1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Driver for Broadcom BCM2835 SPI Controllers
5 * Copyright (C) 2012 Chris Boot
6 * Copyright (C) 2013 Stephen Warren
7 * Copyright (C) 2015 Martin Sperl
9 * This driver is inspired by:
10 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
11 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
14 #include <linux/clk.h>
15 #include <linux/completion.h>
16 #include <linux/debugfs.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/err.h>
21 #include <linux/interrupt.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
26 #include <linux/of_address.h>
27 #include <linux/platform_device.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/gpio/machine.h> /* FIXME: using chip internals */
30 #include <linux/gpio/driver.h> /* FIXME: using chip internals */
31 #include <linux/of_irq.h>
32 #include <linux/spi/spi.h>
34 /* SPI register offsets */
35 #define BCM2835_SPI_CS 0x00
36 #define BCM2835_SPI_FIFO 0x04
37 #define BCM2835_SPI_CLK 0x08
38 #define BCM2835_SPI_DLEN 0x0c
39 #define BCM2835_SPI_LTOH 0x10
40 #define BCM2835_SPI_DC 0x14
43 #define BCM2835_SPI_CS_LEN_LONG 0x02000000
44 #define BCM2835_SPI_CS_DMA_LEN 0x01000000
45 #define BCM2835_SPI_CS_CSPOL2 0x00800000
46 #define BCM2835_SPI_CS_CSPOL1 0x00400000
47 #define BCM2835_SPI_CS_CSPOL0 0x00200000
48 #define BCM2835_SPI_CS_RXF 0x00100000
49 #define BCM2835_SPI_CS_RXR 0x00080000
50 #define BCM2835_SPI_CS_TXD 0x00040000
51 #define BCM2835_SPI_CS_RXD 0x00020000
52 #define BCM2835_SPI_CS_DONE 0x00010000
53 #define BCM2835_SPI_CS_LEN 0x00002000
54 #define BCM2835_SPI_CS_REN 0x00001000
55 #define BCM2835_SPI_CS_ADCS 0x00000800
56 #define BCM2835_SPI_CS_INTR 0x00000400
57 #define BCM2835_SPI_CS_INTD 0x00000200
58 #define BCM2835_SPI_CS_DMAEN 0x00000100
59 #define BCM2835_SPI_CS_TA 0x00000080
60 #define BCM2835_SPI_CS_CSPOL 0x00000040
61 #define BCM2835_SPI_CS_CLEAR_RX 0x00000020
62 #define BCM2835_SPI_CS_CLEAR_TX 0x00000010
63 #define BCM2835_SPI_CS_CPOL 0x00000008
64 #define BCM2835_SPI_CS_CPHA 0x00000004
65 #define BCM2835_SPI_CS_CS_10 0x00000002
66 #define BCM2835_SPI_CS_CS_01 0x00000001
68 #define BCM2835_SPI_FIFO_SIZE 64
69 #define BCM2835_SPI_FIFO_SIZE_3_4 48
70 #define BCM2835_SPI_DMA_MIN_LENGTH 96
71 #define BCM2835_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
72 | SPI_NO_CS | SPI_3WIRE)
74 #define DRV_NAME "spi-bcm2835"
76 /* define polling limits */
77 static unsigned int polling_limit_us = 30;
78 module_param(polling_limit_us, uint, 0664);
79 MODULE_PARM_DESC(polling_limit_us,
80 "time in us to run a transfer in polling mode\n");
83 * struct bcm2835_spi - BCM2835 SPI controller
84 * @regs: base address of register map
85 * @clk: core clock, divided to calculate serial clock
86 * @clk_hz: core clock cached speed
87 * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
88 * @tfr: SPI transfer currently processed
89 * @ctlr: SPI controller reverse lookup
90 * @tx_buf: pointer whence next transmitted byte is read
91 * @rx_buf: pointer where next received byte is written
92 * @tx_len: remaining bytes to transmit
93 * @rx_len: remaining bytes to receive
94 * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
95 * length is not a multiple of 4 (to overcome hardware limitation)
96 * @rx_prologue: bytes received without DMA if first RX sglist entry's
97 * length is not a multiple of 4 (to overcome hardware limitation)
98 * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
99 * @debugfs_dir: the debugfs directory - neede to remove debugfs when
100 * unloading the module
101 * @count_transfer_polling: count of how often polling mode is used
102 * @count_transfer_irq: count of how often interrupt mode is used
103 * @count_transfer_irq_after_polling: count of how often we fall back to
104 * interrupt mode after starting in polling mode.
105 * These are counted as well in @count_transfer_polling and
106 * @count_transfer_irq
107 * @count_transfer_dma: count how often dma mode is used
108 * @target: SPI target currently selected
109 * (used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
110 * @tx_dma_active: whether a TX DMA descriptor is in progress
111 * @rx_dma_active: whether a RX DMA descriptor is in progress
112 * (used by bcm2835_spi_dma_tx_done() to handle a race)
113 * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
114 * (cyclically copies from zero page to TX FIFO)
115 * @fill_tx_addr: bus address of zero page
119 phys_addr_t phys_addr;
121 unsigned long clk_hz;
123 struct spi_transfer *tfr;
124 struct spi_controller *ctlr;
131 unsigned int tx_spillover;
133 struct dentry *debugfs_dir;
134 u64 count_transfer_polling;
135 u64 count_transfer_irq;
136 u64 count_transfer_irq_after_polling;
137 u64 count_transfer_dma;
139 struct bcm2835_spidev *target;
140 unsigned int tx_dma_active;
141 unsigned int rx_dma_active;
142 struct dma_async_tx_descriptor *fill_tx_desc;
143 dma_addr_t fill_tx_addr;
147 * struct bcm2835_spidev - BCM2835 SPI target
148 * @prepare_cs: precalculated CS register value for ->prepare_message()
149 * (uses target-specific clock polarity and phase settings)
150 * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
151 * (cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
152 * @clear_rx_addr: bus address of @clear_rx_cs
153 * @clear_rx_cs: precalculated CS register value to clear RX FIFO
154 * (uses target-specific clock polarity and phase settings)
156 struct bcm2835_spidev {
158 struct dma_async_tx_descriptor *clear_rx_desc;
159 dma_addr_t clear_rx_addr;
160 u32 clear_rx_cs ____cacheline_aligned;
163 #if defined(CONFIG_DEBUG_FS)
164 static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
171 snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
173 /* the base directory */
174 dir = debugfs_create_dir(name, NULL);
175 bs->debugfs_dir = dir;
178 debugfs_create_u64("count_transfer_polling", 0444, dir,
179 &bs->count_transfer_polling);
180 debugfs_create_u64("count_transfer_irq", 0444, dir,
181 &bs->count_transfer_irq);
182 debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
183 &bs->count_transfer_irq_after_polling);
184 debugfs_create_u64("count_transfer_dma", 0444, dir,
185 &bs->count_transfer_dma);
188 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
190 debugfs_remove_recursive(bs->debugfs_dir);
191 bs->debugfs_dir = NULL;
194 static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
199 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
202 #endif /* CONFIG_DEBUG_FS */
204 static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg)
206 return readl(bs->regs + reg);
209 static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val)
211 writel(val, bs->regs + reg);
214 static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
218 while ((bs->rx_len) &&
219 (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
220 byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
222 *bs->rx_buf++ = byte;
227 static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
231 while ((bs->tx_len) &&
232 (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
233 byte = bs->tx_buf ? *bs->tx_buf++ : 0;
234 bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
240 * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
241 * @bs: BCM2835 SPI controller
242 * @count: bytes to read from RX FIFO
244 * The caller must ensure that @bs->rx_len is greater than or equal to @count,
245 * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
246 * in the CS register is set (such that a read from the FIFO register receives
247 * 32-bit instead of just 8-bit). Moreover @bs->rx_buf must not be %NULL.
249 static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
257 val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
259 memcpy(bs->rx_buf, &val, len);
266 * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
267 * @bs: BCM2835 SPI controller
268 * @count: bytes to write to TX FIFO
270 * The caller must ensure that @bs->tx_len is greater than or equal to @count,
271 * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
272 * in the CS register is set (such that a write to the FIFO register transmits
273 * 32-bit instead of just 8-bit).
275 static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
285 memcpy(&val, bs->tx_buf, len);
290 bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
296 * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
297 * @bs: BCM2835 SPI controller
299 * The caller must ensure that the RX FIFO can accommodate as many bytes
300 * as have been written to the TX FIFO: Transmission is halted once the
301 * RX FIFO is full, causing this function to spin forever.
303 static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
305 while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
310 * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
311 * @bs: BCM2835 SPI controller
312 * @count: bytes available for reading in RX FIFO
314 static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
318 count = min(count, bs->rx_len);
322 val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
329 * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
330 * @bs: BCM2835 SPI controller
331 * @count: bytes available for writing in TX FIFO
333 static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
337 count = min(count, bs->tx_len);
341 val = bs->tx_buf ? *bs->tx_buf++ : 0;
342 bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
346 static void bcm2835_spi_reset_hw(struct bcm2835_spi *bs)
348 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
350 /* Disable SPI interrupts and transfer */
351 cs &= ~(BCM2835_SPI_CS_INTR |
352 BCM2835_SPI_CS_INTD |
353 BCM2835_SPI_CS_DMAEN |
356 * Transmission sometimes breaks unless the DONE bit is written at the
357 * end of every transfer. The spec says it's a RO bit. Either the
358 * spec is wrong and the bit is actually of type RW1C, or it's a
361 cs |= BCM2835_SPI_CS_DONE;
362 /* and reset RX/TX FIFOS */
363 cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
365 /* and reset the SPI_HW */
366 bcm2835_wr(bs, BCM2835_SPI_CS, cs);
367 /* as well as DLEN */
368 bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
371 static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
373 struct bcm2835_spi *bs = dev_id;
374 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
376 /* Bail out early if interrupts are not enabled */
377 if (!(cs & BCM2835_SPI_CS_INTR))
381 * An interrupt is signaled either if DONE is set (TX FIFO empty)
382 * or if RXR is set (RX FIFO >= ¾ full).
384 if (cs & BCM2835_SPI_CS_RXF)
385 bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
386 else if (cs & BCM2835_SPI_CS_RXR)
387 bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
389 if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
390 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
392 /* Read as many bytes as possible from FIFO */
394 /* Write as many bytes as possible to FIFO */
398 /* Transfer complete - reset SPI HW */
399 bcm2835_spi_reset_hw(bs);
400 /* wake up the framework */
401 spi_finalize_current_transfer(bs->ctlr);
407 static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
408 struct spi_device *spi,
409 struct spi_transfer *tfr,
410 u32 cs, bool fifo_empty)
412 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
414 /* update usage statistics */
415 bs->count_transfer_irq++;
418 * Enable HW block, but with interrupts still disabled.
419 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
421 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
423 /* fill TX FIFO as much as possible */
425 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
428 /* enable interrupts */
429 cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
430 bcm2835_wr(bs, BCM2835_SPI_CS, cs);
432 /* signal that we need to wait for completion */
437 * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
438 * @ctlr: SPI host controller
440 * @bs: BCM2835 SPI controller
443 * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
444 * Only the final write access is permitted to transmit less than 4 bytes, the
445 * SPI controller deduces its intended size from the DLEN register.
447 * If a TX or RX sglist contains multiple entries, one per page, and the first
448 * entry starts in the middle of a page, that first entry's length may not be
449 * a multiple of 4. Subsequent entries are fine because they span an entire
450 * page, hence do have a length that's a multiple of 4.
452 * This cannot happen with kmalloc'ed buffers (which is what most clients use)
453 * because they are contiguous in physical memory and therefore not split on
454 * page boundaries by spi_map_buf(). But it *can* happen with vmalloc'ed
457 * The DMA engine is incapable of combining sglist entries into a continuous
458 * stream of 4 byte chunks, it treats every entry separately: A TX entry is
459 * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
460 * entry is rounded up by throwing away received bytes.
462 * Overcome this limitation by transferring the first few bytes without DMA:
463 * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
464 * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
465 * The residue of 1 byte in the RX FIFO is picked up by DMA. Together with
466 * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
468 * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
469 * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
470 * Caution, the additional 4 bytes spill over to the second TX sglist entry
471 * if the length of the first is *exactly* 1.
473 * At most 6 bytes are written and at most 3 bytes read. Do we know the
474 * transfer has this many bytes? Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
476 * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
477 * by the DMA engine. Toggling the DMA Enable flag in the CS register switches
478 * the width but also garbles the FIFO's contents. The prologue must therefore
479 * be transmitted in 32-bit width to ensure that the following DMA transfer can
480 * pick up the residue in the RX FIFO in ungarbled form.
482 static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
483 struct spi_transfer *tfr,
484 struct bcm2835_spi *bs,
492 bs->tx_spillover = false;
494 if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
495 bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
497 if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
498 bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
500 if (bs->rx_prologue > bs->tx_prologue) {
501 if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
502 bs->tx_prologue = bs->rx_prologue;
504 bs->tx_prologue += 4;
506 !(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
511 /* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
512 if (!bs->tx_prologue)
515 /* Write and read RX prologue. Adjust first entry in RX sglist. */
516 if (bs->rx_prologue) {
517 bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
518 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
519 | BCM2835_SPI_CS_DMAEN);
520 bcm2835_wr_fifo_count(bs, bs->rx_prologue);
521 bcm2835_wait_tx_fifo_empty(bs);
522 bcm2835_rd_fifo_count(bs, bs->rx_prologue);
523 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
524 | BCM2835_SPI_CS_CLEAR_TX
525 | BCM2835_SPI_CS_DONE);
527 dma_sync_single_for_device(ctlr->dma_rx->device->dev,
528 sg_dma_address(&tfr->rx_sg.sgl[0]),
529 bs->rx_prologue, DMA_FROM_DEVICE);
531 sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
532 sg_dma_len(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
539 * Write remaining TX prologue. Adjust first entry in TX sglist.
540 * Also adjust second entry if prologue spills over to it.
542 tx_remaining = bs->tx_prologue - bs->rx_prologue;
544 bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
545 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
546 | BCM2835_SPI_CS_DMAEN);
547 bcm2835_wr_fifo_count(bs, tx_remaining);
548 bcm2835_wait_tx_fifo_empty(bs);
549 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
550 | BCM2835_SPI_CS_DONE);
553 if (likely(!bs->tx_spillover)) {
554 sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
555 sg_dma_len(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
557 sg_dma_len(&tfr->tx_sg.sgl[0]) = 0;
558 sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
559 sg_dma_len(&tfr->tx_sg.sgl[1]) -= 4;
564 * bcm2835_spi_undo_prologue() - reconstruct original sglist state
565 * @bs: BCM2835 SPI controller
567 * Undo changes which were made to an SPI transfer's sglist when transmitting
568 * the prologue. This is necessary to ensure the same memory ranges are
569 * unmapped that were originally mapped.
571 static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
573 struct spi_transfer *tfr = bs->tfr;
575 if (!bs->tx_prologue)
578 if (bs->rx_prologue) {
579 sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
580 sg_dma_len(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
586 if (likely(!bs->tx_spillover)) {
587 sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
588 sg_dma_len(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
590 sg_dma_len(&tfr->tx_sg.sgl[0]) = bs->tx_prologue - 4;
591 sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
592 sg_dma_len(&tfr->tx_sg.sgl[1]) += 4;
599 * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
600 * @data: SPI host controller
602 * Used for bidirectional and RX-only transfers.
604 static void bcm2835_spi_dma_rx_done(void *data)
606 struct spi_controller *ctlr = data;
607 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
609 /* terminate tx-dma as we do not have an irq for it
610 * because when the rx dma will terminate and this callback
611 * is called the tx-dma must have finished - can't get to this
612 * situation otherwise...
614 dmaengine_terminate_async(ctlr->dma_tx);
615 bs->tx_dma_active = false;
616 bs->rx_dma_active = false;
617 bcm2835_spi_undo_prologue(bs);
619 /* reset fifo and HW */
620 bcm2835_spi_reset_hw(bs);
622 /* and mark as completed */;
623 spi_finalize_current_transfer(ctlr);
627 * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
628 * @data: SPI host controller
630 * Used for TX-only transfers.
632 static void bcm2835_spi_dma_tx_done(void *data)
634 struct spi_controller *ctlr = data;
635 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
637 /* busy-wait for TX FIFO to empty */
638 while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
639 bcm2835_wr(bs, BCM2835_SPI_CS, bs->target->clear_rx_cs);
641 bs->tx_dma_active = false;
645 * In case of a very short transfer, RX DMA may not have been
646 * issued yet. The onus is then on bcm2835_spi_transfer_one_dma()
647 * to terminate it immediately after issuing.
649 if (cmpxchg(&bs->rx_dma_active, true, false))
650 dmaengine_terminate_async(ctlr->dma_rx);
652 bcm2835_spi_undo_prologue(bs);
653 bcm2835_spi_reset_hw(bs);
654 spi_finalize_current_transfer(ctlr);
658 * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
659 * @ctlr: SPI host controller
661 * @bs: BCM2835 SPI controller
662 * @target: BCM2835 SPI target
663 * @is_tx: whether to submit DMA descriptor for TX or RX sglist
665 * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
666 * Return 0 on success or a negative error number.
668 static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
669 struct spi_transfer *tfr,
670 struct bcm2835_spi *bs,
671 struct bcm2835_spidev *target,
674 struct dma_chan *chan;
675 struct scatterlist *sgl;
677 enum dma_transfer_direction dir;
680 struct dma_async_tx_descriptor *desc;
684 dir = DMA_MEM_TO_DEV;
686 nents = tfr->tx_sg.nents;
687 sgl = tfr->tx_sg.sgl;
688 flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
690 dir = DMA_DEV_TO_MEM;
692 nents = tfr->rx_sg.nents;
693 sgl = tfr->rx_sg.sgl;
694 flags = DMA_PREP_INTERRUPT;
696 /* prepare the channel */
697 desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
702 * Completion is signaled by the RX channel for bidirectional and
703 * RX-only transfers; else by the TX channel for TX-only transfers.
706 desc->callback = bcm2835_spi_dma_rx_done;
707 desc->callback_param = ctlr;
708 } else if (!tfr->rx_buf) {
709 desc->callback = bcm2835_spi_dma_tx_done;
710 desc->callback_param = ctlr;
714 /* submit it to DMA-engine */
715 cookie = dmaengine_submit(desc);
717 return dma_submit_error(cookie);
721 * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
722 * @ctlr: SPI host controller
724 * @target: BCM2835 SPI target
727 * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
728 * the TX and RX DMA channel to copy between memory and FIFO register.
730 * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
731 * memory is pointless. However not reading the RX FIFO isn't an option either
732 * because transmission is halted once it's full. As a workaround, cyclically
733 * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
735 * The CS register value is precalculated in bcm2835_spi_setup(). Normally
736 * this is called only once, on target registration. A DMA descriptor to write
737 * this value is preallocated in bcm2835_dma_init(). All that's left to do
738 * when performing a TX-only transfer is to submit this descriptor to the RX
739 * DMA channel. Latency is thereby minimized. The descriptor does not
740 * generate any interrupts while running. It must be terminated once the
741 * TX DMA channel is done.
743 * Clearing the RX FIFO is paced by the DREQ signal. The signal is asserted
744 * when the RX FIFO becomes half full, i.e. 32 bytes. (Tuneable with the DC
745 * register.) Reading 32 bytes from the RX FIFO would normally require 8 bus
746 * accesses, whereas clearing it requires only 1 bus access. So an 8-fold
747 * reduction in bus traffic and thus energy consumption is achieved.
749 * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
750 * copying from the zero page. The DMA descriptor to do this is preallocated
751 * in bcm2835_dma_init(). It must be terminated once the RX DMA channel is
752 * done and can then be reused.
754 * The BCM2835 DMA driver autodetects when a transaction copies from the zero
755 * page and utilizes the DMA controller's ability to synthesize zeroes instead
756 * of copying them from memory. This reduces traffic on the memory bus. The
757 * feature is not available on so-called "lite" channels, but normally TX DMA
758 * is backed by a full-featured channel.
760 * Zero-filling the TX FIFO is paced by the DREQ signal. Unfortunately the
761 * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
762 * has been counted down to zero (hardware erratum). Thus, when the transfer
763 * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
764 * (Tuneable with the DC register.) So up to 9 gratuitous bus accesses are
765 * performed at the end of an RX-only transfer.
767 static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
768 struct spi_transfer *tfr,
769 struct bcm2835_spidev *target,
772 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
776 /* update usage statistics */
777 bs->count_transfer_dma++;
780 * Transfer first few bytes without DMA if length of first TX or RX
781 * sglist entry is not a multiple of 4 bytes (hardware limitation).
783 bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
787 ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, target, true);
789 cookie = dmaengine_submit(bs->fill_tx_desc);
790 ret = dma_submit_error(cookie);
795 /* set the DMA length */
796 bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
799 bcm2835_wr(bs, BCM2835_SPI_CS,
800 cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
802 bs->tx_dma_active = true;
806 dma_async_issue_pending(ctlr->dma_tx);
808 /* setup rx-DMA late - to run transfers while
809 * mapping of the rx buffers still takes place
810 * this saves 10us or more.
813 ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, target, false);
815 cookie = dmaengine_submit(target->clear_rx_desc);
816 ret = dma_submit_error(cookie);
819 /* need to reset on errors */
820 dmaengine_terminate_sync(ctlr->dma_tx);
821 bs->tx_dma_active = false;
825 /* start rx dma late */
826 dma_async_issue_pending(ctlr->dma_rx);
827 bs->rx_dma_active = true;
831 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
832 * may run before RX DMA is issued. Terminate RX DMA if so.
834 if (!bs->rx_buf && !bs->tx_dma_active &&
835 cmpxchg(&bs->rx_dma_active, true, false)) {
836 dmaengine_terminate_async(ctlr->dma_rx);
837 bcm2835_spi_reset_hw(bs);
840 /* wait for wakeup in framework */
844 bcm2835_spi_reset_hw(bs);
845 bcm2835_spi_undo_prologue(bs);
849 static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
850 struct spi_device *spi,
851 struct spi_transfer *tfr)
853 /* we start DMA efforts only on bigger transfers */
854 if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
861 static void bcm2835_dma_release(struct spi_controller *ctlr,
862 struct bcm2835_spi *bs)
865 dmaengine_terminate_sync(ctlr->dma_tx);
867 if (bs->fill_tx_desc)
868 dmaengine_desc_free(bs->fill_tx_desc);
870 if (bs->fill_tx_addr)
871 dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
872 bs->fill_tx_addr, sizeof(u32),
874 DMA_ATTR_SKIP_CPU_SYNC);
876 dma_release_channel(ctlr->dma_tx);
881 dmaengine_terminate_sync(ctlr->dma_rx);
882 dma_release_channel(ctlr->dma_rx);
887 static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
888 struct bcm2835_spi *bs)
890 struct dma_slave_config slave_config;
894 ctlr->dma_tx = dma_request_chan(dev, "tx");
895 if (IS_ERR(ctlr->dma_tx)) {
896 ret = dev_err_probe(dev, PTR_ERR(ctlr->dma_tx),
897 "no tx-dma configuration found - not using dma mode\n");
901 ctlr->dma_rx = dma_request_chan(dev, "rx");
902 if (IS_ERR(ctlr->dma_rx)) {
903 ret = dev_err_probe(dev, PTR_ERR(ctlr->dma_rx),
904 "no rx-dma configuration found - not using dma mode\n");
910 * The TX DMA channel either copies a transfer's TX buffer to the FIFO
911 * or, in case of an RX-only transfer, cyclically copies from the zero
912 * page to the FIFO using a preallocated, reusable descriptor.
914 slave_config.dst_addr = bs->phys_addr + BCM2835_SPI_FIFO;
915 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
917 ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
921 bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
922 ZERO_PAGE(0), 0, sizeof(u32),
924 DMA_ATTR_SKIP_CPU_SYNC);
925 if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
926 dev_err(dev, "cannot map zero page - not using DMA mode\n");
927 bs->fill_tx_addr = 0;
932 bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
936 if (!bs->fill_tx_desc) {
937 dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
942 ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
944 dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
949 * The RX DMA channel is used bidirectionally: It either reads the
950 * RX FIFO or, in case of a TX-only transfer, cyclically writes a
951 * precalculated value to the CS register to clear the RX FIFO.
953 slave_config.src_addr = bs->phys_addr + BCM2835_SPI_FIFO;
954 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
955 slave_config.dst_addr = bs->phys_addr + BCM2835_SPI_CS;
956 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
958 ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
962 /* all went well, so set can_dma */
963 ctlr->can_dma = bcm2835_spi_can_dma;
968 dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
971 bcm2835_dma_release(ctlr, bs);
974 * Only report error for deferred probing, otherwise fall back to
977 if (ret != -EPROBE_DEFER)
983 static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
984 struct spi_device *spi,
985 struct spi_transfer *tfr,
988 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
989 unsigned long timeout;
991 /* update usage statistics */
992 bs->count_transfer_polling++;
994 /* enable HW block without interrupts */
995 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
997 /* fill in the fifo before timeout calculations
998 * if we are interrupted here, then the data is
999 * getting transferred by the HW while we are interrupted
1001 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
1003 /* set the timeout to at least 2 jiffies */
1004 timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
1006 /* loop until finished the transfer */
1007 while (bs->rx_len) {
1008 /* fill in tx fifo with remaining data */
1009 bcm2835_wr_fifo(bs);
1011 /* read from fifo as much as possible */
1012 bcm2835_rd_fifo(bs);
1014 /* if there is still data pending to read
1015 * then check the timeout
1017 if (bs->rx_len && time_after(jiffies, timeout)) {
1018 dev_dbg_ratelimited(&spi->dev,
1019 "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
1021 bs->tx_len, bs->rx_len);
1022 /* fall back to interrupt mode */
1024 /* update usage statistics */
1025 bs->count_transfer_irq_after_polling++;
1027 return bcm2835_spi_transfer_one_irq(ctlr, spi,
1032 /* Transfer complete - reset SPI HW */
1033 bcm2835_spi_reset_hw(bs);
1034 /* and return without waiting for completion */
1038 static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
1039 struct spi_device *spi,
1040 struct spi_transfer *tfr)
1042 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1043 struct bcm2835_spidev *target = spi_get_ctldata(spi);
1044 unsigned long spi_hz, cdiv;
1045 unsigned long hz_per_byte, byte_limit;
1046 u32 cs = target->prepare_cs;
1048 if (unlikely(!tfr->len)) {
1053 "zero-length SPI transfer ignored\n");
1059 spi_hz = tfr->speed_hz;
1061 if (spi_hz >= bs->clk_hz / 2) {
1062 cdiv = 2; /* clk_hz/2 is the fastest we can go */
1063 } else if (spi_hz) {
1064 /* CDIV must be a multiple of two */
1065 cdiv = DIV_ROUND_UP(bs->clk_hz, spi_hz);
1069 cdiv = 0; /* 0 is the slowest we can go */
1071 cdiv = 0; /* 0 is the slowest we can go */
1073 tfr->effective_speed_hz = cdiv ? (bs->clk_hz / cdiv) : (bs->clk_hz / 65536);
1074 bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
1076 /* handle all the 3-wire mode */
1077 if (spi->mode & SPI_3WIRE && tfr->rx_buf)
1078 cs |= BCM2835_SPI_CS_REN;
1080 /* set transmit buffers and length */
1081 bs->tx_buf = tfr->tx_buf;
1082 bs->rx_buf = tfr->rx_buf;
1083 bs->tx_len = tfr->len;
1084 bs->rx_len = tfr->len;
1086 /* Calculate the estimated time in us the transfer runs. Note that
1087 * there is 1 idle clocks cycles after each byte getting transferred
1088 * so we have 9 cycles/byte. This is used to find the number of Hz
1089 * per byte per polling limit. E.g., we can transfer 1 byte in 30 us
1090 * per 300,000 Hz of bus clock.
1092 hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
1093 byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
1095 /* run in polling mode for short transfers */
1096 if (tfr->len < byte_limit)
1097 return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
1099 /* run in dma mode if conditions are right
1100 * Note that unlike poll or interrupt mode DMA mode does not have
1101 * this 1 idle clock cycle pattern but runs the spi clock without gaps
1103 if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
1104 return bcm2835_spi_transfer_one_dma(ctlr, tfr, target, cs);
1106 /* run in interrupt-mode */
1107 return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
1110 static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
1111 struct spi_message *msg)
1113 struct spi_device *spi = msg->spi;
1114 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1115 struct bcm2835_spidev *target = spi_get_ctldata(spi);
1118 if (ctlr->can_dma) {
1120 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
1121 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
1122 * aligned) if the limit is exceeded.
1124 ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
1125 GFP_KERNEL | GFP_DMA);
1131 * Set up clock polarity before spi_transfer_one_message() asserts
1132 * chip select to avoid a gratuitous clock signal edge.
1134 bcm2835_wr(bs, BCM2835_SPI_CS, target->prepare_cs);
1139 static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
1140 struct spi_message *msg)
1142 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1144 /* if an error occurred and we have an active dma, then terminate */
1146 dmaengine_terminate_sync(ctlr->dma_tx);
1147 bs->tx_dma_active = false;
1150 dmaengine_terminate_sync(ctlr->dma_rx);
1151 bs->rx_dma_active = false;
1153 bcm2835_spi_undo_prologue(bs);
1156 bcm2835_spi_reset_hw(bs);
1159 static int chip_match_name(struct gpio_chip *chip, void *data)
1161 return !strcmp(chip->label, data);
1164 static void bcm2835_spi_cleanup(struct spi_device *spi)
1166 struct bcm2835_spidev *target = spi_get_ctldata(spi);
1167 struct spi_controller *ctlr = spi->controller;
1169 if (target->clear_rx_desc)
1170 dmaengine_desc_free(target->clear_rx_desc);
1172 if (target->clear_rx_addr)
1173 dma_unmap_single(ctlr->dma_rx->device->dev,
1174 target->clear_rx_addr,
1181 static int bcm2835_spi_setup_dma(struct spi_controller *ctlr,
1182 struct spi_device *spi,
1183 struct bcm2835_spi *bs,
1184 struct bcm2835_spidev *target)
1191 target->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
1192 &target->clear_rx_cs,
1195 if (dma_mapping_error(ctlr->dma_rx->device->dev, target->clear_rx_addr)) {
1196 dev_err(&spi->dev, "cannot map clear_rx_cs\n");
1197 target->clear_rx_addr = 0;
1201 target->clear_rx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
1202 target->clear_rx_addr,
1205 if (!target->clear_rx_desc) {
1206 dev_err(&spi->dev, "cannot prepare clear_rx_desc\n");
1210 ret = dmaengine_desc_set_reuse(target->clear_rx_desc);
1212 dev_err(&spi->dev, "cannot reuse clear_rx_desc\n");
1219 static int bcm2835_spi_setup(struct spi_device *spi)
1221 struct spi_controller *ctlr = spi->controller;
1222 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1223 struct bcm2835_spidev *target = spi_get_ctldata(spi);
1224 struct gpio_chip *chip;
1229 target = kzalloc(ALIGN(sizeof(*target), dma_get_cache_alignment()),
1234 spi_set_ctldata(spi, target);
1236 ret = bcm2835_spi_setup_dma(ctlr, spi, bs, target);
1242 * Precalculate SPI target's CS register value for ->prepare_message():
1243 * The driver always uses software-controlled GPIO chip select, hence
1244 * set the hardware-controlled native chip select to an invalid value
1245 * to prevent it from interfering.
1247 cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
1248 if (spi->mode & SPI_CPOL)
1249 cs |= BCM2835_SPI_CS_CPOL;
1250 if (spi->mode & SPI_CPHA)
1251 cs |= BCM2835_SPI_CS_CPHA;
1252 target->prepare_cs = cs;
1255 * Precalculate SPI target's CS register value to clear RX FIFO
1256 * in case of a TX-only DMA transfer.
1259 target->clear_rx_cs = cs | BCM2835_SPI_CS_TA |
1260 BCM2835_SPI_CS_DMAEN |
1261 BCM2835_SPI_CS_CLEAR_RX;
1262 dma_sync_single_for_device(ctlr->dma_rx->device->dev,
1263 target->clear_rx_addr,
1269 * sanity checking the native-chipselects
1271 if (spi->mode & SPI_NO_CS)
1274 * The SPI core has successfully requested the CS GPIO line from the
1275 * device tree, so we are done.
1277 if (spi_get_csgpiod(spi, 0))
1279 if (spi_get_chipselect(spi, 0) > 1) {
1280 /* error in the case of native CS requested with CS > 1
1281 * officially there is a CS2, but it is not documented
1282 * which GPIO is connected with that...
1285 "setup: only two native chip-selects are supported\n");
1291 * Translate native CS to GPIO
1293 * FIXME: poking around in the gpiolib internals like this is
1294 * not very good practice. Find a way to locate the real problem
1295 * and fix it. Why is the GPIO descriptor in spi->cs_gpiod
1296 * sometimes not assigned correctly? Erroneous device trees?
1299 /* get the gpio chip for the base */
1300 chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
1304 spi_set_csgpiod(spi, 0, gpiochip_request_own_desc(chip,
1305 8 - (spi_get_chipselect(spi, 0)),
1307 GPIO_LOOKUP_FLAGS_DEFAULT,
1309 if (IS_ERR(spi_get_csgpiod(spi, 0))) {
1310 ret = PTR_ERR(spi_get_csgpiod(spi, 0));
1314 /* and set up the "mode" and level */
1315 dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
1316 spi_get_chipselect(spi, 0));
1321 bcm2835_spi_cleanup(spi);
1325 static int bcm2835_spi_probe(struct platform_device *pdev)
1327 struct spi_controller *ctlr;
1328 struct bcm2835_spi *bs;
1329 struct resource *iomem;
1332 ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*bs));
1336 platform_set_drvdata(pdev, ctlr);
1338 ctlr->use_gpio_descriptors = true;
1339 ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
1340 ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1341 ctlr->num_chipselect = 3;
1342 ctlr->setup = bcm2835_spi_setup;
1343 ctlr->cleanup = bcm2835_spi_cleanup;
1344 ctlr->transfer_one = bcm2835_spi_transfer_one;
1345 ctlr->handle_err = bcm2835_spi_handle_err;
1346 ctlr->prepare_message = bcm2835_spi_prepare_message;
1347 ctlr->dev.of_node = pdev->dev.of_node;
1349 bs = spi_controller_get_devdata(ctlr);
1352 bs->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &iomem);
1353 if (IS_ERR(bs->regs))
1354 return PTR_ERR(bs->regs);
1356 bs->phys_addr = iomem->start;
1357 bs->clk = devm_clk_get(&pdev->dev, NULL);
1358 if (IS_ERR(bs->clk))
1359 return dev_err_probe(&pdev->dev, PTR_ERR(bs->clk),
1360 "could not get clk\n");
1362 ctlr->max_speed_hz = clk_get_rate(bs->clk) / 2;
1364 bs->irq = platform_get_irq(pdev, 0);
1368 err = clk_prepare_enable(bs->clk);
1371 bs->clk_hz = clk_get_rate(bs->clk);
1373 err = bcm2835_dma_init(ctlr, &pdev->dev, bs);
1375 goto out_clk_disable;
1377 /* initialise the hardware with the default polarities */
1378 bcm2835_wr(bs, BCM2835_SPI_CS,
1379 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1381 err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt,
1382 IRQF_SHARED, dev_name(&pdev->dev), bs);
1384 dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
1385 goto out_dma_release;
1388 err = spi_register_controller(ctlr);
1390 dev_err(&pdev->dev, "could not register SPI controller: %d\n",
1392 goto out_dma_release;
1395 bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
1400 bcm2835_dma_release(ctlr, bs);
1402 clk_disable_unprepare(bs->clk);
1406 static void bcm2835_spi_remove(struct platform_device *pdev)
1408 struct spi_controller *ctlr = platform_get_drvdata(pdev);
1409 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1411 bcm2835_debugfs_remove(bs);
1413 spi_unregister_controller(ctlr);
1415 bcm2835_dma_release(ctlr, bs);
1417 /* Clear FIFOs, and disable the HW block */
1418 bcm2835_wr(bs, BCM2835_SPI_CS,
1419 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1421 clk_disable_unprepare(bs->clk);
1424 static const struct of_device_id bcm2835_spi_match[] = {
1425 { .compatible = "brcm,bcm2835-spi", },
1428 MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
1430 static struct platform_driver bcm2835_spi_driver = {
1433 .of_match_table = bcm2835_spi_match,
1435 .probe = bcm2835_spi_probe,
1436 .remove_new = bcm2835_spi_remove,
1437 .shutdown = bcm2835_spi_remove,
1439 module_platform_driver(bcm2835_spi_driver);
1441 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1442 MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1443 MODULE_LICENSE("GPL");