) if either full hardware
608          * accelerated SG list traverse is supported by both channels, or the
609          * Tx-only SPI transfer is requested, or the DMA engine is capable to
610          * handle both SG lists on hardware accelerated basis.
611          */
612         if (!dws->dma_sg_burst || !xfer->rx_buf || nents <= dws->dma_sg_burst)
613                 ret = dw_spi_dma_transfer_all(dws, xfer);
614         else
615                 ret = dw_spi_dma_transfer_one(dws, xfer);
616         if (ret)
617                 return ret;
618
619         if (dws->master->cur_msg->status == -EINPROGRESS) {
620                 ret = dw_spi_dma_wait_tx_done(dws, xfer);
621                 if (ret)
622                         return ret;
623         }
624
625         if (xfer->rx_buf && dws->master->cur_msg->status == -EINPROGRESS)
626                 ret = dw_spi_dma_wait_rx_done(dws);
627
628         return ret;
629 }
630
631 static void dw_spi_dma_stop(struct dw_spi *dws)
632 {
633         if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy)) {
634                 dmaengine_terminate_sync(dws->txchan);
635                 clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
636         }
637         if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy)) {
638                 dmaengine_terminate_sync(dws->rxchan);
639                 clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
640         }
641 }
642
643 static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
644         .dma_init       = dw_spi_dma_init_mfld,
645         .dma_exit       = dw_spi_dma_exit,
646         .dma_setup      = dw_spi_dma_setup,
647         .can_dma        = dw_spi_can_dma,
648         .dma_transfer   = dw_spi_dma_transfer,
649         .dma_stop       = dw_spi_dma_stop,
650 };
651
652 void dw_spi_dma_setup_mfld(struct dw_spi *dws)
653 {
654         dws->dma_ops = &dw_spi_dma_mfld_ops;
655 }
656 EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_mfld, SPI_DW_CORE);
657
658 static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
659         .dma_init       = dw_spi_dma_init_generic,
660         .dma_exit       = dw_spi_dma_exit,
661         .dma_setup      = dw_spi_dma_setup,
662         .can_dma        = dw_spi_can_dma,
663         .dma_transfer   = dw_spi_dma_transfer,
664         .dma_stop       = dw_spi_dma_stop,
665 };
666
667 void dw_spi_dma_setup_generic(struct dw_spi *dws)
668 {
669         dws->dma_ops = &dw_spi_dma_generic_ops;
670 }
671 EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_generic, SPI_DW_CORE);