Merge tag 'v6.6-p5' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[platform/kernel/linux-rpi.git] / drivers / spi / spi-atmel.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel AT32 and AT91 SPI Controllers
4  *
5  * Copyright (C) 2006 Atmel Corporation
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20
21 #include <linux/io.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/pm_runtime.h>
25 #include <trace/events/spi.h>
26
27 /* SPI register offsets */
28 #define SPI_CR                                  0x0000
29 #define SPI_MR                                  0x0004
30 #define SPI_RDR                                 0x0008
31 #define SPI_TDR                                 0x000c
32 #define SPI_SR                                  0x0010
33 #define SPI_IER                                 0x0014
34 #define SPI_IDR                                 0x0018
35 #define SPI_IMR                                 0x001c
36 #define SPI_CSR0                                0x0030
37 #define SPI_CSR1                                0x0034
38 #define SPI_CSR2                                0x0038
39 #define SPI_CSR3                                0x003c
40 #define SPI_FMR                                 0x0040
41 #define SPI_FLR                                 0x0044
42 #define SPI_VERSION                             0x00fc
43 #define SPI_RPR                                 0x0100
44 #define SPI_RCR                                 0x0104
45 #define SPI_TPR                                 0x0108
46 #define SPI_TCR                                 0x010c
47 #define SPI_RNPR                                0x0110
48 #define SPI_RNCR                                0x0114
49 #define SPI_TNPR                                0x0118
50 #define SPI_TNCR                                0x011c
51 #define SPI_PTCR                                0x0120
52 #define SPI_PTSR                                0x0124
53
54 /* Bitfields in CR */
55 #define SPI_SPIEN_OFFSET                        0
56 #define SPI_SPIEN_SIZE                          1
57 #define SPI_SPIDIS_OFFSET                       1
58 #define SPI_SPIDIS_SIZE                         1
59 #define SPI_SWRST_OFFSET                        7
60 #define SPI_SWRST_SIZE                          1
61 #define SPI_LASTXFER_OFFSET                     24
62 #define SPI_LASTXFER_SIZE                       1
63 #define SPI_TXFCLR_OFFSET                       16
64 #define SPI_TXFCLR_SIZE                         1
65 #define SPI_RXFCLR_OFFSET                       17
66 #define SPI_RXFCLR_SIZE                         1
67 #define SPI_FIFOEN_OFFSET                       30
68 #define SPI_FIFOEN_SIZE                         1
69 #define SPI_FIFODIS_OFFSET                      31
70 #define SPI_FIFODIS_SIZE                        1
71
72 /* Bitfields in MR */
73 #define SPI_MSTR_OFFSET                         0
74 #define SPI_MSTR_SIZE                           1
75 #define SPI_PS_OFFSET                           1
76 #define SPI_PS_SIZE                             1
77 #define SPI_PCSDEC_OFFSET                       2
78 #define SPI_PCSDEC_SIZE                         1
79 #define SPI_FDIV_OFFSET                         3
80 #define SPI_FDIV_SIZE                           1
81 #define SPI_MODFDIS_OFFSET                      4
82 #define SPI_MODFDIS_SIZE                        1
83 #define SPI_WDRBT_OFFSET                        5
84 #define SPI_WDRBT_SIZE                          1
85 #define SPI_LLB_OFFSET                          7
86 #define SPI_LLB_SIZE                            1
87 #define SPI_PCS_OFFSET                          16
88 #define SPI_PCS_SIZE                            4
89 #define SPI_DLYBCS_OFFSET                       24
90 #define SPI_DLYBCS_SIZE                         8
91
92 /* Bitfields in RDR */
93 #define SPI_RD_OFFSET                           0
94 #define SPI_RD_SIZE                             16
95
96 /* Bitfields in TDR */
97 #define SPI_TD_OFFSET                           0
98 #define SPI_TD_SIZE                             16
99
100 /* Bitfields in SR */
101 #define SPI_RDRF_OFFSET                         0
102 #define SPI_RDRF_SIZE                           1
103 #define SPI_TDRE_OFFSET                         1
104 #define SPI_TDRE_SIZE                           1
105 #define SPI_MODF_OFFSET                         2
106 #define SPI_MODF_SIZE                           1
107 #define SPI_OVRES_OFFSET                        3
108 #define SPI_OVRES_SIZE                          1
109 #define SPI_ENDRX_OFFSET                        4
110 #define SPI_ENDRX_SIZE                          1
111 #define SPI_ENDTX_OFFSET                        5
112 #define SPI_ENDTX_SIZE                          1
113 #define SPI_RXBUFF_OFFSET                       6
114 #define SPI_RXBUFF_SIZE                         1
115 #define SPI_TXBUFE_OFFSET                       7
116 #define SPI_TXBUFE_SIZE                         1
117 #define SPI_NSSR_OFFSET                         8
118 #define SPI_NSSR_SIZE                           1
119 #define SPI_TXEMPTY_OFFSET                      9
120 #define SPI_TXEMPTY_SIZE                        1
121 #define SPI_SPIENS_OFFSET                       16
122 #define SPI_SPIENS_SIZE                         1
123 #define SPI_TXFEF_OFFSET                        24
124 #define SPI_TXFEF_SIZE                          1
125 #define SPI_TXFFF_OFFSET                        25
126 #define SPI_TXFFF_SIZE                          1
127 #define SPI_TXFTHF_OFFSET                       26
128 #define SPI_TXFTHF_SIZE                         1
129 #define SPI_RXFEF_OFFSET                        27
130 #define SPI_RXFEF_SIZE                          1
131 #define SPI_RXFFF_OFFSET                        28
132 #define SPI_RXFFF_SIZE                          1
133 #define SPI_RXFTHF_OFFSET                       29
134 #define SPI_RXFTHF_SIZE                         1
135 #define SPI_TXFPTEF_OFFSET                      30
136 #define SPI_TXFPTEF_SIZE                        1
137 #define SPI_RXFPTEF_OFFSET                      31
138 #define SPI_RXFPTEF_SIZE                        1
139
140 /* Bitfields in CSR0 */
141 #define SPI_CPOL_OFFSET                         0
142 #define SPI_CPOL_SIZE                           1
143 #define SPI_NCPHA_OFFSET                        1
144 #define SPI_NCPHA_SIZE                          1
145 #define SPI_CSAAT_OFFSET                        3
146 #define SPI_CSAAT_SIZE                          1
147 #define SPI_BITS_OFFSET                         4
148 #define SPI_BITS_SIZE                           4
149 #define SPI_SCBR_OFFSET                         8
150 #define SPI_SCBR_SIZE                           8
151 #define SPI_DLYBS_OFFSET                        16
152 #define SPI_DLYBS_SIZE                          8
153 #define SPI_DLYBCT_OFFSET                       24
154 #define SPI_DLYBCT_SIZE                         8
155
156 /* Bitfields in RCR */
157 #define SPI_RXCTR_OFFSET                        0
158 #define SPI_RXCTR_SIZE                          16
159
160 /* Bitfields in TCR */
161 #define SPI_TXCTR_OFFSET                        0
162 #define SPI_TXCTR_SIZE                          16
163
164 /* Bitfields in RNCR */
165 #define SPI_RXNCR_OFFSET                        0
166 #define SPI_RXNCR_SIZE                          16
167
168 /* Bitfields in TNCR */
169 #define SPI_TXNCR_OFFSET                        0
170 #define SPI_TXNCR_SIZE                          16
171
172 /* Bitfields in PTCR */
173 #define SPI_RXTEN_OFFSET                        0
174 #define SPI_RXTEN_SIZE                          1
175 #define SPI_RXTDIS_OFFSET                       1
176 #define SPI_RXTDIS_SIZE                         1
177 #define SPI_TXTEN_OFFSET                        8
178 #define SPI_TXTEN_SIZE                          1
179 #define SPI_TXTDIS_OFFSET                       9
180 #define SPI_TXTDIS_SIZE                         1
181
182 /* Bitfields in FMR */
183 #define SPI_TXRDYM_OFFSET                       0
184 #define SPI_TXRDYM_SIZE                         2
185 #define SPI_RXRDYM_OFFSET                       4
186 #define SPI_RXRDYM_SIZE                         2
187 #define SPI_TXFTHRES_OFFSET                     16
188 #define SPI_TXFTHRES_SIZE                       6
189 #define SPI_RXFTHRES_OFFSET                     24
190 #define SPI_RXFTHRES_SIZE                       6
191
192 /* Bitfields in FLR */
193 #define SPI_TXFL_OFFSET                         0
194 #define SPI_TXFL_SIZE                           6
195 #define SPI_RXFL_OFFSET                         16
196 #define SPI_RXFL_SIZE                           6
197
198 /* Constants for BITS */
199 #define SPI_BITS_8_BPT                          0
200 #define SPI_BITS_9_BPT                          1
201 #define SPI_BITS_10_BPT                         2
202 #define SPI_BITS_11_BPT                         3
203 #define SPI_BITS_12_BPT                         4
204 #define SPI_BITS_13_BPT                         5
205 #define SPI_BITS_14_BPT                         6
206 #define SPI_BITS_15_BPT                         7
207 #define SPI_BITS_16_BPT                         8
208 #define SPI_ONE_DATA                            0
209 #define SPI_TWO_DATA                            1
210 #define SPI_FOUR_DATA                           2
211
212 /* Bit manipulation macros */
213 #define SPI_BIT(name) \
214         (1 << SPI_##name##_OFFSET)
215 #define SPI_BF(name, value) \
216         (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
217 #define SPI_BFEXT(name, value) \
218         (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
219 #define SPI_BFINS(name, value, old) \
220         (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
221           | SPI_BF(name, value))
222
223 /* Register access macros */
224 #define spi_readl(port, reg) \
225         readl_relaxed((port)->regs + SPI_##reg)
226 #define spi_writel(port, reg, value) \
227         writel_relaxed((value), (port)->regs + SPI_##reg)
228 #define spi_writew(port, reg, value) \
229         writew_relaxed((value), (port)->regs + SPI_##reg)
230
231 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
232  * cache operations; better heuristics consider wordsize and bitrate.
233  */
234 #define DMA_MIN_BYTES   16
235
236 #define SPI_DMA_MIN_TIMEOUT     (msecs_to_jiffies(1000))
237 #define SPI_DMA_TIMEOUT_PER_10K (msecs_to_jiffies(4))
238
239 #define AUTOSUSPEND_TIMEOUT     2000
240
241 struct atmel_spi_caps {
242         bool    is_spi2;
243         bool    has_wdrbt;
244         bool    has_dma_support;
245         bool    has_pdc_support;
246 };
247
248 /*
249  * The core SPI transfer engine just talks to a register bank to set up
250  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
251  * framework provides the base clock, subdivided for each spi_device.
252  */
253 struct atmel_spi {
254         spinlock_t              lock;
255         unsigned long           flags;
256
257         phys_addr_t             phybase;
258         void __iomem            *regs;
259         int                     irq;
260         struct clk              *clk;
261         struct platform_device  *pdev;
262         unsigned long           spi_clk;
263
264         struct spi_transfer     *current_transfer;
265         int                     current_remaining_bytes;
266         int                     done_status;
267         dma_addr_t              dma_addr_rx_bbuf;
268         dma_addr_t              dma_addr_tx_bbuf;
269         void                    *addr_rx_bbuf;
270         void                    *addr_tx_bbuf;
271
272         struct completion       xfer_completion;
273
274         struct atmel_spi_caps   caps;
275
276         bool                    use_dma;
277         bool                    use_pdc;
278
279         bool                    keep_cs;
280
281         u32                     fifo_size;
282         u8                      native_cs_free;
283         u8                      native_cs_for_gpio;
284 };
285
286 /* Controller-specific per-slave state */
287 struct atmel_spi_device {
288         u32                     csr;
289 };
290
291 #define SPI_MAX_DMA_XFER        65535 /* true for both PDC and DMA */
292 #define INVALID_DMA_ADDRESS     0xffffffff
293
294 /*
295  * Version 2 of the SPI controller has
296  *  - CR.LASTXFER
297  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
298  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
299  *  - SPI_CSRx.CSAAT
300  *  - SPI_CSRx.SBCR allows faster clocking
301  */
302 static bool atmel_spi_is_v2(struct atmel_spi *as)
303 {
304         return as->caps.is_spi2;
305 }
306
307 /*
308  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
309  * they assume that spi slave device state will not change on deselect, so
310  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
311  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
312  * controllers have CSAAT and friends.
313  *
314  * Even controller newer than ar91rm9200, using GPIOs can make sens as
315  * it lets us support active-high chipselects despite the controller's
316  * belief that only active-low devices/systems exists.
317  *
318  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
319  * right when driven with GPIO.  ("Mode Fault does not allow more than one
320  * Master on Chip Select 0.")  No workaround exists for that ... so for
321  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
322  * and (c) will trigger that first erratum in some cases.
323  */
324
325 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
326 {
327         struct atmel_spi_device *asd = spi->controller_state;
328         int chip_select;
329         u32 mr;
330
331         if (spi_get_csgpiod(spi, 0))
332                 chip_select = as->native_cs_for_gpio;
333         else
334                 chip_select = spi_get_chipselect(spi, 0);
335
336         if (atmel_spi_is_v2(as)) {
337                 spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
338                 /* For the low SPI version, there is a issue that PDC transfer
339                  * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
340                  */
341                 spi_writel(as, CSR0, asd->csr);
342                 if (as->caps.has_wdrbt) {
343                         spi_writel(as, MR,
344                                         SPI_BF(PCS, ~(0x01 << chip_select))
345                                         | SPI_BIT(WDRBT)
346                                         | SPI_BIT(MODFDIS)
347                                         | SPI_BIT(MSTR));
348                 } else {
349                         spi_writel(as, MR,
350                                         SPI_BF(PCS, ~(0x01 << chip_select))
351                                         | SPI_BIT(MODFDIS)
352                                         | SPI_BIT(MSTR));
353                 }
354
355                 mr = spi_readl(as, MR);
356         } else {
357                 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
358                 int i;
359                 u32 csr;
360
361                 /* Make sure clock polarity is correct */
362                 for (i = 0; i < spi->controller->num_chipselect; i++) {
363                         csr = spi_readl(as, CSR0 + 4 * i);
364                         if ((csr ^ cpol) & SPI_BIT(CPOL))
365                                 spi_writel(as, CSR0 + 4 * i,
366                                                 csr ^ SPI_BIT(CPOL));
367                 }
368
369                 mr = spi_readl(as, MR);
370                 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
371                 spi_writel(as, MR, mr);
372         }
373
374         dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
375 }
376
377 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
378 {
379         int chip_select;
380         u32 mr;
381
382         if (spi_get_csgpiod(spi, 0))
383                 chip_select = as->native_cs_for_gpio;
384         else
385                 chip_select = spi_get_chipselect(spi, 0);
386
387         /* only deactivate *this* device; sometimes transfers to
388          * another device may be active when this routine is called.
389          */
390         mr = spi_readl(as, MR);
391         if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
392                 mr = SPI_BFINS(PCS, 0xf, mr);
393                 spi_writel(as, MR, mr);
394         }
395
396         dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
397
398         if (!spi_get_csgpiod(spi, 0))
399                 spi_writel(as, CR, SPI_BIT(LASTXFER));
400 }
401
402 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
403 {
404         spin_lock_irqsave(&as->lock, as->flags);
405 }
406
407 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
408 {
409         spin_unlock_irqrestore(&as->lock, as->flags);
410 }
411
412 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
413 {
414         return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
415 }
416
417 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
418                                 struct spi_transfer *xfer)
419 {
420         return as->use_dma && xfer->len >= DMA_MIN_BYTES;
421 }
422
423 static bool atmel_spi_can_dma(struct spi_controller *host,
424                               struct spi_device *spi,
425                               struct spi_transfer *xfer)
426 {
427         struct atmel_spi *as = spi_controller_get_devdata(host);
428
429         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
430                 return atmel_spi_use_dma(as, xfer) &&
431                         !atmel_spi_is_vmalloc_xfer(xfer);
432         else
433                 return atmel_spi_use_dma(as, xfer);
434
435 }
436
437 static int atmel_spi_dma_slave_config(struct atmel_spi *as, u8 bits_per_word)
438 {
439         struct spi_controller *host = platform_get_drvdata(as->pdev);
440         struct dma_slave_config slave_config;
441         int err = 0;
442
443         if (bits_per_word > 8) {
444                 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
445                 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
446         } else {
447                 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
448                 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
449         }
450
451         slave_config.dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
452         slave_config.src_addr = (dma_addr_t)as->phybase + SPI_RDR;
453         slave_config.src_maxburst = 1;
454         slave_config.dst_maxburst = 1;
455         slave_config.device_fc = false;
456
457         /*
458          * This driver uses fixed peripheral select mode (PS bit set to '0' in
459          * the Mode Register).
460          * So according to the datasheet, when FIFOs are available (and
461          * enabled), the Transmit FIFO operates in Multiple Data Mode.
462          * In this mode, up to 2 data, not 4, can be written into the Transmit
463          * Data Register in a single access.
464          * However, the first data has to be written into the lowest 16 bits and
465          * the second data into the highest 16 bits of the Transmit
466          * Data Register. For 8bit data (the most frequent case), it would
467          * require to rework tx_buf so each data would actually fit 16 bits.
468          * So we'd rather write only one data at the time. Hence the transmit
469          * path works the same whether FIFOs are available (and enabled) or not.
470          */
471         if (dmaengine_slave_config(host->dma_tx, &slave_config)) {
472                 dev_err(&as->pdev->dev,
473                         "failed to configure tx dma channel\n");
474                 err = -EINVAL;
475         }
476
477         /*
478          * This driver configures the spi controller for host mode (MSTR bit
479          * set to '1' in the Mode Register).
480          * So according to the datasheet, when FIFOs are available (and
481          * enabled), the Receive FIFO operates in Single Data Mode.
482          * So the receive path works the same whether FIFOs are available (and
483          * enabled) or not.
484          */
485         if (dmaengine_slave_config(host->dma_rx, &slave_config)) {
486                 dev_err(&as->pdev->dev,
487                         "failed to configure rx dma channel\n");
488                 err = -EINVAL;
489         }
490
491         return err;
492 }
493
494 static int atmel_spi_configure_dma(struct spi_controller *host,
495                                    struct atmel_spi *as)
496 {
497         struct device *dev = &as->pdev->dev;
498         int err;
499
500         host->dma_tx = dma_request_chan(dev, "tx");
501         if (IS_ERR(host->dma_tx)) {
502                 err = PTR_ERR(host->dma_tx);
503                 dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
504                 goto error_clear;
505         }
506
507         host->dma_rx = dma_request_chan(dev, "rx");
508         if (IS_ERR(host->dma_rx)) {
509                 err = PTR_ERR(host->dma_rx);
510                 /*
511                  * No reason to check EPROBE_DEFER here since we have already
512                  * requested tx channel.
513                  */
514                 dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
515                 goto error;
516         }
517
518         err = atmel_spi_dma_slave_config(as, 8);
519         if (err)
520                 goto error;
521
522         dev_info(&as->pdev->dev,
523                         "Using %s (tx) and %s (rx) for DMA transfers\n",
524                         dma_chan_name(host->dma_tx),
525                         dma_chan_name(host->dma_rx));
526
527         return 0;
528 error:
529         if (!IS_ERR(host->dma_rx))
530                 dma_release_channel(host->dma_rx);
531         if (!IS_ERR(host->dma_tx))
532                 dma_release_channel(host->dma_tx);
533 error_clear:
534         host->dma_tx = host->dma_rx = NULL;
535         return err;
536 }
537
538 static void atmel_spi_stop_dma(struct spi_controller *host)
539 {
540         if (host->dma_rx)
541                 dmaengine_terminate_all(host->dma_rx);
542         if (host->dma_tx)
543                 dmaengine_terminate_all(host->dma_tx);
544 }
545
546 static void atmel_spi_release_dma(struct spi_controller *host)
547 {
548         if (host->dma_rx) {
549                 dma_release_channel(host->dma_rx);
550                 host->dma_rx = NULL;
551         }
552         if (host->dma_tx) {
553                 dma_release_channel(host->dma_tx);
554                 host->dma_tx = NULL;
555         }
556 }
557
558 /* This function is called by the DMA driver from tasklet context */
559 static void dma_callback(void *data)
560 {
561         struct spi_controller   *host = data;
562         struct atmel_spi        *as = spi_controller_get_devdata(host);
563
564         if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
565             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
566                 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
567                        as->current_transfer->len);
568         }
569         complete(&as->xfer_completion);
570 }
571
572 /*
573  * Next transfer using PIO without FIFO.
574  */
575 static void atmel_spi_next_xfer_single(struct spi_controller *host,
576                                        struct spi_transfer *xfer)
577 {
578         struct atmel_spi        *as = spi_controller_get_devdata(host);
579         unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
580
581         dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_pio\n");
582
583         /* Make sure data is not remaining in RDR */
584         spi_readl(as, RDR);
585         while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
586                 spi_readl(as, RDR);
587                 cpu_relax();
588         }
589
590         if (xfer->bits_per_word > 8)
591                 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
592         else
593                 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
594
595         dev_dbg(host->dev.parent,
596                 "  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
597                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
598                 xfer->bits_per_word);
599
600         /* Enable relevant interrupts */
601         spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
602 }
603
604 /*
605  * Next transfer using PIO with FIFO.
606  */
607 static void atmel_spi_next_xfer_fifo(struct spi_controller *host,
608                                      struct spi_transfer *xfer)
609 {
610         struct atmel_spi *as = spi_controller_get_devdata(host);
611         u32 current_remaining_data, num_data;
612         u32 offset = xfer->len - as->current_remaining_bytes;
613         const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
614         const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
615         u16 td0, td1;
616         u32 fifomr;
617
618         dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_fifo\n");
619
620         /* Compute the number of data to transfer in the current iteration */
621         current_remaining_data = ((xfer->bits_per_word > 8) ?
622                                   ((u32)as->current_remaining_bytes >> 1) :
623                                   (u32)as->current_remaining_bytes);
624         num_data = min(current_remaining_data, as->fifo_size);
625
626         /* Flush RX and TX FIFOs */
627         spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
628         while (spi_readl(as, FLR))
629                 cpu_relax();
630
631         /* Set RX FIFO Threshold to the number of data to transfer */
632         fifomr = spi_readl(as, FMR);
633         spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
634
635         /* Clear FIFO flags in the Status Register, especially RXFTHF */
636         (void)spi_readl(as, SR);
637
638         /* Fill TX FIFO */
639         while (num_data >= 2) {
640                 if (xfer->bits_per_word > 8) {
641                         td0 = *words++;
642                         td1 = *words++;
643                 } else {
644                         td0 = *bytes++;
645                         td1 = *bytes++;
646                 }
647
648                 spi_writel(as, TDR, (td1 << 16) | td0);
649                 num_data -= 2;
650         }
651
652         if (num_data) {
653                 if (xfer->bits_per_word > 8)
654                         td0 = *words++;
655                 else
656                         td0 = *bytes++;
657
658                 spi_writew(as, TDR, td0);
659                 num_data--;
660         }
661
662         dev_dbg(host->dev.parent,
663                 "  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
664                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
665                 xfer->bits_per_word);
666
667         /*
668          * Enable RX FIFO Threshold Flag interrupt to be notified about
669          * transfer completion.
670          */
671         spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
672 }
673
674 /*
675  * Next transfer using PIO.
676  */
677 static void atmel_spi_next_xfer_pio(struct spi_controller *host,
678                                     struct spi_transfer *xfer)
679 {
680         struct atmel_spi *as = spi_controller_get_devdata(host);
681
682         if (as->fifo_size)
683                 atmel_spi_next_xfer_fifo(host, xfer);
684         else
685                 atmel_spi_next_xfer_single(host, xfer);
686 }
687
688 /*
689  * Submit next transfer for DMA.
690  */
691 static int atmel_spi_next_xfer_dma_submit(struct spi_controller *host,
692                                 struct spi_transfer *xfer,
693                                 u32 *plen)
694 {
695         struct atmel_spi        *as = spi_controller_get_devdata(host);
696         struct dma_chan         *rxchan = host->dma_rx;
697         struct dma_chan         *txchan = host->dma_tx;
698         struct dma_async_tx_descriptor *rxdesc;
699         struct dma_async_tx_descriptor *txdesc;
700         dma_cookie_t            cookie;
701
702         dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
703
704         /* Check that the channels are available */
705         if (!rxchan || !txchan)
706                 return -ENODEV;
707
708
709         *plen = xfer->len;
710
711         if (atmel_spi_dma_slave_config(as, xfer->bits_per_word))
712                 goto err_exit;
713
714         /* Send both scatterlists */
715         if (atmel_spi_is_vmalloc_xfer(xfer) &&
716             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
717                 rxdesc = dmaengine_prep_slave_single(rxchan,
718                                                      as->dma_addr_rx_bbuf,
719                                                      xfer->len,
720                                                      DMA_DEV_TO_MEM,
721                                                      DMA_PREP_INTERRUPT |
722                                                      DMA_CTRL_ACK);
723         } else {
724                 rxdesc = dmaengine_prep_slave_sg(rxchan,
725                                                  xfer->rx_sg.sgl,
726                                                  xfer->rx_sg.nents,
727                                                  DMA_DEV_TO_MEM,
728                                                  DMA_PREP_INTERRUPT |
729                                                  DMA_CTRL_ACK);
730         }
731         if (!rxdesc)
732                 goto err_dma;
733
734         if (atmel_spi_is_vmalloc_xfer(xfer) &&
735             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
736                 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
737                 txdesc = dmaengine_prep_slave_single(txchan,
738                                                      as->dma_addr_tx_bbuf,
739                                                      xfer->len, DMA_MEM_TO_DEV,
740                                                      DMA_PREP_INTERRUPT |
741                                                      DMA_CTRL_ACK);
742         } else {
743                 txdesc = dmaengine_prep_slave_sg(txchan,
744                                                  xfer->tx_sg.sgl,
745                                                  xfer->tx_sg.nents,
746                                                  DMA_MEM_TO_DEV,
747                                                  DMA_PREP_INTERRUPT |
748                                                  DMA_CTRL_ACK);
749         }
750         if (!txdesc)
751                 goto err_dma;
752
753         dev_dbg(host->dev.parent,
754                 "  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
755                 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
756                 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
757
758         /* Enable relevant interrupts */
759         spi_writel(as, IER, SPI_BIT(OVRES));
760
761         /* Put the callback on the RX transfer only, that should finish last */
762         rxdesc->callback = dma_callback;
763         rxdesc->callback_param = host;
764
765         /* Submit and fire RX and TX with TX last so we're ready to read! */
766         cookie = rxdesc->tx_submit(rxdesc);
767         if (dma_submit_error(cookie))
768                 goto err_dma;
769         cookie = txdesc->tx_submit(txdesc);
770         if (dma_submit_error(cookie))
771                 goto err_dma;
772         rxchan->device->device_issue_pending(rxchan);
773         txchan->device->device_issue_pending(txchan);
774
775         return 0;
776
777 err_dma:
778         spi_writel(as, IDR, SPI_BIT(OVRES));
779         atmel_spi_stop_dma(host);
780 err_exit:
781         return -ENOMEM;
782 }
783
784 static void atmel_spi_next_xfer_data(struct spi_controller *host,
785                                 struct spi_transfer *xfer,
786                                 dma_addr_t *tx_dma,
787                                 dma_addr_t *rx_dma,
788                                 u32 *plen)
789 {
790         *rx_dma = xfer->rx_dma + xfer->len - *plen;
791         *tx_dma = xfer->tx_dma + xfer->len - *plen;
792         if (*plen > host->max_dma_len)
793                 *plen = host->max_dma_len;
794 }
795
796 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
797                                     struct spi_device *spi,
798                                     struct spi_transfer *xfer)
799 {
800         u32                     scbr, csr;
801         unsigned long           bus_hz;
802         int chip_select;
803
804         if (spi_get_csgpiod(spi, 0))
805                 chip_select = as->native_cs_for_gpio;
806         else
807                 chip_select = spi_get_chipselect(spi, 0);
808
809         /* v1 chips start out at half the peripheral bus speed. */
810         bus_hz = as->spi_clk;
811         if (!atmel_spi_is_v2(as))
812                 bus_hz /= 2;
813
814         /*
815          * Calculate the lowest divider that satisfies the
816          * constraint, assuming div32/fdiv/mbz == 0.
817          */
818         scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
819
820         /*
821          * If the resulting divider doesn't fit into the
822          * register bitfield, we can't satisfy the constraint.
823          */
824         if (scbr >= (1 << SPI_SCBR_SIZE)) {
825                 dev_err(&spi->dev,
826                         "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
827                         xfer->speed_hz, scbr, bus_hz/255);
828                 return -EINVAL;
829         }
830         if (scbr == 0) {
831                 dev_err(&spi->dev,
832                         "setup: %d Hz too high, scbr %u; max %ld Hz\n",
833                         xfer->speed_hz, scbr, bus_hz);
834                 return -EINVAL;
835         }
836         csr = spi_readl(as, CSR0 + 4 * chip_select);
837         csr = SPI_BFINS(SCBR, scbr, csr);
838         spi_writel(as, CSR0 + 4 * chip_select, csr);
839         xfer->effective_speed_hz = bus_hz / scbr;
840
841         return 0;
842 }
843
844 /*
845  * Submit next transfer for PDC.
846  * lock is held, spi irq is blocked
847  */
848 static void atmel_spi_pdc_next_xfer(struct spi_controller *host,
849                                         struct spi_transfer *xfer)
850 {
851         struct atmel_spi        *as = spi_controller_get_devdata(host);
852         u32                     len;
853         dma_addr_t              tx_dma, rx_dma;
854
855         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
856
857         len = as->current_remaining_bytes;
858         atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
859         as->current_remaining_bytes -= len;
860
861         spi_writel(as, RPR, rx_dma);
862         spi_writel(as, TPR, tx_dma);
863
864         if (xfer->bits_per_word > 8)
865                 len >>= 1;
866         spi_writel(as, RCR, len);
867         spi_writel(as, TCR, len);
868
869         dev_dbg(&host->dev,
870                 "  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
871                 xfer, xfer->len, xfer->tx_buf,
872                 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
873                 (unsigned long long)xfer->rx_dma);
874
875         if (as->current_remaining_bytes) {
876                 len = as->current_remaining_bytes;
877                 atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
878                 as->current_remaining_bytes -= len;
879
880                 spi_writel(as, RNPR, rx_dma);
881                 spi_writel(as, TNPR, tx_dma);
882
883                 if (xfer->bits_per_word > 8)
884                         len >>= 1;
885                 spi_writel(as, RNCR, len);
886                 spi_writel(as, TNCR, len);
887
888                 dev_dbg(&host->dev,
889                         "  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
890                         xfer, xfer->len, xfer->tx_buf,
891                         (unsigned long long)xfer->tx_dma, xfer->rx_buf,
892                         (unsigned long long)xfer->rx_dma);
893         }
894
895         /* REVISIT: We're waiting for RXBUFF before we start the next
896          * transfer because we need to handle some difficult timing
897          * issues otherwise. If we wait for TXBUFE in one transfer and
898          * then starts waiting for RXBUFF in the next, it's difficult
899          * to tell the difference between the RXBUFF interrupt we're
900          * actually waiting for and the RXBUFF interrupt of the
901          * previous transfer.
902          *
903          * It should be doable, though. Just not now...
904          */
905         spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
906         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
907 }
908
909 /*
910  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
911  *  - The buffer is either valid for CPU access, else NULL
912  *  - If the buffer is valid, so is its DMA address
913  *
914  * This driver manages the dma address unless message->is_dma_mapped.
915  */
916 static int
917 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
918 {
919         struct device   *dev = &as->pdev->dev;
920
921         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
922         if (xfer->tx_buf) {
923                 /* tx_buf is a const void* where we need a void * for the dma
924                  * mapping */
925                 void *nonconst_tx = (void *)xfer->tx_buf;
926
927                 xfer->tx_dma = dma_map_single(dev,
928                                 nonconst_tx, xfer->len,
929                                 DMA_TO_DEVICE);
930                 if (dma_mapping_error(dev, xfer->tx_dma))
931                         return -ENOMEM;
932         }
933         if (xfer->rx_buf) {
934                 xfer->rx_dma = dma_map_single(dev,
935                                 xfer->rx_buf, xfer->len,
936                                 DMA_FROM_DEVICE);
937                 if (dma_mapping_error(dev, xfer->rx_dma)) {
938                         if (xfer->tx_buf)
939                                 dma_unmap_single(dev,
940                                                 xfer->tx_dma, xfer->len,
941                                                 DMA_TO_DEVICE);
942                         return -ENOMEM;
943                 }
944         }
945         return 0;
946 }
947
948 static void atmel_spi_dma_unmap_xfer(struct spi_controller *host,
949                                      struct spi_transfer *xfer)
950 {
951         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
952                 dma_unmap_single(host->dev.parent, xfer->tx_dma,
953                                  xfer->len, DMA_TO_DEVICE);
954         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
955                 dma_unmap_single(host->dev.parent, xfer->rx_dma,
956                                  xfer->len, DMA_FROM_DEVICE);
957 }
958
959 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
960 {
961         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
962 }
963
964 static void
965 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
966 {
967         u8              *rxp;
968         u16             *rxp16;
969         unsigned long   xfer_pos = xfer->len - as->current_remaining_bytes;
970
971         if (xfer->bits_per_word > 8) {
972                 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
973                 *rxp16 = spi_readl(as, RDR);
974         } else {
975                 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
976                 *rxp = spi_readl(as, RDR);
977         }
978         if (xfer->bits_per_word > 8) {
979                 if (as->current_remaining_bytes > 2)
980                         as->current_remaining_bytes -= 2;
981                 else
982                         as->current_remaining_bytes = 0;
983         } else {
984                 as->current_remaining_bytes--;
985         }
986 }
987
988 static void
989 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
990 {
991         u32 fifolr = spi_readl(as, FLR);
992         u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
993         u32 offset = xfer->len - as->current_remaining_bytes;
994         u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
995         u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
996         u16 rd; /* RD field is the lowest 16 bits of RDR */
997
998         /* Update the number of remaining bytes to transfer */
999         num_bytes = ((xfer->bits_per_word > 8) ?
1000                      (num_data << 1) :
1001                      num_data);
1002
1003         if (as->current_remaining_bytes > num_bytes)
1004                 as->current_remaining_bytes -= num_bytes;
1005         else
1006                 as->current_remaining_bytes = 0;
1007
1008         /* Handle odd number of bytes when data are more than 8bit width */
1009         if (xfer->bits_per_word > 8)
1010                 as->current_remaining_bytes &= ~0x1;
1011
1012         /* Read data */
1013         while (num_data) {
1014                 rd = spi_readl(as, RDR);
1015                 if (xfer->bits_per_word > 8)
1016                         *words++ = rd;
1017                 else
1018                         *bytes++ = rd;
1019                 num_data--;
1020         }
1021 }
1022
1023 /* Called from IRQ
1024  *
1025  * Must update "current_remaining_bytes" to keep track of data
1026  * to transfer.
1027  */
1028 static void
1029 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1030 {
1031         if (as->fifo_size)
1032                 atmel_spi_pump_fifo_data(as, xfer);
1033         else
1034                 atmel_spi_pump_single_data(as, xfer);
1035 }
1036
1037 /* Interrupt
1038  *
1039  */
1040 static irqreturn_t
1041 atmel_spi_pio_interrupt(int irq, void *dev_id)
1042 {
1043         struct spi_controller   *host = dev_id;
1044         struct atmel_spi        *as = spi_controller_get_devdata(host);
1045         u32                     status, pending, imr;
1046         struct spi_transfer     *xfer;
1047         int                     ret = IRQ_NONE;
1048
1049         imr = spi_readl(as, IMR);
1050         status = spi_readl(as, SR);
1051         pending = status & imr;
1052
1053         if (pending & SPI_BIT(OVRES)) {
1054                 ret = IRQ_HANDLED;
1055                 spi_writel(as, IDR, SPI_BIT(OVRES));
1056                 dev_warn(host->dev.parent, "overrun\n");
1057
1058                 /*
1059                  * When we get an overrun, we disregard the current
1060                  * transfer. Data will not be copied back from any
1061                  * bounce buffer and msg->actual_len will not be
1062                  * updated with the last xfer.
1063                  *
1064                  * We will also not process any remaning transfers in
1065                  * the message.
1066                  */
1067                 as->done_status = -EIO;
1068                 smp_wmb();
1069
1070                 /* Clear any overrun happening while cleaning up */
1071                 spi_readl(as, SR);
1072
1073                 complete(&as->xfer_completion);
1074
1075         } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1076                 atmel_spi_lock(as);
1077
1078                 if (as->current_remaining_bytes) {
1079                         ret = IRQ_HANDLED;
1080                         xfer = as->current_transfer;
1081                         atmel_spi_pump_pio_data(as, xfer);
1082                         if (!as->current_remaining_bytes)
1083                                 spi_writel(as, IDR, pending);
1084
1085                         complete(&as->xfer_completion);
1086                 }
1087
1088                 atmel_spi_unlock(as);
1089         } else {
1090                 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1091                 ret = IRQ_HANDLED;
1092                 spi_writel(as, IDR, pending);
1093         }
1094
1095         return ret;
1096 }
1097
1098 static irqreturn_t
1099 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1100 {
1101         struct spi_controller   *host = dev_id;
1102         struct atmel_spi        *as = spi_controller_get_devdata(host);
1103         u32                     status, pending, imr;
1104         int                     ret = IRQ_NONE;
1105
1106         imr = spi_readl(as, IMR);
1107         status = spi_readl(as, SR);
1108         pending = status & imr;
1109
1110         if (pending & SPI_BIT(OVRES)) {
1111
1112                 ret = IRQ_HANDLED;
1113
1114                 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1115                                      | SPI_BIT(OVRES)));
1116
1117                 /* Clear any overrun happening while cleaning up */
1118                 spi_readl(as, SR);
1119
1120                 as->done_status = -EIO;
1121
1122                 complete(&as->xfer_completion);
1123
1124         } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1125                 ret = IRQ_HANDLED;
1126
1127                 spi_writel(as, IDR, pending);
1128
1129                 complete(&as->xfer_completion);
1130         }
1131
1132         return ret;
1133 }
1134
1135 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1136 {
1137         struct spi_delay *delay = &spi->word_delay;
1138         u32 value = delay->value;
1139
1140         switch (delay->unit) {
1141         case SPI_DELAY_UNIT_NSECS:
1142                 value /= 1000;
1143                 break;
1144         case SPI_DELAY_UNIT_USECS:
1145                 break;
1146         default:
1147                 return -EINVAL;
1148         }
1149
1150         return (as->spi_clk / 1000000 * value) >> 5;
1151 }
1152
1153 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1154 {
1155         int i;
1156         struct spi_controller *host = platform_get_drvdata(as->pdev);
1157
1158         if (!as->native_cs_free)
1159                 return; /* already initialized */
1160
1161         if (!host->cs_gpiods)
1162                 return; /* No CS GPIO */
1163
1164         /*
1165          * On the first version of the controller (AT91RM9200), CS0
1166          * can't be used associated with GPIO
1167          */
1168         if (atmel_spi_is_v2(as))
1169                 i = 0;
1170         else
1171                 i = 1;
1172
1173         for (; i < 4; i++)
1174                 if (host->cs_gpiods[i])
1175                         as->native_cs_free |= BIT(i);
1176
1177         if (as->native_cs_free)
1178                 as->native_cs_for_gpio = ffs(as->native_cs_free);
1179 }
1180
1181 static int atmel_spi_setup(struct spi_device *spi)
1182 {
1183         struct atmel_spi        *as;
1184         struct atmel_spi_device *asd;
1185         u32                     csr;
1186         unsigned int            bits = spi->bits_per_word;
1187         int chip_select;
1188         int                     word_delay_csr;
1189
1190         as = spi_controller_get_devdata(spi->controller);
1191
1192         /* see notes above re chipselect */
1193         if (!spi_get_csgpiod(spi, 0) && (spi->mode & SPI_CS_HIGH)) {
1194                 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1195                 return -EINVAL;
1196         }
1197
1198         /* Setup() is called during spi_register_controller(aka
1199          * spi_register_master) but after all membmers of the cs_gpiod
1200          * array have been filled, so we can looked for which native
1201          * CS will be free for using with GPIO
1202          */
1203         initialize_native_cs_for_gpio(as);
1204
1205         if (spi_get_csgpiod(spi, 0) && as->native_cs_free) {
1206                 dev_err(&spi->dev,
1207                         "No native CS available to support this GPIO CS\n");
1208                 return -EBUSY;
1209         }
1210
1211         if (spi_get_csgpiod(spi, 0))
1212                 chip_select = as->native_cs_for_gpio;
1213         else
1214                 chip_select = spi_get_chipselect(spi, 0);
1215
1216         csr = SPI_BF(BITS, bits - 8);
1217         if (spi->mode & SPI_CPOL)
1218                 csr |= SPI_BIT(CPOL);
1219         if (!(spi->mode & SPI_CPHA))
1220                 csr |= SPI_BIT(NCPHA);
1221
1222         if (!spi_get_csgpiod(spi, 0))
1223                 csr |= SPI_BIT(CSAAT);
1224         csr |= SPI_BF(DLYBS, 0);
1225
1226         word_delay_csr = atmel_word_delay_csr(spi, as);
1227         if (word_delay_csr < 0)
1228                 return word_delay_csr;
1229
1230         /* DLYBCT adds delays between words.  This is useful for slow devices
1231          * that need a bit of time to setup the next transfer.
1232          */
1233         csr |= SPI_BF(DLYBCT, word_delay_csr);
1234
1235         asd = spi->controller_state;
1236         if (!asd) {
1237                 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1238                 if (!asd)
1239                         return -ENOMEM;
1240
1241                 spi->controller_state = asd;
1242         }
1243
1244         asd->csr = csr;
1245
1246         dev_dbg(&spi->dev,
1247                 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1248                 bits, spi->mode, spi_get_chipselect(spi, 0), csr);
1249
1250         if (!atmel_spi_is_v2(as))
1251                 spi_writel(as, CSR0 + 4 * chip_select, csr);
1252
1253         return 0;
1254 }
1255
1256 static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1257 {
1258         struct atmel_spi *as = spi_controller_get_devdata(spi->controller);
1259         /* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1260          * since we already have routines for activate/deactivate translate
1261          * high/low to active/inactive
1262          */
1263         enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1264
1265         if (enable) {
1266                 cs_activate(as, spi);
1267         } else {
1268                 cs_deactivate(as, spi);
1269         }
1270
1271 }
1272
1273 static int atmel_spi_one_transfer(struct spi_controller *host,
1274                                         struct spi_device *spi,
1275                                         struct spi_transfer *xfer)
1276 {
1277         struct atmel_spi        *as;
1278         u8                      bits;
1279         u32                     len;
1280         struct atmel_spi_device *asd;
1281         int                     timeout;
1282         int                     ret;
1283         unsigned int            dma_timeout;
1284         long                    ret_timeout;
1285
1286         as = spi_controller_get_devdata(host);
1287
1288         asd = spi->controller_state;
1289         bits = (asd->csr >> 4) & 0xf;
1290         if (bits != xfer->bits_per_word - 8) {
1291                 dev_dbg(&spi->dev,
1292                         "you can't yet change bits_per_word in transfers\n");
1293                 return -ENOPROTOOPT;
1294         }
1295
1296         /*
1297          * DMA map early, for performance (empties dcache ASAP) and
1298          * better fault reporting.
1299          */
1300         if ((!host->cur_msg->is_dma_mapped)
1301                 && as->use_pdc) {
1302                 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1303                         return -ENOMEM;
1304         }
1305
1306         atmel_spi_set_xfer_speed(as, spi, xfer);
1307
1308         as->done_status = 0;
1309         as->current_transfer = xfer;
1310         as->current_remaining_bytes = xfer->len;
1311         while (as->current_remaining_bytes) {
1312                 reinit_completion(&as->xfer_completion);
1313
1314                 if (as->use_pdc) {
1315                         atmel_spi_lock(as);
1316                         atmel_spi_pdc_next_xfer(host, xfer);
1317                         atmel_spi_unlock(as);
1318                 } else if (atmel_spi_use_dma(as, xfer)) {
1319                         len = as->current_remaining_bytes;
1320                         ret = atmel_spi_next_xfer_dma_submit(host,
1321                                                                 xfer, &len);
1322                         if (ret) {
1323                                 dev_err(&spi->dev,
1324                                         "unable to use DMA, fallback to PIO\n");
1325                                 as->done_status = ret;
1326                                 break;
1327                         } else {
1328                                 as->current_remaining_bytes -= len;
1329                                 if (as->current_remaining_bytes < 0)
1330                                         as->current_remaining_bytes = 0;
1331                         }
1332                 } else {
1333                         atmel_spi_lock(as);
1334                         atmel_spi_next_xfer_pio(host, xfer);
1335                         atmel_spi_unlock(as);
1336                 }
1337
1338                 dma_timeout = msecs_to_jiffies(spi_controller_xfer_timeout(host, xfer));
1339                 ret_timeout = wait_for_completion_interruptible_timeout(&as->xfer_completion,
1340                                                                         dma_timeout);
1341                 if (ret_timeout <= 0) {
1342                         dev_err(&spi->dev, "spi transfer %s\n",
1343                                 !ret_timeout ? "timeout" : "canceled");
1344                         as->done_status = ret_timeout < 0 ? ret_timeout : -EIO;
1345                 }
1346
1347                 if (as->done_status)
1348                         break;
1349         }
1350
1351         if (as->done_status) {
1352                 if (as->use_pdc) {
1353                         dev_warn(host->dev.parent,
1354                                 "overrun (%u/%u remaining)\n",
1355                                 spi_readl(as, TCR), spi_readl(as, RCR));
1356
1357                         /*
1358                          * Clean up DMA registers and make sure the data
1359                          * registers are empty.
1360                          */
1361                         spi_writel(as, RNCR, 0);
1362                         spi_writel(as, TNCR, 0);
1363                         spi_writel(as, RCR, 0);
1364                         spi_writel(as, TCR, 0);
1365                         for (timeout = 1000; timeout; timeout--)
1366                                 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1367                                         break;
1368                         if (!timeout)
1369                                 dev_warn(host->dev.parent,
1370                                          "timeout waiting for TXEMPTY");
1371                         while (spi_readl(as, SR) & SPI_BIT(RDRF))
1372                                 spi_readl(as, RDR);
1373
1374                         /* Clear any overrun happening while cleaning up */
1375                         spi_readl(as, SR);
1376
1377                 } else if (atmel_spi_use_dma(as, xfer)) {
1378                         atmel_spi_stop_dma(host);
1379                 }
1380         }
1381
1382         if (!host->cur_msg->is_dma_mapped
1383                 && as->use_pdc)
1384                 atmel_spi_dma_unmap_xfer(host, xfer);
1385
1386         if (as->use_pdc)
1387                 atmel_spi_disable_pdc_transfer(as);
1388
1389         return as->done_status;
1390 }
1391
1392 static void atmel_spi_cleanup(struct spi_device *spi)
1393 {
1394         struct atmel_spi_device *asd = spi->controller_state;
1395
1396         if (!asd)
1397                 return;
1398
1399         spi->controller_state = NULL;
1400         kfree(asd);
1401 }
1402
1403 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1404 {
1405         return spi_readl(as, VERSION) & 0x00000fff;
1406 }
1407
1408 static void atmel_get_caps(struct atmel_spi *as)
1409 {
1410         unsigned int version;
1411
1412         version = atmel_get_version(as);
1413
1414         as->caps.is_spi2 = version > 0x121;
1415         as->caps.has_wdrbt = version >= 0x210;
1416         as->caps.has_dma_support = version >= 0x212;
1417         as->caps.has_pdc_support = version < 0x212;
1418 }
1419
1420 static void atmel_spi_init(struct atmel_spi *as)
1421 {
1422         spi_writel(as, CR, SPI_BIT(SWRST));
1423         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1424
1425         /* It is recommended to enable FIFOs first thing after reset */
1426         if (as->fifo_size)
1427                 spi_writel(as, CR, SPI_BIT(FIFOEN));
1428
1429         if (as->caps.has_wdrbt) {
1430                 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1431                                 | SPI_BIT(MSTR));
1432         } else {
1433                 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1434         }
1435
1436         if (as->use_pdc)
1437                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1438         spi_writel(as, CR, SPI_BIT(SPIEN));
1439 }
1440
1441 static int atmel_spi_probe(struct platform_device *pdev)
1442 {
1443         struct resource         *regs;
1444         int                     irq;
1445         struct clk              *clk;
1446         int                     ret;
1447         struct spi_controller   *host;
1448         struct atmel_spi        *as;
1449
1450         /* Select default pin state */
1451         pinctrl_pm_select_default_state(&pdev->dev);
1452
1453         irq = platform_get_irq(pdev, 0);
1454         if (irq < 0)
1455                 return irq;
1456
1457         clk = devm_clk_get(&pdev->dev, "spi_clk");
1458         if (IS_ERR(clk))
1459                 return PTR_ERR(clk);
1460
1461         /* setup spi core then atmel-specific driver state */
1462         host = spi_alloc_host(&pdev->dev, sizeof(*as));
1463         if (!host)
1464                 return -ENOMEM;
1465
1466         /* the spi->mode bits understood by this driver: */
1467         host->use_gpio_descriptors = true;
1468         host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1469         host->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1470         host->dev.of_node = pdev->dev.of_node;
1471         host->bus_num = pdev->id;
1472         host->num_chipselect = 4;
1473         host->setup = atmel_spi_setup;
1474         host->flags = (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX |
1475                         SPI_CONTROLLER_GPIO_SS);
1476         host->transfer_one = atmel_spi_one_transfer;
1477         host->set_cs = atmel_spi_set_cs;
1478         host->cleanup = atmel_spi_cleanup;
1479         host->auto_runtime_pm = true;
1480         host->max_dma_len = SPI_MAX_DMA_XFER;
1481         host->can_dma = atmel_spi_can_dma;
1482         platform_set_drvdata(pdev, host);
1483
1484         as = spi_controller_get_devdata(host);
1485
1486         spin_lock_init(&as->lock);
1487
1488         as->pdev = pdev;
1489         as->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &regs);
1490         if (IS_ERR(as->regs)) {
1491                 ret = PTR_ERR(as->regs);
1492                 goto out_unmap_regs;
1493         }
1494         as->phybase = regs->start;
1495         as->irq = irq;
1496         as->clk = clk;
1497
1498         init_completion(&as->xfer_completion);
1499
1500         atmel_get_caps(as);
1501
1502         as->use_dma = false;
1503         as->use_pdc = false;
1504         if (as->caps.has_dma_support) {
1505                 ret = atmel_spi_configure_dma(host, as);
1506                 if (ret == 0) {
1507                         as->use_dma = true;
1508                 } else if (ret == -EPROBE_DEFER) {
1509                         goto out_unmap_regs;
1510                 }
1511         } else if (as->caps.has_pdc_support) {
1512                 as->use_pdc = true;
1513         }
1514
1515         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1516                 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1517                                                       SPI_MAX_DMA_XFER,
1518                                                       &as->dma_addr_rx_bbuf,
1519                                                       GFP_KERNEL | GFP_DMA);
1520                 if (!as->addr_rx_bbuf) {
1521                         as->use_dma = false;
1522                 } else {
1523                         as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1524                                         SPI_MAX_DMA_XFER,
1525                                         &as->dma_addr_tx_bbuf,
1526                                         GFP_KERNEL | GFP_DMA);
1527                         if (!as->addr_tx_bbuf) {
1528                                 as->use_dma = false;
1529                                 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1530                                                   as->addr_rx_bbuf,
1531                                                   as->dma_addr_rx_bbuf);
1532                         }
1533                 }
1534                 if (!as->use_dma)
1535                         dev_info(host->dev.parent,
1536                                  "  can not allocate dma coherent memory\n");
1537         }
1538
1539         if (as->caps.has_dma_support && !as->use_dma)
1540                 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1541
1542         if (as->use_pdc) {
1543                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1544                                         0, dev_name(&pdev->dev), host);
1545         } else {
1546                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1547                                         0, dev_name(&pdev->dev), host);
1548         }
1549         if (ret)
1550                 goto out_unmap_regs;
1551
1552         /* Initialize the hardware */
1553         ret = clk_prepare_enable(clk);
1554         if (ret)
1555                 goto out_free_irq;
1556
1557         as->spi_clk = clk_get_rate(clk);
1558
1559         as->fifo_size = 0;
1560         if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1561                                   &as->fifo_size)) {
1562                 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1563         }
1564
1565         atmel_spi_init(as);
1566
1567         pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1568         pm_runtime_use_autosuspend(&pdev->dev);
1569         pm_runtime_set_active(&pdev->dev);
1570         pm_runtime_enable(&pdev->dev);
1571
1572         ret = devm_spi_register_controller(&pdev->dev, host);
1573         if (ret)
1574                 goto out_free_dma;
1575
1576         /* go! */
1577         dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1578                         atmel_get_version(as), (unsigned long)regs->start,
1579                         irq);
1580
1581         return 0;
1582
1583 out_free_dma:
1584         pm_runtime_disable(&pdev->dev);
1585         pm_runtime_set_suspended(&pdev->dev);
1586
1587         if (as->use_dma)
1588                 atmel_spi_release_dma(host);
1589
1590         spi_writel(as, CR, SPI_BIT(SWRST));
1591         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1592         clk_disable_unprepare(clk);
1593 out_free_irq:
1594 out_unmap_regs:
1595         spi_controller_put(host);
1596         return ret;
1597 }
1598
1599 static void atmel_spi_remove(struct platform_device *pdev)
1600 {
1601         struct spi_controller   *host = platform_get_drvdata(pdev);
1602         struct atmel_spi        *as = spi_controller_get_devdata(host);
1603
1604         pm_runtime_get_sync(&pdev->dev);
1605
1606         /* reset the hardware and block queue progress */
1607         if (as->use_dma) {
1608                 atmel_spi_stop_dma(host);
1609                 atmel_spi_release_dma(host);
1610                 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1611                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1612                                           as->addr_tx_bbuf,
1613                                           as->dma_addr_tx_bbuf);
1614                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1615                                           as->addr_rx_bbuf,
1616                                           as->dma_addr_rx_bbuf);
1617                 }
1618         }
1619
1620         spin_lock_irq(&as->lock);
1621         spi_writel(as, CR, SPI_BIT(SWRST));
1622         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1623         spi_readl(as, SR);
1624         spin_unlock_irq(&as->lock);
1625
1626         clk_disable_unprepare(as->clk);
1627
1628         pm_runtime_put_noidle(&pdev->dev);
1629         pm_runtime_disable(&pdev->dev);
1630 }
1631
1632 static int atmel_spi_runtime_suspend(struct device *dev)
1633 {
1634         struct spi_controller *host = dev_get_drvdata(dev);
1635         struct atmel_spi *as = spi_controller_get_devdata(host);
1636
1637         clk_disable_unprepare(as->clk);
1638         pinctrl_pm_select_sleep_state(dev);
1639
1640         return 0;
1641 }
1642
1643 static int atmel_spi_runtime_resume(struct device *dev)
1644 {
1645         struct spi_controller *host = dev_get_drvdata(dev);
1646         struct atmel_spi *as = spi_controller_get_devdata(host);
1647
1648         pinctrl_pm_select_default_state(dev);
1649
1650         return clk_prepare_enable(as->clk);
1651 }
1652
1653 static int atmel_spi_suspend(struct device *dev)
1654 {
1655         struct spi_controller *host = dev_get_drvdata(dev);
1656         int ret;
1657
1658         /* Stop the queue running */
1659         ret = spi_controller_suspend(host);
1660         if (ret)
1661                 return ret;
1662
1663         if (!pm_runtime_suspended(dev))
1664                 atmel_spi_runtime_suspend(dev);
1665
1666         return 0;
1667 }
1668
1669 static int atmel_spi_resume(struct device *dev)
1670 {
1671         struct spi_controller *host = dev_get_drvdata(dev);
1672         struct atmel_spi *as = spi_controller_get_devdata(host);
1673         int ret;
1674
1675         ret = clk_prepare_enable(as->clk);
1676         if (ret)
1677                 return ret;
1678
1679         atmel_spi_init(as);
1680
1681         clk_disable_unprepare(as->clk);
1682
1683         if (!pm_runtime_suspended(dev)) {
1684                 ret = atmel_spi_runtime_resume(dev);
1685                 if (ret)
1686                         return ret;
1687         }
1688
1689         /* Start the queue running */
1690         return spi_controller_resume(host);
1691 }
1692
1693 static const struct dev_pm_ops atmel_spi_pm_ops = {
1694         SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1695         RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1696                        atmel_spi_runtime_resume, NULL)
1697 };
1698
1699 static const struct of_device_id atmel_spi_dt_ids[] = {
1700         { .compatible = "atmel,at91rm9200-spi" },
1701         { /* sentinel */ }
1702 };
1703
1704 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1705
1706 static struct platform_driver atmel_spi_driver = {
1707         .driver         = {
1708                 .name   = "atmel_spi",
1709                 .pm     = pm_ptr(&atmel_spi_pm_ops),
1710                 .of_match_table = atmel_spi_dt_ids,
1711         },
1712         .probe          = atmel_spi_probe,
1713         .remove_new     = atmel_spi_remove,
1714 };
1715 module_platform_driver(atmel_spi_driver);
1716
1717 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1718 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1719 MODULE_LICENSE("GPL");
1720 MODULE_ALIAS("platform:atmel_spi");