Merge tag 'parisc-for-6.6-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/delle...
[platform/kernel/linux-starfive.git] / drivers / soundwire / bus.c
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/irq.h>
7 #include <linux/mod_devicetable.h>
8 #include <linux/pm_runtime.h>
9 #include <linux/soundwire/sdw_registers.h>
10 #include <linux/soundwire/sdw.h>
11 #include <linux/soundwire/sdw_type.h>
12 #include "bus.h"
13 #include "sysfs_local.h"
14
15 static DEFINE_IDA(sdw_bus_ida);
16
17 static int sdw_get_id(struct sdw_bus *bus)
18 {
19         int rc = ida_alloc(&sdw_bus_ida, GFP_KERNEL);
20
21         if (rc < 0)
22                 return rc;
23
24         bus->id = rc;
25         return 0;
26 }
27
28 static int sdw_irq_map(struct irq_domain *h, unsigned int virq,
29                        irq_hw_number_t hw)
30 {
31         struct sdw_bus *bus = h->host_data;
32
33         irq_set_chip_data(virq, bus);
34         irq_set_chip(virq, &bus->irq_chip);
35         irq_set_nested_thread(virq, 1);
36         irq_set_noprobe(virq);
37
38         return 0;
39 }
40
41 static const struct irq_domain_ops sdw_domain_ops = {
42         .map    = sdw_irq_map,
43 };
44
45 /**
46  * sdw_bus_master_add() - add a bus Master instance
47  * @bus: bus instance
48  * @parent: parent device
49  * @fwnode: firmware node handle
50  *
51  * Initializes the bus instance, read properties and create child
52  * devices.
53  */
54 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
55                        struct fwnode_handle *fwnode)
56 {
57         struct sdw_master_prop *prop = NULL;
58         int ret;
59
60         if (!parent) {
61                 pr_err("SoundWire parent device is not set\n");
62                 return -ENODEV;
63         }
64
65         ret = sdw_get_id(bus);
66         if (ret < 0) {
67                 dev_err(parent, "Failed to get bus id\n");
68                 return ret;
69         }
70
71         ret = sdw_master_device_add(bus, parent, fwnode);
72         if (ret < 0) {
73                 dev_err(parent, "Failed to add master device at link %d\n",
74                         bus->link_id);
75                 return ret;
76         }
77
78         if (!bus->ops) {
79                 dev_err(bus->dev, "SoundWire Bus ops are not set\n");
80                 return -EINVAL;
81         }
82
83         if (!bus->compute_params) {
84                 dev_err(bus->dev,
85                         "Bandwidth allocation not configured, compute_params no set\n");
86                 return -EINVAL;
87         }
88
89         /*
90          * Give each bus_lock and msg_lock a unique key so that lockdep won't
91          * trigger a deadlock warning when the locks of several buses are
92          * grabbed during configuration of a multi-bus stream.
93          */
94         lockdep_register_key(&bus->msg_lock_key);
95         __mutex_init(&bus->msg_lock, "msg_lock", &bus->msg_lock_key);
96
97         lockdep_register_key(&bus->bus_lock_key);
98         __mutex_init(&bus->bus_lock, "bus_lock", &bus->bus_lock_key);
99
100         INIT_LIST_HEAD(&bus->slaves);
101         INIT_LIST_HEAD(&bus->m_rt_list);
102
103         /*
104          * Initialize multi_link flag
105          */
106         bus->multi_link = false;
107         if (bus->ops->read_prop) {
108                 ret = bus->ops->read_prop(bus);
109                 if (ret < 0) {
110                         dev_err(bus->dev,
111                                 "Bus read properties failed:%d\n", ret);
112                         return ret;
113                 }
114         }
115
116         sdw_bus_debugfs_init(bus);
117
118         /*
119          * Device numbers in SoundWire are 0 through 15. Enumeration device
120          * number (0), Broadcast device number (15), Group numbers (12 and
121          * 13) and Master device number (14) are not used for assignment so
122          * mask these and other higher bits.
123          */
124
125         /* Set higher order bits */
126         *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
127
128         /* Set enumuration device number and broadcast device number */
129         set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
130         set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
131
132         /* Set group device numbers and master device number */
133         set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
134         set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
135         set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
136
137         /*
138          * SDW is an enumerable bus, but devices can be powered off. So,
139          * they won't be able to report as present.
140          *
141          * Create Slave devices based on Slaves described in
142          * the respective firmware (ACPI/DT)
143          */
144         if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
145                 ret = sdw_acpi_find_slaves(bus);
146         else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
147                 ret = sdw_of_find_slaves(bus);
148         else
149                 ret = -ENOTSUPP; /* No ACPI/DT so error out */
150
151         if (ret < 0) {
152                 dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
153                 return ret;
154         }
155
156         /*
157          * Initialize clock values based on Master properties. The max
158          * frequency is read from max_clk_freq property. Current assumption
159          * is that the bus will start at highest clock frequency when
160          * powered on.
161          *
162          * Default active bank will be 0 as out of reset the Slaves have
163          * to start with bank 0 (Table 40 of Spec)
164          */
165         prop = &bus->prop;
166         bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
167         bus->params.curr_dr_freq = bus->params.max_dr_freq;
168         bus->params.curr_bank = SDW_BANK0;
169         bus->params.next_bank = SDW_BANK1;
170
171         bus->irq_chip.name = dev_name(bus->dev);
172         bus->domain = irq_domain_create_linear(fwnode, SDW_MAX_DEVICES,
173                                                &sdw_domain_ops, bus);
174         if (!bus->domain) {
175                 dev_err(bus->dev, "Failed to add IRQ domain\n");
176                 return -EINVAL;
177         }
178
179         return 0;
180 }
181 EXPORT_SYMBOL(sdw_bus_master_add);
182
183 static int sdw_delete_slave(struct device *dev, void *data)
184 {
185         struct sdw_slave *slave = dev_to_sdw_dev(dev);
186         struct sdw_bus *bus = slave->bus;
187
188         pm_runtime_disable(dev);
189
190         sdw_slave_debugfs_exit(slave);
191
192         mutex_lock(&bus->bus_lock);
193
194         if (slave->dev_num) { /* clear dev_num if assigned */
195                 clear_bit(slave->dev_num, bus->assigned);
196                 if (bus->ops && bus->ops->put_device_num)
197                         bus->ops->put_device_num(bus, slave);
198         }
199         list_del_init(&slave->node);
200         mutex_unlock(&bus->bus_lock);
201
202         device_unregister(dev);
203         return 0;
204 }
205
206 /**
207  * sdw_bus_master_delete() - delete the bus master instance
208  * @bus: bus to be deleted
209  *
210  * Remove the instance, delete the child devices.
211  */
212 void sdw_bus_master_delete(struct sdw_bus *bus)
213 {
214         device_for_each_child(bus->dev, NULL, sdw_delete_slave);
215
216         irq_domain_remove(bus->domain);
217
218         sdw_master_device_del(bus);
219
220         sdw_bus_debugfs_exit(bus);
221         lockdep_unregister_key(&bus->bus_lock_key);
222         lockdep_unregister_key(&bus->msg_lock_key);
223         ida_free(&sdw_bus_ida, bus->id);
224 }
225 EXPORT_SYMBOL(sdw_bus_master_delete);
226
227 /*
228  * SDW IO Calls
229  */
230
231 static inline int find_response_code(enum sdw_command_response resp)
232 {
233         switch (resp) {
234         case SDW_CMD_OK:
235                 return 0;
236
237         case SDW_CMD_IGNORED:
238                 return -ENODATA;
239
240         case SDW_CMD_TIMEOUT:
241                 return -ETIMEDOUT;
242
243         default:
244                 return -EIO;
245         }
246 }
247
248 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
249 {
250         int retry = bus->prop.err_threshold;
251         enum sdw_command_response resp;
252         int ret = 0, i;
253
254         for (i = 0; i <= retry; i++) {
255                 resp = bus->ops->xfer_msg(bus, msg);
256                 ret = find_response_code(resp);
257
258                 /* if cmd is ok or ignored return */
259                 if (ret == 0 || ret == -ENODATA)
260                         return ret;
261         }
262
263         return ret;
264 }
265
266 static inline int do_transfer_defer(struct sdw_bus *bus,
267                                     struct sdw_msg *msg)
268 {
269         struct sdw_defer *defer = &bus->defer_msg;
270         int retry = bus->prop.err_threshold;
271         enum sdw_command_response resp;
272         int ret = 0, i;
273
274         defer->msg = msg;
275         defer->length = msg->len;
276         init_completion(&defer->complete);
277
278         for (i = 0; i <= retry; i++) {
279                 resp = bus->ops->xfer_msg_defer(bus);
280                 ret = find_response_code(resp);
281                 /* if cmd is ok or ignored return */
282                 if (ret == 0 || ret == -ENODATA)
283                         return ret;
284         }
285
286         return ret;
287 }
288
289 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
290 {
291         int ret;
292
293         ret = do_transfer(bus, msg);
294         if (ret != 0 && ret != -ENODATA)
295                 dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
296                         msg->dev_num, ret,
297                         (msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read",
298                         msg->addr, msg->len);
299
300         return ret;
301 }
302
303 /**
304  * sdw_transfer() - Synchronous transfer message to a SDW Slave device
305  * @bus: SDW bus
306  * @msg: SDW message to be xfered
307  */
308 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
309 {
310         int ret;
311
312         mutex_lock(&bus->msg_lock);
313
314         ret = sdw_transfer_unlocked(bus, msg);
315
316         mutex_unlock(&bus->msg_lock);
317
318         return ret;
319 }
320
321 /**
322  * sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers
323  * @bus: SDW bus
324  * @sync_delay: Delay before reading status
325  */
326 void sdw_show_ping_status(struct sdw_bus *bus, bool sync_delay)
327 {
328         u32 status;
329
330         if (!bus->ops->read_ping_status)
331                 return;
332
333         /*
334          * wait for peripheral to sync if desired. 10-15ms should be more than
335          * enough in most cases.
336          */
337         if (sync_delay)
338                 usleep_range(10000, 15000);
339
340         mutex_lock(&bus->msg_lock);
341
342         status = bus->ops->read_ping_status(bus);
343
344         mutex_unlock(&bus->msg_lock);
345
346         if (!status)
347                 dev_warn(bus->dev, "%s: no peripherals attached\n", __func__);
348         else
349                 dev_dbg(bus->dev, "PING status: %#x\n", status);
350 }
351 EXPORT_SYMBOL(sdw_show_ping_status);
352
353 /**
354  * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
355  * @bus: SDW bus
356  * @msg: SDW message to be xfered
357  *
358  * Caller needs to hold the msg_lock lock while calling this
359  */
360 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg)
361 {
362         int ret;
363
364         if (!bus->ops->xfer_msg_defer)
365                 return -ENOTSUPP;
366
367         ret = do_transfer_defer(bus, msg);
368         if (ret != 0 && ret != -ENODATA)
369                 dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
370                         msg->dev_num, ret);
371
372         return ret;
373 }
374
375 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
376                  u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
377 {
378         memset(msg, 0, sizeof(*msg));
379         msg->addr = addr; /* addr is 16 bit and truncated here */
380         msg->len = count;
381         msg->dev_num = dev_num;
382         msg->flags = flags;
383         msg->buf = buf;
384
385         if (addr < SDW_REG_NO_PAGE) /* no paging area */
386                 return 0;
387
388         if (addr >= SDW_REG_MAX) { /* illegal addr */
389                 pr_err("SDW: Invalid address %x passed\n", addr);
390                 return -EINVAL;
391         }
392
393         if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
394                 if (slave && !slave->prop.paging_support)
395                         return 0;
396                 /* no need for else as that will fall-through to paging */
397         }
398
399         /* paging mandatory */
400         if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
401                 pr_err("SDW: Invalid device for paging :%d\n", dev_num);
402                 return -EINVAL;
403         }
404
405         if (!slave) {
406                 pr_err("SDW: No slave for paging addr\n");
407                 return -EINVAL;
408         }
409
410         if (!slave->prop.paging_support) {
411                 dev_err(&slave->dev,
412                         "address %x needs paging but no support\n", addr);
413                 return -EINVAL;
414         }
415
416         msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
417         msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
418         msg->addr |= BIT(15);
419         msg->page = true;
420
421         return 0;
422 }
423
424 /*
425  * Read/Write IO functions.
426  */
427
428 static int sdw_ntransfer_no_pm(struct sdw_slave *slave, u32 addr, u8 flags,
429                                size_t count, u8 *val)
430 {
431         struct sdw_msg msg;
432         size_t size;
433         int ret;
434
435         while (count) {
436                 // Only handle bytes up to next page boundary
437                 size = min_t(size_t, count, (SDW_REGADDR + 1) - (addr & SDW_REGADDR));
438
439                 ret = sdw_fill_msg(&msg, slave, addr, size, slave->dev_num, flags, val);
440                 if (ret < 0)
441                         return ret;
442
443                 ret = sdw_transfer(slave->bus, &msg);
444                 if (ret < 0 && !slave->is_mockup_device)
445                         return ret;
446
447                 addr += size;
448                 val += size;
449                 count -= size;
450         }
451
452         return 0;
453 }
454
455 /**
456  * sdw_nread_no_pm() - Read "n" contiguous SDW Slave registers with no PM
457  * @slave: SDW Slave
458  * @addr: Register address
459  * @count: length
460  * @val: Buffer for values to be read
461  *
462  * Note that if the message crosses a page boundary each page will be
463  * transferred under a separate invocation of the msg_lock.
464  */
465 int sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
466 {
467         return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_READ, count, val);
468 }
469 EXPORT_SYMBOL(sdw_nread_no_pm);
470
471 /**
472  * sdw_nwrite_no_pm() - Write "n" contiguous SDW Slave registers with no PM
473  * @slave: SDW Slave
474  * @addr: Register address
475  * @count: length
476  * @val: Buffer for values to be written
477  *
478  * Note that if the message crosses a page boundary each page will be
479  * transferred under a separate invocation of the msg_lock.
480  */
481 int sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
482 {
483         return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_WRITE, count, (u8 *)val);
484 }
485 EXPORT_SYMBOL(sdw_nwrite_no_pm);
486
487 /**
488  * sdw_write_no_pm() - Write a SDW Slave register with no PM
489  * @slave: SDW Slave
490  * @addr: Register address
491  * @value: Register value
492  */
493 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
494 {
495         return sdw_nwrite_no_pm(slave, addr, 1, &value);
496 }
497 EXPORT_SYMBOL(sdw_write_no_pm);
498
499 static int
500 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
501 {
502         struct sdw_msg msg;
503         u8 buf;
504         int ret;
505
506         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
507                            SDW_MSG_FLAG_READ, &buf);
508         if (ret < 0)
509                 return ret;
510
511         ret = sdw_transfer(bus, &msg);
512         if (ret < 0)
513                 return ret;
514
515         return buf;
516 }
517
518 static int
519 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
520 {
521         struct sdw_msg msg;
522         int ret;
523
524         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
525                            SDW_MSG_FLAG_WRITE, &value);
526         if (ret < 0)
527                 return ret;
528
529         return sdw_transfer(bus, &msg);
530 }
531
532 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
533 {
534         struct sdw_msg msg;
535         u8 buf;
536         int ret;
537
538         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
539                            SDW_MSG_FLAG_READ, &buf);
540         if (ret < 0)
541                 return ret;
542
543         ret = sdw_transfer_unlocked(bus, &msg);
544         if (ret < 0)
545                 return ret;
546
547         return buf;
548 }
549 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
550
551 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
552 {
553         struct sdw_msg msg;
554         int ret;
555
556         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
557                            SDW_MSG_FLAG_WRITE, &value);
558         if (ret < 0)
559                 return ret;
560
561         return sdw_transfer_unlocked(bus, &msg);
562 }
563 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
564
565 /**
566  * sdw_read_no_pm() - Read a SDW Slave register with no PM
567  * @slave: SDW Slave
568  * @addr: Register address
569  */
570 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
571 {
572         u8 buf;
573         int ret;
574
575         ret = sdw_nread_no_pm(slave, addr, 1, &buf);
576         if (ret < 0)
577                 return ret;
578         else
579                 return buf;
580 }
581 EXPORT_SYMBOL(sdw_read_no_pm);
582
583 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
584 {
585         int tmp;
586
587         tmp = sdw_read_no_pm(slave, addr);
588         if (tmp < 0)
589                 return tmp;
590
591         tmp = (tmp & ~mask) | val;
592         return sdw_write_no_pm(slave, addr, tmp);
593 }
594 EXPORT_SYMBOL(sdw_update_no_pm);
595
596 /* Read-Modify-Write Slave register */
597 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
598 {
599         int tmp;
600
601         tmp = sdw_read(slave, addr);
602         if (tmp < 0)
603                 return tmp;
604
605         tmp = (tmp & ~mask) | val;
606         return sdw_write(slave, addr, tmp);
607 }
608 EXPORT_SYMBOL(sdw_update);
609
610 /**
611  * sdw_nread() - Read "n" contiguous SDW Slave registers
612  * @slave: SDW Slave
613  * @addr: Register address
614  * @count: length
615  * @val: Buffer for values to be read
616  *
617  * This version of the function will take a PM reference to the slave
618  * device.
619  * Note that if the message crosses a page boundary each page will be
620  * transferred under a separate invocation of the msg_lock.
621  */
622 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
623 {
624         int ret;
625
626         ret = pm_runtime_get_sync(&slave->dev);
627         if (ret < 0 && ret != -EACCES) {
628                 pm_runtime_put_noidle(&slave->dev);
629                 return ret;
630         }
631
632         ret = sdw_nread_no_pm(slave, addr, count, val);
633
634         pm_runtime_mark_last_busy(&slave->dev);
635         pm_runtime_put(&slave->dev);
636
637         return ret;
638 }
639 EXPORT_SYMBOL(sdw_nread);
640
641 /**
642  * sdw_nwrite() - Write "n" contiguous SDW Slave registers
643  * @slave: SDW Slave
644  * @addr: Register address
645  * @count: length
646  * @val: Buffer for values to be written
647  *
648  * This version of the function will take a PM reference to the slave
649  * device.
650  * Note that if the message crosses a page boundary each page will be
651  * transferred under a separate invocation of the msg_lock.
652  */
653 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
654 {
655         int ret;
656
657         ret = pm_runtime_get_sync(&slave->dev);
658         if (ret < 0 && ret != -EACCES) {
659                 pm_runtime_put_noidle(&slave->dev);
660                 return ret;
661         }
662
663         ret = sdw_nwrite_no_pm(slave, addr, count, val);
664
665         pm_runtime_mark_last_busy(&slave->dev);
666         pm_runtime_put(&slave->dev);
667
668         return ret;
669 }
670 EXPORT_SYMBOL(sdw_nwrite);
671
672 /**
673  * sdw_read() - Read a SDW Slave register
674  * @slave: SDW Slave
675  * @addr: Register address
676  *
677  * This version of the function will take a PM reference to the slave
678  * device.
679  */
680 int sdw_read(struct sdw_slave *slave, u32 addr)
681 {
682         u8 buf;
683         int ret;
684
685         ret = sdw_nread(slave, addr, 1, &buf);
686         if (ret < 0)
687                 return ret;
688
689         return buf;
690 }
691 EXPORT_SYMBOL(sdw_read);
692
693 /**
694  * sdw_write() - Write a SDW Slave register
695  * @slave: SDW Slave
696  * @addr: Register address
697  * @value: Register value
698  *
699  * This version of the function will take a PM reference to the slave
700  * device.
701  */
702 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
703 {
704         return sdw_nwrite(slave, addr, 1, &value);
705 }
706 EXPORT_SYMBOL(sdw_write);
707
708 /*
709  * SDW alert handling
710  */
711
712 /* called with bus_lock held */
713 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
714 {
715         struct sdw_slave *slave;
716
717         list_for_each_entry(slave, &bus->slaves, node) {
718                 if (slave->dev_num == i)
719                         return slave;
720         }
721
722         return NULL;
723 }
724
725 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
726 {
727         if (slave->id.mfg_id != id.mfg_id ||
728             slave->id.part_id != id.part_id ||
729             slave->id.class_id != id.class_id ||
730             (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
731              slave->id.unique_id != id.unique_id))
732                 return -ENODEV;
733
734         return 0;
735 }
736 EXPORT_SYMBOL(sdw_compare_devid);
737
738 /* called with bus_lock held */
739 static int sdw_get_device_num(struct sdw_slave *slave)
740 {
741         struct sdw_bus *bus = slave->bus;
742         int bit;
743
744         if (bus->ops && bus->ops->get_device_num) {
745                 bit = bus->ops->get_device_num(bus, slave);
746                 if (bit < 0)
747                         goto err;
748         } else {
749                 bit = find_first_zero_bit(bus->assigned, SDW_MAX_DEVICES);
750                 if (bit == SDW_MAX_DEVICES) {
751                         bit = -ENODEV;
752                         goto err;
753                 }
754         }
755
756         /*
757          * Do not update dev_num in Slave data structure here,
758          * Update once program dev_num is successful
759          */
760         set_bit(bit, bus->assigned);
761
762 err:
763         return bit;
764 }
765
766 static int sdw_assign_device_num(struct sdw_slave *slave)
767 {
768         struct sdw_bus *bus = slave->bus;
769         int ret, dev_num;
770         bool new_device = false;
771
772         /* check first if device number is assigned, if so reuse that */
773         if (!slave->dev_num) {
774                 if (!slave->dev_num_sticky) {
775                         mutex_lock(&slave->bus->bus_lock);
776                         dev_num = sdw_get_device_num(slave);
777                         mutex_unlock(&slave->bus->bus_lock);
778                         if (dev_num < 0) {
779                                 dev_err(bus->dev, "Get dev_num failed: %d\n",
780                                         dev_num);
781                                 return dev_num;
782                         }
783                         slave->dev_num = dev_num;
784                         slave->dev_num_sticky = dev_num;
785                         new_device = true;
786                 } else {
787                         slave->dev_num = slave->dev_num_sticky;
788                 }
789         }
790
791         if (!new_device)
792                 dev_dbg(bus->dev,
793                         "Slave already registered, reusing dev_num:%d\n",
794                         slave->dev_num);
795
796         /* Clear the slave->dev_num to transfer message on device 0 */
797         dev_num = slave->dev_num;
798         slave->dev_num = 0;
799
800         ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
801         if (ret < 0) {
802                 dev_err(bus->dev, "Program device_num %d failed: %d\n",
803                         dev_num, ret);
804                 return ret;
805         }
806
807         /* After xfer of msg, restore dev_num */
808         slave->dev_num = slave->dev_num_sticky;
809
810         if (bus->ops && bus->ops->new_peripheral_assigned)
811                 bus->ops->new_peripheral_assigned(bus, slave, dev_num);
812
813         return 0;
814 }
815
816 void sdw_extract_slave_id(struct sdw_bus *bus,
817                           u64 addr, struct sdw_slave_id *id)
818 {
819         dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
820
821         id->sdw_version = SDW_VERSION(addr);
822         id->unique_id = SDW_UNIQUE_ID(addr);
823         id->mfg_id = SDW_MFG_ID(addr);
824         id->part_id = SDW_PART_ID(addr);
825         id->class_id = SDW_CLASS_ID(addr);
826
827         dev_dbg(bus->dev,
828                 "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
829                 id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
830 }
831 EXPORT_SYMBOL(sdw_extract_slave_id);
832
833 static int sdw_program_device_num(struct sdw_bus *bus, bool *programmed)
834 {
835         u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
836         struct sdw_slave *slave, *_s;
837         struct sdw_slave_id id;
838         struct sdw_msg msg;
839         bool found;
840         int count = 0, ret;
841         u64 addr;
842
843         *programmed = false;
844
845         /* No Slave, so use raw xfer api */
846         ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
847                            SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
848         if (ret < 0)
849                 return ret;
850
851         do {
852                 ret = sdw_transfer(bus, &msg);
853                 if (ret == -ENODATA) { /* end of device id reads */
854                         dev_dbg(bus->dev, "No more devices to enumerate\n");
855                         ret = 0;
856                         break;
857                 }
858                 if (ret < 0) {
859                         dev_err(bus->dev, "DEVID read fail:%d\n", ret);
860                         break;
861                 }
862
863                 /*
864                  * Construct the addr and extract. Cast the higher shift
865                  * bits to avoid truncation due to size limit.
866                  */
867                 addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
868                         ((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
869                         ((u64)buf[0] << 40);
870
871                 sdw_extract_slave_id(bus, addr, &id);
872
873                 found = false;
874                 /* Now compare with entries */
875                 list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
876                         if (sdw_compare_devid(slave, id) == 0) {
877                                 found = true;
878
879                                 /*
880                                  * To prevent skipping state-machine stages don't
881                                  * program a device until we've seen it UNATTACH.
882                                  * Must return here because no other device on #0
883                                  * can be detected until this one has been
884                                  * assigned a device ID.
885                                  */
886                                 if (slave->status != SDW_SLAVE_UNATTACHED)
887                                         return 0;
888
889                                 /*
890                                  * Assign a new dev_num to this Slave and
891                                  * not mark it present. It will be marked
892                                  * present after it reports ATTACHED on new
893                                  * dev_num
894                                  */
895                                 ret = sdw_assign_device_num(slave);
896                                 if (ret < 0) {
897                                         dev_err(bus->dev,
898                                                 "Assign dev_num failed:%d\n",
899                                                 ret);
900                                         return ret;
901                                 }
902
903                                 *programmed = true;
904
905                                 break;
906                         }
907                 }
908
909                 if (!found) {
910                         /* TODO: Park this device in Group 13 */
911
912                         /*
913                          * add Slave device even if there is no platform
914                          * firmware description. There will be no driver probe
915                          * but the user/integration will be able to see the
916                          * device, enumeration status and device number in sysfs
917                          */
918                         sdw_slave_add(bus, &id, NULL);
919
920                         dev_err(bus->dev, "Slave Entry not found\n");
921                 }
922
923                 count++;
924
925                 /*
926                  * Check till error out or retry (count) exhausts.
927                  * Device can drop off and rejoin during enumeration
928                  * so count till twice the bound.
929                  */
930
931         } while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
932
933         return ret;
934 }
935
936 static void sdw_modify_slave_status(struct sdw_slave *slave,
937                                     enum sdw_slave_status status)
938 {
939         struct sdw_bus *bus = slave->bus;
940
941         mutex_lock(&bus->bus_lock);
942
943         dev_vdbg(bus->dev,
944                  "changing status slave %d status %d new status %d\n",
945                  slave->dev_num, slave->status, status);
946
947         if (status == SDW_SLAVE_UNATTACHED) {
948                 dev_dbg(&slave->dev,
949                         "initializing enumeration and init completion for Slave %d\n",
950                         slave->dev_num);
951
952                 reinit_completion(&slave->enumeration_complete);
953                 reinit_completion(&slave->initialization_complete);
954
955         } else if ((status == SDW_SLAVE_ATTACHED) &&
956                    (slave->status == SDW_SLAVE_UNATTACHED)) {
957                 dev_dbg(&slave->dev,
958                         "signaling enumeration completion for Slave %d\n",
959                         slave->dev_num);
960
961                 complete_all(&slave->enumeration_complete);
962         }
963         slave->status = status;
964         mutex_unlock(&bus->bus_lock);
965 }
966
967 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
968                                        enum sdw_clk_stop_mode mode,
969                                        enum sdw_clk_stop_type type)
970 {
971         int ret = 0;
972
973         mutex_lock(&slave->sdw_dev_lock);
974
975         if (slave->probed)  {
976                 struct device *dev = &slave->dev;
977                 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
978
979                 if (drv->ops && drv->ops->clk_stop)
980                         ret = drv->ops->clk_stop(slave, mode, type);
981         }
982
983         mutex_unlock(&slave->sdw_dev_lock);
984
985         return ret;
986 }
987
988 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
989                                       enum sdw_clk_stop_mode mode,
990                                       bool prepare)
991 {
992         bool wake_en;
993         u32 val = 0;
994         int ret;
995
996         wake_en = slave->prop.wake_capable;
997
998         if (prepare) {
999                 val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
1000
1001                 if (mode == SDW_CLK_STOP_MODE1)
1002                         val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
1003
1004                 if (wake_en)
1005                         val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
1006         } else {
1007                 ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
1008                 if (ret < 0) {
1009                         if (ret != -ENODATA)
1010                                 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
1011                         return ret;
1012                 }
1013                 val = ret;
1014                 val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
1015         }
1016
1017         ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
1018
1019         if (ret < 0 && ret != -ENODATA)
1020                 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret);
1021
1022         return ret;
1023 }
1024
1025 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num)
1026 {
1027         int retry = bus->clk_stop_timeout;
1028         int val;
1029
1030         do {
1031                 val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
1032                 if (val < 0) {
1033                         if (val != -ENODATA)
1034                                 dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
1035                         return val;
1036                 }
1037                 val &= SDW_SCP_STAT_CLK_STP_NF;
1038                 if (!val) {
1039                         dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d\n",
1040                                 dev_num);
1041                         return 0;
1042                 }
1043
1044                 usleep_range(1000, 1500);
1045                 retry--;
1046         } while (retry);
1047
1048         dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d\n",
1049                 dev_num);
1050
1051         return -ETIMEDOUT;
1052 }
1053
1054 /**
1055  * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
1056  *
1057  * @bus: SDW bus instance
1058  *
1059  * Query Slave for clock stop mode and prepare for that mode.
1060  */
1061 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
1062 {
1063         bool simple_clk_stop = true;
1064         struct sdw_slave *slave;
1065         bool is_slave = false;
1066         int ret = 0;
1067
1068         /*
1069          * In order to save on transition time, prepare
1070          * each Slave and then wait for all Slave(s) to be
1071          * prepared for clock stop.
1072          * If one of the Slave devices has lost sync and
1073          * replies with Command Ignored/-ENODATA, we continue
1074          * the loop
1075          */
1076         list_for_each_entry(slave, &bus->slaves, node) {
1077                 if (!slave->dev_num)
1078                         continue;
1079
1080                 if (slave->status != SDW_SLAVE_ATTACHED &&
1081                     slave->status != SDW_SLAVE_ALERT)
1082                         continue;
1083
1084                 /* Identify if Slave(s) are available on Bus */
1085                 is_slave = true;
1086
1087                 ret = sdw_slave_clk_stop_callback(slave,
1088                                                   SDW_CLK_STOP_MODE0,
1089                                                   SDW_CLK_PRE_PREPARE);
1090                 if (ret < 0 && ret != -ENODATA) {
1091                         dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret);
1092                         return ret;
1093                 }
1094
1095                 /* Only prepare a Slave device if needed */
1096                 if (!slave->prop.simple_clk_stop_capable) {
1097                         simple_clk_stop = false;
1098
1099                         ret = sdw_slave_clk_stop_prepare(slave,
1100                                                          SDW_CLK_STOP_MODE0,
1101                                                          true);
1102                         if (ret < 0 && ret != -ENODATA) {
1103                                 dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret);
1104                                 return ret;
1105                         }
1106                 }
1107         }
1108
1109         /* Skip remaining clock stop preparation if no Slave is attached */
1110         if (!is_slave)
1111                 return 0;
1112
1113         /*
1114          * Don't wait for all Slaves to be ready if they follow the simple
1115          * state machine
1116          */
1117         if (!simple_clk_stop) {
1118                 ret = sdw_bus_wait_for_clk_prep_deprep(bus,
1119                                                        SDW_BROADCAST_DEV_NUM);
1120                 /*
1121                  * if there are no Slave devices present and the reply is
1122                  * Command_Ignored/-ENODATA, we don't need to continue with the
1123                  * flow and can just return here. The error code is not modified
1124                  * and its handling left as an exercise for the caller.
1125                  */
1126                 if (ret < 0)
1127                         return ret;
1128         }
1129
1130         /* Inform slaves that prep is done */
1131         list_for_each_entry(slave, &bus->slaves, node) {
1132                 if (!slave->dev_num)
1133                         continue;
1134
1135                 if (slave->status != SDW_SLAVE_ATTACHED &&
1136                     slave->status != SDW_SLAVE_ALERT)
1137                         continue;
1138
1139                 ret = sdw_slave_clk_stop_callback(slave,
1140                                                   SDW_CLK_STOP_MODE0,
1141                                                   SDW_CLK_POST_PREPARE);
1142
1143                 if (ret < 0 && ret != -ENODATA) {
1144                         dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret);
1145                         return ret;
1146                 }
1147         }
1148
1149         return 0;
1150 }
1151 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1152
1153 /**
1154  * sdw_bus_clk_stop: stop bus clock
1155  *
1156  * @bus: SDW bus instance
1157  *
1158  * After preparing the Slaves for clock stop, stop the clock by broadcasting
1159  * write to SCP_CTRL register.
1160  */
1161 int sdw_bus_clk_stop(struct sdw_bus *bus)
1162 {
1163         int ret;
1164
1165         /*
1166          * broadcast clock stop now, attached Slaves will ACK this,
1167          * unattached will ignore
1168          */
1169         ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1170                                SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1171         if (ret < 0) {
1172                 if (ret != -ENODATA)
1173                         dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret);
1174                 return ret;
1175         }
1176
1177         return 0;
1178 }
1179 EXPORT_SYMBOL(sdw_bus_clk_stop);
1180
1181 /**
1182  * sdw_bus_exit_clk_stop: Exit clock stop mode
1183  *
1184  * @bus: SDW bus instance
1185  *
1186  * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1187  * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1188  * back.
1189  */
1190 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1191 {
1192         bool simple_clk_stop = true;
1193         struct sdw_slave *slave;
1194         bool is_slave = false;
1195         int ret;
1196
1197         /*
1198          * In order to save on transition time, de-prepare
1199          * each Slave and then wait for all Slave(s) to be
1200          * de-prepared after clock resume.
1201          */
1202         list_for_each_entry(slave, &bus->slaves, node) {
1203                 if (!slave->dev_num)
1204                         continue;
1205
1206                 if (slave->status != SDW_SLAVE_ATTACHED &&
1207                     slave->status != SDW_SLAVE_ALERT)
1208                         continue;
1209
1210                 /* Identify if Slave(s) are available on Bus */
1211                 is_slave = true;
1212
1213                 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1214                                                   SDW_CLK_PRE_DEPREPARE);
1215                 if (ret < 0)
1216                         dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret);
1217
1218                 /* Only de-prepare a Slave device if needed */
1219                 if (!slave->prop.simple_clk_stop_capable) {
1220                         simple_clk_stop = false;
1221
1222                         ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0,
1223                                                          false);
1224
1225                         if (ret < 0)
1226                                 dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret);
1227                 }
1228         }
1229
1230         /* Skip remaining clock stop de-preparation if no Slave is attached */
1231         if (!is_slave)
1232                 return 0;
1233
1234         /*
1235          * Don't wait for all Slaves to be ready if they follow the simple
1236          * state machine
1237          */
1238         if (!simple_clk_stop) {
1239                 ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM);
1240                 if (ret < 0)
1241                         dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret);
1242         }
1243
1244         list_for_each_entry(slave, &bus->slaves, node) {
1245                 if (!slave->dev_num)
1246                         continue;
1247
1248                 if (slave->status != SDW_SLAVE_ATTACHED &&
1249                     slave->status != SDW_SLAVE_ALERT)
1250                         continue;
1251
1252                 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1253                                                   SDW_CLK_POST_DEPREPARE);
1254                 if (ret < 0)
1255                         dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret);
1256         }
1257
1258         return 0;
1259 }
1260 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1261
1262 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1263                            int port, bool enable, int mask)
1264 {
1265         u32 addr;
1266         int ret;
1267         u8 val = 0;
1268
1269         if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1270                 dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1271                         enable ? "on" : "off");
1272                 mask |= SDW_DPN_INT_TEST_FAIL;
1273         }
1274
1275         addr = SDW_DPN_INTMASK(port);
1276
1277         /* Set/Clear port ready interrupt mask */
1278         if (enable) {
1279                 val |= mask;
1280                 val |= SDW_DPN_INT_PORT_READY;
1281         } else {
1282                 val &= ~(mask);
1283                 val &= ~SDW_DPN_INT_PORT_READY;
1284         }
1285
1286         ret = sdw_update_no_pm(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1287         if (ret < 0)
1288                 dev_err(&slave->dev,
1289                         "SDW_DPN_INTMASK write failed:%d\n", val);
1290
1291         return ret;
1292 }
1293
1294 static int sdw_slave_set_frequency(struct sdw_slave *slave)
1295 {
1296         u32 mclk_freq = slave->bus->prop.mclk_freq;
1297         u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1298         unsigned int scale;
1299         u8 scale_index;
1300         u8 base;
1301         int ret;
1302
1303         /*
1304          * frequency base and scale registers are required for SDCA
1305          * devices. They may also be used for 1.2+/non-SDCA devices.
1306          * Driver can set the property, we will need a DisCo property
1307          * to discover this case from platform firmware.
1308          */
1309         if (!slave->id.class_id && !slave->prop.clock_reg_supported)
1310                 return 0;
1311
1312         if (!mclk_freq) {
1313                 dev_err(&slave->dev,
1314                         "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1315                 return -EINVAL;
1316         }
1317
1318         /*
1319          * map base frequency using Table 89 of SoundWire 1.2 spec.
1320          * The order of the tests just follows the specification, this
1321          * is not a selection between possible values or a search for
1322          * the best value but just a mapping.  Only one case per platform
1323          * is relevant.
1324          * Some BIOS have inconsistent values for mclk_freq but a
1325          * correct root so we force the mclk_freq to avoid variations.
1326          */
1327         if (!(19200000 % mclk_freq)) {
1328                 mclk_freq = 19200000;
1329                 base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1330         } else if (!(24000000 % mclk_freq)) {
1331                 mclk_freq = 24000000;
1332                 base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1333         } else if (!(24576000 % mclk_freq)) {
1334                 mclk_freq = 24576000;
1335                 base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1336         } else if (!(22579200 % mclk_freq)) {
1337                 mclk_freq = 22579200;
1338                 base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1339         } else if (!(32000000 % mclk_freq)) {
1340                 mclk_freq = 32000000;
1341                 base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1342         } else {
1343                 dev_err(&slave->dev,
1344                         "Unsupported clock base, mclk %d\n",
1345                         mclk_freq);
1346                 return -EINVAL;
1347         }
1348
1349         if (mclk_freq % curr_freq) {
1350                 dev_err(&slave->dev,
1351                         "mclk %d is not multiple of bus curr_freq %d\n",
1352                         mclk_freq, curr_freq);
1353                 return -EINVAL;
1354         }
1355
1356         scale = mclk_freq / curr_freq;
1357
1358         /*
1359          * map scale to Table 90 of SoundWire 1.2 spec - and check
1360          * that the scale is a power of two and maximum 64
1361          */
1362         scale_index = ilog2(scale);
1363
1364         if (BIT(scale_index) != scale || scale_index > 6) {
1365                 dev_err(&slave->dev,
1366                         "No match found for scale %d, bus mclk %d curr_freq %d\n",
1367                         scale, mclk_freq, curr_freq);
1368                 return -EINVAL;
1369         }
1370         scale_index++;
1371
1372         ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
1373         if (ret < 0) {
1374                 dev_err(&slave->dev,
1375                         "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1376                 return ret;
1377         }
1378
1379         /* initialize scale for both banks */
1380         ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
1381         if (ret < 0) {
1382                 dev_err(&slave->dev,
1383                         "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1384                 return ret;
1385         }
1386         ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
1387         if (ret < 0)
1388                 dev_err(&slave->dev,
1389                         "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1390
1391         dev_dbg(&slave->dev,
1392                 "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1393                 base, scale_index, mclk_freq, curr_freq);
1394
1395         return ret;
1396 }
1397
1398 static int sdw_initialize_slave(struct sdw_slave *slave)
1399 {
1400         struct sdw_slave_prop *prop = &slave->prop;
1401         int status;
1402         int ret;
1403         u8 val;
1404
1405         ret = sdw_slave_set_frequency(slave);
1406         if (ret < 0)
1407                 return ret;
1408
1409         if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
1410                 /* Clear bus clash interrupt before enabling interrupt mask */
1411                 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1412                 if (status < 0) {
1413                         dev_err(&slave->dev,
1414                                 "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
1415                         return status;
1416                 }
1417                 if (status & SDW_SCP_INT1_BUS_CLASH) {
1418                         dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
1419                         ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
1420                         if (ret < 0) {
1421                                 dev_err(&slave->dev,
1422                                         "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
1423                                 return ret;
1424                         }
1425                 }
1426         }
1427         if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
1428             !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
1429                 /* Clear parity interrupt before enabling interrupt mask */
1430                 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1431                 if (status < 0) {
1432                         dev_err(&slave->dev,
1433                                 "SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
1434                         return status;
1435                 }
1436                 if (status & SDW_SCP_INT1_PARITY) {
1437                         dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
1438                         ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
1439                         if (ret < 0) {
1440                                 dev_err(&slave->dev,
1441                                         "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
1442                                 return ret;
1443                         }
1444                 }
1445         }
1446
1447         /*
1448          * Set SCP_INT1_MASK register, typically bus clash and
1449          * implementation-defined interrupt mask. The Parity detection
1450          * may not always be correct on startup so its use is
1451          * device-dependent, it might e.g. only be enabled in
1452          * steady-state after a couple of frames.
1453          */
1454         val = slave->prop.scp_int1_mask;
1455
1456         /* Enable SCP interrupts */
1457         ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
1458         if (ret < 0) {
1459                 dev_err(&slave->dev,
1460                         "SDW_SCP_INTMASK1 write failed:%d\n", ret);
1461                 return ret;
1462         }
1463
1464         /* No need to continue if DP0 is not present */
1465         if (!slave->prop.dp0_prop)
1466                 return 0;
1467
1468         /* Enable DP0 interrupts */
1469         val = prop->dp0_prop->imp_def_interrupts;
1470         val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1471
1472         ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
1473         if (ret < 0)
1474                 dev_err(&slave->dev,
1475                         "SDW_DP0_INTMASK read failed:%d\n", ret);
1476         return ret;
1477 }
1478
1479 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1480 {
1481         u8 clear, impl_int_mask;
1482         int status, status2, ret, count = 0;
1483
1484         status = sdw_read_no_pm(slave, SDW_DP0_INT);
1485         if (status < 0) {
1486                 dev_err(&slave->dev,
1487                         "SDW_DP0_INT read failed:%d\n", status);
1488                 return status;
1489         }
1490
1491         do {
1492                 clear = status & ~SDW_DP0_INTERRUPTS;
1493
1494                 if (status & SDW_DP0_INT_TEST_FAIL) {
1495                         dev_err(&slave->dev, "Test fail for port 0\n");
1496                         clear |= SDW_DP0_INT_TEST_FAIL;
1497                 }
1498
1499                 /*
1500                  * Assumption: PORT_READY interrupt will be received only for
1501                  * ports implementing Channel Prepare state machine (CP_SM)
1502                  */
1503
1504                 if (status & SDW_DP0_INT_PORT_READY) {
1505                         complete(&slave->port_ready[0]);
1506                         clear |= SDW_DP0_INT_PORT_READY;
1507                 }
1508
1509                 if (status & SDW_DP0_INT_BRA_FAILURE) {
1510                         dev_err(&slave->dev, "BRA failed\n");
1511                         clear |= SDW_DP0_INT_BRA_FAILURE;
1512                 }
1513
1514                 impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1515                         SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1516
1517                 if (status & impl_int_mask) {
1518                         clear |= impl_int_mask;
1519                         *slave_status = clear;
1520                 }
1521
1522                 /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1523                 ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
1524                 if (ret < 0) {
1525                         dev_err(&slave->dev,
1526                                 "SDW_DP0_INT write failed:%d\n", ret);
1527                         return ret;
1528                 }
1529
1530                 /* Read DP0 interrupt again */
1531                 status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
1532                 if (status2 < 0) {
1533                         dev_err(&slave->dev,
1534                                 "SDW_DP0_INT read failed:%d\n", status2);
1535                         return status2;
1536                 }
1537                 /* filter to limit loop to interrupts identified in the first status read */
1538                 status &= status2;
1539
1540                 count++;
1541
1542                 /* we can get alerts while processing so keep retrying */
1543         } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1544
1545         if (count == SDW_READ_INTR_CLEAR_RETRY)
1546                 dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
1547
1548         return ret;
1549 }
1550
1551 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1552                                      int port, u8 *slave_status)
1553 {
1554         u8 clear, impl_int_mask;
1555         int status, status2, ret, count = 0;
1556         u32 addr;
1557
1558         if (port == 0)
1559                 return sdw_handle_dp0_interrupt(slave, slave_status);
1560
1561         addr = SDW_DPN_INT(port);
1562         status = sdw_read_no_pm(slave, addr);
1563         if (status < 0) {
1564                 dev_err(&slave->dev,
1565                         "SDW_DPN_INT read failed:%d\n", status);
1566
1567                 return status;
1568         }
1569
1570         do {
1571                 clear = status & ~SDW_DPN_INTERRUPTS;
1572
1573                 if (status & SDW_DPN_INT_TEST_FAIL) {
1574                         dev_err(&slave->dev, "Test fail for port:%d\n", port);
1575                         clear |= SDW_DPN_INT_TEST_FAIL;
1576                 }
1577
1578                 /*
1579                  * Assumption: PORT_READY interrupt will be received only
1580                  * for ports implementing CP_SM.
1581                  */
1582                 if (status & SDW_DPN_INT_PORT_READY) {
1583                         complete(&slave->port_ready[port]);
1584                         clear |= SDW_DPN_INT_PORT_READY;
1585                 }
1586
1587                 impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1588                         SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1589
1590                 if (status & impl_int_mask) {
1591                         clear |= impl_int_mask;
1592                         *slave_status = clear;
1593                 }
1594
1595                 /* clear the interrupt but don't touch reserved fields */
1596                 ret = sdw_write_no_pm(slave, addr, clear);
1597                 if (ret < 0) {
1598                         dev_err(&slave->dev,
1599                                 "SDW_DPN_INT write failed:%d\n", ret);
1600                         return ret;
1601                 }
1602
1603                 /* Read DPN interrupt again */
1604                 status2 = sdw_read_no_pm(slave, addr);
1605                 if (status2 < 0) {
1606                         dev_err(&slave->dev,
1607                                 "SDW_DPN_INT read failed:%d\n", status2);
1608                         return status2;
1609                 }
1610                 /* filter to limit loop to interrupts identified in the first status read */
1611                 status &= status2;
1612
1613                 count++;
1614
1615                 /* we can get alerts while processing so keep retrying */
1616         } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1617
1618         if (count == SDW_READ_INTR_CLEAR_RETRY)
1619                 dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
1620
1621         return ret;
1622 }
1623
1624 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1625 {
1626         struct sdw_slave_intr_status slave_intr;
1627         u8 clear = 0, bit, port_status[15] = {0};
1628         int port_num, stat, ret, count = 0;
1629         unsigned long port;
1630         bool slave_notify;
1631         u8 sdca_cascade = 0;
1632         u8 buf, buf2[2];
1633         bool parity_check;
1634         bool parity_quirk;
1635
1636         sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1637
1638         ret = pm_runtime_get_sync(&slave->dev);
1639         if (ret < 0 && ret != -EACCES) {
1640                 dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1641                 pm_runtime_put_noidle(&slave->dev);
1642                 return ret;
1643         }
1644
1645         /* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1646         ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1647         if (ret < 0) {
1648                 dev_err(&slave->dev,
1649                         "SDW_SCP_INT1 read failed:%d\n", ret);
1650                 goto io_err;
1651         }
1652         buf = ret;
1653
1654         ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1655         if (ret < 0) {
1656                 dev_err(&slave->dev,
1657                         "SDW_SCP_INT2/3 read failed:%d\n", ret);
1658                 goto io_err;
1659         }
1660
1661         if (slave->id.class_id) {
1662                 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1663                 if (ret < 0) {
1664                         dev_err(&slave->dev,
1665                                 "SDW_DP0_INT read failed:%d\n", ret);
1666                         goto io_err;
1667                 }
1668                 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1669         }
1670
1671         do {
1672                 slave_notify = false;
1673
1674                 /*
1675                  * Check parity, bus clash and Slave (impl defined)
1676                  * interrupt
1677                  */
1678                 if (buf & SDW_SCP_INT1_PARITY) {
1679                         parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1680                         parity_quirk = !slave->first_interrupt_done &&
1681                                 (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1682
1683                         if (parity_check && !parity_quirk)
1684                                 dev_err(&slave->dev, "Parity error detected\n");
1685                         clear |= SDW_SCP_INT1_PARITY;
1686                 }
1687
1688                 if (buf & SDW_SCP_INT1_BUS_CLASH) {
1689                         if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1690                                 dev_err(&slave->dev, "Bus clash detected\n");
1691                         clear |= SDW_SCP_INT1_BUS_CLASH;
1692                 }
1693
1694                 /*
1695                  * When bus clash or parity errors are detected, such errors
1696                  * are unlikely to be recoverable errors.
1697                  * TODO: In such scenario, reset bus. Make this configurable
1698                  * via sysfs property with bus reset being the default.
1699                  */
1700
1701                 if (buf & SDW_SCP_INT1_IMPL_DEF) {
1702                         if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1703                                 dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1704                                 slave_notify = true;
1705                         }
1706                         clear |= SDW_SCP_INT1_IMPL_DEF;
1707                 }
1708
1709                 /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1710                 if (sdca_cascade)
1711                         slave_notify = true;
1712
1713                 /* Check port 0 - 3 interrupts */
1714                 port = buf & SDW_SCP_INT1_PORT0_3;
1715
1716                 /* To get port number corresponding to bits, shift it */
1717                 port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
1718                 for_each_set_bit(bit, &port, 8) {
1719                         sdw_handle_port_interrupt(slave, bit,
1720                                                   &port_status[bit]);
1721                 }
1722
1723                 /* Check if cascade 2 interrupt is present */
1724                 if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1725                         port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1726                         for_each_set_bit(bit, &port, 8) {
1727                                 /* scp2 ports start from 4 */
1728                                 port_num = bit + 4;
1729                                 sdw_handle_port_interrupt(slave,
1730                                                 port_num,
1731                                                 &port_status[port_num]);
1732                         }
1733                 }
1734
1735                 /* now check last cascade */
1736                 if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1737                         port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1738                         for_each_set_bit(bit, &port, 8) {
1739                                 /* scp3 ports start from 11 */
1740                                 port_num = bit + 11;
1741                                 sdw_handle_port_interrupt(slave,
1742                                                 port_num,
1743                                                 &port_status[port_num]);
1744                         }
1745                 }
1746
1747                 /* Update the Slave driver */
1748                 if (slave_notify) {
1749                         mutex_lock(&slave->sdw_dev_lock);
1750
1751                         if (slave->probed) {
1752                                 struct device *dev = &slave->dev;
1753                                 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1754
1755                                 if (slave->prop.use_domain_irq && slave->irq)
1756                                         handle_nested_irq(slave->irq);
1757
1758                                 if (drv->ops && drv->ops->interrupt_callback) {
1759                                         slave_intr.sdca_cascade = sdca_cascade;
1760                                         slave_intr.control_port = clear;
1761                                         memcpy(slave_intr.port, &port_status,
1762                                                sizeof(slave_intr.port));
1763
1764                                         drv->ops->interrupt_callback(slave, &slave_intr);
1765                                 }
1766                         }
1767
1768                         mutex_unlock(&slave->sdw_dev_lock);
1769                 }
1770
1771                 /* Ack interrupt */
1772                 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
1773                 if (ret < 0) {
1774                         dev_err(&slave->dev,
1775                                 "SDW_SCP_INT1 write failed:%d\n", ret);
1776                         goto io_err;
1777                 }
1778
1779                 /* at this point all initial interrupt sources were handled */
1780                 slave->first_interrupt_done = true;
1781
1782                 /*
1783                  * Read status again to ensure no new interrupts arrived
1784                  * while servicing interrupts.
1785                  */
1786                 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1787                 if (ret < 0) {
1788                         dev_err(&slave->dev,
1789                                 "SDW_SCP_INT1 recheck read failed:%d\n", ret);
1790                         goto io_err;
1791                 }
1792                 buf = ret;
1793
1794                 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1795                 if (ret < 0) {
1796                         dev_err(&slave->dev,
1797                                 "SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
1798                         goto io_err;
1799                 }
1800
1801                 if (slave->id.class_id) {
1802                         ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1803                         if (ret < 0) {
1804                                 dev_err(&slave->dev,
1805                                         "SDW_DP0_INT recheck read failed:%d\n", ret);
1806                                 goto io_err;
1807                         }
1808                         sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1809                 }
1810
1811                 /*
1812                  * Make sure no interrupts are pending
1813                  */
1814                 stat = buf || buf2[0] || buf2[1] || sdca_cascade;
1815
1816                 /*
1817                  * Exit loop if Slave is continuously in ALERT state even
1818                  * after servicing the interrupt multiple times.
1819                  */
1820                 count++;
1821
1822                 /* we can get alerts while processing so keep retrying */
1823         } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1824
1825         if (count == SDW_READ_INTR_CLEAR_RETRY)
1826                 dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
1827
1828 io_err:
1829         pm_runtime_mark_last_busy(&slave->dev);
1830         pm_runtime_put_autosuspend(&slave->dev);
1831
1832         return ret;
1833 }
1834
1835 static int sdw_update_slave_status(struct sdw_slave *slave,
1836                                    enum sdw_slave_status status)
1837 {
1838         int ret = 0;
1839
1840         mutex_lock(&slave->sdw_dev_lock);
1841
1842         if (slave->probed) {
1843                 struct device *dev = &slave->dev;
1844                 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1845
1846                 if (drv->ops && drv->ops->update_status)
1847                         ret = drv->ops->update_status(slave, status);
1848         }
1849
1850         mutex_unlock(&slave->sdw_dev_lock);
1851
1852         return ret;
1853 }
1854
1855 /**
1856  * sdw_handle_slave_status() - Handle Slave status
1857  * @bus: SDW bus instance
1858  * @status: Status for all Slave(s)
1859  */
1860 int sdw_handle_slave_status(struct sdw_bus *bus,
1861                             enum sdw_slave_status status[])
1862 {
1863         enum sdw_slave_status prev_status;
1864         struct sdw_slave *slave;
1865         bool attached_initializing, id_programmed;
1866         int i, ret = 0;
1867
1868         /* first check if any Slaves fell off the bus */
1869         for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1870                 mutex_lock(&bus->bus_lock);
1871                 if (test_bit(i, bus->assigned) == false) {
1872                         mutex_unlock(&bus->bus_lock);
1873                         continue;
1874                 }
1875                 mutex_unlock(&bus->bus_lock);
1876
1877                 slave = sdw_get_slave(bus, i);
1878                 if (!slave)
1879                         continue;
1880
1881                 if (status[i] == SDW_SLAVE_UNATTACHED &&
1882                     slave->status != SDW_SLAVE_UNATTACHED) {
1883                         dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n",
1884                                  i, slave->status);
1885                         sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1886
1887                         /* Ensure driver knows that peripheral unattached */
1888                         ret = sdw_update_slave_status(slave, status[i]);
1889                         if (ret < 0)
1890                                 dev_warn(&slave->dev, "Update Slave status failed:%d\n", ret);
1891                 }
1892         }
1893
1894         if (status[0] == SDW_SLAVE_ATTACHED) {
1895                 dev_dbg(bus->dev, "Slave attached, programming device number\n");
1896
1897                 /*
1898                  * Programming a device number will have side effects,
1899                  * so we deal with other devices at a later time.
1900                  * This relies on those devices reporting ATTACHED, which will
1901                  * trigger another call to this function. This will only
1902                  * happen if at least one device ID was programmed.
1903                  * Error returns from sdw_program_device_num() are currently
1904                  * ignored because there's no useful recovery that can be done.
1905                  * Returning the error here could result in the current status
1906                  * of other devices not being handled, because if no device IDs
1907                  * were programmed there's nothing to guarantee a status change
1908                  * to trigger another call to this function.
1909                  */
1910                 sdw_program_device_num(bus, &id_programmed);
1911                 if (id_programmed)
1912                         return 0;
1913         }
1914
1915         /* Continue to check other slave statuses */
1916         for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1917                 mutex_lock(&bus->bus_lock);
1918                 if (test_bit(i, bus->assigned) == false) {
1919                         mutex_unlock(&bus->bus_lock);
1920                         continue;
1921                 }
1922                 mutex_unlock(&bus->bus_lock);
1923
1924                 slave = sdw_get_slave(bus, i);
1925                 if (!slave)
1926                         continue;
1927
1928                 attached_initializing = false;
1929
1930                 switch (status[i]) {
1931                 case SDW_SLAVE_UNATTACHED:
1932                         if (slave->status == SDW_SLAVE_UNATTACHED)
1933                                 break;
1934
1935                         dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n",
1936                                  i, slave->status);
1937
1938                         sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1939                         break;
1940
1941                 case SDW_SLAVE_ALERT:
1942                         ret = sdw_handle_slave_alerts(slave);
1943                         if (ret < 0)
1944                                 dev_err(&slave->dev,
1945                                         "Slave %d alert handling failed: %d\n",
1946                                         i, ret);
1947                         break;
1948
1949                 case SDW_SLAVE_ATTACHED:
1950                         if (slave->status == SDW_SLAVE_ATTACHED)
1951                                 break;
1952
1953                         prev_status = slave->status;
1954                         sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1955
1956                         if (prev_status == SDW_SLAVE_ALERT)
1957                                 break;
1958
1959                         attached_initializing = true;
1960
1961                         ret = sdw_initialize_slave(slave);
1962                         if (ret < 0)
1963                                 dev_err(&slave->dev,
1964                                         "Slave %d initialization failed: %d\n",
1965                                         i, ret);
1966
1967                         break;
1968
1969                 default:
1970                         dev_err(&slave->dev, "Invalid slave %d status:%d\n",
1971                                 i, status[i]);
1972                         break;
1973                 }
1974
1975                 ret = sdw_update_slave_status(slave, status[i]);
1976                 if (ret < 0)
1977                         dev_err(&slave->dev,
1978                                 "Update Slave status failed:%d\n", ret);
1979                 if (attached_initializing) {
1980                         dev_dbg(&slave->dev,
1981                                 "signaling initialization completion for Slave %d\n",
1982                                 slave->dev_num);
1983
1984                         complete_all(&slave->initialization_complete);
1985
1986                         /*
1987                          * If the manager became pm_runtime active, the peripherals will be
1988                          * restarted and attach, but their pm_runtime status may remain
1989                          * suspended. If the 'update_slave_status' callback initiates
1990                          * any sort of deferred processing, this processing would not be
1991                          * cancelled on pm_runtime suspend.
1992                          * To avoid such zombie states, we queue a request to resume.
1993                          * This would be a no-op in case the peripheral was being resumed
1994                          * by e.g. the ALSA/ASoC framework.
1995                          */
1996                         pm_request_resume(&slave->dev);
1997                 }
1998         }
1999
2000         return ret;
2001 }
2002 EXPORT_SYMBOL(sdw_handle_slave_status);
2003
2004 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
2005 {
2006         struct sdw_slave *slave;
2007         int i;
2008
2009         /* Check all non-zero devices */
2010         for (i = 1; i <= SDW_MAX_DEVICES; i++) {
2011                 mutex_lock(&bus->bus_lock);
2012                 if (test_bit(i, bus->assigned) == false) {
2013                         mutex_unlock(&bus->bus_lock);
2014                         continue;
2015                 }
2016                 mutex_unlock(&bus->bus_lock);
2017
2018                 slave = sdw_get_slave(bus, i);
2019                 if (!slave)
2020                         continue;
2021
2022                 if (slave->status != SDW_SLAVE_UNATTACHED) {
2023                         sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
2024                         slave->first_interrupt_done = false;
2025                         sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED);
2026                 }
2027
2028                 /* keep track of request, used in pm_runtime resume */
2029                 slave->unattach_request = request;
2030         }
2031 }
2032 EXPORT_SYMBOL(sdw_clear_slave_status);