Merge tag 'kvm-x86-pmu-6.5' of https://github.com/kvm-x86/linux into HEAD
[platform/kernel/linux-starfive.git] / drivers / scsi / storvsc_drv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  *   K. Y. Srinivasan <kys@microsoft.com>
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/wait.h>
13 #include <linux/sched.h>
14 #include <linux/completion.h>
15 #include <linux/string.h>
16 #include <linux/mm.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/hyperv.h>
23 #include <linux/blkdev.h>
24 #include <linux/dma-mapping.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_host.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_tcq.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_devinfo.h>
33 #include <scsi/scsi_dbg.h>
34 #include <scsi/scsi_transport_fc.h>
35 #include <scsi/scsi_transport.h>
36
37 /*
38  * All wire protocol details (storage protocol between the guest and the host)
39  * are consolidated here.
40  *
41  * Begin protocol definitions.
42  */
43
44 /*
45  * Version history:
46  * V1 Beta: 0.1
47  * V1 RC < 2008/1/31: 1.0
48  * V1 RC > 2008/1/31:  2.0
49  * Win7: 4.2
50  * Win8: 5.1
51  * Win8.1: 6.0
52  * Win10: 6.2
53  */
54
55 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_)    ((((MAJOR_) & 0xff) << 8) | \
56                                                 (((MINOR_) & 0xff)))
57 #define VMSTOR_PROTO_VERSION_WIN6       VMSTOR_PROTO_VERSION(2, 0)
58 #define VMSTOR_PROTO_VERSION_WIN7       VMSTOR_PROTO_VERSION(4, 2)
59 #define VMSTOR_PROTO_VERSION_WIN8       VMSTOR_PROTO_VERSION(5, 1)
60 #define VMSTOR_PROTO_VERSION_WIN8_1     VMSTOR_PROTO_VERSION(6, 0)
61 #define VMSTOR_PROTO_VERSION_WIN10      VMSTOR_PROTO_VERSION(6, 2)
62
63 /* channel callback timeout in ms */
64 #define CALLBACK_TIMEOUT               2
65
66 /*  Packet structure describing virtual storage requests. */
67 enum vstor_packet_operation {
68         VSTOR_OPERATION_COMPLETE_IO             = 1,
69         VSTOR_OPERATION_REMOVE_DEVICE           = 2,
70         VSTOR_OPERATION_EXECUTE_SRB             = 3,
71         VSTOR_OPERATION_RESET_LUN               = 4,
72         VSTOR_OPERATION_RESET_ADAPTER           = 5,
73         VSTOR_OPERATION_RESET_BUS               = 6,
74         VSTOR_OPERATION_BEGIN_INITIALIZATION    = 7,
75         VSTOR_OPERATION_END_INITIALIZATION      = 8,
76         VSTOR_OPERATION_QUERY_PROTOCOL_VERSION  = 9,
77         VSTOR_OPERATION_QUERY_PROPERTIES        = 10,
78         VSTOR_OPERATION_ENUMERATE_BUS           = 11,
79         VSTOR_OPERATION_FCHBA_DATA              = 12,
80         VSTOR_OPERATION_CREATE_SUB_CHANNELS     = 13,
81         VSTOR_OPERATION_MAXIMUM                 = 13
82 };
83
84 /*
85  * WWN packet for Fibre Channel HBA
86  */
87
88 struct hv_fc_wwn_packet {
89         u8      primary_active;
90         u8      reserved1[3];
91         u8      primary_port_wwn[8];
92         u8      primary_node_wwn[8];
93         u8      secondary_port_wwn[8];
94         u8      secondary_node_wwn[8];
95 };
96
97
98
99 /*
100  * SRB Flag Bits
101  */
102
103 #define SRB_FLAGS_QUEUE_ACTION_ENABLE           0x00000002
104 #define SRB_FLAGS_DISABLE_DISCONNECT            0x00000004
105 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER        0x00000008
106 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE           0x00000010
107 #define SRB_FLAGS_DISABLE_AUTOSENSE             0x00000020
108 #define SRB_FLAGS_DATA_IN                       0x00000040
109 #define SRB_FLAGS_DATA_OUT                      0x00000080
110 #define SRB_FLAGS_NO_DATA_TRANSFER              0x00000000
111 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT)
112 #define SRB_FLAGS_NO_QUEUE_FREEZE               0x00000100
113 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE          0x00000200
114 #define SRB_FLAGS_FREE_SENSE_BUFFER             0x00000400
115
116 /*
117  * This flag indicates the request is part of the workflow for processing a D3.
118  */
119 #define SRB_FLAGS_D3_PROCESSING                 0x00000800
120 #define SRB_FLAGS_IS_ACTIVE                     0x00010000
121 #define SRB_FLAGS_ALLOCATED_FROM_ZONE           0x00020000
122 #define SRB_FLAGS_SGLIST_FROM_POOL              0x00040000
123 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE           0x00080000
124 #define SRB_FLAGS_NO_KEEP_AWAKE                 0x00100000
125 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE        0x00200000
126 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT      0x00400000
127 #define SRB_FLAGS_DONT_START_NEXT_PACKET        0x00800000
128 #define SRB_FLAGS_PORT_DRIVER_RESERVED          0x0F000000
129 #define SRB_FLAGS_CLASS_DRIVER_RESERVED         0xF0000000
130
131 #define SP_UNTAGGED                     ((unsigned char) ~0)
132 #define SRB_SIMPLE_TAG_REQUEST          0x20
133
134 /*
135  * Platform neutral description of a scsi request -
136  * this remains the same across the write regardless of 32/64 bit
137  * note: it's patterned off the SCSI_PASS_THROUGH structure
138  */
139 #define STORVSC_MAX_CMD_LEN                     0x10
140
141 /* Sense buffer size is the same for all versions since Windows 8 */
142 #define STORVSC_SENSE_BUFFER_SIZE               0x14
143 #define STORVSC_MAX_BUF_LEN_WITH_PADDING        0x14
144
145 /*
146  * The storage protocol version is determined during the
147  * initial exchange with the host.  It will indicate which
148  * storage functionality is available in the host.
149 */
150 static int vmstor_proto_version;
151
152 #define STORVSC_LOGGING_NONE    0
153 #define STORVSC_LOGGING_ERROR   1
154 #define STORVSC_LOGGING_WARN    2
155
156 static int logging_level = STORVSC_LOGGING_ERROR;
157 module_param(logging_level, int, S_IRUGO|S_IWUSR);
158 MODULE_PARM_DESC(logging_level,
159         "Logging level, 0 - None, 1 - Error (default), 2 - Warning.");
160
161 static inline bool do_logging(int level)
162 {
163         return logging_level >= level;
164 }
165
166 #define storvsc_log(dev, level, fmt, ...)                       \
167 do {                                                            \
168         if (do_logging(level))                                  \
169                 dev_warn(&(dev)->device, fmt, ##__VA_ARGS__);   \
170 } while (0)
171
172 struct vmscsi_request {
173         u16 length;
174         u8 srb_status;
175         u8 scsi_status;
176
177         u8  port_number;
178         u8  path_id;
179         u8  target_id;
180         u8  lun;
181
182         u8  cdb_length;
183         u8  sense_info_length;
184         u8  data_in;
185         u8  reserved;
186
187         u32 data_transfer_length;
188
189         union {
190                 u8 cdb[STORVSC_MAX_CMD_LEN];
191                 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE];
192                 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING];
193         };
194         /*
195          * The following was added in win8.
196          */
197         u16 reserve;
198         u8  queue_tag;
199         u8  queue_action;
200         u32 srb_flags;
201         u32 time_out_value;
202         u32 queue_sort_ey;
203
204 } __attribute((packed));
205
206 /*
207  * The list of windows version in order of preference.
208  */
209
210 static const int protocol_version[] = {
211                 VMSTOR_PROTO_VERSION_WIN10,
212                 VMSTOR_PROTO_VERSION_WIN8_1,
213                 VMSTOR_PROTO_VERSION_WIN8,
214 };
215
216
217 /*
218  * This structure is sent during the initialization phase to get the different
219  * properties of the channel.
220  */
221
222 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL          0x1
223
224 struct vmstorage_channel_properties {
225         u32 reserved;
226         u16 max_channel_cnt;
227         u16 reserved1;
228
229         u32 flags;
230         u32   max_transfer_bytes;
231
232         u64  reserved2;
233 } __packed;
234
235 /*  This structure is sent during the storage protocol negotiations. */
236 struct vmstorage_protocol_version {
237         /* Major (MSW) and minor (LSW) version numbers. */
238         u16 major_minor;
239
240         /*
241          * Revision number is auto-incremented whenever this file is changed
242          * (See FILL_VMSTOR_REVISION macro above).  Mismatch does not
243          * definitely indicate incompatibility--but it does indicate mismatched
244          * builds.
245          * This is only used on the windows side. Just set it to 0.
246          */
247         u16 revision;
248 } __packed;
249
250 /* Channel Property Flags */
251 #define STORAGE_CHANNEL_REMOVABLE_FLAG          0x1
252 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG       0x2
253
254 struct vstor_packet {
255         /* Requested operation type */
256         enum vstor_packet_operation operation;
257
258         /*  Flags - see below for values */
259         u32 flags;
260
261         /* Status of the request returned from the server side. */
262         u32 status;
263
264         /* Data payload area */
265         union {
266                 /*
267                  * Structure used to forward SCSI commands from the
268                  * client to the server.
269                  */
270                 struct vmscsi_request vm_srb;
271
272                 /* Structure used to query channel properties. */
273                 struct vmstorage_channel_properties storage_channel_properties;
274
275                 /* Used during version negotiations. */
276                 struct vmstorage_protocol_version version;
277
278                 /* Fibre channel address packet */
279                 struct hv_fc_wwn_packet wwn_packet;
280
281                 /* Number of sub-channels to create */
282                 u16 sub_channel_count;
283
284                 /* This will be the maximum of the union members */
285                 u8  buffer[0x34];
286         };
287 } __packed;
288
289 /*
290  * Packet Flags:
291  *
292  * This flag indicates that the server should send back a completion for this
293  * packet.
294  */
295
296 #define REQUEST_COMPLETION_FLAG 0x1
297
298 /* Matches Windows-end */
299 enum storvsc_request_type {
300         WRITE_TYPE = 0,
301         READ_TYPE,
302         UNKNOWN_TYPE,
303 };
304
305 /*
306  * SRB status codes and masks. In the 8-bit field, the two high order bits
307  * are flags, while the remaining 6 bits are an integer status code.  The
308  * definitions here include only the subset of the integer status codes that
309  * are tested for in this driver.
310  */
311 #define SRB_STATUS_AUTOSENSE_VALID      0x80
312 #define SRB_STATUS_QUEUE_FROZEN         0x40
313
314 /* SRB status integer codes */
315 #define SRB_STATUS_SUCCESS              0x01
316 #define SRB_STATUS_ABORTED              0x02
317 #define SRB_STATUS_ERROR                0x04
318 #define SRB_STATUS_INVALID_REQUEST      0x06
319 #define SRB_STATUS_DATA_OVERRUN         0x12
320 #define SRB_STATUS_INVALID_LUN          0x20
321
322 #define SRB_STATUS(status) \
323         (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN))
324 /*
325  * This is the end of Protocol specific defines.
326  */
327
328 static int storvsc_ringbuffer_size = (128 * 1024);
329 static u32 max_outstanding_req_per_channel;
330 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth);
331
332 static int storvsc_vcpus_per_sub_channel = 4;
333 static unsigned int storvsc_max_hw_queues;
334
335 module_param(storvsc_ringbuffer_size, int, S_IRUGO);
336 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)");
337
338 module_param(storvsc_max_hw_queues, uint, 0644);
339 MODULE_PARM_DESC(storvsc_max_hw_queues, "Maximum number of hardware queues");
340
341 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO);
342 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels");
343
344 static int ring_avail_percent_lowater = 10;
345 module_param(ring_avail_percent_lowater, int, S_IRUGO);
346 MODULE_PARM_DESC(ring_avail_percent_lowater,
347                 "Select a channel if available ring size > this in percent");
348
349 /*
350  * Timeout in seconds for all devices managed by this driver.
351  */
352 static int storvsc_timeout = 180;
353
354 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
355 static struct scsi_transport_template *fc_transport_template;
356 #endif
357
358 static struct scsi_host_template scsi_driver;
359 static void storvsc_on_channel_callback(void *context);
360
361 #define STORVSC_MAX_LUNS_PER_TARGET                     255
362 #define STORVSC_MAX_TARGETS                             2
363 #define STORVSC_MAX_CHANNELS                            8
364
365 #define STORVSC_FC_MAX_LUNS_PER_TARGET                  255
366 #define STORVSC_FC_MAX_TARGETS                          128
367 #define STORVSC_FC_MAX_CHANNELS                         8
368
369 #define STORVSC_IDE_MAX_LUNS_PER_TARGET                 64
370 #define STORVSC_IDE_MAX_TARGETS                         1
371 #define STORVSC_IDE_MAX_CHANNELS                        1
372
373 /*
374  * Upper bound on the size of a storvsc packet.
375  */
376 #define STORVSC_MAX_PKT_SIZE (sizeof(struct vmpacket_descriptor) +\
377                               sizeof(struct vstor_packet))
378
379 struct storvsc_cmd_request {
380         struct scsi_cmnd *cmd;
381
382         struct hv_device *device;
383
384         /* Synchronize the request/response if needed */
385         struct completion wait_event;
386
387         struct vmbus_channel_packet_multipage_buffer mpb;
388         struct vmbus_packet_mpb_array *payload;
389         u32 payload_sz;
390
391         struct vstor_packet vstor_packet;
392 };
393
394
395 /* A storvsc device is a device object that contains a vmbus channel */
396 struct storvsc_device {
397         struct hv_device *device;
398
399         bool     destroy;
400         bool     drain_notify;
401         atomic_t num_outstanding_req;
402         struct Scsi_Host *host;
403
404         wait_queue_head_t waiting_to_drain;
405
406         /*
407          * Each unique Port/Path/Target represents 1 channel ie scsi
408          * controller. In reality, the pathid, targetid is always 0
409          * and the port is set by us
410          */
411         unsigned int port_number;
412         unsigned char path_id;
413         unsigned char target_id;
414
415         /*
416          * Max I/O, the device can support.
417          */
418         u32   max_transfer_bytes;
419         /*
420          * Number of sub-channels we will open.
421          */
422         u16 num_sc;
423         struct vmbus_channel **stor_chns;
424         /*
425          * Mask of CPUs bound to subchannels.
426          */
427         struct cpumask alloced_cpus;
428         /*
429          * Serializes modifications of stor_chns[] from storvsc_do_io()
430          * and storvsc_change_target_cpu().
431          */
432         spinlock_t lock;
433         /* Used for vsc/vsp channel reset process */
434         struct storvsc_cmd_request init_request;
435         struct storvsc_cmd_request reset_request;
436         /*
437          * Currently active port and node names for FC devices.
438          */
439         u64 node_name;
440         u64 port_name;
441 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
442         struct fc_rport *rport;
443 #endif
444 };
445
446 struct hv_host_device {
447         struct hv_device *dev;
448         unsigned int port;
449         unsigned char path;
450         unsigned char target;
451         struct workqueue_struct *handle_error_wq;
452         struct work_struct host_scan_work;
453         struct Scsi_Host *host;
454 };
455
456 struct storvsc_scan_work {
457         struct work_struct work;
458         struct Scsi_Host *host;
459         u8 lun;
460         u8 tgt_id;
461 };
462
463 static void storvsc_device_scan(struct work_struct *work)
464 {
465         struct storvsc_scan_work *wrk;
466         struct scsi_device *sdev;
467
468         wrk = container_of(work, struct storvsc_scan_work, work);
469
470         sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
471         if (!sdev)
472                 goto done;
473         scsi_rescan_device(&sdev->sdev_gendev);
474         scsi_device_put(sdev);
475
476 done:
477         kfree(wrk);
478 }
479
480 static void storvsc_host_scan(struct work_struct *work)
481 {
482         struct Scsi_Host *host;
483         struct scsi_device *sdev;
484         struct hv_host_device *host_device =
485                 container_of(work, struct hv_host_device, host_scan_work);
486
487         host = host_device->host;
488         /*
489          * Before scanning the host, first check to see if any of the
490          * currently known devices have been hot removed. We issue a
491          * "unit ready" command against all currently known devices.
492          * This I/O will result in an error for devices that have been
493          * removed. As part of handling the I/O error, we remove the device.
494          *
495          * When a LUN is added or removed, the host sends us a signal to
496          * scan the host. Thus we are forced to discover the LUNs that
497          * may have been removed this way.
498          */
499         mutex_lock(&host->scan_mutex);
500         shost_for_each_device(sdev, host)
501                 scsi_test_unit_ready(sdev, 1, 1, NULL);
502         mutex_unlock(&host->scan_mutex);
503         /*
504          * Now scan the host to discover LUNs that may have been added.
505          */
506         scsi_scan_host(host);
507 }
508
509 static void storvsc_remove_lun(struct work_struct *work)
510 {
511         struct storvsc_scan_work *wrk;
512         struct scsi_device *sdev;
513
514         wrk = container_of(work, struct storvsc_scan_work, work);
515         if (!scsi_host_get(wrk->host))
516                 goto done;
517
518         sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
519
520         if (sdev) {
521                 scsi_remove_device(sdev);
522                 scsi_device_put(sdev);
523         }
524         scsi_host_put(wrk->host);
525
526 done:
527         kfree(wrk);
528 }
529
530
531 /*
532  * We can get incoming messages from the host that are not in response to
533  * messages that we have sent out. An example of this would be messages
534  * received by the guest to notify dynamic addition/removal of LUNs. To
535  * deal with potential race conditions where the driver may be in the
536  * midst of being unloaded when we might receive an unsolicited message
537  * from the host, we have implemented a mechanism to gurantee sequential
538  * consistency:
539  *
540  * 1) Once the device is marked as being destroyed, we will fail all
541  *    outgoing messages.
542  * 2) We permit incoming messages when the device is being destroyed,
543  *    only to properly account for messages already sent out.
544  */
545
546 static inline struct storvsc_device *get_out_stor_device(
547                                         struct hv_device *device)
548 {
549         struct storvsc_device *stor_device;
550
551         stor_device = hv_get_drvdata(device);
552
553         if (stor_device && stor_device->destroy)
554                 stor_device = NULL;
555
556         return stor_device;
557 }
558
559
560 static inline void storvsc_wait_to_drain(struct storvsc_device *dev)
561 {
562         dev->drain_notify = true;
563         wait_event(dev->waiting_to_drain,
564                    atomic_read(&dev->num_outstanding_req) == 0);
565         dev->drain_notify = false;
566 }
567
568 static inline struct storvsc_device *get_in_stor_device(
569                                         struct hv_device *device)
570 {
571         struct storvsc_device *stor_device;
572
573         stor_device = hv_get_drvdata(device);
574
575         if (!stor_device)
576                 goto get_in_err;
577
578         /*
579          * If the device is being destroyed; allow incoming
580          * traffic only to cleanup outstanding requests.
581          */
582
583         if (stor_device->destroy  &&
584                 (atomic_read(&stor_device->num_outstanding_req) == 0))
585                 stor_device = NULL;
586
587 get_in_err:
588         return stor_device;
589
590 }
591
592 static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old,
593                                       u32 new)
594 {
595         struct storvsc_device *stor_device;
596         struct vmbus_channel *cur_chn;
597         bool old_is_alloced = false;
598         struct hv_device *device;
599         unsigned long flags;
600         int cpu;
601
602         device = channel->primary_channel ?
603                         channel->primary_channel->device_obj
604                                 : channel->device_obj;
605         stor_device = get_out_stor_device(device);
606         if (!stor_device)
607                 return;
608
609         /* See storvsc_do_io() -> get_og_chn(). */
610         spin_lock_irqsave(&stor_device->lock, flags);
611
612         /*
613          * Determines if the storvsc device has other channels assigned to
614          * the "old" CPU to update the alloced_cpus mask and the stor_chns
615          * array.
616          */
617         if (device->channel != channel && device->channel->target_cpu == old) {
618                 cur_chn = device->channel;
619                 old_is_alloced = true;
620                 goto old_is_alloced;
621         }
622         list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) {
623                 if (cur_chn == channel)
624                         continue;
625                 if (cur_chn->target_cpu == old) {
626                         old_is_alloced = true;
627                         goto old_is_alloced;
628                 }
629         }
630
631 old_is_alloced:
632         if (old_is_alloced)
633                 WRITE_ONCE(stor_device->stor_chns[old], cur_chn);
634         else
635                 cpumask_clear_cpu(old, &stor_device->alloced_cpus);
636
637         /* "Flush" the stor_chns array. */
638         for_each_possible_cpu(cpu) {
639                 if (stor_device->stor_chns[cpu] && !cpumask_test_cpu(
640                                         cpu, &stor_device->alloced_cpus))
641                         WRITE_ONCE(stor_device->stor_chns[cpu], NULL);
642         }
643
644         WRITE_ONCE(stor_device->stor_chns[new], channel);
645         cpumask_set_cpu(new, &stor_device->alloced_cpus);
646
647         spin_unlock_irqrestore(&stor_device->lock, flags);
648 }
649
650 static u64 storvsc_next_request_id(struct vmbus_channel *channel, u64 rqst_addr)
651 {
652         struct storvsc_cmd_request *request =
653                 (struct storvsc_cmd_request *)(unsigned long)rqst_addr;
654
655         if (rqst_addr == VMBUS_RQST_INIT)
656                 return VMBUS_RQST_INIT;
657         if (rqst_addr == VMBUS_RQST_RESET)
658                 return VMBUS_RQST_RESET;
659
660         /*
661          * Cannot return an ID of 0, which is reserved for an unsolicited
662          * message from Hyper-V.
663          */
664         return (u64)blk_mq_unique_tag(scsi_cmd_to_rq(request->cmd)) + 1;
665 }
666
667 static void handle_sc_creation(struct vmbus_channel *new_sc)
668 {
669         struct hv_device *device = new_sc->primary_channel->device_obj;
670         struct device *dev = &device->device;
671         struct storvsc_device *stor_device;
672         struct vmstorage_channel_properties props;
673         int ret;
674
675         stor_device = get_out_stor_device(device);
676         if (!stor_device)
677                 return;
678
679         memset(&props, 0, sizeof(struct vmstorage_channel_properties));
680         new_sc->max_pkt_size = STORVSC_MAX_PKT_SIZE;
681
682         new_sc->next_request_id_callback = storvsc_next_request_id;
683
684         ret = vmbus_open(new_sc,
685                          storvsc_ringbuffer_size,
686                          storvsc_ringbuffer_size,
687                          (void *)&props,
688                          sizeof(struct vmstorage_channel_properties),
689                          storvsc_on_channel_callback, new_sc);
690
691         /* In case vmbus_open() fails, we don't use the sub-channel. */
692         if (ret != 0) {
693                 dev_err(dev, "Failed to open sub-channel: err=%d\n", ret);
694                 return;
695         }
696
697         new_sc->change_target_cpu_callback = storvsc_change_target_cpu;
698
699         /* Add the sub-channel to the array of available channels. */
700         stor_device->stor_chns[new_sc->target_cpu] = new_sc;
701         cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus);
702 }
703
704 static void  handle_multichannel_storage(struct hv_device *device, int max_chns)
705 {
706         struct device *dev = &device->device;
707         struct storvsc_device *stor_device;
708         int num_sc;
709         struct storvsc_cmd_request *request;
710         struct vstor_packet *vstor_packet;
711         int ret, t;
712
713         /*
714          * If the number of CPUs is artificially restricted, such as
715          * with maxcpus=1 on the kernel boot line, Hyper-V could offer
716          * sub-channels >= the number of CPUs. These sub-channels
717          * should not be created. The primary channel is already created
718          * and assigned to one CPU, so check against # CPUs - 1.
719          */
720         num_sc = min((int)(num_online_cpus() - 1), max_chns);
721         if (!num_sc)
722                 return;
723
724         stor_device = get_out_stor_device(device);
725         if (!stor_device)
726                 return;
727
728         stor_device->num_sc = num_sc;
729         request = &stor_device->init_request;
730         vstor_packet = &request->vstor_packet;
731
732         /*
733          * Establish a handler for dealing with subchannels.
734          */
735         vmbus_set_sc_create_callback(device->channel, handle_sc_creation);
736
737         /*
738          * Request the host to create sub-channels.
739          */
740         memset(request, 0, sizeof(struct storvsc_cmd_request));
741         init_completion(&request->wait_event);
742         vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS;
743         vstor_packet->flags = REQUEST_COMPLETION_FLAG;
744         vstor_packet->sub_channel_count = num_sc;
745
746         ret = vmbus_sendpacket(device->channel, vstor_packet,
747                                sizeof(struct vstor_packet),
748                                VMBUS_RQST_INIT,
749                                VM_PKT_DATA_INBAND,
750                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
751
752         if (ret != 0) {
753                 dev_err(dev, "Failed to create sub-channel: err=%d\n", ret);
754                 return;
755         }
756
757         t = wait_for_completion_timeout(&request->wait_event, 10*HZ);
758         if (t == 0) {
759                 dev_err(dev, "Failed to create sub-channel: timed out\n");
760                 return;
761         }
762
763         if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
764             vstor_packet->status != 0) {
765                 dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n",
766                         vstor_packet->operation, vstor_packet->status);
767                 return;
768         }
769
770         /*
771          * We need to do nothing here, because vmbus_process_offer()
772          * invokes channel->sc_creation_callback, which will open and use
773          * the sub-channel(s).
774          */
775 }
776
777 static void cache_wwn(struct storvsc_device *stor_device,
778                       struct vstor_packet *vstor_packet)
779 {
780         /*
781          * Cache the currently active port and node ww names.
782          */
783         if (vstor_packet->wwn_packet.primary_active) {
784                 stor_device->node_name =
785                         wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn);
786                 stor_device->port_name =
787                         wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn);
788         } else {
789                 stor_device->node_name =
790                         wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn);
791                 stor_device->port_name =
792                         wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn);
793         }
794 }
795
796
797 static int storvsc_execute_vstor_op(struct hv_device *device,
798                                     struct storvsc_cmd_request *request,
799                                     bool status_check)
800 {
801         struct storvsc_device *stor_device;
802         struct vstor_packet *vstor_packet;
803         int ret, t;
804
805         stor_device = get_out_stor_device(device);
806         if (!stor_device)
807                 return -ENODEV;
808
809         vstor_packet = &request->vstor_packet;
810
811         init_completion(&request->wait_event);
812         vstor_packet->flags = REQUEST_COMPLETION_FLAG;
813
814         ret = vmbus_sendpacket(device->channel, vstor_packet,
815                                sizeof(struct vstor_packet),
816                                VMBUS_RQST_INIT,
817                                VM_PKT_DATA_INBAND,
818                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
819         if (ret != 0)
820                 return ret;
821
822         t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
823         if (t == 0)
824                 return -ETIMEDOUT;
825
826         if (!status_check)
827                 return ret;
828
829         if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
830             vstor_packet->status != 0)
831                 return -EINVAL;
832
833         return ret;
834 }
835
836 static int storvsc_channel_init(struct hv_device *device, bool is_fc)
837 {
838         struct storvsc_device *stor_device;
839         struct storvsc_cmd_request *request;
840         struct vstor_packet *vstor_packet;
841         int ret, i;
842         int max_chns;
843         bool process_sub_channels = false;
844
845         stor_device = get_out_stor_device(device);
846         if (!stor_device)
847                 return -ENODEV;
848
849         request = &stor_device->init_request;
850         vstor_packet = &request->vstor_packet;
851
852         /*
853          * Now, initiate the vsc/vsp initialization protocol on the open
854          * channel
855          */
856         memset(request, 0, sizeof(struct storvsc_cmd_request));
857         vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION;
858         ret = storvsc_execute_vstor_op(device, request, true);
859         if (ret)
860                 return ret;
861         /*
862          * Query host supported protocol version.
863          */
864
865         for (i = 0; i < ARRAY_SIZE(protocol_version); i++) {
866                 /* reuse the packet for version range supported */
867                 memset(vstor_packet, 0, sizeof(struct vstor_packet));
868                 vstor_packet->operation =
869                         VSTOR_OPERATION_QUERY_PROTOCOL_VERSION;
870
871                 vstor_packet->version.major_minor = protocol_version[i];
872
873                 /*
874                  * The revision number is only used in Windows; set it to 0.
875                  */
876                 vstor_packet->version.revision = 0;
877                 ret = storvsc_execute_vstor_op(device, request, false);
878                 if (ret != 0)
879                         return ret;
880
881                 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO)
882                         return -EINVAL;
883
884                 if (vstor_packet->status == 0) {
885                         vmstor_proto_version = protocol_version[i];
886
887                         break;
888                 }
889         }
890
891         if (vstor_packet->status != 0) {
892                 dev_err(&device->device, "Obsolete Hyper-V version\n");
893                 return -EINVAL;
894         }
895
896
897         memset(vstor_packet, 0, sizeof(struct vstor_packet));
898         vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES;
899         ret = storvsc_execute_vstor_op(device, request, true);
900         if (ret != 0)
901                 return ret;
902
903         /*
904          * Check to see if multi-channel support is there.
905          * Hosts that implement protocol version of 5.1 and above
906          * support multi-channel.
907          */
908         max_chns = vstor_packet->storage_channel_properties.max_channel_cnt;
909
910         /*
911          * Allocate state to manage the sub-channels.
912          * We allocate an array based on the numbers of possible CPUs
913          * (Hyper-V does not support cpu online/offline).
914          * This Array will be sparseley populated with unique
915          * channels - primary + sub-channels.
916          * We will however populate all the slots to evenly distribute
917          * the load.
918          */
919         stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *),
920                                          GFP_KERNEL);
921         if (stor_device->stor_chns == NULL)
922                 return -ENOMEM;
923
924         device->channel->change_target_cpu_callback = storvsc_change_target_cpu;
925
926         stor_device->stor_chns[device->channel->target_cpu] = device->channel;
927         cpumask_set_cpu(device->channel->target_cpu,
928                         &stor_device->alloced_cpus);
929
930         if (vstor_packet->storage_channel_properties.flags &
931             STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL)
932                 process_sub_channels = true;
933
934         stor_device->max_transfer_bytes =
935                 vstor_packet->storage_channel_properties.max_transfer_bytes;
936
937         if (!is_fc)
938                 goto done;
939
940         /*
941          * For FC devices retrieve FC HBA data.
942          */
943         memset(vstor_packet, 0, sizeof(struct vstor_packet));
944         vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA;
945         ret = storvsc_execute_vstor_op(device, request, true);
946         if (ret != 0)
947                 return ret;
948
949         /*
950          * Cache the currently active port and node ww names.
951          */
952         cache_wwn(stor_device, vstor_packet);
953
954 done:
955
956         memset(vstor_packet, 0, sizeof(struct vstor_packet));
957         vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION;
958         ret = storvsc_execute_vstor_op(device, request, true);
959         if (ret != 0)
960                 return ret;
961
962         if (process_sub_channels)
963                 handle_multichannel_storage(device, max_chns);
964
965         return ret;
966 }
967
968 static void storvsc_handle_error(struct vmscsi_request *vm_srb,
969                                 struct scsi_cmnd *scmnd,
970                                 struct Scsi_Host *host,
971                                 u8 asc, u8 ascq)
972 {
973         struct storvsc_scan_work *wrk;
974         void (*process_err_fn)(struct work_struct *work);
975         struct hv_host_device *host_dev = shost_priv(host);
976
977         switch (SRB_STATUS(vm_srb->srb_status)) {
978         case SRB_STATUS_ERROR:
979         case SRB_STATUS_ABORTED:
980         case SRB_STATUS_INVALID_REQUEST:
981                 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID) {
982                         /* Check for capacity change */
983                         if ((asc == 0x2a) && (ascq == 0x9)) {
984                                 process_err_fn = storvsc_device_scan;
985                                 /* Retry the I/O that triggered this. */
986                                 set_host_byte(scmnd, DID_REQUEUE);
987                                 goto do_work;
988                         }
989
990                         /*
991                          * Check for "Operating parameters have changed"
992                          * due to Hyper-V changing the VHD/VHDX BlockSize
993                          * when adding/removing a differencing disk. This
994                          * causes discard_granularity to change, so do a
995                          * rescan to pick up the new granularity. We don't
996                          * want scsi_report_sense() to output a message
997                          * that a sysadmin wouldn't know what to do with.
998                          */
999                         if ((asc == 0x3f) && (ascq != 0x03) &&
1000                                         (ascq != 0x0e)) {
1001                                 process_err_fn = storvsc_device_scan;
1002                                 set_host_byte(scmnd, DID_REQUEUE);
1003                                 goto do_work;
1004                         }
1005
1006                         /*
1007                          * Otherwise, let upper layer deal with the
1008                          * error when sense message is present
1009                          */
1010                         return;
1011                 }
1012
1013                 /*
1014                  * If there is an error; offline the device since all
1015                  * error recovery strategies would have already been
1016                  * deployed on the host side. However, if the command
1017                  * were a pass-through command deal with it appropriately.
1018                  */
1019                 switch (scmnd->cmnd[0]) {
1020                 case ATA_16:
1021                 case ATA_12:
1022                         set_host_byte(scmnd, DID_PASSTHROUGH);
1023                         break;
1024                 /*
1025                  * On some Hyper-V hosts TEST_UNIT_READY command can
1026                  * return SRB_STATUS_ERROR. Let the upper level code
1027                  * deal with it based on the sense information.
1028                  */
1029                 case TEST_UNIT_READY:
1030                         break;
1031                 default:
1032                         set_host_byte(scmnd, DID_ERROR);
1033                 }
1034                 return;
1035
1036         case SRB_STATUS_INVALID_LUN:
1037                 set_host_byte(scmnd, DID_NO_CONNECT);
1038                 process_err_fn = storvsc_remove_lun;
1039                 goto do_work;
1040
1041         }
1042         return;
1043
1044 do_work:
1045         /*
1046          * We need to schedule work to process this error; schedule it.
1047          */
1048         wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC);
1049         if (!wrk) {
1050                 set_host_byte(scmnd, DID_BAD_TARGET);
1051                 return;
1052         }
1053
1054         wrk->host = host;
1055         wrk->lun = vm_srb->lun;
1056         wrk->tgt_id = vm_srb->target_id;
1057         INIT_WORK(&wrk->work, process_err_fn);
1058         queue_work(host_dev->handle_error_wq, &wrk->work);
1059 }
1060
1061
1062 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request,
1063                                        struct storvsc_device *stor_dev)
1064 {
1065         struct scsi_cmnd *scmnd = cmd_request->cmd;
1066         struct scsi_sense_hdr sense_hdr;
1067         struct vmscsi_request *vm_srb;
1068         u32 data_transfer_length;
1069         struct Scsi_Host *host;
1070         u32 payload_sz = cmd_request->payload_sz;
1071         void *payload = cmd_request->payload;
1072         bool sense_ok;
1073
1074         host = stor_dev->host;
1075
1076         vm_srb = &cmd_request->vstor_packet.vm_srb;
1077         data_transfer_length = vm_srb->data_transfer_length;
1078
1079         scmnd->result = vm_srb->scsi_status;
1080
1081         if (scmnd->result) {
1082                 sense_ok = scsi_normalize_sense(scmnd->sense_buffer,
1083                                 SCSI_SENSE_BUFFERSIZE, &sense_hdr);
1084
1085                 if (sense_ok && do_logging(STORVSC_LOGGING_WARN))
1086                         scsi_print_sense_hdr(scmnd->device, "storvsc",
1087                                              &sense_hdr);
1088         }
1089
1090         if (vm_srb->srb_status != SRB_STATUS_SUCCESS) {
1091                 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc,
1092                                          sense_hdr.ascq);
1093                 /*
1094                  * The Windows driver set data_transfer_length on
1095                  * SRB_STATUS_DATA_OVERRUN. On other errors, this value
1096                  * is untouched.  In these cases we set it to 0.
1097                  */
1098                 if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN)
1099                         data_transfer_length = 0;
1100         }
1101
1102         /* Validate data_transfer_length (from Hyper-V) */
1103         if (data_transfer_length > cmd_request->payload->range.len)
1104                 data_transfer_length = cmd_request->payload->range.len;
1105
1106         scsi_set_resid(scmnd,
1107                 cmd_request->payload->range.len - data_transfer_length);
1108
1109         scsi_done(scmnd);
1110
1111         if (payload_sz >
1112                 sizeof(struct vmbus_channel_packet_multipage_buffer))
1113                 kfree(payload);
1114 }
1115
1116 static void storvsc_on_io_completion(struct storvsc_device *stor_device,
1117                                   struct vstor_packet *vstor_packet,
1118                                   struct storvsc_cmd_request *request)
1119 {
1120         struct vstor_packet *stor_pkt;
1121         struct hv_device *device = stor_device->device;
1122
1123         stor_pkt = &request->vstor_packet;
1124
1125         /*
1126          * The current SCSI handling on the host side does
1127          * not correctly handle:
1128          * INQUIRY command with page code parameter set to 0x80
1129          * MODE_SENSE command with cmd[2] == 0x1c
1130          *
1131          * Setup srb and scsi status so this won't be fatal.
1132          * We do this so we can distinguish truly fatal failues
1133          * (srb status == 0x4) and off-line the device in that case.
1134          */
1135
1136         if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) ||
1137            (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) {
1138                 vstor_packet->vm_srb.scsi_status = 0;
1139                 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS;
1140         }
1141
1142         /* Copy over the status...etc */
1143         stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status;
1144         stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status;
1145
1146         /*
1147          * Copy over the sense_info_length, but limit to the known max
1148          * size if Hyper-V returns a bad value.
1149          */
1150         stor_pkt->vm_srb.sense_info_length = min_t(u8, STORVSC_SENSE_BUFFER_SIZE,
1151                 vstor_packet->vm_srb.sense_info_length);
1152
1153         if (vstor_packet->vm_srb.scsi_status != 0 ||
1154             vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS) {
1155
1156                 /*
1157                  * Log TEST_UNIT_READY errors only as warnings. Hyper-V can
1158                  * return errors when detecting devices using TEST_UNIT_READY,
1159                  * and logging these as errors produces unhelpful noise.
1160                  */
1161                 int loglevel = (stor_pkt->vm_srb.cdb[0] == TEST_UNIT_READY) ?
1162                         STORVSC_LOGGING_WARN : STORVSC_LOGGING_ERROR;
1163
1164                 storvsc_log(device, loglevel,
1165                         "tag#%d cmd 0x%x status: scsi 0x%x srb 0x%x hv 0x%x\n",
1166                         scsi_cmd_to_rq(request->cmd)->tag,
1167                         stor_pkt->vm_srb.cdb[0],
1168                         vstor_packet->vm_srb.scsi_status,
1169                         vstor_packet->vm_srb.srb_status,
1170                         vstor_packet->status);
1171         }
1172
1173         if (vstor_packet->vm_srb.scsi_status == SAM_STAT_CHECK_CONDITION &&
1174             (vstor_packet->vm_srb.srb_status & SRB_STATUS_AUTOSENSE_VALID))
1175                 memcpy(request->cmd->sense_buffer,
1176                        vstor_packet->vm_srb.sense_data,
1177                        stor_pkt->vm_srb.sense_info_length);
1178
1179         stor_pkt->vm_srb.data_transfer_length =
1180                 vstor_packet->vm_srb.data_transfer_length;
1181
1182         storvsc_command_completion(request, stor_device);
1183
1184         if (atomic_dec_and_test(&stor_device->num_outstanding_req) &&
1185                 stor_device->drain_notify)
1186                 wake_up(&stor_device->waiting_to_drain);
1187 }
1188
1189 static void storvsc_on_receive(struct storvsc_device *stor_device,
1190                              struct vstor_packet *vstor_packet,
1191                              struct storvsc_cmd_request *request)
1192 {
1193         struct hv_host_device *host_dev;
1194         switch (vstor_packet->operation) {
1195         case VSTOR_OPERATION_COMPLETE_IO:
1196                 storvsc_on_io_completion(stor_device, vstor_packet, request);
1197                 break;
1198
1199         case VSTOR_OPERATION_REMOVE_DEVICE:
1200         case VSTOR_OPERATION_ENUMERATE_BUS:
1201                 host_dev = shost_priv(stor_device->host);
1202                 queue_work(
1203                         host_dev->handle_error_wq, &host_dev->host_scan_work);
1204                 break;
1205
1206         case VSTOR_OPERATION_FCHBA_DATA:
1207                 cache_wwn(stor_device, vstor_packet);
1208 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1209                 fc_host_node_name(stor_device->host) = stor_device->node_name;
1210                 fc_host_port_name(stor_device->host) = stor_device->port_name;
1211 #endif
1212                 break;
1213         default:
1214                 break;
1215         }
1216 }
1217
1218 static void storvsc_on_channel_callback(void *context)
1219 {
1220         struct vmbus_channel *channel = (struct vmbus_channel *)context;
1221         const struct vmpacket_descriptor *desc;
1222         struct hv_device *device;
1223         struct storvsc_device *stor_device;
1224         struct Scsi_Host *shost;
1225         unsigned long time_limit = jiffies + msecs_to_jiffies(CALLBACK_TIMEOUT);
1226
1227         if (channel->primary_channel != NULL)
1228                 device = channel->primary_channel->device_obj;
1229         else
1230                 device = channel->device_obj;
1231
1232         stor_device = get_in_stor_device(device);
1233         if (!stor_device)
1234                 return;
1235
1236         shost = stor_device->host;
1237
1238         foreach_vmbus_pkt(desc, channel) {
1239                 struct vstor_packet *packet = hv_pkt_data(desc);
1240                 struct storvsc_cmd_request *request = NULL;
1241                 u32 pktlen = hv_pkt_datalen(desc);
1242                 u64 rqst_id = desc->trans_id;
1243                 u32 minlen = rqst_id ? sizeof(struct vstor_packet) :
1244                         sizeof(enum vstor_packet_operation);
1245
1246                 if (unlikely(time_after(jiffies, time_limit))) {
1247                         hv_pkt_iter_close(channel);
1248                         return;
1249                 }
1250
1251                 if (pktlen < minlen) {
1252                         dev_err(&device->device,
1253                                 "Invalid pkt: id=%llu, len=%u, minlen=%u\n",
1254                                 rqst_id, pktlen, minlen);
1255                         continue;
1256                 }
1257
1258                 if (rqst_id == VMBUS_RQST_INIT) {
1259                         request = &stor_device->init_request;
1260                 } else if (rqst_id == VMBUS_RQST_RESET) {
1261                         request = &stor_device->reset_request;
1262                 } else {
1263                         /* Hyper-V can send an unsolicited message with ID of 0 */
1264                         if (rqst_id == 0) {
1265                                 /*
1266                                  * storvsc_on_receive() looks at the vstor_packet in the message
1267                                  * from the ring buffer.
1268                                  *
1269                                  * - If the operation in the vstor_packet is COMPLETE_IO, then
1270                                  *   we call storvsc_on_io_completion(), and dereference the
1271                                  *   guest memory address.  Make sure we don't call
1272                                  *   storvsc_on_io_completion() with a guest memory address
1273                                  *   that is zero if Hyper-V were to construct and send such
1274                                  *   a bogus packet.
1275                                  *
1276                                  * - If the operation in the vstor_packet is FCHBA_DATA, then
1277                                  *   we call cache_wwn(), and access the data payload area of
1278                                  *   the packet (wwn_packet); however, there is no guarantee
1279                                  *   that the packet is big enough to contain such area.
1280                                  *   Future-proof the code by rejecting such a bogus packet.
1281                                  */
1282                                 if (packet->operation == VSTOR_OPERATION_COMPLETE_IO ||
1283                                     packet->operation == VSTOR_OPERATION_FCHBA_DATA) {
1284                                         dev_err(&device->device, "Invalid packet with ID of 0\n");
1285                                         continue;
1286                                 }
1287                         } else {
1288                                 struct scsi_cmnd *scmnd;
1289
1290                                 /* Transaction 'rqst_id' corresponds to tag 'rqst_id - 1' */
1291                                 scmnd = scsi_host_find_tag(shost, rqst_id - 1);
1292                                 if (scmnd == NULL) {
1293                                         dev_err(&device->device, "Incorrect transaction ID\n");
1294                                         continue;
1295                                 }
1296                                 request = (struct storvsc_cmd_request *)scsi_cmd_priv(scmnd);
1297                                 scsi_dma_unmap(scmnd);
1298                         }
1299
1300                         storvsc_on_receive(stor_device, packet, request);
1301                         continue;
1302                 }
1303
1304                 memcpy(&request->vstor_packet, packet,
1305                        sizeof(struct vstor_packet));
1306                 complete(&request->wait_event);
1307         }
1308 }
1309
1310 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size,
1311                                   bool is_fc)
1312 {
1313         struct vmstorage_channel_properties props;
1314         int ret;
1315
1316         memset(&props, 0, sizeof(struct vmstorage_channel_properties));
1317
1318         device->channel->max_pkt_size = STORVSC_MAX_PKT_SIZE;
1319         device->channel->next_request_id_callback = storvsc_next_request_id;
1320
1321         ret = vmbus_open(device->channel,
1322                          ring_size,
1323                          ring_size,
1324                          (void *)&props,
1325                          sizeof(struct vmstorage_channel_properties),
1326                          storvsc_on_channel_callback, device->channel);
1327
1328         if (ret != 0)
1329                 return ret;
1330
1331         ret = storvsc_channel_init(device, is_fc);
1332
1333         return ret;
1334 }
1335
1336 static int storvsc_dev_remove(struct hv_device *device)
1337 {
1338         struct storvsc_device *stor_device;
1339
1340         stor_device = hv_get_drvdata(device);
1341
1342         stor_device->destroy = true;
1343
1344         /* Make sure flag is set before waiting */
1345         wmb();
1346
1347         /*
1348          * At this point, all outbound traffic should be disable. We
1349          * only allow inbound traffic (responses) to proceed so that
1350          * outstanding requests can be completed.
1351          */
1352
1353         storvsc_wait_to_drain(stor_device);
1354
1355         /*
1356          * Since we have already drained, we don't need to busy wait
1357          * as was done in final_release_stor_device()
1358          * Note that we cannot set the ext pointer to NULL until
1359          * we have drained - to drain the outgoing packets, we need to
1360          * allow incoming packets.
1361          */
1362         hv_set_drvdata(device, NULL);
1363
1364         /* Close the channel */
1365         vmbus_close(device->channel);
1366
1367         kfree(stor_device->stor_chns);
1368         kfree(stor_device);
1369         return 0;
1370 }
1371
1372 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device,
1373                                         u16 q_num)
1374 {
1375         u16 slot = 0;
1376         u16 hash_qnum;
1377         const struct cpumask *node_mask;
1378         int num_channels, tgt_cpu;
1379
1380         if (stor_device->num_sc == 0) {
1381                 stor_device->stor_chns[q_num] = stor_device->device->channel;
1382                 return stor_device->device->channel;
1383         }
1384
1385         /*
1386          * Our channel array is sparsley populated and we
1387          * initiated I/O on a processor/hw-q that does not
1388          * currently have a designated channel. Fix this.
1389          * The strategy is simple:
1390          * I. Ensure NUMA locality
1391          * II. Distribute evenly (best effort)
1392          */
1393
1394         node_mask = cpumask_of_node(cpu_to_node(q_num));
1395
1396         num_channels = 0;
1397         for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1398                 if (cpumask_test_cpu(tgt_cpu, node_mask))
1399                         num_channels++;
1400         }
1401         if (num_channels == 0) {
1402                 stor_device->stor_chns[q_num] = stor_device->device->channel;
1403                 return stor_device->device->channel;
1404         }
1405
1406         hash_qnum = q_num;
1407         while (hash_qnum >= num_channels)
1408                 hash_qnum -= num_channels;
1409
1410         for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1411                 if (!cpumask_test_cpu(tgt_cpu, node_mask))
1412                         continue;
1413                 if (slot == hash_qnum)
1414                         break;
1415                 slot++;
1416         }
1417
1418         stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu];
1419
1420         return stor_device->stor_chns[q_num];
1421 }
1422
1423
1424 static int storvsc_do_io(struct hv_device *device,
1425                          struct storvsc_cmd_request *request, u16 q_num)
1426 {
1427         struct storvsc_device *stor_device;
1428         struct vstor_packet *vstor_packet;
1429         struct vmbus_channel *outgoing_channel, *channel;
1430         unsigned long flags;
1431         int ret = 0;
1432         const struct cpumask *node_mask;
1433         int tgt_cpu;
1434
1435         vstor_packet = &request->vstor_packet;
1436         stor_device = get_out_stor_device(device);
1437
1438         if (!stor_device)
1439                 return -ENODEV;
1440
1441
1442         request->device  = device;
1443         /*
1444          * Select an appropriate channel to send the request out.
1445          */
1446         /* See storvsc_change_target_cpu(). */
1447         outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]);
1448         if (outgoing_channel != NULL) {
1449                 if (outgoing_channel->target_cpu == q_num) {
1450                         /*
1451                          * Ideally, we want to pick a different channel if
1452                          * available on the same NUMA node.
1453                          */
1454                         node_mask = cpumask_of_node(cpu_to_node(q_num));
1455                         for_each_cpu_wrap(tgt_cpu,
1456                                  &stor_device->alloced_cpus, q_num + 1) {
1457                                 if (!cpumask_test_cpu(tgt_cpu, node_mask))
1458                                         continue;
1459                                 if (tgt_cpu == q_num)
1460                                         continue;
1461                                 channel = READ_ONCE(
1462                                         stor_device->stor_chns[tgt_cpu]);
1463                                 if (channel == NULL)
1464                                         continue;
1465                                 if (hv_get_avail_to_write_percent(
1466                                                         &channel->outbound)
1467                                                 > ring_avail_percent_lowater) {
1468                                         outgoing_channel = channel;
1469                                         goto found_channel;
1470                                 }
1471                         }
1472
1473                         /*
1474                          * All the other channels on the same NUMA node are
1475                          * busy. Try to use the channel on the current CPU
1476                          */
1477                         if (hv_get_avail_to_write_percent(
1478                                                 &outgoing_channel->outbound)
1479                                         > ring_avail_percent_lowater)
1480                                 goto found_channel;
1481
1482                         /*
1483                          * If we reach here, all the channels on the current
1484                          * NUMA node are busy. Try to find a channel in
1485                          * other NUMA nodes
1486                          */
1487                         for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1488                                 if (cpumask_test_cpu(tgt_cpu, node_mask))
1489                                         continue;
1490                                 channel = READ_ONCE(
1491                                         stor_device->stor_chns[tgt_cpu]);
1492                                 if (channel == NULL)
1493                                         continue;
1494                                 if (hv_get_avail_to_write_percent(
1495                                                         &channel->outbound)
1496                                                 > ring_avail_percent_lowater) {
1497                                         outgoing_channel = channel;
1498                                         goto found_channel;
1499                                 }
1500                         }
1501                 }
1502         } else {
1503                 spin_lock_irqsave(&stor_device->lock, flags);
1504                 outgoing_channel = stor_device->stor_chns[q_num];
1505                 if (outgoing_channel != NULL) {
1506                         spin_unlock_irqrestore(&stor_device->lock, flags);
1507                         goto found_channel;
1508                 }
1509                 outgoing_channel = get_og_chn(stor_device, q_num);
1510                 spin_unlock_irqrestore(&stor_device->lock, flags);
1511         }
1512
1513 found_channel:
1514         vstor_packet->flags |= REQUEST_COMPLETION_FLAG;
1515
1516         vstor_packet->vm_srb.length = sizeof(struct vmscsi_request);
1517
1518
1519         vstor_packet->vm_srb.sense_info_length = STORVSC_SENSE_BUFFER_SIZE;
1520
1521
1522         vstor_packet->vm_srb.data_transfer_length =
1523         request->payload->range.len;
1524
1525         vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB;
1526
1527         if (request->payload->range.len) {
1528
1529                 ret = vmbus_sendpacket_mpb_desc(outgoing_channel,
1530                                 request->payload, request->payload_sz,
1531                                 vstor_packet,
1532                                 sizeof(struct vstor_packet),
1533                                 (unsigned long)request);
1534         } else {
1535                 ret = vmbus_sendpacket(outgoing_channel, vstor_packet,
1536                                sizeof(struct vstor_packet),
1537                                (unsigned long)request,
1538                                VM_PKT_DATA_INBAND,
1539                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1540         }
1541
1542         if (ret != 0)
1543                 return ret;
1544
1545         atomic_inc(&stor_device->num_outstanding_req);
1546
1547         return ret;
1548 }
1549
1550 static int storvsc_device_alloc(struct scsi_device *sdevice)
1551 {
1552         /*
1553          * Set blist flag to permit the reading of the VPD pages even when
1554          * the target may claim SPC-2 compliance. MSFT targets currently
1555          * claim SPC-2 compliance while they implement post SPC-2 features.
1556          * With this flag we can correctly handle WRITE_SAME_16 issues.
1557          *
1558          * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but
1559          * still supports REPORT LUN.
1560          */
1561         sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES;
1562
1563         return 0;
1564 }
1565
1566 static int storvsc_device_configure(struct scsi_device *sdevice)
1567 {
1568         blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ));
1569
1570         /* storvsc devices don't support MAINTENANCE_IN SCSI cmd */
1571         sdevice->no_report_opcodes = 1;
1572         sdevice->no_write_same = 1;
1573
1574         /*
1575          * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3
1576          * if the device is a MSFT virtual device.  If the host is
1577          * WIN10 or newer, allow write_same.
1578          */
1579         if (!strncmp(sdevice->vendor, "Msft", 4)) {
1580                 switch (vmstor_proto_version) {
1581                 case VMSTOR_PROTO_VERSION_WIN8:
1582                 case VMSTOR_PROTO_VERSION_WIN8_1:
1583                         sdevice->scsi_level = SCSI_SPC_3;
1584                         break;
1585                 }
1586
1587                 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10)
1588                         sdevice->no_write_same = 0;
1589         }
1590
1591         return 0;
1592 }
1593
1594 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev,
1595                            sector_t capacity, int *info)
1596 {
1597         sector_t nsect = capacity;
1598         sector_t cylinders = nsect;
1599         int heads, sectors_pt;
1600
1601         /*
1602          * We are making up these values; let us keep it simple.
1603          */
1604         heads = 0xff;
1605         sectors_pt = 0x3f;      /* Sectors per track */
1606         sector_div(cylinders, heads * sectors_pt);
1607         if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect)
1608                 cylinders = 0xffff;
1609
1610         info[0] = heads;
1611         info[1] = sectors_pt;
1612         info[2] = (int)cylinders;
1613
1614         return 0;
1615 }
1616
1617 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd)
1618 {
1619         struct hv_host_device *host_dev = shost_priv(scmnd->device->host);
1620         struct hv_device *device = host_dev->dev;
1621
1622         struct storvsc_device *stor_device;
1623         struct storvsc_cmd_request *request;
1624         struct vstor_packet *vstor_packet;
1625         int ret, t;
1626
1627         stor_device = get_out_stor_device(device);
1628         if (!stor_device)
1629                 return FAILED;
1630
1631         request = &stor_device->reset_request;
1632         vstor_packet = &request->vstor_packet;
1633         memset(vstor_packet, 0, sizeof(struct vstor_packet));
1634
1635         init_completion(&request->wait_event);
1636
1637         vstor_packet->operation = VSTOR_OPERATION_RESET_BUS;
1638         vstor_packet->flags = REQUEST_COMPLETION_FLAG;
1639         vstor_packet->vm_srb.path_id = stor_device->path_id;
1640
1641         ret = vmbus_sendpacket(device->channel, vstor_packet,
1642                                sizeof(struct vstor_packet),
1643                                VMBUS_RQST_RESET,
1644                                VM_PKT_DATA_INBAND,
1645                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1646         if (ret != 0)
1647                 return FAILED;
1648
1649         t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
1650         if (t == 0)
1651                 return TIMEOUT_ERROR;
1652
1653
1654         /*
1655          * At this point, all outstanding requests in the adapter
1656          * should have been flushed out and return to us
1657          * There is a potential race here where the host may be in
1658          * the process of responding when we return from here.
1659          * Just wait for all in-transit packets to be accounted for
1660          * before we return from here.
1661          */
1662         storvsc_wait_to_drain(stor_device);
1663
1664         return SUCCESS;
1665 }
1666
1667 /*
1668  * The host guarantees to respond to each command, although I/O latencies might
1669  * be unbounded on Azure.  Reset the timer unconditionally to give the host a
1670  * chance to perform EH.
1671  */
1672 static enum scsi_timeout_action storvsc_eh_timed_out(struct scsi_cmnd *scmnd)
1673 {
1674 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1675         if (scmnd->device->host->transportt == fc_transport_template)
1676                 return fc_eh_timed_out(scmnd);
1677 #endif
1678         return SCSI_EH_RESET_TIMER;
1679 }
1680
1681 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd)
1682 {
1683         bool allowed = true;
1684         u8 scsi_op = scmnd->cmnd[0];
1685
1686         switch (scsi_op) {
1687         /* the host does not handle WRITE_SAME, log accident usage */
1688         case WRITE_SAME:
1689         /*
1690          * smartd sends this command and the host does not handle
1691          * this. So, don't send it.
1692          */
1693         case SET_WINDOW:
1694                 set_host_byte(scmnd, DID_ERROR);
1695                 allowed = false;
1696                 break;
1697         default:
1698                 break;
1699         }
1700         return allowed;
1701 }
1702
1703 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd)
1704 {
1705         int ret;
1706         struct hv_host_device *host_dev = shost_priv(host);
1707         struct hv_device *dev = host_dev->dev;
1708         struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd);
1709         struct scatterlist *sgl;
1710         struct vmscsi_request *vm_srb;
1711         struct vmbus_packet_mpb_array  *payload;
1712         u32 payload_sz;
1713         u32 length;
1714
1715         if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) {
1716                 /*
1717                  * On legacy hosts filter unimplemented commands.
1718                  * Future hosts are expected to correctly handle
1719                  * unsupported commands. Furthermore, it is
1720                  * possible that some of the currently
1721                  * unsupported commands maybe supported in
1722                  * future versions of the host.
1723                  */
1724                 if (!storvsc_scsi_cmd_ok(scmnd)) {
1725                         scsi_done(scmnd);
1726                         return 0;
1727                 }
1728         }
1729
1730         /* Setup the cmd request */
1731         cmd_request->cmd = scmnd;
1732
1733         memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet));
1734         vm_srb = &cmd_request->vstor_packet.vm_srb;
1735         vm_srb->time_out_value = 60;
1736
1737         vm_srb->srb_flags |=
1738                 SRB_FLAGS_DISABLE_SYNCH_TRANSFER;
1739
1740         if (scmnd->device->tagged_supported) {
1741                 vm_srb->srb_flags |=
1742                 (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE);
1743                 vm_srb->queue_tag = SP_UNTAGGED;
1744                 vm_srb->queue_action = SRB_SIMPLE_TAG_REQUEST;
1745         }
1746
1747         /* Build the SRB */
1748         switch (scmnd->sc_data_direction) {
1749         case DMA_TO_DEVICE:
1750                 vm_srb->data_in = WRITE_TYPE;
1751                 vm_srb->srb_flags |= SRB_FLAGS_DATA_OUT;
1752                 break;
1753         case DMA_FROM_DEVICE:
1754                 vm_srb->data_in = READ_TYPE;
1755                 vm_srb->srb_flags |= SRB_FLAGS_DATA_IN;
1756                 break;
1757         case DMA_NONE:
1758                 vm_srb->data_in = UNKNOWN_TYPE;
1759                 vm_srb->srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER;
1760                 break;
1761         default:
1762                 /*
1763                  * This is DMA_BIDIRECTIONAL or something else we are never
1764                  * supposed to see here.
1765                  */
1766                 WARN(1, "Unexpected data direction: %d\n",
1767                      scmnd->sc_data_direction);
1768                 return -EINVAL;
1769         }
1770
1771
1772         vm_srb->port_number = host_dev->port;
1773         vm_srb->path_id = scmnd->device->channel;
1774         vm_srb->target_id = scmnd->device->id;
1775         vm_srb->lun = scmnd->device->lun;
1776
1777         vm_srb->cdb_length = scmnd->cmd_len;
1778
1779         memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length);
1780
1781         sgl = (struct scatterlist *)scsi_sglist(scmnd);
1782
1783         length = scsi_bufflen(scmnd);
1784         payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb;
1785         payload_sz = 0;
1786
1787         if (scsi_sg_count(scmnd)) {
1788                 unsigned long offset_in_hvpg = offset_in_hvpage(sgl->offset);
1789                 unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length);
1790                 struct scatterlist *sg;
1791                 unsigned long hvpfn, hvpfns_to_add;
1792                 int j, i = 0, sg_count;
1793
1794                 payload_sz = (hvpg_count * sizeof(u64) +
1795                               sizeof(struct vmbus_packet_mpb_array));
1796
1797                 if (hvpg_count > MAX_PAGE_BUFFER_COUNT) {
1798                         payload = kzalloc(payload_sz, GFP_ATOMIC);
1799                         if (!payload)
1800                                 return SCSI_MLQUEUE_DEVICE_BUSY;
1801                 }
1802
1803                 payload->range.len = length;
1804                 payload->range.offset = offset_in_hvpg;
1805
1806                 sg_count = scsi_dma_map(scmnd);
1807                 if (sg_count < 0) {
1808                         ret = SCSI_MLQUEUE_DEVICE_BUSY;
1809                         goto err_free_payload;
1810                 }
1811
1812                 for_each_sg(sgl, sg, sg_count, j) {
1813                         /*
1814                          * Init values for the current sgl entry. hvpfns_to_add
1815                          * is in units of Hyper-V size pages. Handling the
1816                          * PAGE_SIZE != HV_HYP_PAGE_SIZE case also handles
1817                          * values of sgl->offset that are larger than PAGE_SIZE.
1818                          * Such offsets are handled even on other than the first
1819                          * sgl entry, provided they are a multiple of PAGE_SIZE.
1820                          */
1821                         hvpfn = HVPFN_DOWN(sg_dma_address(sg));
1822                         hvpfns_to_add = HVPFN_UP(sg_dma_address(sg) +
1823                                                  sg_dma_len(sg)) - hvpfn;
1824
1825                         /*
1826                          * Fill the next portion of the PFN array with
1827                          * sequential Hyper-V PFNs for the continguous physical
1828                          * memory described by the sgl entry. The end of the
1829                          * last sgl should be reached at the same time that
1830                          * the PFN array is filled.
1831                          */
1832                         while (hvpfns_to_add--)
1833                                 payload->range.pfn_array[i++] = hvpfn++;
1834                 }
1835         }
1836
1837         cmd_request->payload = payload;
1838         cmd_request->payload_sz = payload_sz;
1839
1840         /* Invokes the vsc to start an IO */
1841         ret = storvsc_do_io(dev, cmd_request, get_cpu());
1842         put_cpu();
1843
1844         if (ret)
1845                 scsi_dma_unmap(scmnd);
1846
1847         if (ret == -EAGAIN) {
1848                 /* no more space */
1849                 ret = SCSI_MLQUEUE_DEVICE_BUSY;
1850                 goto err_free_payload;
1851         }
1852
1853         return 0;
1854
1855 err_free_payload:
1856         if (payload_sz > sizeof(cmd_request->mpb))
1857                 kfree(payload);
1858
1859         return ret;
1860 }
1861
1862 static struct scsi_host_template scsi_driver = {
1863         .module =               THIS_MODULE,
1864         .name =                 "storvsc_host_t",
1865         .cmd_size =             sizeof(struct storvsc_cmd_request),
1866         .bios_param =           storvsc_get_chs,
1867         .queuecommand =         storvsc_queuecommand,
1868         .eh_host_reset_handler =        storvsc_host_reset_handler,
1869         .proc_name =            "storvsc_host",
1870         .eh_timed_out =         storvsc_eh_timed_out,
1871         .slave_alloc =          storvsc_device_alloc,
1872         .slave_configure =      storvsc_device_configure,
1873         .cmd_per_lun =          2048,
1874         .this_id =              -1,
1875         /* Ensure there are no gaps in presented sgls */
1876         .virt_boundary_mask =   HV_HYP_PAGE_SIZE - 1,
1877         .no_write_same =        1,
1878         .track_queue_depth =    1,
1879         .change_queue_depth =   storvsc_change_queue_depth,
1880 };
1881
1882 enum {
1883         SCSI_GUID,
1884         IDE_GUID,
1885         SFC_GUID,
1886 };
1887
1888 static const struct hv_vmbus_device_id id_table[] = {
1889         /* SCSI guid */
1890         { HV_SCSI_GUID,
1891           .driver_data = SCSI_GUID
1892         },
1893         /* IDE guid */
1894         { HV_IDE_GUID,
1895           .driver_data = IDE_GUID
1896         },
1897         /* Fibre Channel GUID */
1898         {
1899           HV_SYNTHFC_GUID,
1900           .driver_data = SFC_GUID
1901         },
1902         { },
1903 };
1904
1905 MODULE_DEVICE_TABLE(vmbus, id_table);
1906
1907 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID };
1908
1909 static bool hv_dev_is_fc(struct hv_device *hv_dev)
1910 {
1911         return guid_equal(&fc_guid.guid, &hv_dev->dev_type);
1912 }
1913
1914 static int storvsc_probe(struct hv_device *device,
1915                         const struct hv_vmbus_device_id *dev_id)
1916 {
1917         int ret;
1918         int num_cpus = num_online_cpus();
1919         int num_present_cpus = num_present_cpus();
1920         struct Scsi_Host *host;
1921         struct hv_host_device *host_dev;
1922         bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false);
1923         bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false);
1924         int target = 0;
1925         struct storvsc_device *stor_device;
1926         int max_sub_channels = 0;
1927         u32 max_xfer_bytes;
1928
1929         /*
1930          * We support sub-channels for storage on SCSI and FC controllers.
1931          * The number of sub-channels offerred is based on the number of
1932          * VCPUs in the guest.
1933          */
1934         if (!dev_is_ide)
1935                 max_sub_channels =
1936                         (num_cpus - 1) / storvsc_vcpus_per_sub_channel;
1937
1938         scsi_driver.can_queue = max_outstanding_req_per_channel *
1939                                 (max_sub_channels + 1) *
1940                                 (100 - ring_avail_percent_lowater) / 100;
1941
1942         host = scsi_host_alloc(&scsi_driver,
1943                                sizeof(struct hv_host_device));
1944         if (!host)
1945                 return -ENOMEM;
1946
1947         host_dev = shost_priv(host);
1948         memset(host_dev, 0, sizeof(struct hv_host_device));
1949
1950         host_dev->port = host->host_no;
1951         host_dev->dev = device;
1952         host_dev->host = host;
1953
1954
1955         stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL);
1956         if (!stor_device) {
1957                 ret = -ENOMEM;
1958                 goto err_out0;
1959         }
1960
1961         stor_device->destroy = false;
1962         init_waitqueue_head(&stor_device->waiting_to_drain);
1963         stor_device->device = device;
1964         stor_device->host = host;
1965         spin_lock_init(&stor_device->lock);
1966         hv_set_drvdata(device, stor_device);
1967         dma_set_min_align_mask(&device->device, HV_HYP_PAGE_SIZE - 1);
1968
1969         stor_device->port_number = host->host_no;
1970         ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc);
1971         if (ret)
1972                 goto err_out1;
1973
1974         host_dev->path = stor_device->path_id;
1975         host_dev->target = stor_device->target_id;
1976
1977         switch (dev_id->driver_data) {
1978         case SFC_GUID:
1979                 host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET;
1980                 host->max_id = STORVSC_FC_MAX_TARGETS;
1981                 host->max_channel = STORVSC_FC_MAX_CHANNELS - 1;
1982 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1983                 host->transportt = fc_transport_template;
1984 #endif
1985                 break;
1986
1987         case SCSI_GUID:
1988                 host->max_lun = STORVSC_MAX_LUNS_PER_TARGET;
1989                 host->max_id = STORVSC_MAX_TARGETS;
1990                 host->max_channel = STORVSC_MAX_CHANNELS - 1;
1991                 break;
1992
1993         default:
1994                 host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET;
1995                 host->max_id = STORVSC_IDE_MAX_TARGETS;
1996                 host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1;
1997                 break;
1998         }
1999         /* max cmd length */
2000         host->max_cmd_len = STORVSC_MAX_CMD_LEN;
2001         /*
2002          * Any reasonable Hyper-V configuration should provide
2003          * max_transfer_bytes value aligning to HV_HYP_PAGE_SIZE,
2004          * protecting it from any weird value.
2005          */
2006         max_xfer_bytes = round_down(stor_device->max_transfer_bytes, HV_HYP_PAGE_SIZE);
2007         /* max_hw_sectors_kb */
2008         host->max_sectors = max_xfer_bytes >> 9;
2009         /*
2010          * There are 2 requirements for Hyper-V storvsc sgl segments,
2011          * based on which the below calculation for max segments is
2012          * done:
2013          *
2014          * 1. Except for the first and last sgl segment, all sgl segments
2015          *    should be align to HV_HYP_PAGE_SIZE, that also means the
2016          *    maximum number of segments in a sgl can be calculated by
2017          *    dividing the total max transfer length by HV_HYP_PAGE_SIZE.
2018          *
2019          * 2. Except for the first and last, each entry in the SGL must
2020          *    have an offset that is a multiple of HV_HYP_PAGE_SIZE.
2021          */
2022         host->sg_tablesize = (max_xfer_bytes >> HV_HYP_PAGE_SHIFT) + 1;
2023         /*
2024          * For non-IDE disks, the host supports multiple channels.
2025          * Set the number of HW queues we are supporting.
2026          */
2027         if (!dev_is_ide) {
2028                 if (storvsc_max_hw_queues > num_present_cpus) {
2029                         storvsc_max_hw_queues = 0;
2030                         storvsc_log(device, STORVSC_LOGGING_WARN,
2031                                 "Resetting invalid storvsc_max_hw_queues value to default.\n");
2032                 }
2033                 if (storvsc_max_hw_queues)
2034                         host->nr_hw_queues = storvsc_max_hw_queues;
2035                 else
2036                         host->nr_hw_queues = num_present_cpus;
2037         }
2038
2039         /*
2040          * Set the error handler work queue.
2041          */
2042         host_dev->handle_error_wq =
2043                         alloc_ordered_workqueue("storvsc_error_wq_%d",
2044                                                 0,
2045                                                 host->host_no);
2046         if (!host_dev->handle_error_wq) {
2047                 ret = -ENOMEM;
2048                 goto err_out2;
2049         }
2050         INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan);
2051         /* Register the HBA and start the scsi bus scan */
2052         ret = scsi_add_host(host, &device->device);
2053         if (ret != 0)
2054                 goto err_out3;
2055
2056         if (!dev_is_ide) {
2057                 scsi_scan_host(host);
2058         } else {
2059                 target = (device->dev_instance.b[5] << 8 |
2060                          device->dev_instance.b[4]);
2061                 ret = scsi_add_device(host, 0, target, 0);
2062                 if (ret)
2063                         goto err_out4;
2064         }
2065 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2066         if (host->transportt == fc_transport_template) {
2067                 struct fc_rport_identifiers ids = {
2068                         .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR,
2069                 };
2070
2071                 fc_host_node_name(host) = stor_device->node_name;
2072                 fc_host_port_name(host) = stor_device->port_name;
2073                 stor_device->rport = fc_remote_port_add(host, 0, &ids);
2074                 if (!stor_device->rport) {
2075                         ret = -ENOMEM;
2076                         goto err_out4;
2077                 }
2078         }
2079 #endif
2080         return 0;
2081
2082 err_out4:
2083         scsi_remove_host(host);
2084
2085 err_out3:
2086         destroy_workqueue(host_dev->handle_error_wq);
2087
2088 err_out2:
2089         /*
2090          * Once we have connected with the host, we would need to
2091          * invoke storvsc_dev_remove() to rollback this state and
2092          * this call also frees up the stor_device; hence the jump around
2093          * err_out1 label.
2094          */
2095         storvsc_dev_remove(device);
2096         goto err_out0;
2097
2098 err_out1:
2099         kfree(stor_device->stor_chns);
2100         kfree(stor_device);
2101
2102 err_out0:
2103         scsi_host_put(host);
2104         return ret;
2105 }
2106
2107 /* Change a scsi target's queue depth */
2108 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth)
2109 {
2110         if (queue_depth > scsi_driver.can_queue)
2111                 queue_depth = scsi_driver.can_queue;
2112
2113         return scsi_change_queue_depth(sdev, queue_depth);
2114 }
2115
2116 static void storvsc_remove(struct hv_device *dev)
2117 {
2118         struct storvsc_device *stor_device = hv_get_drvdata(dev);
2119         struct Scsi_Host *host = stor_device->host;
2120         struct hv_host_device *host_dev = shost_priv(host);
2121
2122 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2123         if (host->transportt == fc_transport_template) {
2124                 fc_remote_port_delete(stor_device->rport);
2125                 fc_remove_host(host);
2126         }
2127 #endif
2128         destroy_workqueue(host_dev->handle_error_wq);
2129         scsi_remove_host(host);
2130         storvsc_dev_remove(dev);
2131         scsi_host_put(host);
2132 }
2133
2134 static int storvsc_suspend(struct hv_device *hv_dev)
2135 {
2136         struct storvsc_device *stor_device = hv_get_drvdata(hv_dev);
2137         struct Scsi_Host *host = stor_device->host;
2138         struct hv_host_device *host_dev = shost_priv(host);
2139
2140         storvsc_wait_to_drain(stor_device);
2141
2142         drain_workqueue(host_dev->handle_error_wq);
2143
2144         vmbus_close(hv_dev->channel);
2145
2146         kfree(stor_device->stor_chns);
2147         stor_device->stor_chns = NULL;
2148
2149         cpumask_clear(&stor_device->alloced_cpus);
2150
2151         return 0;
2152 }
2153
2154 static int storvsc_resume(struct hv_device *hv_dev)
2155 {
2156         int ret;
2157
2158         ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size,
2159                                      hv_dev_is_fc(hv_dev));
2160         return ret;
2161 }
2162
2163 static struct hv_driver storvsc_drv = {
2164         .name = KBUILD_MODNAME,
2165         .id_table = id_table,
2166         .probe = storvsc_probe,
2167         .remove = storvsc_remove,
2168         .suspend = storvsc_suspend,
2169         .resume = storvsc_resume,
2170         .driver = {
2171                 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2172         },
2173 };
2174
2175 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2176 static struct fc_function_template fc_transport_functions = {
2177         .show_host_node_name = 1,
2178         .show_host_port_name = 1,
2179 };
2180 #endif
2181
2182 static int __init storvsc_drv_init(void)
2183 {
2184         int ret;
2185
2186         /*
2187          * Divide the ring buffer data size (which is 1 page less
2188          * than the ring buffer size since that page is reserved for
2189          * the ring buffer indices) by the max request size (which is
2190          * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64)
2191          */
2192         max_outstanding_req_per_channel =
2193                 ((storvsc_ringbuffer_size - PAGE_SIZE) /
2194                 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET +
2195                 sizeof(struct vstor_packet) + sizeof(u64),
2196                 sizeof(u64)));
2197
2198 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2199         fc_transport_template = fc_attach_transport(&fc_transport_functions);
2200         if (!fc_transport_template)
2201                 return -ENODEV;
2202 #endif
2203
2204         ret = vmbus_driver_register(&storvsc_drv);
2205
2206 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2207         if (ret)
2208                 fc_release_transport(fc_transport_template);
2209 #endif
2210
2211         return ret;
2212 }
2213
2214 static void __exit storvsc_drv_exit(void)
2215 {
2216         vmbus_driver_unregister(&storvsc_drv);
2217 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2218         fc_release_transport(fc_transport_template);
2219 #endif
2220 }
2221
2222 MODULE_LICENSE("GPL");
2223 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver");
2224 module_init(storvsc_drv_init);
2225 module_exit(storvsc_drv_exit);