drivers: thermal: step_wise: add support for hysteresis
[platform/kernel/linux-rpi.git] / drivers / spi / spi-atmel.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel AT32 and AT91 SPI Controllers
4  *
5  * Copyright (C) 2006 Atmel Corporation
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20
21 #include <linux/io.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/iopoll.h>
26 #include <trace/events/spi.h>
27
28 /* SPI register offsets */
29 #define SPI_CR                                  0x0000
30 #define SPI_MR                                  0x0004
31 #define SPI_RDR                                 0x0008
32 #define SPI_TDR                                 0x000c
33 #define SPI_SR                                  0x0010
34 #define SPI_IER                                 0x0014
35 #define SPI_IDR                                 0x0018
36 #define SPI_IMR                                 0x001c
37 #define SPI_CSR0                                0x0030
38 #define SPI_CSR1                                0x0034
39 #define SPI_CSR2                                0x0038
40 #define SPI_CSR3                                0x003c
41 #define SPI_FMR                                 0x0040
42 #define SPI_FLR                                 0x0044
43 #define SPI_VERSION                             0x00fc
44 #define SPI_RPR                                 0x0100
45 #define SPI_RCR                                 0x0104
46 #define SPI_TPR                                 0x0108
47 #define SPI_TCR                                 0x010c
48 #define SPI_RNPR                                0x0110
49 #define SPI_RNCR                                0x0114
50 #define SPI_TNPR                                0x0118
51 #define SPI_TNCR                                0x011c
52 #define SPI_PTCR                                0x0120
53 #define SPI_PTSR                                0x0124
54
55 /* Bitfields in CR */
56 #define SPI_SPIEN_OFFSET                        0
57 #define SPI_SPIEN_SIZE                          1
58 #define SPI_SPIDIS_OFFSET                       1
59 #define SPI_SPIDIS_SIZE                         1
60 #define SPI_SWRST_OFFSET                        7
61 #define SPI_SWRST_SIZE                          1
62 #define SPI_LASTXFER_OFFSET                     24
63 #define SPI_LASTXFER_SIZE                       1
64 #define SPI_TXFCLR_OFFSET                       16
65 #define SPI_TXFCLR_SIZE                         1
66 #define SPI_RXFCLR_OFFSET                       17
67 #define SPI_RXFCLR_SIZE                         1
68 #define SPI_FIFOEN_OFFSET                       30
69 #define SPI_FIFOEN_SIZE                         1
70 #define SPI_FIFODIS_OFFSET                      31
71 #define SPI_FIFODIS_SIZE                        1
72
73 /* Bitfields in MR */
74 #define SPI_MSTR_OFFSET                         0
75 #define SPI_MSTR_SIZE                           1
76 #define SPI_PS_OFFSET                           1
77 #define SPI_PS_SIZE                             1
78 #define SPI_PCSDEC_OFFSET                       2
79 #define SPI_PCSDEC_SIZE                         1
80 #define SPI_FDIV_OFFSET                         3
81 #define SPI_FDIV_SIZE                           1
82 #define SPI_MODFDIS_OFFSET                      4
83 #define SPI_MODFDIS_SIZE                        1
84 #define SPI_WDRBT_OFFSET                        5
85 #define SPI_WDRBT_SIZE                          1
86 #define SPI_LLB_OFFSET                          7
87 #define SPI_LLB_SIZE                            1
88 #define SPI_PCS_OFFSET                          16
89 #define SPI_PCS_SIZE                            4
90 #define SPI_DLYBCS_OFFSET                       24
91 #define SPI_DLYBCS_SIZE                         8
92
93 /* Bitfields in RDR */
94 #define SPI_RD_OFFSET                           0
95 #define SPI_RD_SIZE                             16
96
97 /* Bitfields in TDR */
98 #define SPI_TD_OFFSET                           0
99 #define SPI_TD_SIZE                             16
100
101 /* Bitfields in SR */
102 #define SPI_RDRF_OFFSET                         0
103 #define SPI_RDRF_SIZE                           1
104 #define SPI_TDRE_OFFSET                         1
105 #define SPI_TDRE_SIZE                           1
106 #define SPI_MODF_OFFSET                         2
107 #define SPI_MODF_SIZE                           1
108 #define SPI_OVRES_OFFSET                        3
109 #define SPI_OVRES_SIZE                          1
110 #define SPI_ENDRX_OFFSET                        4
111 #define SPI_ENDRX_SIZE                          1
112 #define SPI_ENDTX_OFFSET                        5
113 #define SPI_ENDTX_SIZE                          1
114 #define SPI_RXBUFF_OFFSET                       6
115 #define SPI_RXBUFF_SIZE                         1
116 #define SPI_TXBUFE_OFFSET                       7
117 #define SPI_TXBUFE_SIZE                         1
118 #define SPI_NSSR_OFFSET                         8
119 #define SPI_NSSR_SIZE                           1
120 #define SPI_TXEMPTY_OFFSET                      9
121 #define SPI_TXEMPTY_SIZE                        1
122 #define SPI_SPIENS_OFFSET                       16
123 #define SPI_SPIENS_SIZE                         1
124 #define SPI_TXFEF_OFFSET                        24
125 #define SPI_TXFEF_SIZE                          1
126 #define SPI_TXFFF_OFFSET                        25
127 #define SPI_TXFFF_SIZE                          1
128 #define SPI_TXFTHF_OFFSET                       26
129 #define SPI_TXFTHF_SIZE                         1
130 #define SPI_RXFEF_OFFSET                        27
131 #define SPI_RXFEF_SIZE                          1
132 #define SPI_RXFFF_OFFSET                        28
133 #define SPI_RXFFF_SIZE                          1
134 #define SPI_RXFTHF_OFFSET                       29
135 #define SPI_RXFTHF_SIZE                         1
136 #define SPI_TXFPTEF_OFFSET                      30
137 #define SPI_TXFPTEF_SIZE                        1
138 #define SPI_RXFPTEF_OFFSET                      31
139 #define SPI_RXFPTEF_SIZE                        1
140
141 /* Bitfields in CSR0 */
142 #define SPI_CPOL_OFFSET                         0
143 #define SPI_CPOL_SIZE                           1
144 #define SPI_NCPHA_OFFSET                        1
145 #define SPI_NCPHA_SIZE                          1
146 #define SPI_CSAAT_OFFSET                        3
147 #define SPI_CSAAT_SIZE                          1
148 #define SPI_BITS_OFFSET                         4
149 #define SPI_BITS_SIZE                           4
150 #define SPI_SCBR_OFFSET                         8
151 #define SPI_SCBR_SIZE                           8
152 #define SPI_DLYBS_OFFSET                        16
153 #define SPI_DLYBS_SIZE                          8
154 #define SPI_DLYBCT_OFFSET                       24
155 #define SPI_DLYBCT_SIZE                         8
156
157 /* Bitfields in RCR */
158 #define SPI_RXCTR_OFFSET                        0
159 #define SPI_RXCTR_SIZE                          16
160
161 /* Bitfields in TCR */
162 #define SPI_TXCTR_OFFSET                        0
163 #define SPI_TXCTR_SIZE                          16
164
165 /* Bitfields in RNCR */
166 #define SPI_RXNCR_OFFSET                        0
167 #define SPI_RXNCR_SIZE                          16
168
169 /* Bitfields in TNCR */
170 #define SPI_TXNCR_OFFSET                        0
171 #define SPI_TXNCR_SIZE                          16
172
173 /* Bitfields in PTCR */
174 #define SPI_RXTEN_OFFSET                        0
175 #define SPI_RXTEN_SIZE                          1
176 #define SPI_RXTDIS_OFFSET                       1
177 #define SPI_RXTDIS_SIZE                         1
178 #define SPI_TXTEN_OFFSET                        8
179 #define SPI_TXTEN_SIZE                          1
180 #define SPI_TXTDIS_OFFSET                       9
181 #define SPI_TXTDIS_SIZE                         1
182
183 /* Bitfields in FMR */
184 #define SPI_TXRDYM_OFFSET                       0
185 #define SPI_TXRDYM_SIZE                         2
186 #define SPI_RXRDYM_OFFSET                       4
187 #define SPI_RXRDYM_SIZE                         2
188 #define SPI_TXFTHRES_OFFSET                     16
189 #define SPI_TXFTHRES_SIZE                       6
190 #define SPI_RXFTHRES_OFFSET                     24
191 #define SPI_RXFTHRES_SIZE                       6
192
193 /* Bitfields in FLR */
194 #define SPI_TXFL_OFFSET                         0
195 #define SPI_TXFL_SIZE                           6
196 #define SPI_RXFL_OFFSET                         16
197 #define SPI_RXFL_SIZE                           6
198
199 /* Constants for BITS */
200 #define SPI_BITS_8_BPT                          0
201 #define SPI_BITS_9_BPT                          1
202 #define SPI_BITS_10_BPT                         2
203 #define SPI_BITS_11_BPT                         3
204 #define SPI_BITS_12_BPT                         4
205 #define SPI_BITS_13_BPT                         5
206 #define SPI_BITS_14_BPT                         6
207 #define SPI_BITS_15_BPT                         7
208 #define SPI_BITS_16_BPT                         8
209 #define SPI_ONE_DATA                            0
210 #define SPI_TWO_DATA                            1
211 #define SPI_FOUR_DATA                           2
212
213 /* Bit manipulation macros */
214 #define SPI_BIT(name) \
215         (1 << SPI_##name##_OFFSET)
216 #define SPI_BF(name, value) \
217         (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
218 #define SPI_BFEXT(name, value) \
219         (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
220 #define SPI_BFINS(name, value, old) \
221         (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
222           | SPI_BF(name, value))
223
224 /* Register access macros */
225 #define spi_readl(port, reg) \
226         readl_relaxed((port)->regs + SPI_##reg)
227 #define spi_writel(port, reg, value) \
228         writel_relaxed((value), (port)->regs + SPI_##reg)
229 #define spi_writew(port, reg, value) \
230         writew_relaxed((value), (port)->regs + SPI_##reg)
231
232 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
233  * cache operations; better heuristics consider wordsize and bitrate.
234  */
235 #define DMA_MIN_BYTES   16
236
237 #define SPI_DMA_MIN_TIMEOUT     (msecs_to_jiffies(1000))
238 #define SPI_DMA_TIMEOUT_PER_10K (msecs_to_jiffies(4))
239
240 #define AUTOSUSPEND_TIMEOUT     2000
241
242 struct atmel_spi_caps {
243         bool    is_spi2;
244         bool    has_wdrbt;
245         bool    has_dma_support;
246         bool    has_pdc_support;
247 };
248
249 /*
250  * The core SPI transfer engine just talks to a register bank to set up
251  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
252  * framework provides the base clock, subdivided for each spi_device.
253  */
254 struct atmel_spi {
255         spinlock_t              lock;
256         unsigned long           flags;
257
258         phys_addr_t             phybase;
259         void __iomem            *regs;
260         int                     irq;
261         struct clk              *clk;
262         struct platform_device  *pdev;
263         unsigned long           spi_clk;
264
265         struct spi_transfer     *current_transfer;
266         int                     current_remaining_bytes;
267         int                     done_status;
268         dma_addr_t              dma_addr_rx_bbuf;
269         dma_addr_t              dma_addr_tx_bbuf;
270         void                    *addr_rx_bbuf;
271         void                    *addr_tx_bbuf;
272
273         struct completion       xfer_completion;
274
275         struct atmel_spi_caps   caps;
276
277         bool                    use_dma;
278         bool                    use_pdc;
279
280         bool                    keep_cs;
281
282         u32                     fifo_size;
283         bool                    last_polarity;
284         u8                      native_cs_free;
285         u8                      native_cs_for_gpio;
286 };
287
288 /* Controller-specific per-slave state */
289 struct atmel_spi_device {
290         u32                     csr;
291 };
292
293 #define SPI_MAX_DMA_XFER        65535 /* true for both PDC and DMA */
294 #define INVALID_DMA_ADDRESS     0xffffffff
295
296 /*
297  * This frequency can be anything supported by the controller, but to avoid
298  * unnecessary delay, the highest possible frequency is chosen.
299  *
300  * This frequency is the highest possible which is not interfering with other
301  * chip select registers (see Note for Serial Clock Bit Rate configuration in
302  * Atmel-11121F-ATARM-SAMA5D3-Series-Datasheet_02-Feb-16, page 1283)
303  */
304 #define DUMMY_MSG_FREQUENCY     0x02
305 /*
306  * 8 bits is the minimum data the controller is capable of sending.
307  *
308  * This message can be anything as it should not be treated by any SPI device.
309  */
310 #define DUMMY_MSG               0xAA
311
312 /*
313  * Version 2 of the SPI controller has
314  *  - CR.LASTXFER
315  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
316  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
317  *  - SPI_CSRx.CSAAT
318  *  - SPI_CSRx.SBCR allows faster clocking
319  */
320 static bool atmel_spi_is_v2(struct atmel_spi *as)
321 {
322         return as->caps.is_spi2;
323 }
324
325 /*
326  * Send a dummy message.
327  *
328  * This is sometimes needed when using a CS GPIO to force clock transition when
329  * switching between devices with different polarities.
330  */
331 static void atmel_spi_send_dummy(struct atmel_spi *as, struct spi_device *spi, int chip_select)
332 {
333         u32 status;
334         u32 csr;
335
336         /*
337          * Set a clock frequency to allow sending message on SPI bus.
338          * The frequency here can be anything, but is needed for
339          * the controller to send the data.
340          */
341         csr = spi_readl(as, CSR0 + 4 * chip_select);
342         csr = SPI_BFINS(SCBR, DUMMY_MSG_FREQUENCY, csr);
343         spi_writel(as, CSR0 + 4 * chip_select, csr);
344
345         /*
346          * Read all data coming from SPI bus, needed to be able to send
347          * the message.
348          */
349         spi_readl(as, RDR);
350         while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
351                 spi_readl(as, RDR);
352                 cpu_relax();
353         }
354
355         spi_writel(as, TDR, DUMMY_MSG);
356
357         readl_poll_timeout_atomic(as->regs + SPI_SR, status,
358                                   (status & SPI_BIT(TXEMPTY)), 1, 1000);
359 }
360
361
362 /*
363  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
364  * they assume that spi slave device state will not change on deselect, so
365  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
366  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
367  * controllers have CSAAT and friends.
368  *
369  * Even controller newer than ar91rm9200, using GPIOs can make sens as
370  * it lets us support active-high chipselects despite the controller's
371  * belief that only active-low devices/systems exists.
372  *
373  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
374  * right when driven with GPIO.  ("Mode Fault does not allow more than one
375  * Master on Chip Select 0.")  No workaround exists for that ... so for
376  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
377  * and (c) will trigger that first erratum in some cases.
378  *
379  * When changing the clock polarity, the SPI controller waits for the next
380  * transmission to enforce the default clock state. This may be an issue when
381  * using a GPIO as Chip Select: the clock level is applied only when the first
382  * packet is sent, once the CS has already been asserted. The workaround is to
383  * avoid this by sending a first (dummy) message before toggling the CS state.
384  */
385 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
386 {
387         struct atmel_spi_device *asd = spi->controller_state;
388         bool new_polarity;
389         int chip_select;
390         u32 mr;
391
392         if (spi_get_csgpiod(spi, 0))
393                 chip_select = as->native_cs_for_gpio;
394         else
395                 chip_select = spi_get_chipselect(spi, 0);
396
397         if (atmel_spi_is_v2(as)) {
398                 spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
399                 /* For the low SPI version, there is a issue that PDC transfer
400                  * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
401                  */
402                 spi_writel(as, CSR0, asd->csr);
403                 if (as->caps.has_wdrbt) {
404                         spi_writel(as, MR,
405                                         SPI_BF(PCS, ~(0x01 << chip_select))
406                                         | SPI_BIT(WDRBT)
407                                         | SPI_BIT(MODFDIS)
408                                         | SPI_BIT(MSTR));
409                 } else {
410                         spi_writel(as, MR,
411                                         SPI_BF(PCS, ~(0x01 << chip_select))
412                                         | SPI_BIT(MODFDIS)
413                                         | SPI_BIT(MSTR));
414                 }
415
416                 mr = spi_readl(as, MR);
417
418                 /*
419                  * Ensures the clock polarity is valid before we actually
420                  * assert the CS to avoid spurious clock edges to be
421                  * processed by the spi devices.
422                  */
423                 if (spi_get_csgpiod(spi, 0)) {
424                         new_polarity = (asd->csr & SPI_BIT(CPOL)) != 0;
425                         if (new_polarity != as->last_polarity) {
426                                 /*
427                                  * Need to disable the GPIO before sending the dummy
428                                  * message because it is already set by the spi core.
429                                  */
430                                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 0);
431                                 atmel_spi_send_dummy(as, spi, chip_select);
432                                 as->last_polarity = new_polarity;
433                                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 1);
434                         }
435                 }
436         } else {
437                 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
438                 int i;
439                 u32 csr;
440
441                 /* Make sure clock polarity is correct */
442                 for (i = 0; i < spi->controller->num_chipselect; i++) {
443                         csr = spi_readl(as, CSR0 + 4 * i);
444                         if ((csr ^ cpol) & SPI_BIT(CPOL))
445                                 spi_writel(as, CSR0 + 4 * i,
446                                                 csr ^ SPI_BIT(CPOL));
447                 }
448
449                 mr = spi_readl(as, MR);
450                 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
451                 spi_writel(as, MR, mr);
452         }
453
454         dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
455 }
456
457 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
458 {
459         int chip_select;
460         u32 mr;
461
462         if (spi_get_csgpiod(spi, 0))
463                 chip_select = as->native_cs_for_gpio;
464         else
465                 chip_select = spi_get_chipselect(spi, 0);
466
467         /* only deactivate *this* device; sometimes transfers to
468          * another device may be active when this routine is called.
469          */
470         mr = spi_readl(as, MR);
471         if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
472                 mr = SPI_BFINS(PCS, 0xf, mr);
473                 spi_writel(as, MR, mr);
474         }
475
476         dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
477
478         if (!spi_get_csgpiod(spi, 0))
479                 spi_writel(as, CR, SPI_BIT(LASTXFER));
480 }
481
482 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
483 {
484         spin_lock_irqsave(&as->lock, as->flags);
485 }
486
487 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
488 {
489         spin_unlock_irqrestore(&as->lock, as->flags);
490 }
491
492 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
493 {
494         return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
495 }
496
497 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
498                                 struct spi_transfer *xfer)
499 {
500         return as->use_dma && xfer->len >= DMA_MIN_BYTES;
501 }
502
503 static bool atmel_spi_can_dma(struct spi_controller *host,
504                               struct spi_device *spi,
505                               struct spi_transfer *xfer)
506 {
507         struct atmel_spi *as = spi_controller_get_devdata(host);
508
509         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
510                 return atmel_spi_use_dma(as, xfer) &&
511                         !atmel_spi_is_vmalloc_xfer(xfer);
512         else
513                 return atmel_spi_use_dma(as, xfer);
514
515 }
516
517 static int atmel_spi_dma_slave_config(struct atmel_spi *as, u8 bits_per_word)
518 {
519         struct spi_controller *host = platform_get_drvdata(as->pdev);
520         struct dma_slave_config slave_config;
521         int err = 0;
522
523         if (bits_per_word > 8) {
524                 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
525                 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
526         } else {
527                 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
528                 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
529         }
530
531         slave_config.dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
532         slave_config.src_addr = (dma_addr_t)as->phybase + SPI_RDR;
533         slave_config.src_maxburst = 1;
534         slave_config.dst_maxburst = 1;
535         slave_config.device_fc = false;
536
537         /*
538          * This driver uses fixed peripheral select mode (PS bit set to '0' in
539          * the Mode Register).
540          * So according to the datasheet, when FIFOs are available (and
541          * enabled), the Transmit FIFO operates in Multiple Data Mode.
542          * In this mode, up to 2 data, not 4, can be written into the Transmit
543          * Data Register in a single access.
544          * However, the first data has to be written into the lowest 16 bits and
545          * the second data into the highest 16 bits of the Transmit
546          * Data Register. For 8bit data (the most frequent case), it would
547          * require to rework tx_buf so each data would actually fit 16 bits.
548          * So we'd rather write only one data at the time. Hence the transmit
549          * path works the same whether FIFOs are available (and enabled) or not.
550          */
551         if (dmaengine_slave_config(host->dma_tx, &slave_config)) {
552                 dev_err(&as->pdev->dev,
553                         "failed to configure tx dma channel\n");
554                 err = -EINVAL;
555         }
556
557         /*
558          * This driver configures the spi controller for host mode (MSTR bit
559          * set to '1' in the Mode Register).
560          * So according to the datasheet, when FIFOs are available (and
561          * enabled), the Receive FIFO operates in Single Data Mode.
562          * So the receive path works the same whether FIFOs are available (and
563          * enabled) or not.
564          */
565         if (dmaengine_slave_config(host->dma_rx, &slave_config)) {
566                 dev_err(&as->pdev->dev,
567                         "failed to configure rx dma channel\n");
568                 err = -EINVAL;
569         }
570
571         return err;
572 }
573
574 static int atmel_spi_configure_dma(struct spi_controller *host,
575                                    struct atmel_spi *as)
576 {
577         struct device *dev = &as->pdev->dev;
578         int err;
579
580         host->dma_tx = dma_request_chan(dev, "tx");
581         if (IS_ERR(host->dma_tx)) {
582                 err = PTR_ERR(host->dma_tx);
583                 dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
584                 goto error_clear;
585         }
586
587         host->dma_rx = dma_request_chan(dev, "rx");
588         if (IS_ERR(host->dma_rx)) {
589                 err = PTR_ERR(host->dma_rx);
590                 /*
591                  * No reason to check EPROBE_DEFER here since we have already
592                  * requested tx channel.
593                  */
594                 dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
595                 goto error;
596         }
597
598         err = atmel_spi_dma_slave_config(as, 8);
599         if (err)
600                 goto error;
601
602         dev_info(&as->pdev->dev,
603                         "Using %s (tx) and %s (rx) for DMA transfers\n",
604                         dma_chan_name(host->dma_tx),
605                         dma_chan_name(host->dma_rx));
606
607         return 0;
608 error:
609         if (!IS_ERR(host->dma_rx))
610                 dma_release_channel(host->dma_rx);
611         if (!IS_ERR(host->dma_tx))
612                 dma_release_channel(host->dma_tx);
613 error_clear:
614         host->dma_tx = host->dma_rx = NULL;
615         return err;
616 }
617
618 static void atmel_spi_stop_dma(struct spi_controller *host)
619 {
620         if (host->dma_rx)
621                 dmaengine_terminate_all(host->dma_rx);
622         if (host->dma_tx)
623                 dmaengine_terminate_all(host->dma_tx);
624 }
625
626 static void atmel_spi_release_dma(struct spi_controller *host)
627 {
628         if (host->dma_rx) {
629                 dma_release_channel(host->dma_rx);
630                 host->dma_rx = NULL;
631         }
632         if (host->dma_tx) {
633                 dma_release_channel(host->dma_tx);
634                 host->dma_tx = NULL;
635         }
636 }
637
638 /* This function is called by the DMA driver from tasklet context */
639 static void dma_callback(void *data)
640 {
641         struct spi_controller   *host = data;
642         struct atmel_spi        *as = spi_controller_get_devdata(host);
643
644         if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
645             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
646                 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
647                        as->current_transfer->len);
648         }
649         complete(&as->xfer_completion);
650 }
651
652 /*
653  * Next transfer using PIO without FIFO.
654  */
655 static void atmel_spi_next_xfer_single(struct spi_controller *host,
656                                        struct spi_transfer *xfer)
657 {
658         struct atmel_spi        *as = spi_controller_get_devdata(host);
659         unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
660
661         dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_pio\n");
662
663         /* Make sure data is not remaining in RDR */
664         spi_readl(as, RDR);
665         while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
666                 spi_readl(as, RDR);
667                 cpu_relax();
668         }
669
670         if (xfer->bits_per_word > 8)
671                 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
672         else
673                 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
674
675         dev_dbg(host->dev.parent,
676                 "  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
677                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
678                 xfer->bits_per_word);
679
680         /* Enable relevant interrupts */
681         spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
682 }
683
684 /*
685  * Next transfer using PIO with FIFO.
686  */
687 static void atmel_spi_next_xfer_fifo(struct spi_controller *host,
688                                      struct spi_transfer *xfer)
689 {
690         struct atmel_spi *as = spi_controller_get_devdata(host);
691         u32 current_remaining_data, num_data;
692         u32 offset = xfer->len - as->current_remaining_bytes;
693         const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
694         const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
695         u16 td0, td1;
696         u32 fifomr;
697
698         dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_fifo\n");
699
700         /* Compute the number of data to transfer in the current iteration */
701         current_remaining_data = ((xfer->bits_per_word > 8) ?
702                                   ((u32)as->current_remaining_bytes >> 1) :
703                                   (u32)as->current_remaining_bytes);
704         num_data = min(current_remaining_data, as->fifo_size);
705
706         /* Flush RX and TX FIFOs */
707         spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
708         while (spi_readl(as, FLR))
709                 cpu_relax();
710
711         /* Set RX FIFO Threshold to the number of data to transfer */
712         fifomr = spi_readl(as, FMR);
713         spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
714
715         /* Clear FIFO flags in the Status Register, especially RXFTHF */
716         (void)spi_readl(as, SR);
717
718         /* Fill TX FIFO */
719         while (num_data >= 2) {
720                 if (xfer->bits_per_word > 8) {
721                         td0 = *words++;
722                         td1 = *words++;
723                 } else {
724                         td0 = *bytes++;
725                         td1 = *bytes++;
726                 }
727
728                 spi_writel(as, TDR, (td1 << 16) | td0);
729                 num_data -= 2;
730         }
731
732         if (num_data) {
733                 if (xfer->bits_per_word > 8)
734                         td0 = *words++;
735                 else
736                         td0 = *bytes++;
737
738                 spi_writew(as, TDR, td0);
739                 num_data--;
740         }
741
742         dev_dbg(host->dev.parent,
743                 "  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
744                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
745                 xfer->bits_per_word);
746
747         /*
748          * Enable RX FIFO Threshold Flag interrupt to be notified about
749          * transfer completion.
750          */
751         spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
752 }
753
754 /*
755  * Next transfer using PIO.
756  */
757 static void atmel_spi_next_xfer_pio(struct spi_controller *host,
758                                     struct spi_transfer *xfer)
759 {
760         struct atmel_spi *as = spi_controller_get_devdata(host);
761
762         if (as->fifo_size)
763                 atmel_spi_next_xfer_fifo(host, xfer);
764         else
765                 atmel_spi_next_xfer_single(host, xfer);
766 }
767
768 /*
769  * Submit next transfer for DMA.
770  */
771 static int atmel_spi_next_xfer_dma_submit(struct spi_controller *host,
772                                 struct spi_transfer *xfer,
773                                 u32 *plen)
774 {
775         struct atmel_spi        *as = spi_controller_get_devdata(host);
776         struct dma_chan         *rxchan = host->dma_rx;
777         struct dma_chan         *txchan = host->dma_tx;
778         struct dma_async_tx_descriptor *rxdesc;
779         struct dma_async_tx_descriptor *txdesc;
780         dma_cookie_t            cookie;
781
782         dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
783
784         /* Check that the channels are available */
785         if (!rxchan || !txchan)
786                 return -ENODEV;
787
788
789         *plen = xfer->len;
790
791         if (atmel_spi_dma_slave_config(as, xfer->bits_per_word))
792                 goto err_exit;
793
794         /* Send both scatterlists */
795         if (atmel_spi_is_vmalloc_xfer(xfer) &&
796             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
797                 rxdesc = dmaengine_prep_slave_single(rxchan,
798                                                      as->dma_addr_rx_bbuf,
799                                                      xfer->len,
800                                                      DMA_DEV_TO_MEM,
801                                                      DMA_PREP_INTERRUPT |
802                                                      DMA_CTRL_ACK);
803         } else {
804                 rxdesc = dmaengine_prep_slave_sg(rxchan,
805                                                  xfer->rx_sg.sgl,
806                                                  xfer->rx_sg.nents,
807                                                  DMA_DEV_TO_MEM,
808                                                  DMA_PREP_INTERRUPT |
809                                                  DMA_CTRL_ACK);
810         }
811         if (!rxdesc)
812                 goto err_dma;
813
814         if (atmel_spi_is_vmalloc_xfer(xfer) &&
815             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
816                 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
817                 txdesc = dmaengine_prep_slave_single(txchan,
818                                                      as->dma_addr_tx_bbuf,
819                                                      xfer->len, DMA_MEM_TO_DEV,
820                                                      DMA_PREP_INTERRUPT |
821                                                      DMA_CTRL_ACK);
822         } else {
823                 txdesc = dmaengine_prep_slave_sg(txchan,
824                                                  xfer->tx_sg.sgl,
825                                                  xfer->tx_sg.nents,
826                                                  DMA_MEM_TO_DEV,
827                                                  DMA_PREP_INTERRUPT |
828                                                  DMA_CTRL_ACK);
829         }
830         if (!txdesc)
831                 goto err_dma;
832
833         dev_dbg(host->dev.parent,
834                 "  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
835                 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
836                 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
837
838         /* Enable relevant interrupts */
839         spi_writel(as, IER, SPI_BIT(OVRES));
840
841         /* Put the callback on the RX transfer only, that should finish last */
842         rxdesc->callback = dma_callback;
843         rxdesc->callback_param = host;
844
845         /* Submit and fire RX and TX with TX last so we're ready to read! */
846         cookie = rxdesc->tx_submit(rxdesc);
847         if (dma_submit_error(cookie))
848                 goto err_dma;
849         cookie = txdesc->tx_submit(txdesc);
850         if (dma_submit_error(cookie))
851                 goto err_dma;
852         rxchan->device->device_issue_pending(rxchan);
853         txchan->device->device_issue_pending(txchan);
854
855         return 0;
856
857 err_dma:
858         spi_writel(as, IDR, SPI_BIT(OVRES));
859         atmel_spi_stop_dma(host);
860 err_exit:
861         return -ENOMEM;
862 }
863
864 static void atmel_spi_next_xfer_data(struct spi_controller *host,
865                                 struct spi_transfer *xfer,
866                                 dma_addr_t *tx_dma,
867                                 dma_addr_t *rx_dma,
868                                 u32 *plen)
869 {
870         *rx_dma = xfer->rx_dma + xfer->len - *plen;
871         *tx_dma = xfer->tx_dma + xfer->len - *plen;
872         if (*plen > host->max_dma_len)
873                 *plen = host->max_dma_len;
874 }
875
876 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
877                                     struct spi_device *spi,
878                                     struct spi_transfer *xfer)
879 {
880         u32                     scbr, csr;
881         unsigned long           bus_hz;
882         int chip_select;
883
884         if (spi_get_csgpiod(spi, 0))
885                 chip_select = as->native_cs_for_gpio;
886         else
887                 chip_select = spi_get_chipselect(spi, 0);
888
889         /* v1 chips start out at half the peripheral bus speed. */
890         bus_hz = as->spi_clk;
891         if (!atmel_spi_is_v2(as))
892                 bus_hz /= 2;
893
894         /*
895          * Calculate the lowest divider that satisfies the
896          * constraint, assuming div32/fdiv/mbz == 0.
897          */
898         scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
899
900         /*
901          * If the resulting divider doesn't fit into the
902          * register bitfield, we can't satisfy the constraint.
903          */
904         if (scbr >= (1 << SPI_SCBR_SIZE)) {
905                 dev_err(&spi->dev,
906                         "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
907                         xfer->speed_hz, scbr, bus_hz/255);
908                 return -EINVAL;
909         }
910         if (scbr == 0) {
911                 dev_err(&spi->dev,
912                         "setup: %d Hz too high, scbr %u; max %ld Hz\n",
913                         xfer->speed_hz, scbr, bus_hz);
914                 return -EINVAL;
915         }
916         csr = spi_readl(as, CSR0 + 4 * chip_select);
917         csr = SPI_BFINS(SCBR, scbr, csr);
918         spi_writel(as, CSR0 + 4 * chip_select, csr);
919         xfer->effective_speed_hz = bus_hz / scbr;
920
921         return 0;
922 }
923
924 /*
925  * Submit next transfer for PDC.
926  * lock is held, spi irq is blocked
927  */
928 static void atmel_spi_pdc_next_xfer(struct spi_controller *host,
929                                         struct spi_transfer *xfer)
930 {
931         struct atmel_spi        *as = spi_controller_get_devdata(host);
932         u32                     len;
933         dma_addr_t              tx_dma, rx_dma;
934
935         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
936
937         len = as->current_remaining_bytes;
938         atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
939         as->current_remaining_bytes -= len;
940
941         spi_writel(as, RPR, rx_dma);
942         spi_writel(as, TPR, tx_dma);
943
944         if (xfer->bits_per_word > 8)
945                 len >>= 1;
946         spi_writel(as, RCR, len);
947         spi_writel(as, TCR, len);
948
949         dev_dbg(&host->dev,
950                 "  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
951                 xfer, xfer->len, xfer->tx_buf,
952                 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
953                 (unsigned long long)xfer->rx_dma);
954
955         if (as->current_remaining_bytes) {
956                 len = as->current_remaining_bytes;
957                 atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
958                 as->current_remaining_bytes -= len;
959
960                 spi_writel(as, RNPR, rx_dma);
961                 spi_writel(as, TNPR, tx_dma);
962
963                 if (xfer->bits_per_word > 8)
964                         len >>= 1;
965                 spi_writel(as, RNCR, len);
966                 spi_writel(as, TNCR, len);
967
968                 dev_dbg(&host->dev,
969                         "  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
970                         xfer, xfer->len, xfer->tx_buf,
971                         (unsigned long long)xfer->tx_dma, xfer->rx_buf,
972                         (unsigned long long)xfer->rx_dma);
973         }
974
975         /* REVISIT: We're waiting for RXBUFF before we start the next
976          * transfer because we need to handle some difficult timing
977          * issues otherwise. If we wait for TXBUFE in one transfer and
978          * then starts waiting for RXBUFF in the next, it's difficult
979          * to tell the difference between the RXBUFF interrupt we're
980          * actually waiting for and the RXBUFF interrupt of the
981          * previous transfer.
982          *
983          * It should be doable, though. Just not now...
984          */
985         spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
986         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
987 }
988
989 /*
990  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
991  *  - The buffer is either valid for CPU access, else NULL
992  *  - If the buffer is valid, so is its DMA address
993  *
994  * This driver manages the dma address unless message->is_dma_mapped.
995  */
996 static int
997 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
998 {
999         struct device   *dev = &as->pdev->dev;
1000
1001         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
1002         if (xfer->tx_buf) {
1003                 /* tx_buf is a const void* where we need a void * for the dma
1004                  * mapping */
1005                 void *nonconst_tx = (void *)xfer->tx_buf;
1006
1007                 xfer->tx_dma = dma_map_single(dev,
1008                                 nonconst_tx, xfer->len,
1009                                 DMA_TO_DEVICE);
1010                 if (dma_mapping_error(dev, xfer->tx_dma))
1011                         return -ENOMEM;
1012         }
1013         if (xfer->rx_buf) {
1014                 xfer->rx_dma = dma_map_single(dev,
1015                                 xfer->rx_buf, xfer->len,
1016                                 DMA_FROM_DEVICE);
1017                 if (dma_mapping_error(dev, xfer->rx_dma)) {
1018                         if (xfer->tx_buf)
1019                                 dma_unmap_single(dev,
1020                                                 xfer->tx_dma, xfer->len,
1021                                                 DMA_TO_DEVICE);
1022                         return -ENOMEM;
1023                 }
1024         }
1025         return 0;
1026 }
1027
1028 static void atmel_spi_dma_unmap_xfer(struct spi_controller *host,
1029                                      struct spi_transfer *xfer)
1030 {
1031         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
1032                 dma_unmap_single(host->dev.parent, xfer->tx_dma,
1033                                  xfer->len, DMA_TO_DEVICE);
1034         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
1035                 dma_unmap_single(host->dev.parent, xfer->rx_dma,
1036                                  xfer->len, DMA_FROM_DEVICE);
1037 }
1038
1039 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1040 {
1041         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1042 }
1043
1044 static void
1045 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1046 {
1047         u8              *rxp;
1048         u16             *rxp16;
1049         unsigned long   xfer_pos = xfer->len - as->current_remaining_bytes;
1050
1051         if (xfer->bits_per_word > 8) {
1052                 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1053                 *rxp16 = spi_readl(as, RDR);
1054         } else {
1055                 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1056                 *rxp = spi_readl(as, RDR);
1057         }
1058         if (xfer->bits_per_word > 8) {
1059                 if (as->current_remaining_bytes > 2)
1060                         as->current_remaining_bytes -= 2;
1061                 else
1062                         as->current_remaining_bytes = 0;
1063         } else {
1064                 as->current_remaining_bytes--;
1065         }
1066 }
1067
1068 static void
1069 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1070 {
1071         u32 fifolr = spi_readl(as, FLR);
1072         u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1073         u32 offset = xfer->len - as->current_remaining_bytes;
1074         u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1075         u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1076         u16 rd; /* RD field is the lowest 16 bits of RDR */
1077
1078         /* Update the number of remaining bytes to transfer */
1079         num_bytes = ((xfer->bits_per_word > 8) ?
1080                      (num_data << 1) :
1081                      num_data);
1082
1083         if (as->current_remaining_bytes > num_bytes)
1084                 as->current_remaining_bytes -= num_bytes;
1085         else
1086                 as->current_remaining_bytes = 0;
1087
1088         /* Handle odd number of bytes when data are more than 8bit width */
1089         if (xfer->bits_per_word > 8)
1090                 as->current_remaining_bytes &= ~0x1;
1091
1092         /* Read data */
1093         while (num_data) {
1094                 rd = spi_readl(as, RDR);
1095                 if (xfer->bits_per_word > 8)
1096                         *words++ = rd;
1097                 else
1098                         *bytes++ = rd;
1099                 num_data--;
1100         }
1101 }
1102
1103 /* Called from IRQ
1104  *
1105  * Must update "current_remaining_bytes" to keep track of data
1106  * to transfer.
1107  */
1108 static void
1109 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1110 {
1111         if (as->fifo_size)
1112                 atmel_spi_pump_fifo_data(as, xfer);
1113         else
1114                 atmel_spi_pump_single_data(as, xfer);
1115 }
1116
1117 /* Interrupt
1118  *
1119  */
1120 static irqreturn_t
1121 atmel_spi_pio_interrupt(int irq, void *dev_id)
1122 {
1123         struct spi_controller   *host = dev_id;
1124         struct atmel_spi        *as = spi_controller_get_devdata(host);
1125         u32                     status, pending, imr;
1126         struct spi_transfer     *xfer;
1127         int                     ret = IRQ_NONE;
1128
1129         imr = spi_readl(as, IMR);
1130         status = spi_readl(as, SR);
1131         pending = status & imr;
1132
1133         if (pending & SPI_BIT(OVRES)) {
1134                 ret = IRQ_HANDLED;
1135                 spi_writel(as, IDR, SPI_BIT(OVRES));
1136                 dev_warn(host->dev.parent, "overrun\n");
1137
1138                 /*
1139                  * When we get an overrun, we disregard the current
1140                  * transfer. Data will not be copied back from any
1141                  * bounce buffer and msg->actual_len will not be
1142                  * updated with the last xfer.
1143                  *
1144                  * We will also not process any remaning transfers in
1145                  * the message.
1146                  */
1147                 as->done_status = -EIO;
1148                 smp_wmb();
1149
1150                 /* Clear any overrun happening while cleaning up */
1151                 spi_readl(as, SR);
1152
1153                 complete(&as->xfer_completion);
1154
1155         } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1156                 atmel_spi_lock(as);
1157
1158                 if (as->current_remaining_bytes) {
1159                         ret = IRQ_HANDLED;
1160                         xfer = as->current_transfer;
1161                         atmel_spi_pump_pio_data(as, xfer);
1162                         if (!as->current_remaining_bytes)
1163                                 spi_writel(as, IDR, pending);
1164
1165                         complete(&as->xfer_completion);
1166                 }
1167
1168                 atmel_spi_unlock(as);
1169         } else {
1170                 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1171                 ret = IRQ_HANDLED;
1172                 spi_writel(as, IDR, pending);
1173         }
1174
1175         return ret;
1176 }
1177
1178 static irqreturn_t
1179 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1180 {
1181         struct spi_controller   *host = dev_id;
1182         struct atmel_spi        *as = spi_controller_get_devdata(host);
1183         u32                     status, pending, imr;
1184         int                     ret = IRQ_NONE;
1185
1186         imr = spi_readl(as, IMR);
1187         status = spi_readl(as, SR);
1188         pending = status & imr;
1189
1190         if (pending & SPI_BIT(OVRES)) {
1191
1192                 ret = IRQ_HANDLED;
1193
1194                 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1195                                      | SPI_BIT(OVRES)));
1196
1197                 /* Clear any overrun happening while cleaning up */
1198                 spi_readl(as, SR);
1199
1200                 as->done_status = -EIO;
1201
1202                 complete(&as->xfer_completion);
1203
1204         } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1205                 ret = IRQ_HANDLED;
1206
1207                 spi_writel(as, IDR, pending);
1208
1209                 complete(&as->xfer_completion);
1210         }
1211
1212         return ret;
1213 }
1214
1215 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1216 {
1217         struct spi_delay *delay = &spi->word_delay;
1218         u32 value = delay->value;
1219
1220         switch (delay->unit) {
1221         case SPI_DELAY_UNIT_NSECS:
1222                 value /= 1000;
1223                 break;
1224         case SPI_DELAY_UNIT_USECS:
1225                 break;
1226         default:
1227                 return -EINVAL;
1228         }
1229
1230         return (as->spi_clk / 1000000 * value) >> 5;
1231 }
1232
1233 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1234 {
1235         int i;
1236         struct spi_controller *host = platform_get_drvdata(as->pdev);
1237
1238         if (!as->native_cs_free)
1239                 return; /* already initialized */
1240
1241         if (!host->cs_gpiods)
1242                 return; /* No CS GPIO */
1243
1244         /*
1245          * On the first version of the controller (AT91RM9200), CS0
1246          * can't be used associated with GPIO
1247          */
1248         if (atmel_spi_is_v2(as))
1249                 i = 0;
1250         else
1251                 i = 1;
1252
1253         for (; i < 4; i++)
1254                 if (host->cs_gpiods[i])
1255                         as->native_cs_free |= BIT(i);
1256
1257         if (as->native_cs_free)
1258                 as->native_cs_for_gpio = ffs(as->native_cs_free);
1259 }
1260
1261 static int atmel_spi_setup(struct spi_device *spi)
1262 {
1263         struct atmel_spi        *as;
1264         struct atmel_spi_device *asd;
1265         u32                     csr;
1266         unsigned int            bits = spi->bits_per_word;
1267         int chip_select;
1268         int                     word_delay_csr;
1269
1270         as = spi_controller_get_devdata(spi->controller);
1271
1272         /* see notes above re chipselect */
1273         if (!spi_get_csgpiod(spi, 0) && (spi->mode & SPI_CS_HIGH)) {
1274                 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1275                 return -EINVAL;
1276         }
1277
1278         /* Setup() is called during spi_register_controller(aka
1279          * spi_register_master) but after all membmers of the cs_gpiod
1280          * array have been filled, so we can looked for which native
1281          * CS will be free for using with GPIO
1282          */
1283         initialize_native_cs_for_gpio(as);
1284
1285         if (spi_get_csgpiod(spi, 0) && as->native_cs_free) {
1286                 dev_err(&spi->dev,
1287                         "No native CS available to support this GPIO CS\n");
1288                 return -EBUSY;
1289         }
1290
1291         if (spi_get_csgpiod(spi, 0))
1292                 chip_select = as->native_cs_for_gpio;
1293         else
1294                 chip_select = spi_get_chipselect(spi, 0);
1295
1296         csr = SPI_BF(BITS, bits - 8);
1297         if (spi->mode & SPI_CPOL)
1298                 csr |= SPI_BIT(CPOL);
1299         if (!(spi->mode & SPI_CPHA))
1300                 csr |= SPI_BIT(NCPHA);
1301
1302         if (!spi_get_csgpiod(spi, 0))
1303                 csr |= SPI_BIT(CSAAT);
1304         csr |= SPI_BF(DLYBS, 0);
1305
1306         word_delay_csr = atmel_word_delay_csr(spi, as);
1307         if (word_delay_csr < 0)
1308                 return word_delay_csr;
1309
1310         /* DLYBCT adds delays between words.  This is useful for slow devices
1311          * that need a bit of time to setup the next transfer.
1312          */
1313         csr |= SPI_BF(DLYBCT, word_delay_csr);
1314
1315         asd = spi->controller_state;
1316         if (!asd) {
1317                 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1318                 if (!asd)
1319                         return -ENOMEM;
1320
1321                 spi->controller_state = asd;
1322         }
1323
1324         asd->csr = csr;
1325
1326         dev_dbg(&spi->dev,
1327                 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1328                 bits, spi->mode, spi_get_chipselect(spi, 0), csr);
1329
1330         if (!atmel_spi_is_v2(as))
1331                 spi_writel(as, CSR0 + 4 * chip_select, csr);
1332
1333         return 0;
1334 }
1335
1336 static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1337 {
1338         struct atmel_spi *as = spi_controller_get_devdata(spi->controller);
1339         /* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1340          * since we already have routines for activate/deactivate translate
1341          * high/low to active/inactive
1342          */
1343         enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1344
1345         if (enable) {
1346                 cs_activate(as, spi);
1347         } else {
1348                 cs_deactivate(as, spi);
1349         }
1350
1351 }
1352
1353 static int atmel_spi_one_transfer(struct spi_controller *host,
1354                                         struct spi_device *spi,
1355                                         struct spi_transfer *xfer)
1356 {
1357         struct atmel_spi        *as;
1358         u8                      bits;
1359         u32                     len;
1360         struct atmel_spi_device *asd;
1361         int                     timeout;
1362         int                     ret;
1363         unsigned int            dma_timeout;
1364         long                    ret_timeout;
1365
1366         as = spi_controller_get_devdata(host);
1367
1368         asd = spi->controller_state;
1369         bits = (asd->csr >> 4) & 0xf;
1370         if (bits != xfer->bits_per_word - 8) {
1371                 dev_dbg(&spi->dev,
1372                         "you can't yet change bits_per_word in transfers\n");
1373                 return -ENOPROTOOPT;
1374         }
1375
1376         /*
1377          * DMA map early, for performance (empties dcache ASAP) and
1378          * better fault reporting.
1379          */
1380         if ((!host->cur_msg->is_dma_mapped)
1381                 && as->use_pdc) {
1382                 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1383                         return -ENOMEM;
1384         }
1385
1386         atmel_spi_set_xfer_speed(as, spi, xfer);
1387
1388         as->done_status = 0;
1389         as->current_transfer = xfer;
1390         as->current_remaining_bytes = xfer->len;
1391         while (as->current_remaining_bytes) {
1392                 reinit_completion(&as->xfer_completion);
1393
1394                 if (as->use_pdc) {
1395                         atmel_spi_lock(as);
1396                         atmel_spi_pdc_next_xfer(host, xfer);
1397                         atmel_spi_unlock(as);
1398                 } else if (atmel_spi_use_dma(as, xfer)) {
1399                         len = as->current_remaining_bytes;
1400                         ret = atmel_spi_next_xfer_dma_submit(host,
1401                                                                 xfer, &len);
1402                         if (ret) {
1403                                 dev_err(&spi->dev,
1404                                         "unable to use DMA, fallback to PIO\n");
1405                                 as->done_status = ret;
1406                                 break;
1407                         } else {
1408                                 as->current_remaining_bytes -= len;
1409                                 if (as->current_remaining_bytes < 0)
1410                                         as->current_remaining_bytes = 0;
1411                         }
1412                 } else {
1413                         atmel_spi_lock(as);
1414                         atmel_spi_next_xfer_pio(host, xfer);
1415                         atmel_spi_unlock(as);
1416                 }
1417
1418                 dma_timeout = msecs_to_jiffies(spi_controller_xfer_timeout(host, xfer));
1419                 ret_timeout = wait_for_completion_timeout(&as->xfer_completion, dma_timeout);
1420                 if (!ret_timeout) {
1421                         dev_err(&spi->dev, "spi transfer timeout\n");
1422                         as->done_status = -EIO;
1423                 }
1424
1425                 if (as->done_status)
1426                         break;
1427         }
1428
1429         if (as->done_status) {
1430                 if (as->use_pdc) {
1431                         dev_warn(host->dev.parent,
1432                                 "overrun (%u/%u remaining)\n",
1433                                 spi_readl(as, TCR), spi_readl(as, RCR));
1434
1435                         /*
1436                          * Clean up DMA registers and make sure the data
1437                          * registers are empty.
1438                          */
1439                         spi_writel(as, RNCR, 0);
1440                         spi_writel(as, TNCR, 0);
1441                         spi_writel(as, RCR, 0);
1442                         spi_writel(as, TCR, 0);
1443                         for (timeout = 1000; timeout; timeout--)
1444                                 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1445                                         break;
1446                         if (!timeout)
1447                                 dev_warn(host->dev.parent,
1448                                          "timeout waiting for TXEMPTY");
1449                         while (spi_readl(as, SR) & SPI_BIT(RDRF))
1450                                 spi_readl(as, RDR);
1451
1452                         /* Clear any overrun happening while cleaning up */
1453                         spi_readl(as, SR);
1454
1455                 } else if (atmel_spi_use_dma(as, xfer)) {
1456                         atmel_spi_stop_dma(host);
1457                 }
1458         }
1459
1460         if (!host->cur_msg->is_dma_mapped
1461                 && as->use_pdc)
1462                 atmel_spi_dma_unmap_xfer(host, xfer);
1463
1464         if (as->use_pdc)
1465                 atmel_spi_disable_pdc_transfer(as);
1466
1467         return as->done_status;
1468 }
1469
1470 static void atmel_spi_cleanup(struct spi_device *spi)
1471 {
1472         struct atmel_spi_device *asd = spi->controller_state;
1473
1474         if (!asd)
1475                 return;
1476
1477         spi->controller_state = NULL;
1478         kfree(asd);
1479 }
1480
1481 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1482 {
1483         return spi_readl(as, VERSION) & 0x00000fff;
1484 }
1485
1486 static void atmel_get_caps(struct atmel_spi *as)
1487 {
1488         unsigned int version;
1489
1490         version = atmel_get_version(as);
1491
1492         as->caps.is_spi2 = version > 0x121;
1493         as->caps.has_wdrbt = version >= 0x210;
1494         as->caps.has_dma_support = version >= 0x212;
1495         as->caps.has_pdc_support = version < 0x212;
1496 }
1497
1498 static void atmel_spi_init(struct atmel_spi *as)
1499 {
1500         spi_writel(as, CR, SPI_BIT(SWRST));
1501         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1502
1503         /* It is recommended to enable FIFOs first thing after reset */
1504         if (as->fifo_size)
1505                 spi_writel(as, CR, SPI_BIT(FIFOEN));
1506
1507         if (as->caps.has_wdrbt) {
1508                 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1509                                 | SPI_BIT(MSTR));
1510         } else {
1511                 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1512         }
1513
1514         if (as->use_pdc)
1515                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1516         spi_writel(as, CR, SPI_BIT(SPIEN));
1517 }
1518
1519 static int atmel_spi_probe(struct platform_device *pdev)
1520 {
1521         struct resource         *regs;
1522         int                     irq;
1523         struct clk              *clk;
1524         int                     ret;
1525         struct spi_controller   *host;
1526         struct atmel_spi        *as;
1527
1528         /* Select default pin state */
1529         pinctrl_pm_select_default_state(&pdev->dev);
1530
1531         irq = platform_get_irq(pdev, 0);
1532         if (irq < 0)
1533                 return irq;
1534
1535         clk = devm_clk_get(&pdev->dev, "spi_clk");
1536         if (IS_ERR(clk))
1537                 return PTR_ERR(clk);
1538
1539         /* setup spi core then atmel-specific driver state */
1540         host = spi_alloc_host(&pdev->dev, sizeof(*as));
1541         if (!host)
1542                 return -ENOMEM;
1543
1544         /* the spi->mode bits understood by this driver: */
1545         host->use_gpio_descriptors = true;
1546         host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1547         host->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1548         host->dev.of_node = pdev->dev.of_node;
1549         host->bus_num = pdev->id;
1550         host->num_chipselect = 4;
1551         host->setup = atmel_spi_setup;
1552         host->flags = (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX |
1553                         SPI_CONTROLLER_GPIO_SS);
1554         host->transfer_one = atmel_spi_one_transfer;
1555         host->set_cs = atmel_spi_set_cs;
1556         host->cleanup = atmel_spi_cleanup;
1557         host->auto_runtime_pm = true;
1558         host->max_dma_len = SPI_MAX_DMA_XFER;
1559         host->can_dma = atmel_spi_can_dma;
1560         platform_set_drvdata(pdev, host);
1561
1562         as = spi_controller_get_devdata(host);
1563
1564         spin_lock_init(&as->lock);
1565
1566         as->pdev = pdev;
1567         as->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &regs);
1568         if (IS_ERR(as->regs)) {
1569                 ret = PTR_ERR(as->regs);
1570                 goto out_unmap_regs;
1571         }
1572         as->phybase = regs->start;
1573         as->irq = irq;
1574         as->clk = clk;
1575
1576         init_completion(&as->xfer_completion);
1577
1578         atmel_get_caps(as);
1579
1580         as->use_dma = false;
1581         as->use_pdc = false;
1582         if (as->caps.has_dma_support) {
1583                 ret = atmel_spi_configure_dma(host, as);
1584                 if (ret == 0) {
1585                         as->use_dma = true;
1586                 } else if (ret == -EPROBE_DEFER) {
1587                         goto out_unmap_regs;
1588                 }
1589         } else if (as->caps.has_pdc_support) {
1590                 as->use_pdc = true;
1591         }
1592
1593         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1594                 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1595                                                       SPI_MAX_DMA_XFER,
1596                                                       &as->dma_addr_rx_bbuf,
1597                                                       GFP_KERNEL | GFP_DMA);
1598                 if (!as->addr_rx_bbuf) {
1599                         as->use_dma = false;
1600                 } else {
1601                         as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1602                                         SPI_MAX_DMA_XFER,
1603                                         &as->dma_addr_tx_bbuf,
1604                                         GFP_KERNEL | GFP_DMA);
1605                         if (!as->addr_tx_bbuf) {
1606                                 as->use_dma = false;
1607                                 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1608                                                   as->addr_rx_bbuf,
1609                                                   as->dma_addr_rx_bbuf);
1610                         }
1611                 }
1612                 if (!as->use_dma)
1613                         dev_info(host->dev.parent,
1614                                  "  can not allocate dma coherent memory\n");
1615         }
1616
1617         if (as->caps.has_dma_support && !as->use_dma)
1618                 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1619
1620         if (as->use_pdc) {
1621                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1622                                         0, dev_name(&pdev->dev), host);
1623         } else {
1624                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1625                                         0, dev_name(&pdev->dev), host);
1626         }
1627         if (ret)
1628                 goto out_unmap_regs;
1629
1630         /* Initialize the hardware */
1631         ret = clk_prepare_enable(clk);
1632         if (ret)
1633                 goto out_free_irq;
1634
1635         as->spi_clk = clk_get_rate(clk);
1636
1637         as->fifo_size = 0;
1638         if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1639                                   &as->fifo_size)) {
1640                 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1641         }
1642
1643         atmel_spi_init(as);
1644
1645         pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1646         pm_runtime_use_autosuspend(&pdev->dev);
1647         pm_runtime_set_active(&pdev->dev);
1648         pm_runtime_enable(&pdev->dev);
1649
1650         ret = devm_spi_register_controller(&pdev->dev, host);
1651         if (ret)
1652                 goto out_free_dma;
1653
1654         /* go! */
1655         dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1656                         atmel_get_version(as), (unsigned long)regs->start,
1657                         irq);
1658
1659         return 0;
1660
1661 out_free_dma:
1662         pm_runtime_disable(&pdev->dev);
1663         pm_runtime_set_suspended(&pdev->dev);
1664
1665         if (as->use_dma)
1666                 atmel_spi_release_dma(host);
1667
1668         spi_writel(as, CR, SPI_BIT(SWRST));
1669         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1670         clk_disable_unprepare(clk);
1671 out_free_irq:
1672 out_unmap_regs:
1673         spi_controller_put(host);
1674         return ret;
1675 }
1676
1677 static void atmel_spi_remove(struct platform_device *pdev)
1678 {
1679         struct spi_controller   *host = platform_get_drvdata(pdev);
1680         struct atmel_spi        *as = spi_controller_get_devdata(host);
1681
1682         pm_runtime_get_sync(&pdev->dev);
1683
1684         /* reset the hardware and block queue progress */
1685         if (as->use_dma) {
1686                 atmel_spi_stop_dma(host);
1687                 atmel_spi_release_dma(host);
1688                 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1689                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1690                                           as->addr_tx_bbuf,
1691                                           as->dma_addr_tx_bbuf);
1692                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1693                                           as->addr_rx_bbuf,
1694                                           as->dma_addr_rx_bbuf);
1695                 }
1696         }
1697
1698         spin_lock_irq(&as->lock);
1699         spi_writel(as, CR, SPI_BIT(SWRST));
1700         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1701         spi_readl(as, SR);
1702         spin_unlock_irq(&as->lock);
1703
1704         clk_disable_unprepare(as->clk);
1705
1706         pm_runtime_put_noidle(&pdev->dev);
1707         pm_runtime_disable(&pdev->dev);
1708 }
1709
1710 static int atmel_spi_runtime_suspend(struct device *dev)
1711 {
1712         struct spi_controller *host = dev_get_drvdata(dev);
1713         struct atmel_spi *as = spi_controller_get_devdata(host);
1714
1715         clk_disable_unprepare(as->clk);
1716         pinctrl_pm_select_sleep_state(dev);
1717
1718         return 0;
1719 }
1720
1721 static int atmel_spi_runtime_resume(struct device *dev)
1722 {
1723         struct spi_controller *host = dev_get_drvdata(dev);
1724         struct atmel_spi *as = spi_controller_get_devdata(host);
1725
1726         pinctrl_pm_select_default_state(dev);
1727
1728         return clk_prepare_enable(as->clk);
1729 }
1730
1731 static int atmel_spi_suspend(struct device *dev)
1732 {
1733         struct spi_controller *host = dev_get_drvdata(dev);
1734         int ret;
1735
1736         /* Stop the queue running */
1737         ret = spi_controller_suspend(host);
1738         if (ret)
1739                 return ret;
1740
1741         if (!pm_runtime_suspended(dev))
1742                 atmel_spi_runtime_suspend(dev);
1743
1744         return 0;
1745 }
1746
1747 static int atmel_spi_resume(struct device *dev)
1748 {
1749         struct spi_controller *host = dev_get_drvdata(dev);
1750         struct atmel_spi *as = spi_controller_get_devdata(host);
1751         int ret;
1752
1753         ret = clk_prepare_enable(as->clk);
1754         if (ret)
1755                 return ret;
1756
1757         atmel_spi_init(as);
1758
1759         clk_disable_unprepare(as->clk);
1760
1761         if (!pm_runtime_suspended(dev)) {
1762                 ret = atmel_spi_runtime_resume(dev);
1763                 if (ret)
1764                         return ret;
1765         }
1766
1767         /* Start the queue running */
1768         return spi_controller_resume(host);
1769 }
1770
1771 static const struct dev_pm_ops atmel_spi_pm_ops = {
1772         SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1773         RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1774                        atmel_spi_runtime_resume, NULL)
1775 };
1776
1777 static const struct of_device_id atmel_spi_dt_ids[] = {
1778         { .compatible = "atmel,at91rm9200-spi" },
1779         { /* sentinel */ }
1780 };
1781
1782 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1783
1784 static struct platform_driver atmel_spi_driver = {
1785         .driver         = {
1786                 .name   = "atmel_spi",
1787                 .pm     = pm_ptr(&atmel_spi_pm_ops),
1788                 .of_match_table = atmel_spi_dt_ids,
1789         },
1790         .probe          = atmel_spi_probe,
1791         .remove_new     = atmel_spi_remove,
1792 };
1793 module_platform_driver(atmel_spi_driver);
1794
1795 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1796 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1797 MODULE_LICENSE("GPL");
1798 MODULE_ALIAS("platform:atmel_spi");