Merge tag 'sound-6.6-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[platform/kernel/linux-rpi.git] / drivers / spi / spi-bcm-qspi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Broadcom BRCMSTB, NSP,  NS2, Cygnus SPI Controllers
4  *
5  * Copyright 2016 Broadcom
6  */
7
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/device.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/ioport.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/of_irq.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/spi/spi.h>
22 #include <linux/spi/spi-mem.h>
23 #include <linux/sysfs.h>
24 #include <linux/types.h>
25 #include "spi-bcm-qspi.h"
26
27 #define DRIVER_NAME "bcm_qspi"
28
29
30 /* BSPI register offsets */
31 #define BSPI_REVISION_ID                        0x000
32 #define BSPI_SCRATCH                            0x004
33 #define BSPI_MAST_N_BOOT_CTRL                   0x008
34 #define BSPI_BUSY_STATUS                        0x00c
35 #define BSPI_INTR_STATUS                        0x010
36 #define BSPI_B0_STATUS                          0x014
37 #define BSPI_B0_CTRL                            0x018
38 #define BSPI_B1_STATUS                          0x01c
39 #define BSPI_B1_CTRL                            0x020
40 #define BSPI_STRAP_OVERRIDE_CTRL                0x024
41 #define BSPI_FLEX_MODE_ENABLE                   0x028
42 #define BSPI_BITS_PER_CYCLE                     0x02c
43 #define BSPI_BITS_PER_PHASE                     0x030
44 #define BSPI_CMD_AND_MODE_BYTE                  0x034
45 #define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE 0x038
46 #define BSPI_BSPI_XOR_VALUE                     0x03c
47 #define BSPI_BSPI_XOR_ENABLE                    0x040
48 #define BSPI_BSPI_PIO_MODE_ENABLE               0x044
49 #define BSPI_BSPI_PIO_IODIR                     0x048
50 #define BSPI_BSPI_PIO_DATA                      0x04c
51
52 /* RAF register offsets */
53 #define BSPI_RAF_START_ADDR                     0x100
54 #define BSPI_RAF_NUM_WORDS                      0x104
55 #define BSPI_RAF_CTRL                           0x108
56 #define BSPI_RAF_FULLNESS                       0x10c
57 #define BSPI_RAF_WATERMARK                      0x110
58 #define BSPI_RAF_STATUS                 0x114
59 #define BSPI_RAF_READ_DATA                      0x118
60 #define BSPI_RAF_WORD_CNT                       0x11c
61 #define BSPI_RAF_CURR_ADDR                      0x120
62
63 /* Override mode masks */
64 #define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE       BIT(0)
65 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL      BIT(1)
66 #define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE     BIT(2)
67 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD      BIT(3)
68 #define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE    BIT(4)
69
70 #define BSPI_ADDRLEN_3BYTES                     3
71 #define BSPI_ADDRLEN_4BYTES                     4
72
73 #define BSPI_RAF_STATUS_FIFO_EMPTY_MASK BIT(1)
74
75 #define BSPI_RAF_CTRL_START_MASK                BIT(0)
76 #define BSPI_RAF_CTRL_CLEAR_MASK                BIT(1)
77
78 #define BSPI_BPP_MODE_SELECT_MASK               BIT(8)
79 #define BSPI_BPP_ADDR_SELECT_MASK               BIT(16)
80
81 #define BSPI_READ_LENGTH                        256
82
83 /* MSPI register offsets */
84 #define MSPI_SPCR0_LSB                          0x000
85 #define MSPI_SPCR0_MSB                          0x004
86 #define MSPI_SPCR0_MSB_CPHA                     BIT(0)
87 #define MSPI_SPCR0_MSB_CPOL                     BIT(1)
88 #define MSPI_SPCR0_MSB_BITS_SHIFT               0x2
89 #define MSPI_SPCR1_LSB                          0x008
90 #define MSPI_SPCR1_MSB                          0x00c
91 #define MSPI_NEWQP                              0x010
92 #define MSPI_ENDQP                              0x014
93 #define MSPI_SPCR2                              0x018
94 #define MSPI_MSPI_STATUS                        0x020
95 #define MSPI_CPTQP                              0x024
96 #define MSPI_SPCR3                              0x028
97 #define MSPI_REV                                0x02c
98 #define MSPI_TXRAM                              0x040
99 #define MSPI_RXRAM                              0x0c0
100 #define MSPI_CDRAM                              0x140
101 #define MSPI_WRITE_LOCK                 0x180
102
103 #define MSPI_MASTER_BIT                 BIT(7)
104
105 #define MSPI_NUM_CDRAM                          16
106 #define MSPI_CDRAM_OUTP                         BIT(8)
107 #define MSPI_CDRAM_CONT_BIT                     BIT(7)
108 #define MSPI_CDRAM_BITSE_BIT                    BIT(6)
109 #define MSPI_CDRAM_DT_BIT                       BIT(5)
110 #define MSPI_CDRAM_PCS                          0xf
111
112 #define MSPI_SPCR2_SPE                          BIT(6)
113 #define MSPI_SPCR2_CONT_AFTER_CMD               BIT(7)
114
115 #define MSPI_SPCR3_FASTBR                       BIT(0)
116 #define MSPI_SPCR3_FASTDT                       BIT(1)
117 #define MSPI_SPCR3_SYSCLKSEL_MASK               GENMASK(11, 10)
118 #define MSPI_SPCR3_SYSCLKSEL_27                 (MSPI_SPCR3_SYSCLKSEL_MASK & \
119                                                  ~(BIT(10) | BIT(11)))
120 #define MSPI_SPCR3_SYSCLKSEL_108                (MSPI_SPCR3_SYSCLKSEL_MASK & \
121                                                  BIT(11))
122 #define MSPI_SPCR3_TXRXDAM_MASK                 GENMASK(4, 2)
123 #define MSPI_SPCR3_DAM_8BYTE                    0
124 #define MSPI_SPCR3_DAM_16BYTE                   (BIT(2) | BIT(4))
125 #define MSPI_SPCR3_DAM_32BYTE                   (BIT(3) | BIT(5))
126 #define MSPI_SPCR3_HALFDUPLEX                   BIT(6)
127 #define MSPI_SPCR3_HDOUTTYPE                    BIT(7)
128 #define MSPI_SPCR3_DATA_REG_SZ                  BIT(8)
129 #define MSPI_SPCR3_CPHARX                       BIT(9)
130
131 #define MSPI_MSPI_STATUS_SPIF                   BIT(0)
132
133 #define INTR_BASE_BIT_SHIFT                     0x02
134 #define INTR_COUNT                              0x07
135
136 #define NUM_CHIPSELECT                          4
137 #define QSPI_SPBR_MAX                           255U
138 #define MSPI_BASE_FREQ                          27000000UL
139
140 #define OPCODE_DIOR                             0xBB
141 #define OPCODE_QIOR                             0xEB
142 #define OPCODE_DIOR_4B                          0xBC
143 #define OPCODE_QIOR_4B                          0xEC
144
145 #define MAX_CMD_SIZE                            6
146
147 #define ADDR_4MB_MASK                           GENMASK(22, 0)
148
149 /* stop at end of transfer, no other reason */
150 #define TRANS_STATUS_BREAK_NONE         0
151 /* stop at end of spi_message */
152 #define TRANS_STATUS_BREAK_EOM                  1
153 /* stop at end of spi_transfer if delay */
154 #define TRANS_STATUS_BREAK_DELAY                2
155 /* stop at end of spi_transfer if cs_change */
156 #define TRANS_STATUS_BREAK_CS_CHANGE            4
157 /* stop if we run out of bytes */
158 #define TRANS_STATUS_BREAK_NO_BYTES             8
159
160 /* events that make us stop filling TX slots */
161 #define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM |         \
162                                TRANS_STATUS_BREAK_DELAY |               \
163                                TRANS_STATUS_BREAK_CS_CHANGE)
164
165 /* events that make us deassert CS */
166 #define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM |           \
167                                      TRANS_STATUS_BREAK_CS_CHANGE)
168
169 /*
170  * Used for writing and reading data in the right order
171  * to TXRAM and RXRAM when used as 32-bit registers respectively
172  */
173 #define swap4bytes(__val) \
174         ((((__val) >> 24) & 0x000000FF) | (((__val) >>  8) & 0x0000FF00) | \
175          (((__val) <<  8) & 0x00FF0000) | (((__val) << 24) & 0xFF000000))
176
177 struct bcm_qspi_parms {
178         u32 speed_hz;
179         u8 mode;
180         u8 bits_per_word;
181 };
182
183 struct bcm_xfer_mode {
184         bool flex_mode;
185         unsigned int width;
186         unsigned int addrlen;
187         unsigned int hp;
188 };
189
190 enum base_type {
191         MSPI,
192         BSPI,
193         CHIP_SELECT,
194         BASEMAX,
195 };
196
197 enum irq_source {
198         SINGLE_L2,
199         MUXED_L1,
200 };
201
202 struct bcm_qspi_irq {
203         const char *irq_name;
204         const irq_handler_t irq_handler;
205         int irq_source;
206         u32 mask;
207 };
208
209 struct bcm_qspi_dev_id {
210         const struct bcm_qspi_irq *irqp;
211         void *dev;
212 };
213
214
215 struct qspi_trans {
216         struct spi_transfer *trans;
217         int byte;
218         bool mspi_last_trans;
219 };
220
221 struct bcm_qspi {
222         struct platform_device *pdev;
223         struct spi_controller *host;
224         struct clk *clk;
225         u32 base_clk;
226         u32 max_speed_hz;
227         void __iomem *base[BASEMAX];
228
229         /* Some SoCs provide custom interrupt status register(s) */
230         struct bcm_qspi_soc_intc        *soc_intc;
231
232         struct bcm_qspi_parms last_parms;
233         struct qspi_trans  trans_pos;
234         int curr_cs;
235         int bspi_maj_rev;
236         int bspi_min_rev;
237         int bspi_enabled;
238         const struct spi_mem_op *bspi_rf_op;
239         u32 bspi_rf_op_idx;
240         u32 bspi_rf_op_len;
241         u32 bspi_rf_op_status;
242         struct bcm_xfer_mode xfer_mode;
243         u32 s3_strap_override_ctrl;
244         bool bspi_mode;
245         bool big_endian;
246         int num_irqs;
247         struct bcm_qspi_dev_id *dev_ids;
248         struct completion mspi_done;
249         struct completion bspi_done;
250         u8 mspi_maj_rev;
251         u8 mspi_min_rev;
252         bool mspi_spcr3_sysclk;
253 };
254
255 static inline bool has_bspi(struct bcm_qspi *qspi)
256 {
257         return qspi->bspi_mode;
258 }
259
260 /* hardware supports spcr3 and fast baud-rate  */
261 static inline bool bcm_qspi_has_fastbr(struct bcm_qspi *qspi)
262 {
263         if (!has_bspi(qspi) &&
264             ((qspi->mspi_maj_rev >= 1) &&
265              (qspi->mspi_min_rev >= 5)))
266                 return true;
267
268         return false;
269 }
270
271 /* hardware supports sys clk 108Mhz  */
272 static inline bool bcm_qspi_has_sysclk_108(struct bcm_qspi *qspi)
273 {
274         if (!has_bspi(qspi) && (qspi->mspi_spcr3_sysclk ||
275             ((qspi->mspi_maj_rev >= 1) &&
276              (qspi->mspi_min_rev >= 6))))
277                 return true;
278
279         return false;
280 }
281
282 static inline int bcm_qspi_spbr_min(struct bcm_qspi *qspi)
283 {
284         if (bcm_qspi_has_fastbr(qspi))
285                 return (bcm_qspi_has_sysclk_108(qspi) ? 4 : 1);
286         else
287                 return 8;
288 }
289
290 static u32 bcm_qspi_calc_spbr(u32 clk_speed_hz,
291                               const struct bcm_qspi_parms *xp)
292 {
293         u32 spbr = 0;
294
295         /* SPBR = System Clock/(2 * SCK Baud Rate) */
296         if (xp->speed_hz)
297                 spbr = clk_speed_hz / (xp->speed_hz * 2);
298
299         return spbr;
300 }
301
302 /* Read qspi controller register*/
303 static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
304                                 unsigned int offset)
305 {
306         return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
307 }
308
309 /* Write qspi controller register*/
310 static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
311                                   unsigned int offset, unsigned int data)
312 {
313         bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
314 }
315
316 /* BSPI helpers */
317 static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
318 {
319         int i;
320
321         /* this should normally finish within 10us */
322         for (i = 0; i < 1000; i++) {
323                 if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
324                         return 0;
325                 udelay(1);
326         }
327         dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
328         return -EIO;
329 }
330
331 static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
332 {
333         if (qspi->bspi_maj_rev < 4)
334                 return true;
335         return false;
336 }
337
338 static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
339 {
340         bcm_qspi_bspi_busy_poll(qspi);
341         /* Force rising edge for the b0/b1 'flush' field */
342         bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
343         bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
344         bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
345         bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
346 }
347
348 static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
349 {
350         return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
351                                 BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
352 }
353
354 static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
355 {
356         u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
357
358         /* BSPI v3 LR is LE only, convert data to host endianness */
359         if (bcm_qspi_bspi_ver_three(qspi))
360                 data = le32_to_cpu(data);
361
362         return data;
363 }
364
365 static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
366 {
367         bcm_qspi_bspi_busy_poll(qspi);
368         bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
369                        BSPI_RAF_CTRL_START_MASK);
370 }
371
372 static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
373 {
374         bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
375                        BSPI_RAF_CTRL_CLEAR_MASK);
376         bcm_qspi_bspi_flush_prefetch_buffers(qspi);
377 }
378
379 static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
380 {
381         u32 *buf = (u32 *)qspi->bspi_rf_op->data.buf.in;
382         u32 data = 0;
383
384         dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_op,
385                 qspi->bspi_rf_op->data.buf.in, qspi->bspi_rf_op_len);
386         while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
387                 data = bcm_qspi_bspi_lr_read_fifo(qspi);
388                 if (likely(qspi->bspi_rf_op_len >= 4) &&
389                     IS_ALIGNED((uintptr_t)buf, 4)) {
390                         buf[qspi->bspi_rf_op_idx++] = data;
391                         qspi->bspi_rf_op_len -= 4;
392                 } else {
393                         /* Read out remaining bytes, make sure*/
394                         u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_op_idx];
395
396                         data = cpu_to_le32(data);
397                         while (qspi->bspi_rf_op_len) {
398                                 *cbuf++ = (u8)data;
399                                 data >>= 8;
400                                 qspi->bspi_rf_op_len--;
401                         }
402                 }
403         }
404 }
405
406 static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
407                                           int bpp, int bpc, int flex_mode)
408 {
409         bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
410         bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
411         bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
412         bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
413         bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
414 }
415
416 static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
417                                        const struct spi_mem_op *op, int hp)
418 {
419         int bpc = 0, bpp = 0;
420         u8 command = op->cmd.opcode;
421         int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
422         int addrlen = op->addr.nbytes;
423         int flex_mode = 1;
424
425         dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
426                 width, addrlen, hp);
427
428         if (addrlen == BSPI_ADDRLEN_4BYTES)
429                 bpp = BSPI_BPP_ADDR_SELECT_MASK;
430
431         if (op->dummy.nbytes)
432                 bpp |= (op->dummy.nbytes * 8) / op->dummy.buswidth;
433
434         switch (width) {
435         case SPI_NBITS_SINGLE:
436                 if (addrlen == BSPI_ADDRLEN_3BYTES)
437                         /* default mode, does not need flex_cmd */
438                         flex_mode = 0;
439                 break;
440         case SPI_NBITS_DUAL:
441                 bpc = 0x00000001;
442                 if (hp) {
443                         bpc |= 0x00010100; /* address and mode are 2-bit */
444                         bpp = BSPI_BPP_MODE_SELECT_MASK;
445                 }
446                 break;
447         case SPI_NBITS_QUAD:
448                 bpc = 0x00000002;
449                 if (hp) {
450                         bpc |= 0x00020200; /* address and mode are 4-bit */
451                         bpp |= BSPI_BPP_MODE_SELECT_MASK;
452                 }
453                 break;
454         default:
455                 return -EINVAL;
456         }
457
458         bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
459
460         return 0;
461 }
462
463 static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
464                                       const struct spi_mem_op *op, int hp)
465 {
466         int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
467         int addrlen = op->addr.nbytes;
468         u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
469
470         dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
471                 width, addrlen, hp);
472
473         switch (width) {
474         case SPI_NBITS_SINGLE:
475                 /* clear quad/dual mode */
476                 data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
477                           BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
478                 break;
479         case SPI_NBITS_QUAD:
480                 /* clear dual mode and set quad mode */
481                 data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
482                 data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
483                 break;
484         case SPI_NBITS_DUAL:
485                 /* clear quad mode set dual mode */
486                 data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
487                 data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
488                 break;
489         default:
490                 return -EINVAL;
491         }
492
493         if (addrlen == BSPI_ADDRLEN_4BYTES)
494                 /* set 4byte mode*/
495                 data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
496         else
497                 /* clear 4 byte mode */
498                 data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
499
500         /* set the override mode */
501         data |= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
502         bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
503         bcm_qspi_bspi_set_xfer_params(qspi, op->cmd.opcode, 0, 0, 0);
504
505         return 0;
506 }
507
508 static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
509                                   const struct spi_mem_op *op, int hp)
510 {
511         int error = 0;
512         int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
513         int addrlen = op->addr.nbytes;
514
515         /* default mode */
516         qspi->xfer_mode.flex_mode = true;
517
518         if (!bcm_qspi_bspi_ver_three(qspi)) {
519                 u32 val, mask;
520
521                 val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
522                 mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
523                 if (val & mask || qspi->s3_strap_override_ctrl & mask) {
524                         qspi->xfer_mode.flex_mode = false;
525                         bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
526                         error = bcm_qspi_bspi_set_override(qspi, op, hp);
527                 }
528         }
529
530         if (qspi->xfer_mode.flex_mode)
531                 error = bcm_qspi_bspi_set_flex_mode(qspi, op, hp);
532
533         if (error) {
534                 dev_warn(&qspi->pdev->dev,
535                          "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
536                          width, addrlen, hp);
537         } else if (qspi->xfer_mode.width != width ||
538                    qspi->xfer_mode.addrlen != addrlen ||
539                    qspi->xfer_mode.hp != hp) {
540                 qspi->xfer_mode.width = width;
541                 qspi->xfer_mode.addrlen = addrlen;
542                 qspi->xfer_mode.hp = hp;
543                 dev_dbg(&qspi->pdev->dev,
544                         "cs:%d %d-lane output, %d-byte address%s\n",
545                         qspi->curr_cs,
546                         qspi->xfer_mode.width,
547                         qspi->xfer_mode.addrlen,
548                         qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
549         }
550
551         return error;
552 }
553
554 static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
555 {
556         if (!has_bspi(qspi))
557                 return;
558
559         qspi->bspi_enabled = 1;
560         if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
561                 return;
562
563         bcm_qspi_bspi_flush_prefetch_buffers(qspi);
564         udelay(1);
565         bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
566         udelay(1);
567 }
568
569 static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
570 {
571         if (!has_bspi(qspi))
572                 return;
573
574         qspi->bspi_enabled = 0;
575         if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
576                 return;
577
578         bcm_qspi_bspi_busy_poll(qspi);
579         bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
580         udelay(1);
581 }
582
583 static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
584 {
585         u32 rd = 0;
586         u32 wr = 0;
587
588         if (cs >= 0 && qspi->base[CHIP_SELECT]) {
589                 rd = bcm_qspi_read(qspi, CHIP_SELECT, 0);
590                 wr = (rd & ~0xff) | (1 << cs);
591                 if (rd == wr)
592                         return;
593                 bcm_qspi_write(qspi, CHIP_SELECT, 0, wr);
594                 usleep_range(10, 20);
595         }
596
597         dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs);
598         qspi->curr_cs = cs;
599 }
600
601 static bool bcmspi_parms_did_change(const struct bcm_qspi_parms * const cur,
602                                     const struct bcm_qspi_parms * const prev)
603 {
604         return (cur->speed_hz != prev->speed_hz) ||
605                 (cur->mode != prev->mode) ||
606                 (cur->bits_per_word != prev->bits_per_word);
607 }
608
609
610 /* MSPI helpers */
611 static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
612                                   const struct bcm_qspi_parms *xp)
613 {
614         u32 spcr, spbr = 0;
615
616         if (!bcmspi_parms_did_change(xp, &qspi->last_parms))
617                 return;
618
619         if (!qspi->mspi_maj_rev)
620                 /* legacy controller */
621                 spcr = MSPI_MASTER_BIT;
622         else
623                 spcr = 0;
624
625         /*
626          * Bits per transfer.  BITS determines the number of data bits
627          * transferred if the command control bit (BITSE of a
628          * CDRAM Register) is equal to 1.
629          * If CDRAM BITSE is equal to 0, 8 data bits are transferred
630          * regardless
631          */
632         if (xp->bits_per_word != 16 && xp->bits_per_word != 64)
633                 spcr |= xp->bits_per_word << MSPI_SPCR0_MSB_BITS_SHIFT;
634
635         spcr |= xp->mode & (MSPI_SPCR0_MSB_CPHA | MSPI_SPCR0_MSB_CPOL);
636         bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
637
638         if (bcm_qspi_has_fastbr(qspi)) {
639                 spcr = 0;
640
641                 /* enable fastbr */
642                 spcr |= MSPI_SPCR3_FASTBR;
643
644                 if (xp->mode & SPI_3WIRE)
645                         spcr |= MSPI_SPCR3_HALFDUPLEX |  MSPI_SPCR3_HDOUTTYPE;
646
647                 if (bcm_qspi_has_sysclk_108(qspi)) {
648                         /* check requested baud rate before moving to 108Mhz */
649                         spbr = bcm_qspi_calc_spbr(MSPI_BASE_FREQ * 4, xp);
650                         if (spbr > QSPI_SPBR_MAX) {
651                                 /* use SYSCLK_27Mhz for slower baud rates */
652                                 spcr &= ~MSPI_SPCR3_SYSCLKSEL_MASK;
653                                 qspi->base_clk = MSPI_BASE_FREQ;
654                         } else {
655                                 /* SYSCLK_108Mhz */
656                                 spcr |= MSPI_SPCR3_SYSCLKSEL_108;
657                                 qspi->base_clk = MSPI_BASE_FREQ * 4;
658                         }
659                 }
660
661                 if (xp->bits_per_word > 16) {
662                         /* data_reg_size 1 (64bit) */
663                         spcr |= MSPI_SPCR3_DATA_REG_SZ;
664                         /* TxRx RAM data access mode 2 for 32B and set fastdt */
665                         spcr |= MSPI_SPCR3_DAM_32BYTE  | MSPI_SPCR3_FASTDT;
666                         /*
667                          *  Set length of delay after transfer
668                          *  DTL from 0(256) to 1
669                          */
670                         bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 1);
671                 } else {
672                         /* data_reg_size[8] = 0 */
673                         spcr &= ~(MSPI_SPCR3_DATA_REG_SZ);
674
675                         /*
676                          * TxRx RAM access mode 8B
677                          * and disable fastdt
678                          */
679                         spcr &= ~(MSPI_SPCR3_DAM_32BYTE);
680                 }
681                 bcm_qspi_write(qspi, MSPI, MSPI_SPCR3, spcr);
682         }
683
684         /* SCK Baud Rate = System Clock/(2 * SPBR) */
685         qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2);
686         spbr = bcm_qspi_calc_spbr(qspi->base_clk, xp);
687         spbr = clamp_val(spbr, bcm_qspi_spbr_min(qspi), QSPI_SPBR_MAX);
688         bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spbr);
689
690         qspi->last_parms = *xp;
691 }
692
693 static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
694                                   struct spi_device *spi,
695                                   struct spi_transfer *trans)
696 {
697         struct bcm_qspi_parms xp;
698
699         xp.speed_hz = trans->speed_hz;
700         xp.bits_per_word = trans->bits_per_word;
701         xp.mode = spi->mode;
702
703         bcm_qspi_hw_set_parms(qspi, &xp);
704 }
705
706 static int bcm_qspi_setup(struct spi_device *spi)
707 {
708         struct bcm_qspi_parms *xp;
709
710         if (spi->bits_per_word > 64)
711                 return -EINVAL;
712
713         xp = spi_get_ctldata(spi);
714         if (!xp) {
715                 xp = kzalloc(sizeof(*xp), GFP_KERNEL);
716                 if (!xp)
717                         return -ENOMEM;
718                 spi_set_ctldata(spi, xp);
719         }
720         xp->speed_hz = spi->max_speed_hz;
721         xp->mode = spi->mode;
722
723         if (spi->bits_per_word)
724                 xp->bits_per_word = spi->bits_per_word;
725         else
726                 xp->bits_per_word = 8;
727
728         return 0;
729 }
730
731 static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
732                                            struct qspi_trans *qt)
733 {
734         if (qt->mspi_last_trans &&
735             spi_transfer_is_last(qspi->host, qt->trans))
736                 return true;
737         else
738                 return false;
739 }
740
741 static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
742                                         struct qspi_trans *qt, int flags)
743 {
744         int ret = TRANS_STATUS_BREAK_NONE;
745
746         /* count the last transferred bytes */
747         if (qt->trans->bits_per_word <= 8)
748                 qt->byte++;
749         else if (qt->trans->bits_per_word <= 16)
750                 qt->byte += 2;
751         else if (qt->trans->bits_per_word <= 32)
752                 qt->byte += 4;
753         else if (qt->trans->bits_per_word <= 64)
754                 qt->byte += 8;
755
756         if (qt->byte >= qt->trans->len) {
757                 /* we're at the end of the spi_transfer */
758                 /* in TX mode, need to pause for a delay or CS change */
759                 if (qt->trans->delay.value &&
760                     (flags & TRANS_STATUS_BREAK_DELAY))
761                         ret |= TRANS_STATUS_BREAK_DELAY;
762                 if (qt->trans->cs_change &&
763                     (flags & TRANS_STATUS_BREAK_CS_CHANGE))
764                         ret |= TRANS_STATUS_BREAK_CS_CHANGE;
765
766                 if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
767                         ret |= TRANS_STATUS_BREAK_EOM;
768                 else
769                         ret |= TRANS_STATUS_BREAK_NO_BYTES;
770
771                 qt->trans = NULL;
772         }
773
774         dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
775                 qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
776         return ret;
777 }
778
779 static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
780 {
781         u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
782
783         /* mask out reserved bits */
784         return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
785 }
786
787 static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
788 {
789         u32 reg_offset = MSPI_RXRAM;
790         u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
791         u32 msb_offset = reg_offset + (slot << 3);
792
793         return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
794                 ((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
795 }
796
797 static inline u32 read_rxram_slot_u32(struct bcm_qspi *qspi, int slot)
798 {
799         u32 reg_offset = MSPI_RXRAM;
800         u32 offset = reg_offset + (slot << 3);
801         u32 val;
802
803         val = bcm_qspi_read(qspi, MSPI, offset);
804         val = swap4bytes(val);
805
806         return val;
807 }
808
809 static inline u64 read_rxram_slot_u64(struct bcm_qspi *qspi, int slot)
810 {
811         u32 reg_offset = MSPI_RXRAM;
812         u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
813         u32 msb_offset = reg_offset + (slot << 3);
814         u32 msb, lsb;
815
816         msb = bcm_qspi_read(qspi, MSPI, msb_offset);
817         msb = swap4bytes(msb);
818         lsb = bcm_qspi_read(qspi, MSPI, lsb_offset);
819         lsb = swap4bytes(lsb);
820
821         return ((u64)msb << 32 | lsb);
822 }
823
824 static void read_from_hw(struct bcm_qspi *qspi, int slots)
825 {
826         struct qspi_trans tp;
827         int slot;
828
829         bcm_qspi_disable_bspi(qspi);
830
831         if (slots > MSPI_NUM_CDRAM) {
832                 /* should never happen */
833                 dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
834                 return;
835         }
836
837         tp = qspi->trans_pos;
838
839         for (slot = 0; slot < slots; slot++) {
840                 if (tp.trans->bits_per_word <= 8) {
841                         u8 *buf = tp.trans->rx_buf;
842
843                         if (buf)
844                                 buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
845                         dev_dbg(&qspi->pdev->dev, "RD %02x\n",
846                                 buf ? buf[tp.byte] : 0x0);
847                 } else if (tp.trans->bits_per_word <= 16) {
848                         u16 *buf = tp.trans->rx_buf;
849
850                         if (buf)
851                                 buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
852                                                                       slot);
853                         dev_dbg(&qspi->pdev->dev, "RD %04x\n",
854                                 buf ? buf[tp.byte / 2] : 0x0);
855                 } else if (tp.trans->bits_per_word <= 32) {
856                         u32 *buf = tp.trans->rx_buf;
857
858                         if (buf)
859                                 buf[tp.byte / 4] = read_rxram_slot_u32(qspi,
860                                                                       slot);
861                         dev_dbg(&qspi->pdev->dev, "RD %08x\n",
862                                 buf ? buf[tp.byte / 4] : 0x0);
863
864                 } else if (tp.trans->bits_per_word <= 64) {
865                         u64 *buf = tp.trans->rx_buf;
866
867                         if (buf)
868                                 buf[tp.byte / 8] = read_rxram_slot_u64(qspi,
869                                                                       slot);
870                         dev_dbg(&qspi->pdev->dev, "RD %llx\n",
871                                 buf ? buf[tp.byte / 8] : 0x0);
872
873
874                 }
875
876                 update_qspi_trans_byte_count(qspi, &tp,
877                                              TRANS_STATUS_BREAK_NONE);
878         }
879
880         qspi->trans_pos = tp;
881 }
882
883 static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
884                                        u8 val)
885 {
886         u32 reg_offset = MSPI_TXRAM + (slot << 3);
887
888         /* mask out reserved bits */
889         bcm_qspi_write(qspi, MSPI, reg_offset, val);
890 }
891
892 static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
893                                         u16 val)
894 {
895         u32 reg_offset = MSPI_TXRAM;
896         u32 msb_offset = reg_offset + (slot << 3);
897         u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
898
899         bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
900         bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
901 }
902
903 static inline void write_txram_slot_u32(struct bcm_qspi *qspi, int slot,
904                                         u32 val)
905 {
906         u32 reg_offset = MSPI_TXRAM;
907         u32 msb_offset = reg_offset + (slot << 3);
908
909         bcm_qspi_write(qspi, MSPI, msb_offset, swap4bytes(val));
910 }
911
912 static inline void write_txram_slot_u64(struct bcm_qspi *qspi, int slot,
913                                         u64 val)
914 {
915         u32 reg_offset = MSPI_TXRAM;
916         u32 msb_offset = reg_offset + (slot << 3);
917         u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
918         u32 msb = upper_32_bits(val);
919         u32 lsb = lower_32_bits(val);
920
921         bcm_qspi_write(qspi, MSPI, msb_offset, swap4bytes(msb));
922         bcm_qspi_write(qspi, MSPI, lsb_offset, swap4bytes(lsb));
923 }
924
925 static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
926 {
927         return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
928 }
929
930 static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
931 {
932         bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
933 }
934
935 /* Return number of slots written */
936 static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
937 {
938         struct qspi_trans tp;
939         int slot = 0, tstatus = 0;
940         u32 mspi_cdram = 0;
941
942         bcm_qspi_disable_bspi(qspi);
943         tp = qspi->trans_pos;
944         bcm_qspi_update_parms(qspi, spi, tp.trans);
945
946         /* Run until end of transfer or reached the max data */
947         while (!tstatus && slot < MSPI_NUM_CDRAM) {
948                 mspi_cdram = MSPI_CDRAM_CONT_BIT;
949                 if (tp.trans->bits_per_word <= 8) {
950                         const u8 *buf = tp.trans->tx_buf;
951                         u8 val = buf ? buf[tp.byte] : 0x00;
952
953                         write_txram_slot_u8(qspi, slot, val);
954                         dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
955                 } else if (tp.trans->bits_per_word <= 16) {
956                         const u16 *buf = tp.trans->tx_buf;
957                         u16 val = buf ? buf[tp.byte / 2] : 0x0000;
958
959                         write_txram_slot_u16(qspi, slot, val);
960                         dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
961                 } else if (tp.trans->bits_per_word <= 32) {
962                         const u32 *buf = tp.trans->tx_buf;
963                         u32 val = buf ? buf[tp.byte/4] : 0x0;
964
965                         write_txram_slot_u32(qspi, slot, val);
966                         dev_dbg(&qspi->pdev->dev, "WR %08x\n", val);
967                 } else if (tp.trans->bits_per_word <= 64) {
968                         const u64 *buf = tp.trans->tx_buf;
969                         u64 val = (buf ? buf[tp.byte/8] : 0x0);
970
971                         /* use the length of delay from SPCR1_LSB */
972                         if (bcm_qspi_has_fastbr(qspi))
973                                 mspi_cdram |= MSPI_CDRAM_DT_BIT;
974
975                         write_txram_slot_u64(qspi, slot, val);
976                         dev_dbg(&qspi->pdev->dev, "WR %llx\n", val);
977                 }
978
979                 mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
980                                MSPI_CDRAM_BITSE_BIT);
981
982                 /* set 3wrire halfduplex mode data from host to target */
983                 if ((spi->mode & SPI_3WIRE) && tp.trans->tx_buf)
984                         mspi_cdram |= MSPI_CDRAM_OUTP;
985
986                 if (has_bspi(qspi))
987                         mspi_cdram &= ~1;
988                 else
989                         mspi_cdram |= (~(1 << spi_get_chipselect(spi, 0)) &
990                                        MSPI_CDRAM_PCS);
991
992                 write_cdram_slot(qspi, slot, mspi_cdram);
993
994                 tstatus = update_qspi_trans_byte_count(qspi, &tp,
995                                                        TRANS_STATUS_BREAK_TX);
996                 slot++;
997         }
998
999         if (!slot) {
1000                 dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
1001                 goto done;
1002         }
1003
1004         dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
1005         bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1006         bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
1007
1008         /*
1009          *  case 1) EOM =1, cs_change =0: SSb inactive
1010          *  case 2) EOM =1, cs_change =1: SSb stay active
1011          *  case 3) EOM =0, cs_change =0: SSb stay active
1012          *  case 4) EOM =0, cs_change =1: SSb inactive
1013          */
1014         if (((tstatus & TRANS_STATUS_BREAK_DESELECT)
1015              == TRANS_STATUS_BREAK_CS_CHANGE) ||
1016             ((tstatus & TRANS_STATUS_BREAK_DESELECT)
1017              == TRANS_STATUS_BREAK_EOM)) {
1018                 mspi_cdram = read_cdram_slot(qspi, slot - 1) &
1019                         ~MSPI_CDRAM_CONT_BIT;
1020                 write_cdram_slot(qspi, slot - 1, mspi_cdram);
1021         }
1022
1023         if (has_bspi(qspi))
1024                 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
1025
1026         /* Must flush previous writes before starting MSPI operation */
1027         mb();
1028         /* Set cont | spe | spifie */
1029         bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
1030
1031 done:
1032         return slot;
1033 }
1034
1035 static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi,
1036                                      const struct spi_mem_op *op)
1037 {
1038         struct bcm_qspi *qspi = spi_controller_get_devdata(spi->controller);
1039         u32 addr = 0, len, rdlen, len_words, from = 0;
1040         int ret = 0;
1041         unsigned long timeo = msecs_to_jiffies(100);
1042         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1043
1044         if (bcm_qspi_bspi_ver_three(qspi))
1045                 if (op->addr.nbytes == BSPI_ADDRLEN_4BYTES)
1046                         return -EIO;
1047
1048         from = op->addr.val;
1049         if (!spi_get_csgpiod(spi, 0))
1050                 bcm_qspi_chip_select(qspi, spi_get_chipselect(spi, 0));
1051         bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1052
1053         /*
1054          * when using flex mode we need to send
1055          * the upper address byte to bspi
1056          */
1057         if (!bcm_qspi_bspi_ver_three(qspi)) {
1058                 addr = from & 0xff000000;
1059                 bcm_qspi_write(qspi, BSPI,
1060                                BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
1061         }
1062
1063         if (!qspi->xfer_mode.flex_mode)
1064                 addr = from;
1065         else
1066                 addr = from & 0x00ffffff;
1067
1068         if (bcm_qspi_bspi_ver_three(qspi) == true)
1069                 addr = (addr + 0xc00000) & 0xffffff;
1070
1071         /*
1072          * read into the entire buffer by breaking the reads
1073          * into RAF buffer read lengths
1074          */
1075         len = op->data.nbytes;
1076         qspi->bspi_rf_op_idx = 0;
1077
1078         do {
1079                 if (len > BSPI_READ_LENGTH)
1080                         rdlen = BSPI_READ_LENGTH;
1081                 else
1082                         rdlen = len;
1083
1084                 reinit_completion(&qspi->bspi_done);
1085                 bcm_qspi_enable_bspi(qspi);
1086                 len_words = (rdlen + 3) >> 2;
1087                 qspi->bspi_rf_op = op;
1088                 qspi->bspi_rf_op_status = 0;
1089                 qspi->bspi_rf_op_len = rdlen;
1090                 dev_dbg(&qspi->pdev->dev,
1091                         "bspi xfr addr 0x%x len 0x%x", addr, rdlen);
1092                 bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
1093                 bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
1094                 bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
1095                 if (qspi->soc_intc) {
1096                         /*
1097                          * clear soc MSPI and BSPI interrupts and enable
1098                          * BSPI interrupts.
1099                          */
1100                         soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
1101                         soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
1102                 }
1103
1104                 /* Must flush previous writes before starting BSPI operation */
1105                 mb();
1106                 bcm_qspi_bspi_lr_start(qspi);
1107                 if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
1108                         dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
1109                         ret = -ETIMEDOUT;
1110                         break;
1111                 }
1112
1113                 /* set msg return length */
1114                 addr += rdlen;
1115                 len -= rdlen;
1116         } while (len);
1117
1118         return ret;
1119 }
1120
1121 static int bcm_qspi_transfer_one(struct spi_controller *host,
1122                                  struct spi_device *spi,
1123                                  struct spi_transfer *trans)
1124 {
1125         struct bcm_qspi *qspi = spi_controller_get_devdata(host);
1126         int slots;
1127         unsigned long timeo = msecs_to_jiffies(100);
1128
1129         if (!spi_get_csgpiod(spi, 0))
1130                 bcm_qspi_chip_select(qspi, spi_get_chipselect(spi, 0));
1131         qspi->trans_pos.trans = trans;
1132         qspi->trans_pos.byte = 0;
1133
1134         while (qspi->trans_pos.byte < trans->len) {
1135                 reinit_completion(&qspi->mspi_done);
1136
1137                 slots = write_to_hw(qspi, spi);
1138                 if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
1139                         dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
1140                         return -ETIMEDOUT;
1141                 }
1142
1143                 read_from_hw(qspi, slots);
1144         }
1145         bcm_qspi_enable_bspi(qspi);
1146
1147         return 0;
1148 }
1149
1150 static int bcm_qspi_mspi_exec_mem_op(struct spi_device *spi,
1151                                      const struct spi_mem_op *op)
1152 {
1153         struct spi_controller *host = spi->controller;
1154         struct bcm_qspi *qspi = spi_controller_get_devdata(host);
1155         struct spi_transfer t[2];
1156         u8 cmd[6] = { };
1157         int ret, i;
1158
1159         memset(cmd, 0, sizeof(cmd));
1160         memset(t, 0, sizeof(t));
1161
1162         /* tx */
1163         /* opcode is in cmd[0] */
1164         cmd[0] = op->cmd.opcode;
1165         for (i = 0; i < op->addr.nbytes; i++)
1166                 cmd[1 + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
1167
1168         t[0].tx_buf = cmd;
1169         t[0].len = op->addr.nbytes + op->dummy.nbytes + 1;
1170         t[0].bits_per_word = spi->bits_per_word;
1171         t[0].tx_nbits = op->cmd.buswidth;
1172         /* lets mspi know that this is not last transfer */
1173         qspi->trans_pos.mspi_last_trans = false;
1174         ret = bcm_qspi_transfer_one(host, spi, &t[0]);
1175
1176         /* rx */
1177         qspi->trans_pos.mspi_last_trans = true;
1178         if (!ret) {
1179                 /* rx */
1180                 t[1].rx_buf = op->data.buf.in;
1181                 t[1].len = op->data.nbytes;
1182                 t[1].rx_nbits =  op->data.buswidth;
1183                 t[1].bits_per_word = spi->bits_per_word;
1184                 ret = bcm_qspi_transfer_one(host, spi, &t[1]);
1185         }
1186
1187         return ret;
1188 }
1189
1190 static int bcm_qspi_exec_mem_op(struct spi_mem *mem,
1191                                 const struct spi_mem_op *op)
1192 {
1193         struct spi_device *spi = mem->spi;
1194         struct bcm_qspi *qspi = spi_controller_get_devdata(spi->controller);
1195         int ret = 0;
1196         bool mspi_read = false;
1197         u32 addr = 0, len;
1198         u_char *buf;
1199
1200         if (!op->data.nbytes || !op->addr.nbytes || op->addr.nbytes > 4 ||
1201             op->data.dir != SPI_MEM_DATA_IN)
1202                 return -ENOTSUPP;
1203
1204         buf = op->data.buf.in;
1205         addr = op->addr.val;
1206         len = op->data.nbytes;
1207
1208         if (has_bspi(qspi) && bcm_qspi_bspi_ver_three(qspi) == true) {
1209                 /*
1210                  * The address coming into this function is a raw flash offset.
1211                  * But for BSPI <= V3, we need to convert it to a remapped BSPI
1212                  * address. If it crosses a 4MB boundary, just revert back to
1213                  * using MSPI.
1214                  */
1215                 addr = (addr + 0xc00000) & 0xffffff;
1216
1217                 if ((~ADDR_4MB_MASK & addr) ^
1218                     (~ADDR_4MB_MASK & (addr + len - 1)))
1219                         mspi_read = true;
1220         }
1221
1222         /* non-aligned and very short transfers are handled by MSPI */
1223         if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
1224             len < 4)
1225                 mspi_read = true;
1226
1227         if (!has_bspi(qspi) || mspi_read)
1228                 return bcm_qspi_mspi_exec_mem_op(spi, op);
1229
1230         ret = bcm_qspi_bspi_set_mode(qspi, op, 0);
1231
1232         if (!ret)
1233                 ret = bcm_qspi_bspi_exec_mem_op(spi, op);
1234
1235         return ret;
1236 }
1237
1238 static void bcm_qspi_cleanup(struct spi_device *spi)
1239 {
1240         struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
1241
1242         kfree(xp);
1243 }
1244
1245 static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
1246 {
1247         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1248         struct bcm_qspi *qspi = qspi_dev_id->dev;
1249         u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1250
1251         if (status & MSPI_MSPI_STATUS_SPIF) {
1252                 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1253                 /* clear interrupt */
1254                 status &= ~MSPI_MSPI_STATUS_SPIF;
1255                 bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
1256                 if (qspi->soc_intc)
1257                         soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
1258                 complete(&qspi->mspi_done);
1259                 return IRQ_HANDLED;
1260         }
1261
1262         return IRQ_NONE;
1263 }
1264
1265 static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
1266 {
1267         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1268         struct bcm_qspi *qspi = qspi_dev_id->dev;
1269         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1270         u32 status = qspi_dev_id->irqp->mask;
1271
1272         if (qspi->bspi_enabled && qspi->bspi_rf_op) {
1273                 bcm_qspi_bspi_lr_data_read(qspi);
1274                 if (qspi->bspi_rf_op_len == 0) {
1275                         qspi->bspi_rf_op = NULL;
1276                         if (qspi->soc_intc) {
1277                                 /* disable soc BSPI interrupt */
1278                                 soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1279                                                            false);
1280                                 /* indicate done */
1281                                 status = INTR_BSPI_LR_SESSION_DONE_MASK;
1282                         }
1283
1284                         if (qspi->bspi_rf_op_status)
1285                                 bcm_qspi_bspi_lr_clear(qspi);
1286                         else
1287                                 bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1288                 }
1289
1290                 if (qspi->soc_intc)
1291                         /* clear soc BSPI interrupt */
1292                         soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1293         }
1294
1295         status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1296         if (qspi->bspi_enabled && status && qspi->bspi_rf_op_len == 0)
1297                 complete(&qspi->bspi_done);
1298
1299         return IRQ_HANDLED;
1300 }
1301
1302 static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1303 {
1304         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1305         struct bcm_qspi *qspi = qspi_dev_id->dev;
1306         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1307
1308         dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1309         qspi->bspi_rf_op_status = -EIO;
1310         if (qspi->soc_intc)
1311                 /* clear soc interrupt */
1312                 soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1313
1314         complete(&qspi->bspi_done);
1315         return IRQ_HANDLED;
1316 }
1317
1318 static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1319 {
1320         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1321         struct bcm_qspi *qspi = qspi_dev_id->dev;
1322         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1323         irqreturn_t ret = IRQ_NONE;
1324
1325         if (soc_intc) {
1326                 u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1327
1328                 if (status & MSPI_DONE)
1329                         ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1330                 else if (status & BSPI_DONE)
1331                         ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1332                 else if (status & BSPI_ERR)
1333                         ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1334         }
1335
1336         return ret;
1337 }
1338
1339 static const struct bcm_qspi_irq qspi_irq_tab[] = {
1340         {
1341                 .irq_name = "spi_lr_fullness_reached",
1342                 .irq_handler = bcm_qspi_bspi_lr_l2_isr,
1343                 .mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1344         },
1345         {
1346                 .irq_name = "spi_lr_session_aborted",
1347                 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1348                 .mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1349         },
1350         {
1351                 .irq_name = "spi_lr_impatient",
1352                 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1353                 .mask = INTR_BSPI_LR_IMPATIENT_MASK,
1354         },
1355         {
1356                 .irq_name = "spi_lr_session_done",
1357                 .irq_handler = bcm_qspi_bspi_lr_l2_isr,
1358                 .mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1359         },
1360 #ifdef QSPI_INT_DEBUG
1361         /* this interrupt is for debug purposes only, dont request irq */
1362         {
1363                 .irq_name = "spi_lr_overread",
1364                 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1365                 .mask = INTR_BSPI_LR_OVERREAD_MASK,
1366         },
1367 #endif
1368         {
1369                 .irq_name = "mspi_done",
1370                 .irq_handler = bcm_qspi_mspi_l2_isr,
1371                 .mask = INTR_MSPI_DONE_MASK,
1372         },
1373         {
1374                 .irq_name = "mspi_halted",
1375                 .irq_handler = bcm_qspi_mspi_l2_isr,
1376                 .mask = INTR_MSPI_HALTED_MASK,
1377         },
1378         {
1379                 /* single muxed L1 interrupt source */
1380                 .irq_name = "spi_l1_intr",
1381                 .irq_handler = bcm_qspi_l1_isr,
1382                 .irq_source = MUXED_L1,
1383                 .mask = QSPI_INTERRUPTS_ALL,
1384         },
1385 };
1386
1387 static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1388 {
1389         u32 val = 0;
1390
1391         val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1392         qspi->bspi_maj_rev = (val >> 8) & 0xff;
1393         qspi->bspi_min_rev = val & 0xff;
1394         if (!(bcm_qspi_bspi_ver_three(qspi))) {
1395                 /* Force mapping of BSPI address -> flash offset */
1396                 bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1397                 bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1398         }
1399         qspi->bspi_enabled = 1;
1400         bcm_qspi_disable_bspi(qspi);
1401         bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1402         bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1403 }
1404
1405 static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1406 {
1407         struct bcm_qspi_parms parms;
1408
1409         bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1410         bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1411         bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1412         bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1413         bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1414
1415         parms.mode = SPI_MODE_3;
1416         parms.bits_per_word = 8;
1417         parms.speed_hz = qspi->max_speed_hz;
1418         bcm_qspi_hw_set_parms(qspi, &parms);
1419
1420         if (has_bspi(qspi))
1421                 bcm_qspi_bspi_init(qspi);
1422 }
1423
1424 static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1425 {
1426         u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1427
1428         bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1429         if (has_bspi(qspi))
1430                 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1431
1432         /* clear interrupt */
1433         bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status & ~1);
1434 }
1435
1436 static const struct spi_controller_mem_ops bcm_qspi_mem_ops = {
1437         .exec_op = bcm_qspi_exec_mem_op,
1438 };
1439
1440 struct bcm_qspi_data {
1441         bool    has_mspi_rev;
1442         bool    has_spcr3_sysclk;
1443 };
1444
1445 static const struct bcm_qspi_data bcm_qspi_no_rev_data = {
1446         .has_mspi_rev   = false,
1447         .has_spcr3_sysclk = false,
1448 };
1449
1450 static const struct bcm_qspi_data bcm_qspi_rev_data = {
1451         .has_mspi_rev   = true,
1452         .has_spcr3_sysclk = false,
1453 };
1454
1455 static const struct bcm_qspi_data bcm_qspi_spcr3_data = {
1456         .has_mspi_rev   = true,
1457         .has_spcr3_sysclk = true,
1458 };
1459
1460 static const struct of_device_id bcm_qspi_of_match[] __maybe_unused = {
1461         {
1462                 .compatible = "brcm,spi-bcm7445-qspi",
1463                 .data = &bcm_qspi_rev_data,
1464
1465         },
1466         {
1467                 .compatible = "brcm,spi-bcm-qspi",
1468                 .data = &bcm_qspi_no_rev_data,
1469         },
1470         {
1471                 .compatible = "brcm,spi-bcm7216-qspi",
1472                 .data = &bcm_qspi_spcr3_data,
1473         },
1474         {
1475                 .compatible = "brcm,spi-bcm7278-qspi",
1476                 .data = &bcm_qspi_spcr3_data,
1477         },
1478         {},
1479 };
1480 MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1481
1482 int bcm_qspi_probe(struct platform_device *pdev,
1483                    struct bcm_qspi_soc_intc *soc_intc)
1484 {
1485         const struct of_device_id *of_id = NULL;
1486         const struct bcm_qspi_data *data;
1487         struct device *dev = &pdev->dev;
1488         struct bcm_qspi *qspi;
1489         struct spi_controller *host;
1490         struct resource *res;
1491         int irq, ret = 0, num_ints = 0;
1492         u32 val;
1493         u32 rev = 0;
1494         const char *name = NULL;
1495         int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1496
1497         /* We only support device-tree instantiation */
1498         if (!dev->of_node)
1499                 return -ENODEV;
1500
1501         of_id = of_match_node(bcm_qspi_of_match, dev->of_node);
1502         if (!of_id)
1503                 return -ENODEV;
1504
1505         data = of_id->data;
1506
1507         host = devm_spi_alloc_host(dev, sizeof(struct bcm_qspi));
1508         if (!host) {
1509                 dev_err(dev, "error allocating spi_controller\n");
1510                 return -ENOMEM;
1511         }
1512
1513         qspi = spi_controller_get_devdata(host);
1514
1515         qspi->clk = devm_clk_get_optional(&pdev->dev, NULL);
1516         if (IS_ERR(qspi->clk))
1517                 return PTR_ERR(qspi->clk);
1518
1519         qspi->pdev = pdev;
1520         qspi->trans_pos.trans = NULL;
1521         qspi->trans_pos.byte = 0;
1522         qspi->trans_pos.mspi_last_trans = true;
1523         qspi->host = host;
1524
1525         host->bus_num = -1;
1526         host->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD |
1527                                 SPI_3WIRE;
1528         host->setup = bcm_qspi_setup;
1529         host->transfer_one = bcm_qspi_transfer_one;
1530         host->mem_ops = &bcm_qspi_mem_ops;
1531         host->cleanup = bcm_qspi_cleanup;
1532         host->dev.of_node = dev->of_node;
1533         host->num_chipselect = NUM_CHIPSELECT;
1534         host->use_gpio_descriptors = true;
1535
1536         qspi->big_endian = of_device_is_big_endian(dev->of_node);
1537
1538         if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1539                 host->num_chipselect = val;
1540
1541         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1542         if (!res)
1543                 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1544                                                    "mspi");
1545
1546         qspi->base[MSPI]  = devm_ioremap_resource(dev, res);
1547         if (IS_ERR(qspi->base[MSPI]))
1548                 return PTR_ERR(qspi->base[MSPI]);
1549
1550         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1551         if (res) {
1552                 qspi->base[BSPI]  = devm_ioremap_resource(dev, res);
1553                 if (IS_ERR(qspi->base[BSPI]))
1554                         return PTR_ERR(qspi->base[BSPI]);
1555                 qspi->bspi_mode = true;
1556         } else {
1557                 qspi->bspi_mode = false;
1558         }
1559
1560         dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1561
1562         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1563         if (res) {
1564                 qspi->base[CHIP_SELECT]  = devm_ioremap_resource(dev, res);
1565                 if (IS_ERR(qspi->base[CHIP_SELECT]))
1566                         return PTR_ERR(qspi->base[CHIP_SELECT]);
1567         }
1568
1569         qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1570                                 GFP_KERNEL);
1571         if (!qspi->dev_ids)
1572                 return -ENOMEM;
1573
1574         /*
1575          * Some SoCs integrate spi controller (e.g., its interrupt bits)
1576          * in specific ways
1577          */
1578         if (soc_intc) {
1579                 qspi->soc_intc = soc_intc;
1580                 soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1581         } else {
1582                 qspi->soc_intc = NULL;
1583         }
1584
1585         if (qspi->clk) {
1586                 ret = clk_prepare_enable(qspi->clk);
1587                 if (ret) {
1588                         dev_err(dev, "failed to prepare clock\n");
1589                         goto qspi_probe_err;
1590                 }
1591                 qspi->base_clk = clk_get_rate(qspi->clk);
1592         } else {
1593                 qspi->base_clk = MSPI_BASE_FREQ;
1594         }
1595
1596         if (data->has_mspi_rev) {
1597                 rev = bcm_qspi_read(qspi, MSPI, MSPI_REV);
1598                 /* some older revs do not have a MSPI_REV register */
1599                 if ((rev & 0xff) == 0xff)
1600                         rev = 0;
1601         }
1602
1603         qspi->mspi_maj_rev = (rev >> 4) & 0xf;
1604         qspi->mspi_min_rev = rev & 0xf;
1605         qspi->mspi_spcr3_sysclk = data->has_spcr3_sysclk;
1606
1607         qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2);
1608
1609         /*
1610          * On SW resets it is possible to have the mask still enabled
1611          * Need to disable the mask and clear the status while we init
1612          */
1613         bcm_qspi_hw_uninit(qspi);
1614
1615         for (val = 0; val < num_irqs; val++) {
1616                 irq = -1;
1617                 name = qspi_irq_tab[val].irq_name;
1618                 if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1619                         /* get the l2 interrupts */
1620                         irq = platform_get_irq_byname_optional(pdev, name);
1621                 } else if (!num_ints && soc_intc) {
1622                         /* all mspi, bspi intrs muxed to one L1 intr */
1623                         irq = platform_get_irq(pdev, 0);
1624                 }
1625
1626                 if (irq  >= 0) {
1627                         ret = devm_request_irq(&pdev->dev, irq,
1628                                                qspi_irq_tab[val].irq_handler, 0,
1629                                                name,
1630                                                &qspi->dev_ids[val]);
1631                         if (ret < 0) {
1632                                 dev_err(&pdev->dev, "IRQ %s not found\n", name);
1633                                 goto qspi_unprepare_err;
1634                         }
1635
1636                         qspi->dev_ids[val].dev = qspi;
1637                         qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1638                         num_ints++;
1639                         dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1640                                 qspi_irq_tab[val].irq_name,
1641                                 irq);
1642                 }
1643         }
1644
1645         if (!num_ints) {
1646                 dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1647                 ret = -EINVAL;
1648                 goto qspi_unprepare_err;
1649         }
1650
1651         bcm_qspi_hw_init(qspi);
1652         init_completion(&qspi->mspi_done);
1653         init_completion(&qspi->bspi_done);
1654         qspi->curr_cs = -1;
1655
1656         platform_set_drvdata(pdev, qspi);
1657
1658         qspi->xfer_mode.width = -1;
1659         qspi->xfer_mode.addrlen = -1;
1660         qspi->xfer_mode.hp = -1;
1661
1662         ret = spi_register_controller(host);
1663         if (ret < 0) {
1664                 dev_err(dev, "can't register host\n");
1665                 goto qspi_reg_err;
1666         }
1667
1668         return 0;
1669
1670 qspi_reg_err:
1671         bcm_qspi_hw_uninit(qspi);
1672 qspi_unprepare_err:
1673         clk_disable_unprepare(qspi->clk);
1674 qspi_probe_err:
1675         kfree(qspi->dev_ids);
1676         return ret;
1677 }
1678 /* probe function to be called by SoC specific platform driver probe */
1679 EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1680
1681 void bcm_qspi_remove(struct platform_device *pdev)
1682 {
1683         struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1684
1685         spi_unregister_controller(qspi->host);
1686         bcm_qspi_hw_uninit(qspi);
1687         clk_disable_unprepare(qspi->clk);
1688         kfree(qspi->dev_ids);
1689 }
1690
1691 /* function to be called by SoC specific platform driver remove() */
1692 EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1693
1694 static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1695 {
1696         struct bcm_qspi *qspi = dev_get_drvdata(dev);
1697
1698         /* store the override strap value */
1699         if (!bcm_qspi_bspi_ver_three(qspi))
1700                 qspi->s3_strap_override_ctrl =
1701                         bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
1702
1703         spi_controller_suspend(qspi->host);
1704         clk_disable_unprepare(qspi->clk);
1705         bcm_qspi_hw_uninit(qspi);
1706
1707         return 0;
1708 };
1709
1710 static int __maybe_unused bcm_qspi_resume(struct device *dev)
1711 {
1712         struct bcm_qspi *qspi = dev_get_drvdata(dev);
1713         int ret = 0;
1714
1715         bcm_qspi_hw_init(qspi);
1716         bcm_qspi_chip_select(qspi, qspi->curr_cs);
1717         if (qspi->soc_intc)
1718                 /* enable MSPI interrupt */
1719                 qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1720                                                  true);
1721
1722         ret = clk_prepare_enable(qspi->clk);
1723         if (!ret)
1724                 spi_controller_resume(qspi->host);
1725
1726         return ret;
1727 }
1728
1729 SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1730
1731 /* pm_ops to be called by SoC specific platform driver */
1732 EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1733
1734 MODULE_AUTHOR("Kamal Dasu");
1735 MODULE_DESCRIPTION("Broadcom QSPI driver");
1736 MODULE_LICENSE("GPL v2");
1737 MODULE_ALIAS("platform:" DRIVER_NAME);