1 // SPDX-License-Identifier: GPL-2.0-only
3 // Driver for Cadence QSPI Controller
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of_device.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/reset.h>
29 #include <linux/sched.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/spi-mem.h>
32 #include <linux/timer.h>
34 #define CQSPI_NAME "cadence-qspi"
35 #define CQSPI_MAX_CHIPSELECT 16
38 #define CQSPI_NEEDS_WR_DELAY BIT(0)
39 #define CQSPI_DISABLE_DAC_MODE BIT(1)
40 #define CQSPI_SUPPORT_EXTERNAL_DMA BIT(2)
41 #define CQSPI_NO_SUPPORT_WR_COMPLETION BIT(3)
44 #define CQSPI_SUPPORTS_OCTAL BIT(0)
46 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
50 struct cqspi_flash_pdata {
51 struct cqspi_st *cqspi;
62 struct platform_device *pdev;
63 struct spi_master *master;
68 void __iomem *ahb_base;
69 resource_size_t ahb_size;
70 struct completion transfer_complete;
72 struct dma_chan *rx_chan;
73 struct completion rx_dma_complete;
74 dma_addr_t mmap_phys_base;
77 unsigned long master_ref_clk_hz;
86 struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
92 struct cqspi_driver_platdata {
95 int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
96 u_char *rxbuf, loff_t from_addr, size_t n_rx);
97 u32 (*get_dma_status)(struct cqspi_st *cqspi);
100 /* Operation timeout value */
101 #define CQSPI_TIMEOUT_MS 500
102 #define CQSPI_READ_TIMEOUT_MS 10
104 #define CQSPI_DUMMY_CLKS_PER_BYTE 8
105 #define CQSPI_DUMMY_BYTES_MAX 4
106 #define CQSPI_DUMMY_CLKS_MAX 31
108 #define CQSPI_STIG_DATA_LEN_MAX 8
111 #define CQSPI_REG_CONFIG 0x00
112 #define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
113 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
114 #define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
115 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
116 #define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
117 #define CQSPI_REG_CONFIG_BAUD_LSB 19
118 #define CQSPI_REG_CONFIG_DTR_PROTO BIT(24)
119 #define CQSPI_REG_CONFIG_DUAL_OPCODE BIT(30)
120 #define CQSPI_REG_CONFIG_IDLE_LSB 31
121 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
122 #define CQSPI_REG_CONFIG_BAUD_MASK 0xF
124 #define CQSPI_REG_RD_INSTR 0x04
125 #define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
126 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
127 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
128 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
129 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
130 #define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
131 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
132 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
133 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
134 #define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
136 #define CQSPI_REG_WR_INSTR 0x08
137 #define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
138 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
139 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
141 #define CQSPI_REG_DELAY 0x0C
142 #define CQSPI_REG_DELAY_TSLCH_LSB 0
143 #define CQSPI_REG_DELAY_TCHSH_LSB 8
144 #define CQSPI_REG_DELAY_TSD2D_LSB 16
145 #define CQSPI_REG_DELAY_TSHSL_LSB 24
146 #define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
147 #define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
148 #define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
149 #define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
151 #define CQSPI_REG_READCAPTURE 0x10
152 #define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
153 #define CQSPI_REG_READCAPTURE_DELAY_LSB 1
154 #define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
156 #define CQSPI_REG_SIZE 0x14
157 #define CQSPI_REG_SIZE_ADDRESS_LSB 0
158 #define CQSPI_REG_SIZE_PAGE_LSB 4
159 #define CQSPI_REG_SIZE_BLOCK_LSB 16
160 #define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
161 #define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
162 #define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
164 #define CQSPI_REG_SRAMPARTITION 0x18
165 #define CQSPI_REG_INDIRECTTRIGGER 0x1C
167 #define CQSPI_REG_DMA 0x20
168 #define CQSPI_REG_DMA_SINGLE_LSB 0
169 #define CQSPI_REG_DMA_BURST_LSB 8
170 #define CQSPI_REG_DMA_SINGLE_MASK 0xFF
171 #define CQSPI_REG_DMA_BURST_MASK 0xFF
173 #define CQSPI_REG_REMAP 0x24
174 #define CQSPI_REG_MODE_BIT 0x28
176 #define CQSPI_REG_SDRAMLEVEL 0x2C
177 #define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
178 #define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
179 #define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
180 #define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
182 #define CQSPI_REG_WR_COMPLETION_CTRL 0x38
183 #define CQSPI_REG_WR_DISABLE_AUTO_POLL BIT(14)
185 #define CQSPI_REG_IRQSTATUS 0x40
186 #define CQSPI_REG_IRQMASK 0x44
188 #define CQSPI_REG_INDIRECTRD 0x60
189 #define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
190 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
191 #define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
193 #define CQSPI_REG_INDIRECTRDWATERMARK 0x64
194 #define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
195 #define CQSPI_REG_INDIRECTRDBYTES 0x6C
197 #define CQSPI_REG_CMDCTRL 0x90
198 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
199 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
200 #define CQSPI_REG_CMDCTRL_DUMMY_LSB 7
201 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
202 #define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
203 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
204 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
205 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
206 #define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
207 #define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
208 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
209 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
210 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
211 #define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F
213 #define CQSPI_REG_INDIRECTWR 0x70
214 #define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
215 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
216 #define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
218 #define CQSPI_REG_INDIRECTWRWATERMARK 0x74
219 #define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
220 #define CQSPI_REG_INDIRECTWRBYTES 0x7C
222 #define CQSPI_REG_INDTRIG_ADDRRANGE 0x80
224 #define CQSPI_REG_CMDADDRESS 0x94
225 #define CQSPI_REG_CMDREADDATALOWER 0xA0
226 #define CQSPI_REG_CMDREADDATAUPPER 0xA4
227 #define CQSPI_REG_CMDWRITEDATALOWER 0xA8
228 #define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
230 #define CQSPI_REG_POLLING_STATUS 0xB0
231 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB 16
233 #define CQSPI_REG_OP_EXT_LOWER 0xE0
234 #define CQSPI_REG_OP_EXT_READ_LSB 24
235 #define CQSPI_REG_OP_EXT_WRITE_LSB 16
236 #define CQSPI_REG_OP_EXT_STIG_LSB 0
238 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR 0x1000
240 #define CQSPI_REG_VERSAL_DMA_DST_ADDR 0x1800
241 #define CQSPI_REG_VERSAL_DMA_DST_SIZE 0x1804
243 #define CQSPI_REG_VERSAL_DMA_DST_CTRL 0x180C
245 #define CQSPI_REG_VERSAL_DMA_DST_I_STS 0x1814
246 #define CQSPI_REG_VERSAL_DMA_DST_I_EN 0x1818
247 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS 0x181C
248 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK BIT(1)
250 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB 0x1828
252 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL 0xF43FFA00
253 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL 0x6
255 /* Interrupt status bits */
256 #define CQSPI_REG_IRQ_MODE_ERR BIT(0)
257 #define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
258 #define CQSPI_REG_IRQ_IND_COMP BIT(2)
259 #define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
260 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
261 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
262 #define CQSPI_REG_IRQ_WATERMARK BIT(6)
263 #define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
265 #define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
266 CQSPI_REG_IRQ_IND_SRAM_FULL | \
267 CQSPI_REG_IRQ_IND_COMP)
269 #define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
270 CQSPI_REG_IRQ_WATERMARK | \
271 CQSPI_REG_IRQ_UNDERFLOW)
273 #define CQSPI_IRQ_STATUS_MASK 0x1FFFF
274 #define CQSPI_DMA_UNALIGN 0x3
276 #define CQSPI_REG_VERSAL_DMA_VAL 0x602
278 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
282 return readl_relaxed_poll_timeout(reg, val,
283 (((clr ? ~val : val) & mask) == mask),
284 10, CQSPI_TIMEOUT_MS * 1000);
287 static bool cqspi_is_idle(struct cqspi_st *cqspi)
289 u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
291 return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
294 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
296 u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
298 reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
299 return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
302 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
306 dma_status = readl(cqspi->iobase +
307 CQSPI_REG_VERSAL_DMA_DST_I_STS);
308 writel(dma_status, cqspi->iobase +
309 CQSPI_REG_VERSAL_DMA_DST_I_STS);
311 return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
314 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
316 struct cqspi_st *cqspi = dev;
317 unsigned int irq_status;
318 struct device *device = &cqspi->pdev->dev;
319 const struct cqspi_driver_platdata *ddata;
321 ddata = of_device_get_match_data(device);
323 /* Read interrupt status */
324 irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
326 /* Clear interrupt */
327 writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
329 if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
330 if (ddata->get_dma_status(cqspi)) {
331 complete(&cqspi->transfer_complete);
336 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
339 complete(&cqspi->transfer_complete);
344 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
348 rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
349 rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
350 rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
355 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
357 unsigned int dummy_clk;
359 if (!op->dummy.nbytes)
362 dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
369 static int cqspi_wait_idle(struct cqspi_st *cqspi)
371 const unsigned int poll_idle_retry = 3;
372 unsigned int count = 0;
373 unsigned long timeout;
375 timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
378 * Read few times in succession to ensure the controller
379 * is indeed idle, that is, the bit does not transition
382 if (cqspi_is_idle(cqspi))
387 if (count >= poll_idle_retry)
390 if (time_after(jiffies, timeout)) {
391 /* Timeout, in busy mode. */
392 dev_err(&cqspi->pdev->dev,
393 "QSPI is still busy after %dms timeout.\n",
402 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
404 void __iomem *reg_base = cqspi->iobase;
407 /* Write the CMDCTRL without start execution. */
408 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
410 reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
411 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
413 /* Polling for completion. */
414 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
415 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
417 dev_err(&cqspi->pdev->dev,
418 "Flash command execution timed out.\n");
422 /* Polling QSPI idle status. */
423 return cqspi_wait_idle(cqspi);
426 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
427 const struct spi_mem_op *op,
430 struct cqspi_st *cqspi = f_pdata->cqspi;
431 void __iomem *reg_base = cqspi->iobase;
435 if (op->cmd.nbytes != 2)
438 /* Opcode extension is the LSB. */
439 ext = op->cmd.opcode & 0xff;
441 reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
442 reg &= ~(0xff << shift);
444 writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
449 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
450 const struct spi_mem_op *op, unsigned int shift)
452 struct cqspi_st *cqspi = f_pdata->cqspi;
453 void __iomem *reg_base = cqspi->iobase;
457 reg = readl(reg_base + CQSPI_REG_CONFIG);
460 * We enable dual byte opcode here. The callers have to set up the
461 * extension opcode based on which type of operation it is.
464 reg |= CQSPI_REG_CONFIG_DTR_PROTO;
465 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
467 /* Set up command opcode extension. */
468 ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
472 reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
473 reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
476 writel(reg, reg_base + CQSPI_REG_CONFIG);
478 return cqspi_wait_idle(cqspi);
481 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
482 const struct spi_mem_op *op)
484 struct cqspi_st *cqspi = f_pdata->cqspi;
485 void __iomem *reg_base = cqspi->iobase;
486 u8 *rxbuf = op->data.buf.in;
488 size_t n_rx = op->data.nbytes;
491 unsigned int dummy_clk;
495 status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
499 if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
500 dev_err(&cqspi->pdev->dev,
501 "Invalid input argument, len %zu rxbuf 0x%p\n",
507 opcode = op->cmd.opcode >> 8;
509 opcode = op->cmd.opcode;
511 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
513 rdreg = cqspi_calc_rdreg(op);
514 writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
516 dummy_clk = cqspi_calc_dummy(op);
517 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
521 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
522 << CQSPI_REG_CMDCTRL_DUMMY_LSB;
524 reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
526 /* 0 means 1 byte. */
527 reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
528 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
529 status = cqspi_exec_flash_cmd(cqspi, reg);
533 reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
535 /* Put the read value into rx_buf */
536 read_len = (n_rx > 4) ? 4 : n_rx;
537 memcpy(rxbuf, ®, read_len);
541 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
543 read_len = n_rx - read_len;
544 memcpy(rxbuf, ®, read_len);
550 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
551 const struct spi_mem_op *op)
553 struct cqspi_st *cqspi = f_pdata->cqspi;
554 void __iomem *reg_base = cqspi->iobase;
556 const u8 *txbuf = op->data.buf.out;
557 size_t n_tx = op->data.nbytes;
563 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
567 if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
568 dev_err(&cqspi->pdev->dev,
569 "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
574 reg = cqspi_calc_rdreg(op);
575 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
578 opcode = op->cmd.opcode >> 8;
580 opcode = op->cmd.opcode;
582 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
584 if (op->addr.nbytes) {
585 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
586 reg |= ((op->addr.nbytes - 1) &
587 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
588 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
590 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
594 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
595 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
596 << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
598 write_len = (n_tx > 4) ? 4 : n_tx;
599 memcpy(&data, txbuf, write_len);
601 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
605 write_len = n_tx - 4;
606 memcpy(&data, txbuf, write_len);
607 writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
611 return cqspi_exec_flash_cmd(cqspi, reg);
614 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
615 const struct spi_mem_op *op)
617 struct cqspi_st *cqspi = f_pdata->cqspi;
618 void __iomem *reg_base = cqspi->iobase;
619 unsigned int dummy_clk = 0;
624 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
629 opcode = op->cmd.opcode >> 8;
631 opcode = op->cmd.opcode;
633 reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
634 reg |= cqspi_calc_rdreg(op);
636 /* Setup dummy clock cycles */
637 dummy_clk = cqspi_calc_dummy(op);
639 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
643 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
644 << CQSPI_REG_RD_INSTR_DUMMY_LSB;
646 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
648 /* Set address width */
649 reg = readl(reg_base + CQSPI_REG_SIZE);
650 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
651 reg |= (op->addr.nbytes - 1);
652 writel(reg, reg_base + CQSPI_REG_SIZE);
656 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
657 u8 *rxbuf, loff_t from_addr,
660 struct cqspi_st *cqspi = f_pdata->cqspi;
661 struct device *dev = &cqspi->pdev->dev;
662 void __iomem *reg_base = cqspi->iobase;
663 void __iomem *ahb_base = cqspi->ahb_base;
664 unsigned int remaining = n_rx;
665 unsigned int mod_bytes = n_rx % 4;
666 unsigned int bytes_to_read = 0;
667 u8 *rxbuf_end = rxbuf + n_rx;
670 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
671 writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
673 /* Clear all interrupts. */
674 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
676 writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
678 reinit_completion(&cqspi->transfer_complete);
679 writel(CQSPI_REG_INDIRECTRD_START_MASK,
680 reg_base + CQSPI_REG_INDIRECTRD);
682 while (remaining > 0) {
683 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
684 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
687 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
689 if (ret && bytes_to_read == 0) {
690 dev_err(dev, "Indirect read timeout, no bytes\n");
694 while (bytes_to_read != 0) {
695 unsigned int word_remain = round_down(remaining, 4);
697 bytes_to_read *= cqspi->fifo_width;
698 bytes_to_read = bytes_to_read > remaining ?
699 remaining : bytes_to_read;
700 bytes_to_read = round_down(bytes_to_read, 4);
701 /* Read 4 byte word chunks then single bytes */
703 ioread32_rep(ahb_base, rxbuf,
704 (bytes_to_read / 4));
705 } else if (!word_remain && mod_bytes) {
706 unsigned int temp = ioread32(ahb_base);
708 bytes_to_read = mod_bytes;
709 memcpy(rxbuf, &temp, min((unsigned int)
713 rxbuf += bytes_to_read;
714 remaining -= bytes_to_read;
715 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
719 reinit_completion(&cqspi->transfer_complete);
722 /* Check indirect done status */
723 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
724 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
726 dev_err(dev, "Indirect read completion error (%i)\n", ret);
730 /* Disable interrupt */
731 writel(0, reg_base + CQSPI_REG_IRQMASK);
733 /* Clear indirect completion status */
734 writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
739 /* Disable interrupt */
740 writel(0, reg_base + CQSPI_REG_IRQMASK);
742 /* Cancel the indirect read */
743 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
744 reg_base + CQSPI_REG_INDIRECTRD);
748 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
749 u_char *rxbuf, loff_t from_addr,
752 struct cqspi_st *cqspi = f_pdata->cqspi;
753 struct device *dev = &cqspi->pdev->dev;
754 void __iomem *reg_base = cqspi->iobase;
755 u32 reg, bytes_to_dma;
756 loff_t addr = from_addr;
762 bytes_rem = n_rx % 4;
763 bytes_to_dma = (n_rx - bytes_rem);
768 ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
772 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
773 reg |= CQSPI_REG_CONFIG_DMA_MASK;
774 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
776 dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
777 if (dma_mapping_error(dev, dma_addr)) {
778 dev_err(dev, "dma mapping failed\n");
782 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
783 writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
784 writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
785 reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
787 /* Clear all interrupts. */
788 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
790 /* Enable DMA done interrupt */
791 writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
792 reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
794 /* Default DMA periph configuration */
795 writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
797 /* Configure DMA Dst address */
798 writel(lower_32_bits(dma_addr),
799 reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
800 writel(upper_32_bits(dma_addr),
801 reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
803 /* Configure DMA Src address */
804 writel(cqspi->trigger_address, reg_base +
805 CQSPI_REG_VERSAL_DMA_SRC_ADDR);
807 /* Set DMA destination size */
808 writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
810 /* Set DMA destination control */
811 writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
812 reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
814 writel(CQSPI_REG_INDIRECTRD_START_MASK,
815 reg_base + CQSPI_REG_INDIRECTRD);
817 reinit_completion(&cqspi->transfer_complete);
819 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
820 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS))) {
825 /* Disable DMA interrupt */
826 writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
828 /* Clear indirect completion status */
829 writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
830 cqspi->iobase + CQSPI_REG_INDIRECTRD);
831 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
833 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
834 reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
835 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
837 ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
838 PM_OSPI_MUX_SEL_LINEAR);
844 addr += bytes_to_dma;
846 ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
855 /* Disable DMA interrupt */
856 writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
858 /* Cancel the indirect read */
859 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
860 reg_base + CQSPI_REG_INDIRECTRD);
862 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
864 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
865 reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
866 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
868 zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
873 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
874 const struct spi_mem_op *op)
878 struct cqspi_st *cqspi = f_pdata->cqspi;
879 void __iomem *reg_base = cqspi->iobase;
882 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
887 opcode = op->cmd.opcode >> 8;
889 opcode = op->cmd.opcode;
892 reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
893 reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
894 reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
895 writel(reg, reg_base + CQSPI_REG_WR_INSTR);
896 reg = cqspi_calc_rdreg(op);
897 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
900 * SPI NAND flashes require the address of the status register to be
901 * passed in the Read SR command. Also, some SPI NOR flashes like the
902 * cypress Semper flash expect a 4-byte dummy address in the Read SR
903 * command in DTR mode.
905 * But this controller does not support address phase in the Read SR
906 * command when doing auto-HW polling. So, disable write completion
907 * polling on the controller's side. spinand and spi-nor will take
908 * care of polling the status register.
910 if (cqspi->wr_completion) {
911 reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
912 reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
913 writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
916 reg = readl(reg_base + CQSPI_REG_SIZE);
917 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
918 reg |= (op->addr.nbytes - 1);
919 writel(reg, reg_base + CQSPI_REG_SIZE);
923 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
924 loff_t to_addr, const u8 *txbuf,
927 struct cqspi_st *cqspi = f_pdata->cqspi;
928 struct device *dev = &cqspi->pdev->dev;
929 void __iomem *reg_base = cqspi->iobase;
930 unsigned int remaining = n_tx;
931 unsigned int write_bytes;
934 writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
935 writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
937 /* Clear all interrupts. */
938 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
940 writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
942 reinit_completion(&cqspi->transfer_complete);
943 writel(CQSPI_REG_INDIRECTWR_START_MASK,
944 reg_base + CQSPI_REG_INDIRECTWR);
946 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
947 * Controller programming sequence, couple of cycles of
948 * QSPI_REF_CLK delay is required for the above bit to
949 * be internally synchronized by the QSPI module. Provide 5
953 ndelay(cqspi->wr_delay);
955 while (remaining > 0) {
956 size_t write_words, mod_bytes;
958 write_bytes = remaining;
959 write_words = write_bytes / 4;
960 mod_bytes = write_bytes % 4;
961 /* Write 4 bytes at a time then single bytes. */
963 iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
964 txbuf += (write_words * 4);
967 unsigned int temp = 0xFFFFFFFF;
969 memcpy(&temp, txbuf, mod_bytes);
970 iowrite32(temp, cqspi->ahb_base);
974 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
975 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
976 dev_err(dev, "Indirect write timeout\n");
981 remaining -= write_bytes;
984 reinit_completion(&cqspi->transfer_complete);
987 /* Check indirect done status */
988 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
989 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
991 dev_err(dev, "Indirect write completion error (%i)\n", ret);
995 /* Disable interrupt. */
996 writel(0, reg_base + CQSPI_REG_IRQMASK);
998 /* Clear indirect completion status */
999 writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1001 cqspi_wait_idle(cqspi);
1006 /* Disable interrupt. */
1007 writel(0, reg_base + CQSPI_REG_IRQMASK);
1009 /* Cancel the indirect write */
1010 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1011 reg_base + CQSPI_REG_INDIRECTWR);
1015 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1017 struct cqspi_st *cqspi = f_pdata->cqspi;
1018 void __iomem *reg_base = cqspi->iobase;
1019 unsigned int chip_select = f_pdata->cs;
1022 reg = readl(reg_base + CQSPI_REG_CONFIG);
1023 if (cqspi->is_decoded_cs) {
1024 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1026 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1028 /* Convert CS if without decoder.
1034 chip_select = 0xF & ~(1 << chip_select);
1037 reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1038 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1039 reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1040 << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1041 writel(reg, reg_base + CQSPI_REG_CONFIG);
1044 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1045 const unsigned int ns_val)
1049 ticks = ref_clk_hz / 1000; /* kHz */
1050 ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1055 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1057 struct cqspi_st *cqspi = f_pdata->cqspi;
1058 void __iomem *iobase = cqspi->iobase;
1059 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1060 unsigned int tshsl, tchsh, tslch, tsd2d;
1064 /* calculate the number of ref ticks for one sclk tick */
1065 tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1067 tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1068 /* this particular value must be at least one sclk */
1072 tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1073 tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1074 tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1076 reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1077 << CQSPI_REG_DELAY_TSHSL_LSB;
1078 reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1079 << CQSPI_REG_DELAY_TCHSH_LSB;
1080 reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1081 << CQSPI_REG_DELAY_TSLCH_LSB;
1082 reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1083 << CQSPI_REG_DELAY_TSD2D_LSB;
1084 writel(reg, iobase + CQSPI_REG_DELAY);
1087 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1089 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1090 void __iomem *reg_base = cqspi->iobase;
1093 /* Recalculate the baudrate divisor based on QSPI specification. */
1094 div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1096 reg = readl(reg_base + CQSPI_REG_CONFIG);
1097 reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1098 reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1099 writel(reg, reg_base + CQSPI_REG_CONFIG);
1102 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1104 const unsigned int delay)
1106 void __iomem *reg_base = cqspi->iobase;
1109 reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1112 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1114 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1116 reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1117 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1119 reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1120 << CQSPI_REG_READCAPTURE_DELAY_LSB;
1122 writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1125 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
1127 void __iomem *reg_base = cqspi->iobase;
1130 reg = readl(reg_base + CQSPI_REG_CONFIG);
1133 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
1135 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
1137 writel(reg, reg_base + CQSPI_REG_CONFIG);
1140 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1143 struct cqspi_st *cqspi = f_pdata->cqspi;
1144 int switch_cs = (cqspi->current_cs != f_pdata->cs);
1145 int switch_ck = (cqspi->sclk != sclk);
1147 if (switch_cs || switch_ck)
1148 cqspi_controller_enable(cqspi, 0);
1150 /* Switch chip select. */
1152 cqspi->current_cs = f_pdata->cs;
1153 cqspi_chipselect(f_pdata);
1156 /* Setup baudrate divisor and delays */
1159 cqspi_config_baudrate_div(cqspi);
1160 cqspi_delay(f_pdata);
1161 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1162 f_pdata->read_delay);
1165 if (switch_cs || switch_ck)
1166 cqspi_controller_enable(cqspi, 1);
1169 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1170 const struct spi_mem_op *op)
1172 struct cqspi_st *cqspi = f_pdata->cqspi;
1173 loff_t to = op->addr.val;
1174 size_t len = op->data.nbytes;
1175 const u_char *buf = op->data.buf.out;
1178 ret = cqspi_write_setup(f_pdata, op);
1183 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1184 * address (all 0s) with the read status register command in DTR mode.
1185 * But this controller does not support sending dummy address bytes to
1186 * the flash when it is polling the write completion register in DTR
1187 * mode. So, we can not use direct mode when in DTR mode for writing
1190 if (!op->cmd.dtr && cqspi->use_direct_mode &&
1191 ((to + len) <= cqspi->ahb_size)) {
1192 memcpy_toio(cqspi->ahb_base + to, buf, len);
1193 return cqspi_wait_idle(cqspi);
1196 return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1199 static void cqspi_rx_dma_callback(void *param)
1201 struct cqspi_st *cqspi = param;
1203 complete(&cqspi->rx_dma_complete);
1206 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1207 u_char *buf, loff_t from, size_t len)
1209 struct cqspi_st *cqspi = f_pdata->cqspi;
1210 struct device *dev = &cqspi->pdev->dev;
1211 enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1212 dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1214 struct dma_async_tx_descriptor *tx;
1215 dma_cookie_t cookie;
1217 struct device *ddev;
1219 if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1220 memcpy_fromio(buf, cqspi->ahb_base + from, len);
1224 ddev = cqspi->rx_chan->device->dev;
1225 dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1226 if (dma_mapping_error(ddev, dma_dst)) {
1227 dev_err(dev, "dma mapping failed\n");
1230 tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1233 dev_err(dev, "device_prep_dma_memcpy error\n");
1238 tx->callback = cqspi_rx_dma_callback;
1239 tx->callback_param = cqspi;
1240 cookie = tx->tx_submit(tx);
1241 reinit_completion(&cqspi->rx_dma_complete);
1243 ret = dma_submit_error(cookie);
1245 dev_err(dev, "dma_submit_error %d\n", cookie);
1250 dma_async_issue_pending(cqspi->rx_chan);
1251 if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1252 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1253 dmaengine_terminate_sync(cqspi->rx_chan);
1254 dev_err(dev, "DMA wait_for_completion_timeout\n");
1260 dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1265 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1266 const struct spi_mem_op *op)
1268 struct cqspi_st *cqspi = f_pdata->cqspi;
1269 struct device *dev = &cqspi->pdev->dev;
1270 const struct cqspi_driver_platdata *ddata;
1271 loff_t from = op->addr.val;
1272 size_t len = op->data.nbytes;
1273 u_char *buf = op->data.buf.in;
1274 u64 dma_align = (u64)(uintptr_t)buf;
1277 ddata = of_device_get_match_data(dev);
1279 ret = cqspi_read_setup(f_pdata, op);
1283 if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1284 return cqspi_direct_read_execute(f_pdata, buf, from, len);
1286 if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1287 virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1288 return ddata->indirect_read_dma(f_pdata, buf, from, len);
1290 return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1293 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1295 struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1296 struct cqspi_flash_pdata *f_pdata;
1298 f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
1299 cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1301 if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1302 if (!op->addr.nbytes)
1303 return cqspi_command_read(f_pdata, op);
1305 return cqspi_read(f_pdata, op);
1308 if (!op->addr.nbytes || !op->data.buf.out)
1309 return cqspi_command_write(f_pdata, op);
1311 return cqspi_write(f_pdata, op);
1314 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1318 ret = cqspi_mem_process(mem, op);
1320 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1325 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1326 const struct spi_mem_op *op)
1328 bool all_true, all_false;
1331 * op->dummy.dtr is required for converting nbytes into ncycles.
1332 * Also, don't check the dtr field of the op phase having zero nbytes.
1334 all_true = op->cmd.dtr &&
1335 (!op->addr.nbytes || op->addr.dtr) &&
1336 (!op->dummy.nbytes || op->dummy.dtr) &&
1337 (!op->data.nbytes || op->data.dtr);
1339 all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1343 /* Right now we only support 8-8-8 DTR mode. */
1344 if (op->cmd.nbytes && op->cmd.buswidth != 8)
1346 if (op->addr.nbytes && op->addr.buswidth != 8)
1348 if (op->data.nbytes && op->data.buswidth != 8)
1350 } else if (!all_false) {
1351 /* Mixed DTR modes are not supported. */
1355 return spi_mem_default_supports_op(mem, op);
1358 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1359 struct cqspi_flash_pdata *f_pdata,
1360 struct device_node *np)
1362 if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1363 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1367 if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1368 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1372 if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1373 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1377 if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1378 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1382 if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1383 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1387 if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1388 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1395 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1397 struct device *dev = &cqspi->pdev->dev;
1398 struct device_node *np = dev->of_node;
1401 cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1403 if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1404 dev_err(dev, "couldn't determine fifo-depth\n");
1408 if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1409 dev_err(dev, "couldn't determine fifo-width\n");
1413 if (of_property_read_u32(np, "cdns,trigger-address",
1414 &cqspi->trigger_address)) {
1415 dev_err(dev, "couldn't determine trigger-address\n");
1419 if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1420 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1422 cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1424 if (!of_property_read_u32_array(np, "power-domains", id,
1426 cqspi->pd_dev_id = id[1];
1431 static void cqspi_controller_init(struct cqspi_st *cqspi)
1435 cqspi_controller_enable(cqspi, 0);
1437 /* Configure the remap address register, no remap */
1438 writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1440 /* Disable all interrupts. */
1441 writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1443 /* Configure the SRAM split to 1:1 . */
1444 writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1446 /* Load indirect trigger address. */
1447 writel(cqspi->trigger_address,
1448 cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1450 /* Program read watermark -- 1/2 of the FIFO. */
1451 writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1452 cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1453 /* Program write watermark -- 1/8 of the FIFO. */
1454 writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1455 cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1457 /* Disable direct access controller */
1458 if (!cqspi->use_direct_mode) {
1459 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1460 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1461 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1464 /* Enable DMA interface */
1465 if (cqspi->use_dma_read) {
1466 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1467 reg |= CQSPI_REG_CONFIG_DMA_MASK;
1468 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1471 cqspi_controller_enable(cqspi, 1);
1474 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1476 dma_cap_mask_t mask;
1479 dma_cap_set(DMA_MEMCPY, mask);
1481 cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1482 if (IS_ERR(cqspi->rx_chan)) {
1483 int ret = PTR_ERR(cqspi->rx_chan);
1485 cqspi->rx_chan = NULL;
1486 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1488 init_completion(&cqspi->rx_dma_complete);
1493 static const char *cqspi_get_name(struct spi_mem *mem)
1495 struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1496 struct device *dev = &cqspi->pdev->dev;
1498 return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1501 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1502 .exec_op = cqspi_exec_mem_op,
1503 .get_name = cqspi_get_name,
1504 .supports_op = cqspi_supports_mem_op,
1507 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1511 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1513 struct platform_device *pdev = cqspi->pdev;
1514 struct device *dev = &pdev->dev;
1515 struct device_node *np = dev->of_node;
1516 struct cqspi_flash_pdata *f_pdata;
1520 /* Get flash device data */
1521 for_each_available_child_of_node(dev->of_node, np) {
1522 ret = of_property_read_u32(np, "reg", &cs);
1524 dev_err(dev, "Couldn't determine chip select.\n");
1529 if (cs >= CQSPI_MAX_CHIPSELECT) {
1530 dev_err(dev, "Chip select %d out of range.\n", cs);
1535 f_pdata = &cqspi->f_pdata[cs];
1536 f_pdata->cqspi = cqspi;
1539 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1549 static int cqspi_probe(struct platform_device *pdev)
1551 const struct cqspi_driver_platdata *ddata;
1552 struct reset_control *rstc, *rstc_ocp;
1553 struct device *dev = &pdev->dev;
1554 struct spi_master *master;
1555 struct resource *res_ahb;
1556 struct cqspi_st *cqspi;
1557 struct resource *res;
1561 master = devm_spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1563 dev_err(&pdev->dev, "spi_alloc_master failed\n");
1566 master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1567 master->mem_ops = &cqspi_mem_ops;
1568 master->mem_caps = &cqspi_mem_caps;
1569 master->dev.of_node = pdev->dev.of_node;
1571 cqspi = spi_master_get_devdata(master);
1574 cqspi->master = master;
1575 platform_set_drvdata(pdev, cqspi);
1577 /* Obtain configuration from OF. */
1578 ret = cqspi_of_get_pdata(cqspi);
1580 dev_err(dev, "Cannot get mandatory OF data.\n");
1582 goto probe_master_put;
1585 /* Obtain QSPI clock. */
1586 cqspi->clk = devm_clk_get(dev, NULL);
1587 if (IS_ERR(cqspi->clk)) {
1588 dev_err(dev, "Cannot claim QSPI clock.\n");
1589 ret = PTR_ERR(cqspi->clk);
1590 goto probe_master_put;
1593 /* Obtain and remap controller address. */
1594 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1595 cqspi->iobase = devm_ioremap_resource(dev, res);
1596 if (IS_ERR(cqspi->iobase)) {
1597 dev_err(dev, "Cannot remap controller address.\n");
1598 ret = PTR_ERR(cqspi->iobase);
1599 goto probe_master_put;
1602 /* Obtain and remap AHB address. */
1603 res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1604 cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1605 if (IS_ERR(cqspi->ahb_base)) {
1606 dev_err(dev, "Cannot remap AHB address.\n");
1607 ret = PTR_ERR(cqspi->ahb_base);
1608 goto probe_master_put;
1610 cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1611 cqspi->ahb_size = resource_size(res_ahb);
1613 init_completion(&cqspi->transfer_complete);
1615 /* Obtain IRQ line. */
1616 irq = platform_get_irq(pdev, 0);
1619 goto probe_master_put;
1622 pm_runtime_enable(dev);
1623 ret = pm_runtime_resume_and_get(dev);
1625 goto probe_master_put;
1627 ret = clk_prepare_enable(cqspi->clk);
1629 dev_err(dev, "Cannot enable QSPI clock.\n");
1630 goto probe_clk_failed;
1633 /* Obtain QSPI reset control */
1634 rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1636 ret = PTR_ERR(rstc);
1637 dev_err(dev, "Cannot get QSPI reset.\n");
1638 goto probe_reset_failed;
1641 rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1642 if (IS_ERR(rstc_ocp)) {
1643 ret = PTR_ERR(rstc_ocp);
1644 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1645 goto probe_reset_failed;
1648 reset_control_assert(rstc);
1649 reset_control_deassert(rstc);
1651 reset_control_assert(rstc_ocp);
1652 reset_control_deassert(rstc_ocp);
1654 cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1655 master->max_speed_hz = cqspi->master_ref_clk_hz;
1657 /* write completion is supported by default */
1658 cqspi->wr_completion = true;
1660 ddata = of_device_get_match_data(dev);
1662 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1663 cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1664 cqspi->master_ref_clk_hz);
1665 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1666 master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1667 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
1668 cqspi->use_direct_mode = true;
1669 if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1670 cqspi->use_dma_read = true;
1671 if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1672 cqspi->wr_completion = false;
1674 if (of_device_is_compatible(pdev->dev.of_node,
1675 "xlnx,versal-ospi-1.0"))
1676 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1679 ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1682 dev_err(dev, "Cannot request IRQ.\n");
1683 goto probe_reset_failed;
1686 cqspi_wait_idle(cqspi);
1687 cqspi_controller_init(cqspi);
1688 cqspi->current_cs = -1;
1691 master->num_chipselect = cqspi->num_chipselect;
1693 ret = cqspi_setup_flash(cqspi);
1695 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1696 goto probe_setup_failed;
1699 if (cqspi->use_direct_mode) {
1700 ret = cqspi_request_mmap_dma(cqspi);
1701 if (ret == -EPROBE_DEFER)
1702 goto probe_setup_failed;
1705 ret = spi_register_master(master);
1707 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1708 goto probe_setup_failed;
1713 cqspi_controller_enable(cqspi, 0);
1715 clk_disable_unprepare(cqspi->clk);
1717 pm_runtime_put_sync(dev);
1718 pm_runtime_disable(dev);
1720 spi_master_put(master);
1724 static int cqspi_remove(struct platform_device *pdev)
1726 struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1728 spi_unregister_master(cqspi->master);
1729 cqspi_controller_enable(cqspi, 0);
1732 dma_release_channel(cqspi->rx_chan);
1734 clk_disable_unprepare(cqspi->clk);
1736 pm_runtime_put_sync(&pdev->dev);
1737 pm_runtime_disable(&pdev->dev);
1742 #ifdef CONFIG_PM_SLEEP
1743 static int cqspi_suspend(struct device *dev)
1745 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1747 cqspi_controller_enable(cqspi, 0);
1751 static int cqspi_resume(struct device *dev)
1753 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1755 cqspi_controller_enable(cqspi, 1);
1759 static const struct dev_pm_ops cqspi__dev_pm_ops = {
1760 .suspend = cqspi_suspend,
1761 .resume = cqspi_resume,
1764 #define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops)
1766 #define CQSPI_DEV_PM_OPS NULL
1769 static const struct cqspi_driver_platdata cdns_qspi = {
1770 .quirks = CQSPI_DISABLE_DAC_MODE,
1773 static const struct cqspi_driver_platdata k2g_qspi = {
1774 .quirks = CQSPI_NEEDS_WR_DELAY,
1777 static const struct cqspi_driver_platdata am654_ospi = {
1778 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1779 .quirks = CQSPI_NEEDS_WR_DELAY,
1782 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1783 .quirks = CQSPI_DISABLE_DAC_MODE,
1786 static const struct cqspi_driver_platdata socfpga_qspi = {
1787 .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_NO_SUPPORT_WR_COMPLETION,
1790 static const struct cqspi_driver_platdata versal_ospi = {
1791 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1792 .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
1793 .indirect_read_dma = cqspi_versal_indirect_read_dma,
1794 .get_dma_status = cqspi_get_versal_dma_status,
1797 static const struct of_device_id cqspi_dt_ids[] = {
1799 .compatible = "cdns,qspi-nor",
1803 .compatible = "ti,k2g-qspi",
1807 .compatible = "ti,am654-ospi",
1808 .data = &am654_ospi,
1811 .compatible = "intel,lgm-qspi",
1812 .data = &intel_lgm_qspi,
1815 .compatible = "xlnx,versal-ospi-1.0",
1816 .data = &versal_ospi,
1819 .compatible = "intel,socfpga-qspi",
1820 .data = &socfpga_qspi,
1822 { /* end of table */ }
1825 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1827 static struct platform_driver cqspi_platform_driver = {
1828 .probe = cqspi_probe,
1829 .remove = cqspi_remove,
1832 .pm = CQSPI_DEV_PM_OPS,
1833 .of_match_table = cqspi_dt_ids,
1837 module_platform_driver(cqspi_platform_driver);
1839 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1840 MODULE_LICENSE("GPL v2");
1841 MODULE_ALIAS("platform:" CQSPI_NAME);
1842 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1843 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1844 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1845 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
1846 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");