Merge tag 'linux-kselftest-fixes-6.6-rc5' of git://git.kernel.org/pub/scm/linux/kerne...
[platform/kernel/linux-starfive.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *      Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *       - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
18  *         sd_init and cleanups.
19  *       - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *         not being read in sd_open. Fix problem where removable media 
21  *         could be ejected after sd_open.
22  *       - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *       - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
24  *         <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
25  *         Support 32k/1M disks.
26  *
27  *      Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *       - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *       - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *       - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *       - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *      Note: when the logging level is set by the user, it must be greater
33  *      than the level indicated above to trigger output.       
34  */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/major.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70 #include <scsi/scsi_common.h>
71
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100
101 #define SD_MINORS       16
102
103 static void sd_config_discard(struct scsi_disk *, unsigned int);
104 static void sd_config_write_same(struct scsi_disk *);
105 static int  sd_revalidate_disk(struct gendisk *);
106 static void sd_unlock_native_capacity(struct gendisk *disk);
107 static void sd_shutdown(struct device *);
108 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
109 static void scsi_disk_release(struct device *cdev);
110
111 static DEFINE_IDA(sd_index_ida);
112
113 static mempool_t *sd_page_pool;
114 static struct lock_class_key sd_bio_compl_lkclass;
115
116 static const char *sd_cache_types[] = {
117         "write through", "none", "write back",
118         "write back, no read (daft)"
119 };
120
121 static void sd_set_flush_flag(struct scsi_disk *sdkp)
122 {
123         bool wc = false, fua = false;
124
125         if (sdkp->WCE) {
126                 wc = true;
127                 if (sdkp->DPOFUA)
128                         fua = true;
129         }
130
131         blk_queue_write_cache(sdkp->disk->queue, wc, fua);
132 }
133
134 static ssize_t
135 cache_type_store(struct device *dev, struct device_attribute *attr,
136                  const char *buf, size_t count)
137 {
138         int ct, rcd, wce, sp;
139         struct scsi_disk *sdkp = to_scsi_disk(dev);
140         struct scsi_device *sdp = sdkp->device;
141         char buffer[64];
142         char *buffer_data;
143         struct scsi_mode_data data;
144         struct scsi_sense_hdr sshdr;
145         static const char temp[] = "temporary ";
146         int len;
147
148         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
149                 /* no cache control on RBC devices; theoretically they
150                  * can do it, but there's probably so many exceptions
151                  * it's not worth the risk */
152                 return -EINVAL;
153
154         if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
155                 buf += sizeof(temp) - 1;
156                 sdkp->cache_override = 1;
157         } else {
158                 sdkp->cache_override = 0;
159         }
160
161         ct = sysfs_match_string(sd_cache_types, buf);
162         if (ct < 0)
163                 return -EINVAL;
164
165         rcd = ct & 0x01 ? 1 : 0;
166         wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
167
168         if (sdkp->cache_override) {
169                 sdkp->WCE = wce;
170                 sdkp->RCD = rcd;
171                 sd_set_flush_flag(sdkp);
172                 return count;
173         }
174
175         if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
176                             sdkp->max_retries, &data, NULL))
177                 return -EINVAL;
178         len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
179                   data.block_descriptor_length);
180         buffer_data = buffer + data.header_length +
181                 data.block_descriptor_length;
182         buffer_data[2] &= ~0x05;
183         buffer_data[2] |= wce << 2 | rcd;
184         sp = buffer_data[0] & 0x80 ? 1 : 0;
185         buffer_data[0] &= ~0x80;
186
187         /*
188          * Ensure WP, DPOFUA, and RESERVED fields are cleared in
189          * received mode parameter buffer before doing MODE SELECT.
190          */
191         data.device_specific = 0;
192
193         if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
194                              sdkp->max_retries, &data, &sshdr)) {
195                 if (scsi_sense_valid(&sshdr))
196                         sd_print_sense_hdr(sdkp, &sshdr);
197                 return -EINVAL;
198         }
199         sd_revalidate_disk(sdkp->disk);
200         return count;
201 }
202
203 static ssize_t
204 manage_start_stop_show(struct device *dev,
205                        struct device_attribute *attr, char *buf)
206 {
207         struct scsi_disk *sdkp = to_scsi_disk(dev);
208         struct scsi_device *sdp = sdkp->device;
209
210         return sysfs_emit(buf, "%u\n",
211                           sdp->manage_system_start_stop &&
212                           sdp->manage_runtime_start_stop);
213 }
214 static DEVICE_ATTR_RO(manage_start_stop);
215
216 static ssize_t
217 manage_system_start_stop_show(struct device *dev,
218                               struct device_attribute *attr, char *buf)
219 {
220         struct scsi_disk *sdkp = to_scsi_disk(dev);
221         struct scsi_device *sdp = sdkp->device;
222
223         return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
224 }
225
226 static ssize_t
227 manage_system_start_stop_store(struct device *dev,
228                                struct device_attribute *attr,
229                                const char *buf, size_t count)
230 {
231         struct scsi_disk *sdkp = to_scsi_disk(dev);
232         struct scsi_device *sdp = sdkp->device;
233         bool v;
234
235         if (!capable(CAP_SYS_ADMIN))
236                 return -EACCES;
237
238         if (kstrtobool(buf, &v))
239                 return -EINVAL;
240
241         sdp->manage_system_start_stop = v;
242
243         return count;
244 }
245 static DEVICE_ATTR_RW(manage_system_start_stop);
246
247 static ssize_t
248 manage_runtime_start_stop_show(struct device *dev,
249                                struct device_attribute *attr, char *buf)
250 {
251         struct scsi_disk *sdkp = to_scsi_disk(dev);
252         struct scsi_device *sdp = sdkp->device;
253
254         return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
255 }
256
257 static ssize_t
258 manage_runtime_start_stop_store(struct device *dev,
259                                 struct device_attribute *attr,
260                                 const char *buf, size_t count)
261 {
262         struct scsi_disk *sdkp = to_scsi_disk(dev);
263         struct scsi_device *sdp = sdkp->device;
264         bool v;
265
266         if (!capable(CAP_SYS_ADMIN))
267                 return -EACCES;
268
269         if (kstrtobool(buf, &v))
270                 return -EINVAL;
271
272         sdp->manage_runtime_start_stop = v;
273
274         return count;
275 }
276 static DEVICE_ATTR_RW(manage_runtime_start_stop);
277
278 static ssize_t
279 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
280 {
281         struct scsi_disk *sdkp = to_scsi_disk(dev);
282
283         return sprintf(buf, "%u\n", sdkp->device->allow_restart);
284 }
285
286 static ssize_t
287 allow_restart_store(struct device *dev, struct device_attribute *attr,
288                     const char *buf, size_t count)
289 {
290         bool v;
291         struct scsi_disk *sdkp = to_scsi_disk(dev);
292         struct scsi_device *sdp = sdkp->device;
293
294         if (!capable(CAP_SYS_ADMIN))
295                 return -EACCES;
296
297         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
298                 return -EINVAL;
299
300         if (kstrtobool(buf, &v))
301                 return -EINVAL;
302
303         sdp->allow_restart = v;
304
305         return count;
306 }
307 static DEVICE_ATTR_RW(allow_restart);
308
309 static ssize_t
310 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
311 {
312         struct scsi_disk *sdkp = to_scsi_disk(dev);
313         int ct = sdkp->RCD + 2*sdkp->WCE;
314
315         return sprintf(buf, "%s\n", sd_cache_types[ct]);
316 }
317 static DEVICE_ATTR_RW(cache_type);
318
319 static ssize_t
320 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
321 {
322         struct scsi_disk *sdkp = to_scsi_disk(dev);
323
324         return sprintf(buf, "%u\n", sdkp->DPOFUA);
325 }
326 static DEVICE_ATTR_RO(FUA);
327
328 static ssize_t
329 protection_type_show(struct device *dev, struct device_attribute *attr,
330                      char *buf)
331 {
332         struct scsi_disk *sdkp = to_scsi_disk(dev);
333
334         return sprintf(buf, "%u\n", sdkp->protection_type);
335 }
336
337 static ssize_t
338 protection_type_store(struct device *dev, struct device_attribute *attr,
339                       const char *buf, size_t count)
340 {
341         struct scsi_disk *sdkp = to_scsi_disk(dev);
342         unsigned int val;
343         int err;
344
345         if (!capable(CAP_SYS_ADMIN))
346                 return -EACCES;
347
348         err = kstrtouint(buf, 10, &val);
349
350         if (err)
351                 return err;
352
353         if (val <= T10_PI_TYPE3_PROTECTION)
354                 sdkp->protection_type = val;
355
356         return count;
357 }
358 static DEVICE_ATTR_RW(protection_type);
359
360 static ssize_t
361 protection_mode_show(struct device *dev, struct device_attribute *attr,
362                      char *buf)
363 {
364         struct scsi_disk *sdkp = to_scsi_disk(dev);
365         struct scsi_device *sdp = sdkp->device;
366         unsigned int dif, dix;
367
368         dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
369         dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
370
371         if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
372                 dif = 0;
373                 dix = 1;
374         }
375
376         if (!dif && !dix)
377                 return sprintf(buf, "none\n");
378
379         return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
380 }
381 static DEVICE_ATTR_RO(protection_mode);
382
383 static ssize_t
384 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
385 {
386         struct scsi_disk *sdkp = to_scsi_disk(dev);
387
388         return sprintf(buf, "%u\n", sdkp->ATO);
389 }
390 static DEVICE_ATTR_RO(app_tag_own);
391
392 static ssize_t
393 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
394                        char *buf)
395 {
396         struct scsi_disk *sdkp = to_scsi_disk(dev);
397
398         return sprintf(buf, "%u\n", sdkp->lbpme);
399 }
400 static DEVICE_ATTR_RO(thin_provisioning);
401
402 /* sysfs_match_string() requires dense arrays */
403 static const char *lbp_mode[] = {
404         [SD_LBP_FULL]           = "full",
405         [SD_LBP_UNMAP]          = "unmap",
406         [SD_LBP_WS16]           = "writesame_16",
407         [SD_LBP_WS10]           = "writesame_10",
408         [SD_LBP_ZERO]           = "writesame_zero",
409         [SD_LBP_DISABLE]        = "disabled",
410 };
411
412 static ssize_t
413 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
414                        char *buf)
415 {
416         struct scsi_disk *sdkp = to_scsi_disk(dev);
417
418         return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
419 }
420
421 static ssize_t
422 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
423                         const char *buf, size_t count)
424 {
425         struct scsi_disk *sdkp = to_scsi_disk(dev);
426         struct scsi_device *sdp = sdkp->device;
427         int mode;
428
429         if (!capable(CAP_SYS_ADMIN))
430                 return -EACCES;
431
432         if (sd_is_zoned(sdkp)) {
433                 sd_config_discard(sdkp, SD_LBP_DISABLE);
434                 return count;
435         }
436
437         if (sdp->type != TYPE_DISK)
438                 return -EINVAL;
439
440         mode = sysfs_match_string(lbp_mode, buf);
441         if (mode < 0)
442                 return -EINVAL;
443
444         sd_config_discard(sdkp, mode);
445
446         return count;
447 }
448 static DEVICE_ATTR_RW(provisioning_mode);
449
450 /* sysfs_match_string() requires dense arrays */
451 static const char *zeroing_mode[] = {
452         [SD_ZERO_WRITE]         = "write",
453         [SD_ZERO_WS]            = "writesame",
454         [SD_ZERO_WS16_UNMAP]    = "writesame_16_unmap",
455         [SD_ZERO_WS10_UNMAP]    = "writesame_10_unmap",
456 };
457
458 static ssize_t
459 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
460                   char *buf)
461 {
462         struct scsi_disk *sdkp = to_scsi_disk(dev);
463
464         return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
465 }
466
467 static ssize_t
468 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
469                    const char *buf, size_t count)
470 {
471         struct scsi_disk *sdkp = to_scsi_disk(dev);
472         int mode;
473
474         if (!capable(CAP_SYS_ADMIN))
475                 return -EACCES;
476
477         mode = sysfs_match_string(zeroing_mode, buf);
478         if (mode < 0)
479                 return -EINVAL;
480
481         sdkp->zeroing_mode = mode;
482
483         return count;
484 }
485 static DEVICE_ATTR_RW(zeroing_mode);
486
487 static ssize_t
488 max_medium_access_timeouts_show(struct device *dev,
489                                 struct device_attribute *attr, char *buf)
490 {
491         struct scsi_disk *sdkp = to_scsi_disk(dev);
492
493         return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
494 }
495
496 static ssize_t
497 max_medium_access_timeouts_store(struct device *dev,
498                                  struct device_attribute *attr, const char *buf,
499                                  size_t count)
500 {
501         struct scsi_disk *sdkp = to_scsi_disk(dev);
502         int err;
503
504         if (!capable(CAP_SYS_ADMIN))
505                 return -EACCES;
506
507         err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
508
509         return err ? err : count;
510 }
511 static DEVICE_ATTR_RW(max_medium_access_timeouts);
512
513 static ssize_t
514 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
515                            char *buf)
516 {
517         struct scsi_disk *sdkp = to_scsi_disk(dev);
518
519         return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
520 }
521
522 static ssize_t
523 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
524                             const char *buf, size_t count)
525 {
526         struct scsi_disk *sdkp = to_scsi_disk(dev);
527         struct scsi_device *sdp = sdkp->device;
528         unsigned long max;
529         int err;
530
531         if (!capable(CAP_SYS_ADMIN))
532                 return -EACCES;
533
534         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
535                 return -EINVAL;
536
537         err = kstrtoul(buf, 10, &max);
538
539         if (err)
540                 return err;
541
542         if (max == 0)
543                 sdp->no_write_same = 1;
544         else if (max <= SD_MAX_WS16_BLOCKS) {
545                 sdp->no_write_same = 0;
546                 sdkp->max_ws_blocks = max;
547         }
548
549         sd_config_write_same(sdkp);
550
551         return count;
552 }
553 static DEVICE_ATTR_RW(max_write_same_blocks);
554
555 static ssize_t
556 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
557 {
558         struct scsi_disk *sdkp = to_scsi_disk(dev);
559
560         if (sdkp->device->type == TYPE_ZBC)
561                 return sprintf(buf, "host-managed\n");
562         if (sdkp->zoned == 1)
563                 return sprintf(buf, "host-aware\n");
564         if (sdkp->zoned == 2)
565                 return sprintf(buf, "drive-managed\n");
566         return sprintf(buf, "none\n");
567 }
568 static DEVICE_ATTR_RO(zoned_cap);
569
570 static ssize_t
571 max_retries_store(struct device *dev, struct device_attribute *attr,
572                   const char *buf, size_t count)
573 {
574         struct scsi_disk *sdkp = to_scsi_disk(dev);
575         struct scsi_device *sdev = sdkp->device;
576         int retries, err;
577
578         err = kstrtoint(buf, 10, &retries);
579         if (err)
580                 return err;
581
582         if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
583                 sdkp->max_retries = retries;
584                 return count;
585         }
586
587         sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
588                     SD_MAX_RETRIES);
589         return -EINVAL;
590 }
591
592 static ssize_t
593 max_retries_show(struct device *dev, struct device_attribute *attr,
594                  char *buf)
595 {
596         struct scsi_disk *sdkp = to_scsi_disk(dev);
597
598         return sprintf(buf, "%d\n", sdkp->max_retries);
599 }
600
601 static DEVICE_ATTR_RW(max_retries);
602
603 static struct attribute *sd_disk_attrs[] = {
604         &dev_attr_cache_type.attr,
605         &dev_attr_FUA.attr,
606         &dev_attr_allow_restart.attr,
607         &dev_attr_manage_start_stop.attr,
608         &dev_attr_manage_system_start_stop.attr,
609         &dev_attr_manage_runtime_start_stop.attr,
610         &dev_attr_protection_type.attr,
611         &dev_attr_protection_mode.attr,
612         &dev_attr_app_tag_own.attr,
613         &dev_attr_thin_provisioning.attr,
614         &dev_attr_provisioning_mode.attr,
615         &dev_attr_zeroing_mode.attr,
616         &dev_attr_max_write_same_blocks.attr,
617         &dev_attr_max_medium_access_timeouts.attr,
618         &dev_attr_zoned_cap.attr,
619         &dev_attr_max_retries.attr,
620         NULL,
621 };
622 ATTRIBUTE_GROUPS(sd_disk);
623
624 static struct class sd_disk_class = {
625         .name           = "scsi_disk",
626         .dev_release    = scsi_disk_release,
627         .dev_groups     = sd_disk_groups,
628 };
629
630 /*
631  * Don't request a new module, as that could deadlock in multipath
632  * environment.
633  */
634 static void sd_default_probe(dev_t devt)
635 {
636 }
637
638 /*
639  * Device no to disk mapping:
640  * 
641  *       major         disc2     disc  p1
642  *   |............|.............|....|....| <- dev_t
643  *    31        20 19          8 7  4 3  0
644  * 
645  * Inside a major, we have 16k disks, however mapped non-
646  * contiguously. The first 16 disks are for major0, the next
647  * ones with major1, ... Disk 256 is for major0 again, disk 272 
648  * for major1, ... 
649  * As we stay compatible with our numbering scheme, we can reuse 
650  * the well-know SCSI majors 8, 65--71, 136--143.
651  */
652 static int sd_major(int major_idx)
653 {
654         switch (major_idx) {
655         case 0:
656                 return SCSI_DISK0_MAJOR;
657         case 1 ... 7:
658                 return SCSI_DISK1_MAJOR + major_idx - 1;
659         case 8 ... 15:
660                 return SCSI_DISK8_MAJOR + major_idx - 8;
661         default:
662                 BUG();
663                 return 0;       /* shut up gcc */
664         }
665 }
666
667 #ifdef CONFIG_BLK_SED_OPAL
668 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
669                 size_t len, bool send)
670 {
671         struct scsi_disk *sdkp = data;
672         struct scsi_device *sdev = sdkp->device;
673         u8 cdb[12] = { 0, };
674         const struct scsi_exec_args exec_args = {
675                 .req_flags = BLK_MQ_REQ_PM,
676         };
677         int ret;
678
679         cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
680         cdb[1] = secp;
681         put_unaligned_be16(spsp, &cdb[2]);
682         put_unaligned_be32(len, &cdb[6]);
683
684         ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
685                                buffer, len, SD_TIMEOUT, sdkp->max_retries,
686                                &exec_args);
687         return ret <= 0 ? ret : -EIO;
688 }
689 #endif /* CONFIG_BLK_SED_OPAL */
690
691 /*
692  * Look up the DIX operation based on whether the command is read or
693  * write and whether dix and dif are enabled.
694  */
695 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
696 {
697         /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
698         static const unsigned int ops[] = {     /* wrt dix dif */
699                 SCSI_PROT_NORMAL,               /*  0   0   0  */
700                 SCSI_PROT_READ_STRIP,           /*  0   0   1  */
701                 SCSI_PROT_READ_INSERT,          /*  0   1   0  */
702                 SCSI_PROT_READ_PASS,            /*  0   1   1  */
703                 SCSI_PROT_NORMAL,               /*  1   0   0  */
704                 SCSI_PROT_WRITE_INSERT,         /*  1   0   1  */
705                 SCSI_PROT_WRITE_STRIP,          /*  1   1   0  */
706                 SCSI_PROT_WRITE_PASS,           /*  1   1   1  */
707         };
708
709         return ops[write << 2 | dix << 1 | dif];
710 }
711
712 /*
713  * Returns a mask of the protection flags that are valid for a given DIX
714  * operation.
715  */
716 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
717 {
718         static const unsigned int flag_mask[] = {
719                 [SCSI_PROT_NORMAL]              = 0,
720
721                 [SCSI_PROT_READ_STRIP]          = SCSI_PROT_TRANSFER_PI |
722                                                   SCSI_PROT_GUARD_CHECK |
723                                                   SCSI_PROT_REF_CHECK |
724                                                   SCSI_PROT_REF_INCREMENT,
725
726                 [SCSI_PROT_READ_INSERT]         = SCSI_PROT_REF_INCREMENT |
727                                                   SCSI_PROT_IP_CHECKSUM,
728
729                 [SCSI_PROT_READ_PASS]           = SCSI_PROT_TRANSFER_PI |
730                                                   SCSI_PROT_GUARD_CHECK |
731                                                   SCSI_PROT_REF_CHECK |
732                                                   SCSI_PROT_REF_INCREMENT |
733                                                   SCSI_PROT_IP_CHECKSUM,
734
735                 [SCSI_PROT_WRITE_INSERT]        = SCSI_PROT_TRANSFER_PI |
736                                                   SCSI_PROT_REF_INCREMENT,
737
738                 [SCSI_PROT_WRITE_STRIP]         = SCSI_PROT_GUARD_CHECK |
739                                                   SCSI_PROT_REF_CHECK |
740                                                   SCSI_PROT_REF_INCREMENT |
741                                                   SCSI_PROT_IP_CHECKSUM,
742
743                 [SCSI_PROT_WRITE_PASS]          = SCSI_PROT_TRANSFER_PI |
744                                                   SCSI_PROT_GUARD_CHECK |
745                                                   SCSI_PROT_REF_CHECK |
746                                                   SCSI_PROT_REF_INCREMENT |
747                                                   SCSI_PROT_IP_CHECKSUM,
748         };
749
750         return flag_mask[prot_op];
751 }
752
753 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
754                                            unsigned int dix, unsigned int dif)
755 {
756         struct request *rq = scsi_cmd_to_rq(scmd);
757         struct bio *bio = rq->bio;
758         unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
759         unsigned int protect = 0;
760
761         if (dix) {                              /* DIX Type 0, 1, 2, 3 */
762                 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
763                         scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
764
765                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
766                         scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
767         }
768
769         if (dif != T10_PI_TYPE3_PROTECTION) {   /* DIX/DIF Type 0, 1, 2 */
770                 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
771
772                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
773                         scmd->prot_flags |= SCSI_PROT_REF_CHECK;
774         }
775
776         if (dif) {                              /* DIX/DIF Type 1, 2, 3 */
777                 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
778
779                 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
780                         protect = 3 << 5;       /* Disable target PI checking */
781                 else
782                         protect = 1 << 5;       /* Enable target PI checking */
783         }
784
785         scsi_set_prot_op(scmd, prot_op);
786         scsi_set_prot_type(scmd, dif);
787         scmd->prot_flags &= sd_prot_flag_mask(prot_op);
788
789         return protect;
790 }
791
792 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
793 {
794         struct request_queue *q = sdkp->disk->queue;
795         unsigned int logical_block_size = sdkp->device->sector_size;
796         unsigned int max_blocks = 0;
797
798         q->limits.discard_alignment =
799                 sdkp->unmap_alignment * logical_block_size;
800         q->limits.discard_granularity =
801                 max(sdkp->physical_block_size,
802                     sdkp->unmap_granularity * logical_block_size);
803         sdkp->provisioning_mode = mode;
804
805         switch (mode) {
806
807         case SD_LBP_FULL:
808         case SD_LBP_DISABLE:
809                 blk_queue_max_discard_sectors(q, 0);
810                 return;
811
812         case SD_LBP_UNMAP:
813                 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
814                                           (u32)SD_MAX_WS16_BLOCKS);
815                 break;
816
817         case SD_LBP_WS16:
818                 if (sdkp->device->unmap_limit_for_ws)
819                         max_blocks = sdkp->max_unmap_blocks;
820                 else
821                         max_blocks = sdkp->max_ws_blocks;
822
823                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
824                 break;
825
826         case SD_LBP_WS10:
827                 if (sdkp->device->unmap_limit_for_ws)
828                         max_blocks = sdkp->max_unmap_blocks;
829                 else
830                         max_blocks = sdkp->max_ws_blocks;
831
832                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
833                 break;
834
835         case SD_LBP_ZERO:
836                 max_blocks = min_not_zero(sdkp->max_ws_blocks,
837                                           (u32)SD_MAX_WS10_BLOCKS);
838                 break;
839         }
840
841         blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
842 }
843
844 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
845 {
846         struct page *page;
847
848         page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
849         if (!page)
850                 return NULL;
851         clear_highpage(page);
852         bvec_set_page(&rq->special_vec, page, data_len, 0);
853         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
854         return bvec_virt(&rq->special_vec);
855 }
856
857 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
858 {
859         struct scsi_device *sdp = cmd->device;
860         struct request *rq = scsi_cmd_to_rq(cmd);
861         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
862         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
863         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
864         unsigned int data_len = 24;
865         char *buf;
866
867         buf = sd_set_special_bvec(rq, data_len);
868         if (!buf)
869                 return BLK_STS_RESOURCE;
870
871         cmd->cmd_len = 10;
872         cmd->cmnd[0] = UNMAP;
873         cmd->cmnd[8] = 24;
874
875         put_unaligned_be16(6 + 16, &buf[0]);
876         put_unaligned_be16(16, &buf[2]);
877         put_unaligned_be64(lba, &buf[8]);
878         put_unaligned_be32(nr_blocks, &buf[16]);
879
880         cmd->allowed = sdkp->max_retries;
881         cmd->transfersize = data_len;
882         rq->timeout = SD_TIMEOUT;
883
884         return scsi_alloc_sgtables(cmd);
885 }
886
887 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
888                 bool unmap)
889 {
890         struct scsi_device *sdp = cmd->device;
891         struct request *rq = scsi_cmd_to_rq(cmd);
892         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
893         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
894         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
895         u32 data_len = sdp->sector_size;
896
897         if (!sd_set_special_bvec(rq, data_len))
898                 return BLK_STS_RESOURCE;
899
900         cmd->cmd_len = 16;
901         cmd->cmnd[0] = WRITE_SAME_16;
902         if (unmap)
903                 cmd->cmnd[1] = 0x8; /* UNMAP */
904         put_unaligned_be64(lba, &cmd->cmnd[2]);
905         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
906
907         cmd->allowed = sdkp->max_retries;
908         cmd->transfersize = data_len;
909         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
910
911         return scsi_alloc_sgtables(cmd);
912 }
913
914 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
915                 bool unmap)
916 {
917         struct scsi_device *sdp = cmd->device;
918         struct request *rq = scsi_cmd_to_rq(cmd);
919         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
920         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
921         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
922         u32 data_len = sdp->sector_size;
923
924         if (!sd_set_special_bvec(rq, data_len))
925                 return BLK_STS_RESOURCE;
926
927         cmd->cmd_len = 10;
928         cmd->cmnd[0] = WRITE_SAME;
929         if (unmap)
930                 cmd->cmnd[1] = 0x8; /* UNMAP */
931         put_unaligned_be32(lba, &cmd->cmnd[2]);
932         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
933
934         cmd->allowed = sdkp->max_retries;
935         cmd->transfersize = data_len;
936         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
937
938         return scsi_alloc_sgtables(cmd);
939 }
940
941 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
942 {
943         struct request *rq = scsi_cmd_to_rq(cmd);
944         struct scsi_device *sdp = cmd->device;
945         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
946         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
947         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
948
949         if (!(rq->cmd_flags & REQ_NOUNMAP)) {
950                 switch (sdkp->zeroing_mode) {
951                 case SD_ZERO_WS16_UNMAP:
952                         return sd_setup_write_same16_cmnd(cmd, true);
953                 case SD_ZERO_WS10_UNMAP:
954                         return sd_setup_write_same10_cmnd(cmd, true);
955                 }
956         }
957
958         if (sdp->no_write_same) {
959                 rq->rq_flags |= RQF_QUIET;
960                 return BLK_STS_TARGET;
961         }
962
963         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
964                 return sd_setup_write_same16_cmnd(cmd, false);
965
966         return sd_setup_write_same10_cmnd(cmd, false);
967 }
968
969 static void sd_config_write_same(struct scsi_disk *sdkp)
970 {
971         struct request_queue *q = sdkp->disk->queue;
972         unsigned int logical_block_size = sdkp->device->sector_size;
973
974         if (sdkp->device->no_write_same) {
975                 sdkp->max_ws_blocks = 0;
976                 goto out;
977         }
978
979         /* Some devices can not handle block counts above 0xffff despite
980          * supporting WRITE SAME(16). Consequently we default to 64k
981          * blocks per I/O unless the device explicitly advertises a
982          * bigger limit.
983          */
984         if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
985                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
986                                                    (u32)SD_MAX_WS16_BLOCKS);
987         else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
988                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
989                                                    (u32)SD_MAX_WS10_BLOCKS);
990         else {
991                 sdkp->device->no_write_same = 1;
992                 sdkp->max_ws_blocks = 0;
993         }
994
995         if (sdkp->lbprz && sdkp->lbpws)
996                 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
997         else if (sdkp->lbprz && sdkp->lbpws10)
998                 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
999         else if (sdkp->max_ws_blocks)
1000                 sdkp->zeroing_mode = SD_ZERO_WS;
1001         else
1002                 sdkp->zeroing_mode = SD_ZERO_WRITE;
1003
1004         if (sdkp->max_ws_blocks &&
1005             sdkp->physical_block_size > logical_block_size) {
1006                 /*
1007                  * Reporting a maximum number of blocks that is not aligned
1008                  * on the device physical size would cause a large write same
1009                  * request to be split into physically unaligned chunks by
1010                  * __blkdev_issue_write_zeroes() even if the caller of this
1011                  * functions took care to align the large request. So make sure
1012                  * the maximum reported is aligned to the device physical block
1013                  * size. This is only an optional optimization for regular
1014                  * disks, but this is mandatory to avoid failure of large write
1015                  * same requests directed at sequential write required zones of
1016                  * host-managed ZBC disks.
1017                  */
1018                 sdkp->max_ws_blocks =
1019                         round_down(sdkp->max_ws_blocks,
1020                                    bytes_to_logical(sdkp->device,
1021                                                     sdkp->physical_block_size));
1022         }
1023
1024 out:
1025         blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1026                                          (logical_block_size >> 9));
1027 }
1028
1029 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1030 {
1031         struct request *rq = scsi_cmd_to_rq(cmd);
1032         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1033
1034         /* flush requests don't perform I/O, zero the S/G table */
1035         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1036
1037         if (cmd->device->use_16_for_sync) {
1038                 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1039                 cmd->cmd_len = 16;
1040         } else {
1041                 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1042                 cmd->cmd_len = 10;
1043         }
1044         cmd->transfersize = 0;
1045         cmd->allowed = sdkp->max_retries;
1046
1047         rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1048         return BLK_STS_OK;
1049 }
1050
1051 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1052                                        sector_t lba, unsigned int nr_blocks,
1053                                        unsigned char flags, unsigned int dld)
1054 {
1055         cmd->cmd_len = SD_EXT_CDB_SIZE;
1056         cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1057         cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1058         cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1059         cmd->cmnd[10] = flags;
1060         cmd->cmnd[11] = dld & 0x07;
1061         put_unaligned_be64(lba, &cmd->cmnd[12]);
1062         put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1063         put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1064
1065         return BLK_STS_OK;
1066 }
1067
1068 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1069                                        sector_t lba, unsigned int nr_blocks,
1070                                        unsigned char flags, unsigned int dld)
1071 {
1072         cmd->cmd_len  = 16;
1073         cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1074         cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1075         cmd->cmnd[14] = (dld & 0x03) << 6;
1076         cmd->cmnd[15] = 0;
1077         put_unaligned_be64(lba, &cmd->cmnd[2]);
1078         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1079
1080         return BLK_STS_OK;
1081 }
1082
1083 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1084                                        sector_t lba, unsigned int nr_blocks,
1085                                        unsigned char flags)
1086 {
1087         cmd->cmd_len = 10;
1088         cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1089         cmd->cmnd[1] = flags;
1090         cmd->cmnd[6] = 0;
1091         cmd->cmnd[9] = 0;
1092         put_unaligned_be32(lba, &cmd->cmnd[2]);
1093         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1094
1095         return BLK_STS_OK;
1096 }
1097
1098 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1099                                       sector_t lba, unsigned int nr_blocks,
1100                                       unsigned char flags)
1101 {
1102         /* Avoid that 0 blocks gets translated into 256 blocks. */
1103         if (WARN_ON_ONCE(nr_blocks == 0))
1104                 return BLK_STS_IOERR;
1105
1106         if (unlikely(flags & 0x8)) {
1107                 /*
1108                  * This happens only if this drive failed 10byte rw
1109                  * command with ILLEGAL_REQUEST during operation and
1110                  * thus turned off use_10_for_rw.
1111                  */
1112                 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1113                 return BLK_STS_IOERR;
1114         }
1115
1116         cmd->cmd_len = 6;
1117         cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1118         cmd->cmnd[1] = (lba >> 16) & 0x1f;
1119         cmd->cmnd[2] = (lba >> 8) & 0xff;
1120         cmd->cmnd[3] = lba & 0xff;
1121         cmd->cmnd[4] = nr_blocks;
1122         cmd->cmnd[5] = 0;
1123
1124         return BLK_STS_OK;
1125 }
1126
1127 /*
1128  * Check if a command has a duration limit set. If it does, and the target
1129  * device supports CDL and the feature is enabled, return the limit
1130  * descriptor index to use. Return 0 (no limit) otherwise.
1131  */
1132 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1133 {
1134         struct scsi_device *sdp = sdkp->device;
1135         int hint;
1136
1137         if (!sdp->cdl_supported || !sdp->cdl_enable)
1138                 return 0;
1139
1140         /*
1141          * Use "no limit" if the request ioprio does not specify a duration
1142          * limit hint.
1143          */
1144         hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1145         if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1146             hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1147                 return 0;
1148
1149         return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1150 }
1151
1152 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1153 {
1154         struct request *rq = scsi_cmd_to_rq(cmd);
1155         struct scsi_device *sdp = cmd->device;
1156         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1157         sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1158         sector_t threshold;
1159         unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1160         unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1161         bool write = rq_data_dir(rq) == WRITE;
1162         unsigned char protect, fua;
1163         unsigned int dld;
1164         blk_status_t ret;
1165         unsigned int dif;
1166         bool dix;
1167
1168         ret = scsi_alloc_sgtables(cmd);
1169         if (ret != BLK_STS_OK)
1170                 return ret;
1171
1172         ret = BLK_STS_IOERR;
1173         if (!scsi_device_online(sdp) || sdp->changed) {
1174                 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1175                 goto fail;
1176         }
1177
1178         if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1179                 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1180                 goto fail;
1181         }
1182
1183         if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1184                 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1185                 goto fail;
1186         }
1187
1188         /*
1189          * Some SD card readers can't handle accesses which touch the
1190          * last one or two logical blocks. Split accesses as needed.
1191          */
1192         threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1193
1194         if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1195                 if (lba < threshold) {
1196                         /* Access up to the threshold but not beyond */
1197                         nr_blocks = threshold - lba;
1198                 } else {
1199                         /* Access only a single logical block */
1200                         nr_blocks = 1;
1201                 }
1202         }
1203
1204         if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1205                 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1206                 if (ret)
1207                         goto fail;
1208         }
1209
1210         fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1211         dix = scsi_prot_sg_count(cmd);
1212         dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1213         dld = sd_cdl_dld(sdkp, cmd);
1214
1215         if (dif || dix)
1216                 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1217         else
1218                 protect = 0;
1219
1220         if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1221                 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1222                                          protect | fua, dld);
1223         } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1224                 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1225                                          protect | fua, dld);
1226         } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1227                    sdp->use_10_for_rw || protect) {
1228                 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1229                                          protect | fua);
1230         } else {
1231                 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1232                                         protect | fua);
1233         }
1234
1235         if (unlikely(ret != BLK_STS_OK))
1236                 goto fail;
1237
1238         /*
1239          * We shouldn't disconnect in the middle of a sector, so with a dumb
1240          * host adapter, it's safe to assume that we can at least transfer
1241          * this many bytes between each connect / disconnect.
1242          */
1243         cmd->transfersize = sdp->sector_size;
1244         cmd->underflow = nr_blocks << 9;
1245         cmd->allowed = sdkp->max_retries;
1246         cmd->sdb.length = nr_blocks * sdp->sector_size;
1247
1248         SCSI_LOG_HLQUEUE(1,
1249                          scmd_printk(KERN_INFO, cmd,
1250                                      "%s: block=%llu, count=%d\n", __func__,
1251                                      (unsigned long long)blk_rq_pos(rq),
1252                                      blk_rq_sectors(rq)));
1253         SCSI_LOG_HLQUEUE(2,
1254                          scmd_printk(KERN_INFO, cmd,
1255                                      "%s %d/%u 512 byte blocks.\n",
1256                                      write ? "writing" : "reading", nr_blocks,
1257                                      blk_rq_sectors(rq)));
1258
1259         /*
1260          * This indicates that the command is ready from our end to be queued.
1261          */
1262         return BLK_STS_OK;
1263 fail:
1264         scsi_free_sgtables(cmd);
1265         return ret;
1266 }
1267
1268 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1269 {
1270         struct request *rq = scsi_cmd_to_rq(cmd);
1271
1272         switch (req_op(rq)) {
1273         case REQ_OP_DISCARD:
1274                 switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1275                 case SD_LBP_UNMAP:
1276                         return sd_setup_unmap_cmnd(cmd);
1277                 case SD_LBP_WS16:
1278                         return sd_setup_write_same16_cmnd(cmd, true);
1279                 case SD_LBP_WS10:
1280                         return sd_setup_write_same10_cmnd(cmd, true);
1281                 case SD_LBP_ZERO:
1282                         return sd_setup_write_same10_cmnd(cmd, false);
1283                 default:
1284                         return BLK_STS_TARGET;
1285                 }
1286         case REQ_OP_WRITE_ZEROES:
1287                 return sd_setup_write_zeroes_cmnd(cmd);
1288         case REQ_OP_FLUSH:
1289                 return sd_setup_flush_cmnd(cmd);
1290         case REQ_OP_READ:
1291         case REQ_OP_WRITE:
1292         case REQ_OP_ZONE_APPEND:
1293                 return sd_setup_read_write_cmnd(cmd);
1294         case REQ_OP_ZONE_RESET:
1295                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1296                                                    false);
1297         case REQ_OP_ZONE_RESET_ALL:
1298                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1299                                                    true);
1300         case REQ_OP_ZONE_OPEN:
1301                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1302         case REQ_OP_ZONE_CLOSE:
1303                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1304         case REQ_OP_ZONE_FINISH:
1305                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1306         default:
1307                 WARN_ON_ONCE(1);
1308                 return BLK_STS_NOTSUPP;
1309         }
1310 }
1311
1312 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1313 {
1314         struct request *rq = scsi_cmd_to_rq(SCpnt);
1315
1316         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1317                 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1318 }
1319
1320 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1321 {
1322         if (sdkp->device->removable || sdkp->write_prot) {
1323                 if (disk_check_media_change(disk))
1324                         return true;
1325         }
1326
1327         /*
1328          * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1329          * nothing to do with partitions, BLKRRPART is used to force a full
1330          * revalidate after things like a format for historical reasons.
1331          */
1332         return test_bit(GD_NEED_PART_SCAN, &disk->state);
1333 }
1334
1335 /**
1336  *      sd_open - open a scsi disk device
1337  *      @disk: disk to open
1338  *      @mode: open mode
1339  *
1340  *      Returns 0 if successful. Returns a negated errno value in case 
1341  *      of error.
1342  *
1343  *      Note: This can be called from a user context (e.g. fsck(1) )
1344  *      or from within the kernel (e.g. as a result of a mount(1) ).
1345  *      In the latter case @inode and @filp carry an abridged amount
1346  *      of information as noted above.
1347  *
1348  *      Locking: called with disk->open_mutex held.
1349  **/
1350 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1351 {
1352         struct scsi_disk *sdkp = scsi_disk(disk);
1353         struct scsi_device *sdev = sdkp->device;
1354         int retval;
1355
1356         if (scsi_device_get(sdev))
1357                 return -ENXIO;
1358
1359         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1360
1361         /*
1362          * If the device is in error recovery, wait until it is done.
1363          * If the device is offline, then disallow any access to it.
1364          */
1365         retval = -ENXIO;
1366         if (!scsi_block_when_processing_errors(sdev))
1367                 goto error_out;
1368
1369         if (sd_need_revalidate(disk, sdkp))
1370                 sd_revalidate_disk(disk);
1371
1372         /*
1373          * If the drive is empty, just let the open fail.
1374          */
1375         retval = -ENOMEDIUM;
1376         if (sdev->removable && !sdkp->media_present &&
1377             !(mode & BLK_OPEN_NDELAY))
1378                 goto error_out;
1379
1380         /*
1381          * If the device has the write protect tab set, have the open fail
1382          * if the user expects to be able to write to the thing.
1383          */
1384         retval = -EROFS;
1385         if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1386                 goto error_out;
1387
1388         /*
1389          * It is possible that the disk changing stuff resulted in
1390          * the device being taken offline.  If this is the case,
1391          * report this to the user, and don't pretend that the
1392          * open actually succeeded.
1393          */
1394         retval = -ENXIO;
1395         if (!scsi_device_online(sdev))
1396                 goto error_out;
1397
1398         if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1399                 if (scsi_block_when_processing_errors(sdev))
1400                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1401         }
1402
1403         return 0;
1404
1405 error_out:
1406         scsi_device_put(sdev);
1407         return retval;  
1408 }
1409
1410 /**
1411  *      sd_release - invoked when the (last) close(2) is called on this
1412  *      scsi disk.
1413  *      @disk: disk to release
1414  *
1415  *      Returns 0. 
1416  *
1417  *      Note: may block (uninterruptible) if error recovery is underway
1418  *      on this disk.
1419  *
1420  *      Locking: called with disk->open_mutex held.
1421  **/
1422 static void sd_release(struct gendisk *disk)
1423 {
1424         struct scsi_disk *sdkp = scsi_disk(disk);
1425         struct scsi_device *sdev = sdkp->device;
1426
1427         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1428
1429         if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1430                 if (scsi_block_when_processing_errors(sdev))
1431                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1432         }
1433
1434         scsi_device_put(sdev);
1435 }
1436
1437 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1438 {
1439         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1440         struct scsi_device *sdp = sdkp->device;
1441         struct Scsi_Host *host = sdp->host;
1442         sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1443         int diskinfo[4];
1444
1445         /* default to most commonly used values */
1446         diskinfo[0] = 0x40;     /* 1 << 6 */
1447         diskinfo[1] = 0x20;     /* 1 << 5 */
1448         diskinfo[2] = capacity >> 11;
1449
1450         /* override with calculated, extended default, or driver values */
1451         if (host->hostt->bios_param)
1452                 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1453         else
1454                 scsicam_bios_param(bdev, capacity, diskinfo);
1455
1456         geo->heads = diskinfo[0];
1457         geo->sectors = diskinfo[1];
1458         geo->cylinders = diskinfo[2];
1459         return 0;
1460 }
1461
1462 /**
1463  *      sd_ioctl - process an ioctl
1464  *      @bdev: target block device
1465  *      @mode: open mode
1466  *      @cmd: ioctl command number
1467  *      @arg: this is third argument given to ioctl(2) system call.
1468  *      Often contains a pointer.
1469  *
1470  *      Returns 0 if successful (some ioctls return positive numbers on
1471  *      success as well). Returns a negated errno value in case of error.
1472  *
1473  *      Note: most ioctls are forward onto the block subsystem or further
1474  *      down in the scsi subsystem.
1475  **/
1476 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1477                     unsigned int cmd, unsigned long arg)
1478 {
1479         struct gendisk *disk = bdev->bd_disk;
1480         struct scsi_disk *sdkp = scsi_disk(disk);
1481         struct scsi_device *sdp = sdkp->device;
1482         void __user *p = (void __user *)arg;
1483         int error;
1484     
1485         SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1486                                     "cmd=0x%x\n", disk->disk_name, cmd));
1487
1488         if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1489                 return -ENOIOCTLCMD;
1490
1491         /*
1492          * If we are in the middle of error recovery, don't let anyone
1493          * else try and use this device.  Also, if error recovery fails, it
1494          * may try and take the device offline, in which case all further
1495          * access to the device is prohibited.
1496          */
1497         error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1498                         (mode & BLK_OPEN_NDELAY));
1499         if (error)
1500                 return error;
1501
1502         if (is_sed_ioctl(cmd))
1503                 return sed_ioctl(sdkp->opal_dev, cmd, p);
1504         return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1505 }
1506
1507 static void set_media_not_present(struct scsi_disk *sdkp)
1508 {
1509         if (sdkp->media_present)
1510                 sdkp->device->changed = 1;
1511
1512         if (sdkp->device->removable) {
1513                 sdkp->media_present = 0;
1514                 sdkp->capacity = 0;
1515         }
1516 }
1517
1518 static int media_not_present(struct scsi_disk *sdkp,
1519                              struct scsi_sense_hdr *sshdr)
1520 {
1521         if (!scsi_sense_valid(sshdr))
1522                 return 0;
1523
1524         /* not invoked for commands that could return deferred errors */
1525         switch (sshdr->sense_key) {
1526         case UNIT_ATTENTION:
1527         case NOT_READY:
1528                 /* medium not present */
1529                 if (sshdr->asc == 0x3A) {
1530                         set_media_not_present(sdkp);
1531                         return 1;
1532                 }
1533         }
1534         return 0;
1535 }
1536
1537 /**
1538  *      sd_check_events - check media events
1539  *      @disk: kernel device descriptor
1540  *      @clearing: disk events currently being cleared
1541  *
1542  *      Returns mask of DISK_EVENT_*.
1543  *
1544  *      Note: this function is invoked from the block subsystem.
1545  **/
1546 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1547 {
1548         struct scsi_disk *sdkp = disk->private_data;
1549         struct scsi_device *sdp;
1550         int retval;
1551         bool disk_changed;
1552
1553         if (!sdkp)
1554                 return 0;
1555
1556         sdp = sdkp->device;
1557         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1558
1559         /*
1560          * If the device is offline, don't send any commands - just pretend as
1561          * if the command failed.  If the device ever comes back online, we
1562          * can deal with it then.  It is only because of unrecoverable errors
1563          * that we would ever take a device offline in the first place.
1564          */
1565         if (!scsi_device_online(sdp)) {
1566                 set_media_not_present(sdkp);
1567                 goto out;
1568         }
1569
1570         /*
1571          * Using TEST_UNIT_READY enables differentiation between drive with
1572          * no cartridge loaded - NOT READY, drive with changed cartridge -
1573          * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1574          *
1575          * Drives that auto spin down. eg iomega jaz 1G, will be started
1576          * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1577          * sd_revalidate() is called.
1578          */
1579         if (scsi_block_when_processing_errors(sdp)) {
1580                 struct scsi_sense_hdr sshdr = { 0, };
1581
1582                 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1583                                               &sshdr);
1584
1585                 /* failed to execute TUR, assume media not present */
1586                 if (retval < 0 || host_byte(retval)) {
1587                         set_media_not_present(sdkp);
1588                         goto out;
1589                 }
1590
1591                 if (media_not_present(sdkp, &sshdr))
1592                         goto out;
1593         }
1594
1595         /*
1596          * For removable scsi disk we have to recognise the presence
1597          * of a disk in the drive.
1598          */
1599         if (!sdkp->media_present)
1600                 sdp->changed = 1;
1601         sdkp->media_present = 1;
1602 out:
1603         /*
1604          * sdp->changed is set under the following conditions:
1605          *
1606          *      Medium present state has changed in either direction.
1607          *      Device has indicated UNIT_ATTENTION.
1608          */
1609         disk_changed = sdp->changed;
1610         sdp->changed = 0;
1611         return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1612 }
1613
1614 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1615 {
1616         int retries, res;
1617         struct scsi_device *sdp = sdkp->device;
1618         const int timeout = sdp->request_queue->rq_timeout
1619                 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1620         struct scsi_sense_hdr my_sshdr;
1621         const struct scsi_exec_args exec_args = {
1622                 .req_flags = BLK_MQ_REQ_PM,
1623                 /* caller might not be interested in sense, but we need it */
1624                 .sshdr = sshdr ? : &my_sshdr,
1625         };
1626
1627         if (!scsi_device_online(sdp))
1628                 return -ENODEV;
1629
1630         sshdr = exec_args.sshdr;
1631
1632         for (retries = 3; retries > 0; --retries) {
1633                 unsigned char cmd[16] = { 0 };
1634
1635                 if (sdp->use_16_for_sync)
1636                         cmd[0] = SYNCHRONIZE_CACHE_16;
1637                 else
1638                         cmd[0] = SYNCHRONIZE_CACHE;
1639                 /*
1640                  * Leave the rest of the command zero to indicate
1641                  * flush everything.
1642                  */
1643                 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
1644                                        timeout, sdkp->max_retries, &exec_args);
1645                 if (res == 0)
1646                         break;
1647         }
1648
1649         if (res) {
1650                 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1651
1652                 if (res < 0)
1653                         return res;
1654
1655                 if (scsi_status_is_check_condition(res) &&
1656                     scsi_sense_valid(sshdr)) {
1657                         sd_print_sense_hdr(sdkp, sshdr);
1658
1659                         /* we need to evaluate the error return  */
1660                         if (sshdr->asc == 0x3a ||       /* medium not present */
1661                             sshdr->asc == 0x20 ||       /* invalid command */
1662                             (sshdr->asc == 0x74 && sshdr->ascq == 0x71))        /* drive is password locked */
1663                                 /* this is no error here */
1664                                 return 0;
1665                 }
1666
1667                 switch (host_byte(res)) {
1668                 /* ignore errors due to racing a disconnection */
1669                 case DID_BAD_TARGET:
1670                 case DID_NO_CONNECT:
1671                         return 0;
1672                 /* signal the upper layer it might try again */
1673                 case DID_BUS_BUSY:
1674                 case DID_IMM_RETRY:
1675                 case DID_REQUEUE:
1676                 case DID_SOFT_ERROR:
1677                         return -EBUSY;
1678                 default:
1679                         return -EIO;
1680                 }
1681         }
1682         return 0;
1683 }
1684
1685 static void sd_rescan(struct device *dev)
1686 {
1687         struct scsi_disk *sdkp = dev_get_drvdata(dev);
1688
1689         sd_revalidate_disk(sdkp->disk);
1690 }
1691
1692 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1693                 enum blk_unique_id type)
1694 {
1695         struct scsi_device *sdev = scsi_disk(disk)->device;
1696         const struct scsi_vpd *vpd;
1697         const unsigned char *d;
1698         int ret = -ENXIO, len;
1699
1700         rcu_read_lock();
1701         vpd = rcu_dereference(sdev->vpd_pg83);
1702         if (!vpd)
1703                 goto out_unlock;
1704
1705         ret = -EINVAL;
1706         for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1707                 /* we only care about designators with LU association */
1708                 if (((d[1] >> 4) & 0x3) != 0x00)
1709                         continue;
1710                 if ((d[1] & 0xf) != type)
1711                         continue;
1712
1713                 /*
1714                  * Only exit early if a 16-byte descriptor was found.  Otherwise
1715                  * keep looking as one with more entropy might still show up.
1716                  */
1717                 len = d[3];
1718                 if (len != 8 && len != 12 && len != 16)
1719                         continue;
1720                 ret = len;
1721                 memcpy(id, d + 4, len);
1722                 if (len == 16)
1723                         break;
1724         }
1725 out_unlock:
1726         rcu_read_unlock();
1727         return ret;
1728 }
1729
1730 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1731 {
1732         switch (host_byte(result)) {
1733         case DID_TRANSPORT_MARGINAL:
1734         case DID_TRANSPORT_DISRUPTED:
1735         case DID_BUS_BUSY:
1736                 return PR_STS_RETRY_PATH_FAILURE;
1737         case DID_NO_CONNECT:
1738                 return PR_STS_PATH_FAILED;
1739         case DID_TRANSPORT_FAILFAST:
1740                 return PR_STS_PATH_FAST_FAILED;
1741         }
1742
1743         switch (status_byte(result)) {
1744         case SAM_STAT_RESERVATION_CONFLICT:
1745                 return PR_STS_RESERVATION_CONFLICT;
1746         case SAM_STAT_CHECK_CONDITION:
1747                 if (!scsi_sense_valid(sshdr))
1748                         return PR_STS_IOERR;
1749
1750                 if (sshdr->sense_key == ILLEGAL_REQUEST &&
1751                     (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1752                         return -EINVAL;
1753
1754                 fallthrough;
1755         default:
1756                 return PR_STS_IOERR;
1757         }
1758 }
1759
1760 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1761                             unsigned char *data, int data_len)
1762 {
1763         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1764         struct scsi_device *sdev = sdkp->device;
1765         struct scsi_sense_hdr sshdr;
1766         u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1767         const struct scsi_exec_args exec_args = {
1768                 .sshdr = &sshdr,
1769         };
1770         int result;
1771
1772         put_unaligned_be16(data_len, &cmd[7]);
1773
1774         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1775                                   SD_TIMEOUT, sdkp->max_retries, &exec_args);
1776         if (scsi_status_is_check_condition(result) &&
1777             scsi_sense_valid(&sshdr)) {
1778                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1779                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1780         }
1781
1782         if (result <= 0)
1783                 return result;
1784
1785         return sd_scsi_to_pr_err(&sshdr, result);
1786 }
1787
1788 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1789 {
1790         int result, i, data_offset, num_copy_keys;
1791         u32 num_keys = keys_info->num_keys;
1792         int data_len = num_keys * 8 + 8;
1793         u8 *data;
1794
1795         data = kzalloc(data_len, GFP_KERNEL);
1796         if (!data)
1797                 return -ENOMEM;
1798
1799         result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1800         if (result)
1801                 goto free_data;
1802
1803         keys_info->generation = get_unaligned_be32(&data[0]);
1804         keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1805
1806         data_offset = 8;
1807         num_copy_keys = min(num_keys, keys_info->num_keys);
1808
1809         for (i = 0; i < num_copy_keys; i++) {
1810                 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1811                 data_offset += 8;
1812         }
1813
1814 free_data:
1815         kfree(data);
1816         return result;
1817 }
1818
1819 static int sd_pr_read_reservation(struct block_device *bdev,
1820                                   struct pr_held_reservation *rsv)
1821 {
1822         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1823         struct scsi_device *sdev = sdkp->device;
1824         u8 data[24] = { };
1825         int result, len;
1826
1827         result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
1828         if (result)
1829                 return result;
1830
1831         len = get_unaligned_be32(&data[4]);
1832         if (!len)
1833                 return 0;
1834
1835         /* Make sure we have at least the key and type */
1836         if (len < 14) {
1837                 sdev_printk(KERN_INFO, sdev,
1838                             "READ RESERVATION failed due to short return buffer of %d bytes\n",
1839                             len);
1840                 return -EINVAL;
1841         }
1842
1843         rsv->generation = get_unaligned_be32(&data[0]);
1844         rsv->key = get_unaligned_be64(&data[8]);
1845         rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
1846         return 0;
1847 }
1848
1849 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1850                              u64 sa_key, enum scsi_pr_type type, u8 flags)
1851 {
1852         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1853         struct scsi_device *sdev = sdkp->device;
1854         struct scsi_sense_hdr sshdr;
1855         const struct scsi_exec_args exec_args = {
1856                 .sshdr = &sshdr,
1857         };
1858         int result;
1859         u8 cmd[16] = { 0, };
1860         u8 data[24] = { 0, };
1861
1862         cmd[0] = PERSISTENT_RESERVE_OUT;
1863         cmd[1] = sa;
1864         cmd[2] = type;
1865         put_unaligned_be32(sizeof(data), &cmd[5]);
1866
1867         put_unaligned_be64(key, &data[0]);
1868         put_unaligned_be64(sa_key, &data[8]);
1869         data[20] = flags;
1870
1871         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1872                                   sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1873                                   &exec_args);
1874
1875         if (scsi_status_is_check_condition(result) &&
1876             scsi_sense_valid(&sshdr)) {
1877                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1878                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1879         }
1880
1881         if (result <= 0)
1882                 return result;
1883
1884         return sd_scsi_to_pr_err(&sshdr, result);
1885 }
1886
1887 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1888                 u32 flags)
1889 {
1890         if (flags & ~PR_FL_IGNORE_KEY)
1891                 return -EOPNOTSUPP;
1892         return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1893                         old_key, new_key, 0,
1894                         (1 << 0) /* APTPL */);
1895 }
1896
1897 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1898                 u32 flags)
1899 {
1900         if (flags)
1901                 return -EOPNOTSUPP;
1902         return sd_pr_out_command(bdev, 0x01, key, 0,
1903                                  block_pr_type_to_scsi(type), 0);
1904 }
1905
1906 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1907 {
1908         return sd_pr_out_command(bdev, 0x02, key, 0,
1909                                  block_pr_type_to_scsi(type), 0);
1910 }
1911
1912 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1913                 enum pr_type type, bool abort)
1914 {
1915         return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1916                                  block_pr_type_to_scsi(type), 0);
1917 }
1918
1919 static int sd_pr_clear(struct block_device *bdev, u64 key)
1920 {
1921         return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
1922 }
1923
1924 static const struct pr_ops sd_pr_ops = {
1925         .pr_register    = sd_pr_register,
1926         .pr_reserve     = sd_pr_reserve,
1927         .pr_release     = sd_pr_release,
1928         .pr_preempt     = sd_pr_preempt,
1929         .pr_clear       = sd_pr_clear,
1930         .pr_read_keys   = sd_pr_read_keys,
1931         .pr_read_reservation = sd_pr_read_reservation,
1932 };
1933
1934 static void scsi_disk_free_disk(struct gendisk *disk)
1935 {
1936         struct scsi_disk *sdkp = scsi_disk(disk);
1937
1938         put_device(&sdkp->disk_dev);
1939 }
1940
1941 static const struct block_device_operations sd_fops = {
1942         .owner                  = THIS_MODULE,
1943         .open                   = sd_open,
1944         .release                = sd_release,
1945         .ioctl                  = sd_ioctl,
1946         .getgeo                 = sd_getgeo,
1947         .compat_ioctl           = blkdev_compat_ptr_ioctl,
1948         .check_events           = sd_check_events,
1949         .unlock_native_capacity = sd_unlock_native_capacity,
1950         .report_zones           = sd_zbc_report_zones,
1951         .get_unique_id          = sd_get_unique_id,
1952         .free_disk              = scsi_disk_free_disk,
1953         .pr_ops                 = &sd_pr_ops,
1954 };
1955
1956 /**
1957  *      sd_eh_reset - reset error handling callback
1958  *      @scmd:          sd-issued command that has failed
1959  *
1960  *      This function is called by the SCSI midlayer before starting
1961  *      SCSI EH. When counting medium access failures we have to be
1962  *      careful to register it only only once per device and SCSI EH run;
1963  *      there might be several timed out commands which will cause the
1964  *      'max_medium_access_timeouts' counter to trigger after the first
1965  *      SCSI EH run already and set the device to offline.
1966  *      So this function resets the internal counter before starting SCSI EH.
1967  **/
1968 static void sd_eh_reset(struct scsi_cmnd *scmd)
1969 {
1970         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1971
1972         /* New SCSI EH run, reset gate variable */
1973         sdkp->ignore_medium_access_errors = false;
1974 }
1975
1976 /**
1977  *      sd_eh_action - error handling callback
1978  *      @scmd:          sd-issued command that has failed
1979  *      @eh_disp:       The recovery disposition suggested by the midlayer
1980  *
1981  *      This function is called by the SCSI midlayer upon completion of an
1982  *      error test command (currently TEST UNIT READY). The result of sending
1983  *      the eh command is passed in eh_disp.  We're looking for devices that
1984  *      fail medium access commands but are OK with non access commands like
1985  *      test unit ready (so wrongly see the device as having a successful
1986  *      recovery)
1987  **/
1988 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1989 {
1990         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1991         struct scsi_device *sdev = scmd->device;
1992
1993         if (!scsi_device_online(sdev) ||
1994             !scsi_medium_access_command(scmd) ||
1995             host_byte(scmd->result) != DID_TIME_OUT ||
1996             eh_disp != SUCCESS)
1997                 return eh_disp;
1998
1999         /*
2000          * The device has timed out executing a medium access command.
2001          * However, the TEST UNIT READY command sent during error
2002          * handling completed successfully. Either the device is in the
2003          * process of recovering or has it suffered an internal failure
2004          * that prevents access to the storage medium.
2005          */
2006         if (!sdkp->ignore_medium_access_errors) {
2007                 sdkp->medium_access_timed_out++;
2008                 sdkp->ignore_medium_access_errors = true;
2009         }
2010
2011         /*
2012          * If the device keeps failing read/write commands but TEST UNIT
2013          * READY always completes successfully we assume that medium
2014          * access is no longer possible and take the device offline.
2015          */
2016         if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2017                 scmd_printk(KERN_ERR, scmd,
2018                             "Medium access timeout failure. Offlining disk!\n");
2019                 mutex_lock(&sdev->state_mutex);
2020                 scsi_device_set_state(sdev, SDEV_OFFLINE);
2021                 mutex_unlock(&sdev->state_mutex);
2022
2023                 return SUCCESS;
2024         }
2025
2026         return eh_disp;
2027 }
2028
2029 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2030 {
2031         struct request *req = scsi_cmd_to_rq(scmd);
2032         struct scsi_device *sdev = scmd->device;
2033         unsigned int transferred, good_bytes;
2034         u64 start_lba, end_lba, bad_lba;
2035
2036         /*
2037          * Some commands have a payload smaller than the device logical
2038          * block size (e.g. INQUIRY on a 4K disk).
2039          */
2040         if (scsi_bufflen(scmd) <= sdev->sector_size)
2041                 return 0;
2042
2043         /* Check if we have a 'bad_lba' information */
2044         if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2045                                      SCSI_SENSE_BUFFERSIZE,
2046                                      &bad_lba))
2047                 return 0;
2048
2049         /*
2050          * If the bad lba was reported incorrectly, we have no idea where
2051          * the error is.
2052          */
2053         start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2054         end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2055         if (bad_lba < start_lba || bad_lba >= end_lba)
2056                 return 0;
2057
2058         /*
2059          * resid is optional but mostly filled in.  When it's unused,
2060          * its value is zero, so we assume the whole buffer transferred
2061          */
2062         transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2063
2064         /* This computation should always be done in terms of the
2065          * resolution of the device's medium.
2066          */
2067         good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2068
2069         return min(good_bytes, transferred);
2070 }
2071
2072 /**
2073  *      sd_done - bottom half handler: called when the lower level
2074  *      driver has completed (successfully or otherwise) a scsi command.
2075  *      @SCpnt: mid-level's per command structure.
2076  *
2077  *      Note: potentially run from within an ISR. Must not block.
2078  **/
2079 static int sd_done(struct scsi_cmnd *SCpnt)
2080 {
2081         int result = SCpnt->result;
2082         unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2083         unsigned int sector_size = SCpnt->device->sector_size;
2084         unsigned int resid;
2085         struct scsi_sense_hdr sshdr;
2086         struct request *req = scsi_cmd_to_rq(SCpnt);
2087         struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2088         int sense_valid = 0;
2089         int sense_deferred = 0;
2090
2091         switch (req_op(req)) {
2092         case REQ_OP_DISCARD:
2093         case REQ_OP_WRITE_ZEROES:
2094         case REQ_OP_ZONE_RESET:
2095         case REQ_OP_ZONE_RESET_ALL:
2096         case REQ_OP_ZONE_OPEN:
2097         case REQ_OP_ZONE_CLOSE:
2098         case REQ_OP_ZONE_FINISH:
2099                 if (!result) {
2100                         good_bytes = blk_rq_bytes(req);
2101                         scsi_set_resid(SCpnt, 0);
2102                 } else {
2103                         good_bytes = 0;
2104                         scsi_set_resid(SCpnt, blk_rq_bytes(req));
2105                 }
2106                 break;
2107         default:
2108                 /*
2109                  * In case of bogus fw or device, we could end up having
2110                  * an unaligned partial completion. Check this here and force
2111                  * alignment.
2112                  */
2113                 resid = scsi_get_resid(SCpnt);
2114                 if (resid & (sector_size - 1)) {
2115                         sd_printk(KERN_INFO, sdkp,
2116                                 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2117                                 resid, sector_size);
2118                         scsi_print_command(SCpnt);
2119                         resid = min(scsi_bufflen(SCpnt),
2120                                     round_up(resid, sector_size));
2121                         scsi_set_resid(SCpnt, resid);
2122                 }
2123         }
2124
2125         if (result) {
2126                 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2127                 if (sense_valid)
2128                         sense_deferred = scsi_sense_is_deferred(&sshdr);
2129         }
2130         sdkp->medium_access_timed_out = 0;
2131
2132         if (!scsi_status_is_check_condition(result) &&
2133             (!sense_valid || sense_deferred))
2134                 goto out;
2135
2136         switch (sshdr.sense_key) {
2137         case HARDWARE_ERROR:
2138         case MEDIUM_ERROR:
2139                 good_bytes = sd_completed_bytes(SCpnt);
2140                 break;
2141         case RECOVERED_ERROR:
2142                 good_bytes = scsi_bufflen(SCpnt);
2143                 break;
2144         case NO_SENSE:
2145                 /* This indicates a false check condition, so ignore it.  An
2146                  * unknown amount of data was transferred so treat it as an
2147                  * error.
2148                  */
2149                 SCpnt->result = 0;
2150                 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2151                 break;
2152         case ABORTED_COMMAND:
2153                 if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2154                         good_bytes = sd_completed_bytes(SCpnt);
2155                 break;
2156         case ILLEGAL_REQUEST:
2157                 switch (sshdr.asc) {
2158                 case 0x10:      /* DIX: Host detected corruption */
2159                         good_bytes = sd_completed_bytes(SCpnt);
2160                         break;
2161                 case 0x20:      /* INVALID COMMAND OPCODE */
2162                 case 0x24:      /* INVALID FIELD IN CDB */
2163                         switch (SCpnt->cmnd[0]) {
2164                         case UNMAP:
2165                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2166                                 break;
2167                         case WRITE_SAME_16:
2168                         case WRITE_SAME:
2169                                 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2170                                         sd_config_discard(sdkp, SD_LBP_DISABLE);
2171                                 } else {
2172                                         sdkp->device->no_write_same = 1;
2173                                         sd_config_write_same(sdkp);
2174                                         req->rq_flags |= RQF_QUIET;
2175                                 }
2176                                 break;
2177                         }
2178                 }
2179                 break;
2180         default:
2181                 break;
2182         }
2183
2184  out:
2185         if (sd_is_zoned(sdkp))
2186                 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2187
2188         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2189                                            "sd_done: completed %d of %d bytes\n",
2190                                            good_bytes, scsi_bufflen(SCpnt)));
2191
2192         return good_bytes;
2193 }
2194
2195 /*
2196  * spinup disk - called only in sd_revalidate_disk()
2197  */
2198 static void
2199 sd_spinup_disk(struct scsi_disk *sdkp)
2200 {
2201         unsigned char cmd[10];
2202         unsigned long spintime_expire = 0;
2203         int retries, spintime;
2204         unsigned int the_result;
2205         struct scsi_sense_hdr sshdr;
2206         const struct scsi_exec_args exec_args = {
2207                 .sshdr = &sshdr,
2208         };
2209         int sense_valid = 0;
2210
2211         spintime = 0;
2212
2213         /* Spin up drives, as required.  Only do this at boot time */
2214         /* Spinup needs to be done for module loads too. */
2215         do {
2216                 retries = 0;
2217
2218                 do {
2219                         bool media_was_present = sdkp->media_present;
2220
2221                         cmd[0] = TEST_UNIT_READY;
2222                         memset((void *) &cmd[1], 0, 9);
2223
2224                         the_result = scsi_execute_cmd(sdkp->device, cmd,
2225                                                       REQ_OP_DRV_IN, NULL, 0,
2226                                                       SD_TIMEOUT,
2227                                                       sdkp->max_retries,
2228                                                       &exec_args);
2229
2230                         /*
2231                          * If the drive has indicated to us that it
2232                          * doesn't have any media in it, don't bother
2233                          * with any more polling.
2234                          */
2235                         if (media_not_present(sdkp, &sshdr)) {
2236                                 if (media_was_present)
2237                                         sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2238                                 return;
2239                         }
2240
2241                         if (the_result)
2242                                 sense_valid = scsi_sense_valid(&sshdr);
2243                         retries++;
2244                 } while (retries < 3 &&
2245                          (!scsi_status_is_good(the_result) ||
2246                           (scsi_status_is_check_condition(the_result) &&
2247                           sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2248
2249                 if (!scsi_status_is_check_condition(the_result)) {
2250                         /* no sense, TUR either succeeded or failed
2251                          * with a status error */
2252                         if(!spintime && !scsi_status_is_good(the_result)) {
2253                                 sd_print_result(sdkp, "Test Unit Ready failed",
2254                                                 the_result);
2255                         }
2256                         break;
2257                 }
2258
2259                 /*
2260                  * The device does not want the automatic start to be issued.
2261                  */
2262                 if (sdkp->device->no_start_on_add)
2263                         break;
2264
2265                 if (sense_valid && sshdr.sense_key == NOT_READY) {
2266                         if (sshdr.asc == 4 && sshdr.ascq == 3)
2267                                 break;  /* manual intervention required */
2268                         if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2269                                 break;  /* standby */
2270                         if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2271                                 break;  /* unavailable */
2272                         if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2273                                 break;  /* sanitize in progress */
2274                         /*
2275                          * Issue command to spin up drive when not ready
2276                          */
2277                         if (!spintime) {
2278                                 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2279                                 cmd[0] = START_STOP;
2280                                 cmd[1] = 1;     /* Return immediately */
2281                                 memset((void *) &cmd[2], 0, 8);
2282                                 cmd[4] = 1;     /* Start spin cycle */
2283                                 if (sdkp->device->start_stop_pwr_cond)
2284                                         cmd[4] |= 1 << 4;
2285                                 scsi_execute_cmd(sdkp->device, cmd,
2286                                                  REQ_OP_DRV_IN, NULL, 0,
2287                                                  SD_TIMEOUT, sdkp->max_retries,
2288                                                  &exec_args);
2289                                 spintime_expire = jiffies + 100 * HZ;
2290                                 spintime = 1;
2291                         }
2292                         /* Wait 1 second for next try */
2293                         msleep(1000);
2294                         printk(KERN_CONT ".");
2295
2296                 /*
2297                  * Wait for USB flash devices with slow firmware.
2298                  * Yes, this sense key/ASC combination shouldn't
2299                  * occur here.  It's characteristic of these devices.
2300                  */
2301                 } else if (sense_valid &&
2302                                 sshdr.sense_key == UNIT_ATTENTION &&
2303                                 sshdr.asc == 0x28) {
2304                         if (!spintime) {
2305                                 spintime_expire = jiffies + 5 * HZ;
2306                                 spintime = 1;
2307                         }
2308                         /* Wait 1 second for next try */
2309                         msleep(1000);
2310                 } else {
2311                         /* we don't understand the sense code, so it's
2312                          * probably pointless to loop */
2313                         if(!spintime) {
2314                                 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2315                                 sd_print_sense_hdr(sdkp, &sshdr);
2316                         }
2317                         break;
2318                 }
2319                                 
2320         } while (spintime && time_before_eq(jiffies, spintime_expire));
2321
2322         if (spintime) {
2323                 if (scsi_status_is_good(the_result))
2324                         printk(KERN_CONT "ready\n");
2325                 else
2326                         printk(KERN_CONT "not responding...\n");
2327         }
2328 }
2329
2330 /*
2331  * Determine whether disk supports Data Integrity Field.
2332  */
2333 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2334 {
2335         struct scsi_device *sdp = sdkp->device;
2336         u8 type;
2337
2338         if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2339                 sdkp->protection_type = 0;
2340                 return 0;
2341         }
2342
2343         type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2344
2345         if (type > T10_PI_TYPE3_PROTECTION) {
2346                 sd_printk(KERN_ERR, sdkp, "formatted with unsupported"  \
2347                           " protection type %u. Disabling disk!\n",
2348                           type);
2349                 sdkp->protection_type = 0;
2350                 return -ENODEV;
2351         }
2352
2353         sdkp->protection_type = type;
2354
2355         return 0;
2356 }
2357
2358 static void sd_config_protection(struct scsi_disk *sdkp)
2359 {
2360         struct scsi_device *sdp = sdkp->device;
2361
2362         sd_dif_config_host(sdkp);
2363
2364         if (!sdkp->protection_type)
2365                 return;
2366
2367         if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2368                 sd_first_printk(KERN_NOTICE, sdkp,
2369                                 "Disabling DIF Type %u protection\n",
2370                                 sdkp->protection_type);
2371                 sdkp->protection_type = 0;
2372         }
2373
2374         sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2375                         sdkp->protection_type);
2376 }
2377
2378 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2379                         struct scsi_sense_hdr *sshdr, int sense_valid,
2380                         int the_result)
2381 {
2382         if (sense_valid)
2383                 sd_print_sense_hdr(sdkp, sshdr);
2384         else
2385                 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2386
2387         /*
2388          * Set dirty bit for removable devices if not ready -
2389          * sometimes drives will not report this properly.
2390          */
2391         if (sdp->removable &&
2392             sense_valid && sshdr->sense_key == NOT_READY)
2393                 set_media_not_present(sdkp);
2394
2395         /*
2396          * We used to set media_present to 0 here to indicate no media
2397          * in the drive, but some drives fail read capacity even with
2398          * media present, so we can't do that.
2399          */
2400         sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2401 }
2402
2403 #define RC16_LEN 32
2404 #if RC16_LEN > SD_BUF_SIZE
2405 #error RC16_LEN must not be more than SD_BUF_SIZE
2406 #endif
2407
2408 #define READ_CAPACITY_RETRIES_ON_RESET  10
2409
2410 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2411                                                 unsigned char *buffer)
2412 {
2413         unsigned char cmd[16];
2414         struct scsi_sense_hdr sshdr;
2415         const struct scsi_exec_args exec_args = {
2416                 .sshdr = &sshdr,
2417         };
2418         int sense_valid = 0;
2419         int the_result;
2420         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2421         unsigned int alignment;
2422         unsigned long long lba;
2423         unsigned sector_size;
2424
2425         if (sdp->no_read_capacity_16)
2426                 return -EINVAL;
2427
2428         do {
2429                 memset(cmd, 0, 16);
2430                 cmd[0] = SERVICE_ACTION_IN_16;
2431                 cmd[1] = SAI_READ_CAPACITY_16;
2432                 cmd[13] = RC16_LEN;
2433                 memset(buffer, 0, RC16_LEN);
2434
2435                 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2436                                               buffer, RC16_LEN, SD_TIMEOUT,
2437                                               sdkp->max_retries, &exec_args);
2438
2439                 if (media_not_present(sdkp, &sshdr))
2440                         return -ENODEV;
2441
2442                 if (the_result > 0) {
2443                         sense_valid = scsi_sense_valid(&sshdr);
2444                         if (sense_valid &&
2445                             sshdr.sense_key == ILLEGAL_REQUEST &&
2446                             (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2447                             sshdr.ascq == 0x00)
2448                                 /* Invalid Command Operation Code or
2449                                  * Invalid Field in CDB, just retry
2450                                  * silently with RC10 */
2451                                 return -EINVAL;
2452                         if (sense_valid &&
2453                             sshdr.sense_key == UNIT_ATTENTION &&
2454                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2455                                 /* Device reset might occur several times,
2456                                  * give it one more chance */
2457                                 if (--reset_retries > 0)
2458                                         continue;
2459                 }
2460                 retries--;
2461
2462         } while (the_result && retries);
2463
2464         if (the_result) {
2465                 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2466                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2467                 return -EINVAL;
2468         }
2469
2470         sector_size = get_unaligned_be32(&buffer[8]);
2471         lba = get_unaligned_be64(&buffer[0]);
2472
2473         if (sd_read_protection_type(sdkp, buffer) < 0) {
2474                 sdkp->capacity = 0;
2475                 return -ENODEV;
2476         }
2477
2478         /* Logical blocks per physical block exponent */
2479         sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2480
2481         /* RC basis */
2482         sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2483
2484         /* Lowest aligned logical block */
2485         alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2486         blk_queue_alignment_offset(sdp->request_queue, alignment);
2487         if (alignment && sdkp->first_scan)
2488                 sd_printk(KERN_NOTICE, sdkp,
2489                           "physical block alignment offset: %u\n", alignment);
2490
2491         if (buffer[14] & 0x80) { /* LBPME */
2492                 sdkp->lbpme = 1;
2493
2494                 if (buffer[14] & 0x40) /* LBPRZ */
2495                         sdkp->lbprz = 1;
2496
2497                 sd_config_discard(sdkp, SD_LBP_WS16);
2498         }
2499
2500         sdkp->capacity = lba + 1;
2501         return sector_size;
2502 }
2503
2504 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2505                                                 unsigned char *buffer)
2506 {
2507         unsigned char cmd[16];
2508         struct scsi_sense_hdr sshdr;
2509         const struct scsi_exec_args exec_args = {
2510                 .sshdr = &sshdr,
2511         };
2512         int sense_valid = 0;
2513         int the_result;
2514         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2515         sector_t lba;
2516         unsigned sector_size;
2517
2518         do {
2519                 cmd[0] = READ_CAPACITY;
2520                 memset(&cmd[1], 0, 9);
2521                 memset(buffer, 0, 8);
2522
2523                 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2524                                               8, SD_TIMEOUT, sdkp->max_retries,
2525                                               &exec_args);
2526
2527                 if (media_not_present(sdkp, &sshdr))
2528                         return -ENODEV;
2529
2530                 if (the_result > 0) {
2531                         sense_valid = scsi_sense_valid(&sshdr);
2532                         if (sense_valid &&
2533                             sshdr.sense_key == UNIT_ATTENTION &&
2534                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2535                                 /* Device reset might occur several times,
2536                                  * give it one more chance */
2537                                 if (--reset_retries > 0)
2538                                         continue;
2539                 }
2540                 retries--;
2541
2542         } while (the_result && retries);
2543
2544         if (the_result) {
2545                 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2546                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2547                 return -EINVAL;
2548         }
2549
2550         sector_size = get_unaligned_be32(&buffer[4]);
2551         lba = get_unaligned_be32(&buffer[0]);
2552
2553         if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2554                 /* Some buggy (usb cardreader) devices return an lba of
2555                    0xffffffff when the want to report a size of 0 (with
2556                    which they really mean no media is present) */
2557                 sdkp->capacity = 0;
2558                 sdkp->physical_block_size = sector_size;
2559                 return sector_size;
2560         }
2561
2562         sdkp->capacity = lba + 1;
2563         sdkp->physical_block_size = sector_size;
2564         return sector_size;
2565 }
2566
2567 static int sd_try_rc16_first(struct scsi_device *sdp)
2568 {
2569         if (sdp->host->max_cmd_len < 16)
2570                 return 0;
2571         if (sdp->try_rc_10_first)
2572                 return 0;
2573         if (sdp->scsi_level > SCSI_SPC_2)
2574                 return 1;
2575         if (scsi_device_protection(sdp))
2576                 return 1;
2577         return 0;
2578 }
2579
2580 /*
2581  * read disk capacity
2582  */
2583 static void
2584 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2585 {
2586         int sector_size;
2587         struct scsi_device *sdp = sdkp->device;
2588
2589         if (sd_try_rc16_first(sdp)) {
2590                 sector_size = read_capacity_16(sdkp, sdp, buffer);
2591                 if (sector_size == -EOVERFLOW)
2592                         goto got_data;
2593                 if (sector_size == -ENODEV)
2594                         return;
2595                 if (sector_size < 0)
2596                         sector_size = read_capacity_10(sdkp, sdp, buffer);
2597                 if (sector_size < 0)
2598                         return;
2599         } else {
2600                 sector_size = read_capacity_10(sdkp, sdp, buffer);
2601                 if (sector_size == -EOVERFLOW)
2602                         goto got_data;
2603                 if (sector_size < 0)
2604                         return;
2605                 if ((sizeof(sdkp->capacity) > 4) &&
2606                     (sdkp->capacity > 0xffffffffULL)) {
2607                         int old_sector_size = sector_size;
2608                         sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2609                                         "Trying to use READ CAPACITY(16).\n");
2610                         sector_size = read_capacity_16(sdkp, sdp, buffer);
2611                         if (sector_size < 0) {
2612                                 sd_printk(KERN_NOTICE, sdkp,
2613                                         "Using 0xffffffff as device size\n");
2614                                 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2615                                 sector_size = old_sector_size;
2616                                 goto got_data;
2617                         }
2618                         /* Remember that READ CAPACITY(16) succeeded */
2619                         sdp->try_rc_10_first = 0;
2620                 }
2621         }
2622
2623         /* Some devices are known to return the total number of blocks,
2624          * not the highest block number.  Some devices have versions
2625          * which do this and others which do not.  Some devices we might
2626          * suspect of doing this but we don't know for certain.
2627          *
2628          * If we know the reported capacity is wrong, decrement it.  If
2629          * we can only guess, then assume the number of blocks is even
2630          * (usually true but not always) and err on the side of lowering
2631          * the capacity.
2632          */
2633         if (sdp->fix_capacity ||
2634             (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2635                 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2636                                 "from its reported value: %llu\n",
2637                                 (unsigned long long) sdkp->capacity);
2638                 --sdkp->capacity;
2639         }
2640
2641 got_data:
2642         if (sector_size == 0) {
2643                 sector_size = 512;
2644                 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2645                           "assuming 512.\n");
2646         }
2647
2648         if (sector_size != 512 &&
2649             sector_size != 1024 &&
2650             sector_size != 2048 &&
2651             sector_size != 4096) {
2652                 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2653                           sector_size);
2654                 /*
2655                  * The user might want to re-format the drive with
2656                  * a supported sectorsize.  Once this happens, it
2657                  * would be relatively trivial to set the thing up.
2658                  * For this reason, we leave the thing in the table.
2659                  */
2660                 sdkp->capacity = 0;
2661                 /*
2662                  * set a bogus sector size so the normal read/write
2663                  * logic in the block layer will eventually refuse any
2664                  * request on this device without tripping over power
2665                  * of two sector size assumptions
2666                  */
2667                 sector_size = 512;
2668         }
2669         blk_queue_logical_block_size(sdp->request_queue, sector_size);
2670         blk_queue_physical_block_size(sdp->request_queue,
2671                                       sdkp->physical_block_size);
2672         sdkp->device->sector_size = sector_size;
2673
2674         if (sdkp->capacity > 0xffffffff)
2675                 sdp->use_16_for_rw = 1;
2676
2677 }
2678
2679 /*
2680  * Print disk capacity
2681  */
2682 static void
2683 sd_print_capacity(struct scsi_disk *sdkp,
2684                   sector_t old_capacity)
2685 {
2686         int sector_size = sdkp->device->sector_size;
2687         char cap_str_2[10], cap_str_10[10];
2688
2689         if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2690                 return;
2691
2692         string_get_size(sdkp->capacity, sector_size,
2693                         STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2694         string_get_size(sdkp->capacity, sector_size,
2695                         STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2696
2697         sd_printk(KERN_NOTICE, sdkp,
2698                   "%llu %d-byte logical blocks: (%s/%s)\n",
2699                   (unsigned long long)sdkp->capacity,
2700                   sector_size, cap_str_10, cap_str_2);
2701
2702         if (sdkp->physical_block_size != sector_size)
2703                 sd_printk(KERN_NOTICE, sdkp,
2704                           "%u-byte physical blocks\n",
2705                           sdkp->physical_block_size);
2706 }
2707
2708 /* called with buffer of length 512 */
2709 static inline int
2710 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2711                  unsigned char *buffer, int len, struct scsi_mode_data *data,
2712                  struct scsi_sense_hdr *sshdr)
2713 {
2714         /*
2715          * If we must use MODE SENSE(10), make sure that the buffer length
2716          * is at least 8 bytes so that the mode sense header fits.
2717          */
2718         if (sdkp->device->use_10_for_ms && len < 8)
2719                 len = 8;
2720
2721         return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2722                                SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2723 }
2724
2725 /*
2726  * read write protect setting, if possible - called only in sd_revalidate_disk()
2727  * called with buffer of length SD_BUF_SIZE
2728  */
2729 static void
2730 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2731 {
2732         int res;
2733         struct scsi_device *sdp = sdkp->device;
2734         struct scsi_mode_data data;
2735         int old_wp = sdkp->write_prot;
2736
2737         set_disk_ro(sdkp->disk, 0);
2738         if (sdp->skip_ms_page_3f) {
2739                 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2740                 return;
2741         }
2742
2743         if (sdp->use_192_bytes_for_3f) {
2744                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2745         } else {
2746                 /*
2747                  * First attempt: ask for all pages (0x3F), but only 4 bytes.
2748                  * We have to start carefully: some devices hang if we ask
2749                  * for more than is available.
2750                  */
2751                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2752
2753                 /*
2754                  * Second attempt: ask for page 0 When only page 0 is
2755                  * implemented, a request for page 3F may return Sense Key
2756                  * 5: Illegal Request, Sense Code 24: Invalid field in
2757                  * CDB.
2758                  */
2759                 if (res < 0)
2760                         res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2761
2762                 /*
2763                  * Third attempt: ask 255 bytes, as we did earlier.
2764                  */
2765                 if (res < 0)
2766                         res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2767                                                &data, NULL);
2768         }
2769
2770         if (res < 0) {
2771                 sd_first_printk(KERN_WARNING, sdkp,
2772                           "Test WP failed, assume Write Enabled\n");
2773         } else {
2774                 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2775                 set_disk_ro(sdkp->disk, sdkp->write_prot);
2776                 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2777                         sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2778                                   sdkp->write_prot ? "on" : "off");
2779                         sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2780                 }
2781         }
2782 }
2783
2784 /*
2785  * sd_read_cache_type - called only from sd_revalidate_disk()
2786  * called with buffer of length SD_BUF_SIZE
2787  */
2788 static void
2789 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2790 {
2791         int len = 0, res;
2792         struct scsi_device *sdp = sdkp->device;
2793
2794         int dbd;
2795         int modepage;
2796         int first_len;
2797         struct scsi_mode_data data;
2798         struct scsi_sense_hdr sshdr;
2799         int old_wce = sdkp->WCE;
2800         int old_rcd = sdkp->RCD;
2801         int old_dpofua = sdkp->DPOFUA;
2802
2803
2804         if (sdkp->cache_override)
2805                 return;
2806
2807         first_len = 4;
2808         if (sdp->skip_ms_page_8) {
2809                 if (sdp->type == TYPE_RBC)
2810                         goto defaults;
2811                 else {
2812                         if (sdp->skip_ms_page_3f)
2813                                 goto defaults;
2814                         modepage = 0x3F;
2815                         if (sdp->use_192_bytes_for_3f)
2816                                 first_len = 192;
2817                         dbd = 0;
2818                 }
2819         } else if (sdp->type == TYPE_RBC) {
2820                 modepage = 6;
2821                 dbd = 8;
2822         } else {
2823                 modepage = 8;
2824                 dbd = 0;
2825         }
2826
2827         /* cautiously ask */
2828         res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2829                         &data, &sshdr);
2830
2831         if (res < 0)
2832                 goto bad_sense;
2833
2834         if (!data.header_length) {
2835                 modepage = 6;
2836                 first_len = 0;
2837                 sd_first_printk(KERN_ERR, sdkp,
2838                                 "Missing header in MODE_SENSE response\n");
2839         }
2840
2841         /* that went OK, now ask for the proper length */
2842         len = data.length;
2843
2844         /*
2845          * We're only interested in the first three bytes, actually.
2846          * But the data cache page is defined for the first 20.
2847          */
2848         if (len < 3)
2849                 goto bad_sense;
2850         else if (len > SD_BUF_SIZE) {
2851                 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2852                           "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2853                 len = SD_BUF_SIZE;
2854         }
2855         if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2856                 len = 192;
2857
2858         /* Get the data */
2859         if (len > first_len)
2860                 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2861                                 &data, &sshdr);
2862
2863         if (!res) {
2864                 int offset = data.header_length + data.block_descriptor_length;
2865
2866                 while (offset < len) {
2867                         u8 page_code = buffer[offset] & 0x3F;
2868                         u8 spf       = buffer[offset] & 0x40;
2869
2870                         if (page_code == 8 || page_code == 6) {
2871                                 /* We're interested only in the first 3 bytes.
2872                                  */
2873                                 if (len - offset <= 2) {
2874                                         sd_first_printk(KERN_ERR, sdkp,
2875                                                 "Incomplete mode parameter "
2876                                                         "data\n");
2877                                         goto defaults;
2878                                 } else {
2879                                         modepage = page_code;
2880                                         goto Page_found;
2881                                 }
2882                         } else {
2883                                 /* Go to the next page */
2884                                 if (spf && len - offset > 3)
2885                                         offset += 4 + (buffer[offset+2] << 8) +
2886                                                 buffer[offset+3];
2887                                 else if (!spf && len - offset > 1)
2888                                         offset += 2 + buffer[offset+1];
2889                                 else {
2890                                         sd_first_printk(KERN_ERR, sdkp,
2891                                                         "Incomplete mode "
2892                                                         "parameter data\n");
2893                                         goto defaults;
2894                                 }
2895                         }
2896                 }
2897
2898                 sd_first_printk(KERN_WARNING, sdkp,
2899                                 "No Caching mode page found\n");
2900                 goto defaults;
2901
2902         Page_found:
2903                 if (modepage == 8) {
2904                         sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2905                         sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2906                 } else {
2907                         sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2908                         sdkp->RCD = 0;
2909                 }
2910
2911                 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2912                 if (sdp->broken_fua) {
2913                         sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2914                         sdkp->DPOFUA = 0;
2915                 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2916                            !sdkp->device->use_16_for_rw) {
2917                         sd_first_printk(KERN_NOTICE, sdkp,
2918                                   "Uses READ/WRITE(6), disabling FUA\n");
2919                         sdkp->DPOFUA = 0;
2920                 }
2921
2922                 /* No cache flush allowed for write protected devices */
2923                 if (sdkp->WCE && sdkp->write_prot)
2924                         sdkp->WCE = 0;
2925
2926                 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2927                     old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2928                         sd_printk(KERN_NOTICE, sdkp,
2929                                   "Write cache: %s, read cache: %s, %s\n",
2930                                   sdkp->WCE ? "enabled" : "disabled",
2931                                   sdkp->RCD ? "disabled" : "enabled",
2932                                   sdkp->DPOFUA ? "supports DPO and FUA"
2933                                   : "doesn't support DPO or FUA");
2934
2935                 return;
2936         }
2937
2938 bad_sense:
2939         if (scsi_sense_valid(&sshdr) &&
2940             sshdr.sense_key == ILLEGAL_REQUEST &&
2941             sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2942                 /* Invalid field in CDB */
2943                 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2944         else
2945                 sd_first_printk(KERN_ERR, sdkp,
2946                                 "Asking for cache data failed\n");
2947
2948 defaults:
2949         if (sdp->wce_default_on) {
2950                 sd_first_printk(KERN_NOTICE, sdkp,
2951                                 "Assuming drive cache: write back\n");
2952                 sdkp->WCE = 1;
2953         } else {
2954                 sd_first_printk(KERN_WARNING, sdkp,
2955                                 "Assuming drive cache: write through\n");
2956                 sdkp->WCE = 0;
2957         }
2958         sdkp->RCD = 0;
2959         sdkp->DPOFUA = 0;
2960 }
2961
2962 /*
2963  * The ATO bit indicates whether the DIF application tag is available
2964  * for use by the operating system.
2965  */
2966 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2967 {
2968         int res, offset;
2969         struct scsi_device *sdp = sdkp->device;
2970         struct scsi_mode_data data;
2971         struct scsi_sense_hdr sshdr;
2972
2973         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2974                 return;
2975
2976         if (sdkp->protection_type == 0)
2977                 return;
2978
2979         res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
2980                               sdkp->max_retries, &data, &sshdr);
2981
2982         if (res < 0 || !data.header_length ||
2983             data.length < 6) {
2984                 sd_first_printk(KERN_WARNING, sdkp,
2985                           "getting Control mode page failed, assume no ATO\n");
2986
2987                 if (scsi_sense_valid(&sshdr))
2988                         sd_print_sense_hdr(sdkp, &sshdr);
2989
2990                 return;
2991         }
2992
2993         offset = data.header_length + data.block_descriptor_length;
2994
2995         if ((buffer[offset] & 0x3f) != 0x0a) {
2996                 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2997                 return;
2998         }
2999
3000         if ((buffer[offset + 5] & 0x80) == 0)
3001                 return;
3002
3003         sdkp->ATO = 1;
3004
3005         return;
3006 }
3007
3008 /**
3009  * sd_read_block_limits - Query disk device for preferred I/O sizes.
3010  * @sdkp: disk to query
3011  */
3012 static void sd_read_block_limits(struct scsi_disk *sdkp)
3013 {
3014         struct scsi_vpd *vpd;
3015
3016         rcu_read_lock();
3017
3018         vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3019         if (!vpd || vpd->len < 16)
3020                 goto out;
3021
3022         sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3023         sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3024         sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3025
3026         if (vpd->len >= 64) {
3027                 unsigned int lba_count, desc_count;
3028
3029                 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3030
3031                 if (!sdkp->lbpme)
3032                         goto out;
3033
3034                 lba_count = get_unaligned_be32(&vpd->data[20]);
3035                 desc_count = get_unaligned_be32(&vpd->data[24]);
3036
3037                 if (lba_count && desc_count)
3038                         sdkp->max_unmap_blocks = lba_count;
3039
3040                 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3041
3042                 if (vpd->data[32] & 0x80)
3043                         sdkp->unmap_alignment =
3044                                 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3045
3046                 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
3047
3048                         if (sdkp->max_unmap_blocks)
3049                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
3050                         else
3051                                 sd_config_discard(sdkp, SD_LBP_WS16);
3052
3053                 } else {        /* LBP VPD page tells us what to use */
3054                         if (sdkp->lbpu && sdkp->max_unmap_blocks)
3055                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
3056                         else if (sdkp->lbpws)
3057                                 sd_config_discard(sdkp, SD_LBP_WS16);
3058                         else if (sdkp->lbpws10)
3059                                 sd_config_discard(sdkp, SD_LBP_WS10);
3060                         else
3061                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
3062                 }
3063         }
3064
3065  out:
3066         rcu_read_unlock();
3067 }
3068
3069 /**
3070  * sd_read_block_characteristics - Query block dev. characteristics
3071  * @sdkp: disk to query
3072  */
3073 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3074 {
3075         struct request_queue *q = sdkp->disk->queue;
3076         struct scsi_vpd *vpd;
3077         u16 rot;
3078         u8 zoned;
3079
3080         rcu_read_lock();
3081         vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3082
3083         if (!vpd || vpd->len < 8) {
3084                 rcu_read_unlock();
3085                 return;
3086         }
3087
3088         rot = get_unaligned_be16(&vpd->data[4]);
3089         zoned = (vpd->data[8] >> 4) & 3;
3090         rcu_read_unlock();
3091
3092         if (rot == 1) {
3093                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3094                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3095         }
3096
3097         if (sdkp->device->type == TYPE_ZBC) {
3098                 /*
3099                  * Host-managed: Per ZBC and ZAC specifications, writes in
3100                  * sequential write required zones of host-managed devices must
3101                  * be aligned to the device physical block size.
3102                  */
3103                 disk_set_zoned(sdkp->disk, BLK_ZONED_HM);
3104                 blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
3105         } else {
3106                 sdkp->zoned = zoned;
3107                 if (sdkp->zoned == 1) {
3108                         /* Host-aware */
3109                         disk_set_zoned(sdkp->disk, BLK_ZONED_HA);
3110                 } else {
3111                         /* Regular disk or drive managed disk */
3112                         disk_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3113                 }
3114         }
3115
3116         if (!sdkp->first_scan)
3117                 return;
3118
3119         if (blk_queue_is_zoned(q)) {
3120                 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3121                       q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3122         } else {
3123                 if (sdkp->zoned == 1)
3124                         sd_printk(KERN_NOTICE, sdkp,
3125                                   "Host-aware SMR disk used as regular disk\n");
3126                 else if (sdkp->zoned == 2)
3127                         sd_printk(KERN_NOTICE, sdkp,
3128                                   "Drive-managed SMR disk\n");
3129         }
3130 }
3131
3132 /**
3133  * sd_read_block_provisioning - Query provisioning VPD page
3134  * @sdkp: disk to query
3135  */
3136 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3137 {
3138         struct scsi_vpd *vpd;
3139
3140         if (sdkp->lbpme == 0)
3141                 return;
3142
3143         rcu_read_lock();
3144         vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3145
3146         if (!vpd || vpd->len < 8) {
3147                 rcu_read_unlock();
3148                 return;
3149         }
3150
3151         sdkp->lbpvpd    = 1;
3152         sdkp->lbpu      = (vpd->data[5] >> 7) & 1; /* UNMAP */
3153         sdkp->lbpws     = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3154         sdkp->lbpws10   = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3155         rcu_read_unlock();
3156 }
3157
3158 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3159 {
3160         struct scsi_device *sdev = sdkp->device;
3161
3162         if (sdev->host->no_write_same) {
3163                 sdev->no_write_same = 1;
3164
3165                 return;
3166         }
3167
3168         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3169                 struct scsi_vpd *vpd;
3170
3171                 sdev->no_report_opcodes = 1;
3172
3173                 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3174                  * CODES is unsupported and the device has an ATA
3175                  * Information VPD page (SAT).
3176                  */
3177                 rcu_read_lock();
3178                 vpd = rcu_dereference(sdev->vpd_pg89);
3179                 if (vpd)
3180                         sdev->no_write_same = 1;
3181                 rcu_read_unlock();
3182         }
3183
3184         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3185                 sdkp->ws16 = 1;
3186
3187         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3188                 sdkp->ws10 = 1;
3189 }
3190
3191 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3192 {
3193         struct scsi_device *sdev = sdkp->device;
3194
3195         if (!sdev->security_supported)
3196                 return;
3197
3198         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3199                         SECURITY_PROTOCOL_IN, 0) == 1 &&
3200             scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3201                         SECURITY_PROTOCOL_OUT, 0) == 1)
3202                 sdkp->security = 1;
3203 }
3204
3205 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3206 {
3207         return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3208 }
3209
3210 /**
3211  * sd_read_cpr - Query concurrent positioning ranges
3212  * @sdkp:       disk to query
3213  */
3214 static void sd_read_cpr(struct scsi_disk *sdkp)
3215 {
3216         struct blk_independent_access_ranges *iars = NULL;
3217         unsigned char *buffer = NULL;
3218         unsigned int nr_cpr = 0;
3219         int i, vpd_len, buf_len = SD_BUF_SIZE;
3220         u8 *desc;
3221
3222         /*
3223          * We need to have the capacity set first for the block layer to be
3224          * able to check the ranges.
3225          */
3226         if (sdkp->first_scan)
3227                 return;
3228
3229         if (!sdkp->capacity)
3230                 goto out;
3231
3232         /*
3233          * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3234          * leading to a maximum page size of 64 + 256*32 bytes.
3235          */
3236         buf_len = 64 + 256*32;
3237         buffer = kmalloc(buf_len, GFP_KERNEL);
3238         if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3239                 goto out;
3240
3241         /* We must have at least a 64B header and one 32B range descriptor */
3242         vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3243         if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3244                 sd_printk(KERN_ERR, sdkp,
3245                           "Invalid Concurrent Positioning Ranges VPD page\n");
3246                 goto out;
3247         }
3248
3249         nr_cpr = (vpd_len - 64) / 32;
3250         if (nr_cpr == 1) {
3251                 nr_cpr = 0;
3252                 goto out;
3253         }
3254
3255         iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3256         if (!iars) {
3257                 nr_cpr = 0;
3258                 goto out;
3259         }
3260
3261         desc = &buffer[64];
3262         for (i = 0; i < nr_cpr; i++, desc += 32) {
3263                 if (desc[0] != i) {
3264                         sd_printk(KERN_ERR, sdkp,
3265                                 "Invalid Concurrent Positioning Range number\n");
3266                         nr_cpr = 0;
3267                         break;
3268                 }
3269
3270                 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3271                 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3272         }
3273
3274 out:
3275         disk_set_independent_access_ranges(sdkp->disk, iars);
3276         if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3277                 sd_printk(KERN_NOTICE, sdkp,
3278                           "%u concurrent positioning ranges\n", nr_cpr);
3279                 sdkp->nr_actuators = nr_cpr;
3280         }
3281
3282         kfree(buffer);
3283 }
3284
3285 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3286 {
3287         struct scsi_device *sdp = sdkp->device;
3288         unsigned int min_xfer_bytes =
3289                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3290
3291         if (sdkp->min_xfer_blocks == 0)
3292                 return false;
3293
3294         if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3295                 sd_first_printk(KERN_WARNING, sdkp,
3296                                 "Preferred minimum I/O size %u bytes not a " \
3297                                 "multiple of physical block size (%u bytes)\n",
3298                                 min_xfer_bytes, sdkp->physical_block_size);
3299                 sdkp->min_xfer_blocks = 0;
3300                 return false;
3301         }
3302
3303         sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3304                         min_xfer_bytes);
3305         return true;
3306 }
3307
3308 /*
3309  * Determine the device's preferred I/O size for reads and writes
3310  * unless the reported value is unreasonably small, large, not a
3311  * multiple of the physical block size, or simply garbage.
3312  */
3313 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3314                                       unsigned int dev_max)
3315 {
3316         struct scsi_device *sdp = sdkp->device;
3317         unsigned int opt_xfer_bytes =
3318                 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3319         unsigned int min_xfer_bytes =
3320                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3321
3322         if (sdkp->opt_xfer_blocks == 0)
3323                 return false;
3324
3325         if (sdkp->opt_xfer_blocks > dev_max) {
3326                 sd_first_printk(KERN_WARNING, sdkp,
3327                                 "Optimal transfer size %u logical blocks " \
3328                                 "> dev_max (%u logical blocks)\n",
3329                                 sdkp->opt_xfer_blocks, dev_max);
3330                 return false;
3331         }
3332
3333         if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3334                 sd_first_printk(KERN_WARNING, sdkp,
3335                                 "Optimal transfer size %u logical blocks " \
3336                                 "> sd driver limit (%u logical blocks)\n",
3337                                 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3338                 return false;
3339         }
3340
3341         if (opt_xfer_bytes < PAGE_SIZE) {
3342                 sd_first_printk(KERN_WARNING, sdkp,
3343                                 "Optimal transfer size %u bytes < " \
3344                                 "PAGE_SIZE (%u bytes)\n",
3345                                 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3346                 return false;
3347         }
3348
3349         if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3350                 sd_first_printk(KERN_WARNING, sdkp,
3351                                 "Optimal transfer size %u bytes not a " \
3352                                 "multiple of preferred minimum block " \
3353                                 "size (%u bytes)\n",
3354                                 opt_xfer_bytes, min_xfer_bytes);
3355                 return false;
3356         }
3357
3358         if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3359                 sd_first_printk(KERN_WARNING, sdkp,
3360                                 "Optimal transfer size %u bytes not a " \
3361                                 "multiple of physical block size (%u bytes)\n",
3362                                 opt_xfer_bytes, sdkp->physical_block_size);
3363                 return false;
3364         }
3365
3366         sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3367                         opt_xfer_bytes);
3368         return true;
3369 }
3370
3371 /**
3372  *      sd_revalidate_disk - called the first time a new disk is seen,
3373  *      performs disk spin up, read_capacity, etc.
3374  *      @disk: struct gendisk we care about
3375  **/
3376 static int sd_revalidate_disk(struct gendisk *disk)
3377 {
3378         struct scsi_disk *sdkp = scsi_disk(disk);
3379         struct scsi_device *sdp = sdkp->device;
3380         struct request_queue *q = sdkp->disk->queue;
3381         sector_t old_capacity = sdkp->capacity;
3382         unsigned char *buffer;
3383         unsigned int dev_max, rw_max;
3384
3385         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3386                                       "sd_revalidate_disk\n"));
3387
3388         /*
3389          * If the device is offline, don't try and read capacity or any
3390          * of the other niceties.
3391          */
3392         if (!scsi_device_online(sdp))
3393                 goto out;
3394
3395         buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3396         if (!buffer) {
3397                 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3398                           "allocation failure.\n");
3399                 goto out;
3400         }
3401
3402         sd_spinup_disk(sdkp);
3403
3404         /*
3405          * Without media there is no reason to ask; moreover, some devices
3406          * react badly if we do.
3407          */
3408         if (sdkp->media_present) {
3409                 sd_read_capacity(sdkp, buffer);
3410
3411                 /*
3412                  * set the default to rotational.  All non-rotational devices
3413                  * support the block characteristics VPD page, which will
3414                  * cause this to be updated correctly and any device which
3415                  * doesn't support it should be treated as rotational.
3416                  */
3417                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3418                 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3419
3420                 if (scsi_device_supports_vpd(sdp)) {
3421                         sd_read_block_provisioning(sdkp);
3422                         sd_read_block_limits(sdkp);
3423                         sd_read_block_characteristics(sdkp);
3424                         sd_zbc_read_zones(sdkp, buffer);
3425                         sd_read_cpr(sdkp);
3426                 }
3427
3428                 sd_print_capacity(sdkp, old_capacity);
3429
3430                 sd_read_write_protect_flag(sdkp, buffer);
3431                 sd_read_cache_type(sdkp, buffer);
3432                 sd_read_app_tag_own(sdkp, buffer);
3433                 sd_read_write_same(sdkp, buffer);
3434                 sd_read_security(sdkp, buffer);
3435                 sd_config_protection(sdkp);
3436         }
3437
3438         /*
3439          * We now have all cache related info, determine how we deal
3440          * with flush requests.
3441          */
3442         sd_set_flush_flag(sdkp);
3443
3444         /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3445         dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3446
3447         /* Some devices report a maximum block count for READ/WRITE requests. */
3448         dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3449         q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3450
3451         if (sd_validate_min_xfer_size(sdkp))
3452                 blk_queue_io_min(sdkp->disk->queue,
3453                                  logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3454         else
3455                 blk_queue_io_min(sdkp->disk->queue, 0);
3456
3457         if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3458                 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3459                 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3460         } else {
3461                 q->limits.io_opt = 0;
3462                 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3463                                       (sector_t)BLK_DEF_MAX_SECTORS);
3464         }
3465
3466         /*
3467          * Limit default to SCSI host optimal sector limit if set. There may be
3468          * an impact on performance for when the size of a request exceeds this
3469          * host limit.
3470          */
3471         rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3472
3473         /* Do not exceed controller limit */
3474         rw_max = min(rw_max, queue_max_hw_sectors(q));
3475
3476         /*
3477          * Only update max_sectors if previously unset or if the current value
3478          * exceeds the capabilities of the hardware.
3479          */
3480         if (sdkp->first_scan ||
3481             q->limits.max_sectors > q->limits.max_dev_sectors ||
3482             q->limits.max_sectors > q->limits.max_hw_sectors)
3483                 q->limits.max_sectors = rw_max;
3484
3485         sdkp->first_scan = 0;
3486
3487         set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3488         sd_config_write_same(sdkp);
3489         kfree(buffer);
3490
3491         /*
3492          * For a zoned drive, revalidating the zones can be done only once
3493          * the gendisk capacity is set. So if this fails, set back the gendisk
3494          * capacity to 0.
3495          */
3496         if (sd_zbc_revalidate_zones(sdkp))
3497                 set_capacity_and_notify(disk, 0);
3498
3499  out:
3500         return 0;
3501 }
3502
3503 /**
3504  *      sd_unlock_native_capacity - unlock native capacity
3505  *      @disk: struct gendisk to set capacity for
3506  *
3507  *      Block layer calls this function if it detects that partitions
3508  *      on @disk reach beyond the end of the device.  If the SCSI host
3509  *      implements ->unlock_native_capacity() method, it's invoked to
3510  *      give it a chance to adjust the device capacity.
3511  *
3512  *      CONTEXT:
3513  *      Defined by block layer.  Might sleep.
3514  */
3515 static void sd_unlock_native_capacity(struct gendisk *disk)
3516 {
3517         struct scsi_device *sdev = scsi_disk(disk)->device;
3518
3519         if (sdev->host->hostt->unlock_native_capacity)
3520                 sdev->host->hostt->unlock_native_capacity(sdev);
3521 }
3522
3523 /**
3524  *      sd_format_disk_name - format disk name
3525  *      @prefix: name prefix - ie. "sd" for SCSI disks
3526  *      @index: index of the disk to format name for
3527  *      @buf: output buffer
3528  *      @buflen: length of the output buffer
3529  *
3530  *      SCSI disk names starts at sda.  The 26th device is sdz and the
3531  *      27th is sdaa.  The last one for two lettered suffix is sdzz
3532  *      which is followed by sdaaa.
3533  *
3534  *      This is basically 26 base counting with one extra 'nil' entry
3535  *      at the beginning from the second digit on and can be
3536  *      determined using similar method as 26 base conversion with the
3537  *      index shifted -1 after each digit is computed.
3538  *
3539  *      CONTEXT:
3540  *      Don't care.
3541  *
3542  *      RETURNS:
3543  *      0 on success, -errno on failure.
3544  */
3545 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3546 {
3547         const int base = 'z' - 'a' + 1;
3548         char *begin = buf + strlen(prefix);
3549         char *end = buf + buflen;
3550         char *p;
3551         int unit;
3552
3553         p = end - 1;
3554         *p = '\0';
3555         unit = base;
3556         do {
3557                 if (p == begin)
3558                         return -EINVAL;
3559                 *--p = 'a' + (index % unit);
3560                 index = (index / unit) - 1;
3561         } while (index >= 0);
3562
3563         memmove(begin, p, end - p);
3564         memcpy(buf, prefix, strlen(prefix));
3565
3566         return 0;
3567 }
3568
3569 /**
3570  *      sd_probe - called during driver initialization and whenever a
3571  *      new scsi device is attached to the system. It is called once
3572  *      for each scsi device (not just disks) present.
3573  *      @dev: pointer to device object
3574  *
3575  *      Returns 0 if successful (or not interested in this scsi device 
3576  *      (e.g. scanner)); 1 when there is an error.
3577  *
3578  *      Note: this function is invoked from the scsi mid-level.
3579  *      This function sets up the mapping between a given 
3580  *      <host,channel,id,lun> (found in sdp) and new device name 
3581  *      (e.g. /dev/sda). More precisely it is the block device major 
3582  *      and minor number that is chosen here.
3583  *
3584  *      Assume sd_probe is not re-entrant (for time being)
3585  *      Also think about sd_probe() and sd_remove() running coincidentally.
3586  **/
3587 static int sd_probe(struct device *dev)
3588 {
3589         struct scsi_device *sdp = to_scsi_device(dev);
3590         struct scsi_disk *sdkp;
3591         struct gendisk *gd;
3592         int index;
3593         int error;
3594
3595         scsi_autopm_get_device(sdp);
3596         error = -ENODEV;
3597         if (sdp->type != TYPE_DISK &&
3598             sdp->type != TYPE_ZBC &&
3599             sdp->type != TYPE_MOD &&
3600             sdp->type != TYPE_RBC)
3601                 goto out;
3602
3603         if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3604                 sdev_printk(KERN_WARNING, sdp,
3605                             "Unsupported ZBC host-managed device.\n");
3606                 goto out;
3607         }
3608
3609         SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3610                                         "sd_probe\n"));
3611
3612         error = -ENOMEM;
3613         sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3614         if (!sdkp)
3615                 goto out;
3616
3617         gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3618                                          &sd_bio_compl_lkclass);
3619         if (!gd)
3620                 goto out_free;
3621
3622         index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3623         if (index < 0) {
3624                 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3625                 goto out_put;
3626         }
3627
3628         error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3629         if (error) {
3630                 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3631                 goto out_free_index;
3632         }
3633
3634         sdkp->device = sdp;
3635         sdkp->disk = gd;
3636         sdkp->index = index;
3637         sdkp->max_retries = SD_MAX_RETRIES;
3638         atomic_set(&sdkp->openers, 0);
3639         atomic_set(&sdkp->device->ioerr_cnt, 0);
3640
3641         if (!sdp->request_queue->rq_timeout) {
3642                 if (sdp->type != TYPE_MOD)
3643                         blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3644                 else
3645                         blk_queue_rq_timeout(sdp->request_queue,
3646                                              SD_MOD_TIMEOUT);
3647         }
3648
3649         device_initialize(&sdkp->disk_dev);
3650         sdkp->disk_dev.parent = get_device(dev);
3651         sdkp->disk_dev.class = &sd_disk_class;
3652         dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3653
3654         error = device_add(&sdkp->disk_dev);
3655         if (error) {
3656                 put_device(&sdkp->disk_dev);
3657                 goto out;
3658         }
3659
3660         dev_set_drvdata(dev, sdkp);
3661
3662         gd->major = sd_major((index & 0xf0) >> 4);
3663         gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3664         gd->minors = SD_MINORS;
3665
3666         gd->fops = &sd_fops;
3667         gd->private_data = sdkp;
3668
3669         /* defaults, until the device tells us otherwise */
3670         sdp->sector_size = 512;
3671         sdkp->capacity = 0;
3672         sdkp->media_present = 1;
3673         sdkp->write_prot = 0;
3674         sdkp->cache_override = 0;
3675         sdkp->WCE = 0;
3676         sdkp->RCD = 0;
3677         sdkp->ATO = 0;
3678         sdkp->first_scan = 1;
3679         sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3680
3681         sd_revalidate_disk(gd);
3682
3683         if (sdp->removable) {
3684                 gd->flags |= GENHD_FL_REMOVABLE;
3685                 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3686                 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3687         }
3688
3689         blk_pm_runtime_init(sdp->request_queue, dev);
3690         if (sdp->rpm_autosuspend) {
3691                 pm_runtime_set_autosuspend_delay(dev,
3692                         sdp->host->hostt->rpm_autosuspend_delay);
3693         }
3694
3695         error = device_add_disk(dev, gd, NULL);
3696         if (error) {
3697                 put_device(&sdkp->disk_dev);
3698                 put_disk(gd);
3699                 goto out;
3700         }
3701
3702         if (sdkp->security) {
3703                 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3704                 if (sdkp->opal_dev)
3705                         sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3706         }
3707
3708         sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3709                   sdp->removable ? "removable " : "");
3710         scsi_autopm_put_device(sdp);
3711
3712         return 0;
3713
3714  out_free_index:
3715         ida_free(&sd_index_ida, index);
3716  out_put:
3717         put_disk(gd);
3718  out_free:
3719         kfree(sdkp);
3720  out:
3721         scsi_autopm_put_device(sdp);
3722         return error;
3723 }
3724
3725 /**
3726  *      sd_remove - called whenever a scsi disk (previously recognized by
3727  *      sd_probe) is detached from the system. It is called (potentially
3728  *      multiple times) during sd module unload.
3729  *      @dev: pointer to device object
3730  *
3731  *      Note: this function is invoked from the scsi mid-level.
3732  *      This function potentially frees up a device name (e.g. /dev/sdc)
3733  *      that could be re-used by a subsequent sd_probe().
3734  *      This function is not called when the built-in sd driver is "exit-ed".
3735  **/
3736 static int sd_remove(struct device *dev)
3737 {
3738         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3739
3740         scsi_autopm_get_device(sdkp->device);
3741
3742         device_del(&sdkp->disk_dev);
3743         del_gendisk(sdkp->disk);
3744         if (!sdkp->suspended)
3745                 sd_shutdown(dev);
3746
3747         put_disk(sdkp->disk);
3748         return 0;
3749 }
3750
3751 static void scsi_disk_release(struct device *dev)
3752 {
3753         struct scsi_disk *sdkp = to_scsi_disk(dev);
3754
3755         ida_free(&sd_index_ida, sdkp->index);
3756         sd_zbc_free_zone_info(sdkp);
3757         put_device(&sdkp->device->sdev_gendev);
3758         free_opal_dev(sdkp->opal_dev);
3759
3760         kfree(sdkp);
3761 }
3762
3763 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3764 {
3765         unsigned char cmd[6] = { START_STOP };  /* START_VALID */
3766         struct scsi_sense_hdr sshdr;
3767         const struct scsi_exec_args exec_args = {
3768                 .sshdr = &sshdr,
3769                 .req_flags = BLK_MQ_REQ_PM,
3770         };
3771         struct scsi_device *sdp = sdkp->device;
3772         int res;
3773
3774         if (start)
3775                 cmd[4] |= 1;    /* START */
3776
3777         if (sdp->start_stop_pwr_cond)
3778                 cmd[4] |= start ? 1 << 4 : 3 << 4;      /* Active or Standby */
3779
3780         if (!scsi_device_online(sdp))
3781                 return -ENODEV;
3782
3783         res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
3784                                sdkp->max_retries, &exec_args);
3785         if (res) {
3786                 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3787                 if (res > 0 && scsi_sense_valid(&sshdr)) {
3788                         sd_print_sense_hdr(sdkp, &sshdr);
3789                         /* 0x3a is medium not present */
3790                         if (sshdr.asc == 0x3a)
3791                                 res = 0;
3792                 }
3793         }
3794
3795         /* SCSI error codes must not go to the generic layer */
3796         if (res)
3797                 return -EIO;
3798
3799         return 0;
3800 }
3801
3802 /*
3803  * Send a SYNCHRONIZE CACHE instruction down to the device through
3804  * the normal SCSI command structure.  Wait for the command to
3805  * complete.
3806  */
3807 static void sd_shutdown(struct device *dev)
3808 {
3809         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3810
3811         if (!sdkp)
3812                 return;         /* this can happen */
3813
3814         if (pm_runtime_suspended(dev))
3815                 return;
3816
3817         if (sdkp->WCE && sdkp->media_present) {
3818                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3819                 sd_sync_cache(sdkp, NULL);
3820         }
3821
3822         if (system_state != SYSTEM_RESTART &&
3823             sdkp->device->manage_system_start_stop) {
3824                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3825                 sd_start_stop_device(sdkp, 0);
3826         }
3827 }
3828
3829 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
3830 {
3831         return (sdev->manage_system_start_stop && !runtime) ||
3832                 (sdev->manage_runtime_start_stop && runtime);
3833 }
3834
3835 static int sd_suspend_common(struct device *dev, bool runtime)
3836 {
3837         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3838         struct scsi_sense_hdr sshdr;
3839         int ret = 0;
3840
3841         if (!sdkp)      /* E.g.: runtime suspend following sd_remove() */
3842                 return 0;
3843
3844         if (sdkp->WCE && sdkp->media_present) {
3845                 if (!sdkp->device->silence_suspend)
3846                         sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3847                 ret = sd_sync_cache(sdkp, &sshdr);
3848
3849                 if (ret) {
3850                         /* ignore OFFLINE device */
3851                         if (ret == -ENODEV)
3852                                 return 0;
3853
3854                         if (!scsi_sense_valid(&sshdr) ||
3855                             sshdr.sense_key != ILLEGAL_REQUEST)
3856                                 return ret;
3857
3858                         /*
3859                          * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3860                          * doesn't support sync. There's not much to do and
3861                          * suspend shouldn't fail.
3862                          */
3863                         ret = 0;
3864                 }
3865         }
3866
3867         if (sd_do_start_stop(sdkp->device, runtime)) {
3868                 if (!sdkp->device->silence_suspend)
3869                         sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3870                 /* an error is not worth aborting a system sleep */
3871                 ret = sd_start_stop_device(sdkp, 0);
3872                 if (!runtime)
3873                         ret = 0;
3874         }
3875
3876         if (!ret)
3877                 sdkp->suspended = true;
3878
3879         return ret;
3880 }
3881
3882 static int sd_suspend_system(struct device *dev)
3883 {
3884         if (pm_runtime_suspended(dev))
3885                 return 0;
3886
3887         return sd_suspend_common(dev, false);
3888 }
3889
3890 static int sd_suspend_runtime(struct device *dev)
3891 {
3892         return sd_suspend_common(dev, true);
3893 }
3894
3895 static int sd_resume(struct device *dev, bool runtime)
3896 {
3897         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3898         int ret = 0;
3899
3900         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3901                 return 0;
3902
3903         if (!sd_do_start_stop(sdkp->device, runtime)) {
3904                 sdkp->suspended = false;
3905                 return 0;
3906         }
3907
3908         if (!sdkp->device->no_start_on_resume) {
3909                 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3910                 ret = sd_start_stop_device(sdkp, 1);
3911         }
3912
3913         if (!ret) {
3914                 opal_unlock_from_suspend(sdkp->opal_dev);
3915                 sdkp->suspended = false;
3916         }
3917
3918         return ret;
3919 }
3920
3921 static int sd_resume_system(struct device *dev)
3922 {
3923         if (pm_runtime_suspended(dev))
3924                 return 0;
3925
3926         return sd_resume(dev, false);
3927 }
3928
3929 static int sd_resume_runtime(struct device *dev)
3930 {
3931         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3932         struct scsi_device *sdp;
3933
3934         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3935                 return 0;
3936
3937         sdp = sdkp->device;
3938
3939         if (sdp->ignore_media_change) {
3940                 /* clear the device's sense data */
3941                 static const u8 cmd[10] = { REQUEST_SENSE };
3942                 const struct scsi_exec_args exec_args = {
3943                         .req_flags = BLK_MQ_REQ_PM,
3944                 };
3945
3946                 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
3947                                      sdp->request_queue->rq_timeout, 1,
3948                                      &exec_args))
3949                         sd_printk(KERN_NOTICE, sdkp,
3950                                   "Failed to clear sense data\n");
3951         }
3952
3953         return sd_resume(dev, true);
3954 }
3955
3956 static const struct dev_pm_ops sd_pm_ops = {
3957         .suspend                = sd_suspend_system,
3958         .resume                 = sd_resume_system,
3959         .poweroff               = sd_suspend_system,
3960         .restore                = sd_resume_system,
3961         .runtime_suspend        = sd_suspend_runtime,
3962         .runtime_resume         = sd_resume_runtime,
3963 };
3964
3965 static struct scsi_driver sd_template = {
3966         .gendrv = {
3967                 .name           = "sd",
3968                 .owner          = THIS_MODULE,
3969                 .probe          = sd_probe,
3970                 .probe_type     = PROBE_PREFER_ASYNCHRONOUS,
3971                 .remove         = sd_remove,
3972                 .shutdown       = sd_shutdown,
3973                 .pm             = &sd_pm_ops,
3974         },
3975         .rescan                 = sd_rescan,
3976         .init_command           = sd_init_command,
3977         .uninit_command         = sd_uninit_command,
3978         .done                   = sd_done,
3979         .eh_action              = sd_eh_action,
3980         .eh_reset               = sd_eh_reset,
3981 };
3982
3983 /**
3984  *      init_sd - entry point for this driver (both when built in or when
3985  *      a module).
3986  *
3987  *      Note: this function registers this driver with the scsi mid-level.
3988  **/
3989 static int __init init_sd(void)
3990 {
3991         int majors = 0, i, err;
3992
3993         SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3994
3995         for (i = 0; i < SD_MAJORS; i++) {
3996                 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3997                         continue;
3998                 majors++;
3999         }
4000
4001         if (!majors)
4002                 return -ENODEV;
4003
4004         err = class_register(&sd_disk_class);
4005         if (err)
4006                 goto err_out;
4007
4008         sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4009         if (!sd_page_pool) {
4010                 printk(KERN_ERR "sd: can't init discard page pool\n");
4011                 err = -ENOMEM;
4012                 goto err_out_class;
4013         }
4014
4015         err = scsi_register_driver(&sd_template.gendrv);
4016         if (err)
4017                 goto err_out_driver;
4018
4019         return 0;
4020
4021 err_out_driver:
4022         mempool_destroy(sd_page_pool);
4023 err_out_class:
4024         class_unregister(&sd_disk_class);
4025 err_out:
4026         for (i = 0; i < SD_MAJORS; i++)
4027                 unregister_blkdev(sd_major(i), "sd");
4028         return err;
4029 }
4030
4031 /**
4032  *      exit_sd - exit point for this driver (when it is a module).
4033  *
4034  *      Note: this function unregisters this driver from the scsi mid-level.
4035  **/
4036 static void __exit exit_sd(void)
4037 {
4038         int i;
4039
4040         SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4041
4042         scsi_unregister_driver(&sd_template.gendrv);
4043         mempool_destroy(sd_page_pool);
4044
4045         class_unregister(&sd_disk_class);
4046
4047         for (i = 0; i < SD_MAJORS; i++)
4048                 unregister_blkdev(sd_major(i), "sd");
4049 }
4050
4051 module_init(init_sd);
4052 module_exit(exit_sd);
4053
4054 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4055 {
4056         scsi_print_sense_hdr(sdkp->device,
4057                              sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4058 }
4059
4060 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4061 {
4062         const char *hb_string = scsi_hostbyte_string(result);
4063
4064         if (hb_string)
4065                 sd_printk(KERN_INFO, sdkp,
4066                           "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4067                           hb_string ? hb_string : "invalid",
4068                           "DRIVER_OK");
4069         else
4070                 sd_printk(KERN_INFO, sdkp,
4071                           "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4072                           msg, host_byte(result), "DRIVER_OK");
4073 }