soundwire: bus: introduce controller_id
[platform/kernel/linux-rpi.git] / drivers / soundwire / bus.c
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/pm_runtime.h>
8 #include <linux/soundwire/sdw_registers.h>
9 #include <linux/soundwire/sdw.h>
10 #include <linux/soundwire/sdw_type.h>
11 #include "bus.h"
12 #include "irq.h"
13 #include "sysfs_local.h"
14
15 static DEFINE_IDA(sdw_bus_ida);
16
17 static int sdw_get_id(struct sdw_bus *bus)
18 {
19         int rc = ida_alloc(&sdw_bus_ida, GFP_KERNEL);
20
21         if (rc < 0)
22                 return rc;
23
24         bus->id = rc;
25
26         if (bus->controller_id == -1)
27                 bus->controller_id = rc;
28
29         return 0;
30 }
31
32 /**
33  * sdw_bus_master_add() - add a bus Master instance
34  * @bus: bus instance
35  * @parent: parent device
36  * @fwnode: firmware node handle
37  *
38  * Initializes the bus instance, read properties and create child
39  * devices.
40  */
41 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
42                        struct fwnode_handle *fwnode)
43 {
44         struct sdw_master_prop *prop = NULL;
45         int ret;
46
47         if (!parent) {
48                 pr_err("SoundWire parent device is not set\n");
49                 return -ENODEV;
50         }
51
52         ret = sdw_get_id(bus);
53         if (ret < 0) {
54                 dev_err(parent, "Failed to get bus id\n");
55                 return ret;
56         }
57
58         ret = sdw_master_device_add(bus, parent, fwnode);
59         if (ret < 0) {
60                 dev_err(parent, "Failed to add master device at link %d\n",
61                         bus->link_id);
62                 return ret;
63         }
64
65         if (!bus->ops) {
66                 dev_err(bus->dev, "SoundWire Bus ops are not set\n");
67                 return -EINVAL;
68         }
69
70         if (!bus->compute_params) {
71                 dev_err(bus->dev,
72                         "Bandwidth allocation not configured, compute_params no set\n");
73                 return -EINVAL;
74         }
75
76         /*
77          * Give each bus_lock and msg_lock a unique key so that lockdep won't
78          * trigger a deadlock warning when the locks of several buses are
79          * grabbed during configuration of a multi-bus stream.
80          */
81         lockdep_register_key(&bus->msg_lock_key);
82         __mutex_init(&bus->msg_lock, "msg_lock", &bus->msg_lock_key);
83
84         lockdep_register_key(&bus->bus_lock_key);
85         __mutex_init(&bus->bus_lock, "bus_lock", &bus->bus_lock_key);
86
87         INIT_LIST_HEAD(&bus->slaves);
88         INIT_LIST_HEAD(&bus->m_rt_list);
89
90         /*
91          * Initialize multi_link flag
92          */
93         bus->multi_link = false;
94         if (bus->ops->read_prop) {
95                 ret = bus->ops->read_prop(bus);
96                 if (ret < 0) {
97                         dev_err(bus->dev,
98                                 "Bus read properties failed:%d\n", ret);
99                         return ret;
100                 }
101         }
102
103         sdw_bus_debugfs_init(bus);
104
105         /*
106          * Device numbers in SoundWire are 0 through 15. Enumeration device
107          * number (0), Broadcast device number (15), Group numbers (12 and
108          * 13) and Master device number (14) are not used for assignment so
109          * mask these and other higher bits.
110          */
111
112         /* Set higher order bits */
113         *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
114
115         /* Set enumuration device number and broadcast device number */
116         set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
117         set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
118
119         /* Set group device numbers and master device number */
120         set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
121         set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
122         set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
123
124         /*
125          * SDW is an enumerable bus, but devices can be powered off. So,
126          * they won't be able to report as present.
127          *
128          * Create Slave devices based on Slaves described in
129          * the respective firmware (ACPI/DT)
130          */
131         if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
132                 ret = sdw_acpi_find_slaves(bus);
133         else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
134                 ret = sdw_of_find_slaves(bus);
135         else
136                 ret = -ENOTSUPP; /* No ACPI/DT so error out */
137
138         if (ret < 0) {
139                 dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
140                 return ret;
141         }
142
143         /*
144          * Initialize clock values based on Master properties. The max
145          * frequency is read from max_clk_freq property. Current assumption
146          * is that the bus will start at highest clock frequency when
147          * powered on.
148          *
149          * Default active bank will be 0 as out of reset the Slaves have
150          * to start with bank 0 (Table 40 of Spec)
151          */
152         prop = &bus->prop;
153         bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
154         bus->params.curr_dr_freq = bus->params.max_dr_freq;
155         bus->params.curr_bank = SDW_BANK0;
156         bus->params.next_bank = SDW_BANK1;
157
158         ret = sdw_irq_create(bus, fwnode);
159         if (ret)
160                 return ret;
161
162         return 0;
163 }
164 EXPORT_SYMBOL(sdw_bus_master_add);
165
166 static int sdw_delete_slave(struct device *dev, void *data)
167 {
168         struct sdw_slave *slave = dev_to_sdw_dev(dev);
169         struct sdw_bus *bus = slave->bus;
170
171         pm_runtime_disable(dev);
172
173         sdw_slave_debugfs_exit(slave);
174
175         mutex_lock(&bus->bus_lock);
176
177         if (slave->dev_num) { /* clear dev_num if assigned */
178                 clear_bit(slave->dev_num, bus->assigned);
179                 if (bus->ops && bus->ops->put_device_num)
180                         bus->ops->put_device_num(bus, slave);
181         }
182         list_del_init(&slave->node);
183         mutex_unlock(&bus->bus_lock);
184
185         device_unregister(dev);
186         return 0;
187 }
188
189 /**
190  * sdw_bus_master_delete() - delete the bus master instance
191  * @bus: bus to be deleted
192  *
193  * Remove the instance, delete the child devices.
194  */
195 void sdw_bus_master_delete(struct sdw_bus *bus)
196 {
197         device_for_each_child(bus->dev, NULL, sdw_delete_slave);
198
199         sdw_irq_delete(bus);
200
201         sdw_master_device_del(bus);
202
203         sdw_bus_debugfs_exit(bus);
204         lockdep_unregister_key(&bus->bus_lock_key);
205         lockdep_unregister_key(&bus->msg_lock_key);
206         ida_free(&sdw_bus_ida, bus->id);
207 }
208 EXPORT_SYMBOL(sdw_bus_master_delete);
209
210 /*
211  * SDW IO Calls
212  */
213
214 static inline int find_response_code(enum sdw_command_response resp)
215 {
216         switch (resp) {
217         case SDW_CMD_OK:
218                 return 0;
219
220         case SDW_CMD_IGNORED:
221                 return -ENODATA;
222
223         case SDW_CMD_TIMEOUT:
224                 return -ETIMEDOUT;
225
226         default:
227                 return -EIO;
228         }
229 }
230
231 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
232 {
233         int retry = bus->prop.err_threshold;
234         enum sdw_command_response resp;
235         int ret = 0, i;
236
237         for (i = 0; i <= retry; i++) {
238                 resp = bus->ops->xfer_msg(bus, msg);
239                 ret = find_response_code(resp);
240
241                 /* if cmd is ok or ignored return */
242                 if (ret == 0 || ret == -ENODATA)
243                         return ret;
244         }
245
246         return ret;
247 }
248
249 static inline int do_transfer_defer(struct sdw_bus *bus,
250                                     struct sdw_msg *msg)
251 {
252         struct sdw_defer *defer = &bus->defer_msg;
253         int retry = bus->prop.err_threshold;
254         enum sdw_command_response resp;
255         int ret = 0, i;
256
257         defer->msg = msg;
258         defer->length = msg->len;
259         init_completion(&defer->complete);
260
261         for (i = 0; i <= retry; i++) {
262                 resp = bus->ops->xfer_msg_defer(bus);
263                 ret = find_response_code(resp);
264                 /* if cmd is ok or ignored return */
265                 if (ret == 0 || ret == -ENODATA)
266                         return ret;
267         }
268
269         return ret;
270 }
271
272 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
273 {
274         int ret;
275
276         ret = do_transfer(bus, msg);
277         if (ret != 0 && ret != -ENODATA)
278                 dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
279                         msg->dev_num, ret,
280                         (msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read",
281                         msg->addr, msg->len);
282
283         return ret;
284 }
285
286 /**
287  * sdw_transfer() - Synchronous transfer message to a SDW Slave device
288  * @bus: SDW bus
289  * @msg: SDW message to be xfered
290  */
291 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
292 {
293         int ret;
294
295         mutex_lock(&bus->msg_lock);
296
297         ret = sdw_transfer_unlocked(bus, msg);
298
299         mutex_unlock(&bus->msg_lock);
300
301         return ret;
302 }
303
304 /**
305  * sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers
306  * @bus: SDW bus
307  * @sync_delay: Delay before reading status
308  */
309 void sdw_show_ping_status(struct sdw_bus *bus, bool sync_delay)
310 {
311         u32 status;
312
313         if (!bus->ops->read_ping_status)
314                 return;
315
316         /*
317          * wait for peripheral to sync if desired. 10-15ms should be more than
318          * enough in most cases.
319          */
320         if (sync_delay)
321                 usleep_range(10000, 15000);
322
323         mutex_lock(&bus->msg_lock);
324
325         status = bus->ops->read_ping_status(bus);
326
327         mutex_unlock(&bus->msg_lock);
328
329         if (!status)
330                 dev_warn(bus->dev, "%s: no peripherals attached\n", __func__);
331         else
332                 dev_dbg(bus->dev, "PING status: %#x\n", status);
333 }
334 EXPORT_SYMBOL(sdw_show_ping_status);
335
336 /**
337  * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
338  * @bus: SDW bus
339  * @msg: SDW message to be xfered
340  *
341  * Caller needs to hold the msg_lock lock while calling this
342  */
343 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg)
344 {
345         int ret;
346
347         if (!bus->ops->xfer_msg_defer)
348                 return -ENOTSUPP;
349
350         ret = do_transfer_defer(bus, msg);
351         if (ret != 0 && ret != -ENODATA)
352                 dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
353                         msg->dev_num, ret);
354
355         return ret;
356 }
357
358 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
359                  u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
360 {
361         memset(msg, 0, sizeof(*msg));
362         msg->addr = addr; /* addr is 16 bit and truncated here */
363         msg->len = count;
364         msg->dev_num = dev_num;
365         msg->flags = flags;
366         msg->buf = buf;
367
368         if (addr < SDW_REG_NO_PAGE) /* no paging area */
369                 return 0;
370
371         if (addr >= SDW_REG_MAX) { /* illegal addr */
372                 pr_err("SDW: Invalid address %x passed\n", addr);
373                 return -EINVAL;
374         }
375
376         if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
377                 if (slave && !slave->prop.paging_support)
378                         return 0;
379                 /* no need for else as that will fall-through to paging */
380         }
381
382         /* paging mandatory */
383         if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
384                 pr_err("SDW: Invalid device for paging :%d\n", dev_num);
385                 return -EINVAL;
386         }
387
388         if (!slave) {
389                 pr_err("SDW: No slave for paging addr\n");
390                 return -EINVAL;
391         }
392
393         if (!slave->prop.paging_support) {
394                 dev_err(&slave->dev,
395                         "address %x needs paging but no support\n", addr);
396                 return -EINVAL;
397         }
398
399         msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
400         msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
401         msg->addr |= BIT(15);
402         msg->page = true;
403
404         return 0;
405 }
406
407 /*
408  * Read/Write IO functions.
409  */
410
411 static int sdw_ntransfer_no_pm(struct sdw_slave *slave, u32 addr, u8 flags,
412                                size_t count, u8 *val)
413 {
414         struct sdw_msg msg;
415         size_t size;
416         int ret;
417
418         while (count) {
419                 // Only handle bytes up to next page boundary
420                 size = min_t(size_t, count, (SDW_REGADDR + 1) - (addr & SDW_REGADDR));
421
422                 ret = sdw_fill_msg(&msg, slave, addr, size, slave->dev_num, flags, val);
423                 if (ret < 0)
424                         return ret;
425
426                 ret = sdw_transfer(slave->bus, &msg);
427                 if (ret < 0 && !slave->is_mockup_device)
428                         return ret;
429
430                 addr += size;
431                 val += size;
432                 count -= size;
433         }
434
435         return 0;
436 }
437
438 /**
439  * sdw_nread_no_pm() - Read "n" contiguous SDW Slave registers with no PM
440  * @slave: SDW Slave
441  * @addr: Register address
442  * @count: length
443  * @val: Buffer for values to be read
444  *
445  * Note that if the message crosses a page boundary each page will be
446  * transferred under a separate invocation of the msg_lock.
447  */
448 int sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
449 {
450         return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_READ, count, val);
451 }
452 EXPORT_SYMBOL(sdw_nread_no_pm);
453
454 /**
455  * sdw_nwrite_no_pm() - Write "n" contiguous SDW Slave registers with no PM
456  * @slave: SDW Slave
457  * @addr: Register address
458  * @count: length
459  * @val: Buffer for values to be written
460  *
461  * Note that if the message crosses a page boundary each page will be
462  * transferred under a separate invocation of the msg_lock.
463  */
464 int sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
465 {
466         return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_WRITE, count, (u8 *)val);
467 }
468 EXPORT_SYMBOL(sdw_nwrite_no_pm);
469
470 /**
471  * sdw_write_no_pm() - Write a SDW Slave register with no PM
472  * @slave: SDW Slave
473  * @addr: Register address
474  * @value: Register value
475  */
476 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
477 {
478         return sdw_nwrite_no_pm(slave, addr, 1, &value);
479 }
480 EXPORT_SYMBOL(sdw_write_no_pm);
481
482 static int
483 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
484 {
485         struct sdw_msg msg;
486         u8 buf;
487         int ret;
488
489         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
490                            SDW_MSG_FLAG_READ, &buf);
491         if (ret < 0)
492                 return ret;
493
494         ret = sdw_transfer(bus, &msg);
495         if (ret < 0)
496                 return ret;
497
498         return buf;
499 }
500
501 static int
502 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
503 {
504         struct sdw_msg msg;
505         int ret;
506
507         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
508                            SDW_MSG_FLAG_WRITE, &value);
509         if (ret < 0)
510                 return ret;
511
512         return sdw_transfer(bus, &msg);
513 }
514
515 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
516 {
517         struct sdw_msg msg;
518         u8 buf;
519         int ret;
520
521         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
522                            SDW_MSG_FLAG_READ, &buf);
523         if (ret < 0)
524                 return ret;
525
526         ret = sdw_transfer_unlocked(bus, &msg);
527         if (ret < 0)
528                 return ret;
529
530         return buf;
531 }
532 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
533
534 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
535 {
536         struct sdw_msg msg;
537         int ret;
538
539         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
540                            SDW_MSG_FLAG_WRITE, &value);
541         if (ret < 0)
542                 return ret;
543
544         return sdw_transfer_unlocked(bus, &msg);
545 }
546 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
547
548 /**
549  * sdw_read_no_pm() - Read a SDW Slave register with no PM
550  * @slave: SDW Slave
551  * @addr: Register address
552  */
553 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
554 {
555         u8 buf;
556         int ret;
557
558         ret = sdw_nread_no_pm(slave, addr, 1, &buf);
559         if (ret < 0)
560                 return ret;
561         else
562                 return buf;
563 }
564 EXPORT_SYMBOL(sdw_read_no_pm);
565
566 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
567 {
568         int tmp;
569
570         tmp = sdw_read_no_pm(slave, addr);
571         if (tmp < 0)
572                 return tmp;
573
574         tmp = (tmp & ~mask) | val;
575         return sdw_write_no_pm(slave, addr, tmp);
576 }
577 EXPORT_SYMBOL(sdw_update_no_pm);
578
579 /* Read-Modify-Write Slave register */
580 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
581 {
582         int tmp;
583
584         tmp = sdw_read(slave, addr);
585         if (tmp < 0)
586                 return tmp;
587
588         tmp = (tmp & ~mask) | val;
589         return sdw_write(slave, addr, tmp);
590 }
591 EXPORT_SYMBOL(sdw_update);
592
593 /**
594  * sdw_nread() - Read "n" contiguous SDW Slave registers
595  * @slave: SDW Slave
596  * @addr: Register address
597  * @count: length
598  * @val: Buffer for values to be read
599  *
600  * This version of the function will take a PM reference to the slave
601  * device.
602  * Note that if the message crosses a page boundary each page will be
603  * transferred under a separate invocation of the msg_lock.
604  */
605 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
606 {
607         int ret;
608
609         ret = pm_runtime_get_sync(&slave->dev);
610         if (ret < 0 && ret != -EACCES) {
611                 pm_runtime_put_noidle(&slave->dev);
612                 return ret;
613         }
614
615         ret = sdw_nread_no_pm(slave, addr, count, val);
616
617         pm_runtime_mark_last_busy(&slave->dev);
618         pm_runtime_put(&slave->dev);
619
620         return ret;
621 }
622 EXPORT_SYMBOL(sdw_nread);
623
624 /**
625  * sdw_nwrite() - Write "n" contiguous SDW Slave registers
626  * @slave: SDW Slave
627  * @addr: Register address
628  * @count: length
629  * @val: Buffer for values to be written
630  *
631  * This version of the function will take a PM reference to the slave
632  * device.
633  * Note that if the message crosses a page boundary each page will be
634  * transferred under a separate invocation of the msg_lock.
635  */
636 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
637 {
638         int ret;
639
640         ret = pm_runtime_get_sync(&slave->dev);
641         if (ret < 0 && ret != -EACCES) {
642                 pm_runtime_put_noidle(&slave->dev);
643                 return ret;
644         }
645
646         ret = sdw_nwrite_no_pm(slave, addr, count, val);
647
648         pm_runtime_mark_last_busy(&slave->dev);
649         pm_runtime_put(&slave->dev);
650
651         return ret;
652 }
653 EXPORT_SYMBOL(sdw_nwrite);
654
655 /**
656  * sdw_read() - Read a SDW Slave register
657  * @slave: SDW Slave
658  * @addr: Register address
659  *
660  * This version of the function will take a PM reference to the slave
661  * device.
662  */
663 int sdw_read(struct sdw_slave *slave, u32 addr)
664 {
665         u8 buf;
666         int ret;
667
668         ret = sdw_nread(slave, addr, 1, &buf);
669         if (ret < 0)
670                 return ret;
671
672         return buf;
673 }
674 EXPORT_SYMBOL(sdw_read);
675
676 /**
677  * sdw_write() - Write a SDW Slave register
678  * @slave: SDW Slave
679  * @addr: Register address
680  * @value: Register value
681  *
682  * This version of the function will take a PM reference to the slave
683  * device.
684  */
685 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
686 {
687         return sdw_nwrite(slave, addr, 1, &value);
688 }
689 EXPORT_SYMBOL(sdw_write);
690
691 /*
692  * SDW alert handling
693  */
694
695 /* called with bus_lock held */
696 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
697 {
698         struct sdw_slave *slave;
699
700         list_for_each_entry(slave, &bus->slaves, node) {
701                 if (slave->dev_num == i)
702                         return slave;
703         }
704
705         return NULL;
706 }
707
708 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
709 {
710         if (slave->id.mfg_id != id.mfg_id ||
711             slave->id.part_id != id.part_id ||
712             slave->id.class_id != id.class_id ||
713             (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
714              slave->id.unique_id != id.unique_id))
715                 return -ENODEV;
716
717         return 0;
718 }
719 EXPORT_SYMBOL(sdw_compare_devid);
720
721 /* called with bus_lock held */
722 static int sdw_get_device_num(struct sdw_slave *slave)
723 {
724         struct sdw_bus *bus = slave->bus;
725         int bit;
726
727         if (bus->ops && bus->ops->get_device_num) {
728                 bit = bus->ops->get_device_num(bus, slave);
729                 if (bit < 0)
730                         goto err;
731         } else {
732                 bit = find_first_zero_bit(bus->assigned, SDW_MAX_DEVICES);
733                 if (bit == SDW_MAX_DEVICES) {
734                         bit = -ENODEV;
735                         goto err;
736                 }
737         }
738
739         /*
740          * Do not update dev_num in Slave data structure here,
741          * Update once program dev_num is successful
742          */
743         set_bit(bit, bus->assigned);
744
745 err:
746         return bit;
747 }
748
749 static int sdw_assign_device_num(struct sdw_slave *slave)
750 {
751         struct sdw_bus *bus = slave->bus;
752         int ret, dev_num;
753         bool new_device = false;
754
755         /* check first if device number is assigned, if so reuse that */
756         if (!slave->dev_num) {
757                 if (!slave->dev_num_sticky) {
758                         mutex_lock(&slave->bus->bus_lock);
759                         dev_num = sdw_get_device_num(slave);
760                         mutex_unlock(&slave->bus->bus_lock);
761                         if (dev_num < 0) {
762                                 dev_err(bus->dev, "Get dev_num failed: %d\n",
763                                         dev_num);
764                                 return dev_num;
765                         }
766                         slave->dev_num = dev_num;
767                         slave->dev_num_sticky = dev_num;
768                         new_device = true;
769                 } else {
770                         slave->dev_num = slave->dev_num_sticky;
771                 }
772         }
773
774         if (!new_device)
775                 dev_dbg(bus->dev,
776                         "Slave already registered, reusing dev_num:%d\n",
777                         slave->dev_num);
778
779         /* Clear the slave->dev_num to transfer message on device 0 */
780         dev_num = slave->dev_num;
781         slave->dev_num = 0;
782
783         ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
784         if (ret < 0) {
785                 dev_err(bus->dev, "Program device_num %d failed: %d\n",
786                         dev_num, ret);
787                 return ret;
788         }
789
790         /* After xfer of msg, restore dev_num */
791         slave->dev_num = slave->dev_num_sticky;
792
793         if (bus->ops && bus->ops->new_peripheral_assigned)
794                 bus->ops->new_peripheral_assigned(bus, slave, dev_num);
795
796         return 0;
797 }
798
799 void sdw_extract_slave_id(struct sdw_bus *bus,
800                           u64 addr, struct sdw_slave_id *id)
801 {
802         dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
803
804         id->sdw_version = SDW_VERSION(addr);
805         id->unique_id = SDW_UNIQUE_ID(addr);
806         id->mfg_id = SDW_MFG_ID(addr);
807         id->part_id = SDW_PART_ID(addr);
808         id->class_id = SDW_CLASS_ID(addr);
809
810         dev_dbg(bus->dev,
811                 "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
812                 id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
813 }
814 EXPORT_SYMBOL(sdw_extract_slave_id);
815
816 static int sdw_program_device_num(struct sdw_bus *bus, bool *programmed)
817 {
818         u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
819         struct sdw_slave *slave, *_s;
820         struct sdw_slave_id id;
821         struct sdw_msg msg;
822         bool found;
823         int count = 0, ret;
824         u64 addr;
825
826         *programmed = false;
827
828         /* No Slave, so use raw xfer api */
829         ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
830                            SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
831         if (ret < 0)
832                 return ret;
833
834         do {
835                 ret = sdw_transfer(bus, &msg);
836                 if (ret == -ENODATA) { /* end of device id reads */
837                         dev_dbg(bus->dev, "No more devices to enumerate\n");
838                         ret = 0;
839                         break;
840                 }
841                 if (ret < 0) {
842                         dev_err(bus->dev, "DEVID read fail:%d\n", ret);
843                         break;
844                 }
845
846                 /*
847                  * Construct the addr and extract. Cast the higher shift
848                  * bits to avoid truncation due to size limit.
849                  */
850                 addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
851                         ((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
852                         ((u64)buf[0] << 40);
853
854                 sdw_extract_slave_id(bus, addr, &id);
855
856                 found = false;
857                 /* Now compare with entries */
858                 list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
859                         if (sdw_compare_devid(slave, id) == 0) {
860                                 found = true;
861
862                                 /*
863                                  * To prevent skipping state-machine stages don't
864                                  * program a device until we've seen it UNATTACH.
865                                  * Must return here because no other device on #0
866                                  * can be detected until this one has been
867                                  * assigned a device ID.
868                                  */
869                                 if (slave->status != SDW_SLAVE_UNATTACHED)
870                                         return 0;
871
872                                 /*
873                                  * Assign a new dev_num to this Slave and
874                                  * not mark it present. It will be marked
875                                  * present after it reports ATTACHED on new
876                                  * dev_num
877                                  */
878                                 ret = sdw_assign_device_num(slave);
879                                 if (ret < 0) {
880                                         dev_err(bus->dev,
881                                                 "Assign dev_num failed:%d\n",
882                                                 ret);
883                                         return ret;
884                                 }
885
886                                 *programmed = true;
887
888                                 break;
889                         }
890                 }
891
892                 if (!found) {
893                         /* TODO: Park this device in Group 13 */
894
895                         /*
896                          * add Slave device even if there is no platform
897                          * firmware description. There will be no driver probe
898                          * but the user/integration will be able to see the
899                          * device, enumeration status and device number in sysfs
900                          */
901                         sdw_slave_add(bus, &id, NULL);
902
903                         dev_err(bus->dev, "Slave Entry not found\n");
904                 }
905
906                 count++;
907
908                 /*
909                  * Check till error out or retry (count) exhausts.
910                  * Device can drop off and rejoin during enumeration
911                  * so count till twice the bound.
912                  */
913
914         } while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
915
916         return ret;
917 }
918
919 static void sdw_modify_slave_status(struct sdw_slave *slave,
920                                     enum sdw_slave_status status)
921 {
922         struct sdw_bus *bus = slave->bus;
923
924         mutex_lock(&bus->bus_lock);
925
926         dev_vdbg(bus->dev,
927                  "changing status slave %d status %d new status %d\n",
928                  slave->dev_num, slave->status, status);
929
930         if (status == SDW_SLAVE_UNATTACHED) {
931                 dev_dbg(&slave->dev,
932                         "initializing enumeration and init completion for Slave %d\n",
933                         slave->dev_num);
934
935                 reinit_completion(&slave->enumeration_complete);
936                 reinit_completion(&slave->initialization_complete);
937
938         } else if ((status == SDW_SLAVE_ATTACHED) &&
939                    (slave->status == SDW_SLAVE_UNATTACHED)) {
940                 dev_dbg(&slave->dev,
941                         "signaling enumeration completion for Slave %d\n",
942                         slave->dev_num);
943
944                 complete_all(&slave->enumeration_complete);
945         }
946         slave->status = status;
947         mutex_unlock(&bus->bus_lock);
948 }
949
950 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
951                                        enum sdw_clk_stop_mode mode,
952                                        enum sdw_clk_stop_type type)
953 {
954         int ret = 0;
955
956         mutex_lock(&slave->sdw_dev_lock);
957
958         if (slave->probed)  {
959                 struct device *dev = &slave->dev;
960                 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
961
962                 if (drv->ops && drv->ops->clk_stop)
963                         ret = drv->ops->clk_stop(slave, mode, type);
964         }
965
966         mutex_unlock(&slave->sdw_dev_lock);
967
968         return ret;
969 }
970
971 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
972                                       enum sdw_clk_stop_mode mode,
973                                       bool prepare)
974 {
975         bool wake_en;
976         u32 val = 0;
977         int ret;
978
979         wake_en = slave->prop.wake_capable;
980
981         if (prepare) {
982                 val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
983
984                 if (mode == SDW_CLK_STOP_MODE1)
985                         val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
986
987                 if (wake_en)
988                         val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
989         } else {
990                 ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
991                 if (ret < 0) {
992                         if (ret != -ENODATA)
993                                 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
994                         return ret;
995                 }
996                 val = ret;
997                 val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
998         }
999
1000         ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
1001
1002         if (ret < 0 && ret != -ENODATA)
1003                 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret);
1004
1005         return ret;
1006 }
1007
1008 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num)
1009 {
1010         int retry = bus->clk_stop_timeout;
1011         int val;
1012
1013         do {
1014                 val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
1015                 if (val < 0) {
1016                         if (val != -ENODATA)
1017                                 dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
1018                         return val;
1019                 }
1020                 val &= SDW_SCP_STAT_CLK_STP_NF;
1021                 if (!val) {
1022                         dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d\n",
1023                                 dev_num);
1024                         return 0;
1025                 }
1026
1027                 usleep_range(1000, 1500);
1028                 retry--;
1029         } while (retry);
1030
1031         dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d\n",
1032                 dev_num);
1033
1034         return -ETIMEDOUT;
1035 }
1036
1037 /**
1038  * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
1039  *
1040  * @bus: SDW bus instance
1041  *
1042  * Query Slave for clock stop mode and prepare for that mode.
1043  */
1044 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
1045 {
1046         bool simple_clk_stop = true;
1047         struct sdw_slave *slave;
1048         bool is_slave = false;
1049         int ret = 0;
1050
1051         /*
1052          * In order to save on transition time, prepare
1053          * each Slave and then wait for all Slave(s) to be
1054          * prepared for clock stop.
1055          * If one of the Slave devices has lost sync and
1056          * replies with Command Ignored/-ENODATA, we continue
1057          * the loop
1058          */
1059         list_for_each_entry(slave, &bus->slaves, node) {
1060                 if (!slave->dev_num)
1061                         continue;
1062
1063                 if (slave->status != SDW_SLAVE_ATTACHED &&
1064                     slave->status != SDW_SLAVE_ALERT)
1065                         continue;
1066
1067                 /* Identify if Slave(s) are available on Bus */
1068                 is_slave = true;
1069
1070                 ret = sdw_slave_clk_stop_callback(slave,
1071                                                   SDW_CLK_STOP_MODE0,
1072                                                   SDW_CLK_PRE_PREPARE);
1073                 if (ret < 0 && ret != -ENODATA) {
1074                         dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret);
1075                         return ret;
1076                 }
1077
1078                 /* Only prepare a Slave device if needed */
1079                 if (!slave->prop.simple_clk_stop_capable) {
1080                         simple_clk_stop = false;
1081
1082                         ret = sdw_slave_clk_stop_prepare(slave,
1083                                                          SDW_CLK_STOP_MODE0,
1084                                                          true);
1085                         if (ret < 0 && ret != -ENODATA) {
1086                                 dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret);
1087                                 return ret;
1088                         }
1089                 }
1090         }
1091
1092         /* Skip remaining clock stop preparation if no Slave is attached */
1093         if (!is_slave)
1094                 return 0;
1095
1096         /*
1097          * Don't wait for all Slaves to be ready if they follow the simple
1098          * state machine
1099          */
1100         if (!simple_clk_stop) {
1101                 ret = sdw_bus_wait_for_clk_prep_deprep(bus,
1102                                                        SDW_BROADCAST_DEV_NUM);
1103                 /*
1104                  * if there are no Slave devices present and the reply is
1105                  * Command_Ignored/-ENODATA, we don't need to continue with the
1106                  * flow and can just return here. The error code is not modified
1107                  * and its handling left as an exercise for the caller.
1108                  */
1109                 if (ret < 0)
1110                         return ret;
1111         }
1112
1113         /* Inform slaves that prep is done */
1114         list_for_each_entry(slave, &bus->slaves, node) {
1115                 if (!slave->dev_num)
1116                         continue;
1117
1118                 if (slave->status != SDW_SLAVE_ATTACHED &&
1119                     slave->status != SDW_SLAVE_ALERT)
1120                         continue;
1121
1122                 ret = sdw_slave_clk_stop_callback(slave,
1123                                                   SDW_CLK_STOP_MODE0,
1124                                                   SDW_CLK_POST_PREPARE);
1125
1126                 if (ret < 0 && ret != -ENODATA) {
1127                         dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret);
1128                         return ret;
1129                 }
1130         }
1131
1132         return 0;
1133 }
1134 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1135
1136 /**
1137  * sdw_bus_clk_stop: stop bus clock
1138  *
1139  * @bus: SDW bus instance
1140  *
1141  * After preparing the Slaves for clock stop, stop the clock by broadcasting
1142  * write to SCP_CTRL register.
1143  */
1144 int sdw_bus_clk_stop(struct sdw_bus *bus)
1145 {
1146         int ret;
1147
1148         /*
1149          * broadcast clock stop now, attached Slaves will ACK this,
1150          * unattached will ignore
1151          */
1152         ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1153                                SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1154         if (ret < 0) {
1155                 if (ret != -ENODATA)
1156                         dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret);
1157                 return ret;
1158         }
1159
1160         return 0;
1161 }
1162 EXPORT_SYMBOL(sdw_bus_clk_stop);
1163
1164 /**
1165  * sdw_bus_exit_clk_stop: Exit clock stop mode
1166  *
1167  * @bus: SDW bus instance
1168  *
1169  * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1170  * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1171  * back.
1172  */
1173 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1174 {
1175         bool simple_clk_stop = true;
1176         struct sdw_slave *slave;
1177         bool is_slave = false;
1178         int ret;
1179
1180         /*
1181          * In order to save on transition time, de-prepare
1182          * each Slave and then wait for all Slave(s) to be
1183          * de-prepared after clock resume.
1184          */
1185         list_for_each_entry(slave, &bus->slaves, node) {
1186                 if (!slave->dev_num)
1187                         continue;
1188
1189                 if (slave->status != SDW_SLAVE_ATTACHED &&
1190                     slave->status != SDW_SLAVE_ALERT)
1191                         continue;
1192
1193                 /* Identify if Slave(s) are available on Bus */
1194                 is_slave = true;
1195
1196                 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1197                                                   SDW_CLK_PRE_DEPREPARE);
1198                 if (ret < 0)
1199                         dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret);
1200
1201                 /* Only de-prepare a Slave device if needed */
1202                 if (!slave->prop.simple_clk_stop_capable) {
1203                         simple_clk_stop = false;
1204
1205                         ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0,
1206                                                          false);
1207
1208                         if (ret < 0)
1209                                 dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret);
1210                 }
1211         }
1212
1213         /* Skip remaining clock stop de-preparation if no Slave is attached */
1214         if (!is_slave)
1215                 return 0;
1216
1217         /*
1218          * Don't wait for all Slaves to be ready if they follow the simple
1219          * state machine
1220          */
1221         if (!simple_clk_stop) {
1222                 ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM);
1223                 if (ret < 0)
1224                         dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret);
1225         }
1226
1227         list_for_each_entry(slave, &bus->slaves, node) {
1228                 if (!slave->dev_num)
1229                         continue;
1230
1231                 if (slave->status != SDW_SLAVE_ATTACHED &&
1232                     slave->status != SDW_SLAVE_ALERT)
1233                         continue;
1234
1235                 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1236                                                   SDW_CLK_POST_DEPREPARE);
1237                 if (ret < 0)
1238                         dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret);
1239         }
1240
1241         return 0;
1242 }
1243 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1244
1245 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1246                            int port, bool enable, int mask)
1247 {
1248         u32 addr;
1249         int ret;
1250         u8 val = 0;
1251
1252         if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1253                 dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1254                         enable ? "on" : "off");
1255                 mask |= SDW_DPN_INT_TEST_FAIL;
1256         }
1257
1258         addr = SDW_DPN_INTMASK(port);
1259
1260         /* Set/Clear port ready interrupt mask */
1261         if (enable) {
1262                 val |= mask;
1263                 val |= SDW_DPN_INT_PORT_READY;
1264         } else {
1265                 val &= ~(mask);
1266                 val &= ~SDW_DPN_INT_PORT_READY;
1267         }
1268
1269         ret = sdw_update_no_pm(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1270         if (ret < 0)
1271                 dev_err(&slave->dev,
1272                         "SDW_DPN_INTMASK write failed:%d\n", val);
1273
1274         return ret;
1275 }
1276
1277 static int sdw_slave_set_frequency(struct sdw_slave *slave)
1278 {
1279         u32 mclk_freq = slave->bus->prop.mclk_freq;
1280         u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1281         unsigned int scale;
1282         u8 scale_index;
1283         u8 base;
1284         int ret;
1285
1286         /*
1287          * frequency base and scale registers are required for SDCA
1288          * devices. They may also be used for 1.2+/non-SDCA devices.
1289          * Driver can set the property, we will need a DisCo property
1290          * to discover this case from platform firmware.
1291          */
1292         if (!slave->id.class_id && !slave->prop.clock_reg_supported)
1293                 return 0;
1294
1295         if (!mclk_freq) {
1296                 dev_err(&slave->dev,
1297                         "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1298                 return -EINVAL;
1299         }
1300
1301         /*
1302          * map base frequency using Table 89 of SoundWire 1.2 spec.
1303          * The order of the tests just follows the specification, this
1304          * is not a selection between possible values or a search for
1305          * the best value but just a mapping.  Only one case per platform
1306          * is relevant.
1307          * Some BIOS have inconsistent values for mclk_freq but a
1308          * correct root so we force the mclk_freq to avoid variations.
1309          */
1310         if (!(19200000 % mclk_freq)) {
1311                 mclk_freq = 19200000;
1312                 base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1313         } else if (!(24000000 % mclk_freq)) {
1314                 mclk_freq = 24000000;
1315                 base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1316         } else if (!(24576000 % mclk_freq)) {
1317                 mclk_freq = 24576000;
1318                 base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1319         } else if (!(22579200 % mclk_freq)) {
1320                 mclk_freq = 22579200;
1321                 base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1322         } else if (!(32000000 % mclk_freq)) {
1323                 mclk_freq = 32000000;
1324                 base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1325         } else {
1326                 dev_err(&slave->dev,
1327                         "Unsupported clock base, mclk %d\n",
1328                         mclk_freq);
1329                 return -EINVAL;
1330         }
1331
1332         if (mclk_freq % curr_freq) {
1333                 dev_err(&slave->dev,
1334                         "mclk %d is not multiple of bus curr_freq %d\n",
1335                         mclk_freq, curr_freq);
1336                 return -EINVAL;
1337         }
1338
1339         scale = mclk_freq / curr_freq;
1340
1341         /*
1342          * map scale to Table 90 of SoundWire 1.2 spec - and check
1343          * that the scale is a power of two and maximum 64
1344          */
1345         scale_index = ilog2(scale);
1346
1347         if (BIT(scale_index) != scale || scale_index > 6) {
1348                 dev_err(&slave->dev,
1349                         "No match found for scale %d, bus mclk %d curr_freq %d\n",
1350                         scale, mclk_freq, curr_freq);
1351                 return -EINVAL;
1352         }
1353         scale_index++;
1354
1355         ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
1356         if (ret < 0) {
1357                 dev_err(&slave->dev,
1358                         "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1359                 return ret;
1360         }
1361
1362         /* initialize scale for both banks */
1363         ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
1364         if (ret < 0) {
1365                 dev_err(&slave->dev,
1366                         "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1367                 return ret;
1368         }
1369         ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
1370         if (ret < 0)
1371                 dev_err(&slave->dev,
1372                         "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1373
1374         dev_dbg(&slave->dev,
1375                 "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1376                 base, scale_index, mclk_freq, curr_freq);
1377
1378         return ret;
1379 }
1380
1381 static int sdw_initialize_slave(struct sdw_slave *slave)
1382 {
1383         struct sdw_slave_prop *prop = &slave->prop;
1384         int status;
1385         int ret;
1386         u8 val;
1387
1388         ret = sdw_slave_set_frequency(slave);
1389         if (ret < 0)
1390                 return ret;
1391
1392         if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
1393                 /* Clear bus clash interrupt before enabling interrupt mask */
1394                 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1395                 if (status < 0) {
1396                         dev_err(&slave->dev,
1397                                 "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
1398                         return status;
1399                 }
1400                 if (status & SDW_SCP_INT1_BUS_CLASH) {
1401                         dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
1402                         ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
1403                         if (ret < 0) {
1404                                 dev_err(&slave->dev,
1405                                         "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
1406                                 return ret;
1407                         }
1408                 }
1409         }
1410         if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
1411             !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
1412                 /* Clear parity interrupt before enabling interrupt mask */
1413                 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1414                 if (status < 0) {
1415                         dev_err(&slave->dev,
1416                                 "SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
1417                         return status;
1418                 }
1419                 if (status & SDW_SCP_INT1_PARITY) {
1420                         dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
1421                         ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
1422                         if (ret < 0) {
1423                                 dev_err(&slave->dev,
1424                                         "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
1425                                 return ret;
1426                         }
1427                 }
1428         }
1429
1430         /*
1431          * Set SCP_INT1_MASK register, typically bus clash and
1432          * implementation-defined interrupt mask. The Parity detection
1433          * may not always be correct on startup so its use is
1434          * device-dependent, it might e.g. only be enabled in
1435          * steady-state after a couple of frames.
1436          */
1437         val = slave->prop.scp_int1_mask;
1438
1439         /* Enable SCP interrupts */
1440         ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
1441         if (ret < 0) {
1442                 dev_err(&slave->dev,
1443                         "SDW_SCP_INTMASK1 write failed:%d\n", ret);
1444                 return ret;
1445         }
1446
1447         /* No need to continue if DP0 is not present */
1448         if (!slave->prop.dp0_prop)
1449                 return 0;
1450
1451         /* Enable DP0 interrupts */
1452         val = prop->dp0_prop->imp_def_interrupts;
1453         val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1454
1455         ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
1456         if (ret < 0)
1457                 dev_err(&slave->dev,
1458                         "SDW_DP0_INTMASK read failed:%d\n", ret);
1459         return ret;
1460 }
1461
1462 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1463 {
1464         u8 clear, impl_int_mask;
1465         int status, status2, ret, count = 0;
1466
1467         status = sdw_read_no_pm(slave, SDW_DP0_INT);
1468         if (status < 0) {
1469                 dev_err(&slave->dev,
1470                         "SDW_DP0_INT read failed:%d\n", status);
1471                 return status;
1472         }
1473
1474         do {
1475                 clear = status & ~SDW_DP0_INTERRUPTS;
1476
1477                 if (status & SDW_DP0_INT_TEST_FAIL) {
1478                         dev_err(&slave->dev, "Test fail for port 0\n");
1479                         clear |= SDW_DP0_INT_TEST_FAIL;
1480                 }
1481
1482                 /*
1483                  * Assumption: PORT_READY interrupt will be received only for
1484                  * ports implementing Channel Prepare state machine (CP_SM)
1485                  */
1486
1487                 if (status & SDW_DP0_INT_PORT_READY) {
1488                         complete(&slave->port_ready[0]);
1489                         clear |= SDW_DP0_INT_PORT_READY;
1490                 }
1491
1492                 if (status & SDW_DP0_INT_BRA_FAILURE) {
1493                         dev_err(&slave->dev, "BRA failed\n");
1494                         clear |= SDW_DP0_INT_BRA_FAILURE;
1495                 }
1496
1497                 impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1498                         SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1499
1500                 if (status & impl_int_mask) {
1501                         clear |= impl_int_mask;
1502                         *slave_status = clear;
1503                 }
1504
1505                 /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1506                 ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
1507                 if (ret < 0) {
1508                         dev_err(&slave->dev,
1509                                 "SDW_DP0_INT write failed:%d\n", ret);
1510                         return ret;
1511                 }
1512
1513                 /* Read DP0 interrupt again */
1514                 status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
1515                 if (status2 < 0) {
1516                         dev_err(&slave->dev,
1517                                 "SDW_DP0_INT read failed:%d\n", status2);
1518                         return status2;
1519                 }
1520                 /* filter to limit loop to interrupts identified in the first status read */
1521                 status &= status2;
1522
1523                 count++;
1524
1525                 /* we can get alerts while processing so keep retrying */
1526         } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1527
1528         if (count == SDW_READ_INTR_CLEAR_RETRY)
1529                 dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
1530
1531         return ret;
1532 }
1533
1534 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1535                                      int port, u8 *slave_status)
1536 {
1537         u8 clear, impl_int_mask;
1538         int status, status2, ret, count = 0;
1539         u32 addr;
1540
1541         if (port == 0)
1542                 return sdw_handle_dp0_interrupt(slave, slave_status);
1543
1544         addr = SDW_DPN_INT(port);
1545         status = sdw_read_no_pm(slave, addr);
1546         if (status < 0) {
1547                 dev_err(&slave->dev,
1548                         "SDW_DPN_INT read failed:%d\n", status);
1549
1550                 return status;
1551         }
1552
1553         do {
1554                 clear = status & ~SDW_DPN_INTERRUPTS;
1555
1556                 if (status & SDW_DPN_INT_TEST_FAIL) {
1557                         dev_err(&slave->dev, "Test fail for port:%d\n", port);
1558                         clear |= SDW_DPN_INT_TEST_FAIL;
1559                 }
1560
1561                 /*
1562                  * Assumption: PORT_READY interrupt will be received only
1563                  * for ports implementing CP_SM.
1564                  */
1565                 if (status & SDW_DPN_INT_PORT_READY) {
1566                         complete(&slave->port_ready[port]);
1567                         clear |= SDW_DPN_INT_PORT_READY;
1568                 }
1569
1570                 impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1571                         SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1572
1573                 if (status & impl_int_mask) {
1574                         clear |= impl_int_mask;
1575                         *slave_status = clear;
1576                 }
1577
1578                 /* clear the interrupt but don't touch reserved fields */
1579                 ret = sdw_write_no_pm(slave, addr, clear);
1580                 if (ret < 0) {
1581                         dev_err(&slave->dev,
1582                                 "SDW_DPN_INT write failed:%d\n", ret);
1583                         return ret;
1584                 }
1585
1586                 /* Read DPN interrupt again */
1587                 status2 = sdw_read_no_pm(slave, addr);
1588                 if (status2 < 0) {
1589                         dev_err(&slave->dev,
1590                                 "SDW_DPN_INT read failed:%d\n", status2);
1591                         return status2;
1592                 }
1593                 /* filter to limit loop to interrupts identified in the first status read */
1594                 status &= status2;
1595
1596                 count++;
1597
1598                 /* we can get alerts while processing so keep retrying */
1599         } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1600
1601         if (count == SDW_READ_INTR_CLEAR_RETRY)
1602                 dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
1603
1604         return ret;
1605 }
1606
1607 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1608 {
1609         struct sdw_slave_intr_status slave_intr;
1610         u8 clear = 0, bit, port_status[15] = {0};
1611         int port_num, stat, ret, count = 0;
1612         unsigned long port;
1613         bool slave_notify;
1614         u8 sdca_cascade = 0;
1615         u8 buf, buf2[2];
1616         bool parity_check;
1617         bool parity_quirk;
1618
1619         sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1620
1621         ret = pm_runtime_get_sync(&slave->dev);
1622         if (ret < 0 && ret != -EACCES) {
1623                 dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1624                 pm_runtime_put_noidle(&slave->dev);
1625                 return ret;
1626         }
1627
1628         /* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1629         ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1630         if (ret < 0) {
1631                 dev_err(&slave->dev,
1632                         "SDW_SCP_INT1 read failed:%d\n", ret);
1633                 goto io_err;
1634         }
1635         buf = ret;
1636
1637         ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1638         if (ret < 0) {
1639                 dev_err(&slave->dev,
1640                         "SDW_SCP_INT2/3 read failed:%d\n", ret);
1641                 goto io_err;
1642         }
1643
1644         if (slave->id.class_id) {
1645                 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1646                 if (ret < 0) {
1647                         dev_err(&slave->dev,
1648                                 "SDW_DP0_INT read failed:%d\n", ret);
1649                         goto io_err;
1650                 }
1651                 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1652         }
1653
1654         do {
1655                 slave_notify = false;
1656
1657                 /*
1658                  * Check parity, bus clash and Slave (impl defined)
1659                  * interrupt
1660                  */
1661                 if (buf & SDW_SCP_INT1_PARITY) {
1662                         parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1663                         parity_quirk = !slave->first_interrupt_done &&
1664                                 (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1665
1666                         if (parity_check && !parity_quirk)
1667                                 dev_err(&slave->dev, "Parity error detected\n");
1668                         clear |= SDW_SCP_INT1_PARITY;
1669                 }
1670
1671                 if (buf & SDW_SCP_INT1_BUS_CLASH) {
1672                         if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1673                                 dev_err(&slave->dev, "Bus clash detected\n");
1674                         clear |= SDW_SCP_INT1_BUS_CLASH;
1675                 }
1676
1677                 /*
1678                  * When bus clash or parity errors are detected, such errors
1679                  * are unlikely to be recoverable errors.
1680                  * TODO: In such scenario, reset bus. Make this configurable
1681                  * via sysfs property with bus reset being the default.
1682                  */
1683
1684                 if (buf & SDW_SCP_INT1_IMPL_DEF) {
1685                         if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1686                                 dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1687                                 slave_notify = true;
1688                         }
1689                         clear |= SDW_SCP_INT1_IMPL_DEF;
1690                 }
1691
1692                 /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1693                 if (sdca_cascade)
1694                         slave_notify = true;
1695
1696                 /* Check port 0 - 3 interrupts */
1697                 port = buf & SDW_SCP_INT1_PORT0_3;
1698
1699                 /* To get port number corresponding to bits, shift it */
1700                 port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
1701                 for_each_set_bit(bit, &port, 8) {
1702                         sdw_handle_port_interrupt(slave, bit,
1703                                                   &port_status[bit]);
1704                 }
1705
1706                 /* Check if cascade 2 interrupt is present */
1707                 if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1708                         port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1709                         for_each_set_bit(bit, &port, 8) {
1710                                 /* scp2 ports start from 4 */
1711                                 port_num = bit + 4;
1712                                 sdw_handle_port_interrupt(slave,
1713                                                 port_num,
1714                                                 &port_status[port_num]);
1715                         }
1716                 }
1717
1718                 /* now check last cascade */
1719                 if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1720                         port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1721                         for_each_set_bit(bit, &port, 8) {
1722                                 /* scp3 ports start from 11 */
1723                                 port_num = bit + 11;
1724                                 sdw_handle_port_interrupt(slave,
1725                                                 port_num,
1726                                                 &port_status[port_num]);
1727                         }
1728                 }
1729
1730                 /* Update the Slave driver */
1731                 if (slave_notify) {
1732                         mutex_lock(&slave->sdw_dev_lock);
1733
1734                         if (slave->probed) {
1735                                 struct device *dev = &slave->dev;
1736                                 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1737
1738                                 if (slave->prop.use_domain_irq && slave->irq)
1739                                         handle_nested_irq(slave->irq);
1740
1741                                 if (drv->ops && drv->ops->interrupt_callback) {
1742                                         slave_intr.sdca_cascade = sdca_cascade;
1743                                         slave_intr.control_port = clear;
1744                                         memcpy(slave_intr.port, &port_status,
1745                                                sizeof(slave_intr.port));
1746
1747                                         drv->ops->interrupt_callback(slave, &slave_intr);
1748                                 }
1749                         }
1750
1751                         mutex_unlock(&slave->sdw_dev_lock);
1752                 }
1753
1754                 /* Ack interrupt */
1755                 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
1756                 if (ret < 0) {
1757                         dev_err(&slave->dev,
1758                                 "SDW_SCP_INT1 write failed:%d\n", ret);
1759                         goto io_err;
1760                 }
1761
1762                 /* at this point all initial interrupt sources were handled */
1763                 slave->first_interrupt_done = true;
1764
1765                 /*
1766                  * Read status again to ensure no new interrupts arrived
1767                  * while servicing interrupts.
1768                  */
1769                 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1770                 if (ret < 0) {
1771                         dev_err(&slave->dev,
1772                                 "SDW_SCP_INT1 recheck read failed:%d\n", ret);
1773                         goto io_err;
1774                 }
1775                 buf = ret;
1776
1777                 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1778                 if (ret < 0) {
1779                         dev_err(&slave->dev,
1780                                 "SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
1781                         goto io_err;
1782                 }
1783
1784                 if (slave->id.class_id) {
1785                         ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1786                         if (ret < 0) {
1787                                 dev_err(&slave->dev,
1788                                         "SDW_DP0_INT recheck read failed:%d\n", ret);
1789                                 goto io_err;
1790                         }
1791                         sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1792                 }
1793
1794                 /*
1795                  * Make sure no interrupts are pending
1796                  */
1797                 stat = buf || buf2[0] || buf2[1] || sdca_cascade;
1798
1799                 /*
1800                  * Exit loop if Slave is continuously in ALERT state even
1801                  * after servicing the interrupt multiple times.
1802                  */
1803                 count++;
1804
1805                 /* we can get alerts while processing so keep retrying */
1806         } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1807
1808         if (count == SDW_READ_INTR_CLEAR_RETRY)
1809                 dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
1810
1811 io_err:
1812         pm_runtime_mark_last_busy(&slave->dev);
1813         pm_runtime_put_autosuspend(&slave->dev);
1814
1815         return ret;
1816 }
1817
1818 static int sdw_update_slave_status(struct sdw_slave *slave,
1819                                    enum sdw_slave_status status)
1820 {
1821         int ret = 0;
1822
1823         mutex_lock(&slave->sdw_dev_lock);
1824
1825         if (slave->probed) {
1826                 struct device *dev = &slave->dev;
1827                 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1828
1829                 if (drv->ops && drv->ops->update_status)
1830                         ret = drv->ops->update_status(slave, status);
1831         }
1832
1833         mutex_unlock(&slave->sdw_dev_lock);
1834
1835         return ret;
1836 }
1837
1838 /**
1839  * sdw_handle_slave_status() - Handle Slave status
1840  * @bus: SDW bus instance
1841  * @status: Status for all Slave(s)
1842  */
1843 int sdw_handle_slave_status(struct sdw_bus *bus,
1844                             enum sdw_slave_status status[])
1845 {
1846         enum sdw_slave_status prev_status;
1847         struct sdw_slave *slave;
1848         bool attached_initializing, id_programmed;
1849         int i, ret = 0;
1850
1851         /* first check if any Slaves fell off the bus */
1852         for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1853                 mutex_lock(&bus->bus_lock);
1854                 if (test_bit(i, bus->assigned) == false) {
1855                         mutex_unlock(&bus->bus_lock);
1856                         continue;
1857                 }
1858                 mutex_unlock(&bus->bus_lock);
1859
1860                 slave = sdw_get_slave(bus, i);
1861                 if (!slave)
1862                         continue;
1863
1864                 if (status[i] == SDW_SLAVE_UNATTACHED &&
1865                     slave->status != SDW_SLAVE_UNATTACHED) {
1866                         dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n",
1867                                  i, slave->status);
1868                         sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1869
1870                         /* Ensure driver knows that peripheral unattached */
1871                         ret = sdw_update_slave_status(slave, status[i]);
1872                         if (ret < 0)
1873                                 dev_warn(&slave->dev, "Update Slave status failed:%d\n", ret);
1874                 }
1875         }
1876
1877         if (status[0] == SDW_SLAVE_ATTACHED) {
1878                 dev_dbg(bus->dev, "Slave attached, programming device number\n");
1879
1880                 /*
1881                  * Programming a device number will have side effects,
1882                  * so we deal with other devices at a later time.
1883                  * This relies on those devices reporting ATTACHED, which will
1884                  * trigger another call to this function. This will only
1885                  * happen if at least one device ID was programmed.
1886                  * Error returns from sdw_program_device_num() are currently
1887                  * ignored because there's no useful recovery that can be done.
1888                  * Returning the error here could result in the current status
1889                  * of other devices not being handled, because if no device IDs
1890                  * were programmed there's nothing to guarantee a status change
1891                  * to trigger another call to this function.
1892                  */
1893                 sdw_program_device_num(bus, &id_programmed);
1894                 if (id_programmed)
1895                         return 0;
1896         }
1897
1898         /* Continue to check other slave statuses */
1899         for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1900                 mutex_lock(&bus->bus_lock);
1901                 if (test_bit(i, bus->assigned) == false) {
1902                         mutex_unlock(&bus->bus_lock);
1903                         continue;
1904                 }
1905                 mutex_unlock(&bus->bus_lock);
1906
1907                 slave = sdw_get_slave(bus, i);
1908                 if (!slave)
1909                         continue;
1910
1911                 attached_initializing = false;
1912
1913                 switch (status[i]) {
1914                 case SDW_SLAVE_UNATTACHED:
1915                         if (slave->status == SDW_SLAVE_UNATTACHED)
1916                                 break;
1917
1918                         dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n",
1919                                  i, slave->status);
1920
1921                         sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1922                         break;
1923
1924                 case SDW_SLAVE_ALERT:
1925                         ret = sdw_handle_slave_alerts(slave);
1926                         if (ret < 0)
1927                                 dev_err(&slave->dev,
1928                                         "Slave %d alert handling failed: %d\n",
1929                                         i, ret);
1930                         break;
1931
1932                 case SDW_SLAVE_ATTACHED:
1933                         if (slave->status == SDW_SLAVE_ATTACHED)
1934                                 break;
1935
1936                         prev_status = slave->status;
1937                         sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1938
1939                         if (prev_status == SDW_SLAVE_ALERT)
1940                                 break;
1941
1942                         attached_initializing = true;
1943
1944                         ret = sdw_initialize_slave(slave);
1945                         if (ret < 0)
1946                                 dev_err(&slave->dev,
1947                                         "Slave %d initialization failed: %d\n",
1948                                         i, ret);
1949
1950                         break;
1951
1952                 default:
1953                         dev_err(&slave->dev, "Invalid slave %d status:%d\n",
1954                                 i, status[i]);
1955                         break;
1956                 }
1957
1958                 ret = sdw_update_slave_status(slave, status[i]);
1959                 if (ret < 0)
1960                         dev_err(&slave->dev,
1961                                 "Update Slave status failed:%d\n", ret);
1962                 if (attached_initializing) {
1963                         dev_dbg(&slave->dev,
1964                                 "signaling initialization completion for Slave %d\n",
1965                                 slave->dev_num);
1966
1967                         complete_all(&slave->initialization_complete);
1968
1969                         /*
1970                          * If the manager became pm_runtime active, the peripherals will be
1971                          * restarted and attach, but their pm_runtime status may remain
1972                          * suspended. If the 'update_slave_status' callback initiates
1973                          * any sort of deferred processing, this processing would not be
1974                          * cancelled on pm_runtime suspend.
1975                          * To avoid such zombie states, we queue a request to resume.
1976                          * This would be a no-op in case the peripheral was being resumed
1977                          * by e.g. the ALSA/ASoC framework.
1978                          */
1979                         pm_request_resume(&slave->dev);
1980                 }
1981         }
1982
1983         return ret;
1984 }
1985 EXPORT_SYMBOL(sdw_handle_slave_status);
1986
1987 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
1988 {
1989         struct sdw_slave *slave;
1990         int i;
1991
1992         /* Check all non-zero devices */
1993         for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1994                 mutex_lock(&bus->bus_lock);
1995                 if (test_bit(i, bus->assigned) == false) {
1996                         mutex_unlock(&bus->bus_lock);
1997                         continue;
1998                 }
1999                 mutex_unlock(&bus->bus_lock);
2000
2001                 slave = sdw_get_slave(bus, i);
2002                 if (!slave)
2003                         continue;
2004
2005                 if (slave->status != SDW_SLAVE_UNATTACHED) {
2006                         sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
2007                         slave->first_interrupt_done = false;
2008                         sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED);
2009                 }
2010
2011                 /* keep track of request, used in pm_runtime resume */
2012                 slave->unattach_request = request;
2013         }
2014 }
2015 EXPORT_SYMBOL(sdw_clear_slave_status);