1 // SPDX-License-Identifier: GPL-2.0+
3 * NXP FlexSPI(FSPI) controller driver.
5 * Copyright (c) 2019 Michael Walle <michael@walle.cc>
6 * Copyright (c) 2019 NXP
8 * This driver was originally ported from the linux kernel v5.4-rc3, which had
11 * FlexSPI is a flexsible SPI host controller which supports two SPI
12 * channels and up to 4 external devices. Each channel supports
13 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
16 * FlexSPI controller is driven by the LUT(Look-up Table) registers
17 * LUT registers are a look-up-table for sequences of instructions.
18 * A valid sequence consists of four LUT registers.
19 * Maximum 32 LUT sequences can be programmed simultaneously.
21 * LUTs are being created at run-time based on the commands passed
22 * from the spi-mem framework, thus using single LUT index.
24 * Software triggered Flash read/write access by IP Bus.
26 * Memory mapped read access by AHB Bus.
28 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
31 * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
32 * Boris Brezillon <bbrezillon@kernel.org>
33 * Frieder Schrempf <frieder.schrempf@kontron.de>
39 #include <dm/device_compat.h>
44 #ifdef CONFIG_FSL_LAYERSCAPE
45 #include <asm/arch/clock.h>
46 #include <asm/arch/soc.h>
47 #include <asm/arch/speed.h>
49 #include <linux/bitops.h>
50 #include <linux/kernel.h>
51 #include <linux/sizes.h>
52 #include <linux/iopoll.h>
53 #include <linux/bug.h>
54 #include <linux/err.h>
57 * The driver only uses one single LUT entry, that is updated on
58 * each call of exec_op(). Index 0 is preset at boot with a basic
59 * read operation, so let's use the last entry (31).
63 /* Registers used by the driver */
64 #define FSPI_MCR0 0x00
65 #define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
66 #define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
67 #define FSPI_MCR0_LEARN_EN BIT(15)
68 #define FSPI_MCR0_SCRFRUN_EN BIT(14)
69 #define FSPI_MCR0_OCTCOMB_EN BIT(13)
70 #define FSPI_MCR0_DOZE_EN BIT(12)
71 #define FSPI_MCR0_HSEN BIT(11)
72 #define FSPI_MCR0_SERCLKDIV BIT(8)
73 #define FSPI_MCR0_ATDF_EN BIT(7)
74 #define FSPI_MCR0_ARDF_EN BIT(6)
75 #define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
76 #define FSPI_MCR0_END_CFG(x) ((x) << 2)
77 #define FSPI_MCR0_MDIS BIT(1)
78 #define FSPI_MCR0_SWRST BIT(0)
80 #define FSPI_MCR1 0x04
81 #define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
82 #define FSPI_MCR1_AHB_TIMEOUT(x) (x)
84 #define FSPI_MCR2 0x08
85 #define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
86 #define FSPI_MCR2_SAMEDEVICEEN BIT(15)
87 #define FSPI_MCR2_CLRLRPHS BIT(14)
88 #define FSPI_MCR2_ABRDATSZ BIT(8)
89 #define FSPI_MCR2_ABRLEARN BIT(7)
90 #define FSPI_MCR2_ABR_READ BIT(6)
91 #define FSPI_MCR2_ABRWRITE BIT(5)
92 #define FSPI_MCR2_ABRDUMMY BIT(4)
93 #define FSPI_MCR2_ABR_MODE BIT(3)
94 #define FSPI_MCR2_ABRCADDR BIT(2)
95 #define FSPI_MCR2_ABRRADDR BIT(1)
96 #define FSPI_MCR2_ABR_CMD BIT(0)
98 #define FSPI_AHBCR 0x0c
99 #define FSPI_AHBCR_RDADDROPT BIT(6)
100 #define FSPI_AHBCR_PREF_EN BIT(5)
101 #define FSPI_AHBCR_BUFF_EN BIT(4)
102 #define FSPI_AHBCR_CACH_EN BIT(3)
103 #define FSPI_AHBCR_CLRTXBUF BIT(2)
104 #define FSPI_AHBCR_CLRRXBUF BIT(1)
105 #define FSPI_AHBCR_PAR_EN BIT(0)
107 #define FSPI_INTEN 0x10
108 #define FSPI_INTEN_SCLKSBWR BIT(9)
109 #define FSPI_INTEN_SCLKSBRD BIT(8)
110 #define FSPI_INTEN_DATALRNFL BIT(7)
111 #define FSPI_INTEN_IPTXWE BIT(6)
112 #define FSPI_INTEN_IPRXWA BIT(5)
113 #define FSPI_INTEN_AHBCMDERR BIT(4)
114 #define FSPI_INTEN_IPCMDERR BIT(3)
115 #define FSPI_INTEN_AHBCMDGE BIT(2)
116 #define FSPI_INTEN_IPCMDGE BIT(1)
117 #define FSPI_INTEN_IPCMDDONE BIT(0)
119 #define FSPI_INTR 0x14
120 #define FSPI_INTR_SCLKSBWR BIT(9)
121 #define FSPI_INTR_SCLKSBRD BIT(8)
122 #define FSPI_INTR_DATALRNFL BIT(7)
123 #define FSPI_INTR_IPTXWE BIT(6)
124 #define FSPI_INTR_IPRXWA BIT(5)
125 #define FSPI_INTR_AHBCMDERR BIT(4)
126 #define FSPI_INTR_IPCMDERR BIT(3)
127 #define FSPI_INTR_AHBCMDGE BIT(2)
128 #define FSPI_INTR_IPCMDGE BIT(1)
129 #define FSPI_INTR_IPCMDDONE BIT(0)
131 #define FSPI_LUTKEY 0x18
132 #define FSPI_LUTKEY_VALUE 0x5AF05AF0
134 #define FSPI_LCKCR 0x1C
136 #define FSPI_LCKER_LOCK 0x1
137 #define FSPI_LCKER_UNLOCK 0x2
139 #define FSPI_BUFXCR_INVALID_MSTRID 0xE
140 #define FSPI_AHBRX_BUF0CR0 0x20
141 #define FSPI_AHBRX_BUF1CR0 0x24
142 #define FSPI_AHBRX_BUF2CR0 0x28
143 #define FSPI_AHBRX_BUF3CR0 0x2C
144 #define FSPI_AHBRX_BUF4CR0 0x30
145 #define FSPI_AHBRX_BUF5CR0 0x34
146 #define FSPI_AHBRX_BUF6CR0 0x38
147 #define FSPI_AHBRX_BUF7CR0 0x3C
148 #define FSPI_AHBRXBUF0CR7_PREF BIT(31)
150 #define FSPI_AHBRX_BUF0CR1 0x40
151 #define FSPI_AHBRX_BUF1CR1 0x44
152 #define FSPI_AHBRX_BUF2CR1 0x48
153 #define FSPI_AHBRX_BUF3CR1 0x4C
154 #define FSPI_AHBRX_BUF4CR1 0x50
155 #define FSPI_AHBRX_BUF5CR1 0x54
156 #define FSPI_AHBRX_BUF6CR1 0x58
157 #define FSPI_AHBRX_BUF7CR1 0x5C
159 #define FSPI_FLSHA1CR0 0x60
160 #define FSPI_FLSHA2CR0 0x64
161 #define FSPI_FLSHB1CR0 0x68
162 #define FSPI_FLSHB2CR0 0x6C
163 #define FSPI_FLSHXCR0_SZ_KB 10
164 #define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
166 #define FSPI_FLSHA1CR1 0x70
167 #define FSPI_FLSHA2CR1 0x74
168 #define FSPI_FLSHB1CR1 0x78
169 #define FSPI_FLSHB2CR1 0x7C
170 #define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
171 #define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
172 #define FSPI_FLSHXCR1_WA BIT(10)
173 #define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
174 #define FSPI_FLSHXCR1_TCSS(x) (x)
176 #define FSPI_FLSHA1CR2 0x80
177 #define FSPI_FLSHA2CR2 0x84
178 #define FSPI_FLSHB1CR2 0x88
179 #define FSPI_FLSHB2CR2 0x8C
180 #define FSPI_FLSHXCR2_CLRINSP BIT(24)
181 #define FSPI_FLSHXCR2_AWRWAIT BIT(16)
182 #define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
183 #define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
184 #define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
185 #define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
187 #define FSPI_IPCR0 0xA0
189 #define FSPI_IPCR1 0xA4
190 #define FSPI_IPCR1_IPAREN BIT(31)
191 #define FSPI_IPCR1_SEQNUM_SHIFT 24
192 #define FSPI_IPCR1_SEQID_SHIFT 16
193 #define FSPI_IPCR1_IDATSZ(x) (x)
195 #define FSPI_IPCMD 0xB0
196 #define FSPI_IPCMD_TRG BIT(0)
198 #define FSPI_DLPR 0xB4
200 #define FSPI_IPRXFCR 0xB8
201 #define FSPI_IPRXFCR_CLR BIT(0)
202 #define FSPI_IPRXFCR_DMA_EN BIT(1)
203 #define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
205 #define FSPI_IPTXFCR 0xBC
206 #define FSPI_IPTXFCR_CLR BIT(0)
207 #define FSPI_IPTXFCR_DMA_EN BIT(1)
208 #define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
210 #define FSPI_DLLACR 0xC0
211 #define FSPI_DLLACR_OVRDEN BIT(8)
213 #define FSPI_DLLBCR 0xC4
214 #define FSPI_DLLBCR_OVRDEN BIT(8)
216 #define FSPI_STS0 0xE0
217 #define FSPI_STS0_DLPHB(x) ((x) << 8)
218 #define FSPI_STS0_DLPHA(x) ((x) << 4)
219 #define FSPI_STS0_CMD_SRC(x) ((x) << 2)
220 #define FSPI_STS0_ARB_IDLE BIT(1)
221 #define FSPI_STS0_SEQ_IDLE BIT(0)
223 #define FSPI_STS1 0xE4
224 #define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
225 #define FSPI_STS1_IP_ERRID(x) ((x) << 16)
226 #define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
227 #define FSPI_STS1_AHB_ERRID(x) (x)
229 #define FSPI_AHBSPNST 0xEC
230 #define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
231 #define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
232 #define FSPI_AHBSPNST_ACTIVE BIT(0)
234 #define FSPI_IPRXFSTS 0xF0
235 #define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
236 #define FSPI_IPRXFSTS_FILL(x) (x)
238 #define FSPI_IPTXFSTS 0xF4
239 #define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
240 #define FSPI_IPTXFSTS_FILL(x) (x)
242 #define FSPI_RFDR 0x100
243 #define FSPI_TFDR 0x180
245 #define FSPI_LUT_BASE 0x200
246 #define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
247 #define FSPI_LUT_REG(idx) \
248 (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
250 /* register map end */
252 /* Instruction set for the LUT register. */
253 #define LUT_STOP 0x00
255 #define LUT_ADDR 0x02
256 #define LUT_CADDR_SDR 0x03
257 #define LUT_MODE 0x04
258 #define LUT_MODE2 0x05
259 #define LUT_MODE4 0x06
260 #define LUT_MODE8 0x07
261 #define LUT_NXP_WRITE 0x08
262 #define LUT_NXP_READ 0x09
263 #define LUT_LEARN_SDR 0x0A
264 #define LUT_DATSZ_SDR 0x0B
265 #define LUT_DUMMY 0x0C
266 #define LUT_DUMMY_RWDS_SDR 0x0D
267 #define LUT_JMP_ON_CS 0x1F
268 #define LUT_CMD_DDR 0x21
269 #define LUT_ADDR_DDR 0x22
270 #define LUT_CADDR_DDR 0x23
271 #define LUT_MODE_DDR 0x24
272 #define LUT_MODE2_DDR 0x25
273 #define LUT_MODE4_DDR 0x26
274 #define LUT_MODE8_DDR 0x27
275 #define LUT_WRITE_DDR 0x28
276 #define LUT_READ_DDR 0x29
277 #define LUT_LEARN_DDR 0x2A
278 #define LUT_DATSZ_DDR 0x2B
279 #define LUT_DUMMY_DDR 0x2C
280 #define LUT_DUMMY_RWDS_DDR 0x2D
283 * Calculate number of required PAD bits for LUT register.
285 * The pad stands for the number of IO lines [0:7].
286 * For example, the octal read needs eight IO lines,
287 * so you should use LUT_PAD(8). This macro
288 * returns 3 i.e. use eight (2^3) IP lines for read.
290 #define LUT_PAD(x) (fls(x) - 1)
293 * Macro for constructing the LUT entries with the following
296 * ---------------------------------------------------
297 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
298 * ---------------------------------------------------
301 #define INSTR_SHIFT 10
302 #define OPRND_SHIFT 16
304 /* Macros for constructing the LUT register. */
305 #define LUT_DEF(idx, ins, pad, opr) \
306 ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
307 (opr)) << (((idx) % 2) * OPRND_SHIFT))
309 #define POLL_TOUT 5000
310 #define NXP_FSPI_MAX_CHIPSELECT 4
312 /* Access flash memory using IP bus only */
313 #define FSPI_QUIRK_USE_IP_ONLY BIT(0)
315 struct nxp_fspi_devtype_data {
318 unsigned int ahb_buf_size;
323 static struct nxp_fspi_devtype_data lx2160a_data = {
324 .rxfifo = SZ_512, /* (64 * 64 bits) */
325 .txfifo = SZ_1K, /* (128 * 64 bits) */
326 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
328 .little_endian = true, /* little-endian */
331 static struct nxp_fspi_devtype_data imx8mm_data = {
332 .rxfifo = SZ_512, /* (64 * 64 bits) */
333 .txfifo = SZ_1K, /* (128 * 64 bits) */
334 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
336 .little_endian = true, /* little-endian */
341 void __iomem *iobase;
342 void __iomem *ahb_addr;
345 struct clk clk, clk_en;
346 struct nxp_fspi_devtype_data *devtype_data;
349 static inline int needs_ip_only(struct nxp_fspi *f)
351 return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
355 * R/W functions for big- or little-endian registers:
356 * The FSPI controller's endianness is independent of
357 * the CPU core's endianness. So far, although the CPU
358 * core is little-endian the FSPI controller can use
359 * big-endian or little-endian.
361 static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
363 if (f->devtype_data->little_endian)
369 static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
371 if (f->devtype_data->little_endian)
372 return in_le32(addr);
374 return in_be32(addr);
377 static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
390 static bool nxp_fspi_supports_op(struct spi_slave *slave,
391 const struct spi_mem_op *op)
397 bus = slave->dev->parent;
398 f = dev_get_priv(bus);
400 ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
403 ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
405 if (op->dummy.nbytes)
406 ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
409 ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
415 * The number of address bytes should be equal to or less than 4 bytes.
417 if (op->addr.nbytes > 4)
421 * If requested address value is greater than controller assigned
422 * memory mapped space, return error as it didn't fit in the range
423 * of assigned address space.
425 if (op->addr.val >= f->memmap_phy_size)
428 /* Max 64 dummy clock cycles supported */
429 if (op->dummy.buswidth &&
430 (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
433 /* Max data length, check controller limits and alignment */
434 if (op->data.dir == SPI_MEM_DATA_IN &&
435 (op->data.nbytes > f->devtype_data->ahb_buf_size ||
436 (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
437 !IS_ALIGNED(op->data.nbytes, 8))))
440 if (op->data.dir == SPI_MEM_DATA_OUT &&
441 op->data.nbytes > f->devtype_data->txfifo)
444 return spi_mem_default_supports_op(slave, op);
447 /* Instead of busy looping invoke readl_poll_sleep_timeout functionality. */
448 static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
449 u32 mask, u32 delay_us,
450 u32 timeout_us, bool c)
454 if (!f->devtype_data->little_endian)
455 mask = (u32)cpu_to_be32(mask);
458 return readl_poll_sleep_timeout(base, reg, (reg & mask),
459 delay_us, timeout_us);
461 return readl_poll_sleep_timeout(base, reg, !(reg & mask),
462 delay_us, timeout_us);
466 * If the slave device content being changed by Write/Erase, need to
467 * invalidate the AHB buffer. This can be achieved by doing the reset
468 * of controller after setting MCR0[SWRESET] bit.
470 static inline void nxp_fspi_invalid(struct nxp_fspi *f)
475 reg = fspi_readl(f, f->iobase + FSPI_MCR0);
476 fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
478 /* w1c register, wait unit clear */
479 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
480 FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
484 static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
485 const struct spi_mem_op *op)
487 void __iomem *base = f->iobase;
492 lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
496 if (op->addr.nbytes) {
497 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
498 LUT_PAD(op->addr.buswidth),
499 op->addr.nbytes * 8);
503 /* dummy bytes, if needed */
504 if (op->dummy.nbytes) {
505 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
507 * Due to FlexSPI controller limitation number of PAD for dummy
508 * buswidth needs to be programmed as equal to data buswidth.
510 LUT_PAD(op->data.buswidth),
511 op->dummy.nbytes * 8 /
516 /* read/write data bytes */
517 if (op->data.nbytes) {
518 lutval[lutidx / 2] |= LUT_DEF(lutidx,
519 op->data.dir == SPI_MEM_DATA_IN ?
520 LUT_NXP_READ : LUT_NXP_WRITE,
521 LUT_PAD(op->data.buswidth),
526 /* stop condition. */
527 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
530 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
531 fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
534 for (i = 0; i < ARRAY_SIZE(lutval); i++)
535 fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
537 dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n",
538 op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
541 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
542 fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
545 #if CONFIG_IS_ENABLED(CLK)
546 static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
550 ret = clk_enable(&f->clk_en);
554 ret = clk_enable(&f->clk);
556 clk_disable(&f->clk_en);
563 static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
565 clk_disable(&f->clk);
566 clk_disable(&f->clk_en);
571 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
572 * register and start base address of the slave device.
575 * -------- <-- FLSHB2CR0
578 * B2 start address --> -------- <-- FLSHB1CR0
581 * B1 start address --> -------- <-- FLSHA2CR0
584 * A2 start address --> -------- <-- FLSHA1CR0
587 * A1 start address --> -------- (Lower address)
590 * Start base address defines the starting address range for given CS and
591 * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
593 * But, different targets are having different combinations of number of CS,
594 * some targets only have single CS or two CS covering controller's full
595 * memory mapped space area.
596 * Thus, implementation is being done as independent of the size and number
597 * of the connected slave device.
598 * Assign controller memory mapped space size as the size to the connected
600 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
601 * chip-select Flash configuration register.
603 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
604 * memory mapped size of the controller.
605 * Value for rest of the CS FLSHxxCR0 register would be zero.
608 static void nxp_fspi_select_mem(struct nxp_fspi *f, int chip_select)
612 /* Reset FLSHxxCR0 registers */
613 fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
614 fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
615 fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
616 fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
618 /* Assign controller memory mapped space as size, KBytes, of flash. */
619 size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
621 fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
624 dev_dbg(f->dev, "Slave device [CS:%x] selected\n", chip_select);
627 static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
629 u32 len = op->data.nbytes;
631 /* Read out the data directly from the AHB buffer. */
632 memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len);
635 static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
636 const struct spi_mem_op *op)
638 void __iomem *base = f->iobase;
640 u8 *buf = (u8 *)op->data.buf.out;
642 /* clear the TX FIFO. */
643 fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
646 * Default value of water mark level is 8 bytes, hence in single
647 * write request controller can write max 8 bytes of data.
650 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
651 /* Wait for TXFIFO empty */
652 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
657 fspi_writel(f, *(u32 *)(buf + i), base + FSPI_TFDR);
658 fspi_writel(f, *(u32 *)(buf + i + 4), base + FSPI_TFDR + 4);
659 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
662 if (i < op->data.nbytes) {
665 /* Wait for TXFIFO empty */
666 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
671 for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
672 memcpy(&data, buf + i + j, 4);
673 fspi_writel(f, data, base + FSPI_TFDR + j);
675 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
679 static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
680 const struct spi_mem_op *op)
682 void __iomem *base = f->iobase;
684 int len = op->data.nbytes;
685 u8 *buf = (u8 *)op->data.buf.in;
688 * Default value of water mark level is 8 bytes, hence in single
689 * read request controller can read max 8 bytes of data.
691 for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
692 /* Wait for RXFIFO available */
693 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
698 *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
699 *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
700 /* move the FIFO pointer */
701 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
708 buf = op->data.buf.in + i;
709 /* Wait for RXFIFO available */
710 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
715 len = op->data.nbytes - i;
716 for (j = 0; j < op->data.nbytes - i; j += 4) {
717 tmp = fspi_readl(f, base + FSPI_RFDR + j);
719 memcpy(buf + j, &tmp, size);
724 /* invalid the RXFIFO */
725 fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
726 /* move the FIFO pointer */
727 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
730 static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
732 void __iomem *base = f->iobase;
737 reg = fspi_readl(f, base + FSPI_IPRXFCR);
738 /* invalid RXFIFO first */
739 reg &= ~FSPI_IPRXFCR_DMA_EN;
740 reg = reg | FSPI_IPRXFCR_CLR;
741 fspi_writel(f, reg, base + FSPI_IPRXFCR);
743 fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
745 * Always start the sequence at the same index since we update
746 * the LUT at each exec_op() call. And also specify the DATA
747 * length, since it's has not been specified in the LUT.
749 fspi_writel(f, op->data.nbytes |
750 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
751 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
754 /* Trigger the LUT now. */
755 fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
757 /* Wait for the completion. */
758 err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
759 FSPI_STS0_ARB_IDLE, 1, 1000 * 1000, true);
761 /* Invoke IP data read, if request is of data read. */
762 if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
763 nxp_fspi_read_rxfifo(f, op);
768 static int nxp_fspi_exec_op(struct spi_slave *slave,
769 const struct spi_mem_op *op)
775 bus = slave->dev->parent;
776 f = dev_get_priv(bus);
778 /* Wait for controller being ready. */
779 err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
780 FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
783 nxp_fspi_prepare_lut(f, op);
785 * If we have large chunks of data, we read them through the AHB bus by
786 * accessing the mapped memory. In all other cases we use IP commands
787 * to access the flash. Read via AHB bus may be corrupted due to
788 * existence of an errata and therefore discard AHB read in such cases.
790 if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
791 op->data.dir == SPI_MEM_DATA_IN &&
793 nxp_fspi_read_ahb(f, op);
795 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
796 nxp_fspi_fill_txfifo(f, op);
798 err = nxp_fspi_do_op(f, op);
801 /* Invalidate the data in the AHB buffer. */
807 static int nxp_fspi_adjust_op_size(struct spi_slave *slave,
808 struct spi_mem_op *op)
813 bus = slave->dev->parent;
814 f = dev_get_priv(bus);
816 if (op->data.dir == SPI_MEM_DATA_OUT) {
817 if (op->data.nbytes > f->devtype_data->txfifo)
818 op->data.nbytes = f->devtype_data->txfifo;
820 if (op->data.nbytes > f->devtype_data->ahb_buf_size)
821 op->data.nbytes = f->devtype_data->ahb_buf_size;
822 else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
823 op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
826 /* Limit data bytes to RX FIFO in case of IP read only */
827 if (needs_ip_only(f) &&
828 op->data.dir == SPI_MEM_DATA_IN &&
829 op->data.nbytes > f->devtype_data->rxfifo)
830 op->data.nbytes = f->devtype_data->rxfifo;
835 #ifdef CONFIG_FSL_LAYERSCAPE
836 static void erratum_err050568(struct nxp_fspi *f)
838 struct sys_info sysinfo;
839 u32 svr = 0, freq = 0;
841 /* Check for LS1028A variants */
842 svr = SVR_SOC_VER(get_svr());
843 if (svr != SVR_LS1017A ||
844 svr != SVR_LS1018A ||
845 svr != SVR_LS1027A ||
846 svr != SVR_LS1028A) {
847 dev_dbg(f->dev, "Errata applicable only for LS1028A variants\n");
851 /* Read PLL frequency */
852 get_sys_info(&sysinfo);
853 freq = sysinfo.freq_systembus / 1000000; /* Convert to MHz */
854 dev_dbg(f->dev, "svr: %08x, Frequency: %dMhz\n", svr, freq);
856 /* Use IP bus only if PLL is 300MHz */
858 f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
862 static int nxp_fspi_default_setup(struct nxp_fspi *f)
864 void __iomem *base = f->iobase;
868 #if CONFIG_IS_ENABLED(CLK)
869 /* the default frequency, we will change it later if necessary. */
870 ret = clk_set_rate(&f->clk, 20000000);
874 ret = nxp_fspi_clk_prep_enable(f);
879 #ifdef CONFIG_FSL_LAYERSCAPE
881 * ERR050568: Flash access by FlexSPI AHB command may not work with
882 * platform frequency equal to 300 MHz on LS1028A.
883 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
884 * Layerscape LS1028A platform family.
886 if (device_is_compatible(f->dev, "nxp,lx2160a-fspi"))
887 erratum_err050568(f);
890 /* Reset the module */
891 /* w1c register, wait unit clear */
892 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
893 FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
896 /* Disable the module */
897 fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
899 /* Reset the DLL register to default value */
900 fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
901 fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
904 fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | FSPI_MCR0_IP_TIMEOUT(0xFF),
908 * Disable same device enable bit and configure all slave devices
911 reg = fspi_readl(f, f->iobase + FSPI_MCR2);
912 reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
913 fspi_writel(f, reg, base + FSPI_MCR2);
915 /* AHB configuration for access buffer 0~7. */
916 for (i = 0; i < 7; i++)
917 fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
920 * Set ADATSZ with the maximum AHB buffer size to improve the read
923 fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
924 FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
926 /* prefetch and no start address alignment limitation */
927 fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
930 /* AHB Read - Set lut sequence ID for all CS. */
931 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
932 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
933 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
934 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
939 static int nxp_fspi_probe(struct udevice *bus)
941 struct nxp_fspi *f = dev_get_priv(bus);
944 (struct nxp_fspi_devtype_data *)dev_get_driver_data(bus);
945 nxp_fspi_default_setup(f);
950 static int nxp_fspi_claim_bus(struct udevice *dev)
954 struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
957 f = dev_get_priv(bus);
959 nxp_fspi_select_mem(f, slave_plat->cs);
964 static int nxp_fspi_set_speed(struct udevice *bus, uint speed)
966 #if CONFIG_IS_ENABLED(CLK)
967 struct nxp_fspi *f = dev_get_priv(bus);
970 nxp_fspi_clk_disable_unprep(f);
972 ret = clk_set_rate(&f->clk, speed);
976 ret = nxp_fspi_clk_prep_enable(f);
983 static int nxp_fspi_set_mode(struct udevice *bus, uint mode)
989 static int nxp_fspi_of_to_plat(struct udevice *bus)
991 struct nxp_fspi *f = dev_get_priv(bus);
992 #if CONFIG_IS_ENABLED(CLK)
997 fdt_addr_t iobase_size;
1003 iobase = devfdt_get_addr_size_name(bus, "fspi_base", &iobase_size);
1004 if (iobase == FDT_ADDR_T_NONE) {
1005 dev_err(bus, "fspi_base regs missing\n");
1008 f->iobase = map_physmem(iobase, iobase_size, MAP_NOCACHE);
1010 ahb_addr = devfdt_get_addr_size_name(bus, "fspi_mmap", &ahb_size);
1011 if (ahb_addr == FDT_ADDR_T_NONE) {
1012 dev_err(bus, "fspi_mmap regs missing\n");
1015 f->ahb_addr = map_physmem(ahb_addr, ahb_size, MAP_NOCACHE);
1016 f->memmap_phy_size = ahb_size;
1018 #if CONFIG_IS_ENABLED(CLK)
1019 ret = clk_get_by_name(bus, "fspi_en", &f->clk_en);
1021 dev_err(bus, "failed to get fspi_en clock\n");
1025 ret = clk_get_by_name(bus, "fspi", &f->clk);
1027 dev_err(bus, "failed to get fspi clock\n");
1032 dev_dbg(bus, "iobase=<0x%llx>, ahb_addr=<0x%llx>\n", iobase, ahb_addr);
1037 static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
1038 .adjust_op_size = nxp_fspi_adjust_op_size,
1039 .supports_op = nxp_fspi_supports_op,
1040 .exec_op = nxp_fspi_exec_op,
1043 static const struct dm_spi_ops nxp_fspi_ops = {
1044 .claim_bus = nxp_fspi_claim_bus,
1045 .set_speed = nxp_fspi_set_speed,
1046 .set_mode = nxp_fspi_set_mode,
1047 .mem_ops = &nxp_fspi_mem_ops,
1050 static const struct udevice_id nxp_fspi_ids[] = {
1051 { .compatible = "nxp,lx2160a-fspi", .data = (ulong)&lx2160a_data, },
1052 { .compatible = "nxp,imx8mm-fspi", .data = (ulong)&imx8mm_data, },
1053 { .compatible = "nxp,imx8mp-fspi", .data = (ulong)&imx8mm_data, },
1057 U_BOOT_DRIVER(nxp_fspi) = {
1060 .of_match = nxp_fspi_ids,
1061 .ops = &nxp_fspi_ops,
1062 .of_to_plat = nxp_fspi_of_to_plat,
1063 .priv_auto = sizeof(struct nxp_fspi),
1064 .probe = nxp_fspi_probe,