Merge tag 'powerpc-6.6-6' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[platform/kernel/linux-starfive.git] / drivers / soundwire / bus.c
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/pm_runtime.h>
8 #include <linux/soundwire/sdw_registers.h>
9 #include <linux/soundwire/sdw.h>
10 #include <linux/soundwire/sdw_type.h>
11 #include "bus.h"
12 #include "irq.h"
13 #include "sysfs_local.h"
14
15 static DEFINE_IDA(sdw_bus_ida);
16
17 static int sdw_get_id(struct sdw_bus *bus)
18 {
19         int rc = ida_alloc(&sdw_bus_ida, GFP_KERNEL);
20
21         if (rc < 0)
22                 return rc;
23
24         bus->id = rc;
25         return 0;
26 }
27
28 /**
29  * sdw_bus_master_add() - add a bus Master instance
30  * @bus: bus instance
31  * @parent: parent device
32  * @fwnode: firmware node handle
33  *
34  * Initializes the bus instance, read properties and create child
35  * devices.
36  */
37 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
38                        struct fwnode_handle *fwnode)
39 {
40         struct sdw_master_prop *prop = NULL;
41         int ret;
42
43         if (!parent) {
44                 pr_err("SoundWire parent device is not set\n");
45                 return -ENODEV;
46         }
47
48         ret = sdw_get_id(bus);
49         if (ret < 0) {
50                 dev_err(parent, "Failed to get bus id\n");
51                 return ret;
52         }
53
54         ret = sdw_master_device_add(bus, parent, fwnode);
55         if (ret < 0) {
56                 dev_err(parent, "Failed to add master device at link %d\n",
57                         bus->link_id);
58                 return ret;
59         }
60
61         if (!bus->ops) {
62                 dev_err(bus->dev, "SoundWire Bus ops are not set\n");
63                 return -EINVAL;
64         }
65
66         if (!bus->compute_params) {
67                 dev_err(bus->dev,
68                         "Bandwidth allocation not configured, compute_params no set\n");
69                 return -EINVAL;
70         }
71
72         /*
73          * Give each bus_lock and msg_lock a unique key so that lockdep won't
74          * trigger a deadlock warning when the locks of several buses are
75          * grabbed during configuration of a multi-bus stream.
76          */
77         lockdep_register_key(&bus->msg_lock_key);
78         __mutex_init(&bus->msg_lock, "msg_lock", &bus->msg_lock_key);
79
80         lockdep_register_key(&bus->bus_lock_key);
81         __mutex_init(&bus->bus_lock, "bus_lock", &bus->bus_lock_key);
82
83         INIT_LIST_HEAD(&bus->slaves);
84         INIT_LIST_HEAD(&bus->m_rt_list);
85
86         /*
87          * Initialize multi_link flag
88          */
89         bus->multi_link = false;
90         if (bus->ops->read_prop) {
91                 ret = bus->ops->read_prop(bus);
92                 if (ret < 0) {
93                         dev_err(bus->dev,
94                                 "Bus read properties failed:%d\n", ret);
95                         return ret;
96                 }
97         }
98
99         sdw_bus_debugfs_init(bus);
100
101         /*
102          * Device numbers in SoundWire are 0 through 15. Enumeration device
103          * number (0), Broadcast device number (15), Group numbers (12 and
104          * 13) and Master device number (14) are not used for assignment so
105          * mask these and other higher bits.
106          */
107
108         /* Set higher order bits */
109         *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
110
111         /* Set enumuration device number and broadcast device number */
112         set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
113         set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
114
115         /* Set group device numbers and master device number */
116         set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
117         set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
118         set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
119
120         /*
121          * SDW is an enumerable bus, but devices can be powered off. So,
122          * they won't be able to report as present.
123          *
124          * Create Slave devices based on Slaves described in
125          * the respective firmware (ACPI/DT)
126          */
127         if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
128                 ret = sdw_acpi_find_slaves(bus);
129         else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
130                 ret = sdw_of_find_slaves(bus);
131         else
132                 ret = -ENOTSUPP; /* No ACPI/DT so error out */
133
134         if (ret < 0) {
135                 dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
136                 return ret;
137         }
138
139         /*
140          * Initialize clock values based on Master properties. The max
141          * frequency is read from max_clk_freq property. Current assumption
142          * is that the bus will start at highest clock frequency when
143          * powered on.
144          *
145          * Default active bank will be 0 as out of reset the Slaves have
146          * to start with bank 0 (Table 40 of Spec)
147          */
148         prop = &bus->prop;
149         bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
150         bus->params.curr_dr_freq = bus->params.max_dr_freq;
151         bus->params.curr_bank = SDW_BANK0;
152         bus->params.next_bank = SDW_BANK1;
153
154         ret = sdw_irq_create(bus, fwnode);
155         if (ret)
156                 return ret;
157
158         return 0;
159 }
160 EXPORT_SYMBOL(sdw_bus_master_add);
161
162 static int sdw_delete_slave(struct device *dev, void *data)
163 {
164         struct sdw_slave *slave = dev_to_sdw_dev(dev);
165         struct sdw_bus *bus = slave->bus;
166
167         pm_runtime_disable(dev);
168
169         sdw_slave_debugfs_exit(slave);
170
171         mutex_lock(&bus->bus_lock);
172
173         if (slave->dev_num) { /* clear dev_num if assigned */
174                 clear_bit(slave->dev_num, bus->assigned);
175                 if (bus->ops && bus->ops->put_device_num)
176                         bus->ops->put_device_num(bus, slave);
177         }
178         list_del_init(&slave->node);
179         mutex_unlock(&bus->bus_lock);
180
181         device_unregister(dev);
182         return 0;
183 }
184
185 /**
186  * sdw_bus_master_delete() - delete the bus master instance
187  * @bus: bus to be deleted
188  *
189  * Remove the instance, delete the child devices.
190  */
191 void sdw_bus_master_delete(struct sdw_bus *bus)
192 {
193         device_for_each_child(bus->dev, NULL, sdw_delete_slave);
194
195         sdw_irq_delete(bus);
196
197         sdw_master_device_del(bus);
198
199         sdw_bus_debugfs_exit(bus);
200         lockdep_unregister_key(&bus->bus_lock_key);
201         lockdep_unregister_key(&bus->msg_lock_key);
202         ida_free(&sdw_bus_ida, bus->id);
203 }
204 EXPORT_SYMBOL(sdw_bus_master_delete);
205
206 /*
207  * SDW IO Calls
208  */
209
210 static inline int find_response_code(enum sdw_command_response resp)
211 {
212         switch (resp) {
213         case SDW_CMD_OK:
214                 return 0;
215
216         case SDW_CMD_IGNORED:
217                 return -ENODATA;
218
219         case SDW_CMD_TIMEOUT:
220                 return -ETIMEDOUT;
221
222         default:
223                 return -EIO;
224         }
225 }
226
227 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
228 {
229         int retry = bus->prop.err_threshold;
230         enum sdw_command_response resp;
231         int ret = 0, i;
232
233         for (i = 0; i <= retry; i++) {
234                 resp = bus->ops->xfer_msg(bus, msg);
235                 ret = find_response_code(resp);
236
237                 /* if cmd is ok or ignored return */
238                 if (ret == 0 || ret == -ENODATA)
239                         return ret;
240         }
241
242         return ret;
243 }
244
245 static inline int do_transfer_defer(struct sdw_bus *bus,
246                                     struct sdw_msg *msg)
247 {
248         struct sdw_defer *defer = &bus->defer_msg;
249         int retry = bus->prop.err_threshold;
250         enum sdw_command_response resp;
251         int ret = 0, i;
252
253         defer->msg = msg;
254         defer->length = msg->len;
255         init_completion(&defer->complete);
256
257         for (i = 0; i <= retry; i++) {
258                 resp = bus->ops->xfer_msg_defer(bus);
259                 ret = find_response_code(resp);
260                 /* if cmd is ok or ignored return */
261                 if (ret == 0 || ret == -ENODATA)
262                         return ret;
263         }
264
265         return ret;
266 }
267
268 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
269 {
270         int ret;
271
272         ret = do_transfer(bus, msg);
273         if (ret != 0 && ret != -ENODATA)
274                 dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
275                         msg->dev_num, ret,
276                         (msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read",
277                         msg->addr, msg->len);
278
279         return ret;
280 }
281
282 /**
283  * sdw_transfer() - Synchronous transfer message to a SDW Slave device
284  * @bus: SDW bus
285  * @msg: SDW message to be xfered
286  */
287 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
288 {
289         int ret;
290
291         mutex_lock(&bus->msg_lock);
292
293         ret = sdw_transfer_unlocked(bus, msg);
294
295         mutex_unlock(&bus->msg_lock);
296
297         return ret;
298 }
299
300 /**
301  * sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers
302  * @bus: SDW bus
303  * @sync_delay: Delay before reading status
304  */
305 void sdw_show_ping_status(struct sdw_bus *bus, bool sync_delay)
306 {
307         u32 status;
308
309         if (!bus->ops->read_ping_status)
310                 return;
311
312         /*
313          * wait for peripheral to sync if desired. 10-15ms should be more than
314          * enough in most cases.
315          */
316         if (sync_delay)
317                 usleep_range(10000, 15000);
318
319         mutex_lock(&bus->msg_lock);
320
321         status = bus->ops->read_ping_status(bus);
322
323         mutex_unlock(&bus->msg_lock);
324
325         if (!status)
326                 dev_warn(bus->dev, "%s: no peripherals attached\n", __func__);
327         else
328                 dev_dbg(bus->dev, "PING status: %#x\n", status);
329 }
330 EXPORT_SYMBOL(sdw_show_ping_status);
331
332 /**
333  * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
334  * @bus: SDW bus
335  * @msg: SDW message to be xfered
336  *
337  * Caller needs to hold the msg_lock lock while calling this
338  */
339 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg)
340 {
341         int ret;
342
343         if (!bus->ops->xfer_msg_defer)
344                 return -ENOTSUPP;
345
346         ret = do_transfer_defer(bus, msg);
347         if (ret != 0 && ret != -ENODATA)
348                 dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
349                         msg->dev_num, ret);
350
351         return ret;
352 }
353
354 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
355                  u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
356 {
357         memset(msg, 0, sizeof(*msg));
358         msg->addr = addr; /* addr is 16 bit and truncated here */
359         msg->len = count;
360         msg->dev_num = dev_num;
361         msg->flags = flags;
362         msg->buf = buf;
363
364         if (addr < SDW_REG_NO_PAGE) /* no paging area */
365                 return 0;
366
367         if (addr >= SDW_REG_MAX) { /* illegal addr */
368                 pr_err("SDW: Invalid address %x passed\n", addr);
369                 return -EINVAL;
370         }
371
372         if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
373                 if (slave && !slave->prop.paging_support)
374                         return 0;
375                 /* no need for else as that will fall-through to paging */
376         }
377
378         /* paging mandatory */
379         if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
380                 pr_err("SDW: Invalid device for paging :%d\n", dev_num);
381                 return -EINVAL;
382         }
383
384         if (!slave) {
385                 pr_err("SDW: No slave for paging addr\n");
386                 return -EINVAL;
387         }
388
389         if (!slave->prop.paging_support) {
390                 dev_err(&slave->dev,
391                         "address %x needs paging but no support\n", addr);
392                 return -EINVAL;
393         }
394
395         msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
396         msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
397         msg->addr |= BIT(15);
398         msg->page = true;
399
400         return 0;
401 }
402
403 /*
404  * Read/Write IO functions.
405  */
406
407 static int sdw_ntransfer_no_pm(struct sdw_slave *slave, u32 addr, u8 flags,
408                                size_t count, u8 *val)
409 {
410         struct sdw_msg msg;
411         size_t size;
412         int ret;
413
414         while (count) {
415                 // Only handle bytes up to next page boundary
416                 size = min_t(size_t, count, (SDW_REGADDR + 1) - (addr & SDW_REGADDR));
417
418                 ret = sdw_fill_msg(&msg, slave, addr, size, slave->dev_num, flags, val);
419                 if (ret < 0)
420                         return ret;
421
422                 ret = sdw_transfer(slave->bus, &msg);
423                 if (ret < 0 && !slave->is_mockup_device)
424                         return ret;
425
426                 addr += size;
427                 val += size;
428                 count -= size;
429         }
430
431         return 0;
432 }
433
434 /**
435  * sdw_nread_no_pm() - Read "n" contiguous SDW Slave registers with no PM
436  * @slave: SDW Slave
437  * @addr: Register address
438  * @count: length
439  * @val: Buffer for values to be read
440  *
441  * Note that if the message crosses a page boundary each page will be
442  * transferred under a separate invocation of the msg_lock.
443  */
444 int sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
445 {
446         return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_READ, count, val);
447 }
448 EXPORT_SYMBOL(sdw_nread_no_pm);
449
450 /**
451  * sdw_nwrite_no_pm() - Write "n" contiguous SDW Slave registers with no PM
452  * @slave: SDW Slave
453  * @addr: Register address
454  * @count: length
455  * @val: Buffer for values to be written
456  *
457  * Note that if the message crosses a page boundary each page will be
458  * transferred under a separate invocation of the msg_lock.
459  */
460 int sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
461 {
462         return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_WRITE, count, (u8 *)val);
463 }
464 EXPORT_SYMBOL(sdw_nwrite_no_pm);
465
466 /**
467  * sdw_write_no_pm() - Write a SDW Slave register with no PM
468  * @slave: SDW Slave
469  * @addr: Register address
470  * @value: Register value
471  */
472 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
473 {
474         return sdw_nwrite_no_pm(slave, addr, 1, &value);
475 }
476 EXPORT_SYMBOL(sdw_write_no_pm);
477
478 static int
479 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
480 {
481         struct sdw_msg msg;
482         u8 buf;
483         int ret;
484
485         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
486                            SDW_MSG_FLAG_READ, &buf);
487         if (ret < 0)
488                 return ret;
489
490         ret = sdw_transfer(bus, &msg);
491         if (ret < 0)
492                 return ret;
493
494         return buf;
495 }
496
497 static int
498 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
499 {
500         struct sdw_msg msg;
501         int ret;
502
503         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
504                            SDW_MSG_FLAG_WRITE, &value);
505         if (ret < 0)
506                 return ret;
507
508         return sdw_transfer(bus, &msg);
509 }
510
511 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
512 {
513         struct sdw_msg msg;
514         u8 buf;
515         int ret;
516
517         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
518                            SDW_MSG_FLAG_READ, &buf);
519         if (ret < 0)
520                 return ret;
521
522         ret = sdw_transfer_unlocked(bus, &msg);
523         if (ret < 0)
524                 return ret;
525
526         return buf;
527 }
528 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
529
530 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
531 {
532         struct sdw_msg msg;
533         int ret;
534
535         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
536                            SDW_MSG_FLAG_WRITE, &value);
537         if (ret < 0)
538                 return ret;
539
540         return sdw_transfer_unlocked(bus, &msg);
541 }
542 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
543
544 /**
545  * sdw_read_no_pm() - Read a SDW Slave register with no PM
546  * @slave: SDW Slave
547  * @addr: Register address
548  */
549 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
550 {
551         u8 buf;
552         int ret;
553
554         ret = sdw_nread_no_pm(slave, addr, 1, &buf);
555         if (ret < 0)
556                 return ret;
557         else
558                 return buf;
559 }
560 EXPORT_SYMBOL(sdw_read_no_pm);
561
562 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
563 {
564         int tmp;
565
566         tmp = sdw_read_no_pm(slave, addr);
567         if (tmp < 0)
568                 return tmp;
569
570         tmp = (tmp & ~mask) | val;
571         return sdw_write_no_pm(slave, addr, tmp);
572 }
573 EXPORT_SYMBOL(sdw_update_no_pm);
574
575 /* Read-Modify-Write Slave register */
576 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
577 {
578         int tmp;
579
580         tmp = sdw_read(slave, addr);
581         if (tmp < 0)
582                 return tmp;
583
584         tmp = (tmp & ~mask) | val;
585         return sdw_write(slave, addr, tmp);
586 }
587 EXPORT_SYMBOL(sdw_update);
588
589 /**
590  * sdw_nread() - Read "n" contiguous SDW Slave registers
591  * @slave: SDW Slave
592  * @addr: Register address
593  * @count: length
594  * @val: Buffer for values to be read
595  *
596  * This version of the function will take a PM reference to the slave
597  * device.
598  * Note that if the message crosses a page boundary each page will be
599  * transferred under a separate invocation of the msg_lock.
600  */
601 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
602 {
603         int ret;
604
605         ret = pm_runtime_get_sync(&slave->dev);
606         if (ret < 0 && ret != -EACCES) {
607                 pm_runtime_put_noidle(&slave->dev);
608                 return ret;
609         }
610
611         ret = sdw_nread_no_pm(slave, addr, count, val);
612
613         pm_runtime_mark_last_busy(&slave->dev);
614         pm_runtime_put(&slave->dev);
615
616         return ret;
617 }
618 EXPORT_SYMBOL(sdw_nread);
619
620 /**
621  * sdw_nwrite() - Write "n" contiguous SDW Slave registers
622  * @slave: SDW Slave
623  * @addr: Register address
624  * @count: length
625  * @val: Buffer for values to be written
626  *
627  * This version of the function will take a PM reference to the slave
628  * device.
629  * Note that if the message crosses a page boundary each page will be
630  * transferred under a separate invocation of the msg_lock.
631  */
632 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
633 {
634         int ret;
635
636         ret = pm_runtime_get_sync(&slave->dev);
637         if (ret < 0 && ret != -EACCES) {
638                 pm_runtime_put_noidle(&slave->dev);
639                 return ret;
640         }
641
642         ret = sdw_nwrite_no_pm(slave, addr, count, val);
643
644         pm_runtime_mark_last_busy(&slave->dev);
645         pm_runtime_put(&slave->dev);
646
647         return ret;
648 }
649 EXPORT_SYMBOL(sdw_nwrite);
650
651 /**
652  * sdw_read() - Read a SDW Slave register
653  * @slave: SDW Slave
654  * @addr: Register address
655  *
656  * This version of the function will take a PM reference to the slave
657  * device.
658  */
659 int sdw_read(struct sdw_slave *slave, u32 addr)
660 {
661         u8 buf;
662         int ret;
663
664         ret = sdw_nread(slave, addr, 1, &buf);
665         if (ret < 0)
666                 return ret;
667
668         return buf;
669 }
670 EXPORT_SYMBOL(sdw_read);
671
672 /**
673  * sdw_write() - Write a SDW Slave register
674  * @slave: SDW Slave
675  * @addr: Register address
676  * @value: Register value
677  *
678  * This version of the function will take a PM reference to the slave
679  * device.
680  */
681 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
682 {
683         return sdw_nwrite(slave, addr, 1, &value);
684 }
685 EXPORT_SYMBOL(sdw_write);
686
687 /*
688  * SDW alert handling
689  */
690
691 /* called with bus_lock held */
692 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
693 {
694         struct sdw_slave *slave;
695
696         list_for_each_entry(slave, &bus->slaves, node) {
697                 if (slave->dev_num == i)
698                         return slave;
699         }
700
701         return NULL;
702 }
703
704 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
705 {
706         if (slave->id.mfg_id != id.mfg_id ||
707             slave->id.part_id != id.part_id ||
708             slave->id.class_id != id.class_id ||
709             (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
710              slave->id.unique_id != id.unique_id))
711                 return -ENODEV;
712
713         return 0;
714 }
715 EXPORT_SYMBOL(sdw_compare_devid);
716
717 /* called with bus_lock held */
718 static int sdw_get_device_num(struct sdw_slave *slave)
719 {
720         struct sdw_bus *bus = slave->bus;
721         int bit;
722
723         if (bus->ops && bus->ops->get_device_num) {
724                 bit = bus->ops->get_device_num(bus, slave);
725                 if (bit < 0)
726                         goto err;
727         } else {
728                 bit = find_first_zero_bit(bus->assigned, SDW_MAX_DEVICES);
729                 if (bit == SDW_MAX_DEVICES) {
730                         bit = -ENODEV;
731                         goto err;
732                 }
733         }
734
735         /*
736          * Do not update dev_num in Slave data structure here,
737          * Update once program dev_num is successful
738          */
739         set_bit(bit, bus->assigned);
740
741 err:
742         return bit;
743 }
744
745 static int sdw_assign_device_num(struct sdw_slave *slave)
746 {
747         struct sdw_bus *bus = slave->bus;
748         int ret, dev_num;
749         bool new_device = false;
750
751         /* check first if device number is assigned, if so reuse that */
752         if (!slave->dev_num) {
753                 if (!slave->dev_num_sticky) {
754                         mutex_lock(&slave->bus->bus_lock);
755                         dev_num = sdw_get_device_num(slave);
756                         mutex_unlock(&slave->bus->bus_lock);
757                         if (dev_num < 0) {
758                                 dev_err(bus->dev, "Get dev_num failed: %d\n",
759                                         dev_num);
760                                 return dev_num;
761                         }
762                         slave->dev_num = dev_num;
763                         slave->dev_num_sticky = dev_num;
764                         new_device = true;
765                 } else {
766                         slave->dev_num = slave->dev_num_sticky;
767                 }
768         }
769
770         if (!new_device)
771                 dev_dbg(bus->dev,
772                         "Slave already registered, reusing dev_num:%d\n",
773                         slave->dev_num);
774
775         /* Clear the slave->dev_num to transfer message on device 0 */
776         dev_num = slave->dev_num;
777         slave->dev_num = 0;
778
779         ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
780         if (ret < 0) {
781                 dev_err(bus->dev, "Program device_num %d failed: %d\n",
782                         dev_num, ret);
783                 return ret;
784         }
785
786         /* After xfer of msg, restore dev_num */
787         slave->dev_num = slave->dev_num_sticky;
788
789         if (bus->ops && bus->ops->new_peripheral_assigned)
790                 bus->ops->new_peripheral_assigned(bus, slave, dev_num);
791
792         return 0;
793 }
794
795 void sdw_extract_slave_id(struct sdw_bus *bus,
796                           u64 addr, struct sdw_slave_id *id)
797 {
798         dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
799
800         id->sdw_version = SDW_VERSION(addr);
801         id->unique_id = SDW_UNIQUE_ID(addr);
802         id->mfg_id = SDW_MFG_ID(addr);
803         id->part_id = SDW_PART_ID(addr);
804         id->class_id = SDW_CLASS_ID(addr);
805
806         dev_dbg(bus->dev,
807                 "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
808                 id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
809 }
810 EXPORT_SYMBOL(sdw_extract_slave_id);
811
812 static int sdw_program_device_num(struct sdw_bus *bus, bool *programmed)
813 {
814         u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
815         struct sdw_slave *slave, *_s;
816         struct sdw_slave_id id;
817         struct sdw_msg msg;
818         bool found;
819         int count = 0, ret;
820         u64 addr;
821
822         *programmed = false;
823
824         /* No Slave, so use raw xfer api */
825         ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
826                            SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
827         if (ret < 0)
828                 return ret;
829
830         do {
831                 ret = sdw_transfer(bus, &msg);
832                 if (ret == -ENODATA) { /* end of device id reads */
833                         dev_dbg(bus->dev, "No more devices to enumerate\n");
834                         ret = 0;
835                         break;
836                 }
837                 if (ret < 0) {
838                         dev_err(bus->dev, "DEVID read fail:%d\n", ret);
839                         break;
840                 }
841
842                 /*
843                  * Construct the addr and extract. Cast the higher shift
844                  * bits to avoid truncation due to size limit.
845                  */
846                 addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
847                         ((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
848                         ((u64)buf[0] << 40);
849
850                 sdw_extract_slave_id(bus, addr, &id);
851
852                 found = false;
853                 /* Now compare with entries */
854                 list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
855                         if (sdw_compare_devid(slave, id) == 0) {
856                                 found = true;
857
858                                 /*
859                                  * To prevent skipping state-machine stages don't
860                                  * program a device until we've seen it UNATTACH.
861                                  * Must return here because no other device on #0
862                                  * can be detected until this one has been
863                                  * assigned a device ID.
864                                  */
865                                 if (slave->status != SDW_SLAVE_UNATTACHED)
866                                         return 0;
867
868                                 /*
869                                  * Assign a new dev_num to this Slave and
870                                  * not mark it present. It will be marked
871                                  * present after it reports ATTACHED on new
872                                  * dev_num
873                                  */
874                                 ret = sdw_assign_device_num(slave);
875                                 if (ret < 0) {
876                                         dev_err(bus->dev,
877                                                 "Assign dev_num failed:%d\n",
878                                                 ret);
879                                         return ret;
880                                 }
881
882                                 *programmed = true;
883
884                                 break;
885                         }
886                 }
887
888                 if (!found) {
889                         /* TODO: Park this device in Group 13 */
890
891                         /*
892                          * add Slave device even if there is no platform
893                          * firmware description. There will be no driver probe
894                          * but the user/integration will be able to see the
895                          * device, enumeration status and device number in sysfs
896                          */
897                         sdw_slave_add(bus, &id, NULL);
898
899                         dev_err(bus->dev, "Slave Entry not found\n");
900                 }
901
902                 count++;
903
904                 /*
905                  * Check till error out or retry (count) exhausts.
906                  * Device can drop off and rejoin during enumeration
907                  * so count till twice the bound.
908                  */
909
910         } while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
911
912         return ret;
913 }
914
915 static void sdw_modify_slave_status(struct sdw_slave *slave,
916                                     enum sdw_slave_status status)
917 {
918         struct sdw_bus *bus = slave->bus;
919
920         mutex_lock(&bus->bus_lock);
921
922         dev_vdbg(bus->dev,
923                  "changing status slave %d status %d new status %d\n",
924                  slave->dev_num, slave->status, status);
925
926         if (status == SDW_SLAVE_UNATTACHED) {
927                 dev_dbg(&slave->dev,
928                         "initializing enumeration and init completion for Slave %d\n",
929                         slave->dev_num);
930
931                 reinit_completion(&slave->enumeration_complete);
932                 reinit_completion(&slave->initialization_complete);
933
934         } else if ((status == SDW_SLAVE_ATTACHED) &&
935                    (slave->status == SDW_SLAVE_UNATTACHED)) {
936                 dev_dbg(&slave->dev,
937                         "signaling enumeration completion for Slave %d\n",
938                         slave->dev_num);
939
940                 complete_all(&slave->enumeration_complete);
941         }
942         slave->status = status;
943         mutex_unlock(&bus->bus_lock);
944 }
945
946 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
947                                        enum sdw_clk_stop_mode mode,
948                                        enum sdw_clk_stop_type type)
949 {
950         int ret = 0;
951
952         mutex_lock(&slave->sdw_dev_lock);
953
954         if (slave->probed)  {
955                 struct device *dev = &slave->dev;
956                 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
957
958                 if (drv->ops && drv->ops->clk_stop)
959                         ret = drv->ops->clk_stop(slave, mode, type);
960         }
961
962         mutex_unlock(&slave->sdw_dev_lock);
963
964         return ret;
965 }
966
967 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
968                                       enum sdw_clk_stop_mode mode,
969                                       bool prepare)
970 {
971         bool wake_en;
972         u32 val = 0;
973         int ret;
974
975         wake_en = slave->prop.wake_capable;
976
977         if (prepare) {
978                 val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
979
980                 if (mode == SDW_CLK_STOP_MODE1)
981                         val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
982
983                 if (wake_en)
984                         val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
985         } else {
986                 ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
987                 if (ret < 0) {
988                         if (ret != -ENODATA)
989                                 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
990                         return ret;
991                 }
992                 val = ret;
993                 val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
994         }
995
996         ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
997
998         if (ret < 0 && ret != -ENODATA)
999                 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret);
1000
1001         return ret;
1002 }
1003
1004 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num)
1005 {
1006         int retry = bus->clk_stop_timeout;
1007         int val;
1008
1009         do {
1010                 val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
1011                 if (val < 0) {
1012                         if (val != -ENODATA)
1013                                 dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
1014                         return val;
1015                 }
1016                 val &= SDW_SCP_STAT_CLK_STP_NF;
1017                 if (!val) {
1018                         dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d\n",
1019                                 dev_num);
1020                         return 0;
1021                 }
1022
1023                 usleep_range(1000, 1500);
1024                 retry--;
1025         } while (retry);
1026
1027         dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d\n",
1028                 dev_num);
1029
1030         return -ETIMEDOUT;
1031 }
1032
1033 /**
1034  * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
1035  *
1036  * @bus: SDW bus instance
1037  *
1038  * Query Slave for clock stop mode and prepare for that mode.
1039  */
1040 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
1041 {
1042         bool simple_clk_stop = true;
1043         struct sdw_slave *slave;
1044         bool is_slave = false;
1045         int ret = 0;
1046
1047         /*
1048          * In order to save on transition time, prepare
1049          * each Slave and then wait for all Slave(s) to be
1050          * prepared for clock stop.
1051          * If one of the Slave devices has lost sync and
1052          * replies with Command Ignored/-ENODATA, we continue
1053          * the loop
1054          */
1055         list_for_each_entry(slave, &bus->slaves, node) {
1056                 if (!slave->dev_num)
1057                         continue;
1058
1059                 if (slave->status != SDW_SLAVE_ATTACHED &&
1060                     slave->status != SDW_SLAVE_ALERT)
1061                         continue;
1062
1063                 /* Identify if Slave(s) are available on Bus */
1064                 is_slave = true;
1065
1066                 ret = sdw_slave_clk_stop_callback(slave,
1067                                                   SDW_CLK_STOP_MODE0,
1068                                                   SDW_CLK_PRE_PREPARE);
1069                 if (ret < 0 && ret != -ENODATA) {
1070                         dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret);
1071                         return ret;
1072                 }
1073
1074                 /* Only prepare a Slave device if needed */
1075                 if (!slave->prop.simple_clk_stop_capable) {
1076                         simple_clk_stop = false;
1077
1078                         ret = sdw_slave_clk_stop_prepare(slave,
1079                                                          SDW_CLK_STOP_MODE0,
1080                                                          true);
1081                         if (ret < 0 && ret != -ENODATA) {
1082                                 dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret);
1083                                 return ret;
1084                         }
1085                 }
1086         }
1087
1088         /* Skip remaining clock stop preparation if no Slave is attached */
1089         if (!is_slave)
1090                 return 0;
1091
1092         /*
1093          * Don't wait for all Slaves to be ready if they follow the simple
1094          * state machine
1095          */
1096         if (!simple_clk_stop) {
1097                 ret = sdw_bus_wait_for_clk_prep_deprep(bus,
1098                                                        SDW_BROADCAST_DEV_NUM);
1099                 /*
1100                  * if there are no Slave devices present and the reply is
1101                  * Command_Ignored/-ENODATA, we don't need to continue with the
1102                  * flow and can just return here. The error code is not modified
1103                  * and its handling left as an exercise for the caller.
1104                  */
1105                 if (ret < 0)
1106                         return ret;
1107         }
1108
1109         /* Inform slaves that prep is done */
1110         list_for_each_entry(slave, &bus->slaves, node) {
1111                 if (!slave->dev_num)
1112                         continue;
1113
1114                 if (slave->status != SDW_SLAVE_ATTACHED &&
1115                     slave->status != SDW_SLAVE_ALERT)
1116                         continue;
1117
1118                 ret = sdw_slave_clk_stop_callback(slave,
1119                                                   SDW_CLK_STOP_MODE0,
1120                                                   SDW_CLK_POST_PREPARE);
1121
1122                 if (ret < 0 && ret != -ENODATA) {
1123                         dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret);
1124                         return ret;
1125                 }
1126         }
1127
1128         return 0;
1129 }
1130 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1131
1132 /**
1133  * sdw_bus_clk_stop: stop bus clock
1134  *
1135  * @bus: SDW bus instance
1136  *
1137  * After preparing the Slaves for clock stop, stop the clock by broadcasting
1138  * write to SCP_CTRL register.
1139  */
1140 int sdw_bus_clk_stop(struct sdw_bus *bus)
1141 {
1142         int ret;
1143
1144         /*
1145          * broadcast clock stop now, attached Slaves will ACK this,
1146          * unattached will ignore
1147          */
1148         ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1149                                SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1150         if (ret < 0) {
1151                 if (ret != -ENODATA)
1152                         dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret);
1153                 return ret;
1154         }
1155
1156         return 0;
1157 }
1158 EXPORT_SYMBOL(sdw_bus_clk_stop);
1159
1160 /**
1161  * sdw_bus_exit_clk_stop: Exit clock stop mode
1162  *
1163  * @bus: SDW bus instance
1164  *
1165  * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1166  * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1167  * back.
1168  */
1169 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1170 {
1171         bool simple_clk_stop = true;
1172         struct sdw_slave *slave;
1173         bool is_slave = false;
1174         int ret;
1175
1176         /*
1177          * In order to save on transition time, de-prepare
1178          * each Slave and then wait for all Slave(s) to be
1179          * de-prepared after clock resume.
1180          */
1181         list_for_each_entry(slave, &bus->slaves, node) {
1182                 if (!slave->dev_num)
1183                         continue;
1184
1185                 if (slave->status != SDW_SLAVE_ATTACHED &&
1186                     slave->status != SDW_SLAVE_ALERT)
1187                         continue;
1188
1189                 /* Identify if Slave(s) are available on Bus */
1190                 is_slave = true;
1191
1192                 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1193                                                   SDW_CLK_PRE_DEPREPARE);
1194                 if (ret < 0)
1195                         dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret);
1196
1197                 /* Only de-prepare a Slave device if needed */
1198                 if (!slave->prop.simple_clk_stop_capable) {
1199                         simple_clk_stop = false;
1200
1201                         ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0,
1202                                                          false);
1203
1204                         if (ret < 0)
1205                                 dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret);
1206                 }
1207         }
1208
1209         /* Skip remaining clock stop de-preparation if no Slave is attached */
1210         if (!is_slave)
1211                 return 0;
1212
1213         /*
1214          * Don't wait for all Slaves to be ready if they follow the simple
1215          * state machine
1216          */
1217         if (!simple_clk_stop) {
1218                 ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM);
1219                 if (ret < 0)
1220                         dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret);
1221         }
1222
1223         list_for_each_entry(slave, &bus->slaves, node) {
1224                 if (!slave->dev_num)
1225                         continue;
1226
1227                 if (slave->status != SDW_SLAVE_ATTACHED &&
1228                     slave->status != SDW_SLAVE_ALERT)
1229                         continue;
1230
1231                 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1232                                                   SDW_CLK_POST_DEPREPARE);
1233                 if (ret < 0)
1234                         dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret);
1235         }
1236
1237         return 0;
1238 }
1239 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1240
1241 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1242                            int port, bool enable, int mask)
1243 {
1244         u32 addr;
1245         int ret;
1246         u8 val = 0;
1247
1248         if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1249                 dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1250                         enable ? "on" : "off");
1251                 mask |= SDW_DPN_INT_TEST_FAIL;
1252         }
1253
1254         addr = SDW_DPN_INTMASK(port);
1255
1256         /* Set/Clear port ready interrupt mask */
1257         if (enable) {
1258                 val |= mask;
1259                 val |= SDW_DPN_INT_PORT_READY;
1260         } else {
1261                 val &= ~(mask);
1262                 val &= ~SDW_DPN_INT_PORT_READY;
1263         }
1264
1265         ret = sdw_update_no_pm(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1266         if (ret < 0)
1267                 dev_err(&slave->dev,
1268                         "SDW_DPN_INTMASK write failed:%d\n", val);
1269
1270         return ret;
1271 }
1272
1273 static int sdw_slave_set_frequency(struct sdw_slave *slave)
1274 {
1275         u32 mclk_freq = slave->bus->prop.mclk_freq;
1276         u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1277         unsigned int scale;
1278         u8 scale_index;
1279         u8 base;
1280         int ret;
1281
1282         /*
1283          * frequency base and scale registers are required for SDCA
1284          * devices. They may also be used for 1.2+/non-SDCA devices.
1285          * Driver can set the property, we will need a DisCo property
1286          * to discover this case from platform firmware.
1287          */
1288         if (!slave->id.class_id && !slave->prop.clock_reg_supported)
1289                 return 0;
1290
1291         if (!mclk_freq) {
1292                 dev_err(&slave->dev,
1293                         "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1294                 return -EINVAL;
1295         }
1296
1297         /*
1298          * map base frequency using Table 89 of SoundWire 1.2 spec.
1299          * The order of the tests just follows the specification, this
1300          * is not a selection between possible values or a search for
1301          * the best value but just a mapping.  Only one case per platform
1302          * is relevant.
1303          * Some BIOS have inconsistent values for mclk_freq but a
1304          * correct root so we force the mclk_freq to avoid variations.
1305          */
1306         if (!(19200000 % mclk_freq)) {
1307                 mclk_freq = 19200000;
1308                 base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1309         } else if (!(24000000 % mclk_freq)) {
1310                 mclk_freq = 24000000;
1311                 base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1312         } else if (!(24576000 % mclk_freq)) {
1313                 mclk_freq = 24576000;
1314                 base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1315         } else if (!(22579200 % mclk_freq)) {
1316                 mclk_freq = 22579200;
1317                 base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1318         } else if (!(32000000 % mclk_freq)) {
1319                 mclk_freq = 32000000;
1320                 base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1321         } else {
1322                 dev_err(&slave->dev,
1323                         "Unsupported clock base, mclk %d\n",
1324                         mclk_freq);
1325                 return -EINVAL;
1326         }
1327
1328         if (mclk_freq % curr_freq) {
1329                 dev_err(&slave->dev,
1330                         "mclk %d is not multiple of bus curr_freq %d\n",
1331                         mclk_freq, curr_freq);
1332                 return -EINVAL;
1333         }
1334
1335         scale = mclk_freq / curr_freq;
1336
1337         /*
1338          * map scale to Table 90 of SoundWire 1.2 spec - and check
1339          * that the scale is a power of two and maximum 64
1340          */
1341         scale_index = ilog2(scale);
1342
1343         if (BIT(scale_index) != scale || scale_index > 6) {
1344                 dev_err(&slave->dev,
1345                         "No match found for scale %d, bus mclk %d curr_freq %d\n",
1346                         scale, mclk_freq, curr_freq);
1347                 return -EINVAL;
1348         }
1349         scale_index++;
1350
1351         ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
1352         if (ret < 0) {
1353                 dev_err(&slave->dev,
1354                         "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1355                 return ret;
1356         }
1357
1358         /* initialize scale for both banks */
1359         ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
1360         if (ret < 0) {
1361                 dev_err(&slave->dev,
1362                         "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1363                 return ret;
1364         }
1365         ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
1366         if (ret < 0)
1367                 dev_err(&slave->dev,
1368                         "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1369
1370         dev_dbg(&slave->dev,
1371                 "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1372                 base, scale_index, mclk_freq, curr_freq);
1373
1374         return ret;
1375 }
1376
1377 static int sdw_initialize_slave(struct sdw_slave *slave)
1378 {
1379         struct sdw_slave_prop *prop = &slave->prop;
1380         int status;
1381         int ret;
1382         u8 val;
1383
1384         ret = sdw_slave_set_frequency(slave);
1385         if (ret < 0)
1386                 return ret;
1387
1388         if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
1389                 /* Clear bus clash interrupt before enabling interrupt mask */
1390                 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1391                 if (status < 0) {
1392                         dev_err(&slave->dev,
1393                                 "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
1394                         return status;
1395                 }
1396                 if (status & SDW_SCP_INT1_BUS_CLASH) {
1397                         dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
1398                         ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
1399                         if (ret < 0) {
1400                                 dev_err(&slave->dev,
1401                                         "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
1402                                 return ret;
1403                         }
1404                 }
1405         }
1406         if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
1407             !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
1408                 /* Clear parity interrupt before enabling interrupt mask */
1409                 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1410                 if (status < 0) {
1411                         dev_err(&slave->dev,
1412                                 "SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
1413                         return status;
1414                 }
1415                 if (status & SDW_SCP_INT1_PARITY) {
1416                         dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
1417                         ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
1418                         if (ret < 0) {
1419                                 dev_err(&slave->dev,
1420                                         "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
1421                                 return ret;
1422                         }
1423                 }
1424         }
1425
1426         /*
1427          * Set SCP_INT1_MASK register, typically bus clash and
1428          * implementation-defined interrupt mask. The Parity detection
1429          * may not always be correct on startup so its use is
1430          * device-dependent, it might e.g. only be enabled in
1431          * steady-state after a couple of frames.
1432          */
1433         val = slave->prop.scp_int1_mask;
1434
1435         /* Enable SCP interrupts */
1436         ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
1437         if (ret < 0) {
1438                 dev_err(&slave->dev,
1439                         "SDW_SCP_INTMASK1 write failed:%d\n", ret);
1440                 return ret;
1441         }
1442
1443         /* No need to continue if DP0 is not present */
1444         if (!slave->prop.dp0_prop)
1445                 return 0;
1446
1447         /* Enable DP0 interrupts */
1448         val = prop->dp0_prop->imp_def_interrupts;
1449         val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1450
1451         ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
1452         if (ret < 0)
1453                 dev_err(&slave->dev,
1454                         "SDW_DP0_INTMASK read failed:%d\n", ret);
1455         return ret;
1456 }
1457
1458 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1459 {
1460         u8 clear, impl_int_mask;
1461         int status, status2, ret, count = 0;
1462
1463         status = sdw_read_no_pm(slave, SDW_DP0_INT);
1464         if (status < 0) {
1465                 dev_err(&slave->dev,
1466                         "SDW_DP0_INT read failed:%d\n", status);
1467                 return status;
1468         }
1469
1470         do {
1471                 clear = status & ~SDW_DP0_INTERRUPTS;
1472
1473                 if (status & SDW_DP0_INT_TEST_FAIL) {
1474                         dev_err(&slave->dev, "Test fail for port 0\n");
1475                         clear |= SDW_DP0_INT_TEST_FAIL;
1476                 }
1477
1478                 /*
1479                  * Assumption: PORT_READY interrupt will be received only for
1480                  * ports implementing Channel Prepare state machine (CP_SM)
1481                  */
1482
1483                 if (status & SDW_DP0_INT_PORT_READY) {
1484                         complete(&slave->port_ready[0]);
1485                         clear |= SDW_DP0_INT_PORT_READY;
1486                 }
1487
1488                 if (status & SDW_DP0_INT_BRA_FAILURE) {
1489                         dev_err(&slave->dev, "BRA failed\n");
1490                         clear |= SDW_DP0_INT_BRA_FAILURE;
1491                 }
1492
1493                 impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1494                         SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1495
1496                 if (status & impl_int_mask) {
1497                         clear |= impl_int_mask;
1498                         *slave_status = clear;
1499                 }
1500
1501                 /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1502                 ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
1503                 if (ret < 0) {
1504                         dev_err(&slave->dev,
1505                                 "SDW_DP0_INT write failed:%d\n", ret);
1506                         return ret;
1507                 }
1508
1509                 /* Read DP0 interrupt again */
1510                 status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
1511                 if (status2 < 0) {
1512                         dev_err(&slave->dev,
1513                                 "SDW_DP0_INT read failed:%d\n", status2);
1514                         return status2;
1515                 }
1516                 /* filter to limit loop to interrupts identified in the first status read */
1517                 status &= status2;
1518
1519                 count++;
1520
1521                 /* we can get alerts while processing so keep retrying */
1522         } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1523
1524         if (count == SDW_READ_INTR_CLEAR_RETRY)
1525                 dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
1526
1527         return ret;
1528 }
1529
1530 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1531                                      int port, u8 *slave_status)
1532 {
1533         u8 clear, impl_int_mask;
1534         int status, status2, ret, count = 0;
1535         u32 addr;
1536
1537         if (port == 0)
1538                 return sdw_handle_dp0_interrupt(slave, slave_status);
1539
1540         addr = SDW_DPN_INT(port);
1541         status = sdw_read_no_pm(slave, addr);
1542         if (status < 0) {
1543                 dev_err(&slave->dev,
1544                         "SDW_DPN_INT read failed:%d\n", status);
1545
1546                 return status;
1547         }
1548
1549         do {
1550                 clear = status & ~SDW_DPN_INTERRUPTS;
1551
1552                 if (status & SDW_DPN_INT_TEST_FAIL) {
1553                         dev_err(&slave->dev, "Test fail for port:%d\n", port);
1554                         clear |= SDW_DPN_INT_TEST_FAIL;
1555                 }
1556
1557                 /*
1558                  * Assumption: PORT_READY interrupt will be received only
1559                  * for ports implementing CP_SM.
1560                  */
1561                 if (status & SDW_DPN_INT_PORT_READY) {
1562                         complete(&slave->port_ready[port]);
1563                         clear |= SDW_DPN_INT_PORT_READY;
1564                 }
1565
1566                 impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1567                         SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1568
1569                 if (status & impl_int_mask) {
1570                         clear |= impl_int_mask;
1571                         *slave_status = clear;
1572                 }
1573
1574                 /* clear the interrupt but don't touch reserved fields */
1575                 ret = sdw_write_no_pm(slave, addr, clear);
1576                 if (ret < 0) {
1577                         dev_err(&slave->dev,
1578                                 "SDW_DPN_INT write failed:%d\n", ret);
1579                         return ret;
1580                 }
1581
1582                 /* Read DPN interrupt again */
1583                 status2 = sdw_read_no_pm(slave, addr);
1584                 if (status2 < 0) {
1585                         dev_err(&slave->dev,
1586                                 "SDW_DPN_INT read failed:%d\n", status2);
1587                         return status2;
1588                 }
1589                 /* filter to limit loop to interrupts identified in the first status read */
1590                 status &= status2;
1591
1592                 count++;
1593
1594                 /* we can get alerts while processing so keep retrying */
1595         } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1596
1597         if (count == SDW_READ_INTR_CLEAR_RETRY)
1598                 dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
1599
1600         return ret;
1601 }
1602
1603 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1604 {
1605         struct sdw_slave_intr_status slave_intr;
1606         u8 clear = 0, bit, port_status[15] = {0};
1607         int port_num, stat, ret, count = 0;
1608         unsigned long port;
1609         bool slave_notify;
1610         u8 sdca_cascade = 0;
1611         u8 buf, buf2[2];
1612         bool parity_check;
1613         bool parity_quirk;
1614
1615         sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1616
1617         ret = pm_runtime_get_sync(&slave->dev);
1618         if (ret < 0 && ret != -EACCES) {
1619                 dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1620                 pm_runtime_put_noidle(&slave->dev);
1621                 return ret;
1622         }
1623
1624         /* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1625         ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1626         if (ret < 0) {
1627                 dev_err(&slave->dev,
1628                         "SDW_SCP_INT1 read failed:%d\n", ret);
1629                 goto io_err;
1630         }
1631         buf = ret;
1632
1633         ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1634         if (ret < 0) {
1635                 dev_err(&slave->dev,
1636                         "SDW_SCP_INT2/3 read failed:%d\n", ret);
1637                 goto io_err;
1638         }
1639
1640         if (slave->id.class_id) {
1641                 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1642                 if (ret < 0) {
1643                         dev_err(&slave->dev,
1644                                 "SDW_DP0_INT read failed:%d\n", ret);
1645                         goto io_err;
1646                 }
1647                 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1648         }
1649
1650         do {
1651                 slave_notify = false;
1652
1653                 /*
1654                  * Check parity, bus clash and Slave (impl defined)
1655                  * interrupt
1656                  */
1657                 if (buf & SDW_SCP_INT1_PARITY) {
1658                         parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1659                         parity_quirk = !slave->first_interrupt_done &&
1660                                 (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1661
1662                         if (parity_check && !parity_quirk)
1663                                 dev_err(&slave->dev, "Parity error detected\n");
1664                         clear |= SDW_SCP_INT1_PARITY;
1665                 }
1666
1667                 if (buf & SDW_SCP_INT1_BUS_CLASH) {
1668                         if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1669                                 dev_err(&slave->dev, "Bus clash detected\n");
1670                         clear |= SDW_SCP_INT1_BUS_CLASH;
1671                 }
1672
1673                 /*
1674                  * When bus clash or parity errors are detected, such errors
1675                  * are unlikely to be recoverable errors.
1676                  * TODO: In such scenario, reset bus. Make this configurable
1677                  * via sysfs property with bus reset being the default.
1678                  */
1679
1680                 if (buf & SDW_SCP_INT1_IMPL_DEF) {
1681                         if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1682                                 dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1683                                 slave_notify = true;
1684                         }
1685                         clear |= SDW_SCP_INT1_IMPL_DEF;
1686                 }
1687
1688                 /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1689                 if (sdca_cascade)
1690                         slave_notify = true;
1691
1692                 /* Check port 0 - 3 interrupts */
1693                 port = buf & SDW_SCP_INT1_PORT0_3;
1694
1695                 /* To get port number corresponding to bits, shift it */
1696                 port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
1697                 for_each_set_bit(bit, &port, 8) {
1698                         sdw_handle_port_interrupt(slave, bit,
1699                                                   &port_status[bit]);
1700                 }
1701
1702                 /* Check if cascade 2 interrupt is present */
1703                 if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1704                         port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1705                         for_each_set_bit(bit, &port, 8) {
1706                                 /* scp2 ports start from 4 */
1707                                 port_num = bit + 4;
1708                                 sdw_handle_port_interrupt(slave,
1709                                                 port_num,
1710                                                 &port_status[port_num]);
1711                         }
1712                 }
1713
1714                 /* now check last cascade */
1715                 if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1716                         port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1717                         for_each_set_bit(bit, &port, 8) {
1718                                 /* scp3 ports start from 11 */
1719                                 port_num = bit + 11;
1720                                 sdw_handle_port_interrupt(slave,
1721                                                 port_num,
1722                                                 &port_status[port_num]);
1723                         }
1724                 }
1725
1726                 /* Update the Slave driver */
1727                 if (slave_notify) {
1728                         mutex_lock(&slave->sdw_dev_lock);
1729
1730                         if (slave->probed) {
1731                                 struct device *dev = &slave->dev;
1732                                 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1733
1734                                 if (slave->prop.use_domain_irq && slave->irq)
1735                                         handle_nested_irq(slave->irq);
1736
1737                                 if (drv->ops && drv->ops->interrupt_callback) {
1738                                         slave_intr.sdca_cascade = sdca_cascade;
1739                                         slave_intr.control_port = clear;
1740                                         memcpy(slave_intr.port, &port_status,
1741                                                sizeof(slave_intr.port));
1742
1743                                         drv->ops->interrupt_callback(slave, &slave_intr);
1744                                 }
1745                         }
1746
1747                         mutex_unlock(&slave->sdw_dev_lock);
1748                 }
1749
1750                 /* Ack interrupt */
1751                 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
1752                 if (ret < 0) {
1753                         dev_err(&slave->dev,
1754                                 "SDW_SCP_INT1 write failed:%d\n", ret);
1755                         goto io_err;
1756                 }
1757
1758                 /* at this point all initial interrupt sources were handled */
1759                 slave->first_interrupt_done = true;
1760
1761                 /*
1762                  * Read status again to ensure no new interrupts arrived
1763                  * while servicing interrupts.
1764                  */
1765                 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1766                 if (ret < 0) {
1767                         dev_err(&slave->dev,
1768                                 "SDW_SCP_INT1 recheck read failed:%d\n", ret);
1769                         goto io_err;
1770                 }
1771                 buf = ret;
1772
1773                 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1774                 if (ret < 0) {
1775                         dev_err(&slave->dev,
1776                                 "SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
1777                         goto io_err;
1778                 }
1779
1780                 if (slave->id.class_id) {
1781                         ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1782                         if (ret < 0) {
1783                                 dev_err(&slave->dev,
1784                                         "SDW_DP0_INT recheck read failed:%d\n", ret);
1785                                 goto io_err;
1786                         }
1787                         sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1788                 }
1789
1790                 /*
1791                  * Make sure no interrupts are pending
1792                  */
1793                 stat = buf || buf2[0] || buf2[1] || sdca_cascade;
1794
1795                 /*
1796                  * Exit loop if Slave is continuously in ALERT state even
1797                  * after servicing the interrupt multiple times.
1798                  */
1799                 count++;
1800
1801                 /* we can get alerts while processing so keep retrying */
1802         } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1803
1804         if (count == SDW_READ_INTR_CLEAR_RETRY)
1805                 dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
1806
1807 io_err:
1808         pm_runtime_mark_last_busy(&slave->dev);
1809         pm_runtime_put_autosuspend(&slave->dev);
1810
1811         return ret;
1812 }
1813
1814 static int sdw_update_slave_status(struct sdw_slave *slave,
1815                                    enum sdw_slave_status status)
1816 {
1817         int ret = 0;
1818
1819         mutex_lock(&slave->sdw_dev_lock);
1820
1821         if (slave->probed) {
1822                 struct device *dev = &slave->dev;
1823                 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1824
1825                 if (drv->ops && drv->ops->update_status)
1826                         ret = drv->ops->update_status(slave, status);
1827         }
1828
1829         mutex_unlock(&slave->sdw_dev_lock);
1830
1831         return ret;
1832 }
1833
1834 /**
1835  * sdw_handle_slave_status() - Handle Slave status
1836  * @bus: SDW bus instance
1837  * @status: Status for all Slave(s)
1838  */
1839 int sdw_handle_slave_status(struct sdw_bus *bus,
1840                             enum sdw_slave_status status[])
1841 {
1842         enum sdw_slave_status prev_status;
1843         struct sdw_slave *slave;
1844         bool attached_initializing, id_programmed;
1845         int i, ret = 0;
1846
1847         /* first check if any Slaves fell off the bus */
1848         for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1849                 mutex_lock(&bus->bus_lock);
1850                 if (test_bit(i, bus->assigned) == false) {
1851                         mutex_unlock(&bus->bus_lock);
1852                         continue;
1853                 }
1854                 mutex_unlock(&bus->bus_lock);
1855
1856                 slave = sdw_get_slave(bus, i);
1857                 if (!slave)
1858                         continue;
1859
1860                 if (status[i] == SDW_SLAVE_UNATTACHED &&
1861                     slave->status != SDW_SLAVE_UNATTACHED) {
1862                         dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n",
1863                                  i, slave->status);
1864                         sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1865
1866                         /* Ensure driver knows that peripheral unattached */
1867                         ret = sdw_update_slave_status(slave, status[i]);
1868                         if (ret < 0)
1869                                 dev_warn(&slave->dev, "Update Slave status failed:%d\n", ret);
1870                 }
1871         }
1872
1873         if (status[0] == SDW_SLAVE_ATTACHED) {
1874                 dev_dbg(bus->dev, "Slave attached, programming device number\n");
1875
1876                 /*
1877                  * Programming a device number will have side effects,
1878                  * so we deal with other devices at a later time.
1879                  * This relies on those devices reporting ATTACHED, which will
1880                  * trigger another call to this function. This will only
1881                  * happen if at least one device ID was programmed.
1882                  * Error returns from sdw_program_device_num() are currently
1883                  * ignored because there's no useful recovery that can be done.
1884                  * Returning the error here could result in the current status
1885                  * of other devices not being handled, because if no device IDs
1886                  * were programmed there's nothing to guarantee a status change
1887                  * to trigger another call to this function.
1888                  */
1889                 sdw_program_device_num(bus, &id_programmed);
1890                 if (id_programmed)
1891                         return 0;
1892         }
1893
1894         /* Continue to check other slave statuses */
1895         for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1896                 mutex_lock(&bus->bus_lock);
1897                 if (test_bit(i, bus->assigned) == false) {
1898                         mutex_unlock(&bus->bus_lock);
1899                         continue;
1900                 }
1901                 mutex_unlock(&bus->bus_lock);
1902
1903                 slave = sdw_get_slave(bus, i);
1904                 if (!slave)
1905                         continue;
1906
1907                 attached_initializing = false;
1908
1909                 switch (status[i]) {
1910                 case SDW_SLAVE_UNATTACHED:
1911                         if (slave->status == SDW_SLAVE_UNATTACHED)
1912                                 break;
1913
1914                         dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n",
1915                                  i, slave->status);
1916
1917                         sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1918                         break;
1919
1920                 case SDW_SLAVE_ALERT:
1921                         ret = sdw_handle_slave_alerts(slave);
1922                         if (ret < 0)
1923                                 dev_err(&slave->dev,
1924                                         "Slave %d alert handling failed: %d\n",
1925                                         i, ret);
1926                         break;
1927
1928                 case SDW_SLAVE_ATTACHED:
1929                         if (slave->status == SDW_SLAVE_ATTACHED)
1930                                 break;
1931
1932                         prev_status = slave->status;
1933                         sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1934
1935                         if (prev_status == SDW_SLAVE_ALERT)
1936                                 break;
1937
1938                         attached_initializing = true;
1939
1940                         ret = sdw_initialize_slave(slave);
1941                         if (ret < 0)
1942                                 dev_err(&slave->dev,
1943                                         "Slave %d initialization failed: %d\n",
1944                                         i, ret);
1945
1946                         break;
1947
1948                 default:
1949                         dev_err(&slave->dev, "Invalid slave %d status:%d\n",
1950                                 i, status[i]);
1951                         break;
1952                 }
1953
1954                 ret = sdw_update_slave_status(slave, status[i]);
1955                 if (ret < 0)
1956                         dev_err(&slave->dev,
1957                                 "Update Slave status failed:%d\n", ret);
1958                 if (attached_initializing) {
1959                         dev_dbg(&slave->dev,
1960                                 "signaling initialization completion for Slave %d\n",
1961                                 slave->dev_num);
1962
1963                         complete_all(&slave->initialization_complete);
1964
1965                         /*
1966                          * If the manager became pm_runtime active, the peripherals will be
1967                          * restarted and attach, but their pm_runtime status may remain
1968                          * suspended. If the 'update_slave_status' callback initiates
1969                          * any sort of deferred processing, this processing would not be
1970                          * cancelled on pm_runtime suspend.
1971                          * To avoid such zombie states, we queue a request to resume.
1972                          * This would be a no-op in case the peripheral was being resumed
1973                          * by e.g. the ALSA/ASoC framework.
1974                          */
1975                         pm_request_resume(&slave->dev);
1976                 }
1977         }
1978
1979         return ret;
1980 }
1981 EXPORT_SYMBOL(sdw_handle_slave_status);
1982
1983 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
1984 {
1985         struct sdw_slave *slave;
1986         int i;
1987
1988         /* Check all non-zero devices */
1989         for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1990                 mutex_lock(&bus->bus_lock);
1991                 if (test_bit(i, bus->assigned) == false) {
1992                         mutex_unlock(&bus->bus_lock);
1993                         continue;
1994                 }
1995                 mutex_unlock(&bus->bus_lock);
1996
1997                 slave = sdw_get_slave(bus, i);
1998                 if (!slave)
1999                         continue;
2000
2001                 if (slave->status != SDW_SLAVE_UNATTACHED) {
2002                         sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
2003                         slave->first_interrupt_done = false;
2004                         sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED);
2005                 }
2006
2007                 /* keep track of request, used in pm_runtime resume */
2008                 slave->unattach_request = request;
2009         }
2010 }
2011 EXPORT_SYMBOL(sdw_clear_slave_status);