Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[platform/kernel/linux-rpi.git] / drivers / spi / spi-dw-dma.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Special handling for DW DMA core
4  *
5  * Copyright (c) 2009, 2014 Intel Corporation.
6  */
7
8 #include <linux/completion.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmaengine.h>
11 #include <linux/irqreturn.h>
12 #include <linux/jiffies.h>
13 #include <linux/module.h>
14 #include <linux/pci.h>
15 #include <linux/platform_data/dma-dw.h>
16 #include <linux/spi/spi.h>
17 #include <linux/types.h>
18
19 #include "spi-dw.h"
20
21 #define DW_SPI_RX_BUSY          0
22 #define DW_SPI_RX_BURST_LEVEL   16
23 #define DW_SPI_TX_BUSY          1
24 #define DW_SPI_TX_BURST_LEVEL   16
25
26 static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
27 {
28         struct dw_dma_slave *s = param;
29
30         if (s->dma_dev != chan->device->dev)
31                 return false;
32
33         chan->private = s;
34         return true;
35 }
36
37 static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
38 {
39         struct dma_slave_caps caps;
40         u32 max_burst, def_burst;
41         int ret;
42
43         def_burst = dws->fifo_len / 2;
44
45         ret = dma_get_slave_caps(dws->rxchan, &caps);
46         if (!ret && caps.max_burst)
47                 max_burst = caps.max_burst;
48         else
49                 max_burst = DW_SPI_RX_BURST_LEVEL;
50
51         dws->rxburst = min(max_burst, def_burst);
52         dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
53
54         ret = dma_get_slave_caps(dws->txchan, &caps);
55         if (!ret && caps.max_burst)
56                 max_burst = caps.max_burst;
57         else
58                 max_burst = DW_SPI_TX_BURST_LEVEL;
59
60         /*
61          * Having a Rx DMA channel serviced with higher priority than a Tx DMA
62          * channel might not be enough to provide a well balanced DMA-based
63          * SPI transfer interface. There might still be moments when the Tx DMA
64          * channel is occasionally handled faster than the Rx DMA channel.
65          * That in its turn will eventually cause the SPI Rx FIFO overflow if
66          * SPI bus speed is high enough to fill the SPI Rx FIFO in before it's
67          * cleared by the Rx DMA channel. In order to fix the problem the Tx
68          * DMA activity is intentionally slowed down by limiting the SPI Tx
69          * FIFO depth with a value twice bigger than the Tx burst length.
70          */
71         dws->txburst = min(max_burst, def_burst);
72         dw_writel(dws, DW_SPI_DMATDLR, dws->txburst);
73 }
74
75 static int dw_spi_dma_caps_init(struct dw_spi *dws)
76 {
77         struct dma_slave_caps tx, rx;
78         int ret;
79
80         ret = dma_get_slave_caps(dws->txchan, &tx);
81         if (ret)
82                 return ret;
83
84         ret = dma_get_slave_caps(dws->rxchan, &rx);
85         if (ret)
86                 return ret;
87
88         if (!(tx.directions & BIT(DMA_MEM_TO_DEV) &&
89               rx.directions & BIT(DMA_DEV_TO_MEM)))
90                 return -ENXIO;
91
92         if (tx.max_sg_burst > 0 && rx.max_sg_burst > 0)
93                 dws->dma_sg_burst = min(tx.max_sg_burst, rx.max_sg_burst);
94         else if (tx.max_sg_burst > 0)
95                 dws->dma_sg_burst = tx.max_sg_burst;
96         else if (rx.max_sg_burst > 0)
97                 dws->dma_sg_burst = rx.max_sg_burst;
98         else
99                 dws->dma_sg_burst = 0;
100
101         /*
102          * Assuming both channels belong to the same DMA controller hence the
103          * peripheral side address width capabilities most likely would be
104          * the same.
105          */
106         dws->dma_addr_widths = tx.dst_addr_widths & rx.src_addr_widths;
107
108         return 0;
109 }
110
111 static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
112 {
113         struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
114         struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
115         struct pci_dev *dma_dev;
116         dma_cap_mask_t mask;
117         int ret = -EBUSY;
118
119         /*
120          * Get pci device for DMA controller, currently it could only
121          * be the DMA controller of Medfield
122          */
123         dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
124         if (!dma_dev)
125                 return -ENODEV;
126
127         dma_cap_zero(mask);
128         dma_cap_set(DMA_SLAVE, mask);
129
130         /* 1. Init rx channel */
131         rx->dma_dev = &dma_dev->dev;
132         dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
133         if (!dws->rxchan)
134                 goto err_exit;
135
136         /* 2. Init tx channel */
137         tx->dma_dev = &dma_dev->dev;
138         dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
139         if (!dws->txchan)
140                 goto free_rxchan;
141
142         dws->host->dma_rx = dws->rxchan;
143         dws->host->dma_tx = dws->txchan;
144
145         init_completion(&dws->dma_completion);
146
147         ret = dw_spi_dma_caps_init(dws);
148         if (ret)
149                 goto free_txchan;
150
151         dw_spi_dma_maxburst_init(dws);
152
153         pci_dev_put(dma_dev);
154
155         return 0;
156
157 free_txchan:
158         dma_release_channel(dws->txchan);
159         dws->txchan = NULL;
160 free_rxchan:
161         dma_release_channel(dws->rxchan);
162         dws->rxchan = NULL;
163 err_exit:
164         pci_dev_put(dma_dev);
165         return ret;
166 }
167
168 static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
169 {
170         int ret;
171
172         dws->rxchan = dma_request_chan(dev, "rx");
173         if (IS_ERR(dws->rxchan)) {
174                 ret = PTR_ERR(dws->rxchan);
175                 dws->rxchan = NULL;
176                 goto err_exit;
177         }
178
179         dws->txchan = dma_request_chan(dev, "tx");
180         if (IS_ERR(dws->txchan)) {
181                 ret = PTR_ERR(dws->txchan);
182                 dws->txchan = NULL;
183                 goto free_rxchan;
184         }
185
186         dws->host->dma_rx = dws->rxchan;
187         dws->host->dma_tx = dws->txchan;
188
189         init_completion(&dws->dma_completion);
190
191         ret = dw_spi_dma_caps_init(dws);
192         if (ret)
193                 goto free_txchan;
194
195         dw_spi_dma_maxburst_init(dws);
196
197         return 0;
198
199 free_txchan:
200         dma_release_channel(dws->txchan);
201         dws->txchan = NULL;
202 free_rxchan:
203         dma_release_channel(dws->rxchan);
204         dws->rxchan = NULL;
205 err_exit:
206         return ret;
207 }
208
209 static void dw_spi_dma_exit(struct dw_spi *dws)
210 {
211         if (dws->txchan) {
212                 dmaengine_terminate_sync(dws->txchan);
213                 dma_release_channel(dws->txchan);
214         }
215
216         if (dws->rxchan) {
217                 dmaengine_terminate_sync(dws->rxchan);
218                 dma_release_channel(dws->rxchan);
219         }
220 }
221
222 static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
223 {
224         dw_spi_check_status(dws, false);
225
226         complete(&dws->dma_completion);
227
228         return IRQ_HANDLED;
229 }
230
231 static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
232 {
233         switch (n_bytes) {
234         case 1:
235                 return DMA_SLAVE_BUSWIDTH_1_BYTE;
236         case 2:
237                 return DMA_SLAVE_BUSWIDTH_2_BYTES;
238         case 4:
239                 return DMA_SLAVE_BUSWIDTH_4_BYTES;
240         default:
241                 return DMA_SLAVE_BUSWIDTH_UNDEFINED;
242         }
243 }
244
245 static bool dw_spi_can_dma(struct spi_controller *host,
246                            struct spi_device *spi, struct spi_transfer *xfer)
247 {
248         struct dw_spi *dws = spi_controller_get_devdata(host);
249         enum dma_slave_buswidth dma_bus_width;
250
251         if (xfer->len <= dws->fifo_len)
252                 return false;
253
254         dma_bus_width = dw_spi_dma_convert_width(dws->n_bytes);
255
256         return dws->dma_addr_widths & BIT(dma_bus_width);
257 }
258
259 static int dw_spi_dma_wait(struct dw_spi *dws, unsigned int len, u32 speed)
260 {
261         unsigned long long ms;
262
263         ms = len * MSEC_PER_SEC * BITS_PER_BYTE;
264         do_div(ms, speed);
265         ms += ms + 200;
266
267         if (ms > UINT_MAX)
268                 ms = UINT_MAX;
269
270         ms = wait_for_completion_timeout(&dws->dma_completion,
271                                          msecs_to_jiffies(ms));
272
273         if (ms == 0) {
274                 dev_err(&dws->host->cur_msg->spi->dev,
275                         "DMA transaction timed out\n");
276                 return -ETIMEDOUT;
277         }
278
279         return 0;
280 }
281
282 static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
283 {
284         return !(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_TF_EMPT);
285 }
286
287 static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
288                                    struct spi_transfer *xfer)
289 {
290         int retry = DW_SPI_WAIT_RETRIES;
291         struct spi_delay delay;
292         u32 nents;
293
294         nents = dw_readl(dws, DW_SPI_TXFLR);
295         delay.unit = SPI_DELAY_UNIT_SCK;
296         delay.value = nents * dws->n_bytes * BITS_PER_BYTE;
297
298         while (dw_spi_dma_tx_busy(dws) && retry--)
299                 spi_delay_exec(&delay, xfer);
300
301         if (retry < 0) {
302                 dev_err(&dws->host->dev, "Tx hanged up\n");
303                 return -EIO;
304         }
305
306         return 0;
307 }
308
309 /*
310  * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
311  * channel will clear a corresponding bit.
312  */
313 static void dw_spi_dma_tx_done(void *arg)
314 {
315         struct dw_spi *dws = arg;
316
317         clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
318         if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy))
319                 return;
320
321         complete(&dws->dma_completion);
322 }
323
324 static int dw_spi_dma_config_tx(struct dw_spi *dws)
325 {
326         struct dma_slave_config txconf;
327
328         memset(&txconf, 0, sizeof(txconf));
329         txconf.direction = DMA_MEM_TO_DEV;
330         txconf.dst_addr = dws->dma_addr;
331         txconf.dst_maxburst = dws->txburst;
332         txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
333         txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
334         txconf.device_fc = false;
335
336         return dmaengine_slave_config(dws->txchan, &txconf);
337 }
338
339 static int dw_spi_dma_submit_tx(struct dw_spi *dws, struct scatterlist *sgl,
340                                 unsigned int nents)
341 {
342         struct dma_async_tx_descriptor *txdesc;
343         dma_cookie_t cookie;
344         int ret;
345
346         txdesc = dmaengine_prep_slave_sg(dws->txchan, sgl, nents,
347                                          DMA_MEM_TO_DEV,
348                                          DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
349         if (!txdesc)
350                 return -ENOMEM;
351
352         txdesc->callback = dw_spi_dma_tx_done;
353         txdesc->callback_param = dws;
354
355         cookie = dmaengine_submit(txdesc);
356         ret = dma_submit_error(cookie);
357         if (ret) {
358                 dmaengine_terminate_sync(dws->txchan);
359                 return ret;
360         }
361
362         set_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
363
364         return 0;
365 }
366
367 static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
368 {
369         return !!(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_RF_NOT_EMPT);
370 }
371
372 static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
373 {
374         int retry = DW_SPI_WAIT_RETRIES;
375         struct spi_delay delay;
376         unsigned long ns, us;
377         u32 nents;
378
379         /*
380          * It's unlikely that DMA engine is still doing the data fetching, but
381          * if it's let's give it some reasonable time. The timeout calculation
382          * is based on the synchronous APB/SSI reference clock rate, on a
383          * number of data entries left in the Rx FIFO, times a number of clock
384          * periods normally needed for a single APB read/write transaction
385          * without PREADY signal utilized (which is true for the DW APB SSI
386          * controller).
387          */
388         nents = dw_readl(dws, DW_SPI_RXFLR);
389         ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
390         if (ns <= NSEC_PER_USEC) {
391                 delay.unit = SPI_DELAY_UNIT_NSECS;
392                 delay.value = ns;
393         } else {
394                 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
395                 delay.unit = SPI_DELAY_UNIT_USECS;
396                 delay.value = clamp_val(us, 0, USHRT_MAX);
397         }
398
399         while (dw_spi_dma_rx_busy(dws) && retry--)
400                 spi_delay_exec(&delay, NULL);
401
402         if (retry < 0) {
403                 dev_err(&dws->host->dev, "Rx hanged up\n");
404                 return -EIO;
405         }
406
407         return 0;
408 }
409
410 /*
411  * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
412  * channel will clear a corresponding bit.
413  */
414 static void dw_spi_dma_rx_done(void *arg)
415 {
416         struct dw_spi *dws = arg;
417
418         clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
419         if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy))
420                 return;
421
422         complete(&dws->dma_completion);
423 }
424
425 static int dw_spi_dma_config_rx(struct dw_spi *dws)
426 {
427         struct dma_slave_config rxconf;
428
429         memset(&rxconf, 0, sizeof(rxconf));
430         rxconf.direction = DMA_DEV_TO_MEM;
431         rxconf.src_addr = dws->dma_addr;
432         rxconf.src_maxburst = dws->rxburst;
433         rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
434         rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
435         rxconf.device_fc = false;
436
437         return dmaengine_slave_config(dws->rxchan, &rxconf);
438 }
439
440 static int dw_spi_dma_submit_rx(struct dw_spi *dws, struct scatterlist *sgl,
441                                 unsigned int nents)
442 {
443         struct dma_async_tx_descriptor *rxdesc;
444         dma_cookie_t cookie;
445         int ret;
446
447         rxdesc = dmaengine_prep_slave_sg(dws->rxchan, sgl, nents,
448                                          DMA_DEV_TO_MEM,
449                                          DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
450         if (!rxdesc)
451                 return -ENOMEM;
452
453         rxdesc->callback = dw_spi_dma_rx_done;
454         rxdesc->callback_param = dws;
455
456         cookie = dmaengine_submit(rxdesc);
457         ret = dma_submit_error(cookie);
458         if (ret) {
459                 dmaengine_terminate_sync(dws->rxchan);
460                 return ret;
461         }
462
463         set_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
464
465         return 0;
466 }
467
468 static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
469 {
470         u16 imr, dma_ctrl;
471         int ret;
472
473         if (!xfer->tx_buf)
474                 return -EINVAL;
475
476         /* Setup DMA channels */
477         ret = dw_spi_dma_config_tx(dws);
478         if (ret)
479                 return ret;
480
481         if (xfer->rx_buf) {
482                 ret = dw_spi_dma_config_rx(dws);
483                 if (ret)
484                         return ret;
485         }
486
487         /* Set the DMA handshaking interface */
488         dma_ctrl = DW_SPI_DMACR_TDMAE;
489         if (xfer->rx_buf)
490                 dma_ctrl |= DW_SPI_DMACR_RDMAE;
491         dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
492
493         /* Set the interrupt mask */
494         imr = DW_SPI_INT_TXOI;
495         if (xfer->rx_buf)
496                 imr |= DW_SPI_INT_RXUI | DW_SPI_INT_RXOI;
497         dw_spi_umask_intr(dws, imr);
498
499         reinit_completion(&dws->dma_completion);
500
501         dws->transfer_handler = dw_spi_dma_transfer_handler;
502
503         return 0;
504 }
505
506 static int dw_spi_dma_transfer_all(struct dw_spi *dws,
507                                    struct spi_transfer *xfer)
508 {
509         int ret;
510
511         /* Submit the DMA Tx transfer */
512         ret = dw_spi_dma_submit_tx(dws, xfer->tx_sg.sgl, xfer->tx_sg.nents);
513         if (ret)
514                 goto err_clear_dmac;
515
516         /* Submit the DMA Rx transfer if required */
517         if (xfer->rx_buf) {
518                 ret = dw_spi_dma_submit_rx(dws, xfer->rx_sg.sgl,
519                                            xfer->rx_sg.nents);
520                 if (ret)
521                         goto err_clear_dmac;
522
523                 /* rx must be started before tx due to spi instinct */
524                 dma_async_issue_pending(dws->rxchan);
525         }
526
527         dma_async_issue_pending(dws->txchan);
528
529         ret = dw_spi_dma_wait(dws, xfer->len, xfer->effective_speed_hz);
530
531 err_clear_dmac:
532         dw_writel(dws, DW_SPI_DMACR, 0);
533
534         return ret;
535 }
536
537 /*
538  * In case if at least one of the requested DMA channels doesn't support the
539  * hardware accelerated SG list entries traverse, the DMA driver will most
540  * likely work that around by performing the IRQ-based SG list entries
541  * resubmission. That might and will cause a problem if the DMA Tx channel is
542  * recharged and re-executed before the Rx DMA channel. Due to
543  * non-deterministic IRQ-handler execution latency the DMA Tx channel will
544  * start pushing data to the SPI bus before the Rx DMA channel is even
545  * reinitialized with the next inbound SG list entry. By doing so the DMA Tx
546  * channel will implicitly start filling the DW APB SSI Rx FIFO up, which while
547  * the DMA Rx channel being recharged and re-executed will eventually be
548  * overflown.
549  *
550  * In order to solve the problem we have to feed the DMA engine with SG list
551  * entries one-by-one. It shall keep the DW APB SSI Tx and Rx FIFOs
552  * synchronized and prevent the Rx FIFO overflow. Since in general the tx_sg
553  * and rx_sg lists may have different number of entries of different lengths
554  * (though total length should match) let's virtually split the SG-lists to the
555  * set of DMA transfers, which length is a minimum of the ordered SG-entries
556  * lengths. An ASCII-sketch of the implemented algo is following:
557  *                  xfer->len
558  *                |___________|
559  * tx_sg list:    |___|____|__|
560  * rx_sg list:    |_|____|____|
561  * DMA transfers: |_|_|__|_|__|
562  *
563  * Note in order to have this workaround solving the denoted problem the DMA
564  * engine driver should properly initialize the max_sg_burst capability and set
565  * the DMA device max segment size parameter with maximum data block size the
566  * DMA engine supports.
567  */
568
569 static int dw_spi_dma_transfer_one(struct dw_spi *dws,
570                                    struct spi_transfer *xfer)
571 {
572         struct scatterlist *tx_sg = NULL, *rx_sg = NULL, tx_tmp, rx_tmp;
573         unsigned int tx_len = 0, rx_len = 0;
574         unsigned int base, len;
575         int ret;
576
577         sg_init_table(&tx_tmp, 1);
578         sg_init_table(&rx_tmp, 1);
579
580         for (base = 0, len = 0; base < xfer->len; base += len) {
581                 /* Fetch next Tx DMA data chunk */
582                 if (!tx_len) {
583                         tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg);
584                         sg_dma_address(&tx_tmp) = sg_dma_address(tx_sg);
585                         tx_len = sg_dma_len(tx_sg);
586                 }
587
588                 /* Fetch next Rx DMA data chunk */
589                 if (!rx_len) {
590                         rx_sg = !rx_sg ? &xfer->rx_sg.sgl[0] : sg_next(rx_sg);
591                         sg_dma_address(&rx_tmp) = sg_dma_address(rx_sg);
592                         rx_len = sg_dma_len(rx_sg);
593                 }
594
595                 len = min(tx_len, rx_len);
596
597                 sg_dma_len(&tx_tmp) = len;
598                 sg_dma_len(&rx_tmp) = len;
599
600                 /* Submit DMA Tx transfer */
601                 ret = dw_spi_dma_submit_tx(dws, &tx_tmp, 1);
602                 if (ret)
603                         break;
604
605                 /* Submit DMA Rx transfer */
606                 ret = dw_spi_dma_submit_rx(dws, &rx_tmp, 1);
607                 if (ret)
608                         break;
609
610                 /* Rx must be started before Tx due to SPI instinct */
611                 dma_async_issue_pending(dws->rxchan);
612
613                 dma_async_issue_pending(dws->txchan);
614
615                 /*
616                  * Here we only need to wait for the DMA transfer to be
617                  * finished since SPI controller is kept enabled during the
618                  * procedure this loop implements and there is no risk to lose
619                  * data left in the Tx/Rx FIFOs.
620                  */
621                 ret = dw_spi_dma_wait(dws, len, xfer->effective_speed_hz);
622                 if (ret)
623                         break;
624
625                 reinit_completion(&dws->dma_completion);
626
627                 sg_dma_address(&tx_tmp) += len;
628                 sg_dma_address(&rx_tmp) += len;
629                 tx_len -= len;
630                 rx_len -= len;
631         }
632
633         dw_writel(dws, DW_SPI_DMACR, 0);
634
635         return ret;
636 }
637
638 static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
639 {
640         unsigned int nents;
641         int ret;
642
643         nents = max(xfer->tx_sg.nents, xfer->rx_sg.nents);
644
645         /*
646          * Execute normal DMA-based transfer (which submits the Rx and Tx SG
647          * lists directly to the DMA engine at once) if either full hardware
648          * accelerated SG list traverse is supported by both channels, or the
649          * Tx-only SPI transfer is requested, or the DMA engine is capable to
650          * handle both SG lists on hardware accelerated basis.
651          */
652         if (!dws->dma_sg_burst || !xfer->rx_buf || nents <= dws->dma_sg_burst)
653                 ret = dw_spi_dma_transfer_all(dws, xfer);
654         else
655                 ret = dw_spi_dma_transfer_one(dws, xfer);
656         if (ret)
657                 return ret;
658
659         if (dws->host->cur_msg->status == -EINPROGRESS) {
660                 ret = dw_spi_dma_wait_tx_done(dws, xfer);
661                 if (ret)
662                         return ret;
663         }
664
665         if (xfer->rx_buf && dws->host->cur_msg->status == -EINPROGRESS)
666                 ret = dw_spi_dma_wait_rx_done(dws);
667
668         return ret;
669 }
670
671 static void dw_spi_dma_stop(struct dw_spi *dws)
672 {
673         if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy)) {
674                 dmaengine_terminate_sync(dws->txchan);
675                 clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
676         }
677         if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy)) {
678                 dmaengine_terminate_sync(dws->rxchan);
679                 clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
680         }
681 }
682
683 static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
684         .dma_init       = dw_spi_dma_init_mfld,
685         .dma_exit       = dw_spi_dma_exit,
686         .dma_setup      = dw_spi_dma_setup,
687         .can_dma        = dw_spi_can_dma,
688         .dma_transfer   = dw_spi_dma_transfer,
689         .dma_stop       = dw_spi_dma_stop,
690 };
691
692 void dw_spi_dma_setup_mfld(struct dw_spi *dws)
693 {
694         dws->dma_ops = &dw_spi_dma_mfld_ops;
695 }
696 EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_mfld, SPI_DW_CORE);
697
698 static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
699         .dma_init       = dw_spi_dma_init_generic,
700         .dma_exit       = dw_spi_dma_exit,
701         .dma_setup      = dw_spi_dma_setup,
702         .can_dma        = dw_spi_can_dma,
703         .dma_transfer   = dw_spi_dma_transfer,
704         .dma_stop       = dw_spi_dma_stop,
705 };
706
707 void dw_spi_dma_setup_generic(struct dw_spi *dws)
708 {
709         dws->dma_ops = &dw_spi_dma_generic_ops;
710 }
711 EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_generic, SPI_DW_CORE);