1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
7 #include <linux/mod_devicetable.h>
8 #include <linux/pm_runtime.h>
9 #include <linux/soundwire/sdw_registers.h>
10 #include <linux/soundwire/sdw.h>
11 #include <linux/soundwire/sdw_type.h>
13 #include "sysfs_local.h"
15 static DEFINE_IDA(sdw_bus_ida);
17 static int sdw_get_id(struct sdw_bus *bus)
19 int rc = ida_alloc(&sdw_bus_ida, GFP_KERNEL);
28 static int sdw_irq_map(struct irq_domain *h, unsigned int virq,
31 struct sdw_bus *bus = h->host_data;
33 irq_set_chip_data(virq, bus);
34 irq_set_chip(virq, &bus->irq_chip);
35 irq_set_nested_thread(virq, 1);
36 irq_set_noprobe(virq);
41 static const struct irq_domain_ops sdw_domain_ops = {
46 * sdw_bus_master_add() - add a bus Master instance
48 * @parent: parent device
49 * @fwnode: firmware node handle
51 * Initializes the bus instance, read properties and create child
54 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
55 struct fwnode_handle *fwnode)
57 struct sdw_master_prop *prop = NULL;
61 pr_err("SoundWire parent device is not set\n");
65 ret = sdw_get_id(bus);
67 dev_err(parent, "Failed to get bus id\n");
71 ret = sdw_master_device_add(bus, parent, fwnode);
73 dev_err(parent, "Failed to add master device at link %d\n",
79 dev_err(bus->dev, "SoundWire Bus ops are not set\n");
83 if (!bus->compute_params) {
85 "Bandwidth allocation not configured, compute_params no set\n");
90 * Give each bus_lock and msg_lock a unique key so that lockdep won't
91 * trigger a deadlock warning when the locks of several buses are
92 * grabbed during configuration of a multi-bus stream.
94 lockdep_register_key(&bus->msg_lock_key);
95 __mutex_init(&bus->msg_lock, "msg_lock", &bus->msg_lock_key);
97 lockdep_register_key(&bus->bus_lock_key);
98 __mutex_init(&bus->bus_lock, "bus_lock", &bus->bus_lock_key);
100 INIT_LIST_HEAD(&bus->slaves);
101 INIT_LIST_HEAD(&bus->m_rt_list);
104 * Initialize multi_link flag
106 bus->multi_link = false;
107 if (bus->ops->read_prop) {
108 ret = bus->ops->read_prop(bus);
111 "Bus read properties failed:%d\n", ret);
116 sdw_bus_debugfs_init(bus);
119 * Device numbers in SoundWire are 0 through 15. Enumeration device
120 * number (0), Broadcast device number (15), Group numbers (12 and
121 * 13) and Master device number (14) are not used for assignment so
122 * mask these and other higher bits.
125 /* Set higher order bits */
126 *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
128 /* Set enumuration device number and broadcast device number */
129 set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
130 set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
132 /* Set group device numbers and master device number */
133 set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
134 set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
135 set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
138 * SDW is an enumerable bus, but devices can be powered off. So,
139 * they won't be able to report as present.
141 * Create Slave devices based on Slaves described in
142 * the respective firmware (ACPI/DT)
144 if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
145 ret = sdw_acpi_find_slaves(bus);
146 else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
147 ret = sdw_of_find_slaves(bus);
149 ret = -ENOTSUPP; /* No ACPI/DT so error out */
152 dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
157 * Initialize clock values based on Master properties. The max
158 * frequency is read from max_clk_freq property. Current assumption
159 * is that the bus will start at highest clock frequency when
162 * Default active bank will be 0 as out of reset the Slaves have
163 * to start with bank 0 (Table 40 of Spec)
166 bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
167 bus->params.curr_dr_freq = bus->params.max_dr_freq;
168 bus->params.curr_bank = SDW_BANK0;
169 bus->params.next_bank = SDW_BANK1;
171 bus->irq_chip.name = dev_name(bus->dev);
172 bus->domain = irq_domain_create_linear(fwnode, SDW_MAX_DEVICES,
173 &sdw_domain_ops, bus);
175 dev_err(bus->dev, "Failed to add IRQ domain\n");
181 EXPORT_SYMBOL(sdw_bus_master_add);
183 static int sdw_delete_slave(struct device *dev, void *data)
185 struct sdw_slave *slave = dev_to_sdw_dev(dev);
186 struct sdw_bus *bus = slave->bus;
188 pm_runtime_disable(dev);
190 sdw_slave_debugfs_exit(slave);
192 mutex_lock(&bus->bus_lock);
194 if (slave->dev_num) { /* clear dev_num if assigned */
195 clear_bit(slave->dev_num, bus->assigned);
196 if (bus->ops && bus->ops->put_device_num)
197 bus->ops->put_device_num(bus, slave);
199 list_del_init(&slave->node);
200 mutex_unlock(&bus->bus_lock);
202 device_unregister(dev);
207 * sdw_bus_master_delete() - delete the bus master instance
208 * @bus: bus to be deleted
210 * Remove the instance, delete the child devices.
212 void sdw_bus_master_delete(struct sdw_bus *bus)
214 device_for_each_child(bus->dev, NULL, sdw_delete_slave);
216 irq_domain_remove(bus->domain);
218 sdw_master_device_del(bus);
220 sdw_bus_debugfs_exit(bus);
221 lockdep_unregister_key(&bus->bus_lock_key);
222 lockdep_unregister_key(&bus->msg_lock_key);
223 ida_free(&sdw_bus_ida, bus->id);
225 EXPORT_SYMBOL(sdw_bus_master_delete);
231 static inline int find_response_code(enum sdw_command_response resp)
237 case SDW_CMD_IGNORED:
240 case SDW_CMD_TIMEOUT:
248 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
250 int retry = bus->prop.err_threshold;
251 enum sdw_command_response resp;
254 for (i = 0; i <= retry; i++) {
255 resp = bus->ops->xfer_msg(bus, msg);
256 ret = find_response_code(resp);
258 /* if cmd is ok or ignored return */
259 if (ret == 0 || ret == -ENODATA)
266 static inline int do_transfer_defer(struct sdw_bus *bus,
269 struct sdw_defer *defer = &bus->defer_msg;
270 int retry = bus->prop.err_threshold;
271 enum sdw_command_response resp;
275 defer->length = msg->len;
276 init_completion(&defer->complete);
278 for (i = 0; i <= retry; i++) {
279 resp = bus->ops->xfer_msg_defer(bus);
280 ret = find_response_code(resp);
281 /* if cmd is ok or ignored return */
282 if (ret == 0 || ret == -ENODATA)
289 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
293 ret = do_transfer(bus, msg);
294 if (ret != 0 && ret != -ENODATA)
295 dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
297 (msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read",
298 msg->addr, msg->len);
304 * sdw_transfer() - Synchronous transfer message to a SDW Slave device
306 * @msg: SDW message to be xfered
308 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
312 mutex_lock(&bus->msg_lock);
314 ret = sdw_transfer_unlocked(bus, msg);
316 mutex_unlock(&bus->msg_lock);
322 * sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers
324 * @sync_delay: Delay before reading status
326 void sdw_show_ping_status(struct sdw_bus *bus, bool sync_delay)
330 if (!bus->ops->read_ping_status)
334 * wait for peripheral to sync if desired. 10-15ms should be more than
335 * enough in most cases.
338 usleep_range(10000, 15000);
340 mutex_lock(&bus->msg_lock);
342 status = bus->ops->read_ping_status(bus);
344 mutex_unlock(&bus->msg_lock);
347 dev_warn(bus->dev, "%s: no peripherals attached\n", __func__);
349 dev_dbg(bus->dev, "PING status: %#x\n", status);
351 EXPORT_SYMBOL(sdw_show_ping_status);
354 * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
356 * @msg: SDW message to be xfered
358 * Caller needs to hold the msg_lock lock while calling this
360 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg)
364 if (!bus->ops->xfer_msg_defer)
367 ret = do_transfer_defer(bus, msg);
368 if (ret != 0 && ret != -ENODATA)
369 dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
375 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
376 u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
378 memset(msg, 0, sizeof(*msg));
379 msg->addr = addr; /* addr is 16 bit and truncated here */
381 msg->dev_num = dev_num;
385 if (addr < SDW_REG_NO_PAGE) /* no paging area */
388 if (addr >= SDW_REG_MAX) { /* illegal addr */
389 pr_err("SDW: Invalid address %x passed\n", addr);
393 if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
394 if (slave && !slave->prop.paging_support)
396 /* no need for else as that will fall-through to paging */
399 /* paging mandatory */
400 if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
401 pr_err("SDW: Invalid device for paging :%d\n", dev_num);
406 pr_err("SDW: No slave for paging addr\n");
410 if (!slave->prop.paging_support) {
412 "address %x needs paging but no support\n", addr);
416 msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
417 msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
418 msg->addr |= BIT(15);
425 * Read/Write IO functions.
428 static int sdw_ntransfer_no_pm(struct sdw_slave *slave, u32 addr, u8 flags,
429 size_t count, u8 *val)
436 // Only handle bytes up to next page boundary
437 size = min_t(size_t, count, (SDW_REGADDR + 1) - (addr & SDW_REGADDR));
439 ret = sdw_fill_msg(&msg, slave, addr, size, slave->dev_num, flags, val);
443 ret = sdw_transfer(slave->bus, &msg);
444 if (ret < 0 && !slave->is_mockup_device)
456 * sdw_nread_no_pm() - Read "n" contiguous SDW Slave registers with no PM
458 * @addr: Register address
460 * @val: Buffer for values to be read
462 * Note that if the message crosses a page boundary each page will be
463 * transferred under a separate invocation of the msg_lock.
465 int sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
467 return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_READ, count, val);
469 EXPORT_SYMBOL(sdw_nread_no_pm);
472 * sdw_nwrite_no_pm() - Write "n" contiguous SDW Slave registers with no PM
474 * @addr: Register address
476 * @val: Buffer for values to be written
478 * Note that if the message crosses a page boundary each page will be
479 * transferred under a separate invocation of the msg_lock.
481 int sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
483 return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_WRITE, count, (u8 *)val);
485 EXPORT_SYMBOL(sdw_nwrite_no_pm);
488 * sdw_write_no_pm() - Write a SDW Slave register with no PM
490 * @addr: Register address
491 * @value: Register value
493 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
495 return sdw_nwrite_no_pm(slave, addr, 1, &value);
497 EXPORT_SYMBOL(sdw_write_no_pm);
500 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
506 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
507 SDW_MSG_FLAG_READ, &buf);
511 ret = sdw_transfer(bus, &msg);
519 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
524 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
525 SDW_MSG_FLAG_WRITE, &value);
529 return sdw_transfer(bus, &msg);
532 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
538 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
539 SDW_MSG_FLAG_READ, &buf);
543 ret = sdw_transfer_unlocked(bus, &msg);
549 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
551 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
556 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
557 SDW_MSG_FLAG_WRITE, &value);
561 return sdw_transfer_unlocked(bus, &msg);
563 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
566 * sdw_read_no_pm() - Read a SDW Slave register with no PM
568 * @addr: Register address
570 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
575 ret = sdw_nread_no_pm(slave, addr, 1, &buf);
581 EXPORT_SYMBOL(sdw_read_no_pm);
583 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
587 tmp = sdw_read_no_pm(slave, addr);
591 tmp = (tmp & ~mask) | val;
592 return sdw_write_no_pm(slave, addr, tmp);
594 EXPORT_SYMBOL(sdw_update_no_pm);
596 /* Read-Modify-Write Slave register */
597 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
601 tmp = sdw_read(slave, addr);
605 tmp = (tmp & ~mask) | val;
606 return sdw_write(slave, addr, tmp);
608 EXPORT_SYMBOL(sdw_update);
611 * sdw_nread() - Read "n" contiguous SDW Slave registers
613 * @addr: Register address
615 * @val: Buffer for values to be read
617 * This version of the function will take a PM reference to the slave
619 * Note that if the message crosses a page boundary each page will be
620 * transferred under a separate invocation of the msg_lock.
622 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
626 ret = pm_runtime_get_sync(&slave->dev);
627 if (ret < 0 && ret != -EACCES) {
628 pm_runtime_put_noidle(&slave->dev);
632 ret = sdw_nread_no_pm(slave, addr, count, val);
634 pm_runtime_mark_last_busy(&slave->dev);
635 pm_runtime_put(&slave->dev);
639 EXPORT_SYMBOL(sdw_nread);
642 * sdw_nwrite() - Write "n" contiguous SDW Slave registers
644 * @addr: Register address
646 * @val: Buffer for values to be written
648 * This version of the function will take a PM reference to the slave
650 * Note that if the message crosses a page boundary each page will be
651 * transferred under a separate invocation of the msg_lock.
653 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
657 ret = pm_runtime_get_sync(&slave->dev);
658 if (ret < 0 && ret != -EACCES) {
659 pm_runtime_put_noidle(&slave->dev);
663 ret = sdw_nwrite_no_pm(slave, addr, count, val);
665 pm_runtime_mark_last_busy(&slave->dev);
666 pm_runtime_put(&slave->dev);
670 EXPORT_SYMBOL(sdw_nwrite);
673 * sdw_read() - Read a SDW Slave register
675 * @addr: Register address
677 * This version of the function will take a PM reference to the slave
680 int sdw_read(struct sdw_slave *slave, u32 addr)
685 ret = sdw_nread(slave, addr, 1, &buf);
691 EXPORT_SYMBOL(sdw_read);
694 * sdw_write() - Write a SDW Slave register
696 * @addr: Register address
697 * @value: Register value
699 * This version of the function will take a PM reference to the slave
702 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
704 return sdw_nwrite(slave, addr, 1, &value);
706 EXPORT_SYMBOL(sdw_write);
712 /* called with bus_lock held */
713 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
715 struct sdw_slave *slave;
717 list_for_each_entry(slave, &bus->slaves, node) {
718 if (slave->dev_num == i)
725 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
727 if (slave->id.mfg_id != id.mfg_id ||
728 slave->id.part_id != id.part_id ||
729 slave->id.class_id != id.class_id ||
730 (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
731 slave->id.unique_id != id.unique_id))
736 EXPORT_SYMBOL(sdw_compare_devid);
738 /* called with bus_lock held */
739 static int sdw_get_device_num(struct sdw_slave *slave)
741 struct sdw_bus *bus = slave->bus;
744 if (bus->ops && bus->ops->get_device_num) {
745 bit = bus->ops->get_device_num(bus, slave);
749 bit = find_first_zero_bit(bus->assigned, SDW_MAX_DEVICES);
750 if (bit == SDW_MAX_DEVICES) {
757 * Do not update dev_num in Slave data structure here,
758 * Update once program dev_num is successful
760 set_bit(bit, bus->assigned);
766 static int sdw_assign_device_num(struct sdw_slave *slave)
768 struct sdw_bus *bus = slave->bus;
770 bool new_device = false;
772 /* check first if device number is assigned, if so reuse that */
773 if (!slave->dev_num) {
774 if (!slave->dev_num_sticky) {
775 mutex_lock(&slave->bus->bus_lock);
776 dev_num = sdw_get_device_num(slave);
777 mutex_unlock(&slave->bus->bus_lock);
779 dev_err(bus->dev, "Get dev_num failed: %d\n",
783 slave->dev_num = dev_num;
784 slave->dev_num_sticky = dev_num;
787 slave->dev_num = slave->dev_num_sticky;
793 "Slave already registered, reusing dev_num:%d\n",
796 /* Clear the slave->dev_num to transfer message on device 0 */
797 dev_num = slave->dev_num;
800 ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
802 dev_err(bus->dev, "Program device_num %d failed: %d\n",
807 /* After xfer of msg, restore dev_num */
808 slave->dev_num = slave->dev_num_sticky;
810 if (bus->ops && bus->ops->new_peripheral_assigned)
811 bus->ops->new_peripheral_assigned(bus, slave, dev_num);
816 void sdw_extract_slave_id(struct sdw_bus *bus,
817 u64 addr, struct sdw_slave_id *id)
819 dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
821 id->sdw_version = SDW_VERSION(addr);
822 id->unique_id = SDW_UNIQUE_ID(addr);
823 id->mfg_id = SDW_MFG_ID(addr);
824 id->part_id = SDW_PART_ID(addr);
825 id->class_id = SDW_CLASS_ID(addr);
828 "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
829 id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
831 EXPORT_SYMBOL(sdw_extract_slave_id);
833 static int sdw_program_device_num(struct sdw_bus *bus, bool *programmed)
835 u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
836 struct sdw_slave *slave, *_s;
837 struct sdw_slave_id id;
845 /* No Slave, so use raw xfer api */
846 ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
847 SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
852 ret = sdw_transfer(bus, &msg);
853 if (ret == -ENODATA) { /* end of device id reads */
854 dev_dbg(bus->dev, "No more devices to enumerate\n");
859 dev_err(bus->dev, "DEVID read fail:%d\n", ret);
864 * Construct the addr and extract. Cast the higher shift
865 * bits to avoid truncation due to size limit.
867 addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
868 ((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
871 sdw_extract_slave_id(bus, addr, &id);
874 /* Now compare with entries */
875 list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
876 if (sdw_compare_devid(slave, id) == 0) {
880 * To prevent skipping state-machine stages don't
881 * program a device until we've seen it UNATTACH.
882 * Must return here because no other device on #0
883 * can be detected until this one has been
884 * assigned a device ID.
886 if (slave->status != SDW_SLAVE_UNATTACHED)
890 * Assign a new dev_num to this Slave and
891 * not mark it present. It will be marked
892 * present after it reports ATTACHED on new
895 ret = sdw_assign_device_num(slave);
898 "Assign dev_num failed:%d\n",
910 /* TODO: Park this device in Group 13 */
913 * add Slave device even if there is no platform
914 * firmware description. There will be no driver probe
915 * but the user/integration will be able to see the
916 * device, enumeration status and device number in sysfs
918 sdw_slave_add(bus, &id, NULL);
920 dev_err(bus->dev, "Slave Entry not found\n");
926 * Check till error out or retry (count) exhausts.
927 * Device can drop off and rejoin during enumeration
928 * so count till twice the bound.
931 } while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
936 static void sdw_modify_slave_status(struct sdw_slave *slave,
937 enum sdw_slave_status status)
939 struct sdw_bus *bus = slave->bus;
941 mutex_lock(&bus->bus_lock);
944 "changing status slave %d status %d new status %d\n",
945 slave->dev_num, slave->status, status);
947 if (status == SDW_SLAVE_UNATTACHED) {
949 "initializing enumeration and init completion for Slave %d\n",
952 reinit_completion(&slave->enumeration_complete);
953 reinit_completion(&slave->initialization_complete);
955 } else if ((status == SDW_SLAVE_ATTACHED) &&
956 (slave->status == SDW_SLAVE_UNATTACHED)) {
958 "signaling enumeration completion for Slave %d\n",
961 complete_all(&slave->enumeration_complete);
963 slave->status = status;
964 mutex_unlock(&bus->bus_lock);
967 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
968 enum sdw_clk_stop_mode mode,
969 enum sdw_clk_stop_type type)
973 mutex_lock(&slave->sdw_dev_lock);
976 struct device *dev = &slave->dev;
977 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
979 if (drv->ops && drv->ops->clk_stop)
980 ret = drv->ops->clk_stop(slave, mode, type);
983 mutex_unlock(&slave->sdw_dev_lock);
988 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
989 enum sdw_clk_stop_mode mode,
996 wake_en = slave->prop.wake_capable;
999 val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
1001 if (mode == SDW_CLK_STOP_MODE1)
1002 val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
1005 val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
1007 ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
1009 if (ret != -ENODATA)
1010 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
1014 val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
1017 ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
1019 if (ret < 0 && ret != -ENODATA)
1020 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret);
1025 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num)
1027 int retry = bus->clk_stop_timeout;
1031 val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
1033 if (val != -ENODATA)
1034 dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
1037 val &= SDW_SCP_STAT_CLK_STP_NF;
1039 dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d\n",
1044 usleep_range(1000, 1500);
1048 dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d\n",
1055 * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
1057 * @bus: SDW bus instance
1059 * Query Slave for clock stop mode and prepare for that mode.
1061 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
1063 bool simple_clk_stop = true;
1064 struct sdw_slave *slave;
1065 bool is_slave = false;
1069 * In order to save on transition time, prepare
1070 * each Slave and then wait for all Slave(s) to be
1071 * prepared for clock stop.
1072 * If one of the Slave devices has lost sync and
1073 * replies with Command Ignored/-ENODATA, we continue
1076 list_for_each_entry(slave, &bus->slaves, node) {
1077 if (!slave->dev_num)
1080 if (slave->status != SDW_SLAVE_ATTACHED &&
1081 slave->status != SDW_SLAVE_ALERT)
1084 /* Identify if Slave(s) are available on Bus */
1087 ret = sdw_slave_clk_stop_callback(slave,
1089 SDW_CLK_PRE_PREPARE);
1090 if (ret < 0 && ret != -ENODATA) {
1091 dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret);
1095 /* Only prepare a Slave device if needed */
1096 if (!slave->prop.simple_clk_stop_capable) {
1097 simple_clk_stop = false;
1099 ret = sdw_slave_clk_stop_prepare(slave,
1102 if (ret < 0 && ret != -ENODATA) {
1103 dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret);
1109 /* Skip remaining clock stop preparation if no Slave is attached */
1114 * Don't wait for all Slaves to be ready if they follow the simple
1117 if (!simple_clk_stop) {
1118 ret = sdw_bus_wait_for_clk_prep_deprep(bus,
1119 SDW_BROADCAST_DEV_NUM);
1121 * if there are no Slave devices present and the reply is
1122 * Command_Ignored/-ENODATA, we don't need to continue with the
1123 * flow and can just return here. The error code is not modified
1124 * and its handling left as an exercise for the caller.
1130 /* Inform slaves that prep is done */
1131 list_for_each_entry(slave, &bus->slaves, node) {
1132 if (!slave->dev_num)
1135 if (slave->status != SDW_SLAVE_ATTACHED &&
1136 slave->status != SDW_SLAVE_ALERT)
1139 ret = sdw_slave_clk_stop_callback(slave,
1141 SDW_CLK_POST_PREPARE);
1143 if (ret < 0 && ret != -ENODATA) {
1144 dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret);
1151 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1154 * sdw_bus_clk_stop: stop bus clock
1156 * @bus: SDW bus instance
1158 * After preparing the Slaves for clock stop, stop the clock by broadcasting
1159 * write to SCP_CTRL register.
1161 int sdw_bus_clk_stop(struct sdw_bus *bus)
1166 * broadcast clock stop now, attached Slaves will ACK this,
1167 * unattached will ignore
1169 ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1170 SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1172 if (ret != -ENODATA)
1173 dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret);
1179 EXPORT_SYMBOL(sdw_bus_clk_stop);
1182 * sdw_bus_exit_clk_stop: Exit clock stop mode
1184 * @bus: SDW bus instance
1186 * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1187 * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1190 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1192 bool simple_clk_stop = true;
1193 struct sdw_slave *slave;
1194 bool is_slave = false;
1198 * In order to save on transition time, de-prepare
1199 * each Slave and then wait for all Slave(s) to be
1200 * de-prepared after clock resume.
1202 list_for_each_entry(slave, &bus->slaves, node) {
1203 if (!slave->dev_num)
1206 if (slave->status != SDW_SLAVE_ATTACHED &&
1207 slave->status != SDW_SLAVE_ALERT)
1210 /* Identify if Slave(s) are available on Bus */
1213 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1214 SDW_CLK_PRE_DEPREPARE);
1216 dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret);
1218 /* Only de-prepare a Slave device if needed */
1219 if (!slave->prop.simple_clk_stop_capable) {
1220 simple_clk_stop = false;
1222 ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0,
1226 dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret);
1230 /* Skip remaining clock stop de-preparation if no Slave is attached */
1235 * Don't wait for all Slaves to be ready if they follow the simple
1238 if (!simple_clk_stop) {
1239 ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM);
1241 dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret);
1244 list_for_each_entry(slave, &bus->slaves, node) {
1245 if (!slave->dev_num)
1248 if (slave->status != SDW_SLAVE_ATTACHED &&
1249 slave->status != SDW_SLAVE_ALERT)
1252 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1253 SDW_CLK_POST_DEPREPARE);
1255 dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret);
1260 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1262 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1263 int port, bool enable, int mask)
1269 if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1270 dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1271 enable ? "on" : "off");
1272 mask |= SDW_DPN_INT_TEST_FAIL;
1275 addr = SDW_DPN_INTMASK(port);
1277 /* Set/Clear port ready interrupt mask */
1280 val |= SDW_DPN_INT_PORT_READY;
1283 val &= ~SDW_DPN_INT_PORT_READY;
1286 ret = sdw_update_no_pm(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1288 dev_err(&slave->dev,
1289 "SDW_DPN_INTMASK write failed:%d\n", val);
1294 static int sdw_slave_set_frequency(struct sdw_slave *slave)
1296 u32 mclk_freq = slave->bus->prop.mclk_freq;
1297 u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1304 * frequency base and scale registers are required for SDCA
1305 * devices. They may also be used for 1.2+/non-SDCA devices.
1306 * Driver can set the property, we will need a DisCo property
1307 * to discover this case from platform firmware.
1309 if (!slave->id.class_id && !slave->prop.clock_reg_supported)
1313 dev_err(&slave->dev,
1314 "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1319 * map base frequency using Table 89 of SoundWire 1.2 spec.
1320 * The order of the tests just follows the specification, this
1321 * is not a selection between possible values or a search for
1322 * the best value but just a mapping. Only one case per platform
1324 * Some BIOS have inconsistent values for mclk_freq but a
1325 * correct root so we force the mclk_freq to avoid variations.
1327 if (!(19200000 % mclk_freq)) {
1328 mclk_freq = 19200000;
1329 base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1330 } else if (!(24000000 % mclk_freq)) {
1331 mclk_freq = 24000000;
1332 base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1333 } else if (!(24576000 % mclk_freq)) {
1334 mclk_freq = 24576000;
1335 base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1336 } else if (!(22579200 % mclk_freq)) {
1337 mclk_freq = 22579200;
1338 base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1339 } else if (!(32000000 % mclk_freq)) {
1340 mclk_freq = 32000000;
1341 base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1343 dev_err(&slave->dev,
1344 "Unsupported clock base, mclk %d\n",
1349 if (mclk_freq % curr_freq) {
1350 dev_err(&slave->dev,
1351 "mclk %d is not multiple of bus curr_freq %d\n",
1352 mclk_freq, curr_freq);
1356 scale = mclk_freq / curr_freq;
1359 * map scale to Table 90 of SoundWire 1.2 spec - and check
1360 * that the scale is a power of two and maximum 64
1362 scale_index = ilog2(scale);
1364 if (BIT(scale_index) != scale || scale_index > 6) {
1365 dev_err(&slave->dev,
1366 "No match found for scale %d, bus mclk %d curr_freq %d\n",
1367 scale, mclk_freq, curr_freq);
1372 ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
1374 dev_err(&slave->dev,
1375 "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1379 /* initialize scale for both banks */
1380 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
1382 dev_err(&slave->dev,
1383 "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1386 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
1388 dev_err(&slave->dev,
1389 "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1391 dev_dbg(&slave->dev,
1392 "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1393 base, scale_index, mclk_freq, curr_freq);
1398 static int sdw_initialize_slave(struct sdw_slave *slave)
1400 struct sdw_slave_prop *prop = &slave->prop;
1405 ret = sdw_slave_set_frequency(slave);
1409 if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
1410 /* Clear bus clash interrupt before enabling interrupt mask */
1411 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1413 dev_err(&slave->dev,
1414 "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
1417 if (status & SDW_SCP_INT1_BUS_CLASH) {
1418 dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
1419 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
1421 dev_err(&slave->dev,
1422 "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
1427 if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
1428 !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
1429 /* Clear parity interrupt before enabling interrupt mask */
1430 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1432 dev_err(&slave->dev,
1433 "SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
1436 if (status & SDW_SCP_INT1_PARITY) {
1437 dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
1438 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
1440 dev_err(&slave->dev,
1441 "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
1448 * Set SCP_INT1_MASK register, typically bus clash and
1449 * implementation-defined interrupt mask. The Parity detection
1450 * may not always be correct on startup so its use is
1451 * device-dependent, it might e.g. only be enabled in
1452 * steady-state after a couple of frames.
1454 val = slave->prop.scp_int1_mask;
1456 /* Enable SCP interrupts */
1457 ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
1459 dev_err(&slave->dev,
1460 "SDW_SCP_INTMASK1 write failed:%d\n", ret);
1464 /* No need to continue if DP0 is not present */
1465 if (!slave->prop.dp0_prop)
1468 /* Enable DP0 interrupts */
1469 val = prop->dp0_prop->imp_def_interrupts;
1470 val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1472 ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
1474 dev_err(&slave->dev,
1475 "SDW_DP0_INTMASK read failed:%d\n", ret);
1479 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1481 u8 clear, impl_int_mask;
1482 int status, status2, ret, count = 0;
1484 status = sdw_read_no_pm(slave, SDW_DP0_INT);
1486 dev_err(&slave->dev,
1487 "SDW_DP0_INT read failed:%d\n", status);
1492 clear = status & ~SDW_DP0_INTERRUPTS;
1494 if (status & SDW_DP0_INT_TEST_FAIL) {
1495 dev_err(&slave->dev, "Test fail for port 0\n");
1496 clear |= SDW_DP0_INT_TEST_FAIL;
1500 * Assumption: PORT_READY interrupt will be received only for
1501 * ports implementing Channel Prepare state machine (CP_SM)
1504 if (status & SDW_DP0_INT_PORT_READY) {
1505 complete(&slave->port_ready[0]);
1506 clear |= SDW_DP0_INT_PORT_READY;
1509 if (status & SDW_DP0_INT_BRA_FAILURE) {
1510 dev_err(&slave->dev, "BRA failed\n");
1511 clear |= SDW_DP0_INT_BRA_FAILURE;
1514 impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1515 SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1517 if (status & impl_int_mask) {
1518 clear |= impl_int_mask;
1519 *slave_status = clear;
1522 /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1523 ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
1525 dev_err(&slave->dev,
1526 "SDW_DP0_INT write failed:%d\n", ret);
1530 /* Read DP0 interrupt again */
1531 status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
1533 dev_err(&slave->dev,
1534 "SDW_DP0_INT read failed:%d\n", status2);
1537 /* filter to limit loop to interrupts identified in the first status read */
1542 /* we can get alerts while processing so keep retrying */
1543 } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1545 if (count == SDW_READ_INTR_CLEAR_RETRY)
1546 dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
1551 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1552 int port, u8 *slave_status)
1554 u8 clear, impl_int_mask;
1555 int status, status2, ret, count = 0;
1559 return sdw_handle_dp0_interrupt(slave, slave_status);
1561 addr = SDW_DPN_INT(port);
1562 status = sdw_read_no_pm(slave, addr);
1564 dev_err(&slave->dev,
1565 "SDW_DPN_INT read failed:%d\n", status);
1571 clear = status & ~SDW_DPN_INTERRUPTS;
1573 if (status & SDW_DPN_INT_TEST_FAIL) {
1574 dev_err(&slave->dev, "Test fail for port:%d\n", port);
1575 clear |= SDW_DPN_INT_TEST_FAIL;
1579 * Assumption: PORT_READY interrupt will be received only
1580 * for ports implementing CP_SM.
1582 if (status & SDW_DPN_INT_PORT_READY) {
1583 complete(&slave->port_ready[port]);
1584 clear |= SDW_DPN_INT_PORT_READY;
1587 impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1588 SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1590 if (status & impl_int_mask) {
1591 clear |= impl_int_mask;
1592 *slave_status = clear;
1595 /* clear the interrupt but don't touch reserved fields */
1596 ret = sdw_write_no_pm(slave, addr, clear);
1598 dev_err(&slave->dev,
1599 "SDW_DPN_INT write failed:%d\n", ret);
1603 /* Read DPN interrupt again */
1604 status2 = sdw_read_no_pm(slave, addr);
1606 dev_err(&slave->dev,
1607 "SDW_DPN_INT read failed:%d\n", status2);
1610 /* filter to limit loop to interrupts identified in the first status read */
1615 /* we can get alerts while processing so keep retrying */
1616 } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1618 if (count == SDW_READ_INTR_CLEAR_RETRY)
1619 dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
1624 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1626 struct sdw_slave_intr_status slave_intr;
1627 u8 clear = 0, bit, port_status[15] = {0};
1628 int port_num, stat, ret, count = 0;
1631 u8 sdca_cascade = 0;
1636 sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1638 ret = pm_runtime_get_sync(&slave->dev);
1639 if (ret < 0 && ret != -EACCES) {
1640 dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1641 pm_runtime_put_noidle(&slave->dev);
1645 /* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1646 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1648 dev_err(&slave->dev,
1649 "SDW_SCP_INT1 read failed:%d\n", ret);
1654 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1656 dev_err(&slave->dev,
1657 "SDW_SCP_INT2/3 read failed:%d\n", ret);
1661 if (slave->id.class_id) {
1662 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1664 dev_err(&slave->dev,
1665 "SDW_DP0_INT read failed:%d\n", ret);
1668 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1672 slave_notify = false;
1675 * Check parity, bus clash and Slave (impl defined)
1678 if (buf & SDW_SCP_INT1_PARITY) {
1679 parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1680 parity_quirk = !slave->first_interrupt_done &&
1681 (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1683 if (parity_check && !parity_quirk)
1684 dev_err(&slave->dev, "Parity error detected\n");
1685 clear |= SDW_SCP_INT1_PARITY;
1688 if (buf & SDW_SCP_INT1_BUS_CLASH) {
1689 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1690 dev_err(&slave->dev, "Bus clash detected\n");
1691 clear |= SDW_SCP_INT1_BUS_CLASH;
1695 * When bus clash or parity errors are detected, such errors
1696 * are unlikely to be recoverable errors.
1697 * TODO: In such scenario, reset bus. Make this configurable
1698 * via sysfs property with bus reset being the default.
1701 if (buf & SDW_SCP_INT1_IMPL_DEF) {
1702 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1703 dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1704 slave_notify = true;
1706 clear |= SDW_SCP_INT1_IMPL_DEF;
1709 /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1711 slave_notify = true;
1713 /* Check port 0 - 3 interrupts */
1714 port = buf & SDW_SCP_INT1_PORT0_3;
1716 /* To get port number corresponding to bits, shift it */
1717 port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
1718 for_each_set_bit(bit, &port, 8) {
1719 sdw_handle_port_interrupt(slave, bit,
1723 /* Check if cascade 2 interrupt is present */
1724 if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1725 port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1726 for_each_set_bit(bit, &port, 8) {
1727 /* scp2 ports start from 4 */
1729 sdw_handle_port_interrupt(slave,
1731 &port_status[port_num]);
1735 /* now check last cascade */
1736 if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1737 port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1738 for_each_set_bit(bit, &port, 8) {
1739 /* scp3 ports start from 11 */
1740 port_num = bit + 11;
1741 sdw_handle_port_interrupt(slave,
1743 &port_status[port_num]);
1747 /* Update the Slave driver */
1749 mutex_lock(&slave->sdw_dev_lock);
1751 if (slave->probed) {
1752 struct device *dev = &slave->dev;
1753 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1755 if (slave->prop.use_domain_irq && slave->irq)
1756 handle_nested_irq(slave->irq);
1758 if (drv->ops && drv->ops->interrupt_callback) {
1759 slave_intr.sdca_cascade = sdca_cascade;
1760 slave_intr.control_port = clear;
1761 memcpy(slave_intr.port, &port_status,
1762 sizeof(slave_intr.port));
1764 drv->ops->interrupt_callback(slave, &slave_intr);
1768 mutex_unlock(&slave->sdw_dev_lock);
1772 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
1774 dev_err(&slave->dev,
1775 "SDW_SCP_INT1 write failed:%d\n", ret);
1779 /* at this point all initial interrupt sources were handled */
1780 slave->first_interrupt_done = true;
1783 * Read status again to ensure no new interrupts arrived
1784 * while servicing interrupts.
1786 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1788 dev_err(&slave->dev,
1789 "SDW_SCP_INT1 recheck read failed:%d\n", ret);
1794 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1796 dev_err(&slave->dev,
1797 "SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
1801 if (slave->id.class_id) {
1802 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1804 dev_err(&slave->dev,
1805 "SDW_DP0_INT recheck read failed:%d\n", ret);
1808 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1812 * Make sure no interrupts are pending
1814 stat = buf || buf2[0] || buf2[1] || sdca_cascade;
1817 * Exit loop if Slave is continuously in ALERT state even
1818 * after servicing the interrupt multiple times.
1822 /* we can get alerts while processing so keep retrying */
1823 } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1825 if (count == SDW_READ_INTR_CLEAR_RETRY)
1826 dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
1829 pm_runtime_mark_last_busy(&slave->dev);
1830 pm_runtime_put_autosuspend(&slave->dev);
1835 static int sdw_update_slave_status(struct sdw_slave *slave,
1836 enum sdw_slave_status status)
1840 mutex_lock(&slave->sdw_dev_lock);
1842 if (slave->probed) {
1843 struct device *dev = &slave->dev;
1844 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1846 if (drv->ops && drv->ops->update_status)
1847 ret = drv->ops->update_status(slave, status);
1850 mutex_unlock(&slave->sdw_dev_lock);
1856 * sdw_handle_slave_status() - Handle Slave status
1857 * @bus: SDW bus instance
1858 * @status: Status for all Slave(s)
1860 int sdw_handle_slave_status(struct sdw_bus *bus,
1861 enum sdw_slave_status status[])
1863 enum sdw_slave_status prev_status;
1864 struct sdw_slave *slave;
1865 bool attached_initializing, id_programmed;
1868 /* first check if any Slaves fell off the bus */
1869 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1870 mutex_lock(&bus->bus_lock);
1871 if (test_bit(i, bus->assigned) == false) {
1872 mutex_unlock(&bus->bus_lock);
1875 mutex_unlock(&bus->bus_lock);
1877 slave = sdw_get_slave(bus, i);
1881 if (status[i] == SDW_SLAVE_UNATTACHED &&
1882 slave->status != SDW_SLAVE_UNATTACHED) {
1883 dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n",
1885 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1887 /* Ensure driver knows that peripheral unattached */
1888 ret = sdw_update_slave_status(slave, status[i]);
1890 dev_warn(&slave->dev, "Update Slave status failed:%d\n", ret);
1894 if (status[0] == SDW_SLAVE_ATTACHED) {
1895 dev_dbg(bus->dev, "Slave attached, programming device number\n");
1898 * Programming a device number will have side effects,
1899 * so we deal with other devices at a later time.
1900 * This relies on those devices reporting ATTACHED, which will
1901 * trigger another call to this function. This will only
1902 * happen if at least one device ID was programmed.
1903 * Error returns from sdw_program_device_num() are currently
1904 * ignored because there's no useful recovery that can be done.
1905 * Returning the error here could result in the current status
1906 * of other devices not being handled, because if no device IDs
1907 * were programmed there's nothing to guarantee a status change
1908 * to trigger another call to this function.
1910 sdw_program_device_num(bus, &id_programmed);
1915 /* Continue to check other slave statuses */
1916 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1917 mutex_lock(&bus->bus_lock);
1918 if (test_bit(i, bus->assigned) == false) {
1919 mutex_unlock(&bus->bus_lock);
1922 mutex_unlock(&bus->bus_lock);
1924 slave = sdw_get_slave(bus, i);
1928 attached_initializing = false;
1930 switch (status[i]) {
1931 case SDW_SLAVE_UNATTACHED:
1932 if (slave->status == SDW_SLAVE_UNATTACHED)
1935 dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n",
1938 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1941 case SDW_SLAVE_ALERT:
1942 ret = sdw_handle_slave_alerts(slave);
1944 dev_err(&slave->dev,
1945 "Slave %d alert handling failed: %d\n",
1949 case SDW_SLAVE_ATTACHED:
1950 if (slave->status == SDW_SLAVE_ATTACHED)
1953 prev_status = slave->status;
1954 sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1956 if (prev_status == SDW_SLAVE_ALERT)
1959 attached_initializing = true;
1961 ret = sdw_initialize_slave(slave);
1963 dev_err(&slave->dev,
1964 "Slave %d initialization failed: %d\n",
1970 dev_err(&slave->dev, "Invalid slave %d status:%d\n",
1975 ret = sdw_update_slave_status(slave, status[i]);
1977 dev_err(&slave->dev,
1978 "Update Slave status failed:%d\n", ret);
1979 if (attached_initializing) {
1980 dev_dbg(&slave->dev,
1981 "signaling initialization completion for Slave %d\n",
1984 complete_all(&slave->initialization_complete);
1987 * If the manager became pm_runtime active, the peripherals will be
1988 * restarted and attach, but their pm_runtime status may remain
1989 * suspended. If the 'update_slave_status' callback initiates
1990 * any sort of deferred processing, this processing would not be
1991 * cancelled on pm_runtime suspend.
1992 * To avoid such zombie states, we queue a request to resume.
1993 * This would be a no-op in case the peripheral was being resumed
1994 * by e.g. the ALSA/ASoC framework.
1996 pm_request_resume(&slave->dev);
2002 EXPORT_SYMBOL(sdw_handle_slave_status);
2004 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
2006 struct sdw_slave *slave;
2009 /* Check all non-zero devices */
2010 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
2011 mutex_lock(&bus->bus_lock);
2012 if (test_bit(i, bus->assigned) == false) {
2013 mutex_unlock(&bus->bus_lock);
2016 mutex_unlock(&bus->bus_lock);
2018 slave = sdw_get_slave(bus, i);
2022 if (slave->status != SDW_SLAVE_UNATTACHED) {
2023 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
2024 slave->first_interrupt_done = false;
2025 sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED);
2028 /* keep track of request, used in pm_runtime resume */
2029 slave->unattach_request = request;
2032 EXPORT_SYMBOL(sdw_clear_slave_status);