Merge patch series "Some style cleanups for recent extension additions"
[platform/kernel/linux-starfive.git] / drivers / spi / spi-dw-dma.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Special handling for DW DMA core
4  *
5  * Copyright (c) 2009, 2014 Intel Corporation.
6  */
7
8 #include <linux/completion.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmaengine.h>
11 #include <linux/irqreturn.h>
12 #include <linux/jiffies.h>
13 #include <linux/module.h>
14 #include <linux/pci.h>
15 #include <linux/platform_data/dma-dw.h>
16 #include <linux/spi/spi.h>
17 #include <linux/types.h>
18
19 #include "spi-dw.h"
20
21 #define DW_SPI_RX_BUSY          0
22 #define DW_SPI_RX_BURST_LEVEL   16
23 #define DW_SPI_TX_BUSY          1
24 #define DW_SPI_TX_BURST_LEVEL   16
25
26 static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
27 {
28         struct dw_dma_slave *s = param;
29
30         if (s->dma_dev != chan->device->dev)
31                 return false;
32
33         chan->private = s;
34         return true;
35 }
36
37 static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
38 {
39         struct dma_slave_caps caps;
40         u32 max_burst, def_burst;
41         int ret;
42
43         def_burst = dws->fifo_len / 2;
44
45         ret = dma_get_slave_caps(dws->rxchan, &caps);
46         if (!ret && caps.max_burst)
47                 max_burst = caps.max_burst;
48         else
49                 max_burst = DW_SPI_RX_BURST_LEVEL;
50
51         dws->rxburst = min(max_burst, def_burst);
52         dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
53
54         ret = dma_get_slave_caps(dws->txchan, &caps);
55         if (!ret && caps.max_burst)
56                 max_burst = caps.max_burst;
57         else
58                 max_burst = DW_SPI_TX_BURST_LEVEL;
59
60         /*
61          * Having a Rx DMA channel serviced with higher priority than a Tx DMA
62          * channel might not be enough to provide a well balanced DMA-based
63          * SPI transfer interface. There might still be moments when the Tx DMA
64          * channel is occasionally handled faster than the Rx DMA channel.
65          * That in its turn will eventually cause the SPI Rx FIFO overflow if
66          * SPI bus speed is high enough to fill the SPI Rx FIFO in before it's
67          * cleared by the Rx DMA channel. In order to fix the problem the Tx
68          * DMA activity is intentionally slowed down by limiting the SPI Tx
69          * FIFO depth with a value twice bigger than the Tx burst length.
70          */
71         dws->txburst = min(max_burst, def_burst);
72         dw_writel(dws, DW_SPI_DMATDLR, dws->txburst);
73 }
74
75 static void dw_spi_dma_sg_burst_init(struct dw_spi *dws)
76 {
77         struct dma_slave_caps tx = {0}, rx = {0};
78
79         dma_get_slave_caps(dws->txchan, &tx);
80         dma_get_slave_caps(dws->rxchan, &rx);
81
82         if (tx.max_sg_burst > 0 && rx.max_sg_burst > 0)
83                 dws->dma_sg_burst = min(tx.max_sg_burst, rx.max_sg_burst);
84         else if (tx.max_sg_burst > 0)
85                 dws->dma_sg_burst = tx.max_sg_burst;
86         else if (rx.max_sg_burst > 0)
87                 dws->dma_sg_burst = rx.max_sg_burst;
88         else
89                 dws->dma_sg_burst = 0;
90 }
91
92 static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
93 {
94         struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
95         struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
96         struct pci_dev *dma_dev;
97         dma_cap_mask_t mask;
98
99         /*
100          * Get pci device for DMA controller, currently it could only
101          * be the DMA controller of Medfield
102          */
103         dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
104         if (!dma_dev)
105                 return -ENODEV;
106
107         dma_cap_zero(mask);
108         dma_cap_set(DMA_SLAVE, mask);
109
110         /* 1. Init rx channel */
111         rx->dma_dev = &dma_dev->dev;
112         dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
113         if (!dws->rxchan)
114                 goto err_exit;
115
116         /* 2. Init tx channel */
117         tx->dma_dev = &dma_dev->dev;
118         dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
119         if (!dws->txchan)
120                 goto free_rxchan;
121
122         dws->master->dma_rx = dws->rxchan;
123         dws->master->dma_tx = dws->txchan;
124
125         init_completion(&dws->dma_completion);
126
127         dw_spi_dma_maxburst_init(dws);
128
129         dw_spi_dma_sg_burst_init(dws);
130
131         return 0;
132
133 free_rxchan:
134         dma_release_channel(dws->rxchan);
135         dws->rxchan = NULL;
136 err_exit:
137         return -EBUSY;
138 }
139
140 static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
141 {
142         int ret;
143
144         dws->rxchan = dma_request_chan(dev, "rx");
145         if (IS_ERR(dws->rxchan)) {
146                 ret = PTR_ERR(dws->rxchan);
147                 dws->rxchan = NULL;
148                 goto err_exit;
149         }
150
151         dws->txchan = dma_request_chan(dev, "tx");
152         if (IS_ERR(dws->txchan)) {
153                 ret = PTR_ERR(dws->txchan);
154                 dws->txchan = NULL;
155                 goto free_rxchan;
156         }
157
158         dws->master->dma_rx = dws->rxchan;
159         dws->master->dma_tx = dws->txchan;
160
161         init_completion(&dws->dma_completion);
162
163         dw_spi_dma_maxburst_init(dws);
164
165         dw_spi_dma_sg_burst_init(dws);
166
167         return 0;
168
169 free_rxchan:
170         dma_release_channel(dws->rxchan);
171         dws->rxchan = NULL;
172 err_exit:
173         return ret;
174 }
175
176 static void dw_spi_dma_exit(struct dw_spi *dws)
177 {
178         if (dws->txchan) {
179                 dmaengine_terminate_sync(dws->txchan);
180                 dma_release_channel(dws->txchan);
181         }
182
183         if (dws->rxchan) {
184                 dmaengine_terminate_sync(dws->rxchan);
185                 dma_release_channel(dws->rxchan);
186         }
187 }
188
189 static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
190 {
191         dw_spi_check_status(dws, false);
192
193         complete(&dws->dma_completion);
194
195         return IRQ_HANDLED;
196 }
197
198 static bool dw_spi_can_dma(struct spi_controller *master,
199                            struct spi_device *spi, struct spi_transfer *xfer)
200 {
201         struct dw_spi *dws = spi_controller_get_devdata(master);
202
203         return xfer->len > dws->fifo_len;
204 }
205
206 static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
207 {
208         if (n_bytes == 1)
209                 return DMA_SLAVE_BUSWIDTH_1_BYTE;
210         else if (n_bytes == 2)
211                 return DMA_SLAVE_BUSWIDTH_2_BYTES;
212
213         return DMA_SLAVE_BUSWIDTH_UNDEFINED;
214 }
215
216 static int dw_spi_dma_wait(struct dw_spi *dws, unsigned int len, u32 speed)
217 {
218         unsigned long long ms;
219
220         ms = len * MSEC_PER_SEC * BITS_PER_BYTE;
221         do_div(ms, speed);
222         ms += ms + 200;
223
224         if (ms > UINT_MAX)
225                 ms = UINT_MAX;
226
227         ms = wait_for_completion_timeout(&dws->dma_completion,
228                                          msecs_to_jiffies(ms));
229
230         if (ms == 0) {
231                 dev_err(&dws->master->cur_msg->spi->dev,
232                         "DMA transaction timed out\n");
233                 return -ETIMEDOUT;
234         }
235
236         return 0;
237 }
238
239 static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
240 {
241         return !(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_TF_EMPT);
242 }
243
244 static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
245                                    struct spi_transfer *xfer)
246 {
247         int retry = DW_SPI_WAIT_RETRIES;
248         struct spi_delay delay;
249         u32 nents;
250
251         nents = dw_readl(dws, DW_SPI_TXFLR);
252         delay.unit = SPI_DELAY_UNIT_SCK;
253         delay.value = nents * dws->n_bytes * BITS_PER_BYTE;
254
255         while (dw_spi_dma_tx_busy(dws) && retry--)
256                 spi_delay_exec(&delay, xfer);
257
258         if (retry < 0) {
259                 dev_err(&dws->master->dev, "Tx hanged up\n");
260                 return -EIO;
261         }
262
263         return 0;
264 }
265
266 /*
267  * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
268  * channel will clear a corresponding bit.
269  */
270 static void dw_spi_dma_tx_done(void *arg)
271 {
272         struct dw_spi *dws = arg;
273
274         clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
275         if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy))
276                 return;
277
278         complete(&dws->dma_completion);
279 }
280
281 static int dw_spi_dma_config_tx(struct dw_spi *dws)
282 {
283         struct dma_slave_config txconf;
284
285         memset(&txconf, 0, sizeof(txconf));
286         txconf.direction = DMA_MEM_TO_DEV;
287         txconf.dst_addr = dws->dma_addr;
288         txconf.dst_maxburst = dws->txburst;
289         txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
290         txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
291         txconf.device_fc = false;
292
293         return dmaengine_slave_config(dws->txchan, &txconf);
294 }
295
296 static int dw_spi_dma_submit_tx(struct dw_spi *dws, struct scatterlist *sgl,
297                                 unsigned int nents)
298 {
299         struct dma_async_tx_descriptor *txdesc;
300         dma_cookie_t cookie;
301         int ret;
302
303         txdesc = dmaengine_prep_slave_sg(dws->txchan, sgl, nents,
304                                          DMA_MEM_TO_DEV,
305                                          DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
306         if (!txdesc)
307                 return -ENOMEM;
308
309         txdesc->callback = dw_spi_dma_tx_done;
310         txdesc->callback_param = dws;
311
312         cookie = dmaengine_submit(txdesc);
313         ret = dma_submit_error(cookie);
314         if (ret) {
315                 dmaengine_terminate_sync(dws->txchan);
316                 return ret;
317         }
318
319         set_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
320
321         return 0;
322 }
323
324 static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
325 {
326         return !!(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_RF_NOT_EMPT);
327 }
328
329 static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
330 {
331         int retry = DW_SPI_WAIT_RETRIES;
332         struct spi_delay delay;
333         unsigned long ns, us;
334         u32 nents;
335
336         /*
337          * It's unlikely that DMA engine is still doing the data fetching, but
338          * if it's let's give it some reasonable time. The timeout calculation
339          * is based on the synchronous APB/SSI reference clock rate, on a
340          * number of data entries left in the Rx FIFO, times a number of clock
341          * periods normally needed for a single APB read/write transaction
342          * without PREADY signal utilized (which is true for the DW APB SSI
343          * controller).
344          */
345         nents = dw_readl(dws, DW_SPI_RXFLR);
346         ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
347         if (ns <= NSEC_PER_USEC) {
348                 delay.unit = SPI_DELAY_UNIT_NSECS;
349                 delay.value = ns;
350         } else {
351                 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
352                 delay.unit = SPI_DELAY_UNIT_USECS;
353                 delay.value = clamp_val(us, 0, USHRT_MAX);
354         }
355
356         while (dw_spi_dma_rx_busy(dws) && retry--)
357                 spi_delay_exec(&delay, NULL);
358
359         if (retry < 0) {
360                 dev_err(&dws->master->dev, "Rx hanged up\n");
361                 return -EIO;
362         }
363
364         return 0;
365 }
366
367 /*
368  * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
369  * channel will clear a corresponding bit.
370  */
371 static void dw_spi_dma_rx_done(void *arg)
372 {
373         struct dw_spi *dws = arg;
374
375         clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
376         if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy))
377                 return;
378
379         complete(&dws->dma_completion);
380 }
381
382 static int dw_spi_dma_config_rx(struct dw_spi *dws)
383 {
384         struct dma_slave_config rxconf;
385
386         memset(&rxconf, 0, sizeof(rxconf));
387         rxconf.direction = DMA_DEV_TO_MEM;
388         rxconf.src_addr = dws->dma_addr;
389         rxconf.src_maxburst = dws->rxburst;
390         rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
391         rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
392         rxconf.device_fc = false;
393
394         return dmaengine_slave_config(dws->rxchan, &rxconf);
395 }
396
397 static int dw_spi_dma_submit_rx(struct dw_spi *dws, struct scatterlist *sgl,
398                                 unsigned int nents)
399 {
400         struct dma_async_tx_descriptor *rxdesc;
401         dma_cookie_t cookie;
402         int ret;
403
404         rxdesc = dmaengine_prep_slave_sg(dws->rxchan, sgl, nents,
405                                          DMA_DEV_TO_MEM,
406                                          DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
407         if (!rxdesc)
408                 return -ENOMEM;
409
410         rxdesc->callback = dw_spi_dma_rx_done;
411         rxdesc->callback_param = dws;
412
413         cookie = dmaengine_submit(rxdesc);
414         ret = dma_submit_error(cookie);
415         if (ret) {
416                 dmaengine_terminate_sync(dws->rxchan);
417                 return ret;
418         }
419
420         set_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
421
422         return 0;
423 }
424
425 static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
426 {
427         u16 imr, dma_ctrl;
428         int ret;
429
430         if (!xfer->tx_buf)
431                 return -EINVAL;
432
433         /* Setup DMA channels */
434         ret = dw_spi_dma_config_tx(dws);
435         if (ret)
436                 return ret;
437
438         if (xfer->rx_buf) {
439                 ret = dw_spi_dma_config_rx(dws);
440                 if (ret)
441                         return ret;
442         }
443
444         /* Set the DMA handshaking interface */
445         dma_ctrl = DW_SPI_DMACR_TDMAE;
446         if (xfer->rx_buf)
447                 dma_ctrl |= DW_SPI_DMACR_RDMAE;
448         dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
449
450         /* Set the interrupt mask */
451         imr = DW_SPI_INT_TXOI;
452         if (xfer->rx_buf)
453                 imr |= DW_SPI_INT_RXUI | DW_SPI_INT_RXOI;
454         dw_spi_umask_intr(dws, imr);
455
456         reinit_completion(&dws->dma_completion);
457
458         dws->transfer_handler = dw_spi_dma_transfer_handler;
459
460         return 0;
461 }
462
463 static int dw_spi_dma_transfer_all(struct dw_spi *dws,
464                                    struct spi_transfer *xfer)
465 {
466         int ret;
467
468         /* Submit the DMA Tx transfer */
469         ret = dw_spi_dma_submit_tx(dws, xfer->tx_sg.sgl, xfer->tx_sg.nents);
470         if (ret)
471                 goto err_clear_dmac;
472
473         /* Submit the DMA Rx transfer if required */
474         if (xfer->rx_buf) {
475                 ret = dw_spi_dma_submit_rx(dws, xfer->rx_sg.sgl,
476                                            xfer->rx_sg.nents);
477                 if (ret)
478                         goto err_clear_dmac;
479
480                 /* rx must be started before tx due to spi instinct */
481                 dma_async_issue_pending(dws->rxchan);
482         }
483
484         dma_async_issue_pending(dws->txchan);
485
486         ret = dw_spi_dma_wait(dws, xfer->len, xfer->effective_speed_hz);
487
488 err_clear_dmac:
489         dw_writel(dws, DW_SPI_DMACR, 0);
490
491         return ret;
492 }
493
494 /*
495  * In case if at least one of the requested DMA channels doesn't support the
496  * hardware accelerated SG list entries traverse, the DMA driver will most
497  * likely work that around by performing the IRQ-based SG list entries
498  * resubmission. That might and will cause a problem if the DMA Tx channel is
499  * recharged and re-executed before the Rx DMA channel. Due to
500  * non-deterministic IRQ-handler execution latency the DMA Tx channel will
501  * start pushing data to the SPI bus before the Rx DMA channel is even
502  * reinitialized with the next inbound SG list entry. By doing so the DMA Tx
503  * channel will implicitly start filling the DW APB SSI Rx FIFO up, which while
504  * the DMA Rx channel being recharged and re-executed will eventually be
505  * overflown.
506  *
507  * In order to solve the problem we have to feed the DMA engine with SG list
508  * entries one-by-one. It shall keep the DW APB SSI Tx and Rx FIFOs
509  * synchronized and prevent the Rx FIFO overflow. Since in general the tx_sg
510  * and rx_sg lists may have different number of entries of different lengths
511  * (though total length should match) let's virtually split the SG-lists to the
512  * set of DMA transfers, which length is a minimum of the ordered SG-entries
513  * lengths. An ASCII-sketch of the implemented algo is following:
514  *                  xfer->len
515  *                |___________|
516  * tx_sg list:    |___|____|__|
517  * rx_sg list:    |_|____|____|
518  * DMA transfers: |_|_|__|_|__|
519  *
520  * Note in order to have this workaround solving the denoted problem the DMA
521  * engine driver should properly initialize the max_sg_burst capability and set
522  * the DMA device max segment size parameter with maximum data block size the
523  * DMA engine supports.
524  */
525
526 static int dw_spi_dma_transfer_one(struct dw_spi *dws,
527                                    struct spi_transfer *xfer)
528 {
529         struct scatterlist *tx_sg = NULL, *rx_sg = NULL, tx_tmp, rx_tmp;
530         unsigned int tx_len = 0, rx_len = 0;
531         unsigned int base, len;
532         int ret;
533
534         sg_init_table(&tx_tmp, 1);
535         sg_init_table(&rx_tmp, 1);
536
537         for (base = 0, len = 0; base < xfer->len; base += len) {
538                 /* Fetch next Tx DMA data chunk */
539                 if (!tx_len) {
540                         tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg);
541                         sg_dma_address(&tx_tmp) = sg_dma_address(tx_sg);
542                         tx_len = sg_dma_len(tx_sg);
543                 }
544
545                 /* Fetch next Rx DMA data chunk */
546                 if (!rx_len) {
547                         rx_sg = !rx_sg ? &xfer->rx_sg.sgl[0] : sg_next(rx_sg);
548                         sg_dma_address(&rx_tmp) = sg_dma_address(rx_sg);
549                         rx_len = sg_dma_len(rx_sg);
550                 }
551
552                 len = min(tx_len, rx_len);
553
554                 sg_dma_len(&tx_tmp) = len;
555                 sg_dma_len(&rx_tmp) = len;
556
557                 /* Submit DMA Tx transfer */
558                 ret = dw_spi_dma_submit_tx(dws, &tx_tmp, 1);
559                 if (ret)
560                         break;
561
562                 /* Submit DMA Rx transfer */
563                 ret = dw_spi_dma_submit_rx(dws, &rx_tmp, 1);
564                 if (ret)
565                         break;
566
567                 /* Rx must be started before Tx due to SPI instinct */
568                 dma_async_issue_pending(dws->rxchan);
569
570                 dma_async_issue_pending(dws->txchan);
571
572                 /*
573                  * Here we only need to wait for the DMA transfer to be
574                  * finished since SPI controller is kept enabled during the
575                  * procedure this loop implements and there is no risk to lose
576                  * data left in the Tx/Rx FIFOs.
577                  */
578                 ret = dw_spi_dma_wait(dws, len, xfer->effective_speed_hz);
579                 if (ret)
580                         break;
581
582                 reinit_completion(&dws->dma_completion);
583
584                 sg_dma_address(&tx_tmp) += len;
585                 sg_dma_address(&rx_tmp) += len;
586                 tx_len -= len;
587                 rx_len -= len;
588         }
589
590         dw_writel(dws, DW_SPI_DMACR, 0);
591
592         return ret;
593 }
594
595 static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
596 {
597         unsigned int nents;
598         int ret;
599
600         nents = max(xfer->tx_sg.nents, xfer->rx_sg.nents);
601
602         /*
603          * Execute normal DMA-based transfer (which submits the Rx and Tx SG
604          * lists directly to the DMA engine at once) if either full hardware
605          * accelerated SG list traverse is supported by both channels, or the
606          * Tx-only SPI transfer is requested, or the DMA engine is capable to
607          * handle both SG lists on hardware accelerated basis.
608          */
609         if (!dws->dma_sg_burst || !xfer->rx_buf || nents <= dws->dma_sg_burst)
610                 ret = dw_spi_dma_transfer_all(dws, xfer);
611         else
612                 ret = dw_spi_dma_transfer_one(dws, xfer);
613         if (ret)
614                 return ret;
615
616         if (dws->master->cur_msg->status == -EINPROGRESS) {
617                 ret = dw_spi_dma_wait_tx_done(dws, xfer);
618                 if (ret)
619                         return ret;
620         }
621
622         if (xfer->rx_buf && dws->master->cur_msg->status == -EINPROGRESS)
623                 ret = dw_spi_dma_wait_rx_done(dws);
624
625         return ret;
626 }
627
628 static void dw_spi_dma_stop(struct dw_spi *dws)
629 {
630         if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy)) {
631                 dmaengine_terminate_sync(dws->txchan);
632                 clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
633         }
634         if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy)) {
635                 dmaengine_terminate_sync(dws->rxchan);
636                 clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
637         }
638 }
639
640 static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
641         .dma_init       = dw_spi_dma_init_mfld,
642         .dma_exit       = dw_spi_dma_exit,
643         .dma_setup      = dw_spi_dma_setup,
644         .can_dma        = dw_spi_can_dma,
645         .dma_transfer   = dw_spi_dma_transfer,
646         .dma_stop       = dw_spi_dma_stop,
647 };
648
649 void dw_spi_dma_setup_mfld(struct dw_spi *dws)
650 {
651         dws->dma_ops = &dw_spi_dma_mfld_ops;
652 }
653 EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_mfld, SPI_DW_CORE);
654
655 static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
656         .dma_init       = dw_spi_dma_init_generic,
657         .dma_exit       = dw_spi_dma_exit,
658         .dma_setup      = dw_spi_dma_setup,
659         .can_dma        = dw_spi_can_dma,
660         .dma_transfer   = dw_spi_dma_transfer,
661         .dma_stop       = dw_spi_dma_stop,
662 };
663
664 void dw_spi_dma_setup_generic(struct dw_spi *dws)
665 {
666         dws->dma_ops = &dw_spi_dma_generic_ops;
667 }
668 EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_generic, SPI_DW_CORE);