SPDX: Convert all of our single license tags to Linux Kernel style
[platform/kernel/u-boot.git] / drivers / spi / fsl_qspi.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2013-2015 Freescale Semiconductor, Inc.
4  *
5  * Freescale Quad Serial Peripheral Interface (QSPI) driver
6  */
7
8 #include <common.h>
9 #include <malloc.h>
10 #include <spi.h>
11 #include <asm/io.h>
12 #include <linux/sizes.h>
13 #include <dm.h>
14 #include <errno.h>
15 #include <watchdog.h>
16 #include <wait_bit.h>
17 #include "fsl_qspi.h"
18
19 DECLARE_GLOBAL_DATA_PTR;
20
21 #define RX_BUFFER_SIZE          0x80
22 #if defined(CONFIG_MX6SX) || defined(CONFIG_MX6UL) || \
23         defined(CONFIG_MX6ULL) || defined(CONFIG_MX7D)
24 #define TX_BUFFER_SIZE          0x200
25 #else
26 #define TX_BUFFER_SIZE          0x40
27 #endif
28
29 #define OFFSET_BITS_MASK        GENMASK(23, 0)
30
31 #define FLASH_STATUS_WEL        0x02
32
33 /* SEQID */
34 #define SEQID_WREN              1
35 #define SEQID_FAST_READ         2
36 #define SEQID_RDSR              3
37 #define SEQID_SE                4
38 #define SEQID_CHIP_ERASE        5
39 #define SEQID_PP                6
40 #define SEQID_RDID              7
41 #define SEQID_BE_4K             8
42 #ifdef CONFIG_SPI_FLASH_BAR
43 #define SEQID_BRRD              9
44 #define SEQID_BRWR              10
45 #define SEQID_RDEAR             11
46 #define SEQID_WREAR             12
47 #endif
48 #define SEQID_WRAR              13
49 #define SEQID_RDAR              14
50
51 /* QSPI CMD */
52 #define QSPI_CMD_PP             0x02    /* Page program (up to 256 bytes) */
53 #define QSPI_CMD_RDSR           0x05    /* Read status register */
54 #define QSPI_CMD_WREN           0x06    /* Write enable */
55 #define QSPI_CMD_FAST_READ      0x0b    /* Read data bytes (high frequency) */
56 #define QSPI_CMD_BE_4K          0x20    /* 4K erase */
57 #define QSPI_CMD_CHIP_ERASE     0xc7    /* Erase whole flash chip */
58 #define QSPI_CMD_SE             0xd8    /* Sector erase (usually 64KiB) */
59 #define QSPI_CMD_RDID           0x9f    /* Read JEDEC ID */
60
61 /* Used for Micron, winbond and Macronix flashes */
62 #define QSPI_CMD_WREAR          0xc5    /* EAR register write */
63 #define QSPI_CMD_RDEAR          0xc8    /* EAR reigster read */
64
65 /* Used for Spansion flashes only. */
66 #define QSPI_CMD_BRRD           0x16    /* Bank register read */
67 #define QSPI_CMD_BRWR           0x17    /* Bank register write */
68
69 /* Used for Spansion S25FS-S family flash only. */
70 #define QSPI_CMD_RDAR           0x65    /* Read any device register */
71 #define QSPI_CMD_WRAR           0x71    /* Write any device register */
72
73 /* 4-byte address QSPI CMD - used on Spansion and some Macronix flashes */
74 #define QSPI_CMD_FAST_READ_4B   0x0c    /* Read data bytes (high frequency) */
75 #define QSPI_CMD_PP_4B          0x12    /* Page program (up to 256 bytes) */
76 #define QSPI_CMD_SE_4B          0xdc    /* Sector erase (usually 64KiB) */
77
78 /* fsl_qspi_platdata flags */
79 #define QSPI_FLAG_REGMAP_ENDIAN_BIG     BIT(0)
80
81 /* default SCK frequency, unit: HZ */
82 #define FSL_QSPI_DEFAULT_SCK_FREQ       50000000
83
84 /* QSPI max chipselect signals number */
85 #define FSL_QSPI_MAX_CHIPSELECT_NUM     4
86
87 #ifdef CONFIG_DM_SPI
88 /**
89  * struct fsl_qspi_platdata - platform data for Freescale QSPI
90  *
91  * @flags: Flags for QSPI QSPI_FLAG_...
92  * @speed_hz: Default SCK frequency
93  * @reg_base: Base address of QSPI registers
94  * @amba_base: Base address of QSPI memory mapping
95  * @amba_total_size: size of QSPI memory mapping
96  * @flash_num: Number of active slave devices
97  * @num_chipselect: Number of QSPI chipselect signals
98  */
99 struct fsl_qspi_platdata {
100         u32 flags;
101         u32 speed_hz;
102         fdt_addr_t reg_base;
103         fdt_addr_t amba_base;
104         fdt_size_t amba_total_size;
105         u32 flash_num;
106         u32 num_chipselect;
107 };
108 #endif
109
110 /**
111  * struct fsl_qspi_priv - private data for Freescale QSPI
112  *
113  * @flags: Flags for QSPI QSPI_FLAG_...
114  * @bus_clk: QSPI input clk frequency
115  * @speed_hz: Default SCK frequency
116  * @cur_seqid: current LUT table sequence id
117  * @sf_addr: flash access offset
118  * @amba_base: Base address of QSPI memory mapping of every CS
119  * @amba_total_size: size of QSPI memory mapping
120  * @cur_amba_base: Base address of QSPI memory mapping of current CS
121  * @flash_num: Number of active slave devices
122  * @num_chipselect: Number of QSPI chipselect signals
123  * @regs: Point to QSPI register structure for I/O access
124  */
125 struct fsl_qspi_priv {
126         u32 flags;
127         u32 bus_clk;
128         u32 speed_hz;
129         u32 cur_seqid;
130         u32 sf_addr;
131         u32 amba_base[FSL_QSPI_MAX_CHIPSELECT_NUM];
132         u32 amba_total_size;
133         u32 cur_amba_base;
134         u32 flash_num;
135         u32 num_chipselect;
136         struct fsl_qspi_regs *regs;
137 };
138
139 #ifndef CONFIG_DM_SPI
140 struct fsl_qspi {
141         struct spi_slave slave;
142         struct fsl_qspi_priv priv;
143 };
144 #endif
145
146 static u32 qspi_read32(u32 flags, u32 *addr)
147 {
148         return flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
149                 in_be32(addr) : in_le32(addr);
150 }
151
152 static void qspi_write32(u32 flags, u32 *addr, u32 val)
153 {
154         flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
155                 out_be32(addr, val) : out_le32(addr, val);
156 }
157
158 /* QSPI support swapping the flash read/write data
159  * in hardware for LS102xA, but not for VF610 */
160 static inline u32 qspi_endian_xchg(u32 data)
161 {
162 #ifdef CONFIG_VF610
163         return swab32(data);
164 #else
165         return data;
166 #endif
167 }
168
169 static void qspi_set_lut(struct fsl_qspi_priv *priv)
170 {
171         struct fsl_qspi_regs *regs = priv->regs;
172         u32 lut_base;
173
174         /* Unlock the LUT */
175         qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
176         qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_UNLOCK);
177
178         /* Write Enable */
179         lut_base = SEQID_WREN * 4;
180         qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREN) |
181                 PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
182         qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
183         qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
184         qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
185
186         /* Fast Read */
187         lut_base = SEQID_FAST_READ * 4;
188 #ifdef CONFIG_SPI_FLASH_BAR
189         qspi_write32(priv->flags, &regs->lut[lut_base],
190                      OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
191                      INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
192                      PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
193 #else
194         if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
195                 qspi_write32(priv->flags, &regs->lut[lut_base],
196                              OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
197                              INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
198                              PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
199         else
200                 qspi_write32(priv->flags, &regs->lut[lut_base],
201                              OPRND0(QSPI_CMD_FAST_READ_4B) |
202                              PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
203                              OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
204                              INSTR1(LUT_ADDR));
205 #endif
206         qspi_write32(priv->flags, &regs->lut[lut_base + 1],
207                      OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
208                      OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) |
209                      INSTR1(LUT_READ));
210         qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
211         qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
212
213         /* Read Status */
214         lut_base = SEQID_RDSR * 4;
215         qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDSR) |
216                 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
217                 PAD1(LUT_PAD1) | INSTR1(LUT_READ));
218         qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
219         qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
220         qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
221
222         /* Erase a sector */
223         lut_base = SEQID_SE * 4;
224 #ifdef CONFIG_SPI_FLASH_BAR
225         qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_SE) |
226                      PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
227                      PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
228 #else
229         if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
230                 qspi_write32(priv->flags, &regs->lut[lut_base],
231                              OPRND0(QSPI_CMD_SE) | PAD0(LUT_PAD1) |
232                              INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
233                              PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
234         else
235                 qspi_write32(priv->flags, &regs->lut[lut_base],
236                              OPRND0(QSPI_CMD_SE_4B) | PAD0(LUT_PAD1) |
237                              INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
238                              PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
239 #endif
240         qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
241         qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
242         qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
243
244         /* Erase the whole chip */
245         lut_base = SEQID_CHIP_ERASE * 4;
246         qspi_write32(priv->flags, &regs->lut[lut_base],
247                      OPRND0(QSPI_CMD_CHIP_ERASE) |
248                      PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
249         qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
250         qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
251         qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
252
253         /* Page Program */
254         lut_base = SEQID_PP * 4;
255 #ifdef CONFIG_SPI_FLASH_BAR
256         qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_PP) |
257                      PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
258                      PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
259 #else
260         if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
261                 qspi_write32(priv->flags, &regs->lut[lut_base],
262                              OPRND0(QSPI_CMD_PP) | PAD0(LUT_PAD1) |
263                              INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
264                              PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
265         else
266                 qspi_write32(priv->flags, &regs->lut[lut_base],
267                              OPRND0(QSPI_CMD_PP_4B) | PAD0(LUT_PAD1) |
268                              INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
269                              PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
270 #endif
271 #if defined(CONFIG_MX6SX) || defined(CONFIG_MX6UL) || \
272         defined(CONFIG_MX6ULL) || defined(CONFIG_MX7D)
273         /*
274          * To MX6SX, OPRND0(TX_BUFFER_SIZE) can not work correctly.
275          * So, Use IDATSZ in IPCR to determine the size and here set 0.
276          */
277         qspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(0) |
278                      PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
279 #else
280         qspi_write32(priv->flags, &regs->lut[lut_base + 1],
281                      OPRND0(TX_BUFFER_SIZE) |
282                      PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
283 #endif
284         qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
285         qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
286
287         /* READ ID */
288         lut_base = SEQID_RDID * 4;
289         qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDID) |
290                 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
291                 PAD1(LUT_PAD1) | INSTR1(LUT_READ));
292         qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
293         qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
294         qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
295
296         /* SUB SECTOR 4K ERASE */
297         lut_base = SEQID_BE_4K * 4;
298         qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BE_4K) |
299                      PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
300                      PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
301
302 #ifdef CONFIG_SPI_FLASH_BAR
303         /*
304          * BRRD BRWR RDEAR WREAR are all supported, because it is hard to
305          * dynamically check whether to set BRRD BRWR or RDEAR WREAR during
306          * initialization.
307          */
308         lut_base = SEQID_BRRD * 4;
309         qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRRD) |
310                      PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
311                      PAD1(LUT_PAD1) | INSTR1(LUT_READ));
312
313         lut_base = SEQID_BRWR * 4;
314         qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRWR) |
315                      PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
316                      PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
317
318         lut_base = SEQID_RDEAR * 4;
319         qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDEAR) |
320                      PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
321                      PAD1(LUT_PAD1) | INSTR1(LUT_READ));
322
323         lut_base = SEQID_WREAR * 4;
324         qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREAR) |
325                      PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
326                      PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
327 #endif
328
329         /*
330          * Read any device register.
331          * Used for Spansion S25FS-S family flash only.
332          */
333         lut_base = SEQID_RDAR * 4;
334         qspi_write32(priv->flags, &regs->lut[lut_base],
335                      OPRND0(QSPI_CMD_RDAR) | PAD0(LUT_PAD1) |
336                      INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
337                      PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
338         qspi_write32(priv->flags, &regs->lut[lut_base + 1],
339                      OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
340                      OPRND1(1) | PAD1(LUT_PAD1) |
341                      INSTR1(LUT_READ));
342
343         /*
344          * Write any device register.
345          * Used for Spansion S25FS-S family flash only.
346          */
347         lut_base = SEQID_WRAR * 4;
348         qspi_write32(priv->flags, &regs->lut[lut_base],
349                      OPRND0(QSPI_CMD_WRAR) | PAD0(LUT_PAD1) |
350                      INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
351                      PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
352         qspi_write32(priv->flags, &regs->lut[lut_base + 1],
353                      OPRND0(1) | PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
354
355         /* Lock the LUT */
356         qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
357         qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_LOCK);
358 }
359
360 #if defined(CONFIG_SYS_FSL_QSPI_AHB)
361 /*
362  * If we have changed the content of the flash by writing or erasing,
363  * we need to invalidate the AHB buffer. If we do not do so, we may read out
364  * the wrong data. The spec tells us reset the AHB domain and Serial Flash
365  * domain at the same time.
366  */
367 static inline void qspi_ahb_invalid(struct fsl_qspi_priv *priv)
368 {
369         struct fsl_qspi_regs *regs = priv->regs;
370         u32 reg;
371
372         reg = qspi_read32(priv->flags, &regs->mcr);
373         reg |= QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK;
374         qspi_write32(priv->flags, &regs->mcr, reg);
375
376         /*
377          * The minimum delay : 1 AHB + 2 SFCK clocks.
378          * Delay 1 us is enough.
379          */
380         udelay(1);
381
382         reg &= ~(QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK);
383         qspi_write32(priv->flags, &regs->mcr, reg);
384 }
385
386 /* Read out the data from the AHB buffer. */
387 static inline void qspi_ahb_read(struct fsl_qspi_priv *priv, u8 *rxbuf, int len)
388 {
389         struct fsl_qspi_regs *regs = priv->regs;
390         u32 mcr_reg;
391         void *rx_addr = NULL;
392
393         mcr_reg = qspi_read32(priv->flags, &regs->mcr);
394
395         qspi_write32(priv->flags, &regs->mcr,
396                      QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
397                      QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
398
399         rx_addr = (void *)(uintptr_t)(priv->cur_amba_base + priv->sf_addr);
400         /* Read out the data directly from the AHB buffer. */
401         memcpy(rxbuf, rx_addr, len);
402
403         qspi_write32(priv->flags, &regs->mcr, mcr_reg);
404 }
405
406 static void qspi_enable_ddr_mode(struct fsl_qspi_priv *priv)
407 {
408         u32 reg, reg2;
409         struct fsl_qspi_regs *regs = priv->regs;
410
411         reg = qspi_read32(priv->flags, &regs->mcr);
412         /* Disable the module */
413         qspi_write32(priv->flags, &regs->mcr, reg | QSPI_MCR_MDIS_MASK);
414
415         /* Set the Sampling Register for DDR */
416         reg2 = qspi_read32(priv->flags, &regs->smpr);
417         reg2 &= ~QSPI_SMPR_DDRSMP_MASK;
418         reg2 |= (2 << QSPI_SMPR_DDRSMP_SHIFT);
419         qspi_write32(priv->flags, &regs->smpr, reg2);
420
421         /* Enable the module again (enable the DDR too) */
422         reg |= QSPI_MCR_DDR_EN_MASK;
423         /* Enable bit 29 for imx6sx */
424         reg |= BIT(29);
425
426         qspi_write32(priv->flags, &regs->mcr, reg);
427 }
428
429 /*
430  * There are two different ways to read out the data from the flash:
431  *  the "IP Command Read" and the "AHB Command Read".
432  *
433  * The IC guy suggests we use the "AHB Command Read" which is faster
434  * then the "IP Command Read". (What's more is that there is a bug in
435  * the "IP Command Read" in the Vybrid.)
436  *
437  * After we set up the registers for the "AHB Command Read", we can use
438  * the memcpy to read the data directly. A "missed" access to the buffer
439  * causes the controller to clear the buffer, and use the sequence pointed
440  * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
441  */
442 static void qspi_init_ahb_read(struct fsl_qspi_priv *priv)
443 {
444         struct fsl_qspi_regs *regs = priv->regs;
445
446         /* AHB configuration for access buffer 0/1/2 .*/
447         qspi_write32(priv->flags, &regs->buf0cr, QSPI_BUFXCR_INVALID_MSTRID);
448         qspi_write32(priv->flags, &regs->buf1cr, QSPI_BUFXCR_INVALID_MSTRID);
449         qspi_write32(priv->flags, &regs->buf2cr, QSPI_BUFXCR_INVALID_MSTRID);
450         qspi_write32(priv->flags, &regs->buf3cr, QSPI_BUF3CR_ALLMST_MASK |
451                      (0x80 << QSPI_BUF3CR_ADATSZ_SHIFT));
452
453         /* We only use the buffer3 */
454         qspi_write32(priv->flags, &regs->buf0ind, 0);
455         qspi_write32(priv->flags, &regs->buf1ind, 0);
456         qspi_write32(priv->flags, &regs->buf2ind, 0);
457
458         /*
459          * Set the default lut sequence for AHB Read.
460          * Parallel mode is disabled.
461          */
462         qspi_write32(priv->flags, &regs->bfgencr,
463                      SEQID_FAST_READ << QSPI_BFGENCR_SEQID_SHIFT);
464
465         /*Enable DDR Mode*/
466         qspi_enable_ddr_mode(priv);
467 }
468 #endif
469
470 #ifdef CONFIG_SPI_FLASH_BAR
471 /* Bank register read/write, EAR register read/write */
472 static void qspi_op_rdbank(struct fsl_qspi_priv *priv, u8 *rxbuf, u32 len)
473 {
474         struct fsl_qspi_regs *regs = priv->regs;
475         u32 reg, mcr_reg, data, seqid;
476
477         mcr_reg = qspi_read32(priv->flags, &regs->mcr);
478         qspi_write32(priv->flags, &regs->mcr,
479                      QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
480                      QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
481         qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
482
483         qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
484
485         if (priv->cur_seqid == QSPI_CMD_BRRD)
486                 seqid = SEQID_BRRD;
487         else
488                 seqid = SEQID_RDEAR;
489
490         qspi_write32(priv->flags, &regs->ipcr,
491                      (seqid << QSPI_IPCR_SEQID_SHIFT) | len);
492
493         /* Wait previous command complete */
494         while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
495                 ;
496
497         while (1) {
498                 WATCHDOG_RESET();
499
500                 reg = qspi_read32(priv->flags, &regs->rbsr);
501                 if (reg & QSPI_RBSR_RDBFL_MASK) {
502                         data = qspi_read32(priv->flags, &regs->rbdr[0]);
503                         data = qspi_endian_xchg(data);
504                         memcpy(rxbuf, &data, len);
505                         qspi_write32(priv->flags, &regs->mcr,
506                                      qspi_read32(priv->flags, &regs->mcr) |
507                                      QSPI_MCR_CLR_RXF_MASK);
508                         break;
509                 }
510         }
511
512         qspi_write32(priv->flags, &regs->mcr, mcr_reg);
513 }
514 #endif
515
516 static void qspi_op_rdid(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
517 {
518         struct fsl_qspi_regs *regs = priv->regs;
519         u32 mcr_reg, rbsr_reg, data, size;
520         int i;
521
522         mcr_reg = qspi_read32(priv->flags, &regs->mcr);
523         qspi_write32(priv->flags, &regs->mcr,
524                      QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
525                      QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
526         qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
527
528         qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
529
530         qspi_write32(priv->flags, &regs->ipcr,
531                      (SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0);
532         while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
533                 ;
534
535         i = 0;
536         while ((RX_BUFFER_SIZE >= len) && (len > 0)) {
537                 WATCHDOG_RESET();
538
539                 rbsr_reg = qspi_read32(priv->flags, &regs->rbsr);
540                 if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) {
541                         data = qspi_read32(priv->flags, &regs->rbdr[i]);
542                         data = qspi_endian_xchg(data);
543                         size = (len < 4) ? len : 4;
544                         memcpy(rxbuf, &data, size);
545                         len -= size;
546                         rxbuf++;
547                         i++;
548                 }
549         }
550
551         qspi_write32(priv->flags, &regs->mcr, mcr_reg);
552 }
553
554 /* If not use AHB read, read data from ip interface */
555 static void qspi_op_read(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
556 {
557         struct fsl_qspi_regs *regs = priv->regs;
558         u32 mcr_reg, data;
559         int i, size;
560         u32 to_or_from;
561         u32 seqid;
562
563         if (priv->cur_seqid == QSPI_CMD_RDAR)
564                 seqid = SEQID_RDAR;
565         else
566                 seqid = SEQID_FAST_READ;
567
568         mcr_reg = qspi_read32(priv->flags, &regs->mcr);
569         qspi_write32(priv->flags, &regs->mcr,
570                      QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
571                      QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
572         qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
573
574         to_or_from = priv->sf_addr + priv->cur_amba_base;
575
576         while (len > 0) {
577                 WATCHDOG_RESET();
578
579                 qspi_write32(priv->flags, &regs->sfar, to_or_from);
580
581                 size = (len > RX_BUFFER_SIZE) ?
582                         RX_BUFFER_SIZE : len;
583
584                 qspi_write32(priv->flags, &regs->ipcr,
585                              (seqid << QSPI_IPCR_SEQID_SHIFT) |
586                              size);
587                 while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
588                         ;
589
590                 to_or_from += size;
591                 len -= size;
592
593                 i = 0;
594                 while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
595                         data = qspi_read32(priv->flags, &regs->rbdr[i]);
596                         data = qspi_endian_xchg(data);
597                         if (size < 4)
598                                 memcpy(rxbuf, &data, size);
599                         else
600                                 memcpy(rxbuf, &data, 4);
601                         rxbuf++;
602                         size -= 4;
603                         i++;
604                 }
605                 qspi_write32(priv->flags, &regs->mcr,
606                              qspi_read32(priv->flags, &regs->mcr) |
607                              QSPI_MCR_CLR_RXF_MASK);
608         }
609
610         qspi_write32(priv->flags, &regs->mcr, mcr_reg);
611 }
612
613 static void qspi_op_write(struct fsl_qspi_priv *priv, u8 *txbuf, u32 len)
614 {
615         struct fsl_qspi_regs *regs = priv->regs;
616         u32 mcr_reg, data, reg, status_reg, seqid;
617         int i, size, tx_size;
618         u32 to_or_from = 0;
619
620         mcr_reg = qspi_read32(priv->flags, &regs->mcr);
621         qspi_write32(priv->flags, &regs->mcr,
622                      QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
623                      QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
624         qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
625
626         status_reg = 0;
627         while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) {
628                 WATCHDOG_RESET();
629
630                 qspi_write32(priv->flags, &regs->ipcr,
631                              (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
632                 while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
633                         ;
634
635                 qspi_write32(priv->flags, &regs->ipcr,
636                              (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1);
637                 while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
638                         ;
639
640                 reg = qspi_read32(priv->flags, &regs->rbsr);
641                 if (reg & QSPI_RBSR_RDBFL_MASK) {
642                         status_reg = qspi_read32(priv->flags, &regs->rbdr[0]);
643                         status_reg = qspi_endian_xchg(status_reg);
644                 }
645                 qspi_write32(priv->flags, &regs->mcr,
646                              qspi_read32(priv->flags, &regs->mcr) |
647                              QSPI_MCR_CLR_RXF_MASK);
648         }
649
650         /* Default is page programming */
651         seqid = SEQID_PP;
652         if (priv->cur_seqid == QSPI_CMD_WRAR)
653                 seqid = SEQID_WRAR;
654 #ifdef CONFIG_SPI_FLASH_BAR
655         if (priv->cur_seqid == QSPI_CMD_BRWR)
656                 seqid = SEQID_BRWR;
657         else if (priv->cur_seqid == QSPI_CMD_WREAR)
658                 seqid = SEQID_WREAR;
659 #endif
660
661         to_or_from = priv->sf_addr + priv->cur_amba_base;
662
663         qspi_write32(priv->flags, &regs->sfar, to_or_from);
664
665         tx_size = (len > TX_BUFFER_SIZE) ?
666                 TX_BUFFER_SIZE : len;
667
668         size = tx_size / 16;
669         /*
670          * There must be atleast 128bit data
671          * available in TX FIFO for any pop operation
672          */
673         if (tx_size % 16)
674                 size++;
675         for (i = 0; i < size * 4; i++) {
676                 memcpy(&data, txbuf, 4);
677                 data = qspi_endian_xchg(data);
678                 qspi_write32(priv->flags, &regs->tbdr, data);
679                 txbuf += 4;
680         }
681
682         qspi_write32(priv->flags, &regs->ipcr,
683                      (seqid << QSPI_IPCR_SEQID_SHIFT) | tx_size);
684         while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
685                 ;
686
687         qspi_write32(priv->flags, &regs->mcr, mcr_reg);
688 }
689
690 static void qspi_op_rdsr(struct fsl_qspi_priv *priv, void *rxbuf, u32 len)
691 {
692         struct fsl_qspi_regs *regs = priv->regs;
693         u32 mcr_reg, reg, data;
694
695         mcr_reg = qspi_read32(priv->flags, &regs->mcr);
696         qspi_write32(priv->flags, &regs->mcr,
697                      QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
698                      QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
699         qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
700
701         qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
702
703         qspi_write32(priv->flags, &regs->ipcr,
704                      (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0);
705         while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
706                 ;
707
708         while (1) {
709                 WATCHDOG_RESET();
710
711                 reg = qspi_read32(priv->flags, &regs->rbsr);
712                 if (reg & QSPI_RBSR_RDBFL_MASK) {
713                         data = qspi_read32(priv->flags, &regs->rbdr[0]);
714                         data = qspi_endian_xchg(data);
715                         memcpy(rxbuf, &data, len);
716                         qspi_write32(priv->flags, &regs->mcr,
717                                      qspi_read32(priv->flags, &regs->mcr) |
718                                      QSPI_MCR_CLR_RXF_MASK);
719                         break;
720                 }
721         }
722
723         qspi_write32(priv->flags, &regs->mcr, mcr_reg);
724 }
725
726 static void qspi_op_erase(struct fsl_qspi_priv *priv)
727 {
728         struct fsl_qspi_regs *regs = priv->regs;
729         u32 mcr_reg;
730         u32 to_or_from = 0;
731
732         mcr_reg = qspi_read32(priv->flags, &regs->mcr);
733         qspi_write32(priv->flags, &regs->mcr,
734                      QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
735                      QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
736         qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
737
738         to_or_from = priv->sf_addr + priv->cur_amba_base;
739         qspi_write32(priv->flags, &regs->sfar, to_or_from);
740
741         qspi_write32(priv->flags, &regs->ipcr,
742                      (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
743         while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
744                 ;
745
746         if (priv->cur_seqid == QSPI_CMD_SE) {
747                 qspi_write32(priv->flags, &regs->ipcr,
748                              (SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0);
749         } else if (priv->cur_seqid == QSPI_CMD_BE_4K) {
750                 qspi_write32(priv->flags, &regs->ipcr,
751                              (SEQID_BE_4K << QSPI_IPCR_SEQID_SHIFT) | 0);
752         }
753         while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
754                 ;
755
756         qspi_write32(priv->flags, &regs->mcr, mcr_reg);
757 }
758
759 int qspi_xfer(struct fsl_qspi_priv *priv, unsigned int bitlen,
760                 const void *dout, void *din, unsigned long flags)
761 {
762         u32 bytes = DIV_ROUND_UP(bitlen, 8);
763         static u32 wr_sfaddr;
764         u32 txbuf;
765
766         WATCHDOG_RESET();
767
768         if (dout) {
769                 if (flags & SPI_XFER_BEGIN) {
770                         priv->cur_seqid = *(u8 *)dout;
771                         memcpy(&txbuf, dout, 4);
772                 }
773
774                 if (flags == SPI_XFER_END) {
775                         priv->sf_addr = wr_sfaddr;
776                         qspi_op_write(priv, (u8 *)dout, bytes);
777                         return 0;
778                 }
779
780                 if (priv->cur_seqid == QSPI_CMD_FAST_READ ||
781                     priv->cur_seqid == QSPI_CMD_RDAR) {
782                         priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
783                 } else if ((priv->cur_seqid == QSPI_CMD_SE) ||
784                            (priv->cur_seqid == QSPI_CMD_BE_4K)) {
785                         priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
786                         qspi_op_erase(priv);
787                 } else if (priv->cur_seqid == QSPI_CMD_PP ||
788                            priv->cur_seqid == QSPI_CMD_WRAR) {
789                         wr_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK;
790                 } else if ((priv->cur_seqid == QSPI_CMD_BRWR) ||
791                          (priv->cur_seqid == QSPI_CMD_WREAR)) {
792 #ifdef CONFIG_SPI_FLASH_BAR
793                         wr_sfaddr = 0;
794 #endif
795                 }
796         }
797
798         if (din) {
799                 if (priv->cur_seqid == QSPI_CMD_FAST_READ) {
800 #ifdef CONFIG_SYS_FSL_QSPI_AHB
801                         qspi_ahb_read(priv, din, bytes);
802 #else
803                         qspi_op_read(priv, din, bytes);
804 #endif
805                 } else if (priv->cur_seqid == QSPI_CMD_RDAR) {
806                         qspi_op_read(priv, din, bytes);
807                 } else if (priv->cur_seqid == QSPI_CMD_RDID)
808                         qspi_op_rdid(priv, din, bytes);
809                 else if (priv->cur_seqid == QSPI_CMD_RDSR)
810                         qspi_op_rdsr(priv, din, bytes);
811 #ifdef CONFIG_SPI_FLASH_BAR
812                 else if ((priv->cur_seqid == QSPI_CMD_BRRD) ||
813                          (priv->cur_seqid == QSPI_CMD_RDEAR)) {
814                         priv->sf_addr = 0;
815                         qspi_op_rdbank(priv, din, bytes);
816                 }
817 #endif
818         }
819
820 #ifdef CONFIG_SYS_FSL_QSPI_AHB
821         if ((priv->cur_seqid == QSPI_CMD_SE) ||
822             (priv->cur_seqid == QSPI_CMD_PP) ||
823             (priv->cur_seqid == QSPI_CMD_BE_4K) ||
824             (priv->cur_seqid == QSPI_CMD_WREAR) ||
825             (priv->cur_seqid == QSPI_CMD_BRWR))
826                 qspi_ahb_invalid(priv);
827 #endif
828
829         return 0;
830 }
831
832 void qspi_module_disable(struct fsl_qspi_priv *priv, u8 disable)
833 {
834         u32 mcr_val;
835
836         mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
837         if (disable)
838                 mcr_val |= QSPI_MCR_MDIS_MASK;
839         else
840                 mcr_val &= ~QSPI_MCR_MDIS_MASK;
841         qspi_write32(priv->flags, &priv->regs->mcr, mcr_val);
842 }
843
844 void qspi_cfg_smpr(struct fsl_qspi_priv *priv, u32 clear_bits, u32 set_bits)
845 {
846         u32 smpr_val;
847
848         smpr_val = qspi_read32(priv->flags, &priv->regs->smpr);
849         smpr_val &= ~clear_bits;
850         smpr_val |= set_bits;
851         qspi_write32(priv->flags, &priv->regs->smpr, smpr_val);
852 }
853 #ifndef CONFIG_DM_SPI
854 static unsigned long spi_bases[] = {
855         QSPI0_BASE_ADDR,
856 #ifdef CONFIG_MX6SX
857         QSPI1_BASE_ADDR,
858 #endif
859 };
860
861 static unsigned long amba_bases[] = {
862         QSPI0_AMBA_BASE,
863 #ifdef CONFIG_MX6SX
864         QSPI1_AMBA_BASE,
865 #endif
866 };
867
868 static inline struct fsl_qspi *to_qspi_spi(struct spi_slave *slave)
869 {
870         return container_of(slave, struct fsl_qspi, slave);
871 }
872
873 struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
874                 unsigned int max_hz, unsigned int mode)
875 {
876         u32 mcr_val;
877         struct fsl_qspi *qspi;
878         struct fsl_qspi_regs *regs;
879         u32 total_size;
880
881         if (bus >= ARRAY_SIZE(spi_bases))
882                 return NULL;
883
884         if (cs >= FSL_QSPI_FLASH_NUM)
885                 return NULL;
886
887         qspi = spi_alloc_slave(struct fsl_qspi, bus, cs);
888         if (!qspi)
889                 return NULL;
890
891 #ifdef CONFIG_SYS_FSL_QSPI_BE
892         qspi->priv.flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
893 #endif
894
895         regs = (struct fsl_qspi_regs *)spi_bases[bus];
896         qspi->priv.regs = regs;
897         /*
898          * According cs, use different amba_base to choose the
899          * corresponding flash devices.
900          *
901          * If not, only one flash device is used even if passing
902          * different cs using `sf probe`
903          */
904         qspi->priv.cur_amba_base = amba_bases[bus] + cs * FSL_QSPI_FLASH_SIZE;
905
906         qspi->slave.max_write_size = TX_BUFFER_SIZE;
907
908         mcr_val = qspi_read32(qspi->priv.flags, &regs->mcr);
909
910         /* Set endianness to LE for i.mx */
911         if (IS_ENABLED(CONFIG_MX6) || IS_ENABLED(CONFIG_MX7))
912                 mcr_val = QSPI_MCR_END_CFD_LE;
913
914         qspi_write32(qspi->priv.flags, &regs->mcr,
915                      QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
916                      (mcr_val & QSPI_MCR_END_CFD_MASK));
917
918         qspi_cfg_smpr(&qspi->priv,
919                       ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
920                       QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
921
922         total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM;
923         /*
924          * Any read access to non-implemented addresses will provide
925          * undefined results.
926          *
927          * In case single die flash devices, TOP_ADDR_MEMA2 and
928          * TOP_ADDR_MEMB2 should be initialized/programmed to
929          * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
930          * setting the size of these devices to 0.  This would ensure
931          * that the complete memory map is assigned to only one flash device.
932          */
933         qspi_write32(qspi->priv.flags, &regs->sfa1ad,
934                      FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
935         qspi_write32(qspi->priv.flags, &regs->sfa2ad,
936                      FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
937         qspi_write32(qspi->priv.flags, &regs->sfb1ad,
938                      total_size | amba_bases[bus]);
939         qspi_write32(qspi->priv.flags, &regs->sfb2ad,
940                      total_size | amba_bases[bus]);
941
942         qspi_set_lut(&qspi->priv);
943
944 #ifdef CONFIG_SYS_FSL_QSPI_AHB
945         qspi_init_ahb_read(&qspi->priv);
946 #endif
947
948         qspi_module_disable(&qspi->priv, 0);
949
950         return &qspi->slave;
951 }
952
953 void spi_free_slave(struct spi_slave *slave)
954 {
955         struct fsl_qspi *qspi = to_qspi_spi(slave);
956
957         free(qspi);
958 }
959
960 int spi_claim_bus(struct spi_slave *slave)
961 {
962         return 0;
963 }
964
965 void spi_release_bus(struct spi_slave *slave)
966 {
967         /* Nothing to do */
968 }
969
970 int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
971                 const void *dout, void *din, unsigned long flags)
972 {
973         struct fsl_qspi *qspi = to_qspi_spi(slave);
974
975         return qspi_xfer(&qspi->priv, bitlen, dout, din, flags);
976 }
977
978 void spi_init(void)
979 {
980         /* Nothing to do */
981 }
982 #else
983 static int fsl_qspi_child_pre_probe(struct udevice *dev)
984 {
985         struct spi_slave *slave = dev_get_parent_priv(dev);
986
987         slave->max_write_size = TX_BUFFER_SIZE;
988
989         return 0;
990 }
991
992 static int fsl_qspi_probe(struct udevice *bus)
993 {
994         u32 mcr_val;
995         u32 amba_size_per_chip;
996         struct fsl_qspi_platdata *plat = dev_get_platdata(bus);
997         struct fsl_qspi_priv *priv = dev_get_priv(bus);
998         struct dm_spi_bus *dm_spi_bus;
999         int i, ret;
1000
1001         dm_spi_bus = bus->uclass_priv;
1002
1003         dm_spi_bus->max_hz = plat->speed_hz;
1004
1005         priv->regs = (struct fsl_qspi_regs *)(uintptr_t)plat->reg_base;
1006         priv->flags = plat->flags;
1007
1008         priv->speed_hz = plat->speed_hz;
1009         /*
1010          * QSPI SFADR width is 32bits, the max dest addr is 4GB-1.
1011          * AMBA memory zone should be located on the 0~4GB space
1012          * even on a 64bits cpu.
1013          */
1014         priv->amba_base[0] = (u32)plat->amba_base;
1015         priv->amba_total_size = (u32)plat->amba_total_size;
1016         priv->flash_num = plat->flash_num;
1017         priv->num_chipselect = plat->num_chipselect;
1018
1019         /* make sure controller is not busy anywhere */
1020         ret = wait_for_bit_le32(&priv->regs->sr,
1021                                 QSPI_SR_BUSY_MASK |
1022                                 QSPI_SR_AHB_ACC_MASK |
1023                                 QSPI_SR_IP_ACC_MASK,
1024                                 false, 100, false);
1025
1026         if (ret) {
1027                 debug("ERROR : The controller is busy\n");
1028                 return ret;
1029         }
1030
1031         mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
1032
1033         /* Set endianness to LE for i.mx */
1034         if (IS_ENABLED(CONFIG_MX6) || IS_ENABLED(CONFIG_MX7))
1035                 mcr_val = QSPI_MCR_END_CFD_LE;
1036
1037         qspi_write32(priv->flags, &priv->regs->mcr,
1038                      QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
1039                      (mcr_val & QSPI_MCR_END_CFD_MASK));
1040
1041         qspi_cfg_smpr(priv, ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
1042                 QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
1043
1044         /*
1045          * Assign AMBA memory zone for every chipselect
1046          * QuadSPI has two channels, every channel has two chipselects.
1047          * If the property 'num-cs' in dts is 2, the AMBA memory will be divided
1048          * into two parts and assign to every channel. This indicate that every
1049          * channel only has one valid chipselect.
1050          * If the property 'num-cs' in dts is 4, the AMBA memory will be divided
1051          * into four parts and assign to every chipselect.
1052          * Every channel will has two valid chipselects.
1053          */
1054         amba_size_per_chip = priv->amba_total_size >>
1055                              (priv->num_chipselect >> 1);
1056         for (i = 1 ; i < priv->num_chipselect ; i++)
1057                 priv->amba_base[i] =
1058                         amba_size_per_chip + priv->amba_base[i - 1];
1059
1060         /*
1061          * Any read access to non-implemented addresses will provide
1062          * undefined results.
1063          *
1064          * In case single die flash devices, TOP_ADDR_MEMA2 and
1065          * TOP_ADDR_MEMB2 should be initialized/programmed to
1066          * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
1067          * setting the size of these devices to 0.  This would ensure
1068          * that the complete memory map is assigned to only one flash device.
1069          */
1070         qspi_write32(priv->flags, &priv->regs->sfa1ad,
1071                      priv->amba_base[0] + amba_size_per_chip);
1072         switch (priv->num_chipselect) {
1073         case 1:
1074                 break;
1075         case 2:
1076                 qspi_write32(priv->flags, &priv->regs->sfa2ad,
1077                              priv->amba_base[1]);
1078                 qspi_write32(priv->flags, &priv->regs->sfb1ad,
1079                              priv->amba_base[1] + amba_size_per_chip);
1080                 qspi_write32(priv->flags, &priv->regs->sfb2ad,
1081                              priv->amba_base[1] + amba_size_per_chip);
1082                 break;
1083         case 4:
1084                 qspi_write32(priv->flags, &priv->regs->sfa2ad,
1085                              priv->amba_base[2]);
1086                 qspi_write32(priv->flags, &priv->regs->sfb1ad,
1087                              priv->amba_base[3]);
1088                 qspi_write32(priv->flags, &priv->regs->sfb2ad,
1089                              priv->amba_base[3] + amba_size_per_chip);
1090                 break;
1091         default:
1092                 debug("Error: Unsupported chipselect number %u!\n",
1093                       priv->num_chipselect);
1094                 qspi_module_disable(priv, 1);
1095                 return -EINVAL;
1096         }
1097
1098         qspi_set_lut(priv);
1099
1100 #ifdef CONFIG_SYS_FSL_QSPI_AHB
1101         qspi_init_ahb_read(priv);
1102 #endif
1103
1104         qspi_module_disable(priv, 0);
1105
1106         return 0;
1107 }
1108
1109 static int fsl_qspi_ofdata_to_platdata(struct udevice *bus)
1110 {
1111         struct fdt_resource res_regs, res_mem;
1112         struct fsl_qspi_platdata *plat = bus->platdata;
1113         const void *blob = gd->fdt_blob;
1114         int node = dev_of_offset(bus);
1115         int ret, flash_num = 0, subnode;
1116
1117         if (fdtdec_get_bool(blob, node, "big-endian"))
1118                 plat->flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
1119
1120         ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
1121                                      "QuadSPI", &res_regs);
1122         if (ret) {
1123                 debug("Error: can't get regs base addresses(ret = %d)!\n", ret);
1124                 return -ENOMEM;
1125         }
1126         ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
1127                                      "QuadSPI-memory", &res_mem);
1128         if (ret) {
1129                 debug("Error: can't get AMBA base addresses(ret = %d)!\n", ret);
1130                 return -ENOMEM;
1131         }
1132
1133         /* Count flash numbers */
1134         fdt_for_each_subnode(subnode, blob, node)
1135                 ++flash_num;
1136
1137         if (flash_num == 0) {
1138                 debug("Error: Missing flashes!\n");
1139                 return -ENODEV;
1140         }
1141
1142         plat->speed_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
1143                                         FSL_QSPI_DEFAULT_SCK_FREQ);
1144         plat->num_chipselect = fdtdec_get_int(blob, node, "num-cs",
1145                                               FSL_QSPI_MAX_CHIPSELECT_NUM);
1146
1147         plat->reg_base = res_regs.start;
1148         plat->amba_base = res_mem.start;
1149         plat->amba_total_size = res_mem.end - res_mem.start + 1;
1150         plat->flash_num = flash_num;
1151
1152         debug("%s: regs=<0x%llx> <0x%llx, 0x%llx>, max-frequency=%d, endianess=%s\n",
1153               __func__,
1154               (u64)plat->reg_base,
1155               (u64)plat->amba_base,
1156               (u64)plat->amba_total_size,
1157               plat->speed_hz,
1158               plat->flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ? "be" : "le"
1159               );
1160
1161         return 0;
1162 }
1163
1164 static int fsl_qspi_xfer(struct udevice *dev, unsigned int bitlen,
1165                 const void *dout, void *din, unsigned long flags)
1166 {
1167         struct fsl_qspi_priv *priv;
1168         struct udevice *bus;
1169
1170         bus = dev->parent;
1171         priv = dev_get_priv(bus);
1172
1173         return qspi_xfer(priv, bitlen, dout, din, flags);
1174 }
1175
1176 static int fsl_qspi_claim_bus(struct udevice *dev)
1177 {
1178         struct fsl_qspi_priv *priv;
1179         struct udevice *bus;
1180         struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
1181         int ret;
1182
1183         bus = dev->parent;
1184         priv = dev_get_priv(bus);
1185
1186         /* make sure controller is not busy anywhere */
1187         ret = wait_for_bit_le32(&priv->regs->sr,
1188                                 QSPI_SR_BUSY_MASK |
1189                                 QSPI_SR_AHB_ACC_MASK |
1190                                 QSPI_SR_IP_ACC_MASK,
1191                                 false, 100, false);
1192
1193         if (ret) {
1194                 debug("ERROR : The controller is busy\n");
1195                 return ret;
1196         }
1197
1198         priv->cur_amba_base = priv->amba_base[slave_plat->cs];
1199
1200         qspi_module_disable(priv, 0);
1201
1202         return 0;
1203 }
1204
1205 static int fsl_qspi_release_bus(struct udevice *dev)
1206 {
1207         struct fsl_qspi_priv *priv;
1208         struct udevice *bus;
1209
1210         bus = dev->parent;
1211         priv = dev_get_priv(bus);
1212
1213         qspi_module_disable(priv, 1);
1214
1215         return 0;
1216 }
1217
1218 static int fsl_qspi_set_speed(struct udevice *bus, uint speed)
1219 {
1220         /* Nothing to do */
1221         return 0;
1222 }
1223
1224 static int fsl_qspi_set_mode(struct udevice *bus, uint mode)
1225 {
1226         /* Nothing to do */
1227         return 0;
1228 }
1229
1230 static const struct dm_spi_ops fsl_qspi_ops = {
1231         .claim_bus      = fsl_qspi_claim_bus,
1232         .release_bus    = fsl_qspi_release_bus,
1233         .xfer           = fsl_qspi_xfer,
1234         .set_speed      = fsl_qspi_set_speed,
1235         .set_mode       = fsl_qspi_set_mode,
1236 };
1237
1238 static const struct udevice_id fsl_qspi_ids[] = {
1239         { .compatible = "fsl,vf610-qspi" },
1240         { .compatible = "fsl,imx6sx-qspi" },
1241         { .compatible = "fsl,imx6ul-qspi" },
1242         { .compatible = "fsl,imx7d-qspi" },
1243         { }
1244 };
1245
1246 U_BOOT_DRIVER(fsl_qspi) = {
1247         .name   = "fsl_qspi",
1248         .id     = UCLASS_SPI,
1249         .of_match = fsl_qspi_ids,
1250         .ops    = &fsl_qspi_ops,
1251         .ofdata_to_platdata = fsl_qspi_ofdata_to_platdata,
1252         .platdata_auto_alloc_size = sizeof(struct fsl_qspi_platdata),
1253         .priv_auto_alloc_size = sizeof(struct fsl_qspi_priv),
1254         .probe  = fsl_qspi_probe,
1255         .child_pre_probe = fsl_qspi_child_pre_probe,
1256 };
1257 #endif