lib/test_meminit: fix off-by-one error in test_pages()
[platform/kernel/linux-starfive.git] / drivers / scsi / storvsc_drv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  *   K. Y. Srinivasan <kys@microsoft.com>
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/wait.h>
13 #include <linux/sched.h>
14 #include <linux/completion.h>
15 #include <linux/string.h>
16 #include <linux/mm.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/hyperv.h>
23 #include <linux/blkdev.h>
24 #include <linux/dma-mapping.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_host.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_tcq.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_devinfo.h>
33 #include <scsi/scsi_dbg.h>
34 #include <scsi/scsi_transport_fc.h>
35 #include <scsi/scsi_transport.h>
36
37 /*
38  * All wire protocol details (storage protocol between the guest and the host)
39  * are consolidated here.
40  *
41  * Begin protocol definitions.
42  */
43
44 /*
45  * Version history:
46  * V1 Beta: 0.1
47  * V1 RC < 2008/1/31: 1.0
48  * V1 RC > 2008/1/31:  2.0
49  * Win7: 4.2
50  * Win8: 5.1
51  * Win8.1: 6.0
52  * Win10: 6.2
53  */
54
55 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_)    ((((MAJOR_) & 0xff) << 8) | \
56                                                 (((MINOR_) & 0xff)))
57 #define VMSTOR_PROTO_VERSION_WIN6       VMSTOR_PROTO_VERSION(2, 0)
58 #define VMSTOR_PROTO_VERSION_WIN7       VMSTOR_PROTO_VERSION(4, 2)
59 #define VMSTOR_PROTO_VERSION_WIN8       VMSTOR_PROTO_VERSION(5, 1)
60 #define VMSTOR_PROTO_VERSION_WIN8_1     VMSTOR_PROTO_VERSION(6, 0)
61 #define VMSTOR_PROTO_VERSION_WIN10      VMSTOR_PROTO_VERSION(6, 2)
62
63 /* channel callback timeout in ms */
64 #define CALLBACK_TIMEOUT               2
65
66 /*  Packet structure describing virtual storage requests. */
67 enum vstor_packet_operation {
68         VSTOR_OPERATION_COMPLETE_IO             = 1,
69         VSTOR_OPERATION_REMOVE_DEVICE           = 2,
70         VSTOR_OPERATION_EXECUTE_SRB             = 3,
71         VSTOR_OPERATION_RESET_LUN               = 4,
72         VSTOR_OPERATION_RESET_ADAPTER           = 5,
73         VSTOR_OPERATION_RESET_BUS               = 6,
74         VSTOR_OPERATION_BEGIN_INITIALIZATION    = 7,
75         VSTOR_OPERATION_END_INITIALIZATION      = 8,
76         VSTOR_OPERATION_QUERY_PROTOCOL_VERSION  = 9,
77         VSTOR_OPERATION_QUERY_PROPERTIES        = 10,
78         VSTOR_OPERATION_ENUMERATE_BUS           = 11,
79         VSTOR_OPERATION_FCHBA_DATA              = 12,
80         VSTOR_OPERATION_CREATE_SUB_CHANNELS     = 13,
81         VSTOR_OPERATION_MAXIMUM                 = 13
82 };
83
84 /*
85  * WWN packet for Fibre Channel HBA
86  */
87
88 struct hv_fc_wwn_packet {
89         u8      primary_active;
90         u8      reserved1[3];
91         u8      primary_port_wwn[8];
92         u8      primary_node_wwn[8];
93         u8      secondary_port_wwn[8];
94         u8      secondary_node_wwn[8];
95 };
96
97
98
99 /*
100  * SRB Flag Bits
101  */
102
103 #define SRB_FLAGS_QUEUE_ACTION_ENABLE           0x00000002
104 #define SRB_FLAGS_DISABLE_DISCONNECT            0x00000004
105 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER        0x00000008
106 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE           0x00000010
107 #define SRB_FLAGS_DISABLE_AUTOSENSE             0x00000020
108 #define SRB_FLAGS_DATA_IN                       0x00000040
109 #define SRB_FLAGS_DATA_OUT                      0x00000080
110 #define SRB_FLAGS_NO_DATA_TRANSFER              0x00000000
111 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT)
112 #define SRB_FLAGS_NO_QUEUE_FREEZE               0x00000100
113 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE          0x00000200
114 #define SRB_FLAGS_FREE_SENSE_BUFFER             0x00000400
115
116 /*
117  * This flag indicates the request is part of the workflow for processing a D3.
118  */
119 #define SRB_FLAGS_D3_PROCESSING                 0x00000800
120 #define SRB_FLAGS_IS_ACTIVE                     0x00010000
121 #define SRB_FLAGS_ALLOCATED_FROM_ZONE           0x00020000
122 #define SRB_FLAGS_SGLIST_FROM_POOL              0x00040000
123 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE           0x00080000
124 #define SRB_FLAGS_NO_KEEP_AWAKE                 0x00100000
125 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE        0x00200000
126 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT      0x00400000
127 #define SRB_FLAGS_DONT_START_NEXT_PACKET        0x00800000
128 #define SRB_FLAGS_PORT_DRIVER_RESERVED          0x0F000000
129 #define SRB_FLAGS_CLASS_DRIVER_RESERVED         0xF0000000
130
131 #define SP_UNTAGGED                     ((unsigned char) ~0)
132 #define SRB_SIMPLE_TAG_REQUEST          0x20
133
134 /*
135  * Platform neutral description of a scsi request -
136  * this remains the same across the write regardless of 32/64 bit
137  * note: it's patterned off the SCSI_PASS_THROUGH structure
138  */
139 #define STORVSC_MAX_CMD_LEN                     0x10
140
141 /* Sense buffer size is the same for all versions since Windows 8 */
142 #define STORVSC_SENSE_BUFFER_SIZE               0x14
143 #define STORVSC_MAX_BUF_LEN_WITH_PADDING        0x14
144
145 /*
146  * The storage protocol version is determined during the
147  * initial exchange with the host.  It will indicate which
148  * storage functionality is available in the host.
149 */
150 static int vmstor_proto_version;
151
152 #define STORVSC_LOGGING_NONE    0
153 #define STORVSC_LOGGING_ERROR   1
154 #define STORVSC_LOGGING_WARN    2
155
156 static int logging_level = STORVSC_LOGGING_ERROR;
157 module_param(logging_level, int, S_IRUGO|S_IWUSR);
158 MODULE_PARM_DESC(logging_level,
159         "Logging level, 0 - None, 1 - Error (default), 2 - Warning.");
160
161 static inline bool do_logging(int level)
162 {
163         return logging_level >= level;
164 }
165
166 #define storvsc_log(dev, level, fmt, ...)                       \
167 do {                                                            \
168         if (do_logging(level))                                  \
169                 dev_warn(&(dev)->device, fmt, ##__VA_ARGS__);   \
170 } while (0)
171
172 struct vmscsi_request {
173         u16 length;
174         u8 srb_status;
175         u8 scsi_status;
176
177         u8  port_number;
178         u8  path_id;
179         u8  target_id;
180         u8  lun;
181
182         u8  cdb_length;
183         u8  sense_info_length;
184         u8  data_in;
185         u8  reserved;
186
187         u32 data_transfer_length;
188
189         union {
190                 u8 cdb[STORVSC_MAX_CMD_LEN];
191                 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE];
192                 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING];
193         };
194         /*
195          * The following was added in win8.
196          */
197         u16 reserve;
198         u8  queue_tag;
199         u8  queue_action;
200         u32 srb_flags;
201         u32 time_out_value;
202         u32 queue_sort_ey;
203
204 } __attribute((packed));
205
206 /*
207  * The list of windows version in order of preference.
208  */
209
210 static const int protocol_version[] = {
211                 VMSTOR_PROTO_VERSION_WIN10,
212                 VMSTOR_PROTO_VERSION_WIN8_1,
213                 VMSTOR_PROTO_VERSION_WIN8,
214 };
215
216
217 /*
218  * This structure is sent during the initialization phase to get the different
219  * properties of the channel.
220  */
221
222 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL          0x1
223
224 struct vmstorage_channel_properties {
225         u32 reserved;
226         u16 max_channel_cnt;
227         u16 reserved1;
228
229         u32 flags;
230         u32   max_transfer_bytes;
231
232         u64  reserved2;
233 } __packed;
234
235 /*  This structure is sent during the storage protocol negotiations. */
236 struct vmstorage_protocol_version {
237         /* Major (MSW) and minor (LSW) version numbers. */
238         u16 major_minor;
239
240         /*
241          * Revision number is auto-incremented whenever this file is changed
242          * (See FILL_VMSTOR_REVISION macro above).  Mismatch does not
243          * definitely indicate incompatibility--but it does indicate mismatched
244          * builds.
245          * This is only used on the windows side. Just set it to 0.
246          */
247         u16 revision;
248 } __packed;
249
250 /* Channel Property Flags */
251 #define STORAGE_CHANNEL_REMOVABLE_FLAG          0x1
252 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG       0x2
253
254 struct vstor_packet {
255         /* Requested operation type */
256         enum vstor_packet_operation operation;
257
258         /*  Flags - see below for values */
259         u32 flags;
260
261         /* Status of the request returned from the server side. */
262         u32 status;
263
264         /* Data payload area */
265         union {
266                 /*
267                  * Structure used to forward SCSI commands from the
268                  * client to the server.
269                  */
270                 struct vmscsi_request vm_srb;
271
272                 /* Structure used to query channel properties. */
273                 struct vmstorage_channel_properties storage_channel_properties;
274
275                 /* Used during version negotiations. */
276                 struct vmstorage_protocol_version version;
277
278                 /* Fibre channel address packet */
279                 struct hv_fc_wwn_packet wwn_packet;
280
281                 /* Number of sub-channels to create */
282                 u16 sub_channel_count;
283
284                 /* This will be the maximum of the union members */
285                 u8  buffer[0x34];
286         };
287 } __packed;
288
289 /*
290  * Packet Flags:
291  *
292  * This flag indicates that the server should send back a completion for this
293  * packet.
294  */
295
296 #define REQUEST_COMPLETION_FLAG 0x1
297
298 /* Matches Windows-end */
299 enum storvsc_request_type {
300         WRITE_TYPE = 0,
301         READ_TYPE,
302         UNKNOWN_TYPE,
303 };
304
305 /*
306  * SRB status codes and masks. In the 8-bit field, the two high order bits
307  * are flags, while the remaining 6 bits are an integer status code.  The
308  * definitions here include only the subset of the integer status codes that
309  * are tested for in this driver.
310  */
311 #define SRB_STATUS_AUTOSENSE_VALID      0x80
312 #define SRB_STATUS_QUEUE_FROZEN         0x40
313
314 /* SRB status integer codes */
315 #define SRB_STATUS_SUCCESS              0x01
316 #define SRB_STATUS_ABORTED              0x02
317 #define SRB_STATUS_ERROR                0x04
318 #define SRB_STATUS_INVALID_REQUEST      0x06
319 #define SRB_STATUS_DATA_OVERRUN         0x12
320 #define SRB_STATUS_INVALID_LUN          0x20
321
322 #define SRB_STATUS(status) \
323         (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN))
324 /*
325  * This is the end of Protocol specific defines.
326  */
327
328 static int storvsc_ringbuffer_size = (128 * 1024);
329 static u32 max_outstanding_req_per_channel;
330 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth);
331
332 static int storvsc_vcpus_per_sub_channel = 4;
333 static unsigned int storvsc_max_hw_queues;
334
335 module_param(storvsc_ringbuffer_size, int, S_IRUGO);
336 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)");
337
338 module_param(storvsc_max_hw_queues, uint, 0644);
339 MODULE_PARM_DESC(storvsc_max_hw_queues, "Maximum number of hardware queues");
340
341 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO);
342 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels");
343
344 static int ring_avail_percent_lowater = 10;
345 module_param(ring_avail_percent_lowater, int, S_IRUGO);
346 MODULE_PARM_DESC(ring_avail_percent_lowater,
347                 "Select a channel if available ring size > this in percent");
348
349 /*
350  * Timeout in seconds for all devices managed by this driver.
351  */
352 static int storvsc_timeout = 180;
353
354 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
355 static struct scsi_transport_template *fc_transport_template;
356 #endif
357
358 static struct scsi_host_template scsi_driver;
359 static void storvsc_on_channel_callback(void *context);
360
361 #define STORVSC_MAX_LUNS_PER_TARGET                     255
362 #define STORVSC_MAX_TARGETS                             2
363 #define STORVSC_MAX_CHANNELS                            8
364
365 #define STORVSC_FC_MAX_LUNS_PER_TARGET                  255
366 #define STORVSC_FC_MAX_TARGETS                          128
367 #define STORVSC_FC_MAX_CHANNELS                         8
368 #define STORVSC_FC_MAX_XFER_SIZE                        ((u32)(512 * 1024))
369
370 #define STORVSC_IDE_MAX_LUNS_PER_TARGET                 64
371 #define STORVSC_IDE_MAX_TARGETS                         1
372 #define STORVSC_IDE_MAX_CHANNELS                        1
373
374 /*
375  * Upper bound on the size of a storvsc packet.
376  */
377 #define STORVSC_MAX_PKT_SIZE (sizeof(struct vmpacket_descriptor) +\
378                               sizeof(struct vstor_packet))
379
380 struct storvsc_cmd_request {
381         struct scsi_cmnd *cmd;
382
383         struct hv_device *device;
384
385         /* Synchronize the request/response if needed */
386         struct completion wait_event;
387
388         struct vmbus_channel_packet_multipage_buffer mpb;
389         struct vmbus_packet_mpb_array *payload;
390         u32 payload_sz;
391
392         struct vstor_packet vstor_packet;
393 };
394
395
396 /* A storvsc device is a device object that contains a vmbus channel */
397 struct storvsc_device {
398         struct hv_device *device;
399
400         bool     destroy;
401         bool     drain_notify;
402         atomic_t num_outstanding_req;
403         struct Scsi_Host *host;
404
405         wait_queue_head_t waiting_to_drain;
406
407         /*
408          * Each unique Port/Path/Target represents 1 channel ie scsi
409          * controller. In reality, the pathid, targetid is always 0
410          * and the port is set by us
411          */
412         unsigned int port_number;
413         unsigned char path_id;
414         unsigned char target_id;
415
416         /*
417          * Max I/O, the device can support.
418          */
419         u32   max_transfer_bytes;
420         /*
421          * Number of sub-channels we will open.
422          */
423         u16 num_sc;
424         struct vmbus_channel **stor_chns;
425         /*
426          * Mask of CPUs bound to subchannels.
427          */
428         struct cpumask alloced_cpus;
429         /*
430          * Serializes modifications of stor_chns[] from storvsc_do_io()
431          * and storvsc_change_target_cpu().
432          */
433         spinlock_t lock;
434         /* Used for vsc/vsp channel reset process */
435         struct storvsc_cmd_request init_request;
436         struct storvsc_cmd_request reset_request;
437         /*
438          * Currently active port and node names for FC devices.
439          */
440         u64 node_name;
441         u64 port_name;
442 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
443         struct fc_rport *rport;
444 #endif
445 };
446
447 struct hv_host_device {
448         struct hv_device *dev;
449         unsigned int port;
450         unsigned char path;
451         unsigned char target;
452         struct workqueue_struct *handle_error_wq;
453         struct work_struct host_scan_work;
454         struct Scsi_Host *host;
455 };
456
457 struct storvsc_scan_work {
458         struct work_struct work;
459         struct Scsi_Host *host;
460         u8 lun;
461         u8 tgt_id;
462 };
463
464 static void storvsc_device_scan(struct work_struct *work)
465 {
466         struct storvsc_scan_work *wrk;
467         struct scsi_device *sdev;
468
469         wrk = container_of(work, struct storvsc_scan_work, work);
470
471         sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
472         if (!sdev)
473                 goto done;
474         scsi_rescan_device(sdev);
475         scsi_device_put(sdev);
476
477 done:
478         kfree(wrk);
479 }
480
481 static void storvsc_host_scan(struct work_struct *work)
482 {
483         struct Scsi_Host *host;
484         struct scsi_device *sdev;
485         struct hv_host_device *host_device =
486                 container_of(work, struct hv_host_device, host_scan_work);
487
488         host = host_device->host;
489         /*
490          * Before scanning the host, first check to see if any of the
491          * currently known devices have been hot removed. We issue a
492          * "unit ready" command against all currently known devices.
493          * This I/O will result in an error for devices that have been
494          * removed. As part of handling the I/O error, we remove the device.
495          *
496          * When a LUN is added or removed, the host sends us a signal to
497          * scan the host. Thus we are forced to discover the LUNs that
498          * may have been removed this way.
499          */
500         mutex_lock(&host->scan_mutex);
501         shost_for_each_device(sdev, host)
502                 scsi_test_unit_ready(sdev, 1, 1, NULL);
503         mutex_unlock(&host->scan_mutex);
504         /*
505          * Now scan the host to discover LUNs that may have been added.
506          */
507         scsi_scan_host(host);
508 }
509
510 static void storvsc_remove_lun(struct work_struct *work)
511 {
512         struct storvsc_scan_work *wrk;
513         struct scsi_device *sdev;
514
515         wrk = container_of(work, struct storvsc_scan_work, work);
516         if (!scsi_host_get(wrk->host))
517                 goto done;
518
519         sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
520
521         if (sdev) {
522                 scsi_remove_device(sdev);
523                 scsi_device_put(sdev);
524         }
525         scsi_host_put(wrk->host);
526
527 done:
528         kfree(wrk);
529 }
530
531
532 /*
533  * We can get incoming messages from the host that are not in response to
534  * messages that we have sent out. An example of this would be messages
535  * received by the guest to notify dynamic addition/removal of LUNs. To
536  * deal with potential race conditions where the driver may be in the
537  * midst of being unloaded when we might receive an unsolicited message
538  * from the host, we have implemented a mechanism to gurantee sequential
539  * consistency:
540  *
541  * 1) Once the device is marked as being destroyed, we will fail all
542  *    outgoing messages.
543  * 2) We permit incoming messages when the device is being destroyed,
544  *    only to properly account for messages already sent out.
545  */
546
547 static inline struct storvsc_device *get_out_stor_device(
548                                         struct hv_device *device)
549 {
550         struct storvsc_device *stor_device;
551
552         stor_device = hv_get_drvdata(device);
553
554         if (stor_device && stor_device->destroy)
555                 stor_device = NULL;
556
557         return stor_device;
558 }
559
560
561 static inline void storvsc_wait_to_drain(struct storvsc_device *dev)
562 {
563         dev->drain_notify = true;
564         wait_event(dev->waiting_to_drain,
565                    atomic_read(&dev->num_outstanding_req) == 0);
566         dev->drain_notify = false;
567 }
568
569 static inline struct storvsc_device *get_in_stor_device(
570                                         struct hv_device *device)
571 {
572         struct storvsc_device *stor_device;
573
574         stor_device = hv_get_drvdata(device);
575
576         if (!stor_device)
577                 goto get_in_err;
578
579         /*
580          * If the device is being destroyed; allow incoming
581          * traffic only to cleanup outstanding requests.
582          */
583
584         if (stor_device->destroy  &&
585                 (atomic_read(&stor_device->num_outstanding_req) == 0))
586                 stor_device = NULL;
587
588 get_in_err:
589         return stor_device;
590
591 }
592
593 static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old,
594                                       u32 new)
595 {
596         struct storvsc_device *stor_device;
597         struct vmbus_channel *cur_chn;
598         bool old_is_alloced = false;
599         struct hv_device *device;
600         unsigned long flags;
601         int cpu;
602
603         device = channel->primary_channel ?
604                         channel->primary_channel->device_obj
605                                 : channel->device_obj;
606         stor_device = get_out_stor_device(device);
607         if (!stor_device)
608                 return;
609
610         /* See storvsc_do_io() -> get_og_chn(). */
611         spin_lock_irqsave(&stor_device->lock, flags);
612
613         /*
614          * Determines if the storvsc device has other channels assigned to
615          * the "old" CPU to update the alloced_cpus mask and the stor_chns
616          * array.
617          */
618         if (device->channel != channel && device->channel->target_cpu == old) {
619                 cur_chn = device->channel;
620                 old_is_alloced = true;
621                 goto old_is_alloced;
622         }
623         list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) {
624                 if (cur_chn == channel)
625                         continue;
626                 if (cur_chn->target_cpu == old) {
627                         old_is_alloced = true;
628                         goto old_is_alloced;
629                 }
630         }
631
632 old_is_alloced:
633         if (old_is_alloced)
634                 WRITE_ONCE(stor_device->stor_chns[old], cur_chn);
635         else
636                 cpumask_clear_cpu(old, &stor_device->alloced_cpus);
637
638         /* "Flush" the stor_chns array. */
639         for_each_possible_cpu(cpu) {
640                 if (stor_device->stor_chns[cpu] && !cpumask_test_cpu(
641                                         cpu, &stor_device->alloced_cpus))
642                         WRITE_ONCE(stor_device->stor_chns[cpu], NULL);
643         }
644
645         WRITE_ONCE(stor_device->stor_chns[new], channel);
646         cpumask_set_cpu(new, &stor_device->alloced_cpus);
647
648         spin_unlock_irqrestore(&stor_device->lock, flags);
649 }
650
651 static u64 storvsc_next_request_id(struct vmbus_channel *channel, u64 rqst_addr)
652 {
653         struct storvsc_cmd_request *request =
654                 (struct storvsc_cmd_request *)(unsigned long)rqst_addr;
655
656         if (rqst_addr == VMBUS_RQST_INIT)
657                 return VMBUS_RQST_INIT;
658         if (rqst_addr == VMBUS_RQST_RESET)
659                 return VMBUS_RQST_RESET;
660
661         /*
662          * Cannot return an ID of 0, which is reserved for an unsolicited
663          * message from Hyper-V.
664          */
665         return (u64)blk_mq_unique_tag(scsi_cmd_to_rq(request->cmd)) + 1;
666 }
667
668 static void handle_sc_creation(struct vmbus_channel *new_sc)
669 {
670         struct hv_device *device = new_sc->primary_channel->device_obj;
671         struct device *dev = &device->device;
672         struct storvsc_device *stor_device;
673         struct vmstorage_channel_properties props;
674         int ret;
675
676         stor_device = get_out_stor_device(device);
677         if (!stor_device)
678                 return;
679
680         memset(&props, 0, sizeof(struct vmstorage_channel_properties));
681         new_sc->max_pkt_size = STORVSC_MAX_PKT_SIZE;
682
683         new_sc->next_request_id_callback = storvsc_next_request_id;
684
685         ret = vmbus_open(new_sc,
686                          storvsc_ringbuffer_size,
687                          storvsc_ringbuffer_size,
688                          (void *)&props,
689                          sizeof(struct vmstorage_channel_properties),
690                          storvsc_on_channel_callback, new_sc);
691
692         /* In case vmbus_open() fails, we don't use the sub-channel. */
693         if (ret != 0) {
694                 dev_err(dev, "Failed to open sub-channel: err=%d\n", ret);
695                 return;
696         }
697
698         new_sc->change_target_cpu_callback = storvsc_change_target_cpu;
699
700         /* Add the sub-channel to the array of available channels. */
701         stor_device->stor_chns[new_sc->target_cpu] = new_sc;
702         cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus);
703 }
704
705 static void  handle_multichannel_storage(struct hv_device *device, int max_chns)
706 {
707         struct device *dev = &device->device;
708         struct storvsc_device *stor_device;
709         int num_sc;
710         struct storvsc_cmd_request *request;
711         struct vstor_packet *vstor_packet;
712         int ret, t;
713
714         /*
715          * If the number of CPUs is artificially restricted, such as
716          * with maxcpus=1 on the kernel boot line, Hyper-V could offer
717          * sub-channels >= the number of CPUs. These sub-channels
718          * should not be created. The primary channel is already created
719          * and assigned to one CPU, so check against # CPUs - 1.
720          */
721         num_sc = min((int)(num_online_cpus() - 1), max_chns);
722         if (!num_sc)
723                 return;
724
725         stor_device = get_out_stor_device(device);
726         if (!stor_device)
727                 return;
728
729         stor_device->num_sc = num_sc;
730         request = &stor_device->init_request;
731         vstor_packet = &request->vstor_packet;
732
733         /*
734          * Establish a handler for dealing with subchannels.
735          */
736         vmbus_set_sc_create_callback(device->channel, handle_sc_creation);
737
738         /*
739          * Request the host to create sub-channels.
740          */
741         memset(request, 0, sizeof(struct storvsc_cmd_request));
742         init_completion(&request->wait_event);
743         vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS;
744         vstor_packet->flags = REQUEST_COMPLETION_FLAG;
745         vstor_packet->sub_channel_count = num_sc;
746
747         ret = vmbus_sendpacket(device->channel, vstor_packet,
748                                sizeof(struct vstor_packet),
749                                VMBUS_RQST_INIT,
750                                VM_PKT_DATA_INBAND,
751                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
752
753         if (ret != 0) {
754                 dev_err(dev, "Failed to create sub-channel: err=%d\n", ret);
755                 return;
756         }
757
758         t = wait_for_completion_timeout(&request->wait_event, 10*HZ);
759         if (t == 0) {
760                 dev_err(dev, "Failed to create sub-channel: timed out\n");
761                 return;
762         }
763
764         if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
765             vstor_packet->status != 0) {
766                 dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n",
767                         vstor_packet->operation, vstor_packet->status);
768                 return;
769         }
770
771         /*
772          * We need to do nothing here, because vmbus_process_offer()
773          * invokes channel->sc_creation_callback, which will open and use
774          * the sub-channel(s).
775          */
776 }
777
778 static void cache_wwn(struct storvsc_device *stor_device,
779                       struct vstor_packet *vstor_packet)
780 {
781         /*
782          * Cache the currently active port and node ww names.
783          */
784         if (vstor_packet->wwn_packet.primary_active) {
785                 stor_device->node_name =
786                         wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn);
787                 stor_device->port_name =
788                         wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn);
789         } else {
790                 stor_device->node_name =
791                         wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn);
792                 stor_device->port_name =
793                         wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn);
794         }
795 }
796
797
798 static int storvsc_execute_vstor_op(struct hv_device *device,
799                                     struct storvsc_cmd_request *request,
800                                     bool status_check)
801 {
802         struct storvsc_device *stor_device;
803         struct vstor_packet *vstor_packet;
804         int ret, t;
805
806         stor_device = get_out_stor_device(device);
807         if (!stor_device)
808                 return -ENODEV;
809
810         vstor_packet = &request->vstor_packet;
811
812         init_completion(&request->wait_event);
813         vstor_packet->flags = REQUEST_COMPLETION_FLAG;
814
815         ret = vmbus_sendpacket(device->channel, vstor_packet,
816                                sizeof(struct vstor_packet),
817                                VMBUS_RQST_INIT,
818                                VM_PKT_DATA_INBAND,
819                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
820         if (ret != 0)
821                 return ret;
822
823         t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
824         if (t == 0)
825                 return -ETIMEDOUT;
826
827         if (!status_check)
828                 return ret;
829
830         if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
831             vstor_packet->status != 0)
832                 return -EINVAL;
833
834         return ret;
835 }
836
837 static int storvsc_channel_init(struct hv_device *device, bool is_fc)
838 {
839         struct storvsc_device *stor_device;
840         struct storvsc_cmd_request *request;
841         struct vstor_packet *vstor_packet;
842         int ret, i;
843         int max_chns;
844         bool process_sub_channels = false;
845
846         stor_device = get_out_stor_device(device);
847         if (!stor_device)
848                 return -ENODEV;
849
850         request = &stor_device->init_request;
851         vstor_packet = &request->vstor_packet;
852
853         /*
854          * Now, initiate the vsc/vsp initialization protocol on the open
855          * channel
856          */
857         memset(request, 0, sizeof(struct storvsc_cmd_request));
858         vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION;
859         ret = storvsc_execute_vstor_op(device, request, true);
860         if (ret)
861                 return ret;
862         /*
863          * Query host supported protocol version.
864          */
865
866         for (i = 0; i < ARRAY_SIZE(protocol_version); i++) {
867                 /* reuse the packet for version range supported */
868                 memset(vstor_packet, 0, sizeof(struct vstor_packet));
869                 vstor_packet->operation =
870                         VSTOR_OPERATION_QUERY_PROTOCOL_VERSION;
871
872                 vstor_packet->version.major_minor = protocol_version[i];
873
874                 /*
875                  * The revision number is only used in Windows; set it to 0.
876                  */
877                 vstor_packet->version.revision = 0;
878                 ret = storvsc_execute_vstor_op(device, request, false);
879                 if (ret != 0)
880                         return ret;
881
882                 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO)
883                         return -EINVAL;
884
885                 if (vstor_packet->status == 0) {
886                         vmstor_proto_version = protocol_version[i];
887
888                         break;
889                 }
890         }
891
892         if (vstor_packet->status != 0) {
893                 dev_err(&device->device, "Obsolete Hyper-V version\n");
894                 return -EINVAL;
895         }
896
897
898         memset(vstor_packet, 0, sizeof(struct vstor_packet));
899         vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES;
900         ret = storvsc_execute_vstor_op(device, request, true);
901         if (ret != 0)
902                 return ret;
903
904         /*
905          * Check to see if multi-channel support is there.
906          * Hosts that implement protocol version of 5.1 and above
907          * support multi-channel.
908          */
909         max_chns = vstor_packet->storage_channel_properties.max_channel_cnt;
910
911         /*
912          * Allocate state to manage the sub-channels.
913          * We allocate an array based on the numbers of possible CPUs
914          * (Hyper-V does not support cpu online/offline).
915          * This Array will be sparseley populated with unique
916          * channels - primary + sub-channels.
917          * We will however populate all the slots to evenly distribute
918          * the load.
919          */
920         stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *),
921                                          GFP_KERNEL);
922         if (stor_device->stor_chns == NULL)
923                 return -ENOMEM;
924
925         device->channel->change_target_cpu_callback = storvsc_change_target_cpu;
926
927         stor_device->stor_chns[device->channel->target_cpu] = device->channel;
928         cpumask_set_cpu(device->channel->target_cpu,
929                         &stor_device->alloced_cpus);
930
931         if (vstor_packet->storage_channel_properties.flags &
932             STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL)
933                 process_sub_channels = true;
934
935         stor_device->max_transfer_bytes =
936                 vstor_packet->storage_channel_properties.max_transfer_bytes;
937
938         if (!is_fc)
939                 goto done;
940
941         /*
942          * For FC devices retrieve FC HBA data.
943          */
944         memset(vstor_packet, 0, sizeof(struct vstor_packet));
945         vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA;
946         ret = storvsc_execute_vstor_op(device, request, true);
947         if (ret != 0)
948                 return ret;
949
950         /*
951          * Cache the currently active port and node ww names.
952          */
953         cache_wwn(stor_device, vstor_packet);
954
955 done:
956
957         memset(vstor_packet, 0, sizeof(struct vstor_packet));
958         vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION;
959         ret = storvsc_execute_vstor_op(device, request, true);
960         if (ret != 0)
961                 return ret;
962
963         if (process_sub_channels)
964                 handle_multichannel_storage(device, max_chns);
965
966         return ret;
967 }
968
969 static void storvsc_handle_error(struct vmscsi_request *vm_srb,
970                                 struct scsi_cmnd *scmnd,
971                                 struct Scsi_Host *host,
972                                 u8 asc, u8 ascq)
973 {
974         struct storvsc_scan_work *wrk;
975         void (*process_err_fn)(struct work_struct *work);
976         struct hv_host_device *host_dev = shost_priv(host);
977
978         switch (SRB_STATUS(vm_srb->srb_status)) {
979         case SRB_STATUS_ERROR:
980         case SRB_STATUS_ABORTED:
981         case SRB_STATUS_INVALID_REQUEST:
982                 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID) {
983                         /* Check for capacity change */
984                         if ((asc == 0x2a) && (ascq == 0x9)) {
985                                 process_err_fn = storvsc_device_scan;
986                                 /* Retry the I/O that triggered this. */
987                                 set_host_byte(scmnd, DID_REQUEUE);
988                                 goto do_work;
989                         }
990
991                         /*
992                          * Check for "Operating parameters have changed"
993                          * due to Hyper-V changing the VHD/VHDX BlockSize
994                          * when adding/removing a differencing disk. This
995                          * causes discard_granularity to change, so do a
996                          * rescan to pick up the new granularity. We don't
997                          * want scsi_report_sense() to output a message
998                          * that a sysadmin wouldn't know what to do with.
999                          */
1000                         if ((asc == 0x3f) && (ascq != 0x03) &&
1001                                         (ascq != 0x0e)) {
1002                                 process_err_fn = storvsc_device_scan;
1003                                 set_host_byte(scmnd, DID_REQUEUE);
1004                                 goto do_work;
1005                         }
1006
1007                         /*
1008                          * Otherwise, let upper layer deal with the
1009                          * error when sense message is present
1010                          */
1011                         return;
1012                 }
1013
1014                 /*
1015                  * If there is an error; offline the device since all
1016                  * error recovery strategies would have already been
1017                  * deployed on the host side. However, if the command
1018                  * were a pass-through command deal with it appropriately.
1019                  */
1020                 switch (scmnd->cmnd[0]) {
1021                 case ATA_16:
1022                 case ATA_12:
1023                         set_host_byte(scmnd, DID_PASSTHROUGH);
1024                         break;
1025                 /*
1026                  * On some Hyper-V hosts TEST_UNIT_READY command can
1027                  * return SRB_STATUS_ERROR. Let the upper level code
1028                  * deal with it based on the sense information.
1029                  */
1030                 case TEST_UNIT_READY:
1031                         break;
1032                 default:
1033                         set_host_byte(scmnd, DID_ERROR);
1034                 }
1035                 return;
1036
1037         case SRB_STATUS_INVALID_LUN:
1038                 set_host_byte(scmnd, DID_NO_CONNECT);
1039                 process_err_fn = storvsc_remove_lun;
1040                 goto do_work;
1041
1042         }
1043         return;
1044
1045 do_work:
1046         /*
1047          * We need to schedule work to process this error; schedule it.
1048          */
1049         wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC);
1050         if (!wrk) {
1051                 set_host_byte(scmnd, DID_BAD_TARGET);
1052                 return;
1053         }
1054
1055         wrk->host = host;
1056         wrk->lun = vm_srb->lun;
1057         wrk->tgt_id = vm_srb->target_id;
1058         INIT_WORK(&wrk->work, process_err_fn);
1059         queue_work(host_dev->handle_error_wq, &wrk->work);
1060 }
1061
1062
1063 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request,
1064                                        struct storvsc_device *stor_dev)
1065 {
1066         struct scsi_cmnd *scmnd = cmd_request->cmd;
1067         struct scsi_sense_hdr sense_hdr;
1068         struct vmscsi_request *vm_srb;
1069         u32 data_transfer_length;
1070         struct Scsi_Host *host;
1071         u32 payload_sz = cmd_request->payload_sz;
1072         void *payload = cmd_request->payload;
1073         bool sense_ok;
1074
1075         host = stor_dev->host;
1076
1077         vm_srb = &cmd_request->vstor_packet.vm_srb;
1078         data_transfer_length = vm_srb->data_transfer_length;
1079
1080         scmnd->result = vm_srb->scsi_status;
1081
1082         if (scmnd->result) {
1083                 sense_ok = scsi_normalize_sense(scmnd->sense_buffer,
1084                                 SCSI_SENSE_BUFFERSIZE, &sense_hdr);
1085
1086                 if (sense_ok && do_logging(STORVSC_LOGGING_WARN))
1087                         scsi_print_sense_hdr(scmnd->device, "storvsc",
1088                                              &sense_hdr);
1089         }
1090
1091         if (vm_srb->srb_status != SRB_STATUS_SUCCESS) {
1092                 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc,
1093                                          sense_hdr.ascq);
1094                 /*
1095                  * The Windows driver set data_transfer_length on
1096                  * SRB_STATUS_DATA_OVERRUN. On other errors, this value
1097                  * is untouched.  In these cases we set it to 0.
1098                  */
1099                 if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN)
1100                         data_transfer_length = 0;
1101         }
1102
1103         /* Validate data_transfer_length (from Hyper-V) */
1104         if (data_transfer_length > cmd_request->payload->range.len)
1105                 data_transfer_length = cmd_request->payload->range.len;
1106
1107         scsi_set_resid(scmnd,
1108                 cmd_request->payload->range.len - data_transfer_length);
1109
1110         scsi_done(scmnd);
1111
1112         if (payload_sz >
1113                 sizeof(struct vmbus_channel_packet_multipage_buffer))
1114                 kfree(payload);
1115 }
1116
1117 static void storvsc_on_io_completion(struct storvsc_device *stor_device,
1118                                   struct vstor_packet *vstor_packet,
1119                                   struct storvsc_cmd_request *request)
1120 {
1121         struct vstor_packet *stor_pkt;
1122         struct hv_device *device = stor_device->device;
1123
1124         stor_pkt = &request->vstor_packet;
1125
1126         /*
1127          * The current SCSI handling on the host side does
1128          * not correctly handle:
1129          * INQUIRY command with page code parameter set to 0x80
1130          * MODE_SENSE command with cmd[2] == 0x1c
1131          *
1132          * Setup srb and scsi status so this won't be fatal.
1133          * We do this so we can distinguish truly fatal failues
1134          * (srb status == 0x4) and off-line the device in that case.
1135          */
1136
1137         if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) ||
1138            (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) {
1139                 vstor_packet->vm_srb.scsi_status = 0;
1140                 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS;
1141         }
1142
1143         /* Copy over the status...etc */
1144         stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status;
1145         stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status;
1146
1147         /*
1148          * Copy over the sense_info_length, but limit to the known max
1149          * size if Hyper-V returns a bad value.
1150          */
1151         stor_pkt->vm_srb.sense_info_length = min_t(u8, STORVSC_SENSE_BUFFER_SIZE,
1152                 vstor_packet->vm_srb.sense_info_length);
1153
1154         if (vstor_packet->vm_srb.scsi_status != 0 ||
1155             vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS) {
1156
1157                 /*
1158                  * Log TEST_UNIT_READY errors only as warnings. Hyper-V can
1159                  * return errors when detecting devices using TEST_UNIT_READY,
1160                  * and logging these as errors produces unhelpful noise.
1161                  */
1162                 int loglevel = (stor_pkt->vm_srb.cdb[0] == TEST_UNIT_READY) ?
1163                         STORVSC_LOGGING_WARN : STORVSC_LOGGING_ERROR;
1164
1165                 storvsc_log(device, loglevel,
1166                         "tag#%d cmd 0x%x status: scsi 0x%x srb 0x%x hv 0x%x\n",
1167                         scsi_cmd_to_rq(request->cmd)->tag,
1168                         stor_pkt->vm_srb.cdb[0],
1169                         vstor_packet->vm_srb.scsi_status,
1170                         vstor_packet->vm_srb.srb_status,
1171                         vstor_packet->status);
1172         }
1173
1174         if (vstor_packet->vm_srb.scsi_status == SAM_STAT_CHECK_CONDITION &&
1175             (vstor_packet->vm_srb.srb_status & SRB_STATUS_AUTOSENSE_VALID))
1176                 memcpy(request->cmd->sense_buffer,
1177                        vstor_packet->vm_srb.sense_data,
1178                        stor_pkt->vm_srb.sense_info_length);
1179
1180         stor_pkt->vm_srb.data_transfer_length =
1181                 vstor_packet->vm_srb.data_transfer_length;
1182
1183         storvsc_command_completion(request, stor_device);
1184
1185         if (atomic_dec_and_test(&stor_device->num_outstanding_req) &&
1186                 stor_device->drain_notify)
1187                 wake_up(&stor_device->waiting_to_drain);
1188 }
1189
1190 static void storvsc_on_receive(struct storvsc_device *stor_device,
1191                              struct vstor_packet *vstor_packet,
1192                              struct storvsc_cmd_request *request)
1193 {
1194         struct hv_host_device *host_dev;
1195         switch (vstor_packet->operation) {
1196         case VSTOR_OPERATION_COMPLETE_IO:
1197                 storvsc_on_io_completion(stor_device, vstor_packet, request);
1198                 break;
1199
1200         case VSTOR_OPERATION_REMOVE_DEVICE:
1201         case VSTOR_OPERATION_ENUMERATE_BUS:
1202                 host_dev = shost_priv(stor_device->host);
1203                 queue_work(
1204                         host_dev->handle_error_wq, &host_dev->host_scan_work);
1205                 break;
1206
1207         case VSTOR_OPERATION_FCHBA_DATA:
1208                 cache_wwn(stor_device, vstor_packet);
1209 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1210                 fc_host_node_name(stor_device->host) = stor_device->node_name;
1211                 fc_host_port_name(stor_device->host) = stor_device->port_name;
1212 #endif
1213                 break;
1214         default:
1215                 break;
1216         }
1217 }
1218
1219 static void storvsc_on_channel_callback(void *context)
1220 {
1221         struct vmbus_channel *channel = (struct vmbus_channel *)context;
1222         const struct vmpacket_descriptor *desc;
1223         struct hv_device *device;
1224         struct storvsc_device *stor_device;
1225         struct Scsi_Host *shost;
1226         unsigned long time_limit = jiffies + msecs_to_jiffies(CALLBACK_TIMEOUT);
1227
1228         if (channel->primary_channel != NULL)
1229                 device = channel->primary_channel->device_obj;
1230         else
1231                 device = channel->device_obj;
1232
1233         stor_device = get_in_stor_device(device);
1234         if (!stor_device)
1235                 return;
1236
1237         shost = stor_device->host;
1238
1239         foreach_vmbus_pkt(desc, channel) {
1240                 struct vstor_packet *packet = hv_pkt_data(desc);
1241                 struct storvsc_cmd_request *request = NULL;
1242                 u32 pktlen = hv_pkt_datalen(desc);
1243                 u64 rqst_id = desc->trans_id;
1244                 u32 minlen = rqst_id ? sizeof(struct vstor_packet) :
1245                         sizeof(enum vstor_packet_operation);
1246
1247                 if (unlikely(time_after(jiffies, time_limit))) {
1248                         hv_pkt_iter_close(channel);
1249                         return;
1250                 }
1251
1252                 if (pktlen < minlen) {
1253                         dev_err(&device->device,
1254                                 "Invalid pkt: id=%llu, len=%u, minlen=%u\n",
1255                                 rqst_id, pktlen, minlen);
1256                         continue;
1257                 }
1258
1259                 if (rqst_id == VMBUS_RQST_INIT) {
1260                         request = &stor_device->init_request;
1261                 } else if (rqst_id == VMBUS_RQST_RESET) {
1262                         request = &stor_device->reset_request;
1263                 } else {
1264                         /* Hyper-V can send an unsolicited message with ID of 0 */
1265                         if (rqst_id == 0) {
1266                                 /*
1267                                  * storvsc_on_receive() looks at the vstor_packet in the message
1268                                  * from the ring buffer.
1269                                  *
1270                                  * - If the operation in the vstor_packet is COMPLETE_IO, then
1271                                  *   we call storvsc_on_io_completion(), and dereference the
1272                                  *   guest memory address.  Make sure we don't call
1273                                  *   storvsc_on_io_completion() with a guest memory address
1274                                  *   that is zero if Hyper-V were to construct and send such
1275                                  *   a bogus packet.
1276                                  *
1277                                  * - If the operation in the vstor_packet is FCHBA_DATA, then
1278                                  *   we call cache_wwn(), and access the data payload area of
1279                                  *   the packet (wwn_packet); however, there is no guarantee
1280                                  *   that the packet is big enough to contain such area.
1281                                  *   Future-proof the code by rejecting such a bogus packet.
1282                                  */
1283                                 if (packet->operation == VSTOR_OPERATION_COMPLETE_IO ||
1284                                     packet->operation == VSTOR_OPERATION_FCHBA_DATA) {
1285                                         dev_err(&device->device, "Invalid packet with ID of 0\n");
1286                                         continue;
1287                                 }
1288                         } else {
1289                                 struct scsi_cmnd *scmnd;
1290
1291                                 /* Transaction 'rqst_id' corresponds to tag 'rqst_id - 1' */
1292                                 scmnd = scsi_host_find_tag(shost, rqst_id - 1);
1293                                 if (scmnd == NULL) {
1294                                         dev_err(&device->device, "Incorrect transaction ID\n");
1295                                         continue;
1296                                 }
1297                                 request = (struct storvsc_cmd_request *)scsi_cmd_priv(scmnd);
1298                                 scsi_dma_unmap(scmnd);
1299                         }
1300
1301                         storvsc_on_receive(stor_device, packet, request);
1302                         continue;
1303                 }
1304
1305                 memcpy(&request->vstor_packet, packet,
1306                        sizeof(struct vstor_packet));
1307                 complete(&request->wait_event);
1308         }
1309 }
1310
1311 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size,
1312                                   bool is_fc)
1313 {
1314         struct vmstorage_channel_properties props;
1315         int ret;
1316
1317         memset(&props, 0, sizeof(struct vmstorage_channel_properties));
1318
1319         device->channel->max_pkt_size = STORVSC_MAX_PKT_SIZE;
1320         device->channel->next_request_id_callback = storvsc_next_request_id;
1321
1322         ret = vmbus_open(device->channel,
1323                          ring_size,
1324                          ring_size,
1325                          (void *)&props,
1326                          sizeof(struct vmstorage_channel_properties),
1327                          storvsc_on_channel_callback, device->channel);
1328
1329         if (ret != 0)
1330                 return ret;
1331
1332         ret = storvsc_channel_init(device, is_fc);
1333
1334         return ret;
1335 }
1336
1337 static int storvsc_dev_remove(struct hv_device *device)
1338 {
1339         struct storvsc_device *stor_device;
1340
1341         stor_device = hv_get_drvdata(device);
1342
1343         stor_device->destroy = true;
1344
1345         /* Make sure flag is set before waiting */
1346         wmb();
1347
1348         /*
1349          * At this point, all outbound traffic should be disable. We
1350          * only allow inbound traffic (responses) to proceed so that
1351          * outstanding requests can be completed.
1352          */
1353
1354         storvsc_wait_to_drain(stor_device);
1355
1356         /*
1357          * Since we have already drained, we don't need to busy wait
1358          * as was done in final_release_stor_device()
1359          * Note that we cannot set the ext pointer to NULL until
1360          * we have drained - to drain the outgoing packets, we need to
1361          * allow incoming packets.
1362          */
1363         hv_set_drvdata(device, NULL);
1364
1365         /* Close the channel */
1366         vmbus_close(device->channel);
1367
1368         kfree(stor_device->stor_chns);
1369         kfree(stor_device);
1370         return 0;
1371 }
1372
1373 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device,
1374                                         u16 q_num)
1375 {
1376         u16 slot = 0;
1377         u16 hash_qnum;
1378         const struct cpumask *node_mask;
1379         int num_channels, tgt_cpu;
1380
1381         if (stor_device->num_sc == 0) {
1382                 stor_device->stor_chns[q_num] = stor_device->device->channel;
1383                 return stor_device->device->channel;
1384         }
1385
1386         /*
1387          * Our channel array is sparsley populated and we
1388          * initiated I/O on a processor/hw-q that does not
1389          * currently have a designated channel. Fix this.
1390          * The strategy is simple:
1391          * I. Ensure NUMA locality
1392          * II. Distribute evenly (best effort)
1393          */
1394
1395         node_mask = cpumask_of_node(cpu_to_node(q_num));
1396
1397         num_channels = 0;
1398         for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1399                 if (cpumask_test_cpu(tgt_cpu, node_mask))
1400                         num_channels++;
1401         }
1402         if (num_channels == 0) {
1403                 stor_device->stor_chns[q_num] = stor_device->device->channel;
1404                 return stor_device->device->channel;
1405         }
1406
1407         hash_qnum = q_num;
1408         while (hash_qnum >= num_channels)
1409                 hash_qnum -= num_channels;
1410
1411         for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1412                 if (!cpumask_test_cpu(tgt_cpu, node_mask))
1413                         continue;
1414                 if (slot == hash_qnum)
1415                         break;
1416                 slot++;
1417         }
1418
1419         stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu];
1420
1421         return stor_device->stor_chns[q_num];
1422 }
1423
1424
1425 static int storvsc_do_io(struct hv_device *device,
1426                          struct storvsc_cmd_request *request, u16 q_num)
1427 {
1428         struct storvsc_device *stor_device;
1429         struct vstor_packet *vstor_packet;
1430         struct vmbus_channel *outgoing_channel, *channel;
1431         unsigned long flags;
1432         int ret = 0;
1433         const struct cpumask *node_mask;
1434         int tgt_cpu;
1435
1436         vstor_packet = &request->vstor_packet;
1437         stor_device = get_out_stor_device(device);
1438
1439         if (!stor_device)
1440                 return -ENODEV;
1441
1442
1443         request->device  = device;
1444         /*
1445          * Select an appropriate channel to send the request out.
1446          */
1447         /* See storvsc_change_target_cpu(). */
1448         outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]);
1449         if (outgoing_channel != NULL) {
1450                 if (outgoing_channel->target_cpu == q_num) {
1451                         /*
1452                          * Ideally, we want to pick a different channel if
1453                          * available on the same NUMA node.
1454                          */
1455                         node_mask = cpumask_of_node(cpu_to_node(q_num));
1456                         for_each_cpu_wrap(tgt_cpu,
1457                                  &stor_device->alloced_cpus, q_num + 1) {
1458                                 if (!cpumask_test_cpu(tgt_cpu, node_mask))
1459                                         continue;
1460                                 if (tgt_cpu == q_num)
1461                                         continue;
1462                                 channel = READ_ONCE(
1463                                         stor_device->stor_chns[tgt_cpu]);
1464                                 if (channel == NULL)
1465                                         continue;
1466                                 if (hv_get_avail_to_write_percent(
1467                                                         &channel->outbound)
1468                                                 > ring_avail_percent_lowater) {
1469                                         outgoing_channel = channel;
1470                                         goto found_channel;
1471                                 }
1472                         }
1473
1474                         /*
1475                          * All the other channels on the same NUMA node are
1476                          * busy. Try to use the channel on the current CPU
1477                          */
1478                         if (hv_get_avail_to_write_percent(
1479                                                 &outgoing_channel->outbound)
1480                                         > ring_avail_percent_lowater)
1481                                 goto found_channel;
1482
1483                         /*
1484                          * If we reach here, all the channels on the current
1485                          * NUMA node are busy. Try to find a channel in
1486                          * other NUMA nodes
1487                          */
1488                         for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1489                                 if (cpumask_test_cpu(tgt_cpu, node_mask))
1490                                         continue;
1491                                 channel = READ_ONCE(
1492                                         stor_device->stor_chns[tgt_cpu]);
1493                                 if (channel == NULL)
1494                                         continue;
1495                                 if (hv_get_avail_to_write_percent(
1496                                                         &channel->outbound)
1497                                                 > ring_avail_percent_lowater) {
1498                                         outgoing_channel = channel;
1499                                         goto found_channel;
1500                                 }
1501                         }
1502                 }
1503         } else {
1504                 spin_lock_irqsave(&stor_device->lock, flags);
1505                 outgoing_channel = stor_device->stor_chns[q_num];
1506                 if (outgoing_channel != NULL) {
1507                         spin_unlock_irqrestore(&stor_device->lock, flags);
1508                         goto found_channel;
1509                 }
1510                 outgoing_channel = get_og_chn(stor_device, q_num);
1511                 spin_unlock_irqrestore(&stor_device->lock, flags);
1512         }
1513
1514 found_channel:
1515         vstor_packet->flags |= REQUEST_COMPLETION_FLAG;
1516
1517         vstor_packet->vm_srb.length = sizeof(struct vmscsi_request);
1518
1519
1520         vstor_packet->vm_srb.sense_info_length = STORVSC_SENSE_BUFFER_SIZE;
1521
1522
1523         vstor_packet->vm_srb.data_transfer_length =
1524         request->payload->range.len;
1525
1526         vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB;
1527
1528         if (request->payload->range.len) {
1529
1530                 ret = vmbus_sendpacket_mpb_desc(outgoing_channel,
1531                                 request->payload, request->payload_sz,
1532                                 vstor_packet,
1533                                 sizeof(struct vstor_packet),
1534                                 (unsigned long)request);
1535         } else {
1536                 ret = vmbus_sendpacket(outgoing_channel, vstor_packet,
1537                                sizeof(struct vstor_packet),
1538                                (unsigned long)request,
1539                                VM_PKT_DATA_INBAND,
1540                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1541         }
1542
1543         if (ret != 0)
1544                 return ret;
1545
1546         atomic_inc(&stor_device->num_outstanding_req);
1547
1548         return ret;
1549 }
1550
1551 static int storvsc_device_alloc(struct scsi_device *sdevice)
1552 {
1553         /*
1554          * Set blist flag to permit the reading of the VPD pages even when
1555          * the target may claim SPC-2 compliance. MSFT targets currently
1556          * claim SPC-2 compliance while they implement post SPC-2 features.
1557          * With this flag we can correctly handle WRITE_SAME_16 issues.
1558          *
1559          * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but
1560          * still supports REPORT LUN.
1561          */
1562         sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES;
1563
1564         return 0;
1565 }
1566
1567 static int storvsc_device_configure(struct scsi_device *sdevice)
1568 {
1569         blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ));
1570
1571         /* storvsc devices don't support MAINTENANCE_IN SCSI cmd */
1572         sdevice->no_report_opcodes = 1;
1573         sdevice->no_write_same = 1;
1574
1575         /*
1576          * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3
1577          * if the device is a MSFT virtual device.  If the host is
1578          * WIN10 or newer, allow write_same.
1579          */
1580         if (!strncmp(sdevice->vendor, "Msft", 4)) {
1581                 switch (vmstor_proto_version) {
1582                 case VMSTOR_PROTO_VERSION_WIN8:
1583                 case VMSTOR_PROTO_VERSION_WIN8_1:
1584                         sdevice->scsi_level = SCSI_SPC_3;
1585                         break;
1586                 }
1587
1588                 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10)
1589                         sdevice->no_write_same = 0;
1590         }
1591
1592         return 0;
1593 }
1594
1595 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev,
1596                            sector_t capacity, int *info)
1597 {
1598         sector_t nsect = capacity;
1599         sector_t cylinders = nsect;
1600         int heads, sectors_pt;
1601
1602         /*
1603          * We are making up these values; let us keep it simple.
1604          */
1605         heads = 0xff;
1606         sectors_pt = 0x3f;      /* Sectors per track */
1607         sector_div(cylinders, heads * sectors_pt);
1608         if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect)
1609                 cylinders = 0xffff;
1610
1611         info[0] = heads;
1612         info[1] = sectors_pt;
1613         info[2] = (int)cylinders;
1614
1615         return 0;
1616 }
1617
1618 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd)
1619 {
1620         struct hv_host_device *host_dev = shost_priv(scmnd->device->host);
1621         struct hv_device *device = host_dev->dev;
1622
1623         struct storvsc_device *stor_device;
1624         struct storvsc_cmd_request *request;
1625         struct vstor_packet *vstor_packet;
1626         int ret, t;
1627
1628         stor_device = get_out_stor_device(device);
1629         if (!stor_device)
1630                 return FAILED;
1631
1632         request = &stor_device->reset_request;
1633         vstor_packet = &request->vstor_packet;
1634         memset(vstor_packet, 0, sizeof(struct vstor_packet));
1635
1636         init_completion(&request->wait_event);
1637
1638         vstor_packet->operation = VSTOR_OPERATION_RESET_BUS;
1639         vstor_packet->flags = REQUEST_COMPLETION_FLAG;
1640         vstor_packet->vm_srb.path_id = stor_device->path_id;
1641
1642         ret = vmbus_sendpacket(device->channel, vstor_packet,
1643                                sizeof(struct vstor_packet),
1644                                VMBUS_RQST_RESET,
1645                                VM_PKT_DATA_INBAND,
1646                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1647         if (ret != 0)
1648                 return FAILED;
1649
1650         t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
1651         if (t == 0)
1652                 return TIMEOUT_ERROR;
1653
1654
1655         /*
1656          * At this point, all outstanding requests in the adapter
1657          * should have been flushed out and return to us
1658          * There is a potential race here where the host may be in
1659          * the process of responding when we return from here.
1660          * Just wait for all in-transit packets to be accounted for
1661          * before we return from here.
1662          */
1663         storvsc_wait_to_drain(stor_device);
1664
1665         return SUCCESS;
1666 }
1667
1668 /*
1669  * The host guarantees to respond to each command, although I/O latencies might
1670  * be unbounded on Azure.  Reset the timer unconditionally to give the host a
1671  * chance to perform EH.
1672  */
1673 static enum blk_eh_timer_return storvsc_eh_timed_out(struct scsi_cmnd *scmnd)
1674 {
1675         return BLK_EH_RESET_TIMER;
1676 }
1677
1678 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd)
1679 {
1680         bool allowed = true;
1681         u8 scsi_op = scmnd->cmnd[0];
1682
1683         switch (scsi_op) {
1684         /* the host does not handle WRITE_SAME, log accident usage */
1685         case WRITE_SAME:
1686         /*
1687          * smartd sends this command and the host does not handle
1688          * this. So, don't send it.
1689          */
1690         case SET_WINDOW:
1691                 set_host_byte(scmnd, DID_ERROR);
1692                 allowed = false;
1693                 break;
1694         default:
1695                 break;
1696         }
1697         return allowed;
1698 }
1699
1700 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd)
1701 {
1702         int ret;
1703         struct hv_host_device *host_dev = shost_priv(host);
1704         struct hv_device *dev = host_dev->dev;
1705         struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd);
1706         struct scatterlist *sgl;
1707         struct vmscsi_request *vm_srb;
1708         struct vmbus_packet_mpb_array  *payload;
1709         u32 payload_sz;
1710         u32 length;
1711
1712         if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) {
1713                 /*
1714                  * On legacy hosts filter unimplemented commands.
1715                  * Future hosts are expected to correctly handle
1716                  * unsupported commands. Furthermore, it is
1717                  * possible that some of the currently
1718                  * unsupported commands maybe supported in
1719                  * future versions of the host.
1720                  */
1721                 if (!storvsc_scsi_cmd_ok(scmnd)) {
1722                         scsi_done(scmnd);
1723                         return 0;
1724                 }
1725         }
1726
1727         /* Setup the cmd request */
1728         cmd_request->cmd = scmnd;
1729
1730         memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet));
1731         vm_srb = &cmd_request->vstor_packet.vm_srb;
1732         vm_srb->time_out_value = 60;
1733
1734         vm_srb->srb_flags |=
1735                 SRB_FLAGS_DISABLE_SYNCH_TRANSFER;
1736
1737         if (scmnd->device->tagged_supported) {
1738                 vm_srb->srb_flags |=
1739                 (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE);
1740                 vm_srb->queue_tag = SP_UNTAGGED;
1741                 vm_srb->queue_action = SRB_SIMPLE_TAG_REQUEST;
1742         }
1743
1744         /* Build the SRB */
1745         switch (scmnd->sc_data_direction) {
1746         case DMA_TO_DEVICE:
1747                 vm_srb->data_in = WRITE_TYPE;
1748                 vm_srb->srb_flags |= SRB_FLAGS_DATA_OUT;
1749                 break;
1750         case DMA_FROM_DEVICE:
1751                 vm_srb->data_in = READ_TYPE;
1752                 vm_srb->srb_flags |= SRB_FLAGS_DATA_IN;
1753                 break;
1754         case DMA_NONE:
1755                 vm_srb->data_in = UNKNOWN_TYPE;
1756                 vm_srb->srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER;
1757                 break;
1758         default:
1759                 /*
1760                  * This is DMA_BIDIRECTIONAL or something else we are never
1761                  * supposed to see here.
1762                  */
1763                 WARN(1, "Unexpected data direction: %d\n",
1764                      scmnd->sc_data_direction);
1765                 return -EINVAL;
1766         }
1767
1768
1769         vm_srb->port_number = host_dev->port;
1770         vm_srb->path_id = scmnd->device->channel;
1771         vm_srb->target_id = scmnd->device->id;
1772         vm_srb->lun = scmnd->device->lun;
1773
1774         vm_srb->cdb_length = scmnd->cmd_len;
1775
1776         memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length);
1777
1778         sgl = (struct scatterlist *)scsi_sglist(scmnd);
1779
1780         length = scsi_bufflen(scmnd);
1781         payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb;
1782         payload_sz = 0;
1783
1784         if (scsi_sg_count(scmnd)) {
1785                 unsigned long offset_in_hvpg = offset_in_hvpage(sgl->offset);
1786                 unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length);
1787                 struct scatterlist *sg;
1788                 unsigned long hvpfn, hvpfns_to_add;
1789                 int j, i = 0, sg_count;
1790
1791                 payload_sz = (hvpg_count * sizeof(u64) +
1792                               sizeof(struct vmbus_packet_mpb_array));
1793
1794                 if (hvpg_count > MAX_PAGE_BUFFER_COUNT) {
1795                         payload = kzalloc(payload_sz, GFP_ATOMIC);
1796                         if (!payload)
1797                                 return SCSI_MLQUEUE_DEVICE_BUSY;
1798                 }
1799
1800                 payload->range.len = length;
1801                 payload->range.offset = offset_in_hvpg;
1802
1803                 sg_count = scsi_dma_map(scmnd);
1804                 if (sg_count < 0) {
1805                         ret = SCSI_MLQUEUE_DEVICE_BUSY;
1806                         goto err_free_payload;
1807                 }
1808
1809                 for_each_sg(sgl, sg, sg_count, j) {
1810                         /*
1811                          * Init values for the current sgl entry. hvpfns_to_add
1812                          * is in units of Hyper-V size pages. Handling the
1813                          * PAGE_SIZE != HV_HYP_PAGE_SIZE case also handles
1814                          * values of sgl->offset that are larger than PAGE_SIZE.
1815                          * Such offsets are handled even on other than the first
1816                          * sgl entry, provided they are a multiple of PAGE_SIZE.
1817                          */
1818                         hvpfn = HVPFN_DOWN(sg_dma_address(sg));
1819                         hvpfns_to_add = HVPFN_UP(sg_dma_address(sg) +
1820                                                  sg_dma_len(sg)) - hvpfn;
1821
1822                         /*
1823                          * Fill the next portion of the PFN array with
1824                          * sequential Hyper-V PFNs for the continguous physical
1825                          * memory described by the sgl entry. The end of the
1826                          * last sgl should be reached at the same time that
1827                          * the PFN array is filled.
1828                          */
1829                         while (hvpfns_to_add--)
1830                                 payload->range.pfn_array[i++] = hvpfn++;
1831                 }
1832         }
1833
1834         cmd_request->payload = payload;
1835         cmd_request->payload_sz = payload_sz;
1836
1837         /* Invokes the vsc to start an IO */
1838         ret = storvsc_do_io(dev, cmd_request, get_cpu());
1839         put_cpu();
1840
1841         if (ret)
1842                 scsi_dma_unmap(scmnd);
1843
1844         if (ret == -EAGAIN) {
1845                 /* no more space */
1846                 ret = SCSI_MLQUEUE_DEVICE_BUSY;
1847                 goto err_free_payload;
1848         }
1849
1850         return 0;
1851
1852 err_free_payload:
1853         if (payload_sz > sizeof(cmd_request->mpb))
1854                 kfree(payload);
1855
1856         return ret;
1857 }
1858
1859 static struct scsi_host_template scsi_driver = {
1860         .module =               THIS_MODULE,
1861         .name =                 "storvsc_host_t",
1862         .cmd_size =             sizeof(struct storvsc_cmd_request),
1863         .bios_param =           storvsc_get_chs,
1864         .queuecommand =         storvsc_queuecommand,
1865         .eh_host_reset_handler =        storvsc_host_reset_handler,
1866         .proc_name =            "storvsc_host",
1867         .eh_timed_out =         storvsc_eh_timed_out,
1868         .slave_alloc =          storvsc_device_alloc,
1869         .slave_configure =      storvsc_device_configure,
1870         .cmd_per_lun =          2048,
1871         .this_id =              -1,
1872         /* Ensure there are no gaps in presented sgls */
1873         .virt_boundary_mask =   HV_HYP_PAGE_SIZE - 1,
1874         .no_write_same =        1,
1875         .track_queue_depth =    1,
1876         .change_queue_depth =   storvsc_change_queue_depth,
1877 };
1878
1879 enum {
1880         SCSI_GUID,
1881         IDE_GUID,
1882         SFC_GUID,
1883 };
1884
1885 static const struct hv_vmbus_device_id id_table[] = {
1886         /* SCSI guid */
1887         { HV_SCSI_GUID,
1888           .driver_data = SCSI_GUID
1889         },
1890         /* IDE guid */
1891         { HV_IDE_GUID,
1892           .driver_data = IDE_GUID
1893         },
1894         /* Fibre Channel GUID */
1895         {
1896           HV_SYNTHFC_GUID,
1897           .driver_data = SFC_GUID
1898         },
1899         { },
1900 };
1901
1902 MODULE_DEVICE_TABLE(vmbus, id_table);
1903
1904 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID };
1905
1906 static bool hv_dev_is_fc(struct hv_device *hv_dev)
1907 {
1908         return guid_equal(&fc_guid.guid, &hv_dev->dev_type);
1909 }
1910
1911 static int storvsc_probe(struct hv_device *device,
1912                         const struct hv_vmbus_device_id *dev_id)
1913 {
1914         int ret;
1915         int num_cpus = num_online_cpus();
1916         int num_present_cpus = num_present_cpus();
1917         struct Scsi_Host *host;
1918         struct hv_host_device *host_dev;
1919         bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false);
1920         bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false);
1921         int target = 0;
1922         struct storvsc_device *stor_device;
1923         int max_sub_channels = 0;
1924         u32 max_xfer_bytes;
1925
1926         /*
1927          * We support sub-channels for storage on SCSI and FC controllers.
1928          * The number of sub-channels offerred is based on the number of
1929          * VCPUs in the guest.
1930          */
1931         if (!dev_is_ide)
1932                 max_sub_channels =
1933                         (num_cpus - 1) / storvsc_vcpus_per_sub_channel;
1934
1935         scsi_driver.can_queue = max_outstanding_req_per_channel *
1936                                 (max_sub_channels + 1) *
1937                                 (100 - ring_avail_percent_lowater) / 100;
1938
1939         host = scsi_host_alloc(&scsi_driver,
1940                                sizeof(struct hv_host_device));
1941         if (!host)
1942                 return -ENOMEM;
1943
1944         host_dev = shost_priv(host);
1945         memset(host_dev, 0, sizeof(struct hv_host_device));
1946
1947         host_dev->port = host->host_no;
1948         host_dev->dev = device;
1949         host_dev->host = host;
1950
1951
1952         stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL);
1953         if (!stor_device) {
1954                 ret = -ENOMEM;
1955                 goto err_out0;
1956         }
1957
1958         stor_device->destroy = false;
1959         init_waitqueue_head(&stor_device->waiting_to_drain);
1960         stor_device->device = device;
1961         stor_device->host = host;
1962         spin_lock_init(&stor_device->lock);
1963         hv_set_drvdata(device, stor_device);
1964         dma_set_min_align_mask(&device->device, HV_HYP_PAGE_SIZE - 1);
1965
1966         stor_device->port_number = host->host_no;
1967         ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc);
1968         if (ret)
1969                 goto err_out1;
1970
1971         host_dev->path = stor_device->path_id;
1972         host_dev->target = stor_device->target_id;
1973
1974         switch (dev_id->driver_data) {
1975         case SFC_GUID:
1976                 host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET;
1977                 host->max_id = STORVSC_FC_MAX_TARGETS;
1978                 host->max_channel = STORVSC_FC_MAX_CHANNELS - 1;
1979 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1980                 host->transportt = fc_transport_template;
1981 #endif
1982                 break;
1983
1984         case SCSI_GUID:
1985                 host->max_lun = STORVSC_MAX_LUNS_PER_TARGET;
1986                 host->max_id = STORVSC_MAX_TARGETS;
1987                 host->max_channel = STORVSC_MAX_CHANNELS - 1;
1988                 break;
1989
1990         default:
1991                 host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET;
1992                 host->max_id = STORVSC_IDE_MAX_TARGETS;
1993                 host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1;
1994                 break;
1995         }
1996         /* max cmd length */
1997         host->max_cmd_len = STORVSC_MAX_CMD_LEN;
1998         /*
1999          * Any reasonable Hyper-V configuration should provide
2000          * max_transfer_bytes value aligning to HV_HYP_PAGE_SIZE,
2001          * protecting it from any weird value.
2002          */
2003         max_xfer_bytes = round_down(stor_device->max_transfer_bytes, HV_HYP_PAGE_SIZE);
2004         if (is_fc)
2005                 max_xfer_bytes = min(max_xfer_bytes, STORVSC_FC_MAX_XFER_SIZE);
2006
2007         /* max_hw_sectors_kb */
2008         host->max_sectors = max_xfer_bytes >> 9;
2009         /*
2010          * There are 2 requirements for Hyper-V storvsc sgl segments,
2011          * based on which the below calculation for max segments is
2012          * done:
2013          *
2014          * 1. Except for the first and last sgl segment, all sgl segments
2015          *    should be align to HV_HYP_PAGE_SIZE, that also means the
2016          *    maximum number of segments in a sgl can be calculated by
2017          *    dividing the total max transfer length by HV_HYP_PAGE_SIZE.
2018          *
2019          * 2. Except for the first and last, each entry in the SGL must
2020          *    have an offset that is a multiple of HV_HYP_PAGE_SIZE.
2021          */
2022         host->sg_tablesize = (max_xfer_bytes >> HV_HYP_PAGE_SHIFT) + 1;
2023         /*
2024          * For non-IDE disks, the host supports multiple channels.
2025          * Set the number of HW queues we are supporting.
2026          */
2027         if (!dev_is_ide) {
2028                 if (storvsc_max_hw_queues > num_present_cpus) {
2029                         storvsc_max_hw_queues = 0;
2030                         storvsc_log(device, STORVSC_LOGGING_WARN,
2031                                 "Resetting invalid storvsc_max_hw_queues value to default.\n");
2032                 }
2033                 if (storvsc_max_hw_queues)
2034                         host->nr_hw_queues = storvsc_max_hw_queues;
2035                 else
2036                         host->nr_hw_queues = num_present_cpus;
2037         }
2038
2039         /*
2040          * Set the error handler work queue.
2041          */
2042         host_dev->handle_error_wq =
2043                         alloc_ordered_workqueue("storvsc_error_wq_%d",
2044                                                 0,
2045                                                 host->host_no);
2046         if (!host_dev->handle_error_wq) {
2047                 ret = -ENOMEM;
2048                 goto err_out2;
2049         }
2050         INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan);
2051         /* Register the HBA and start the scsi bus scan */
2052         ret = scsi_add_host(host, &device->device);
2053         if (ret != 0)
2054                 goto err_out3;
2055
2056         if (!dev_is_ide) {
2057                 scsi_scan_host(host);
2058         } else {
2059                 target = (device->dev_instance.b[5] << 8 |
2060                          device->dev_instance.b[4]);
2061                 ret = scsi_add_device(host, 0, target, 0);
2062                 if (ret)
2063                         goto err_out4;
2064         }
2065 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2066         if (host->transportt == fc_transport_template) {
2067                 struct fc_rport_identifiers ids = {
2068                         .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR,
2069                 };
2070
2071                 fc_host_node_name(host) = stor_device->node_name;
2072                 fc_host_port_name(host) = stor_device->port_name;
2073                 stor_device->rport = fc_remote_port_add(host, 0, &ids);
2074                 if (!stor_device->rport) {
2075                         ret = -ENOMEM;
2076                         goto err_out4;
2077                 }
2078         }
2079 #endif
2080         return 0;
2081
2082 err_out4:
2083         scsi_remove_host(host);
2084
2085 err_out3:
2086         destroy_workqueue(host_dev->handle_error_wq);
2087
2088 err_out2:
2089         /*
2090          * Once we have connected with the host, we would need to
2091          * invoke storvsc_dev_remove() to rollback this state and
2092          * this call also frees up the stor_device; hence the jump around
2093          * err_out1 label.
2094          */
2095         storvsc_dev_remove(device);
2096         goto err_out0;
2097
2098 err_out1:
2099         kfree(stor_device->stor_chns);
2100         kfree(stor_device);
2101
2102 err_out0:
2103         scsi_host_put(host);
2104         return ret;
2105 }
2106
2107 /* Change a scsi target's queue depth */
2108 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth)
2109 {
2110         if (queue_depth > scsi_driver.can_queue)
2111                 queue_depth = scsi_driver.can_queue;
2112
2113         return scsi_change_queue_depth(sdev, queue_depth);
2114 }
2115
2116 static int storvsc_remove(struct hv_device *dev)
2117 {
2118         struct storvsc_device *stor_device = hv_get_drvdata(dev);
2119         struct Scsi_Host *host = stor_device->host;
2120         struct hv_host_device *host_dev = shost_priv(host);
2121
2122 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2123         if (host->transportt == fc_transport_template) {
2124                 fc_remote_port_delete(stor_device->rport);
2125                 fc_remove_host(host);
2126         }
2127 #endif
2128         destroy_workqueue(host_dev->handle_error_wq);
2129         scsi_remove_host(host);
2130         storvsc_dev_remove(dev);
2131         scsi_host_put(host);
2132
2133         return 0;
2134 }
2135
2136 static int storvsc_suspend(struct hv_device *hv_dev)
2137 {
2138         struct storvsc_device *stor_device = hv_get_drvdata(hv_dev);
2139         struct Scsi_Host *host = stor_device->host;
2140         struct hv_host_device *host_dev = shost_priv(host);
2141
2142         storvsc_wait_to_drain(stor_device);
2143
2144         drain_workqueue(host_dev->handle_error_wq);
2145
2146         vmbus_close(hv_dev->channel);
2147
2148         kfree(stor_device->stor_chns);
2149         stor_device->stor_chns = NULL;
2150
2151         cpumask_clear(&stor_device->alloced_cpus);
2152
2153         return 0;
2154 }
2155
2156 static int storvsc_resume(struct hv_device *hv_dev)
2157 {
2158         int ret;
2159
2160         ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size,
2161                                      hv_dev_is_fc(hv_dev));
2162         return ret;
2163 }
2164
2165 static struct hv_driver storvsc_drv = {
2166         .name = KBUILD_MODNAME,
2167         .id_table = id_table,
2168         .probe = storvsc_probe,
2169         .remove = storvsc_remove,
2170         .suspend = storvsc_suspend,
2171         .resume = storvsc_resume,
2172         .driver = {
2173                 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2174         },
2175 };
2176
2177 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2178 static struct fc_function_template fc_transport_functions = {
2179         .show_host_node_name = 1,
2180         .show_host_port_name = 1,
2181 };
2182 #endif
2183
2184 static int __init storvsc_drv_init(void)
2185 {
2186         int ret;
2187
2188         /*
2189          * Divide the ring buffer data size (which is 1 page less
2190          * than the ring buffer size since that page is reserved for
2191          * the ring buffer indices) by the max request size (which is
2192          * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64)
2193          */
2194         max_outstanding_req_per_channel =
2195                 ((storvsc_ringbuffer_size - PAGE_SIZE) /
2196                 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET +
2197                 sizeof(struct vstor_packet) + sizeof(u64),
2198                 sizeof(u64)));
2199
2200 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2201         fc_transport_template = fc_attach_transport(&fc_transport_functions);
2202         if (!fc_transport_template)
2203                 return -ENODEV;
2204 #endif
2205
2206         ret = vmbus_driver_register(&storvsc_drv);
2207
2208 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2209         if (ret)
2210                 fc_release_transport(fc_transport_template);
2211 #endif
2212
2213         return ret;
2214 }
2215
2216 static void __exit storvsc_drv_exit(void)
2217 {
2218         vmbus_driver_unregister(&storvsc_drv);
2219 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2220         fc_release_transport(fc_transport_template);
2221 #endif
2222 }
2223
2224 MODULE_LICENSE("GPL");
2225 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver");
2226 module_init(storvsc_drv_init);
2227 module_exit(storvsc_drv_exit);