spi: cadence_qspi: Add support for Versal NET platform
[platform/kernel/u-boot.git] / drivers / spi / spi-aspeed-smc.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ASPEED FMC/SPI Controller driver
4  *
5  * Copyright (c) 2022 ASPEED Corporation.
6  * Copyright (c) 2022 IBM Corporation.
7  *
8  * Author:
9  *     Chin-Ting Kuo <chin-ting_kuo@aspeedtech.com>
10  *     Cedric Le Goater <clg@kaod.org>
11  */
12
13 #include <asm/io.h>
14 #include <clk.h>
15 #include <common.h>
16 #include <dm.h>
17 #include <dm/device_compat.h>
18 #include <linux/bitops.h>
19 #include <linux/bug.h>
20 #include <linux/err.h>
21 #include <linux/iopoll.h>
22 #include <linux/kernel.h>
23 #include <linux/mtd/spi-nor.h>
24 #include <linux/sizes.h>
25 #include <malloc.h>
26 #include <spi.h>
27 #include <spi-mem.h>
28
29 #define ASPEED_SPI_MAX_CS       5
30
31 #define CTRL_IO_SINGLE_DATA     0
32 #define CTRL_IO_QUAD_DATA       BIT(30)
33 #define CTRL_IO_DUAL_DATA       BIT(29)
34
35 #define CTRL_IO_MODE_USER       GENMASK(1, 0)
36 #define CTRL_IO_MODE_CMD_READ   BIT(0)
37 #define CTRL_IO_MODE_CMD_WRITE  BIT(1)
38 #define CTRL_STOP_ACTIVE        BIT(2)
39
40 struct aspeed_spi_regs {
41         u32 conf;                       /* 0x00 CE Type Setting */
42         u32 ctrl;                       /* 0x04 CE Control */
43         u32 intr_ctrl;                  /* 0x08 Interrupt Control and Status */
44         u32 cmd_ctrl;                   /* 0x0c Command Control */
45         u32 ce_ctrl[ASPEED_SPI_MAX_CS]; /* 0x10 .. 0x20 CEx Control */
46         u32 _reserved0[3];              /* .. */
47         u32 segment_addr[ASPEED_SPI_MAX_CS]; /* 0x30 .. 0x40 Segment Address */
48         u32 _reserved1[3];              /* .. */
49         u32 soft_rst_cmd_ctrl;          /* 0x50 Auto Soft-Reset Command Control */
50         u32 _reserved2[11];             /* .. */
51         u32 dma_ctrl;                   /* 0x80 DMA Control/Status */
52         u32 dma_flash_addr;             /* 0x84 DMA Flash Side Address */
53         u32 dma_dram_addr;              /* 0x88 DMA DRAM Side Address */
54         u32 dma_len;                    /* 0x8c DMA Length Register */
55         u32 dma_checksum;               /* 0x90 Checksum Calculation Result */
56         u32 timings[ASPEED_SPI_MAX_CS]; /* 0x94 Read Timing Compensation */
57 };
58
59 struct aspeed_spi_plat {
60         u8 max_cs;
61         void __iomem *ahb_base; /* AHB address base for all flash devices. */
62         fdt_size_t ahb_sz; /* Overall AHB window size for all flash device. */
63         u32 hclk_rate; /* AHB clock rate */
64 };
65
66 struct aspeed_spi_flash {
67         void __iomem *ahb_base;
68         u32 ahb_decoded_sz;
69         u32 ce_ctrl_user;
70         u32 ce_ctrl_read;
71         u32 max_freq;
72 };
73
74 struct aspeed_spi_priv {
75         u32 num_cs;
76         struct aspeed_spi_regs *regs;
77         struct aspeed_spi_info *info;
78         struct aspeed_spi_flash flashes[ASPEED_SPI_MAX_CS];
79         bool fixed_decoded_range;
80 };
81
82 struct aspeed_spi_info {
83         u32 io_mode_mask;
84         u32 max_bus_width;
85         u32 min_decoded_sz;
86         u32 clk_ctrl_mask;
87         void (*set_4byte)(struct udevice *bus, u32 cs);
88         u32 (*segment_start)(struct udevice *bus, u32 reg);
89         u32 (*segment_end)(struct udevice *bus, u32 reg);
90         u32 (*segment_reg)(u32 start, u32 end);
91         int (*adjust_decoded_sz)(struct udevice *bus);
92         u32 (*get_clk_setting)(struct udevice *dev, uint hz);
93 };
94
95 struct aspeed_spi_decoded_range {
96         u32 cs;
97         u32 ahb_base;
98         u32 sz;
99 };
100
101 static const struct aspeed_spi_info ast2400_spi_info;
102 static const struct aspeed_spi_info ast2500_fmc_info;
103 static const struct aspeed_spi_info ast2500_spi_info;
104 static int aspeed_spi_decoded_range_config(struct udevice *bus);
105 static int aspeed_spi_trim_decoded_size(struct udevice *bus);
106
107 static u32 aspeed_spi_get_io_mode(u32 bus_width)
108 {
109         switch (bus_width) {
110         case 1:
111                 return CTRL_IO_SINGLE_DATA;
112         case 2:
113                 return CTRL_IO_DUAL_DATA;
114         case 4:
115                 return CTRL_IO_QUAD_DATA;
116         default:
117                 /* keep in default value */
118                 return CTRL_IO_SINGLE_DATA;
119         }
120 }
121
122 static u32 ast2400_spi_segment_start(struct udevice *bus, u32 reg)
123 {
124         struct aspeed_spi_plat *plat = dev_get_plat(bus);
125         u32 start_offset = ((reg >> 16) & 0xff) << 23;
126
127         if (start_offset == 0)
128                 return (u32)plat->ahb_base;
129
130         return (u32)plat->ahb_base + start_offset;
131 }
132
133 static u32 ast2400_spi_segment_end(struct udevice *bus, u32 reg)
134 {
135         struct aspeed_spi_plat *plat = dev_get_plat(bus);
136         u32 end_offset = ((reg >> 24) & 0xff) << 23;
137
138         /* Meaningless end_offset, set to physical ahb base. */
139         if (end_offset == 0)
140                 return (u32)plat->ahb_base;
141
142         return (u32)plat->ahb_base + end_offset;
143 }
144
145 static u32 ast2400_spi_segment_reg(u32 start, u32 end)
146 {
147         if (start == end)
148                 return 0;
149
150         return ((((start) >> 23) & 0xff) << 16) | ((((end) >> 23) & 0xff) << 24);
151 }
152
153 static void ast2400_fmc_chip_set_4byte(struct udevice *bus, u32 cs)
154 {
155         struct aspeed_spi_priv *priv = dev_get_priv(bus);
156         u32 reg_val;
157
158         reg_val = readl(&priv->regs->ctrl);
159         reg_val |= 0x1 << cs;
160         writel(reg_val, &priv->regs->ctrl);
161 }
162
163 static void ast2400_spi_chip_set_4byte(struct udevice *bus, u32 cs)
164 {
165         struct aspeed_spi_priv *priv = dev_get_priv(bus);
166         struct aspeed_spi_flash *flash = &priv->flashes[cs];
167
168         flash->ce_ctrl_read |= BIT(13);
169         writel(flash->ce_ctrl_read, &priv->regs->ctrl);
170 }
171
172 /* Transfer maximum clock frequency to register setting */
173 static u32 ast2400_get_clk_setting(struct udevice *dev, uint max_hz)
174 {
175         struct aspeed_spi_plat *plat = dev_get_plat(dev->parent);
176         struct aspeed_spi_priv *priv = dev_get_priv(dev->parent);
177         struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
178         u32 hclk_clk = plat->hclk_rate;
179         u32 hclk_div = 0x0000; /* default value */
180         u32 i;
181         bool found = false;
182         /* HCLK/1 ..    HCLK/16 */
183         u32 hclk_masks[] = {15, 7, 14, 6, 13, 5, 12, 4,
184                             11, 3, 10, 2, 9,  1, 8,  0};
185
186         /* FMC/SPIR10[11:8] */
187         for (i = 0; i < ARRAY_SIZE(hclk_masks); i++) {
188                 if (hclk_clk / (i + 1) <= max_hz) {
189                         found = true;
190                         break;
191                 }
192         }
193
194         if (found) {
195                 hclk_div = hclk_masks[i] << 8;
196                 priv->flashes[slave_plat->cs].max_freq = hclk_clk / (i + 1);
197         }
198
199         dev_dbg(dev, "found: %s, hclk: %d, max_clk: %d\n", found ? "yes" : "no",
200                 hclk_clk, max_hz);
201
202         if (found) {
203                 dev_dbg(dev, "h_div: %d (mask %x), speed: %d\n",
204                         i + 1, hclk_masks[i], priv->flashes[slave_plat->cs].max_freq);
205         }
206
207         return hclk_div;
208 }
209
210 static u32 ast2500_spi_segment_start(struct udevice *bus, u32 reg)
211 {
212         struct aspeed_spi_plat *plat = dev_get_plat(bus);
213         u32 start_offset = ((reg >> 16) & 0xff) << 23;
214
215         if (start_offset == 0)
216                 return (u32)plat->ahb_base;
217
218         return (u32)plat->ahb_base + start_offset;
219 }
220
221 static u32 ast2500_spi_segment_end(struct udevice *bus, u32 reg)
222 {
223         struct aspeed_spi_plat *plat = dev_get_plat(bus);
224         u32 end_offset = ((reg >> 24) & 0xff) << 23;
225
226         /* Meaningless end_offset, set to physical ahb base. */
227         if (end_offset == 0)
228                 return (u32)plat->ahb_base;
229
230         return (u32)plat->ahb_base + end_offset;
231 }
232
233 static u32 ast2500_spi_segment_reg(u32 start, u32 end)
234 {
235         if (start == end)
236                 return 0;
237
238         return ((((start) >> 23) & 0xff) << 16) | ((((end) >> 23) & 0xff) << 24);
239 }
240
241 static void ast2500_spi_chip_set_4byte(struct udevice *bus, u32 cs)
242 {
243         struct aspeed_spi_priv *priv = dev_get_priv(bus);
244         u32 reg_val;
245
246         reg_val = readl(&priv->regs->ctrl);
247         reg_val |= 0x1 << cs;
248         writel(reg_val, &priv->regs->ctrl);
249 }
250
251 /*
252  * For AST2500, the minimum address decoded size for each CS
253  * is 8MB instead of zero. This address decoded size is
254  * mandatory for each CS no matter whether it will be used.
255  * This is a HW limitation.
256  */
257 static int ast2500_adjust_decoded_size(struct udevice *bus)
258 {
259         struct aspeed_spi_plat *plat = dev_get_plat(bus);
260         struct aspeed_spi_priv *priv = dev_get_priv(bus);
261         struct aspeed_spi_flash *flashes = &priv->flashes[0];
262         int ret;
263         int i;
264         int cs;
265         u32 pre_sz;
266         u32 lack_sz;
267
268         /* Assign min_decoded_sz to unused CS. */
269         for (cs = priv->num_cs; cs < plat->max_cs; cs++)
270                 flashes[cs].ahb_decoded_sz = priv->info->min_decoded_sz;
271
272         /*
273          * If commnad mode or normal mode is used, the start address of a
274          * decoded range should be multiple of its related flash size.
275          * Namely, the total decoded size from flash 0 to flash N should
276          * be multiple of the size of flash (N + 1).
277          */
278         for (cs = priv->num_cs - 1; cs >= 0; cs--) {
279                 pre_sz = 0;
280                 for (i = 0; i < cs; i++)
281                         pre_sz += flashes[i].ahb_decoded_sz;
282
283                 if (flashes[cs].ahb_decoded_sz != 0 &&
284                     (pre_sz % flashes[cs].ahb_decoded_sz) != 0) {
285                         lack_sz = flashes[cs].ahb_decoded_sz -
286                                   (pre_sz % flashes[cs].ahb_decoded_sz);
287                         flashes[0].ahb_decoded_sz += lack_sz;
288                 }
289         }
290
291         ret = aspeed_spi_trim_decoded_size(bus);
292         if (ret != 0)
293                 return ret;
294
295         return 0;
296 }
297
298 static u32 ast2500_get_clk_setting(struct udevice *dev, uint max_hz)
299 {
300         struct aspeed_spi_plat *plat = dev_get_plat(dev->parent);
301         struct aspeed_spi_priv *priv = dev_get_priv(dev->parent);
302         struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
303         u32 hclk_clk = plat->hclk_rate;
304         u32 hclk_div = 0x0000; /* default value */
305         u32 i;
306         bool found = false;
307         /* HCLK/1 ..    HCLK/16 */
308         u32 hclk_masks[] = {15, 7, 14, 6, 13, 5, 12, 4,
309                             11, 3, 10, 2, 9,  1, 8,  0};
310
311         /* FMC/SPIR10[11:8] */
312         for (i = 0; i < ARRAY_SIZE(hclk_masks); i++) {
313                 if (hclk_clk / (i + 1) <= max_hz) {
314                         found = true;
315                         priv->flashes[slave_plat->cs].max_freq =
316                                                         hclk_clk / (i + 1);
317                         break;
318                 }
319         }
320
321         if (found) {
322                 hclk_div = hclk_masks[i] << 8;
323                 goto end;
324         }
325
326         for (i = 0; i < ARRAY_SIZE(hclk_masks); i++) {
327                 if (hclk_clk / ((i + 1) * 4) <= max_hz) {
328                         found = true;
329                         priv->flashes[slave_plat->cs].max_freq =
330                                                 hclk_clk / ((i + 1) * 4);
331                         break;
332                 }
333         }
334
335         if (found)
336                 hclk_div = BIT(13) | (hclk_masks[i] << 8);
337
338 end:
339         dev_dbg(dev, "found: %s, hclk: %d, max_clk: %d\n", found ? "yes" : "no",
340                 hclk_clk, max_hz);
341
342         if (found) {
343                 dev_dbg(dev, "h_div: %d (mask %x), speed: %d\n",
344                         i + 1, hclk_masks[i], priv->flashes[slave_plat->cs].max_freq);
345         }
346
347         return hclk_div;
348 }
349
350 static u32 ast2600_spi_segment_start(struct udevice *bus, u32 reg)
351 {
352         struct aspeed_spi_plat *plat = dev_get_plat(bus);
353         u32 start_offset = (reg << 16) & 0x0ff00000;
354
355         if (start_offset == 0)
356                 return (u32)plat->ahb_base;
357
358         return (u32)plat->ahb_base + start_offset;
359 }
360
361 static u32 ast2600_spi_segment_end(struct udevice *bus, u32 reg)
362 {
363         struct aspeed_spi_plat *plat = dev_get_plat(bus);
364         u32 end_offset = reg & 0x0ff00000;
365
366         /* Meaningless end_offset, set to physical ahb base. */
367         if (end_offset == 0)
368                 return (u32)plat->ahb_base;
369
370         return (u32)plat->ahb_base + end_offset + 0x100000;
371 }
372
373 static u32 ast2600_spi_segment_reg(u32 start, u32 end)
374 {
375         if (start == end)
376                 return 0;
377
378         return ((start & 0x0ff00000) >> 16) | ((end - 0x100000) & 0x0ff00000);
379 }
380
381 static void ast2600_spi_chip_set_4byte(struct udevice *bus, u32 cs)
382 {
383         struct aspeed_spi_priv *priv = dev_get_priv(bus);
384         u32 reg_val;
385
386         reg_val = readl(&priv->regs->ctrl);
387         reg_val |= 0x11 << cs;
388         writel(reg_val, &priv->regs->ctrl);
389 }
390
391 static int ast2600_adjust_decoded_size(struct udevice *bus)
392 {
393         struct aspeed_spi_plat *plat = dev_get_plat(bus);
394         struct aspeed_spi_priv *priv = dev_get_priv(bus);
395         struct aspeed_spi_flash *flashes = &priv->flashes[0];
396         int ret;
397         int i;
398         int cs;
399         u32 pre_sz;
400         u32 lack_sz;
401
402         /* Close unused CS. */
403         for (cs = priv->num_cs; cs < plat->max_cs; cs++)
404                 flashes[cs].ahb_decoded_sz = 0;
405
406         /*
407          * If commnad mode or normal mode is used, the start address of a
408          * decoded range should be multiple of its related flash size.
409          * Namely, the total decoded size from flash 0 to flash N should
410          * be multiple of the size of flash (N + 1).
411          */
412         for (cs = priv->num_cs - 1; cs >= 0; cs--) {
413                 pre_sz = 0;
414                 for (i = 0; i < cs; i++)
415                         pre_sz += flashes[i].ahb_decoded_sz;
416
417                 if (flashes[cs].ahb_decoded_sz != 0 &&
418                     (pre_sz % flashes[cs].ahb_decoded_sz) != 0) {
419                         lack_sz = flashes[cs].ahb_decoded_sz -
420                                   (pre_sz % flashes[cs].ahb_decoded_sz);
421                         flashes[0].ahb_decoded_sz += lack_sz;
422                 }
423         }
424
425         ret = aspeed_spi_trim_decoded_size(bus);
426         if (ret != 0)
427                 return ret;
428
429         return 0;
430 }
431
432 static u32 ast2600_get_clk_setting(struct udevice *dev, uint max_hz)
433 {
434         struct aspeed_spi_plat *plat = dev_get_plat(dev->parent);
435         struct aspeed_spi_priv *priv = dev_get_priv(dev->parent);
436         struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
437         u32 hclk_clk = plat->hclk_rate;
438         u32 hclk_div = 0x0400; /* default value */
439         u32 i, j;
440         bool found = false;
441         /* HCLK/1 ..    HCLK/16 */
442         u32 hclk_masks[] = {15, 7, 14, 6, 13, 5, 12, 4,
443                             11, 3, 10, 2, 9,  1, 8,  0};
444
445         /* FMC/SPIR10[27:24] */
446         for (j = 0; j < 0xf; j++) {
447                 /* FMC/SPIR10[11:8] */
448                 for (i = 0; i < ARRAY_SIZE(hclk_masks); i++) {
449                         if (i == 0 && j == 0)
450                                 continue;
451
452                         if (hclk_clk / (i + 1 + (j * 16)) <= max_hz) {
453                                 found = true;
454                                 break;
455                         }
456                 }
457
458                 if (found) {
459                         hclk_div = ((j << 24) | hclk_masks[i] << 8);
460                         priv->flashes[slave_plat->cs].max_freq =
461                                                 hclk_clk / (i + 1 + j * 16);
462                         break;
463                 }
464         }
465
466         dev_dbg(dev, "found: %s, hclk: %d, max_clk: %d\n", found ? "yes" : "no",
467                 hclk_clk, max_hz);
468
469         if (found) {
470                 dev_dbg(dev, "base_clk: %d, h_div: %d (mask %x), speed: %d\n",
471                         j, i + 1, hclk_masks[i], priv->flashes[slave_plat->cs].max_freq);
472         }
473
474         return hclk_div;
475 }
476
477 /*
478  * As the flash size grows up, we need to trim some decoded
479  * size if needed for the sake of conforming the maximum
480  * decoded size. We trim the decoded size from the largest
481  * CS in order to avoid affecting the default boot up sequence
482  * from CS0 where command mode or normal mode is used.
483  * Notice, if a CS decoded size is trimmed, command mode may
484  * not work perfectly on that CS.
485  */
486 static int aspeed_spi_trim_decoded_size(struct udevice *bus)
487 {
488         struct aspeed_spi_plat *plat = dev_get_plat(bus);
489         struct aspeed_spi_priv *priv = dev_get_priv(bus);
490         struct aspeed_spi_flash *flashes = &priv->flashes[0];
491         u32 total_sz;
492         int cs = plat->max_cs - 1;
493         u32 i;
494
495         do {
496                 total_sz = 0;
497                 for (i = 0; i < plat->max_cs; i++)
498                         total_sz += flashes[i].ahb_decoded_sz;
499
500                 if (flashes[cs].ahb_decoded_sz <= priv->info->min_decoded_sz)
501                         cs--;
502
503                 if (cs < 0)
504                         return -ENOMEM;
505
506                 if (total_sz > plat->ahb_sz) {
507                         flashes[cs].ahb_decoded_sz -=
508                                         priv->info->min_decoded_sz;
509                         total_sz -= priv->info->min_decoded_sz;
510                 }
511         } while (total_sz > plat->ahb_sz);
512
513         return 0;
514 }
515
516 static int aspeed_spi_read_from_ahb(void __iomem *ahb_base, void *buf,
517                                     size_t len)
518 {
519         size_t offset = 0;
520
521         if (IS_ALIGNED((uintptr_t)ahb_base, sizeof(uintptr_t)) &&
522             IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
523                 readsl(ahb_base, buf, len >> 2);
524                 offset = len & ~0x3;
525                 len -= offset;
526         }
527
528         readsb(ahb_base, (u8 *)buf + offset, len);
529
530         return 0;
531 }
532
533 static int aspeed_spi_write_to_ahb(void __iomem *ahb_base, const void *buf,
534                                    size_t len)
535 {
536         size_t offset = 0;
537
538         if (IS_ALIGNED((uintptr_t)ahb_base, sizeof(uintptr_t)) &&
539             IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
540                 writesl(ahb_base, buf, len >> 2);
541                 offset = len & ~0x3;
542                 len -= offset;
543         }
544
545         writesb(ahb_base, (u8 *)buf + offset, len);
546
547         return 0;
548 }
549
550 /*
551  * Currently, only support 1-1-1, 1-1-2 or 1-1-4
552  * SPI NOR flash operation format.
553  */
554 static bool aspeed_spi_supports_op(struct spi_slave *slave,
555                                    const struct spi_mem_op *op)
556 {
557         struct udevice *bus = slave->dev->parent;
558         struct aspeed_spi_priv *priv = dev_get_priv(bus);
559
560         if (op->cmd.buswidth > 1)
561                 return false;
562
563         if (op->addr.nbytes != 0) {
564                 if (op->addr.buswidth > 1)
565                         return false;
566                 if (op->addr.nbytes < 3 || op->addr.nbytes > 4)
567                         return false;
568         }
569
570         if (op->dummy.nbytes != 0) {
571                 if (op->dummy.buswidth > 1 || op->dummy.nbytes > 7)
572                         return false;
573         }
574
575         if (op->data.nbytes != 0 &&
576             op->data.buswidth > priv->info->max_bus_width)
577                 return false;
578
579         if (!spi_mem_default_supports_op(slave, op))
580                 return false;
581
582         return true;
583 }
584
585 static int aspeed_spi_exec_op_user_mode(struct spi_slave *slave,
586                                         const struct spi_mem_op *op)
587 {
588         struct udevice *dev = slave->dev;
589         struct udevice *bus = dev->parent;
590         struct aspeed_spi_priv *priv = dev_get_priv(bus);
591         struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(slave->dev);
592         u32 cs = slave_plat->cs;
593         u32 ce_ctrl_reg = (u32)&priv->regs->ce_ctrl[cs];
594         u32 ce_ctrl_val;
595         struct aspeed_spi_flash *flash = &priv->flashes[cs];
596         u8 dummy_data[16] = {0};
597         u8 addr[4] = {0};
598         int i;
599
600         dev_dbg(dev, "cmd:%x(%d),addr:%llx(%d),dummy:%d(%d),data_len:0x%x(%d)\n",
601                 op->cmd.opcode, op->cmd.buswidth, op->addr.val,
602                 op->addr.buswidth, op->dummy.nbytes, op->dummy.buswidth,
603                 op->data.nbytes, op->data.buswidth);
604
605         if (priv->info == &ast2400_spi_info)
606                 ce_ctrl_reg = (u32)&priv->regs->ctrl;
607
608         /*
609          * Set controller to 4-byte address mode
610          * if flash is in 4-byte address mode.
611          */
612         if (op->cmd.opcode == SPINOR_OP_EN4B)
613                 priv->info->set_4byte(bus, cs);
614
615         /* Start user mode */
616         ce_ctrl_val = flash->ce_ctrl_user;
617         writel(ce_ctrl_val, ce_ctrl_reg);
618         ce_ctrl_val &= (~CTRL_STOP_ACTIVE);
619         writel(ce_ctrl_val, ce_ctrl_reg);
620
621         /* Send command */
622         aspeed_spi_write_to_ahb(flash->ahb_base, &op->cmd.opcode, 1);
623
624         /* Send address */
625         for (i = op->addr.nbytes; i > 0; i--) {
626                 addr[op->addr.nbytes - i] =
627                         ((u32)op->addr.val >> ((i - 1) * 8)) & 0xff;
628         }
629
630         /* Change io_mode */
631         ce_ctrl_val &= ~priv->info->io_mode_mask;
632         ce_ctrl_val |= aspeed_spi_get_io_mode(op->addr.buswidth);
633         writel(ce_ctrl_val, ce_ctrl_reg);
634         aspeed_spi_write_to_ahb(flash->ahb_base, addr, op->addr.nbytes);
635
636         /* Send dummy cycles */
637         aspeed_spi_write_to_ahb(flash->ahb_base, dummy_data, op->dummy.nbytes);
638
639         /* Change io_mode */
640         ce_ctrl_val &= ~priv->info->io_mode_mask;
641         ce_ctrl_val |= aspeed_spi_get_io_mode(op->data.buswidth);
642         writel(ce_ctrl_val, ce_ctrl_reg);
643
644         /* Send data */
645         if (op->data.dir == SPI_MEM_DATA_OUT) {
646                 aspeed_spi_write_to_ahb(flash->ahb_base, op->data.buf.out,
647                                         op->data.nbytes);
648         } else {
649                 aspeed_spi_read_from_ahb(flash->ahb_base, op->data.buf.in,
650                                          op->data.nbytes);
651         }
652
653         ce_ctrl_val |= CTRL_STOP_ACTIVE;
654         writel(ce_ctrl_val, ce_ctrl_reg);
655
656         /* Restore controller setting. */
657         writel(flash->ce_ctrl_read, ce_ctrl_reg);
658
659         return 0;
660 }
661
662 static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc *desc)
663 {
664         int ret = 0;
665         struct udevice *dev = desc->slave->dev;
666         struct udevice *bus = dev->parent;
667         struct aspeed_spi_priv *priv = dev_get_priv(bus);
668         struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
669         const struct aspeed_spi_info *info = priv->info;
670         struct spi_mem_op op_tmpl = desc->info.op_tmpl;
671         u32 i;
672         u32 cs = slave_plat->cs;
673         u32 cmd_io_conf;
674         u32 ce_ctrl_reg;
675
676         if (desc->info.op_tmpl.data.dir == SPI_MEM_DATA_OUT) {
677                 /*
678                  * dirmap_write is not supported currently due to a HW
679                  * limitation for command write mode: The written data
680                  * length should be multiple of 4-byte.
681                  */
682                 return -EOPNOTSUPP;
683         }
684
685         ce_ctrl_reg = (u32)&priv->regs->ce_ctrl[cs];
686         if (info == &ast2400_spi_info)
687                 ce_ctrl_reg = (u32)&priv->regs->ctrl;
688
689         if (desc->info.length > 0x1000000)
690                 priv->info->set_4byte(bus, cs);
691
692         /* AST2400 SPI1 doesn't have decoded address segment register. */
693         if (info != &ast2400_spi_info) {
694                 priv->flashes[cs].ahb_decoded_sz = desc->info.length;
695
696                 for (i = 0; i < priv->num_cs; i++) {
697                         dev_dbg(dev, "cs: %d, sz: 0x%x\n", i,
698                                 priv->flashes[cs].ahb_decoded_sz);
699                 }
700
701                 ret = aspeed_spi_decoded_range_config(bus);
702                 if (ret)
703                         return ret;
704         }
705
706         cmd_io_conf = aspeed_spi_get_io_mode(op_tmpl.data.buswidth) |
707                       op_tmpl.cmd.opcode << 16 |
708                       ((op_tmpl.dummy.nbytes) & 0x3) << 6 |
709                       ((op_tmpl.dummy.nbytes) & 0x4) << 14 |
710                       CTRL_IO_MODE_CMD_READ;
711
712         priv->flashes[cs].ce_ctrl_read &= priv->info->clk_ctrl_mask;
713         priv->flashes[cs].ce_ctrl_read |= cmd_io_conf;
714
715         writel(priv->flashes[cs].ce_ctrl_read, ce_ctrl_reg);
716
717         dev_dbg(dev, "read bus width: %d ce_ctrl_val: 0x%08x\n",
718                 op_tmpl.data.buswidth, priv->flashes[cs].ce_ctrl_read);
719
720         return ret;
721 }
722
723 static ssize_t aspeed_spi_dirmap_read(struct spi_mem_dirmap_desc *desc,
724                                       u64 offs, size_t len, void *buf)
725 {
726         struct udevice *dev = desc->slave->dev;
727         struct aspeed_spi_priv *priv = dev_get_priv(dev->parent);
728         struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
729         u32 cs = slave_plat->cs;
730         int ret;
731
732         dev_dbg(dev, "read op:0x%x, addr:0x%llx, len:0x%x\n",
733                 desc->info.op_tmpl.cmd.opcode, offs, len);
734
735         if (priv->flashes[cs].ahb_decoded_sz < offs + len ||
736             (offs % 4) != 0) {
737                 ret = aspeed_spi_exec_op_user_mode(desc->slave,
738                                                    &desc->info.op_tmpl);
739                 if (ret != 0)
740                         return 0;
741         } else {
742                 memcpy_fromio(buf, priv->flashes[cs].ahb_base + offs, len);
743         }
744
745         return len;
746 }
747
748 static struct aspeed_spi_flash *aspeed_spi_get_flash(struct udevice *dev)
749 {
750         struct udevice *bus = dev->parent;
751         struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
752         struct aspeed_spi_plat *plat = dev_get_plat(bus);
753         struct aspeed_spi_priv *priv = dev_get_priv(bus);
754         u32 cs = slave_plat->cs;
755
756         if (cs >= plat->max_cs) {
757                 dev_err(dev, "invalid CS %u\n", cs);
758                 return NULL;
759         }
760
761         return &priv->flashes[cs];
762 }
763
764 static void aspeed_spi_decoded_base_calculate(struct udevice *bus)
765 {
766         struct aspeed_spi_plat *plat = dev_get_plat(bus);
767         struct aspeed_spi_priv *priv = dev_get_priv(bus);
768         u32 cs;
769
770         if (priv->fixed_decoded_range)
771                 return;
772
773         priv->flashes[0].ahb_base = plat->ahb_base;
774
775         for (cs = 1; cs < plat->max_cs; cs++) {
776                 priv->flashes[cs].ahb_base =
777                                 priv->flashes[cs - 1].ahb_base +
778                                 priv->flashes[cs - 1].ahb_decoded_sz;
779         }
780 }
781
782 static void aspeed_spi_decoded_range_set(struct udevice *bus)
783 {
784         struct aspeed_spi_plat *plat = dev_get_plat(bus);
785         struct aspeed_spi_priv *priv = dev_get_priv(bus);
786         u32 decoded_reg_val;
787         u32 start_addr, end_addr;
788         u32 cs;
789
790         for (cs = 0; cs < plat->max_cs; cs++) {
791                 start_addr = (u32)priv->flashes[cs].ahb_base;
792                 end_addr = (u32)priv->flashes[cs].ahb_base +
793                            priv->flashes[cs].ahb_decoded_sz;
794
795                 decoded_reg_val = priv->info->segment_reg(start_addr, end_addr);
796
797                 writel(decoded_reg_val, &priv->regs->segment_addr[cs]);
798
799                 dev_dbg(bus, "cs: %d, decoded_reg: 0x%x, start: 0x%x, end: 0x%x\n",
800                         cs, decoded_reg_val, start_addr, end_addr);
801         }
802 }
803
804 static int aspeed_spi_decoded_range_config(struct udevice *bus)
805 {
806         int ret = 0;
807         struct aspeed_spi_priv *priv = dev_get_priv(bus);
808
809         if (priv->info->adjust_decoded_sz &&
810             !priv->fixed_decoded_range) {
811                 ret = priv->info->adjust_decoded_sz(bus);
812                 if (ret != 0)
813                         return ret;
814         }
815
816         aspeed_spi_decoded_base_calculate(bus);
817         aspeed_spi_decoded_range_set(bus);
818
819         return ret;
820 }
821
822 static int aspeed_spi_decoded_ranges_sanity(struct udevice *bus)
823 {
824         struct aspeed_spi_plat *plat = dev_get_plat(bus);
825         struct aspeed_spi_priv *priv = dev_get_priv(bus);
826         u32 cs;
827         u32 total_sz = 0;
828
829         /* Check overall size. */
830         for (cs = 0; cs < plat->max_cs; cs++)
831                 total_sz += priv->flashes[cs].ahb_decoded_sz;
832
833         if (total_sz > plat->ahb_sz) {
834                 dev_err(bus, "invalid total size 0x%08x\n", total_sz);
835                 return -EINVAL;
836         }
837
838         /* Check each decoded range size for AST2500. */
839         if (priv->info == &ast2500_fmc_info ||
840             priv->info == &ast2500_spi_info) {
841                 for (cs = 0; cs < plat->max_cs; cs++) {
842                         if (priv->flashes[cs].ahb_decoded_sz <
843                             priv->info->min_decoded_sz) {
844                                 dev_err(bus, "insufficient decoded range.\n");
845                                 return -EINVAL;
846                         }
847                 }
848         }
849
850         /*
851          * Check overlay. Here, we assume the deccded ranges and
852          * address base are monotonic increasing with CE#.
853          */
854         for (cs = plat->max_cs - 1; cs > 0; cs--) {
855                 if ((u32)priv->flashes[cs].ahb_base != 0 &&
856                     (u32)priv->flashes[cs].ahb_base <
857                     (u32)priv->flashes[cs - 1].ahb_base +
858                     priv->flashes[cs - 1].ahb_decoded_sz) {
859                         dev_err(bus, "decoded range overlay 0x%08x 0x%08x\n",
860                                 (u32)priv->flashes[cs].ahb_base,
861                                 (u32)priv->flashes[cs - 1].ahb_base);
862                         return -EINVAL;
863                 }
864         }
865
866         return 0;
867 }
868
869 static int aspeed_spi_read_fixed_decoded_ranges(struct udevice *bus)
870 {
871         int ret = 0;
872         struct aspeed_spi_plat *plat = dev_get_plat(bus);
873         struct aspeed_spi_priv *priv = dev_get_priv(bus);
874         const char *range_prop = "decoded-ranges";
875         struct aspeed_spi_decoded_range ranges[ASPEED_SPI_MAX_CS];
876         const struct property *prop;
877         u32 prop_sz;
878         u32 count;
879         u32 i;
880
881         priv->fixed_decoded_range = false;
882
883         prop = dev_read_prop(bus, range_prop, &prop_sz);
884         if (!prop)
885                 return 0;
886
887         count = prop_sz / sizeof(struct aspeed_spi_decoded_range);
888         if (count > plat->max_cs || count < priv->num_cs) {
889                 dev_err(bus, "invalid '%s' property %d %d\n",
890                         range_prop, count, priv->num_cs);
891                 return -EINVAL;
892         }
893
894         ret = dev_read_u32_array(bus, range_prop, (u32 *)ranges, count * 3);
895         if (ret)
896                 return ret;
897
898         for (i = 0; i < count; i++) {
899                 priv->flashes[ranges[i].cs].ahb_base =
900                                 (void __iomem *)ranges[i].ahb_base;
901                 priv->flashes[ranges[i].cs].ahb_decoded_sz =
902                                 ranges[i].sz;
903         }
904
905         for (i = 0; i < plat->max_cs; i++) {
906                 dev_dbg(bus, "ahb_base: 0x%p, size: 0x%08x\n",
907                         priv->flashes[i].ahb_base,
908                         priv->flashes[i].ahb_decoded_sz);
909         }
910
911         ret = aspeed_spi_decoded_ranges_sanity(bus);
912         if (ret != 0)
913                 return ret;
914
915         priv->fixed_decoded_range = true;
916
917         return 0;
918 }
919
920 /*
921  * Initialize SPI controller for each chip select.
922  * Here, only the minimum decode range is configured
923  * in order to get device (SPI NOR flash) information
924  * at the early stage.
925  */
926 static int aspeed_spi_ctrl_init(struct udevice *bus)
927 {
928         int ret;
929         struct aspeed_spi_plat *plat = dev_get_plat(bus);
930         struct aspeed_spi_priv *priv = dev_get_priv(bus);
931         u32 cs;
932         u32 reg_val;
933         u32 decoded_sz;
934
935         /* Enable write capability for all CS. */
936         reg_val = readl(&priv->regs->conf);
937         if (priv->info == &ast2400_spi_info) {
938                 writel(reg_val | BIT(0), &priv->regs->conf);
939         } else {
940                 writel(reg_val | (GENMASK(plat->max_cs - 1, 0) << 16),
941                        &priv->regs->conf);
942         }
943
944         memset(priv->flashes, 0x0,
945                sizeof(struct aspeed_spi_flash) * ASPEED_SPI_MAX_CS);
946
947         /* Initial user mode. */
948         for (cs = 0; cs < priv->num_cs; cs++) {
949                 priv->flashes[cs].ce_ctrl_user &= priv->info->clk_ctrl_mask;
950                 priv->flashes[cs].ce_ctrl_user |=
951                                 (CTRL_STOP_ACTIVE | CTRL_IO_MODE_USER);
952         }
953
954         /*
955          * SPI1 on AST2400 only supports CS0.
956          * It is unnecessary to configure segment address register.
957          */
958         if (priv->info == &ast2400_spi_info) {
959                 priv->flashes[cs].ahb_base = plat->ahb_base;
960                 priv->flashes[cs].ahb_decoded_sz = 0x10000000;
961                 return 0;
962         }
963
964
965         ret = aspeed_spi_read_fixed_decoded_ranges(bus);
966         if (ret != 0)
967                 return ret;
968
969         if (!priv->fixed_decoded_range) {
970                 /* Assign basic AHB decoded size for each CS. */
971                 for (cs = 0; cs < plat->max_cs; cs++) {
972                         reg_val = readl(&priv->regs->segment_addr[cs]);
973                         decoded_sz = priv->info->segment_end(bus, reg_val) -
974                                      priv->info->segment_start(bus, reg_val);
975
976                         if (decoded_sz < priv->info->min_decoded_sz)
977                                 decoded_sz = priv->info->min_decoded_sz;
978
979                         priv->flashes[cs].ahb_decoded_sz = decoded_sz;
980                 }
981         }
982
983         ret = aspeed_spi_decoded_range_config(bus);
984
985         return ret;
986 }
987
988 static const struct aspeed_spi_info ast2400_fmc_info = {
989         .io_mode_mask = 0x70000000,
990         .max_bus_width = 2,
991         .min_decoded_sz = 0x800000,
992         .clk_ctrl_mask = 0x00002f00,
993         .set_4byte = ast2400_fmc_chip_set_4byte,
994         .segment_start = ast2400_spi_segment_start,
995         .segment_end = ast2400_spi_segment_end,
996         .segment_reg = ast2400_spi_segment_reg,
997         .get_clk_setting = ast2400_get_clk_setting,
998 };
999
1000 static const struct aspeed_spi_info ast2400_spi_info = {
1001         .io_mode_mask = 0x70000000,
1002         .max_bus_width = 2,
1003         .min_decoded_sz = 0x800000,
1004         .clk_ctrl_mask = 0x00000f00,
1005         .set_4byte = ast2400_spi_chip_set_4byte,
1006         .segment_start = ast2400_spi_segment_start,
1007         .segment_end = ast2400_spi_segment_end,
1008         .segment_reg = ast2400_spi_segment_reg,
1009         .get_clk_setting = ast2400_get_clk_setting,
1010 };
1011
1012 static const struct aspeed_spi_info ast2500_fmc_info = {
1013         .io_mode_mask = 0x70000000,
1014         .max_bus_width = 2,
1015         .min_decoded_sz = 0x800000,
1016         .clk_ctrl_mask = 0x00002f00,
1017         .set_4byte = ast2500_spi_chip_set_4byte,
1018         .segment_start = ast2500_spi_segment_start,
1019         .segment_end = ast2500_spi_segment_end,
1020         .segment_reg = ast2500_spi_segment_reg,
1021         .adjust_decoded_sz = ast2500_adjust_decoded_size,
1022         .get_clk_setting = ast2500_get_clk_setting,
1023 };
1024
1025 /*
1026  * There are some different between FMC and SPI controllers.
1027  * For example, DMA operation, but this isn't implemented currently.
1028  */
1029 static const struct aspeed_spi_info ast2500_spi_info = {
1030         .io_mode_mask = 0x70000000,
1031         .max_bus_width = 2,
1032         .min_decoded_sz = 0x800000,
1033         .clk_ctrl_mask = 0x00002f00,
1034         .set_4byte = ast2500_spi_chip_set_4byte,
1035         .segment_start = ast2500_spi_segment_start,
1036         .segment_end = ast2500_spi_segment_end,
1037         .segment_reg = ast2500_spi_segment_reg,
1038         .adjust_decoded_sz = ast2500_adjust_decoded_size,
1039         .get_clk_setting = ast2500_get_clk_setting,
1040 };
1041
1042 static const struct aspeed_spi_info ast2600_fmc_info = {
1043         .io_mode_mask = 0xf0000000,
1044         .max_bus_width = 4,
1045         .min_decoded_sz = 0x200000,
1046         .clk_ctrl_mask = 0x0f000f00,
1047         .set_4byte = ast2600_spi_chip_set_4byte,
1048         .segment_start = ast2600_spi_segment_start,
1049         .segment_end = ast2600_spi_segment_end,
1050         .segment_reg = ast2600_spi_segment_reg,
1051         .adjust_decoded_sz = ast2600_adjust_decoded_size,
1052         .get_clk_setting = ast2600_get_clk_setting,
1053 };
1054
1055 static const struct aspeed_spi_info ast2600_spi_info = {
1056         .io_mode_mask = 0xf0000000,
1057         .max_bus_width = 4,
1058         .min_decoded_sz = 0x200000,
1059         .clk_ctrl_mask = 0x0f000f00,
1060         .set_4byte = ast2600_spi_chip_set_4byte,
1061         .segment_start = ast2600_spi_segment_start,
1062         .segment_end = ast2600_spi_segment_end,
1063         .segment_reg = ast2600_spi_segment_reg,
1064         .adjust_decoded_sz = ast2600_adjust_decoded_size,
1065         .get_clk_setting = ast2600_get_clk_setting,
1066 };
1067
1068 static int aspeed_spi_claim_bus(struct udevice *dev)
1069 {
1070         struct udevice *bus = dev->parent;
1071         struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
1072         struct aspeed_spi_priv *priv = dev_get_priv(dev->parent);
1073         struct aspeed_spi_flash *flash = &priv->flashes[slave_plat->cs];
1074         u32 clk_setting;
1075
1076         dev_dbg(bus, "%s: claim bus CS%u\n", bus->name, slave_plat->cs);
1077
1078         if (flash->max_freq == 0) {
1079                 clk_setting = priv->info->get_clk_setting(dev, slave_plat->max_hz);
1080                 flash->ce_ctrl_user &= ~(priv->info->clk_ctrl_mask);
1081                 flash->ce_ctrl_user |= clk_setting;
1082                 flash->ce_ctrl_read &= ~(priv->info->clk_ctrl_mask);
1083                 flash->ce_ctrl_read |= clk_setting;
1084         }
1085
1086         return 0;
1087 }
1088
1089 static int aspeed_spi_release_bus(struct udevice *dev)
1090 {
1091         struct udevice *bus = dev->parent;
1092         struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
1093
1094         dev_dbg(bus, "%s: release bus CS%u\n", bus->name, slave_plat->cs);
1095
1096         if (!aspeed_spi_get_flash(dev))
1097                 return -ENODEV;
1098
1099         return 0;
1100 }
1101
1102 static int aspeed_spi_set_mode(struct udevice *bus, uint mode)
1103 {
1104         dev_dbg(bus, "%s: setting mode to %x\n", bus->name, mode);
1105
1106         return 0;
1107 }
1108
1109 static int aspeed_spi_set_speed(struct udevice *bus, uint hz)
1110 {
1111         dev_dbg(bus, "%s: setting speed to %u\n", bus->name, hz);
1112         /*
1113          * ASPEED SPI controller supports multiple CS with different
1114          * clock frequency. We cannot distinguish which CS here.
1115          * Thus, the related implementation is postponed to claim_bus.
1116          */
1117
1118         return 0;
1119 }
1120
1121 static int apseed_spi_of_to_plat(struct udevice *bus)
1122 {
1123         struct aspeed_spi_plat *plat = dev_get_plat(bus);
1124         struct aspeed_spi_priv *priv = dev_get_priv(bus);
1125         int ret;
1126         struct clk hclk;
1127
1128         priv->regs = (void __iomem *)devfdt_get_addr_index(bus, 0);
1129         if ((u32)priv->regs == FDT_ADDR_T_NONE) {
1130                 dev_err(bus, "wrong ctrl base\n");
1131                 return -ENODEV;
1132         }
1133
1134         plat->ahb_base =
1135                 (void __iomem *)devfdt_get_addr_size_index(bus, 1, &plat->ahb_sz);
1136         if ((u32)plat->ahb_base == FDT_ADDR_T_NONE) {
1137                 dev_err(bus, "wrong AHB base\n");
1138                 return -ENODEV;
1139         }
1140
1141         plat->max_cs = dev_read_u32_default(bus, "num-cs", ASPEED_SPI_MAX_CS);
1142         if (plat->max_cs > ASPEED_SPI_MAX_CS)
1143                 return -EINVAL;
1144
1145         ret = clk_get_by_index(bus, 0, &hclk);
1146         if (ret < 0) {
1147                 dev_err(bus, "%s could not get clock: %d\n", bus->name, ret);
1148                 return ret;
1149         }
1150
1151         plat->hclk_rate = clk_get_rate(&hclk);
1152         clk_free(&hclk);
1153
1154         dev_dbg(bus, "ctrl_base = 0x%x, ahb_base = 0x%p, size = 0x%lx\n",
1155                 (u32)priv->regs, plat->ahb_base, plat->ahb_sz);
1156         dev_dbg(bus, "hclk = %dMHz, max_cs = %d\n",
1157                 plat->hclk_rate / 1000000, plat->max_cs);
1158
1159         return 0;
1160 }
1161
1162 static int aspeed_spi_probe(struct udevice *bus)
1163 {
1164         int ret;
1165         struct aspeed_spi_priv *priv = dev_get_priv(bus);
1166         struct udevice *dev;
1167
1168         priv->info = (struct aspeed_spi_info *)dev_get_driver_data(bus);
1169
1170         priv->num_cs = 0;
1171         for (device_find_first_child(bus, &dev); dev;
1172              device_find_next_child(&dev)) {
1173                 priv->num_cs++;
1174         }
1175
1176         if (priv->num_cs > ASPEED_SPI_MAX_CS)
1177                 return -EINVAL;
1178
1179         ret = aspeed_spi_ctrl_init(bus);
1180
1181         return ret;
1182 }
1183
1184 static const struct spi_controller_mem_ops aspeed_spi_mem_ops = {
1185         .supports_op = aspeed_spi_supports_op,
1186         .exec_op = aspeed_spi_exec_op_user_mode,
1187         .dirmap_create = aspeed_spi_dirmap_create,
1188         .dirmap_read = aspeed_spi_dirmap_read,
1189 };
1190
1191 static const struct dm_spi_ops aspeed_spi_ops = {
1192         .claim_bus = aspeed_spi_claim_bus,
1193         .release_bus = aspeed_spi_release_bus,
1194         .set_speed = aspeed_spi_set_speed,
1195         .set_mode = aspeed_spi_set_mode,
1196         .mem_ops = &aspeed_spi_mem_ops,
1197 };
1198
1199 static const struct udevice_id aspeed_spi_ids[] = {
1200         { .compatible = "aspeed,ast2400-fmc", .data = (ulong)&ast2400_fmc_info, },
1201         { .compatible = "aspeed,ast2400-spi", .data = (ulong)&ast2400_spi_info, },
1202         { .compatible = "aspeed,ast2500-fmc", .data = (ulong)&ast2500_fmc_info, },
1203         { .compatible = "aspeed,ast2500-spi", .data = (ulong)&ast2500_spi_info, },
1204         { .compatible = "aspeed,ast2600-fmc", .data = (ulong)&ast2600_fmc_info, },
1205         { .compatible = "aspeed,ast2600-spi", .data = (ulong)&ast2600_spi_info, },
1206         { }
1207 };
1208
1209 U_BOOT_DRIVER(aspeed_spi) = {
1210         .name = "aspeed_spi_smc",
1211         .id = UCLASS_SPI,
1212         .of_match = aspeed_spi_ids,
1213         .ops = &aspeed_spi_ops,
1214         .of_to_plat = apseed_spi_of_to_plat,
1215         .plat_auto = sizeof(struct aspeed_spi_plat),
1216         .priv_auto = sizeof(struct aspeed_spi_priv),
1217         .probe = aspeed_spi_probe,
1218 };