drivers: soc: ti: knav_qmss_queue: Mark knav_acc_firmwares as static
[platform/kernel/linux-starfive.git] / drivers / soc / ti / knav_qmss_queue.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Keystone Queue Manager subsystem driver
4  *
5  * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
6  * Authors:     Sandeep Nair <sandeep_n@ti.com>
7  *              Cyril Chemparathy <cyril@ti.com>
8  *              Santosh Shilimkar <santosh.shilimkar@ti.com>
9  */
10
11 #include <linux/debugfs.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/firmware.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of_address.h>
18 #include <linux/of_device.h>
19 #include <linux/of_irq.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/slab.h>
22 #include <linux/soc/ti/knav_qmss.h>
23
24 #include "knav_qmss.h"
25
26 static struct knav_device *kdev;
27 static DEFINE_MUTEX(knav_dev_lock);
28 #define knav_dev_lock_held() \
29         lockdep_is_held(&knav_dev_lock)
30
31 /* Queue manager register indices in DTS */
32 #define KNAV_QUEUE_PEEK_REG_INDEX       0
33 #define KNAV_QUEUE_STATUS_REG_INDEX     1
34 #define KNAV_QUEUE_CONFIG_REG_INDEX     2
35 #define KNAV_QUEUE_REGION_REG_INDEX     3
36 #define KNAV_QUEUE_PUSH_REG_INDEX       4
37 #define KNAV_QUEUE_POP_REG_INDEX        5
38
39 /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
40  * There are no status and vbusm push registers on this version
41  * of QMSS. Push registers are same as pop, So all indices above 1
42  * are to be re-defined
43  */
44 #define KNAV_L_QUEUE_CONFIG_REG_INDEX   1
45 #define KNAV_L_QUEUE_REGION_REG_INDEX   2
46 #define KNAV_L_QUEUE_PUSH_REG_INDEX     3
47
48 /* PDSP register indices in DTS */
49 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX  0
50 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX  1
51 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX  2
52 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX   3
53
54 #define knav_queue_idx_to_inst(kdev, idx)                       \
55         (kdev->instances + (idx << kdev->inst_shift))
56
57 #define for_each_handle_rcu(qh, inst)                           \
58         list_for_each_entry_rcu(qh, &inst->handles, list,       \
59                                 knav_dev_lock_held())
60
61 #define for_each_instance(idx, inst, kdev)              \
62         for (idx = 0, inst = kdev->instances;           \
63              idx < (kdev)->num_queues_in_use;                   \
64              idx++, inst = knav_queue_idx_to_inst(kdev, idx))
65
66 /* All firmware file names end up here. List the firmware file names below.
67  * Newest followed by older ones. Search is done from start of the array
68  * until a firmware file is found.
69  */
70 static const char * const knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
71
72 static bool device_ready;
73 bool knav_qmss_device_ready(void)
74 {
75         return device_ready;
76 }
77 EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
78
79 /**
80  * knav_queue_notify: qmss queue notfier call
81  *
82  * @inst:               - qmss queue instance like accumulator
83  */
84 void knav_queue_notify(struct knav_queue_inst *inst)
85 {
86         struct knav_queue *qh;
87
88         if (!inst)
89                 return;
90
91         rcu_read_lock();
92         for_each_handle_rcu(qh, inst) {
93                 if (atomic_read(&qh->notifier_enabled) <= 0)
94                         continue;
95                 if (WARN_ON(!qh->notifier_fn))
96                         continue;
97                 this_cpu_inc(qh->stats->notifies);
98                 qh->notifier_fn(qh->notifier_fn_arg);
99         }
100         rcu_read_unlock();
101 }
102 EXPORT_SYMBOL_GPL(knav_queue_notify);
103
104 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
105 {
106         struct knav_queue_inst *inst = _instdata;
107
108         knav_queue_notify(inst);
109         return IRQ_HANDLED;
110 }
111
112 static int knav_queue_setup_irq(struct knav_range_info *range,
113                           struct knav_queue_inst *inst)
114 {
115         unsigned queue = inst->id - range->queue_base;
116         int ret = 0, irq;
117
118         if (range->flags & RANGE_HAS_IRQ) {
119                 irq = range->irqs[queue].irq;
120                 ret = request_irq(irq, knav_queue_int_handler, 0,
121                                         inst->irq_name, inst);
122                 if (ret)
123                         return ret;
124                 disable_irq(irq);
125                 if (range->irqs[queue].cpu_mask) {
126                         ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
127                         if (ret) {
128                                 dev_warn(range->kdev->dev,
129                                          "Failed to set IRQ affinity\n");
130                                 return ret;
131                         }
132                 }
133         }
134         return ret;
135 }
136
137 static void knav_queue_free_irq(struct knav_queue_inst *inst)
138 {
139         struct knav_range_info *range = inst->range;
140         unsigned queue = inst->id - inst->range->queue_base;
141         int irq;
142
143         if (range->flags & RANGE_HAS_IRQ) {
144                 irq = range->irqs[queue].irq;
145                 irq_set_affinity_hint(irq, NULL);
146                 free_irq(irq, inst);
147         }
148 }
149
150 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
151 {
152         return !list_empty(&inst->handles);
153 }
154
155 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
156 {
157         return inst->range->flags & RANGE_RESERVED;
158 }
159
160 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
161 {
162         struct knav_queue *tmp;
163
164         rcu_read_lock();
165         for_each_handle_rcu(tmp, inst) {
166                 if (tmp->flags & KNAV_QUEUE_SHARED) {
167                         rcu_read_unlock();
168                         return true;
169                 }
170         }
171         rcu_read_unlock();
172         return false;
173 }
174
175 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
176                                                 unsigned type)
177 {
178         if ((type == KNAV_QUEUE_QPEND) &&
179             (inst->range->flags & RANGE_HAS_IRQ)) {
180                 return true;
181         } else if ((type == KNAV_QUEUE_ACC) &&
182                 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
183                 return true;
184         } else if ((type == KNAV_QUEUE_GP) &&
185                 !(inst->range->flags &
186                         (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
187                 return true;
188         }
189         return false;
190 }
191
192 static inline struct knav_queue_inst *
193 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
194 {
195         struct knav_queue_inst *inst;
196         int idx;
197
198         for_each_instance(idx, inst, kdev) {
199                 if (inst->id == id)
200                         return inst;
201         }
202         return NULL;
203 }
204
205 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
206 {
207         if (kdev->base_id <= id &&
208             kdev->base_id + kdev->num_queues > id) {
209                 id -= kdev->base_id;
210                 return knav_queue_match_id_to_inst(kdev, id);
211         }
212         return NULL;
213 }
214
215 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
216                                       const char *name, unsigned flags)
217 {
218         struct knav_queue *qh;
219         unsigned id;
220         int ret = 0;
221
222         qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
223         if (!qh)
224                 return ERR_PTR(-ENOMEM);
225
226         qh->stats = alloc_percpu(struct knav_queue_stats);
227         if (!qh->stats) {
228                 ret = -ENOMEM;
229                 goto err;
230         }
231
232         qh->flags = flags;
233         qh->inst = inst;
234         id = inst->id - inst->qmgr->start_queue;
235         qh->reg_push = &inst->qmgr->reg_push[id];
236         qh->reg_pop = &inst->qmgr->reg_pop[id];
237         qh->reg_peek = &inst->qmgr->reg_peek[id];
238
239         /* first opener? */
240         if (!knav_queue_is_busy(inst)) {
241                 struct knav_range_info *range = inst->range;
242
243                 inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
244                 if (range->ops && range->ops->open_queue)
245                         ret = range->ops->open_queue(range, inst, flags);
246
247                 if (ret)
248                         goto err;
249         }
250         list_add_tail_rcu(&qh->list, &inst->handles);
251         return qh;
252
253 err:
254         if (qh->stats)
255                 free_percpu(qh->stats);
256         devm_kfree(inst->kdev->dev, qh);
257         return ERR_PTR(ret);
258 }
259
260 static struct knav_queue *
261 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
262 {
263         struct knav_queue_inst *inst;
264         struct knav_queue *qh;
265
266         mutex_lock(&knav_dev_lock);
267
268         qh = ERR_PTR(-ENODEV);
269         inst = knav_queue_find_by_id(id);
270         if (!inst)
271                 goto unlock_ret;
272
273         qh = ERR_PTR(-EEXIST);
274         if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
275                 goto unlock_ret;
276
277         qh = ERR_PTR(-EBUSY);
278         if ((flags & KNAV_QUEUE_SHARED) &&
279             (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
280                 goto unlock_ret;
281
282         qh = __knav_queue_open(inst, name, flags);
283
284 unlock_ret:
285         mutex_unlock(&knav_dev_lock);
286
287         return qh;
288 }
289
290 static struct knav_queue *knav_queue_open_by_type(const char *name,
291                                                 unsigned type, unsigned flags)
292 {
293         struct knav_queue_inst *inst;
294         struct knav_queue *qh = ERR_PTR(-EINVAL);
295         int idx;
296
297         mutex_lock(&knav_dev_lock);
298
299         for_each_instance(idx, inst, kdev) {
300                 if (knav_queue_is_reserved(inst))
301                         continue;
302                 if (!knav_queue_match_type(inst, type))
303                         continue;
304                 if (knav_queue_is_busy(inst))
305                         continue;
306                 qh = __knav_queue_open(inst, name, flags);
307                 goto unlock_ret;
308         }
309
310 unlock_ret:
311         mutex_unlock(&knav_dev_lock);
312         return qh;
313 }
314
315 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
316 {
317         struct knav_range_info *range = inst->range;
318
319         if (range->ops && range->ops->set_notify)
320                 range->ops->set_notify(range, inst, enabled);
321 }
322
323 static int knav_queue_enable_notifier(struct knav_queue *qh)
324 {
325         struct knav_queue_inst *inst = qh->inst;
326         bool first;
327
328         if (WARN_ON(!qh->notifier_fn))
329                 return -EINVAL;
330
331         /* Adjust the per handle notifier count */
332         first = (atomic_inc_return(&qh->notifier_enabled) == 1);
333         if (!first)
334                 return 0; /* nothing to do */
335
336         /* Now adjust the per instance notifier count */
337         first = (atomic_inc_return(&inst->num_notifiers) == 1);
338         if (first)
339                 knav_queue_set_notify(inst, true);
340
341         return 0;
342 }
343
344 static int knav_queue_disable_notifier(struct knav_queue *qh)
345 {
346         struct knav_queue_inst *inst = qh->inst;
347         bool last;
348
349         last = (atomic_dec_return(&qh->notifier_enabled) == 0);
350         if (!last)
351                 return 0; /* nothing to do */
352
353         last = (atomic_dec_return(&inst->num_notifiers) == 0);
354         if (last)
355                 knav_queue_set_notify(inst, false);
356
357         return 0;
358 }
359
360 static int knav_queue_set_notifier(struct knav_queue *qh,
361                                 struct knav_queue_notify_config *cfg)
362 {
363         knav_queue_notify_fn old_fn = qh->notifier_fn;
364
365         if (!cfg)
366                 return -EINVAL;
367
368         if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
369                 return -ENOTSUPP;
370
371         if (!cfg->fn && old_fn)
372                 knav_queue_disable_notifier(qh);
373
374         qh->notifier_fn = cfg->fn;
375         qh->notifier_fn_arg = cfg->fn_arg;
376
377         if (cfg->fn && !old_fn)
378                 knav_queue_enable_notifier(qh);
379
380         return 0;
381 }
382
383 static int knav_gp_set_notify(struct knav_range_info *range,
384                                struct knav_queue_inst *inst,
385                                bool enabled)
386 {
387         unsigned queue;
388
389         if (range->flags & RANGE_HAS_IRQ) {
390                 queue = inst->id - range->queue_base;
391                 if (enabled)
392                         enable_irq(range->irqs[queue].irq);
393                 else
394                         disable_irq_nosync(range->irqs[queue].irq);
395         }
396         return 0;
397 }
398
399 static int knav_gp_open_queue(struct knav_range_info *range,
400                                 struct knav_queue_inst *inst, unsigned flags)
401 {
402         return knav_queue_setup_irq(range, inst);
403 }
404
405 static int knav_gp_close_queue(struct knav_range_info *range,
406                                 struct knav_queue_inst *inst)
407 {
408         knav_queue_free_irq(inst);
409         return 0;
410 }
411
412 static struct knav_range_ops knav_gp_range_ops = {
413         .set_notify     = knav_gp_set_notify,
414         .open_queue     = knav_gp_open_queue,
415         .close_queue    = knav_gp_close_queue,
416 };
417
418
419 static int knav_queue_get_count(void *qhandle)
420 {
421         struct knav_queue *qh = qhandle;
422         struct knav_queue_inst *inst = qh->inst;
423
424         return readl_relaxed(&qh->reg_peek[0].entry_count) +
425                 atomic_read(&inst->desc_count);
426 }
427
428 static void knav_queue_debug_show_instance(struct seq_file *s,
429                                         struct knav_queue_inst *inst)
430 {
431         struct knav_device *kdev = inst->kdev;
432         struct knav_queue *qh;
433         int cpu = 0;
434         int pushes = 0;
435         int pops = 0;
436         int push_errors = 0;
437         int pop_errors = 0;
438         int notifies = 0;
439
440         if (!knav_queue_is_busy(inst))
441                 return;
442
443         seq_printf(s, "\tqueue id %d (%s)\n",
444                    kdev->base_id + inst->id, inst->name);
445         for_each_handle_rcu(qh, inst) {
446                 for_each_possible_cpu(cpu) {
447                         pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
448                         pops += per_cpu_ptr(qh->stats, cpu)->pops;
449                         push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
450                         pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
451                         notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
452                 }
453
454                 seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
455                                 qh,
456                                 pushes,
457                                 pops,
458                                 knav_queue_get_count(qh),
459                                 notifies,
460                                 push_errors,
461                                 pop_errors);
462         }
463 }
464
465 static int knav_queue_debug_show(struct seq_file *s, void *v)
466 {
467         struct knav_queue_inst *inst;
468         int idx;
469
470         mutex_lock(&knav_dev_lock);
471         seq_printf(s, "%s: %u-%u\n",
472                    dev_name(kdev->dev), kdev->base_id,
473                    kdev->base_id + kdev->num_queues - 1);
474         for_each_instance(idx, inst, kdev)
475                 knav_queue_debug_show_instance(s, inst);
476         mutex_unlock(&knav_dev_lock);
477
478         return 0;
479 }
480
481 DEFINE_SHOW_ATTRIBUTE(knav_queue_debug);
482
483 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
484                                         u32 flags)
485 {
486         unsigned long end;
487         u32 val = 0;
488
489         end = jiffies + msecs_to_jiffies(timeout);
490         while (time_after(end, jiffies)) {
491                 val = readl_relaxed(addr);
492                 if (flags)
493                         val &= flags;
494                 if (!val)
495                         break;
496                 cpu_relax();
497         }
498         return val ? -ETIMEDOUT : 0;
499 }
500
501
502 static int knav_queue_flush(struct knav_queue *qh)
503 {
504         struct knav_queue_inst *inst = qh->inst;
505         unsigned id = inst->id - inst->qmgr->start_queue;
506
507         atomic_set(&inst->desc_count, 0);
508         writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
509         return 0;
510 }
511
512 /**
513  * knav_queue_open()    - open a hardware queue
514  * @name:               - name to give the queue handle
515  * @id:                 - desired queue number if any or specifes the type
516  *                        of queue
517  * @flags:              - the following flags are applicable to queues:
518  *      KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
519  *                           exclusive by default.
520  *                           Subsequent attempts to open a shared queue should
521  *                           also have this flag.
522  *
523  * Returns a handle to the open hardware queue if successful. Use IS_ERR()
524  * to check the returned value for error codes.
525  */
526 void *knav_queue_open(const char *name, unsigned id,
527                                         unsigned flags)
528 {
529         struct knav_queue *qh = ERR_PTR(-EINVAL);
530
531         switch (id) {
532         case KNAV_QUEUE_QPEND:
533         case KNAV_QUEUE_ACC:
534         case KNAV_QUEUE_GP:
535                 qh = knav_queue_open_by_type(name, id, flags);
536                 break;
537
538         default:
539                 qh = knav_queue_open_by_id(name, id, flags);
540                 break;
541         }
542         return qh;
543 }
544 EXPORT_SYMBOL_GPL(knav_queue_open);
545
546 /**
547  * knav_queue_close()   - close a hardware queue handle
548  * @qhandle:            - handle to close
549  */
550 void knav_queue_close(void *qhandle)
551 {
552         struct knav_queue *qh = qhandle;
553         struct knav_queue_inst *inst = qh->inst;
554
555         while (atomic_read(&qh->notifier_enabled) > 0)
556                 knav_queue_disable_notifier(qh);
557
558         mutex_lock(&knav_dev_lock);
559         list_del_rcu(&qh->list);
560         mutex_unlock(&knav_dev_lock);
561         synchronize_rcu();
562         if (!knav_queue_is_busy(inst)) {
563                 struct knav_range_info *range = inst->range;
564
565                 if (range->ops && range->ops->close_queue)
566                         range->ops->close_queue(range, inst);
567         }
568         free_percpu(qh->stats);
569         devm_kfree(inst->kdev->dev, qh);
570 }
571 EXPORT_SYMBOL_GPL(knav_queue_close);
572
573 /**
574  * knav_queue_device_control()  - Perform control operations on a queue
575  * @qhandle:                    - queue handle
576  * @cmd:                        - control commands
577  * @arg:                        - command argument
578  *
579  * Returns 0 on success, errno otherwise.
580  */
581 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
582                                 unsigned long arg)
583 {
584         struct knav_queue *qh = qhandle;
585         struct knav_queue_notify_config *cfg;
586         int ret;
587
588         switch ((int)cmd) {
589         case KNAV_QUEUE_GET_ID:
590                 ret = qh->inst->kdev->base_id + qh->inst->id;
591                 break;
592
593         case KNAV_QUEUE_FLUSH:
594                 ret = knav_queue_flush(qh);
595                 break;
596
597         case KNAV_QUEUE_SET_NOTIFIER:
598                 cfg = (void *)arg;
599                 ret = knav_queue_set_notifier(qh, cfg);
600                 break;
601
602         case KNAV_QUEUE_ENABLE_NOTIFY:
603                 ret = knav_queue_enable_notifier(qh);
604                 break;
605
606         case KNAV_QUEUE_DISABLE_NOTIFY:
607                 ret = knav_queue_disable_notifier(qh);
608                 break;
609
610         case KNAV_QUEUE_GET_COUNT:
611                 ret = knav_queue_get_count(qh);
612                 break;
613
614         default:
615                 ret = -ENOTSUPP;
616                 break;
617         }
618         return ret;
619 }
620 EXPORT_SYMBOL_GPL(knav_queue_device_control);
621
622
623
624 /**
625  * knav_queue_push()    - push data (or descriptor) to the tail of a queue
626  * @qhandle:            - hardware queue handle
627  * @dma:                - DMA data to push
628  * @size:               - size of data to push
629  * @flags:              - can be used to pass additional information
630  *
631  * Returns 0 on success, errno otherwise.
632  */
633 int knav_queue_push(void *qhandle, dma_addr_t dma,
634                                         unsigned size, unsigned flags)
635 {
636         struct knav_queue *qh = qhandle;
637         u32 val;
638
639         val = (u32)dma | ((size / 16) - 1);
640         writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
641
642         this_cpu_inc(qh->stats->pushes);
643         return 0;
644 }
645 EXPORT_SYMBOL_GPL(knav_queue_push);
646
647 /**
648  * knav_queue_pop()     - pop data (or descriptor) from the head of a queue
649  * @qhandle:            - hardware queue handle
650  * @size:               - (optional) size of the data pop'ed.
651  *
652  * Returns a DMA address on success, 0 on failure.
653  */
654 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
655 {
656         struct knav_queue *qh = qhandle;
657         struct knav_queue_inst *inst = qh->inst;
658         dma_addr_t dma;
659         u32 val, idx;
660
661         /* are we accumulated? */
662         if (inst->descs) {
663                 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
664                         atomic_inc(&inst->desc_count);
665                         return 0;
666                 }
667                 idx  = atomic_inc_return(&inst->desc_head);
668                 idx &= ACC_DESCS_MASK;
669                 val = inst->descs[idx];
670         } else {
671                 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
672                 if (unlikely(!val))
673                         return 0;
674         }
675
676         dma = val & DESC_PTR_MASK;
677         if (size)
678                 *size = ((val & DESC_SIZE_MASK) + 1) * 16;
679
680         this_cpu_inc(qh->stats->pops);
681         return dma;
682 }
683 EXPORT_SYMBOL_GPL(knav_queue_pop);
684
685 /* carve out descriptors and push into queue */
686 static void kdesc_fill_pool(struct knav_pool *pool)
687 {
688         struct knav_region *region;
689         int i;
690
691         region = pool->region;
692         pool->desc_size = region->desc_size;
693         for (i = 0; i < pool->num_desc; i++) {
694                 int index = pool->region_offset + i;
695                 dma_addr_t dma_addr;
696                 unsigned dma_size;
697                 dma_addr = region->dma_start + (region->desc_size * index);
698                 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
699                 dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
700                                            DMA_TO_DEVICE);
701                 knav_queue_push(pool->queue, dma_addr, dma_size, 0);
702         }
703 }
704
705 /* pop out descriptors and close the queue */
706 static void kdesc_empty_pool(struct knav_pool *pool)
707 {
708         dma_addr_t dma;
709         unsigned size;
710         void *desc;
711         int i;
712
713         if (!pool->queue)
714                 return;
715
716         for (i = 0;; i++) {
717                 dma = knav_queue_pop(pool->queue, &size);
718                 if (!dma)
719                         break;
720                 desc = knav_pool_desc_dma_to_virt(pool, dma);
721                 if (!desc) {
722                         dev_dbg(pool->kdev->dev,
723                                 "couldn't unmap desc, continuing\n");
724                         continue;
725                 }
726         }
727         WARN_ON(i != pool->num_desc);
728         knav_queue_close(pool->queue);
729 }
730
731
732 /* Get the DMA address of a descriptor */
733 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
734 {
735         struct knav_pool *pool = ph;
736         return pool->region->dma_start + (virt - pool->region->virt_start);
737 }
738 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
739
740 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
741 {
742         struct knav_pool *pool = ph;
743         return pool->region->virt_start + (dma - pool->region->dma_start);
744 }
745 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
746
747 /**
748  * knav_pool_create()   - Create a pool of descriptors
749  * @name:               - name to give the pool handle
750  * @num_desc:           - numbers of descriptors in the pool
751  * @region_id:          - QMSS region id from which the descriptors are to be
752  *                        allocated.
753  *
754  * Returns a pool handle on success.
755  * Use IS_ERR_OR_NULL() to identify error values on return.
756  */
757 void *knav_pool_create(const char *name,
758                                         int num_desc, int region_id)
759 {
760         struct knav_region *reg_itr, *region = NULL;
761         struct knav_pool *pool, *pi = NULL, *iter;
762         struct list_head *node;
763         unsigned last_offset;
764         int ret;
765
766         if (!kdev)
767                 return ERR_PTR(-EPROBE_DEFER);
768
769         if (!kdev->dev)
770                 return ERR_PTR(-ENODEV);
771
772         pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
773         if (!pool) {
774                 dev_err(kdev->dev, "out of memory allocating pool\n");
775                 return ERR_PTR(-ENOMEM);
776         }
777
778         for_each_region(kdev, reg_itr) {
779                 if (reg_itr->id != region_id)
780                         continue;
781                 region = reg_itr;
782                 break;
783         }
784
785         if (!region) {
786                 dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
787                 ret = -EINVAL;
788                 goto err;
789         }
790
791         pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
792         if (IS_ERR(pool->queue)) {
793                 dev_err(kdev->dev,
794                         "failed to open queue for pool(%s), error %ld\n",
795                         name, PTR_ERR(pool->queue));
796                 ret = PTR_ERR(pool->queue);
797                 goto err;
798         }
799
800         pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
801         pool->kdev = kdev;
802         pool->dev = kdev->dev;
803
804         mutex_lock(&knav_dev_lock);
805
806         if (num_desc > (region->num_desc - region->used_desc)) {
807                 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
808                         region_id, name);
809                 ret = -ENOMEM;
810                 goto err_unlock;
811         }
812
813         /* Region maintains a sorted (by region offset) list of pools
814          * use the first free slot which is large enough to accomodate
815          * the request
816          */
817         last_offset = 0;
818         node = &region->pools;
819         list_for_each_entry(iter, &region->pools, region_inst) {
820                 if ((iter->region_offset - last_offset) >= num_desc) {
821                         pi = iter;
822                         break;
823                 }
824                 last_offset = iter->region_offset + iter->num_desc;
825         }
826
827         if (pi) {
828                 node = &pi->region_inst;
829                 pool->region = region;
830                 pool->num_desc = num_desc;
831                 pool->region_offset = last_offset;
832                 region->used_desc += num_desc;
833                 list_add_tail(&pool->list, &kdev->pools);
834                 list_add_tail(&pool->region_inst, node);
835         } else {
836                 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
837                         name, region_id);
838                 ret = -ENOMEM;
839                 goto err_unlock;
840         }
841
842         mutex_unlock(&knav_dev_lock);
843         kdesc_fill_pool(pool);
844         return pool;
845
846 err_unlock:
847         mutex_unlock(&knav_dev_lock);
848 err:
849         kfree(pool->name);
850         devm_kfree(kdev->dev, pool);
851         return ERR_PTR(ret);
852 }
853 EXPORT_SYMBOL_GPL(knav_pool_create);
854
855 /**
856  * knav_pool_destroy()  - Free a pool of descriptors
857  * @ph:         - pool handle
858  */
859 void knav_pool_destroy(void *ph)
860 {
861         struct knav_pool *pool = ph;
862
863         if (!pool)
864                 return;
865
866         if (!pool->region)
867                 return;
868
869         kdesc_empty_pool(pool);
870         mutex_lock(&knav_dev_lock);
871
872         pool->region->used_desc -= pool->num_desc;
873         list_del(&pool->region_inst);
874         list_del(&pool->list);
875
876         mutex_unlock(&knav_dev_lock);
877         kfree(pool->name);
878         devm_kfree(kdev->dev, pool);
879 }
880 EXPORT_SYMBOL_GPL(knav_pool_destroy);
881
882
883 /**
884  * knav_pool_desc_get() - Get a descriptor from the pool
885  * @ph:         - pool handle
886  *
887  * Returns descriptor from the pool.
888  */
889 void *knav_pool_desc_get(void *ph)
890 {
891         struct knav_pool *pool = ph;
892         dma_addr_t dma;
893         unsigned size;
894         void *data;
895
896         dma = knav_queue_pop(pool->queue, &size);
897         if (unlikely(!dma))
898                 return ERR_PTR(-ENOMEM);
899         data = knav_pool_desc_dma_to_virt(pool, dma);
900         return data;
901 }
902 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
903
904 /**
905  * knav_pool_desc_put() - return a descriptor to the pool
906  * @ph:         - pool handle
907  * @desc:       - virtual address
908  */
909 void knav_pool_desc_put(void *ph, void *desc)
910 {
911         struct knav_pool *pool = ph;
912         dma_addr_t dma;
913         dma = knav_pool_desc_virt_to_dma(pool, desc);
914         knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
915 }
916 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
917
918 /**
919  * knav_pool_desc_map() - Map descriptor for DMA transfer
920  * @ph:                         - pool handle
921  * @desc:                       - address of descriptor to map
922  * @size:                       - size of descriptor to map
923  * @dma:                        - DMA address return pointer
924  * @dma_sz:                     - adjusted return pointer
925  *
926  * Returns 0 on success, errno otherwise.
927  */
928 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
929                                         dma_addr_t *dma, unsigned *dma_sz)
930 {
931         struct knav_pool *pool = ph;
932         *dma = knav_pool_desc_virt_to_dma(pool, desc);
933         size = min(size, pool->region->desc_size);
934         size = ALIGN(size, SMP_CACHE_BYTES);
935         *dma_sz = size;
936         dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
937
938         /* Ensure the descriptor reaches to the memory */
939         __iowmb();
940
941         return 0;
942 }
943 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
944
945 /**
946  * knav_pool_desc_unmap()       - Unmap descriptor after DMA transfer
947  * @ph:                         - pool handle
948  * @dma:                        - DMA address of descriptor to unmap
949  * @dma_sz:                     - size of descriptor to unmap
950  *
951  * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
952  * error values on return.
953  */
954 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
955 {
956         struct knav_pool *pool = ph;
957         unsigned desc_sz;
958         void *desc;
959
960         desc_sz = min(dma_sz, pool->region->desc_size);
961         desc = knav_pool_desc_dma_to_virt(pool, dma);
962         dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
963         prefetch(desc);
964         return desc;
965 }
966 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
967
968 /**
969  * knav_pool_count()    - Get the number of descriptors in pool.
970  * @ph:                 - pool handle
971  * Returns number of elements in the pool.
972  */
973 int knav_pool_count(void *ph)
974 {
975         struct knav_pool *pool = ph;
976         return knav_queue_get_count(pool->queue);
977 }
978 EXPORT_SYMBOL_GPL(knav_pool_count);
979
980 static void knav_queue_setup_region(struct knav_device *kdev,
981                                         struct knav_region *region)
982 {
983         unsigned hw_num_desc, hw_desc_size, size;
984         struct knav_reg_region __iomem  *regs;
985         struct knav_qmgr_info *qmgr;
986         struct knav_pool *pool;
987         int id = region->id;
988         struct page *page;
989
990         /* unused region? */
991         if (!region->num_desc) {
992                 dev_warn(kdev->dev, "unused region %s\n", region->name);
993                 return;
994         }
995
996         /* get hardware descriptor value */
997         hw_num_desc = ilog2(region->num_desc - 1) + 1;
998
999         /* did we force fit ourselves into nothingness? */
1000         if (region->num_desc < 32) {
1001                 region->num_desc = 0;
1002                 dev_warn(kdev->dev, "too few descriptors in region %s\n",
1003                          region->name);
1004                 return;
1005         }
1006
1007         size = region->num_desc * region->desc_size;
1008         region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1009                                                 GFP_DMA32);
1010         if (!region->virt_start) {
1011                 region->num_desc = 0;
1012                 dev_err(kdev->dev, "memory alloc failed for region %s\n",
1013                         region->name);
1014                 return;
1015         }
1016         region->virt_end = region->virt_start + size;
1017         page = virt_to_page(region->virt_start);
1018
1019         region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1020                                          DMA_BIDIRECTIONAL);
1021         if (dma_mapping_error(kdev->dev, region->dma_start)) {
1022                 dev_err(kdev->dev, "dma map failed for region %s\n",
1023                         region->name);
1024                 goto fail;
1025         }
1026         region->dma_end = region->dma_start + size;
1027
1028         pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1029         if (!pool) {
1030                 dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1031                 goto fail;
1032         }
1033         pool->num_desc = 0;
1034         pool->region_offset = region->num_desc;
1035         list_add(&pool->region_inst, &region->pools);
1036
1037         dev_dbg(kdev->dev,
1038                 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1039                 region->name, id, region->desc_size, region->num_desc,
1040                 region->link_index, &region->dma_start, &region->dma_end,
1041                 region->virt_start, region->virt_end);
1042
1043         hw_desc_size = (region->desc_size / 16) - 1;
1044         hw_num_desc -= 5;
1045
1046         for_each_qmgr(kdev, qmgr) {
1047                 regs = qmgr->reg_region + id;
1048                 writel_relaxed((u32)region->dma_start, &regs->base);
1049                 writel_relaxed(region->link_index, &regs->start_index);
1050                 writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1051                                &regs->size_count);
1052         }
1053         return;
1054
1055 fail:
1056         if (region->dma_start)
1057                 dma_unmap_page(kdev->dev, region->dma_start, size,
1058                                 DMA_BIDIRECTIONAL);
1059         if (region->virt_start)
1060                 free_pages_exact(region->virt_start, size);
1061         region->num_desc = 0;
1062         return;
1063 }
1064
1065 static const char *knav_queue_find_name(struct device_node *node)
1066 {
1067         const char *name;
1068
1069         if (of_property_read_string(node, "label", &name) < 0)
1070                 name = node->name;
1071         if (!name)
1072                 name = "unknown";
1073         return name;
1074 }
1075
1076 static int knav_queue_setup_regions(struct knav_device *kdev,
1077                                         struct device_node *regions)
1078 {
1079         struct device *dev = kdev->dev;
1080         struct knav_region *region;
1081         struct device_node *child;
1082         u32 temp[2];
1083         int ret;
1084
1085         for_each_child_of_node(regions, child) {
1086                 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1087                 if (!region) {
1088                         of_node_put(child);
1089                         dev_err(dev, "out of memory allocating region\n");
1090                         return -ENOMEM;
1091                 }
1092
1093                 region->name = knav_queue_find_name(child);
1094                 of_property_read_u32(child, "id", &region->id);
1095                 ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1096                 if (!ret) {
1097                         region->num_desc  = temp[0];
1098                         region->desc_size = temp[1];
1099                 } else {
1100                         dev_err(dev, "invalid region info %s\n", region->name);
1101                         devm_kfree(dev, region);
1102                         continue;
1103                 }
1104
1105                 if (!of_get_property(child, "link-index", NULL)) {
1106                         dev_err(dev, "No link info for %s\n", region->name);
1107                         devm_kfree(dev, region);
1108                         continue;
1109                 }
1110                 ret = of_property_read_u32(child, "link-index",
1111                                            &region->link_index);
1112                 if (ret) {
1113                         dev_err(dev, "link index not found for %s\n",
1114                                 region->name);
1115                         devm_kfree(dev, region);
1116                         continue;
1117                 }
1118
1119                 INIT_LIST_HEAD(&region->pools);
1120                 list_add_tail(&region->list, &kdev->regions);
1121         }
1122         if (list_empty(&kdev->regions)) {
1123                 dev_err(dev, "no valid region information found\n");
1124                 return -ENODEV;
1125         }
1126
1127         /* Next, we run through the regions and set things up */
1128         for_each_region(kdev, region)
1129                 knav_queue_setup_region(kdev, region);
1130
1131         return 0;
1132 }
1133
1134 static int knav_get_link_ram(struct knav_device *kdev,
1135                                        const char *name,
1136                                        struct knav_link_ram_block *block)
1137 {
1138         struct platform_device *pdev = to_platform_device(kdev->dev);
1139         struct device_node *node = pdev->dev.of_node;
1140         u32 temp[2];
1141
1142         /*
1143          * Note: link ram resources are specified in "entry" sized units. In
1144          * reality, although entries are ~40bits in hardware, we treat them as
1145          * 64-bit entities here.
1146          *
1147          * For example, to specify the internal link ram for Keystone-I class
1148          * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1149          *
1150          * This gets a bit weird when other link rams are used.  For example,
1151          * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1152          * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1153          * which accounts for 64-bits per entry, for 16K entries.
1154          */
1155         if (!of_property_read_u32_array(node, name , temp, 2)) {
1156                 if (temp[0]) {
1157                         /*
1158                          * queue_base specified => using internal or onchip
1159                          * link ram WARNING - we do not "reserve" this block
1160                          */
1161                         block->dma = (dma_addr_t)temp[0];
1162                         block->virt = NULL;
1163                         block->size = temp[1];
1164                 } else {
1165                         block->size = temp[1];
1166                         /* queue_base not specific => allocate requested size */
1167                         block->virt = dmam_alloc_coherent(kdev->dev,
1168                                                   8 * block->size, &block->dma,
1169                                                   GFP_KERNEL);
1170                         if (!block->virt) {
1171                                 dev_err(kdev->dev, "failed to alloc linkram\n");
1172                                 return -ENOMEM;
1173                         }
1174                 }
1175         } else {
1176                 return -ENODEV;
1177         }
1178         return 0;
1179 }
1180
1181 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1182 {
1183         struct knav_link_ram_block *block;
1184         struct knav_qmgr_info *qmgr;
1185
1186         for_each_qmgr(kdev, qmgr) {
1187                 block = &kdev->link_rams[0];
1188                 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1189                         &block->dma, block->virt, block->size);
1190                 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1191                 if (kdev->version == QMSS_66AK2G)
1192                         writel_relaxed(block->size,
1193                                        &qmgr->reg_config->link_ram_size0);
1194                 else
1195                         writel_relaxed(block->size - 1,
1196                                        &qmgr->reg_config->link_ram_size0);
1197                 block++;
1198                 if (!block->size)
1199                         continue;
1200
1201                 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1202                         &block->dma, block->virt, block->size);
1203                 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1204         }
1205
1206         return 0;
1207 }
1208
1209 static int knav_setup_queue_range(struct knav_device *kdev,
1210                                         struct device_node *node)
1211 {
1212         struct device *dev = kdev->dev;
1213         struct knav_range_info *range;
1214         struct knav_qmgr_info *qmgr;
1215         u32 temp[2], start, end, id, index;
1216         int ret, i;
1217
1218         range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1219         if (!range) {
1220                 dev_err(dev, "out of memory allocating range\n");
1221                 return -ENOMEM;
1222         }
1223
1224         range->kdev = kdev;
1225         range->name = knav_queue_find_name(node);
1226         ret = of_property_read_u32_array(node, "qrange", temp, 2);
1227         if (!ret) {
1228                 range->queue_base = temp[0] - kdev->base_id;
1229                 range->num_queues = temp[1];
1230         } else {
1231                 dev_err(dev, "invalid queue range %s\n", range->name);
1232                 devm_kfree(dev, range);
1233                 return -EINVAL;
1234         }
1235
1236         for (i = 0; i < RANGE_MAX_IRQS; i++) {
1237                 struct of_phandle_args oirq;
1238
1239                 if (of_irq_parse_one(node, i, &oirq))
1240                         break;
1241
1242                 range->irqs[i].irq = irq_create_of_mapping(&oirq);
1243                 if (range->irqs[i].irq == IRQ_NONE)
1244                         break;
1245
1246                 range->num_irqs++;
1247
1248                 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
1249                         unsigned long mask;
1250                         int bit;
1251
1252                         range->irqs[i].cpu_mask = devm_kzalloc(dev,
1253                                                                cpumask_size(), GFP_KERNEL);
1254                         if (!range->irqs[i].cpu_mask)
1255                                 return -ENOMEM;
1256
1257                         mask = (oirq.args[2] & 0x0000ff00) >> 8;
1258                         for_each_set_bit(bit, &mask, BITS_PER_LONG)
1259                                 cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
1260                 }
1261         }
1262
1263         range->num_irqs = min(range->num_irqs, range->num_queues);
1264         if (range->num_irqs)
1265                 range->flags |= RANGE_HAS_IRQ;
1266
1267         if (of_get_property(node, "qalloc-by-id", NULL))
1268                 range->flags |= RANGE_RESERVED;
1269
1270         if (of_get_property(node, "accumulator", NULL)) {
1271                 ret = knav_init_acc_range(kdev, node, range);
1272                 if (ret < 0) {
1273                         devm_kfree(dev, range);
1274                         return ret;
1275                 }
1276         } else {
1277                 range->ops = &knav_gp_range_ops;
1278         }
1279
1280         /* set threshold to 1, and flush out the queues */
1281         for_each_qmgr(kdev, qmgr) {
1282                 start = max(qmgr->start_queue, range->queue_base);
1283                 end   = min(qmgr->start_queue + qmgr->num_queues,
1284                             range->queue_base + range->num_queues);
1285                 for (id = start; id < end; id++) {
1286                         index = id - qmgr->start_queue;
1287                         writel_relaxed(THRESH_GTE | 1,
1288                                        &qmgr->reg_peek[index].ptr_size_thresh);
1289                         writel_relaxed(0,
1290                                        &qmgr->reg_push[index].ptr_size_thresh);
1291                 }
1292         }
1293
1294         list_add_tail(&range->list, &kdev->queue_ranges);
1295         dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1296                 range->name, range->queue_base,
1297                 range->queue_base + range->num_queues - 1,
1298                 range->num_irqs,
1299                 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1300                 (range->flags & RANGE_RESERVED) ? ", reserved" : "",
1301                 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1302         kdev->num_queues_in_use += range->num_queues;
1303         return 0;
1304 }
1305
1306 static int knav_setup_queue_pools(struct knav_device *kdev,
1307                                    struct device_node *queue_pools)
1308 {
1309         struct device_node *type, *range;
1310
1311         for_each_child_of_node(queue_pools, type) {
1312                 for_each_child_of_node(type, range) {
1313                         /* return value ignored, we init the rest... */
1314                         knav_setup_queue_range(kdev, range);
1315                 }
1316         }
1317
1318         /* ... and barf if they all failed! */
1319         if (list_empty(&kdev->queue_ranges)) {
1320                 dev_err(kdev->dev, "no valid queue range found\n");
1321                 return -ENODEV;
1322         }
1323         return 0;
1324 }
1325
1326 static void knav_free_queue_range(struct knav_device *kdev,
1327                                   struct knav_range_info *range)
1328 {
1329         if (range->ops && range->ops->free_range)
1330                 range->ops->free_range(range);
1331         list_del(&range->list);
1332         devm_kfree(kdev->dev, range);
1333 }
1334
1335 static void knav_free_queue_ranges(struct knav_device *kdev)
1336 {
1337         struct knav_range_info *range;
1338
1339         for (;;) {
1340                 range = first_queue_range(kdev);
1341                 if (!range)
1342                         break;
1343                 knav_free_queue_range(kdev, range);
1344         }
1345 }
1346
1347 static void knav_queue_free_regions(struct knav_device *kdev)
1348 {
1349         struct knav_region *region;
1350         struct knav_pool *pool, *tmp;
1351         unsigned size;
1352
1353         for (;;) {
1354                 region = first_region(kdev);
1355                 if (!region)
1356                         break;
1357                 list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1358                         knav_pool_destroy(pool);
1359
1360                 size = region->virt_end - region->virt_start;
1361                 if (size)
1362                         free_pages_exact(region->virt_start, size);
1363                 list_del(&region->list);
1364                 devm_kfree(kdev->dev, region);
1365         }
1366 }
1367
1368 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1369                                         struct device_node *node, int index)
1370 {
1371         struct resource res;
1372         void __iomem *regs;
1373         int ret;
1374
1375         ret = of_address_to_resource(node, index, &res);
1376         if (ret) {
1377                 dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
1378                         node, index);
1379                 return ERR_PTR(ret);
1380         }
1381
1382         regs = devm_ioremap_resource(kdev->dev, &res);
1383         if (IS_ERR(regs))
1384                 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
1385                         index, node);
1386         return regs;
1387 }
1388
1389 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1390                                         struct device_node *qmgrs)
1391 {
1392         struct device *dev = kdev->dev;
1393         struct knav_qmgr_info *qmgr;
1394         struct device_node *child;
1395         u32 temp[2];
1396         int ret;
1397
1398         for_each_child_of_node(qmgrs, child) {
1399                 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1400                 if (!qmgr) {
1401                         of_node_put(child);
1402                         dev_err(dev, "out of memory allocating qmgr\n");
1403                         return -ENOMEM;
1404                 }
1405
1406                 ret = of_property_read_u32_array(child, "managed-queues",
1407                                                  temp, 2);
1408                 if (!ret) {
1409                         qmgr->start_queue = temp[0];
1410                         qmgr->num_queues = temp[1];
1411                 } else {
1412                         dev_err(dev, "invalid qmgr queue range\n");
1413                         devm_kfree(dev, qmgr);
1414                         continue;
1415                 }
1416
1417                 dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1418                          qmgr->start_queue, qmgr->num_queues);
1419
1420                 qmgr->reg_peek =
1421                         knav_queue_map_reg(kdev, child,
1422                                            KNAV_QUEUE_PEEK_REG_INDEX);
1423
1424                 if (kdev->version == QMSS) {
1425                         qmgr->reg_status =
1426                                 knav_queue_map_reg(kdev, child,
1427                                                    KNAV_QUEUE_STATUS_REG_INDEX);
1428                 }
1429
1430                 qmgr->reg_config =
1431                         knav_queue_map_reg(kdev, child,
1432                                            (kdev->version == QMSS_66AK2G) ?
1433                                            KNAV_L_QUEUE_CONFIG_REG_INDEX :
1434                                            KNAV_QUEUE_CONFIG_REG_INDEX);
1435                 qmgr->reg_region =
1436                         knav_queue_map_reg(kdev, child,
1437                                            (kdev->version == QMSS_66AK2G) ?
1438                                            KNAV_L_QUEUE_REGION_REG_INDEX :
1439                                            KNAV_QUEUE_REGION_REG_INDEX);
1440
1441                 qmgr->reg_push =
1442                         knav_queue_map_reg(kdev, child,
1443                                            (kdev->version == QMSS_66AK2G) ?
1444                                             KNAV_L_QUEUE_PUSH_REG_INDEX :
1445                                             KNAV_QUEUE_PUSH_REG_INDEX);
1446
1447                 if (kdev->version == QMSS) {
1448                         qmgr->reg_pop =
1449                                 knav_queue_map_reg(kdev, child,
1450                                                    KNAV_QUEUE_POP_REG_INDEX);
1451                 }
1452
1453                 if (IS_ERR(qmgr->reg_peek) ||
1454                     ((kdev->version == QMSS) &&
1455                     (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1456                     IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1457                     IS_ERR(qmgr->reg_push)) {
1458                         dev_err(dev, "failed to map qmgr regs\n");
1459                         if (kdev->version == QMSS) {
1460                                 if (!IS_ERR(qmgr->reg_status))
1461                                         devm_iounmap(dev, qmgr->reg_status);
1462                                 if (!IS_ERR(qmgr->reg_pop))
1463                                         devm_iounmap(dev, qmgr->reg_pop);
1464                         }
1465                         if (!IS_ERR(qmgr->reg_peek))
1466                                 devm_iounmap(dev, qmgr->reg_peek);
1467                         if (!IS_ERR(qmgr->reg_config))
1468                                 devm_iounmap(dev, qmgr->reg_config);
1469                         if (!IS_ERR(qmgr->reg_region))
1470                                 devm_iounmap(dev, qmgr->reg_region);
1471                         if (!IS_ERR(qmgr->reg_push))
1472                                 devm_iounmap(dev, qmgr->reg_push);
1473                         devm_kfree(dev, qmgr);
1474                         continue;
1475                 }
1476
1477                 /* Use same push register for pop as well */
1478                 if (kdev->version == QMSS_66AK2G)
1479                         qmgr->reg_pop = qmgr->reg_push;
1480
1481                 list_add_tail(&qmgr->list, &kdev->qmgrs);
1482                 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1483                          qmgr->start_queue, qmgr->num_queues,
1484                          qmgr->reg_peek, qmgr->reg_status,
1485                          qmgr->reg_config, qmgr->reg_region,
1486                          qmgr->reg_push, qmgr->reg_pop);
1487         }
1488         return 0;
1489 }
1490
1491 static int knav_queue_init_pdsps(struct knav_device *kdev,
1492                                         struct device_node *pdsps)
1493 {
1494         struct device *dev = kdev->dev;
1495         struct knav_pdsp_info *pdsp;
1496         struct device_node *child;
1497
1498         for_each_child_of_node(pdsps, child) {
1499                 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1500                 if (!pdsp) {
1501                         of_node_put(child);
1502                         dev_err(dev, "out of memory allocating pdsp\n");
1503                         return -ENOMEM;
1504                 }
1505                 pdsp->name = knav_queue_find_name(child);
1506                 pdsp->iram =
1507                         knav_queue_map_reg(kdev, child,
1508                                            KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1509                 pdsp->regs =
1510                         knav_queue_map_reg(kdev, child,
1511                                            KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1512                 pdsp->intd =
1513                         knav_queue_map_reg(kdev, child,
1514                                            KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1515                 pdsp->command =
1516                         knav_queue_map_reg(kdev, child,
1517                                            KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1518
1519                 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1520                     IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1521                         dev_err(dev, "failed to map pdsp %s regs\n",
1522                                 pdsp->name);
1523                         if (!IS_ERR(pdsp->command))
1524                                 devm_iounmap(dev, pdsp->command);
1525                         if (!IS_ERR(pdsp->iram))
1526                                 devm_iounmap(dev, pdsp->iram);
1527                         if (!IS_ERR(pdsp->regs))
1528                                 devm_iounmap(dev, pdsp->regs);
1529                         if (!IS_ERR(pdsp->intd))
1530                                 devm_iounmap(dev, pdsp->intd);
1531                         devm_kfree(dev, pdsp);
1532                         continue;
1533                 }
1534                 of_property_read_u32(child, "id", &pdsp->id);
1535                 list_add_tail(&pdsp->list, &kdev->pdsps);
1536                 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1537                         pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1538                         pdsp->intd);
1539         }
1540         return 0;
1541 }
1542
1543 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1544                           struct knav_pdsp_info *pdsp)
1545 {
1546         u32 val, timeout = 1000;
1547         int ret;
1548
1549         val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1550         writel_relaxed(val, &pdsp->regs->control);
1551         ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1552                                         PDSP_CTRL_RUNNING);
1553         if (ret < 0) {
1554                 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1555                 return ret;
1556         }
1557         pdsp->loaded = false;
1558         pdsp->started = false;
1559         return 0;
1560 }
1561
1562 static int knav_queue_load_pdsp(struct knav_device *kdev,
1563                           struct knav_pdsp_info *pdsp)
1564 {
1565         int i, ret, fwlen;
1566         const struct firmware *fw;
1567         bool found = false;
1568         u32 *fwdata;
1569
1570         for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1571                 if (knav_acc_firmwares[i]) {
1572                         ret = request_firmware_direct(&fw,
1573                                                       knav_acc_firmwares[i],
1574                                                       kdev->dev);
1575                         if (!ret) {
1576                                 found = true;
1577                                 break;
1578                         }
1579                 }
1580         }
1581
1582         if (!found) {
1583                 dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1584                 return -ENODEV;
1585         }
1586
1587         dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1588                  knav_acc_firmwares[i]);
1589
1590         writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1591         /* download the firmware */
1592         fwdata = (u32 *)fw->data;
1593         fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1594         for (i = 0; i < fwlen; i++)
1595                 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1596
1597         release_firmware(fw);
1598         return 0;
1599 }
1600
1601 static int knav_queue_start_pdsp(struct knav_device *kdev,
1602                            struct knav_pdsp_info *pdsp)
1603 {
1604         u32 val, timeout = 1000;
1605         int ret;
1606
1607         /* write a command for sync */
1608         writel_relaxed(0xffffffff, pdsp->command);
1609         while (readl_relaxed(pdsp->command) != 0xffffffff)
1610                 cpu_relax();
1611
1612         /* soft reset the PDSP */
1613         val  = readl_relaxed(&pdsp->regs->control);
1614         val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1615         writel_relaxed(val, &pdsp->regs->control);
1616
1617         /* enable pdsp */
1618         val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1619         writel_relaxed(val, &pdsp->regs->control);
1620
1621         /* wait for command register to clear */
1622         ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1623         if (ret < 0) {
1624                 dev_err(kdev->dev,
1625                         "timed out on pdsp %s command register wait\n",
1626                         pdsp->name);
1627                 return ret;
1628         }
1629         return 0;
1630 }
1631
1632 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1633 {
1634         struct knav_pdsp_info *pdsp;
1635
1636         /* disable all pdsps */
1637         for_each_pdsp(kdev, pdsp)
1638                 knav_queue_stop_pdsp(kdev, pdsp);
1639 }
1640
1641 static int knav_queue_start_pdsps(struct knav_device *kdev)
1642 {
1643         struct knav_pdsp_info *pdsp;
1644         int ret;
1645
1646         knav_queue_stop_pdsps(kdev);
1647         /* now load them all. We return success even if pdsp
1648          * is not loaded as acc channels are optional on having
1649          * firmware availability in the system. We set the loaded
1650          * and stated flag and when initialize the acc range, check
1651          * it and init the range only if pdsp is started.
1652          */
1653         for_each_pdsp(kdev, pdsp) {
1654                 ret = knav_queue_load_pdsp(kdev, pdsp);
1655                 if (!ret)
1656                         pdsp->loaded = true;
1657         }
1658
1659         for_each_pdsp(kdev, pdsp) {
1660                 if (pdsp->loaded) {
1661                         ret = knav_queue_start_pdsp(kdev, pdsp);
1662                         if (!ret)
1663                                 pdsp->started = true;
1664                 }
1665         }
1666         return 0;
1667 }
1668
1669 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1670 {
1671         struct knav_qmgr_info *qmgr;
1672
1673         for_each_qmgr(kdev, qmgr) {
1674                 if ((id >= qmgr->start_queue) &&
1675                     (id < qmgr->start_queue + qmgr->num_queues))
1676                         return qmgr;
1677         }
1678         return NULL;
1679 }
1680
1681 static int knav_queue_init_queue(struct knav_device *kdev,
1682                                         struct knav_range_info *range,
1683                                         struct knav_queue_inst *inst,
1684                                         unsigned id)
1685 {
1686         char irq_name[KNAV_NAME_SIZE];
1687         inst->qmgr = knav_find_qmgr(id);
1688         if (!inst->qmgr)
1689                 return -1;
1690
1691         INIT_LIST_HEAD(&inst->handles);
1692         inst->kdev = kdev;
1693         inst->range = range;
1694         inst->irq_num = -1;
1695         inst->id = id;
1696         scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1697         inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1698
1699         if (range->ops && range->ops->init_queue)
1700                 return range->ops->init_queue(range, inst);
1701         else
1702                 return 0;
1703 }
1704
1705 static int knav_queue_init_queues(struct knav_device *kdev)
1706 {
1707         struct knav_range_info *range;
1708         int size, id, base_idx;
1709         int idx = 0, ret = 0;
1710
1711         /* how much do we need for instance data? */
1712         size = sizeof(struct knav_queue_inst);
1713
1714         /* round this up to a power of 2, keep the index to instance
1715          * arithmetic fast.
1716          * */
1717         kdev->inst_shift = order_base_2(size);
1718         size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1719         kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1720         if (!kdev->instances)
1721                 return -ENOMEM;
1722
1723         for_each_queue_range(kdev, range) {
1724                 if (range->ops && range->ops->init_range)
1725                         range->ops->init_range(range);
1726                 base_idx = idx;
1727                 for (id = range->queue_base;
1728                      id < range->queue_base + range->num_queues; id++, idx++) {
1729                         ret = knav_queue_init_queue(kdev, range,
1730                                         knav_queue_idx_to_inst(kdev, idx), id);
1731                         if (ret < 0)
1732                                 return ret;
1733                 }
1734                 range->queue_base_inst =
1735                         knav_queue_idx_to_inst(kdev, base_idx);
1736         }
1737         return 0;
1738 }
1739
1740 /* Match table for of_platform binding */
1741 static const struct of_device_id keystone_qmss_of_match[] = {
1742         {
1743                 .compatible = "ti,keystone-navigator-qmss",
1744         },
1745         {
1746                 .compatible = "ti,66ak2g-navss-qm",
1747                 .data   = (void *)QMSS_66AK2G,
1748         },
1749         {},
1750 };
1751 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1752
1753 static int knav_queue_probe(struct platform_device *pdev)
1754 {
1755         struct device_node *node = pdev->dev.of_node;
1756         struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1757         const struct of_device_id *match;
1758         struct device *dev = &pdev->dev;
1759         u32 temp[2];
1760         int ret;
1761
1762         if (!node) {
1763                 dev_err(dev, "device tree info unavailable\n");
1764                 return -ENODEV;
1765         }
1766
1767         kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1768         if (!kdev) {
1769                 dev_err(dev, "memory allocation failed\n");
1770                 return -ENOMEM;
1771         }
1772
1773         match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev);
1774         if (match && match->data)
1775                 kdev->version = QMSS_66AK2G;
1776
1777         platform_set_drvdata(pdev, kdev);
1778         kdev->dev = dev;
1779         INIT_LIST_HEAD(&kdev->queue_ranges);
1780         INIT_LIST_HEAD(&kdev->qmgrs);
1781         INIT_LIST_HEAD(&kdev->pools);
1782         INIT_LIST_HEAD(&kdev->regions);
1783         INIT_LIST_HEAD(&kdev->pdsps);
1784
1785         pm_runtime_enable(&pdev->dev);
1786         ret = pm_runtime_resume_and_get(&pdev->dev);
1787         if (ret < 0) {
1788                 dev_err(dev, "Failed to enable QMSS\n");
1789                 return ret;
1790         }
1791
1792         if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1793                 dev_err(dev, "queue-range not specified\n");
1794                 ret = -ENODEV;
1795                 goto err;
1796         }
1797         kdev->base_id    = temp[0];
1798         kdev->num_queues = temp[1];
1799
1800         /* Initialize queue managers using device tree configuration */
1801         qmgrs =  of_get_child_by_name(node, "qmgrs");
1802         if (!qmgrs) {
1803                 dev_err(dev, "queue manager info not specified\n");
1804                 ret = -ENODEV;
1805                 goto err;
1806         }
1807         ret = knav_queue_init_qmgrs(kdev, qmgrs);
1808         of_node_put(qmgrs);
1809         if (ret)
1810                 goto err;
1811
1812         /* get pdsp configuration values from device tree */
1813         pdsps =  of_get_child_by_name(node, "pdsps");
1814         if (pdsps) {
1815                 ret = knav_queue_init_pdsps(kdev, pdsps);
1816                 if (ret)
1817                         goto err;
1818
1819                 ret = knav_queue_start_pdsps(kdev);
1820                 if (ret)
1821                         goto err;
1822         }
1823         of_node_put(pdsps);
1824
1825         /* get usable queue range values from device tree */
1826         queue_pools = of_get_child_by_name(node, "queue-pools");
1827         if (!queue_pools) {
1828                 dev_err(dev, "queue-pools not specified\n");
1829                 ret = -ENODEV;
1830                 goto err;
1831         }
1832         ret = knav_setup_queue_pools(kdev, queue_pools);
1833         of_node_put(queue_pools);
1834         if (ret)
1835                 goto err;
1836
1837         ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1838         if (ret) {
1839                 dev_err(kdev->dev, "could not setup linking ram\n");
1840                 goto err;
1841         }
1842
1843         ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1844         if (ret) {
1845                 /*
1846                  * nothing really, we have one linking ram already, so we just
1847                  * live within our means
1848                  */
1849         }
1850
1851         ret = knav_queue_setup_link_ram(kdev);
1852         if (ret)
1853                 goto err;
1854
1855         regions = of_get_child_by_name(node, "descriptor-regions");
1856         if (!regions) {
1857                 dev_err(dev, "descriptor-regions not specified\n");
1858                 ret = -ENODEV;
1859                 goto err;
1860         }
1861         ret = knav_queue_setup_regions(kdev, regions);
1862         of_node_put(regions);
1863         if (ret)
1864                 goto err;
1865
1866         ret = knav_queue_init_queues(kdev);
1867         if (ret < 0) {
1868                 dev_err(dev, "hwqueue initialization failed\n");
1869                 goto err;
1870         }
1871
1872         debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1873                             &knav_queue_debug_fops);
1874         device_ready = true;
1875         return 0;
1876
1877 err:
1878         knav_queue_stop_pdsps(kdev);
1879         knav_queue_free_regions(kdev);
1880         knav_free_queue_ranges(kdev);
1881         pm_runtime_put_sync(&pdev->dev);
1882         pm_runtime_disable(&pdev->dev);
1883         return ret;
1884 }
1885
1886 static int knav_queue_remove(struct platform_device *pdev)
1887 {
1888         /* TODO: Free resources */
1889         pm_runtime_put_sync(&pdev->dev);
1890         pm_runtime_disable(&pdev->dev);
1891         return 0;
1892 }
1893
1894 static struct platform_driver keystone_qmss_driver = {
1895         .probe          = knav_queue_probe,
1896         .remove         = knav_queue_remove,
1897         .driver         = {
1898                 .name   = "keystone-navigator-qmss",
1899                 .of_match_table = keystone_qmss_of_match,
1900         },
1901 };
1902 module_platform_driver(keystone_qmss_driver);
1903
1904 MODULE_LICENSE("GPL v2");
1905 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1906 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1907 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");