2064dc4ea935fd44188862015051d909a80bc4a6
[platform/kernel/linux-starfive.git] / drivers / spi / spi-cadence-quadspi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi-mem.h>
31 #include <linux/timer.h>
32
33 #define CQSPI_NAME                      "cadence-qspi"
34 #define CQSPI_MAX_CHIPSELECT            16
35
36 /* Quirks */
37 #define CQSPI_NEEDS_WR_DELAY            BIT(0)
38 #define CQSPI_DISABLE_DAC_MODE          BIT(1)
39 #define CQSPI_SUPPORT_EXTERNAL_DMA      BIT(2)
40 #define CQSPI_NO_SUPPORT_WR_COMPLETION  BIT(3)
41 #define CQSPI_SLOW_SRAM         BIT(4)
42 #define CQSPI_NEEDS_APB_AHB_HAZARD_WAR  BIT(5)
43
44 /* Capabilities */
45 #define CQSPI_SUPPORTS_OCTAL            BIT(0)
46
47 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
48
49 enum {
50         CLK_QSPI_APB = 0,
51         CLK_QSPI_AHB,
52         CLK_QSPI_NUM,
53 };
54
55 struct cqspi_st;
56
57 struct cqspi_flash_pdata {
58         struct cqspi_st *cqspi;
59         u32             clk_rate;
60         u32             read_delay;
61         u32             tshsl_ns;
62         u32             tsd2d_ns;
63         u32             tchsh_ns;
64         u32             tslch_ns;
65         u8              cs;
66 };
67
68 struct cqspi_st {
69         struct platform_device  *pdev;
70         struct spi_controller   *host;
71         struct clk              *clk;
72         struct clk              *clks[CLK_QSPI_NUM];
73         unsigned int            sclk;
74
75         void __iomem            *iobase;
76         void __iomem            *ahb_base;
77         resource_size_t         ahb_size;
78         struct completion       transfer_complete;
79
80         struct dma_chan         *rx_chan;
81         struct completion       rx_dma_complete;
82         dma_addr_t              mmap_phys_base;
83
84         int                     current_cs;
85         unsigned long           master_ref_clk_hz;
86         bool                    is_decoded_cs;
87         u32                     fifo_depth;
88         u32                     fifo_width;
89         u32                     num_chipselect;
90         bool                    rclk_en;
91         u32                     trigger_address;
92         u32                     wr_delay;
93         bool                    use_direct_mode;
94         bool                    use_direct_mode_wr;
95         struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
96         bool                    use_dma_read;
97         u32                     pd_dev_id;
98         bool                    wr_completion;
99         bool                    slow_sram;
100         bool                    apb_ahb_hazard;
101
102         bool                    is_jh7110; /* Flag for StarFive JH7110 SoC */
103 };
104
105 struct cqspi_driver_platdata {
106         u32 hwcaps_mask;
107         u8 quirks;
108         int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
109                                  u_char *rxbuf, loff_t from_addr, size_t n_rx);
110         u32 (*get_dma_status)(struct cqspi_st *cqspi);
111         int (*jh7110_clk_init)(struct platform_device *pdev,
112                                struct cqspi_st *cqspi);
113 };
114
115 /* Operation timeout value */
116 #define CQSPI_TIMEOUT_MS                        500
117 #define CQSPI_READ_TIMEOUT_MS                   10
118
119 #define CQSPI_DUMMY_CLKS_PER_BYTE               8
120 #define CQSPI_DUMMY_BYTES_MAX                   4
121 #define CQSPI_DUMMY_CLKS_MAX                    31
122
123 #define CQSPI_STIG_DATA_LEN_MAX                 8
124
125 /* Register map */
126 #define CQSPI_REG_CONFIG                        0x00
127 #define CQSPI_REG_CONFIG_ENABLE_MASK            BIT(0)
128 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL       BIT(7)
129 #define CQSPI_REG_CONFIG_DECODE_MASK            BIT(9)
130 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB         10
131 #define CQSPI_REG_CONFIG_DMA_MASK               BIT(15)
132 #define CQSPI_REG_CONFIG_BAUD_LSB               19
133 #define CQSPI_REG_CONFIG_DTR_PROTO              BIT(24)
134 #define CQSPI_REG_CONFIG_DUAL_OPCODE            BIT(30)
135 #define CQSPI_REG_CONFIG_IDLE_LSB               31
136 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK        0xF
137 #define CQSPI_REG_CONFIG_BAUD_MASK              0xF
138
139 #define CQSPI_REG_RD_INSTR                      0x04
140 #define CQSPI_REG_RD_INSTR_OPCODE_LSB           0
141 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB       8
142 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB        12
143 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB        16
144 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB          20
145 #define CQSPI_REG_RD_INSTR_DUMMY_LSB            24
146 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK      0x3
147 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK       0x3
148 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK       0x3
149 #define CQSPI_REG_RD_INSTR_DUMMY_MASK           0x1F
150
151 #define CQSPI_REG_WR_INSTR                      0x08
152 #define CQSPI_REG_WR_INSTR_OPCODE_LSB           0
153 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB        12
154 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB        16
155
156 #define CQSPI_REG_DELAY                         0x0C
157 #define CQSPI_REG_DELAY_TSLCH_LSB               0
158 #define CQSPI_REG_DELAY_TCHSH_LSB               8
159 #define CQSPI_REG_DELAY_TSD2D_LSB               16
160 #define CQSPI_REG_DELAY_TSHSL_LSB               24
161 #define CQSPI_REG_DELAY_TSLCH_MASK              0xFF
162 #define CQSPI_REG_DELAY_TCHSH_MASK              0xFF
163 #define CQSPI_REG_DELAY_TSD2D_MASK              0xFF
164 #define CQSPI_REG_DELAY_TSHSL_MASK              0xFF
165
166 #define CQSPI_REG_READCAPTURE                   0x10
167 #define CQSPI_REG_READCAPTURE_BYPASS_LSB        0
168 #define CQSPI_REG_READCAPTURE_DELAY_LSB         1
169 #define CQSPI_REG_READCAPTURE_DELAY_MASK        0xF
170
171 #define CQSPI_REG_SIZE                          0x14
172 #define CQSPI_REG_SIZE_ADDRESS_LSB              0
173 #define CQSPI_REG_SIZE_PAGE_LSB                 4
174 #define CQSPI_REG_SIZE_BLOCK_LSB                16
175 #define CQSPI_REG_SIZE_ADDRESS_MASK             0xF
176 #define CQSPI_REG_SIZE_PAGE_MASK                0xFFF
177 #define CQSPI_REG_SIZE_BLOCK_MASK               0x3F
178
179 #define CQSPI_REG_SRAMPARTITION                 0x18
180 #define CQSPI_REG_INDIRECTTRIGGER               0x1C
181
182 #define CQSPI_REG_DMA                           0x20
183 #define CQSPI_REG_DMA_SINGLE_LSB                0
184 #define CQSPI_REG_DMA_BURST_LSB                 8
185 #define CQSPI_REG_DMA_SINGLE_MASK               0xFF
186 #define CQSPI_REG_DMA_BURST_MASK                0xFF
187
188 #define CQSPI_REG_REMAP                         0x24
189 #define CQSPI_REG_MODE_BIT                      0x28
190
191 #define CQSPI_REG_SDRAMLEVEL                    0x2C
192 #define CQSPI_REG_SDRAMLEVEL_RD_LSB             0
193 #define CQSPI_REG_SDRAMLEVEL_WR_LSB             16
194 #define CQSPI_REG_SDRAMLEVEL_RD_MASK            0xFFFF
195 #define CQSPI_REG_SDRAMLEVEL_WR_MASK            0xFFFF
196
197 #define CQSPI_REG_WR_COMPLETION_CTRL            0x38
198 #define CQSPI_REG_WR_DISABLE_AUTO_POLL          BIT(14)
199
200 #define CQSPI_REG_IRQSTATUS                     0x40
201 #define CQSPI_REG_IRQMASK                       0x44
202
203 #define CQSPI_REG_INDIRECTRD                    0x60
204 #define CQSPI_REG_INDIRECTRD_START_MASK         BIT(0)
205 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK        BIT(1)
206 #define CQSPI_REG_INDIRECTRD_DONE_MASK          BIT(5)
207
208 #define CQSPI_REG_INDIRECTRDWATERMARK           0x64
209 #define CQSPI_REG_INDIRECTRDSTARTADDR           0x68
210 #define CQSPI_REG_INDIRECTRDBYTES               0x6C
211
212 #define CQSPI_REG_CMDCTRL                       0x90
213 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK          BIT(0)
214 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK       BIT(1)
215 #define CQSPI_REG_CMDCTRL_DUMMY_LSB             7
216 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB          12
217 #define CQSPI_REG_CMDCTRL_WR_EN_LSB             15
218 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB         16
219 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB           19
220 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB          20
221 #define CQSPI_REG_CMDCTRL_RD_EN_LSB             23
222 #define CQSPI_REG_CMDCTRL_OPCODE_LSB            24
223 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK         0x7
224 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK        0x3
225 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK         0x7
226 #define CQSPI_REG_CMDCTRL_DUMMY_MASK            0x1F
227
228 #define CQSPI_REG_INDIRECTWR                    0x70
229 #define CQSPI_REG_INDIRECTWR_START_MASK         BIT(0)
230 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK        BIT(1)
231 #define CQSPI_REG_INDIRECTWR_DONE_MASK          BIT(5)
232
233 #define CQSPI_REG_INDIRECTWRWATERMARK           0x74
234 #define CQSPI_REG_INDIRECTWRSTARTADDR           0x78
235 #define CQSPI_REG_INDIRECTWRBYTES               0x7C
236
237 #define CQSPI_REG_INDTRIG_ADDRRANGE             0x80
238
239 #define CQSPI_REG_CMDADDRESS                    0x94
240 #define CQSPI_REG_CMDREADDATALOWER              0xA0
241 #define CQSPI_REG_CMDREADDATAUPPER              0xA4
242 #define CQSPI_REG_CMDWRITEDATALOWER             0xA8
243 #define CQSPI_REG_CMDWRITEDATAUPPER             0xAC
244
245 #define CQSPI_REG_POLLING_STATUS                0xB0
246 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB      16
247
248 #define CQSPI_REG_OP_EXT_LOWER                  0xE0
249 #define CQSPI_REG_OP_EXT_READ_LSB               24
250 #define CQSPI_REG_OP_EXT_WRITE_LSB              16
251 #define CQSPI_REG_OP_EXT_STIG_LSB               0
252
253 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR           0x1000
254
255 #define CQSPI_REG_VERSAL_DMA_DST_ADDR           0x1800
256 #define CQSPI_REG_VERSAL_DMA_DST_SIZE           0x1804
257
258 #define CQSPI_REG_VERSAL_DMA_DST_CTRL           0x180C
259
260 #define CQSPI_REG_VERSAL_DMA_DST_I_STS          0x1814
261 #define CQSPI_REG_VERSAL_DMA_DST_I_EN           0x1818
262 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS          0x181C
263 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK      BIT(1)
264
265 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB       0x1828
266
267 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL       0xF43FFA00
268 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL    0x6
269
270 /* Interrupt status bits */
271 #define CQSPI_REG_IRQ_MODE_ERR                  BIT(0)
272 #define CQSPI_REG_IRQ_UNDERFLOW                 BIT(1)
273 #define CQSPI_REG_IRQ_IND_COMP                  BIT(2)
274 #define CQSPI_REG_IRQ_IND_RD_REJECT             BIT(3)
275 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR          BIT(4)
276 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR           BIT(5)
277 #define CQSPI_REG_IRQ_WATERMARK                 BIT(6)
278 #define CQSPI_REG_IRQ_IND_SRAM_FULL             BIT(12)
279
280 #define CQSPI_IRQ_MASK_RD               (CQSPI_REG_IRQ_WATERMARK        | \
281                                          CQSPI_REG_IRQ_IND_SRAM_FULL    | \
282                                          CQSPI_REG_IRQ_IND_COMP)
283
284 #define CQSPI_IRQ_MASK_WR               (CQSPI_REG_IRQ_IND_COMP         | \
285                                          CQSPI_REG_IRQ_WATERMARK        | \
286                                          CQSPI_REG_IRQ_UNDERFLOW)
287
288 #define CQSPI_IRQ_STATUS_MASK           0x1FFFF
289 #define CQSPI_DMA_UNALIGN               0x3
290
291 #define CQSPI_REG_VERSAL_DMA_VAL                0x602
292
293 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
294 {
295         u32 val;
296
297         return readl_relaxed_poll_timeout(reg, val,
298                                           (((clr ? ~val : val) & mask) == mask),
299                                           10, CQSPI_TIMEOUT_MS * 1000);
300 }
301
302 static bool cqspi_is_idle(struct cqspi_st *cqspi)
303 {
304         u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
305
306         return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
307 }
308
309 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
310 {
311         u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
312
313         reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
314         return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
315 }
316
317 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
318 {
319         u32 dma_status;
320
321         dma_status = readl(cqspi->iobase +
322                                            CQSPI_REG_VERSAL_DMA_DST_I_STS);
323         writel(dma_status, cqspi->iobase +
324                    CQSPI_REG_VERSAL_DMA_DST_I_STS);
325
326         return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
327 }
328
329 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
330 {
331         struct cqspi_st *cqspi = dev;
332         unsigned int irq_status;
333         struct device *device = &cqspi->pdev->dev;
334         const struct cqspi_driver_platdata *ddata;
335
336         ddata = of_device_get_match_data(device);
337
338         /* Read interrupt status */
339         irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
340
341         /* Clear interrupt */
342         writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
343
344         if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
345                 if (ddata->get_dma_status(cqspi)) {
346                         complete(&cqspi->transfer_complete);
347                         return IRQ_HANDLED;
348                 }
349         }
350
351         else if (!cqspi->slow_sram)
352                 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
353         else
354                 irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
355
356         if (irq_status)
357                 complete(&cqspi->transfer_complete);
358
359         return IRQ_HANDLED;
360 }
361
362 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
363 {
364         u32 rdreg = 0;
365
366         rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
367         rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
368         rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
369
370         return rdreg;
371 }
372
373 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
374 {
375         unsigned int dummy_clk;
376
377         if (!op->dummy.nbytes)
378                 return 0;
379
380         dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
381         if (op->cmd.dtr)
382                 dummy_clk /= 2;
383
384         return dummy_clk;
385 }
386
387 static int cqspi_wait_idle(struct cqspi_st *cqspi)
388 {
389         const unsigned int poll_idle_retry = 3;
390         unsigned int count = 0;
391         unsigned long timeout;
392
393         timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
394         while (1) {
395                 /*
396                  * Read few times in succession to ensure the controller
397                  * is indeed idle, that is, the bit does not transition
398                  * low again.
399                  */
400                 if (cqspi_is_idle(cqspi))
401                         count++;
402                 else
403                         count = 0;
404
405                 if (count >= poll_idle_retry)
406                         return 0;
407
408                 if (time_after(jiffies, timeout)) {
409                         /* Timeout, in busy mode. */
410                         dev_err(&cqspi->pdev->dev,
411                                 "QSPI is still busy after %dms timeout.\n",
412                                 CQSPI_TIMEOUT_MS);
413                         return -ETIMEDOUT;
414                 }
415
416                 cpu_relax();
417         }
418 }
419
420 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
421 {
422         void __iomem *reg_base = cqspi->iobase;
423         int ret;
424
425         /* Write the CMDCTRL without start execution. */
426         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
427         /* Start execute */
428         reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
429         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
430
431         /* Polling for completion. */
432         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
433                                  CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
434         if (ret) {
435                 dev_err(&cqspi->pdev->dev,
436                         "Flash command execution timed out.\n");
437                 return ret;
438         }
439
440         /* Polling QSPI idle status. */
441         return cqspi_wait_idle(cqspi);
442 }
443
444 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
445                                   const struct spi_mem_op *op,
446                                   unsigned int shift)
447 {
448         struct cqspi_st *cqspi = f_pdata->cqspi;
449         void __iomem *reg_base = cqspi->iobase;
450         unsigned int reg;
451         u8 ext;
452
453         if (op->cmd.nbytes != 2)
454                 return -EINVAL;
455
456         /* Opcode extension is the LSB. */
457         ext = op->cmd.opcode & 0xff;
458
459         reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
460         reg &= ~(0xff << shift);
461         reg |= ext << shift;
462         writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
463
464         return 0;
465 }
466
467 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
468                             const struct spi_mem_op *op, unsigned int shift)
469 {
470         struct cqspi_st *cqspi = f_pdata->cqspi;
471         void __iomem *reg_base = cqspi->iobase;
472         unsigned int reg;
473         int ret;
474
475         reg = readl(reg_base + CQSPI_REG_CONFIG);
476
477         /*
478          * We enable dual byte opcode here. The callers have to set up the
479          * extension opcode based on which type of operation it is.
480          */
481         if (op->cmd.dtr) {
482                 reg |= CQSPI_REG_CONFIG_DTR_PROTO;
483                 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
484
485                 /* Set up command opcode extension. */
486                 ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
487                 if (ret)
488                         return ret;
489         } else {
490                 reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
491                 reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
492         }
493
494         writel(reg, reg_base + CQSPI_REG_CONFIG);
495
496         return cqspi_wait_idle(cqspi);
497 }
498
499 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
500                               const struct spi_mem_op *op)
501 {
502         struct cqspi_st *cqspi = f_pdata->cqspi;
503         void __iomem *reg_base = cqspi->iobase;
504         u8 *rxbuf = op->data.buf.in;
505         u8 opcode;
506         size_t n_rx = op->data.nbytes;
507         unsigned int rdreg;
508         unsigned int reg;
509         unsigned int dummy_clk;
510         size_t read_len;
511         int status;
512
513         status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
514         if (status)
515                 return status;
516
517         if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
518                 dev_err(&cqspi->pdev->dev,
519                         "Invalid input argument, len %zu rxbuf 0x%p\n",
520                         n_rx, rxbuf);
521                 return -EINVAL;
522         }
523
524         if (op->cmd.dtr)
525                 opcode = op->cmd.opcode >> 8;
526         else
527                 opcode = op->cmd.opcode;
528
529         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
530
531         rdreg = cqspi_calc_rdreg(op);
532         writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
533
534         dummy_clk = cqspi_calc_dummy(op);
535         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
536                 return -EOPNOTSUPP;
537
538         if (dummy_clk)
539                 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
540                      << CQSPI_REG_CMDCTRL_DUMMY_LSB;
541
542         reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
543
544         /* 0 means 1 byte. */
545         reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
546                 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
547
548         /* setup ADDR BIT field */
549         if (op->addr.nbytes) {
550                 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
551                 reg |= ((op->addr.nbytes - 1) &
552                         CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
553                         << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
554
555                 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
556         }
557
558         status = cqspi_exec_flash_cmd(cqspi, reg);
559         if (status)
560                 return status;
561
562         reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
563
564         /* Put the read value into rx_buf */
565         read_len = (n_rx > 4) ? 4 : n_rx;
566         memcpy(rxbuf, &reg, read_len);
567         rxbuf += read_len;
568
569         if (n_rx > 4) {
570                 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
571
572                 read_len = n_rx - read_len;
573                 memcpy(rxbuf, &reg, read_len);
574         }
575
576         /* Reset CMD_CTRL Reg once command read completes */
577         writel(0, reg_base + CQSPI_REG_CMDCTRL);
578
579         return 0;
580 }
581
582 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
583                                const struct spi_mem_op *op)
584 {
585         struct cqspi_st *cqspi = f_pdata->cqspi;
586         void __iomem *reg_base = cqspi->iobase;
587         u8 opcode;
588         const u8 *txbuf = op->data.buf.out;
589         size_t n_tx = op->data.nbytes;
590         unsigned int reg;
591         unsigned int data;
592         size_t write_len;
593         int ret;
594
595         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
596         if (ret)
597                 return ret;
598
599         if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
600                 dev_err(&cqspi->pdev->dev,
601                         "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
602                         n_tx, txbuf);
603                 return -EINVAL;
604         }
605
606         reg = cqspi_calc_rdreg(op);
607         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
608
609         if (op->cmd.dtr)
610                 opcode = op->cmd.opcode >> 8;
611         else
612                 opcode = op->cmd.opcode;
613
614         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
615
616         if (op->addr.nbytes) {
617                 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
618                 reg |= ((op->addr.nbytes - 1) &
619                         CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
620                         << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
621
622                 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
623         }
624
625         if (n_tx) {
626                 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
627                 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
628                         << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
629                 data = 0;
630                 write_len = (n_tx > 4) ? 4 : n_tx;
631                 memcpy(&data, txbuf, write_len);
632                 txbuf += write_len;
633                 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
634
635                 if (n_tx > 4) {
636                         data = 0;
637                         write_len = n_tx - 4;
638                         memcpy(&data, txbuf, write_len);
639                         writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
640                 }
641         }
642
643         ret = cqspi_exec_flash_cmd(cqspi, reg);
644
645         /* Reset CMD_CTRL Reg once command write completes */
646         writel(0, reg_base + CQSPI_REG_CMDCTRL);
647
648         return ret;
649 }
650
651 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
652                             const struct spi_mem_op *op)
653 {
654         struct cqspi_st *cqspi = f_pdata->cqspi;
655         void __iomem *reg_base = cqspi->iobase;
656         unsigned int dummy_clk = 0;
657         unsigned int reg;
658         int ret;
659         u8 opcode;
660
661         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
662         if (ret)
663                 return ret;
664
665         if (op->cmd.dtr)
666                 opcode = op->cmd.opcode >> 8;
667         else
668                 opcode = op->cmd.opcode;
669
670         reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
671         reg |= cqspi_calc_rdreg(op);
672
673         /* Setup dummy clock cycles */
674         dummy_clk = cqspi_calc_dummy(op);
675
676         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
677                 return -EOPNOTSUPP;
678
679         if (dummy_clk)
680                 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
681                        << CQSPI_REG_RD_INSTR_DUMMY_LSB;
682
683         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
684
685         /* Set address width */
686         reg = readl(reg_base + CQSPI_REG_SIZE);
687         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
688         reg |= (op->addr.nbytes - 1);
689         writel(reg, reg_base + CQSPI_REG_SIZE);
690         return 0;
691 }
692
693 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
694                                        u8 *rxbuf, loff_t from_addr,
695                                        const size_t n_rx)
696 {
697         struct cqspi_st *cqspi = f_pdata->cqspi;
698         struct device *dev = &cqspi->pdev->dev;
699         void __iomem *reg_base = cqspi->iobase;
700         void __iomem *ahb_base = cqspi->ahb_base;
701         unsigned int remaining = n_rx;
702         unsigned int mod_bytes = n_rx % 4;
703         unsigned int bytes_to_read = 0;
704         u8 *rxbuf_end = rxbuf + n_rx;
705         int ret = 0;
706
707         writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
708         writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
709
710         /* Clear all interrupts. */
711         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
712
713         /*
714          * On SoCFPGA platform reading the SRAM is slow due to
715          * hardware limitation and causing read interrupt storm to CPU,
716          * so enabling only watermark interrupt to disable all read
717          * interrupts later as we want to run "bytes to read" loop with
718          * all the read interrupts disabled for max performance.
719          */
720
721         if (!cqspi->slow_sram)
722                 writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
723         else
724                 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
725
726         reinit_completion(&cqspi->transfer_complete);
727         writel(CQSPI_REG_INDIRECTRD_START_MASK,
728                reg_base + CQSPI_REG_INDIRECTRD);
729
730         while (remaining > 0) {
731                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
732                                                  msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
733                         ret = -ETIMEDOUT;
734
735                 /*
736                  * Disable all read interrupts until
737                  * we are out of "bytes to read"
738                  */
739                 if (cqspi->slow_sram)
740                         writel(0x0, reg_base + CQSPI_REG_IRQMASK);
741
742                 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
743
744                 if (ret && bytes_to_read == 0) {
745                         dev_err(dev, "Indirect read timeout, no bytes\n");
746                         goto failrd;
747                 }
748
749                 while (bytes_to_read != 0) {
750                         unsigned int word_remain = round_down(remaining, 4);
751
752                         bytes_to_read *= cqspi->fifo_width;
753                         bytes_to_read = bytes_to_read > remaining ?
754                                         remaining : bytes_to_read;
755                         bytes_to_read = round_down(bytes_to_read, 4);
756                         /* Read 4 byte word chunks then single bytes */
757                         if (bytes_to_read) {
758                                 ioread32_rep(ahb_base, rxbuf,
759                                              (bytes_to_read / 4));
760                         } else if (!word_remain && mod_bytes) {
761                                 unsigned int temp = ioread32(ahb_base);
762
763                                 bytes_to_read = mod_bytes;
764                                 memcpy(rxbuf, &temp, min((unsigned int)
765                                                          (rxbuf_end - rxbuf),
766                                                          bytes_to_read));
767                         }
768                         rxbuf += bytes_to_read;
769                         remaining -= bytes_to_read;
770                         bytes_to_read = cqspi_get_rd_sram_level(cqspi);
771                 }
772
773                 if (remaining > 0) {
774                         reinit_completion(&cqspi->transfer_complete);
775                         if (cqspi->slow_sram)
776                                 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
777                 }
778         }
779
780         /* Check indirect done status */
781         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
782                                  CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
783         if (ret) {
784                 dev_err(dev, "Indirect read completion error (%i)\n", ret);
785                 goto failrd;
786         }
787
788         /* Disable interrupt */
789         writel(0, reg_base + CQSPI_REG_IRQMASK);
790
791         /* Clear indirect completion status */
792         writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
793
794         return 0;
795
796 failrd:
797         /* Disable interrupt */
798         writel(0, reg_base + CQSPI_REG_IRQMASK);
799
800         /* Cancel the indirect read */
801         writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
802                reg_base + CQSPI_REG_INDIRECTRD);
803         return ret;
804 }
805
806 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
807 {
808         void __iomem *reg_base = cqspi->iobase;
809         unsigned int reg;
810
811         reg = readl(reg_base + CQSPI_REG_CONFIG);
812
813         if (enable)
814                 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
815         else
816                 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
817
818         writel(reg, reg_base + CQSPI_REG_CONFIG);
819 }
820
821 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
822                                           u_char *rxbuf, loff_t from_addr,
823                                           size_t n_rx)
824 {
825         struct cqspi_st *cqspi = f_pdata->cqspi;
826         struct device *dev = &cqspi->pdev->dev;
827         void __iomem *reg_base = cqspi->iobase;
828         u32 reg, bytes_to_dma;
829         loff_t addr = from_addr;
830         void *buf = rxbuf;
831         dma_addr_t dma_addr;
832         u8 bytes_rem;
833         int ret = 0;
834
835         bytes_rem = n_rx % 4;
836         bytes_to_dma = (n_rx - bytes_rem);
837
838         if (!bytes_to_dma)
839                 goto nondmard;
840
841         ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
842         if (ret)
843                 return ret;
844
845         cqspi_controller_enable(cqspi, 0);
846
847         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
848         reg |= CQSPI_REG_CONFIG_DMA_MASK;
849         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
850
851         cqspi_controller_enable(cqspi, 1);
852
853         dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
854         if (dma_mapping_error(dev, dma_addr)) {
855                 dev_err(dev, "dma mapping failed\n");
856                 return -ENOMEM;
857         }
858
859         writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
860         writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
861         writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
862                reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
863
864         /* Clear all interrupts. */
865         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
866
867         /* Enable DMA done interrupt */
868         writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
869                reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
870
871         /* Default DMA periph configuration */
872         writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
873
874         /* Configure DMA Dst address */
875         writel(lower_32_bits(dma_addr),
876                reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
877         writel(upper_32_bits(dma_addr),
878                reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
879
880         /* Configure DMA Src address */
881         writel(cqspi->trigger_address, reg_base +
882                CQSPI_REG_VERSAL_DMA_SRC_ADDR);
883
884         /* Set DMA destination size */
885         writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
886
887         /* Set DMA destination control */
888         writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
889                reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
890
891         writel(CQSPI_REG_INDIRECTRD_START_MASK,
892                reg_base + CQSPI_REG_INDIRECTRD);
893
894         reinit_completion(&cqspi->transfer_complete);
895
896         if (!wait_for_completion_timeout(&cqspi->transfer_complete,
897                                          msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
898                 ret = -ETIMEDOUT;
899                 goto failrd;
900         }
901
902         /* Disable DMA interrupt */
903         writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
904
905         /* Clear indirect completion status */
906         writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
907                cqspi->iobase + CQSPI_REG_INDIRECTRD);
908         dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
909
910         cqspi_controller_enable(cqspi, 0);
911
912         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
913         reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
914         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
915
916         cqspi_controller_enable(cqspi, 1);
917
918         ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
919                                         PM_OSPI_MUX_SEL_LINEAR);
920         if (ret)
921                 return ret;
922
923 nondmard:
924         if (bytes_rem) {
925                 addr += bytes_to_dma;
926                 buf += bytes_to_dma;
927                 ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
928                                                   bytes_rem);
929                 if (ret)
930                         return ret;
931         }
932
933         return 0;
934
935 failrd:
936         /* Disable DMA interrupt */
937         writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
938
939         /* Cancel the indirect read */
940         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
941                reg_base + CQSPI_REG_INDIRECTRD);
942
943         dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
944
945         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
946         reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
947         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
948
949         zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
950
951         return ret;
952 }
953
954 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
955                              const struct spi_mem_op *op)
956 {
957         unsigned int reg;
958         int ret;
959         struct cqspi_st *cqspi = f_pdata->cqspi;
960         void __iomem *reg_base = cqspi->iobase;
961         u8 opcode;
962
963         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
964         if (ret)
965                 return ret;
966
967         if (op->cmd.dtr)
968                 opcode = op->cmd.opcode >> 8;
969         else
970                 opcode = op->cmd.opcode;
971
972         /* Set opcode. */
973         reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
974         reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
975         reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
976         writel(reg, reg_base + CQSPI_REG_WR_INSTR);
977         reg = cqspi_calc_rdreg(op);
978         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
979
980         /*
981          * SPI NAND flashes require the address of the status register to be
982          * passed in the Read SR command. Also, some SPI NOR flashes like the
983          * cypress Semper flash expect a 4-byte dummy address in the Read SR
984          * command in DTR mode.
985          *
986          * But this controller does not support address phase in the Read SR
987          * command when doing auto-HW polling. So, disable write completion
988          * polling on the controller's side. spinand and spi-nor will take
989          * care of polling the status register.
990          */
991         if (cqspi->wr_completion) {
992                 reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
993                 reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
994                 writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
995                 /*
996                  * DAC mode require auto polling as flash needs to be polled
997                  * for write completion in case of bubble in SPI transaction
998                  * due to slow CPU/DMA master.
999                  */
1000                 cqspi->use_direct_mode_wr = false;
1001         }
1002
1003         reg = readl(reg_base + CQSPI_REG_SIZE);
1004         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1005         reg |= (op->addr.nbytes - 1);
1006         writel(reg, reg_base + CQSPI_REG_SIZE);
1007         return 0;
1008 }
1009
1010 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1011                                         loff_t to_addr, const u8 *txbuf,
1012                                         const size_t n_tx)
1013 {
1014         struct cqspi_st *cqspi = f_pdata->cqspi;
1015         struct device *dev = &cqspi->pdev->dev;
1016         void __iomem *reg_base = cqspi->iobase;
1017         unsigned int remaining = n_tx;
1018         unsigned int write_bytes;
1019         int ret;
1020
1021         writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1022         writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1023
1024         /* Clear all interrupts. */
1025         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1026
1027         writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1028
1029         reinit_completion(&cqspi->transfer_complete);
1030         writel(CQSPI_REG_INDIRECTWR_START_MASK,
1031                reg_base + CQSPI_REG_INDIRECTWR);
1032         /*
1033          * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1034          * Controller programming sequence, couple of cycles of
1035          * QSPI_REF_CLK delay is required for the above bit to
1036          * be internally synchronized by the QSPI module. Provide 5
1037          * cycles of delay.
1038          */
1039         if (cqspi->wr_delay)
1040                 ndelay(cqspi->wr_delay);
1041
1042         /*
1043          * If a hazard exists between the APB and AHB interfaces, perform a
1044          * dummy readback from the controller to ensure synchronization.
1045          */
1046         if (cqspi->apb_ahb_hazard)
1047                 readl(reg_base + CQSPI_REG_INDIRECTWR);
1048
1049         while (remaining > 0) {
1050                 size_t write_words, mod_bytes;
1051
1052                 write_bytes = remaining;
1053                 write_words = write_bytes / 4;
1054                 mod_bytes = write_bytes % 4;
1055                 /* Write 4 bytes at a time then single bytes. */
1056                 if (write_words) {
1057                         iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1058                         txbuf += (write_words * 4);
1059                 }
1060                 if (mod_bytes) {
1061                         unsigned int temp = 0xFFFFFFFF;
1062
1063                         memcpy(&temp, txbuf, mod_bytes);
1064                         iowrite32(temp, cqspi->ahb_base);
1065                         txbuf += mod_bytes;
1066                 }
1067
1068                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1069                                                  msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1070                         dev_err(dev, "Indirect write timeout\n");
1071                         ret = -ETIMEDOUT;
1072                         goto failwr;
1073                 }
1074
1075                 remaining -= write_bytes;
1076
1077                 if (remaining > 0)
1078                         reinit_completion(&cqspi->transfer_complete);
1079         }
1080
1081         /* Check indirect done status */
1082         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1083                                  CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1084         if (ret) {
1085                 dev_err(dev, "Indirect write completion error (%i)\n", ret);
1086                 goto failwr;
1087         }
1088
1089         /* Disable interrupt. */
1090         writel(0, reg_base + CQSPI_REG_IRQMASK);
1091
1092         /* Clear indirect completion status */
1093         writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1094
1095         cqspi_wait_idle(cqspi);
1096
1097         return 0;
1098
1099 failwr:
1100         /* Disable interrupt. */
1101         writel(0, reg_base + CQSPI_REG_IRQMASK);
1102
1103         /* Cancel the indirect write */
1104         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1105                reg_base + CQSPI_REG_INDIRECTWR);
1106         return ret;
1107 }
1108
1109 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1110 {
1111         struct cqspi_st *cqspi = f_pdata->cqspi;
1112         void __iomem *reg_base = cqspi->iobase;
1113         unsigned int chip_select = f_pdata->cs;
1114         unsigned int reg;
1115
1116         reg = readl(reg_base + CQSPI_REG_CONFIG);
1117         if (cqspi->is_decoded_cs) {
1118                 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1119         } else {
1120                 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1121
1122                 /* Convert CS if without decoder.
1123                  * CS0 to 4b'1110
1124                  * CS1 to 4b'1101
1125                  * CS2 to 4b'1011
1126                  * CS3 to 4b'0111
1127                  */
1128                 chip_select = 0xF & ~(1 << chip_select);
1129         }
1130
1131         reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1132                  << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1133         reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1134             << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1135         writel(reg, reg_base + CQSPI_REG_CONFIG);
1136 }
1137
1138 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1139                                            const unsigned int ns_val)
1140 {
1141         unsigned int ticks;
1142
1143         ticks = ref_clk_hz / 1000;      /* kHz */
1144         ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1145
1146         return ticks;
1147 }
1148
1149 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1150 {
1151         struct cqspi_st *cqspi = f_pdata->cqspi;
1152         void __iomem *iobase = cqspi->iobase;
1153         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1154         unsigned int tshsl, tchsh, tslch, tsd2d;
1155         unsigned int reg;
1156         unsigned int tsclk;
1157
1158         /* calculate the number of ref ticks for one sclk tick */
1159         tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1160
1161         tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1162         /* this particular value must be at least one sclk */
1163         if (tshsl < tsclk)
1164                 tshsl = tsclk;
1165
1166         tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1167         tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1168         tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1169
1170         reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1171                << CQSPI_REG_DELAY_TSHSL_LSB;
1172         reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1173                 << CQSPI_REG_DELAY_TCHSH_LSB;
1174         reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1175                 << CQSPI_REG_DELAY_TSLCH_LSB;
1176         reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1177                 << CQSPI_REG_DELAY_TSD2D_LSB;
1178         writel(reg, iobase + CQSPI_REG_DELAY);
1179 }
1180
1181 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1182 {
1183         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1184         void __iomem *reg_base = cqspi->iobase;
1185         u32 reg, div;
1186
1187         /* Recalculate the baudrate divisor based on QSPI specification. */
1188         div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1189
1190         /* Maximum baud divisor */
1191         if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1192                 div = CQSPI_REG_CONFIG_BAUD_MASK;
1193                 dev_warn(&cqspi->pdev->dev,
1194                         "Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1195                         cqspi->sclk, ref_clk_hz/((div+1)*2));
1196         }
1197
1198         reg = readl(reg_base + CQSPI_REG_CONFIG);
1199         reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1200         reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1201         writel(reg, reg_base + CQSPI_REG_CONFIG);
1202 }
1203
1204 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1205                                    const bool bypass,
1206                                    const unsigned int delay)
1207 {
1208         void __iomem *reg_base = cqspi->iobase;
1209         unsigned int reg;
1210
1211         reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1212
1213         if (bypass)
1214                 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1215         else
1216                 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1217
1218         reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1219                  << CQSPI_REG_READCAPTURE_DELAY_LSB);
1220
1221         reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1222                 << CQSPI_REG_READCAPTURE_DELAY_LSB;
1223
1224         writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1225 }
1226
1227 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1228                             unsigned long sclk)
1229 {
1230         struct cqspi_st *cqspi = f_pdata->cqspi;
1231         int switch_cs = (cqspi->current_cs != f_pdata->cs);
1232         int switch_ck = (cqspi->sclk != sclk);
1233
1234         if (switch_cs || switch_ck)
1235                 cqspi_controller_enable(cqspi, 0);
1236
1237         /* Switch chip select. */
1238         if (switch_cs) {
1239                 cqspi->current_cs = f_pdata->cs;
1240                 cqspi_chipselect(f_pdata);
1241         }
1242
1243         /* Setup baudrate divisor and delays */
1244         if (switch_ck) {
1245                 cqspi->sclk = sclk;
1246                 cqspi_config_baudrate_div(cqspi);
1247                 cqspi_delay(f_pdata);
1248                 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1249                                        f_pdata->read_delay);
1250         }
1251
1252         if (switch_cs || switch_ck)
1253                 cqspi_controller_enable(cqspi, 1);
1254 }
1255
1256 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1257                            const struct spi_mem_op *op)
1258 {
1259         struct cqspi_st *cqspi = f_pdata->cqspi;
1260         loff_t to = op->addr.val;
1261         size_t len = op->data.nbytes;
1262         const u_char *buf = op->data.buf.out;
1263         int ret;
1264
1265         ret = cqspi_write_setup(f_pdata, op);
1266         if (ret)
1267                 return ret;
1268
1269         /*
1270          * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1271          * address (all 0s) with the read status register command in DTR mode.
1272          * But this controller does not support sending dummy address bytes to
1273          * the flash when it is polling the write completion register in DTR
1274          * mode. So, we can not use direct mode when in DTR mode for writing
1275          * data.
1276          */
1277         if (!op->cmd.dtr && cqspi->use_direct_mode &&
1278             cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1279                 memcpy_toio(cqspi->ahb_base + to, buf, len);
1280                 return cqspi_wait_idle(cqspi);
1281         }
1282
1283         return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1284 }
1285
1286 static void cqspi_rx_dma_callback(void *param)
1287 {
1288         struct cqspi_st *cqspi = param;
1289
1290         complete(&cqspi->rx_dma_complete);
1291 }
1292
1293 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1294                                      u_char *buf, loff_t from, size_t len)
1295 {
1296         struct cqspi_st *cqspi = f_pdata->cqspi;
1297         struct device *dev = &cqspi->pdev->dev;
1298         enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1299         dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1300         int ret = 0;
1301         struct dma_async_tx_descriptor *tx;
1302         dma_cookie_t cookie;
1303         dma_addr_t dma_dst;
1304         struct device *ddev;
1305
1306         if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1307                 memcpy_fromio(buf, cqspi->ahb_base + from, len);
1308                 return 0;
1309         }
1310
1311         ddev = cqspi->rx_chan->device->dev;
1312         dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1313         if (dma_mapping_error(ddev, dma_dst)) {
1314                 dev_err(dev, "dma mapping failed\n");
1315                 return -ENOMEM;
1316         }
1317         tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1318                                        len, flags);
1319         if (!tx) {
1320                 dev_err(dev, "device_prep_dma_memcpy error\n");
1321                 ret = -EIO;
1322                 goto err_unmap;
1323         }
1324
1325         tx->callback = cqspi_rx_dma_callback;
1326         tx->callback_param = cqspi;
1327         cookie = tx->tx_submit(tx);
1328         reinit_completion(&cqspi->rx_dma_complete);
1329
1330         ret = dma_submit_error(cookie);
1331         if (ret) {
1332                 dev_err(dev, "dma_submit_error %d\n", cookie);
1333                 ret = -EIO;
1334                 goto err_unmap;
1335         }
1336
1337         dma_async_issue_pending(cqspi->rx_chan);
1338         if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1339                                          msecs_to_jiffies(max_t(size_t, len, 500)))) {
1340                 dmaengine_terminate_sync(cqspi->rx_chan);
1341                 dev_err(dev, "DMA wait_for_completion_timeout\n");
1342                 ret = -ETIMEDOUT;
1343                 goto err_unmap;
1344         }
1345
1346 err_unmap:
1347         dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1348
1349         return ret;
1350 }
1351
1352 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1353                           const struct spi_mem_op *op)
1354 {
1355         struct cqspi_st *cqspi = f_pdata->cqspi;
1356         struct device *dev = &cqspi->pdev->dev;
1357         const struct cqspi_driver_platdata *ddata;
1358         loff_t from = op->addr.val;
1359         size_t len = op->data.nbytes;
1360         u_char *buf = op->data.buf.in;
1361         u64 dma_align = (u64)(uintptr_t)buf;
1362         int ret;
1363
1364         ddata = of_device_get_match_data(dev);
1365
1366         ret = cqspi_read_setup(f_pdata, op);
1367         if (ret)
1368                 return ret;
1369
1370         if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1371                 return cqspi_direct_read_execute(f_pdata, buf, from, len);
1372
1373         if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1374             virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1375                 return ddata->indirect_read_dma(f_pdata, buf, from, len);
1376
1377         return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1378 }
1379
1380 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1381 {
1382         struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1383         struct cqspi_flash_pdata *f_pdata;
1384
1385         f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1386         cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1387
1388         if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1389         /*
1390          * Performing reads in DAC mode forces to read minimum 4 bytes
1391          * which is unsupported on some flash devices during register
1392          * reads, prefer STIG mode for such small reads.
1393          */
1394                 if (!op->addr.nbytes ||
1395                     op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX)
1396                         return cqspi_command_read(f_pdata, op);
1397
1398                 return cqspi_read(f_pdata, op);
1399         }
1400
1401         if (!op->addr.nbytes || !op->data.buf.out)
1402                 return cqspi_command_write(f_pdata, op);
1403
1404         return cqspi_write(f_pdata, op);
1405 }
1406
1407 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1408 {
1409         int ret;
1410
1411         ret = cqspi_mem_process(mem, op);
1412         if (ret)
1413                 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1414
1415         return ret;
1416 }
1417
1418 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1419                                   const struct spi_mem_op *op)
1420 {
1421         bool all_true, all_false;
1422
1423         /*
1424          * op->dummy.dtr is required for converting nbytes into ncycles.
1425          * Also, don't check the dtr field of the op phase having zero nbytes.
1426          */
1427         all_true = op->cmd.dtr &&
1428                    (!op->addr.nbytes || op->addr.dtr) &&
1429                    (!op->dummy.nbytes || op->dummy.dtr) &&
1430                    (!op->data.nbytes || op->data.dtr);
1431
1432         all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1433                     !op->data.dtr;
1434
1435         if (all_true) {
1436                 /* Right now we only support 8-8-8 DTR mode. */
1437                 if (op->cmd.nbytes && op->cmd.buswidth != 8)
1438                         return false;
1439                 if (op->addr.nbytes && op->addr.buswidth != 8)
1440                         return false;
1441                 if (op->data.nbytes && op->data.buswidth != 8)
1442                         return false;
1443         } else if (!all_false) {
1444                 /* Mixed DTR modes are not supported. */
1445                 return false;
1446         }
1447
1448         return spi_mem_default_supports_op(mem, op);
1449 }
1450
1451 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1452                                     struct cqspi_flash_pdata *f_pdata,
1453                                     struct device_node *np)
1454 {
1455         if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1456                 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1457                 return -ENXIO;
1458         }
1459
1460         if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1461                 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1462                 return -ENXIO;
1463         }
1464
1465         if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1466                 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1467                 return -ENXIO;
1468         }
1469
1470         if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1471                 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1472                 return -ENXIO;
1473         }
1474
1475         if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1476                 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1477                 return -ENXIO;
1478         }
1479
1480         if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1481                 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1482                 return -ENXIO;
1483         }
1484
1485         return 0;
1486 }
1487
1488 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1489 {
1490         struct device *dev = &cqspi->pdev->dev;
1491         struct device_node *np = dev->of_node;
1492         u32 id[2];
1493
1494         cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1495
1496         if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1497                 dev_err(dev, "couldn't determine fifo-depth\n");
1498                 return -ENXIO;
1499         }
1500
1501         if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1502                 dev_err(dev, "couldn't determine fifo-width\n");
1503                 return -ENXIO;
1504         }
1505
1506         if (of_property_read_u32(np, "cdns,trigger-address",
1507                                  &cqspi->trigger_address)) {
1508                 dev_err(dev, "couldn't determine trigger-address\n");
1509                 return -ENXIO;
1510         }
1511
1512         if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1513                 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1514
1515         cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1516
1517         if (!of_property_read_u32_array(np, "power-domains", id,
1518                                         ARRAY_SIZE(id)))
1519                 cqspi->pd_dev_id = id[1];
1520
1521         return 0;
1522 }
1523
1524 static void cqspi_controller_init(struct cqspi_st *cqspi)
1525 {
1526         u32 reg;
1527
1528         cqspi_controller_enable(cqspi, 0);
1529
1530         /* Configure the remap address register, no remap */
1531         writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1532
1533         /* Disable all interrupts. */
1534         writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1535
1536         /* Configure the SRAM split to 1:1 . */
1537         writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1538
1539         /* Load indirect trigger address. */
1540         writel(cqspi->trigger_address,
1541                cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1542
1543         /* Program read watermark -- 1/2 of the FIFO. */
1544         writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1545                cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1546         /* Program write watermark -- 1/8 of the FIFO. */
1547         writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1548                cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1549
1550         /* Disable direct access controller */
1551         if (!cqspi->use_direct_mode) {
1552                 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1553                 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1554                 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1555         }
1556
1557         /* Enable DMA interface */
1558         if (cqspi->use_dma_read) {
1559                 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1560                 reg |= CQSPI_REG_CONFIG_DMA_MASK;
1561                 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1562         }
1563
1564         cqspi_controller_enable(cqspi, 1);
1565 }
1566
1567 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1568 {
1569         dma_cap_mask_t mask;
1570
1571         dma_cap_zero(mask);
1572         dma_cap_set(DMA_MEMCPY, mask);
1573
1574         cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1575         if (IS_ERR(cqspi->rx_chan)) {
1576                 int ret = PTR_ERR(cqspi->rx_chan);
1577
1578                 cqspi->rx_chan = NULL;
1579                 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1580         }
1581         init_completion(&cqspi->rx_dma_complete);
1582
1583         return 0;
1584 }
1585
1586 static const char *cqspi_get_name(struct spi_mem *mem)
1587 {
1588         struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1589         struct device *dev = &cqspi->pdev->dev;
1590
1591         return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1592                               spi_get_chipselect(mem->spi, 0));
1593 }
1594
1595 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1596         .exec_op = cqspi_exec_mem_op,
1597         .get_name = cqspi_get_name,
1598         .supports_op = cqspi_supports_mem_op,
1599 };
1600
1601 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1602         .dtr = true,
1603 };
1604
1605 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1606 {
1607         struct platform_device *pdev = cqspi->pdev;
1608         struct device *dev = &pdev->dev;
1609         struct device_node *np = dev->of_node;
1610         struct cqspi_flash_pdata *f_pdata;
1611         unsigned int cs;
1612         int ret;
1613
1614         /* Get flash device data */
1615         for_each_available_child_of_node(dev->of_node, np) {
1616                 ret = of_property_read_u32(np, "reg", &cs);
1617                 if (ret) {
1618                         dev_err(dev, "Couldn't determine chip select.\n");
1619                         of_node_put(np);
1620                         return ret;
1621                 }
1622
1623                 if (cs >= CQSPI_MAX_CHIPSELECT) {
1624                         dev_err(dev, "Chip select %d out of range.\n", cs);
1625                         of_node_put(np);
1626                         return -EINVAL;
1627                 }
1628
1629                 f_pdata = &cqspi->f_pdata[cs];
1630                 f_pdata->cqspi = cqspi;
1631                 f_pdata->cs = cs;
1632
1633                 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1634                 if (ret) {
1635                         of_node_put(np);
1636                         return ret;
1637                 }
1638         }
1639
1640         return 0;
1641 }
1642
1643 static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi)
1644 {
1645         static struct clk_bulk_data qspiclk[] = {
1646                 { .id = "apb" },
1647                 { .id = "ahb" },
1648         };
1649
1650         int ret = 0;
1651
1652         ret = devm_clk_bulk_get(&pdev->dev, ARRAY_SIZE(qspiclk), qspiclk);
1653         if (ret) {
1654                 dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__);
1655                 return ret;
1656         }
1657
1658         cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk;
1659         cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk;
1660
1661         ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_APB]);
1662         if (ret) {
1663                 dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__);
1664                 return ret;
1665         }
1666
1667         ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_AHB]);
1668         if (ret) {
1669                 dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__);
1670                 goto disable_apb_clk;
1671         }
1672
1673         cqspi->is_jh7110 = true;
1674
1675         return 0;
1676
1677 disable_apb_clk:
1678         clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1679
1680         return ret;
1681 }
1682
1683 static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi)
1684 {
1685         clk_disable_unprepare(cqspi->clks[CLK_QSPI_AHB]);
1686         clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1687 }
1688 static int cqspi_probe(struct platform_device *pdev)
1689 {
1690         const struct cqspi_driver_platdata *ddata;
1691         struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1692         struct device *dev = &pdev->dev;
1693         struct spi_controller *host;
1694         struct resource *res_ahb;
1695         struct cqspi_st *cqspi;
1696         int ret;
1697         int irq;
1698
1699         host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
1700         if (!host) {
1701                 dev_err(&pdev->dev, "devm_spi_alloc_host failed\n");
1702                 return -ENOMEM;
1703         }
1704         host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1705         host->mem_ops = &cqspi_mem_ops;
1706         host->mem_caps = &cqspi_mem_caps;
1707         host->dev.of_node = pdev->dev.of_node;
1708
1709         cqspi = spi_controller_get_devdata(host);
1710
1711         cqspi->pdev = pdev;
1712         cqspi->host = host;
1713         cqspi->is_jh7110 = false;
1714         platform_set_drvdata(pdev, cqspi);
1715
1716         /* Obtain configuration from OF. */
1717         ret = cqspi_of_get_pdata(cqspi);
1718         if (ret) {
1719                 dev_err(dev, "Cannot get mandatory OF data.\n");
1720                 return -ENODEV;
1721         }
1722
1723         /* Obtain QSPI clock. */
1724         cqspi->clk = devm_clk_get(dev, NULL);
1725         if (IS_ERR(cqspi->clk)) {
1726                 dev_err(dev, "Cannot claim QSPI clock.\n");
1727                 ret = PTR_ERR(cqspi->clk);
1728                 return ret;
1729         }
1730
1731         /* Obtain and remap controller address. */
1732         cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1733         if (IS_ERR(cqspi->iobase)) {
1734                 dev_err(dev, "Cannot remap controller address.\n");
1735                 ret = PTR_ERR(cqspi->iobase);
1736                 return ret;
1737         }
1738
1739         /* Obtain and remap AHB address. */
1740         cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1741         if (IS_ERR(cqspi->ahb_base)) {
1742                 dev_err(dev, "Cannot remap AHB address.\n");
1743                 ret = PTR_ERR(cqspi->ahb_base);
1744                 return ret;
1745         }
1746         cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1747         cqspi->ahb_size = resource_size(res_ahb);
1748
1749         init_completion(&cqspi->transfer_complete);
1750
1751         /* Obtain IRQ line. */
1752         irq = platform_get_irq(pdev, 0);
1753         if (irq < 0)
1754                 return -ENXIO;
1755
1756         pm_runtime_enable(dev);
1757         ret = pm_runtime_resume_and_get(dev);
1758         if (ret < 0)
1759                 goto probe_pm_failed;
1760
1761         ret = clk_prepare_enable(cqspi->clk);
1762         if (ret) {
1763                 dev_err(dev, "Cannot enable QSPI clock.\n");
1764                 goto probe_clk_failed;
1765         }
1766
1767         /* Obtain QSPI reset control */
1768         rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1769         if (IS_ERR(rstc)) {
1770                 ret = PTR_ERR(rstc);
1771                 dev_err(dev, "Cannot get QSPI reset.\n");
1772                 goto probe_reset_failed;
1773         }
1774
1775         rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1776         if (IS_ERR(rstc_ocp)) {
1777                 ret = PTR_ERR(rstc_ocp);
1778                 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1779                 goto probe_reset_failed;
1780         }
1781
1782         if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1783                 rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1784                 if (IS_ERR(rstc_ref)) {
1785                         ret = PTR_ERR(rstc_ref);
1786                         dev_err(dev, "Cannot get QSPI REF reset.\n");
1787                         goto probe_reset_failed;
1788                 }
1789                 reset_control_assert(rstc_ref);
1790                 reset_control_deassert(rstc_ref);
1791         }
1792
1793         reset_control_assert(rstc);
1794         reset_control_deassert(rstc);
1795
1796         reset_control_assert(rstc_ocp);
1797         reset_control_deassert(rstc_ocp);
1798
1799         cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1800         host->max_speed_hz = cqspi->master_ref_clk_hz;
1801
1802         /* write completion is supported by default */
1803         cqspi->wr_completion = true;
1804
1805         ddata  = of_device_get_match_data(dev);
1806         if (ddata) {
1807                 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1808                         cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1809                                                 cqspi->master_ref_clk_hz);
1810                 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1811                         host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1812                 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1813                         cqspi->use_direct_mode = true;
1814                         cqspi->use_direct_mode_wr = true;
1815                 }
1816                 if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1817                         cqspi->use_dma_read = true;
1818                 if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1819                         cqspi->wr_completion = false;
1820                 if (ddata->quirks & CQSPI_SLOW_SRAM)
1821                         cqspi->slow_sram = true;
1822                 if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1823                         cqspi->apb_ahb_hazard = true;
1824
1825                 if (ddata->jh7110_clk_init) {
1826                         ret = cqspi_jh7110_clk_init(pdev, cqspi);
1827                         if (ret)
1828                                 goto probe_reset_failed;
1829                 }
1830
1831                 if (of_device_is_compatible(pdev->dev.of_node,
1832                                             "xlnx,versal-ospi-1.0")) {
1833                         ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1834                         if (ret)
1835                                 goto probe_reset_failed;
1836                 }
1837         }
1838
1839         ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1840                                pdev->name, cqspi);
1841         if (ret) {
1842                 dev_err(dev, "Cannot request IRQ.\n");
1843                 goto probe_reset_failed;
1844         }
1845
1846         cqspi_wait_idle(cqspi);
1847         cqspi_controller_init(cqspi);
1848         cqspi->current_cs = -1;
1849         cqspi->sclk = 0;
1850
1851         host->num_chipselect = cqspi->num_chipselect;
1852
1853         ret = cqspi_setup_flash(cqspi);
1854         if (ret) {
1855                 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1856                 goto probe_setup_failed;
1857         }
1858
1859         if (cqspi->use_direct_mode) {
1860                 ret = cqspi_request_mmap_dma(cqspi);
1861                 if (ret == -EPROBE_DEFER)
1862                         goto probe_setup_failed;
1863         }
1864
1865         ret = spi_register_controller(host);
1866         if (ret) {
1867                 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1868                 goto probe_setup_failed;
1869         }
1870
1871         return 0;
1872 probe_setup_failed:
1873         cqspi_controller_enable(cqspi, 0);
1874 probe_reset_failed:
1875         if (cqspi->is_jh7110)
1876                 cqspi_jh7110_disable_clk(pdev, cqspi);
1877         clk_disable_unprepare(cqspi->clk);
1878 probe_clk_failed:
1879         pm_runtime_put_sync(dev);
1880 probe_pm_failed:
1881         pm_runtime_disable(dev);
1882         return ret;
1883 }
1884
1885 static void cqspi_remove(struct platform_device *pdev)
1886 {
1887         struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1888
1889         spi_unregister_controller(cqspi->host);
1890         cqspi_controller_enable(cqspi, 0);
1891
1892         if (cqspi->rx_chan)
1893                 dma_release_channel(cqspi->rx_chan);
1894
1895         clk_disable_unprepare(cqspi->clk);
1896
1897         if (cqspi->is_jh7110)
1898                 cqspi_jh7110_disable_clk(pdev, cqspi);
1899
1900         pm_runtime_put_sync(&pdev->dev);
1901         pm_runtime_disable(&pdev->dev);
1902 }
1903
1904 static int cqspi_suspend(struct device *dev)
1905 {
1906         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1907         struct spi_controller *host = dev_get_drvdata(dev);
1908         int ret;
1909
1910         ret = spi_controller_suspend(host);
1911         cqspi_controller_enable(cqspi, 0);
1912
1913         clk_disable_unprepare(cqspi->clk);
1914
1915         return ret;
1916 }
1917
1918 static int cqspi_resume(struct device *dev)
1919 {
1920         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1921         struct spi_controller *host = dev_get_drvdata(dev);
1922
1923         clk_prepare_enable(cqspi->clk);
1924         cqspi_wait_idle(cqspi);
1925         cqspi_controller_init(cqspi);
1926
1927         cqspi->current_cs = -1;
1928         cqspi->sclk = 0;
1929
1930         return spi_controller_resume(host);
1931 }
1932
1933 static DEFINE_SIMPLE_DEV_PM_OPS(cqspi_dev_pm_ops, cqspi_suspend, cqspi_resume);
1934
1935 static const struct cqspi_driver_platdata cdns_qspi = {
1936         .quirks = CQSPI_DISABLE_DAC_MODE,
1937 };
1938
1939 static const struct cqspi_driver_platdata k2g_qspi = {
1940         .quirks = CQSPI_NEEDS_WR_DELAY,
1941 };
1942
1943 static const struct cqspi_driver_platdata am654_ospi = {
1944         .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1945         .quirks = CQSPI_NEEDS_WR_DELAY,
1946 };
1947
1948 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1949         .quirks = CQSPI_DISABLE_DAC_MODE,
1950 };
1951
1952 static const struct cqspi_driver_platdata socfpga_qspi = {
1953         .quirks = CQSPI_DISABLE_DAC_MODE
1954                         | CQSPI_NO_SUPPORT_WR_COMPLETION
1955                         | CQSPI_SLOW_SRAM,
1956 };
1957
1958 static const struct cqspi_driver_platdata versal_ospi = {
1959         .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1960         .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
1961         .indirect_read_dma = cqspi_versal_indirect_read_dma,
1962         .get_dma_status = cqspi_get_versal_dma_status,
1963 };
1964
1965 static const struct cqspi_driver_platdata jh7110_qspi = {
1966         .quirks = CQSPI_DISABLE_DAC_MODE,
1967         .jh7110_clk_init = cqspi_jh7110_clk_init,
1968 };
1969
1970 static const struct cqspi_driver_platdata pensando_cdns_qspi = {
1971         .quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
1972 };
1973
1974 static const struct of_device_id cqspi_dt_ids[] = {
1975         {
1976                 .compatible = "cdns,qspi-nor",
1977                 .data = &cdns_qspi,
1978         },
1979         {
1980                 .compatible = "ti,k2g-qspi",
1981                 .data = &k2g_qspi,
1982         },
1983         {
1984                 .compatible = "ti,am654-ospi",
1985                 .data = &am654_ospi,
1986         },
1987         {
1988                 .compatible = "intel,lgm-qspi",
1989                 .data = &intel_lgm_qspi,
1990         },
1991         {
1992                 .compatible = "xlnx,versal-ospi-1.0",
1993                 .data = &versal_ospi,
1994         },
1995         {
1996                 .compatible = "intel,socfpga-qspi",
1997                 .data = &socfpga_qspi,
1998         },
1999         {
2000                 .compatible = "starfive,jh7110-qspi",
2001                 .data = &jh7110_qspi,
2002         },
2003         {
2004                 .compatible = "amd,pensando-elba-qspi",
2005                 .data = &pensando_cdns_qspi,
2006         },
2007         { /* end of table */ }
2008 };
2009
2010 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
2011
2012 static struct platform_driver cqspi_platform_driver = {
2013         .probe = cqspi_probe,
2014         .remove_new = cqspi_remove,
2015         .driver = {
2016                 .name = CQSPI_NAME,
2017                 .pm = &cqspi_dev_pm_ops,
2018                 .of_match_table = cqspi_dt_ids,
2019         },
2020 };
2021
2022 module_platform_driver(cqspi_platform_driver);
2023
2024 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
2025 MODULE_LICENSE("GPL v2");
2026 MODULE_ALIAS("platform:" CQSPI_NAME);
2027 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
2028 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
2029 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
2030 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
2031 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");