Merge tag 'for-linus-6.5-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-starfive.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *      Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *       - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
18  *         sd_init and cleanups.
19  *       - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *         not being read in sd_open. Fix problem where removable media 
21  *         could be ejected after sd_open.
22  *       - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *       - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
24  *         <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
25  *         Support 32k/1M disks.
26  *
27  *      Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *       - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *       - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *       - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *       - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *      Note: when the logging level is set by the user, it must be greater
33  *      than the level indicated above to trigger output.       
34  */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/major.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70 #include <scsi/scsi_common.h>
71
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100
101 #define SD_MINORS       16
102
103 static void sd_config_discard(struct scsi_disk *, unsigned int);
104 static void sd_config_write_same(struct scsi_disk *);
105 static int  sd_revalidate_disk(struct gendisk *);
106 static void sd_unlock_native_capacity(struct gendisk *disk);
107 static int  sd_probe(struct device *);
108 static int  sd_remove(struct device *);
109 static void sd_shutdown(struct device *);
110 static int sd_suspend_system(struct device *);
111 static int sd_suspend_runtime(struct device *);
112 static int sd_resume_system(struct device *);
113 static int sd_resume_runtime(struct device *);
114 static void sd_rescan(struct device *);
115 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
116 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
117 static int sd_done(struct scsi_cmnd *);
118 static void sd_eh_reset(struct scsi_cmnd *);
119 static int sd_eh_action(struct scsi_cmnd *, int);
120 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
121 static void scsi_disk_release(struct device *cdev);
122
123 static DEFINE_IDA(sd_index_ida);
124
125 static mempool_t *sd_page_pool;
126 static struct lock_class_key sd_bio_compl_lkclass;
127
128 static const char *sd_cache_types[] = {
129         "write through", "none", "write back",
130         "write back, no read (daft)"
131 };
132
133 static void sd_set_flush_flag(struct scsi_disk *sdkp)
134 {
135         bool wc = false, fua = false;
136
137         if (sdkp->WCE) {
138                 wc = true;
139                 if (sdkp->DPOFUA)
140                         fua = true;
141         }
142
143         blk_queue_write_cache(sdkp->disk->queue, wc, fua);
144 }
145
146 static ssize_t
147 cache_type_store(struct device *dev, struct device_attribute *attr,
148                  const char *buf, size_t count)
149 {
150         int ct, rcd, wce, sp;
151         struct scsi_disk *sdkp = to_scsi_disk(dev);
152         struct scsi_device *sdp = sdkp->device;
153         char buffer[64];
154         char *buffer_data;
155         struct scsi_mode_data data;
156         struct scsi_sense_hdr sshdr;
157         static const char temp[] = "temporary ";
158         int len;
159
160         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
161                 /* no cache control on RBC devices; theoretically they
162                  * can do it, but there's probably so many exceptions
163                  * it's not worth the risk */
164                 return -EINVAL;
165
166         if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
167                 buf += sizeof(temp) - 1;
168                 sdkp->cache_override = 1;
169         } else {
170                 sdkp->cache_override = 0;
171         }
172
173         ct = sysfs_match_string(sd_cache_types, buf);
174         if (ct < 0)
175                 return -EINVAL;
176
177         rcd = ct & 0x01 ? 1 : 0;
178         wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
179
180         if (sdkp->cache_override) {
181                 sdkp->WCE = wce;
182                 sdkp->RCD = rcd;
183                 sd_set_flush_flag(sdkp);
184                 return count;
185         }
186
187         if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
188                             sdkp->max_retries, &data, NULL))
189                 return -EINVAL;
190         len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
191                   data.block_descriptor_length);
192         buffer_data = buffer + data.header_length +
193                 data.block_descriptor_length;
194         buffer_data[2] &= ~0x05;
195         buffer_data[2] |= wce << 2 | rcd;
196         sp = buffer_data[0] & 0x80 ? 1 : 0;
197         buffer_data[0] &= ~0x80;
198
199         /*
200          * Ensure WP, DPOFUA, and RESERVED fields are cleared in
201          * received mode parameter buffer before doing MODE SELECT.
202          */
203         data.device_specific = 0;
204
205         if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
206                              sdkp->max_retries, &data, &sshdr)) {
207                 if (scsi_sense_valid(&sshdr))
208                         sd_print_sense_hdr(sdkp, &sshdr);
209                 return -EINVAL;
210         }
211         sd_revalidate_disk(sdkp->disk);
212         return count;
213 }
214
215 static ssize_t
216 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
217                        char *buf)
218 {
219         struct scsi_disk *sdkp = to_scsi_disk(dev);
220         struct scsi_device *sdp = sdkp->device;
221
222         return sprintf(buf, "%u\n", sdp->manage_start_stop);
223 }
224
225 static ssize_t
226 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
227                         const char *buf, size_t count)
228 {
229         struct scsi_disk *sdkp = to_scsi_disk(dev);
230         struct scsi_device *sdp = sdkp->device;
231         bool v;
232
233         if (!capable(CAP_SYS_ADMIN))
234                 return -EACCES;
235
236         if (kstrtobool(buf, &v))
237                 return -EINVAL;
238
239         sdp->manage_start_stop = v;
240
241         return count;
242 }
243 static DEVICE_ATTR_RW(manage_start_stop);
244
245 static ssize_t
246 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
247 {
248         struct scsi_disk *sdkp = to_scsi_disk(dev);
249
250         return sprintf(buf, "%u\n", sdkp->device->allow_restart);
251 }
252
253 static ssize_t
254 allow_restart_store(struct device *dev, struct device_attribute *attr,
255                     const char *buf, size_t count)
256 {
257         bool v;
258         struct scsi_disk *sdkp = to_scsi_disk(dev);
259         struct scsi_device *sdp = sdkp->device;
260
261         if (!capable(CAP_SYS_ADMIN))
262                 return -EACCES;
263
264         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
265                 return -EINVAL;
266
267         if (kstrtobool(buf, &v))
268                 return -EINVAL;
269
270         sdp->allow_restart = v;
271
272         return count;
273 }
274 static DEVICE_ATTR_RW(allow_restart);
275
276 static ssize_t
277 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
278 {
279         struct scsi_disk *sdkp = to_scsi_disk(dev);
280         int ct = sdkp->RCD + 2*sdkp->WCE;
281
282         return sprintf(buf, "%s\n", sd_cache_types[ct]);
283 }
284 static DEVICE_ATTR_RW(cache_type);
285
286 static ssize_t
287 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
288 {
289         struct scsi_disk *sdkp = to_scsi_disk(dev);
290
291         return sprintf(buf, "%u\n", sdkp->DPOFUA);
292 }
293 static DEVICE_ATTR_RO(FUA);
294
295 static ssize_t
296 protection_type_show(struct device *dev, struct device_attribute *attr,
297                      char *buf)
298 {
299         struct scsi_disk *sdkp = to_scsi_disk(dev);
300
301         return sprintf(buf, "%u\n", sdkp->protection_type);
302 }
303
304 static ssize_t
305 protection_type_store(struct device *dev, struct device_attribute *attr,
306                       const char *buf, size_t count)
307 {
308         struct scsi_disk *sdkp = to_scsi_disk(dev);
309         unsigned int val;
310         int err;
311
312         if (!capable(CAP_SYS_ADMIN))
313                 return -EACCES;
314
315         err = kstrtouint(buf, 10, &val);
316
317         if (err)
318                 return err;
319
320         if (val <= T10_PI_TYPE3_PROTECTION)
321                 sdkp->protection_type = val;
322
323         return count;
324 }
325 static DEVICE_ATTR_RW(protection_type);
326
327 static ssize_t
328 protection_mode_show(struct device *dev, struct device_attribute *attr,
329                      char *buf)
330 {
331         struct scsi_disk *sdkp = to_scsi_disk(dev);
332         struct scsi_device *sdp = sdkp->device;
333         unsigned int dif, dix;
334
335         dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
336         dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
337
338         if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
339                 dif = 0;
340                 dix = 1;
341         }
342
343         if (!dif && !dix)
344                 return sprintf(buf, "none\n");
345
346         return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
347 }
348 static DEVICE_ATTR_RO(protection_mode);
349
350 static ssize_t
351 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
352 {
353         struct scsi_disk *sdkp = to_scsi_disk(dev);
354
355         return sprintf(buf, "%u\n", sdkp->ATO);
356 }
357 static DEVICE_ATTR_RO(app_tag_own);
358
359 static ssize_t
360 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
361                        char *buf)
362 {
363         struct scsi_disk *sdkp = to_scsi_disk(dev);
364
365         return sprintf(buf, "%u\n", sdkp->lbpme);
366 }
367 static DEVICE_ATTR_RO(thin_provisioning);
368
369 /* sysfs_match_string() requires dense arrays */
370 static const char *lbp_mode[] = {
371         [SD_LBP_FULL]           = "full",
372         [SD_LBP_UNMAP]          = "unmap",
373         [SD_LBP_WS16]           = "writesame_16",
374         [SD_LBP_WS10]           = "writesame_10",
375         [SD_LBP_ZERO]           = "writesame_zero",
376         [SD_LBP_DISABLE]        = "disabled",
377 };
378
379 static ssize_t
380 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
381                        char *buf)
382 {
383         struct scsi_disk *sdkp = to_scsi_disk(dev);
384
385         return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
386 }
387
388 static ssize_t
389 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
390                         const char *buf, size_t count)
391 {
392         struct scsi_disk *sdkp = to_scsi_disk(dev);
393         struct scsi_device *sdp = sdkp->device;
394         int mode;
395
396         if (!capable(CAP_SYS_ADMIN))
397                 return -EACCES;
398
399         if (sd_is_zoned(sdkp)) {
400                 sd_config_discard(sdkp, SD_LBP_DISABLE);
401                 return count;
402         }
403
404         if (sdp->type != TYPE_DISK)
405                 return -EINVAL;
406
407         mode = sysfs_match_string(lbp_mode, buf);
408         if (mode < 0)
409                 return -EINVAL;
410
411         sd_config_discard(sdkp, mode);
412
413         return count;
414 }
415 static DEVICE_ATTR_RW(provisioning_mode);
416
417 /* sysfs_match_string() requires dense arrays */
418 static const char *zeroing_mode[] = {
419         [SD_ZERO_WRITE]         = "write",
420         [SD_ZERO_WS]            = "writesame",
421         [SD_ZERO_WS16_UNMAP]    = "writesame_16_unmap",
422         [SD_ZERO_WS10_UNMAP]    = "writesame_10_unmap",
423 };
424
425 static ssize_t
426 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
427                   char *buf)
428 {
429         struct scsi_disk *sdkp = to_scsi_disk(dev);
430
431         return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
432 }
433
434 static ssize_t
435 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
436                    const char *buf, size_t count)
437 {
438         struct scsi_disk *sdkp = to_scsi_disk(dev);
439         int mode;
440
441         if (!capable(CAP_SYS_ADMIN))
442                 return -EACCES;
443
444         mode = sysfs_match_string(zeroing_mode, buf);
445         if (mode < 0)
446                 return -EINVAL;
447
448         sdkp->zeroing_mode = mode;
449
450         return count;
451 }
452 static DEVICE_ATTR_RW(zeroing_mode);
453
454 static ssize_t
455 max_medium_access_timeouts_show(struct device *dev,
456                                 struct device_attribute *attr, char *buf)
457 {
458         struct scsi_disk *sdkp = to_scsi_disk(dev);
459
460         return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
461 }
462
463 static ssize_t
464 max_medium_access_timeouts_store(struct device *dev,
465                                  struct device_attribute *attr, const char *buf,
466                                  size_t count)
467 {
468         struct scsi_disk *sdkp = to_scsi_disk(dev);
469         int err;
470
471         if (!capable(CAP_SYS_ADMIN))
472                 return -EACCES;
473
474         err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
475
476         return err ? err : count;
477 }
478 static DEVICE_ATTR_RW(max_medium_access_timeouts);
479
480 static ssize_t
481 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
482                            char *buf)
483 {
484         struct scsi_disk *sdkp = to_scsi_disk(dev);
485
486         return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
487 }
488
489 static ssize_t
490 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
491                             const char *buf, size_t count)
492 {
493         struct scsi_disk *sdkp = to_scsi_disk(dev);
494         struct scsi_device *sdp = sdkp->device;
495         unsigned long max;
496         int err;
497
498         if (!capable(CAP_SYS_ADMIN))
499                 return -EACCES;
500
501         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
502                 return -EINVAL;
503
504         err = kstrtoul(buf, 10, &max);
505
506         if (err)
507                 return err;
508
509         if (max == 0)
510                 sdp->no_write_same = 1;
511         else if (max <= SD_MAX_WS16_BLOCKS) {
512                 sdp->no_write_same = 0;
513                 sdkp->max_ws_blocks = max;
514         }
515
516         sd_config_write_same(sdkp);
517
518         return count;
519 }
520 static DEVICE_ATTR_RW(max_write_same_blocks);
521
522 static ssize_t
523 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
524 {
525         struct scsi_disk *sdkp = to_scsi_disk(dev);
526
527         if (sdkp->device->type == TYPE_ZBC)
528                 return sprintf(buf, "host-managed\n");
529         if (sdkp->zoned == 1)
530                 return sprintf(buf, "host-aware\n");
531         if (sdkp->zoned == 2)
532                 return sprintf(buf, "drive-managed\n");
533         return sprintf(buf, "none\n");
534 }
535 static DEVICE_ATTR_RO(zoned_cap);
536
537 static ssize_t
538 max_retries_store(struct device *dev, struct device_attribute *attr,
539                   const char *buf, size_t count)
540 {
541         struct scsi_disk *sdkp = to_scsi_disk(dev);
542         struct scsi_device *sdev = sdkp->device;
543         int retries, err;
544
545         err = kstrtoint(buf, 10, &retries);
546         if (err)
547                 return err;
548
549         if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
550                 sdkp->max_retries = retries;
551                 return count;
552         }
553
554         sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
555                     SD_MAX_RETRIES);
556         return -EINVAL;
557 }
558
559 static ssize_t
560 max_retries_show(struct device *dev, struct device_attribute *attr,
561                  char *buf)
562 {
563         struct scsi_disk *sdkp = to_scsi_disk(dev);
564
565         return sprintf(buf, "%d\n", sdkp->max_retries);
566 }
567
568 static DEVICE_ATTR_RW(max_retries);
569
570 static struct attribute *sd_disk_attrs[] = {
571         &dev_attr_cache_type.attr,
572         &dev_attr_FUA.attr,
573         &dev_attr_allow_restart.attr,
574         &dev_attr_manage_start_stop.attr,
575         &dev_attr_protection_type.attr,
576         &dev_attr_protection_mode.attr,
577         &dev_attr_app_tag_own.attr,
578         &dev_attr_thin_provisioning.attr,
579         &dev_attr_provisioning_mode.attr,
580         &dev_attr_zeroing_mode.attr,
581         &dev_attr_max_write_same_blocks.attr,
582         &dev_attr_max_medium_access_timeouts.attr,
583         &dev_attr_zoned_cap.attr,
584         &dev_attr_max_retries.attr,
585         NULL,
586 };
587 ATTRIBUTE_GROUPS(sd_disk);
588
589 static struct class sd_disk_class = {
590         .name           = "scsi_disk",
591         .dev_release    = scsi_disk_release,
592         .dev_groups     = sd_disk_groups,
593 };
594
595 static const struct dev_pm_ops sd_pm_ops = {
596         .suspend                = sd_suspend_system,
597         .resume                 = sd_resume_system,
598         .poweroff               = sd_suspend_system,
599         .restore                = sd_resume_system,
600         .runtime_suspend        = sd_suspend_runtime,
601         .runtime_resume         = sd_resume_runtime,
602 };
603
604 static struct scsi_driver sd_template = {
605         .gendrv = {
606                 .name           = "sd",
607                 .owner          = THIS_MODULE,
608                 .probe          = sd_probe,
609                 .probe_type     = PROBE_PREFER_ASYNCHRONOUS,
610                 .remove         = sd_remove,
611                 .shutdown       = sd_shutdown,
612                 .pm             = &sd_pm_ops,
613         },
614         .rescan                 = sd_rescan,
615         .init_command           = sd_init_command,
616         .uninit_command         = sd_uninit_command,
617         .done                   = sd_done,
618         .eh_action              = sd_eh_action,
619         .eh_reset               = sd_eh_reset,
620 };
621
622 /*
623  * Don't request a new module, as that could deadlock in multipath
624  * environment.
625  */
626 static void sd_default_probe(dev_t devt)
627 {
628 }
629
630 /*
631  * Device no to disk mapping:
632  * 
633  *       major         disc2     disc  p1
634  *   |............|.............|....|....| <- dev_t
635  *    31        20 19          8 7  4 3  0
636  * 
637  * Inside a major, we have 16k disks, however mapped non-
638  * contiguously. The first 16 disks are for major0, the next
639  * ones with major1, ... Disk 256 is for major0 again, disk 272 
640  * for major1, ... 
641  * As we stay compatible with our numbering scheme, we can reuse 
642  * the well-know SCSI majors 8, 65--71, 136--143.
643  */
644 static int sd_major(int major_idx)
645 {
646         switch (major_idx) {
647         case 0:
648                 return SCSI_DISK0_MAJOR;
649         case 1 ... 7:
650                 return SCSI_DISK1_MAJOR + major_idx - 1;
651         case 8 ... 15:
652                 return SCSI_DISK8_MAJOR + major_idx - 8;
653         default:
654                 BUG();
655                 return 0;       /* shut up gcc */
656         }
657 }
658
659 #ifdef CONFIG_BLK_SED_OPAL
660 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
661                 size_t len, bool send)
662 {
663         struct scsi_disk *sdkp = data;
664         struct scsi_device *sdev = sdkp->device;
665         u8 cdb[12] = { 0, };
666         const struct scsi_exec_args exec_args = {
667                 .req_flags = BLK_MQ_REQ_PM,
668         };
669         int ret;
670
671         cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
672         cdb[1] = secp;
673         put_unaligned_be16(spsp, &cdb[2]);
674         put_unaligned_be32(len, &cdb[6]);
675
676         ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
677                                buffer, len, SD_TIMEOUT, sdkp->max_retries,
678                                &exec_args);
679         return ret <= 0 ? ret : -EIO;
680 }
681 #endif /* CONFIG_BLK_SED_OPAL */
682
683 /*
684  * Look up the DIX operation based on whether the command is read or
685  * write and whether dix and dif are enabled.
686  */
687 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
688 {
689         /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
690         static const unsigned int ops[] = {     /* wrt dix dif */
691                 SCSI_PROT_NORMAL,               /*  0   0   0  */
692                 SCSI_PROT_READ_STRIP,           /*  0   0   1  */
693                 SCSI_PROT_READ_INSERT,          /*  0   1   0  */
694                 SCSI_PROT_READ_PASS,            /*  0   1   1  */
695                 SCSI_PROT_NORMAL,               /*  1   0   0  */
696                 SCSI_PROT_WRITE_INSERT,         /*  1   0   1  */
697                 SCSI_PROT_WRITE_STRIP,          /*  1   1   0  */
698                 SCSI_PROT_WRITE_PASS,           /*  1   1   1  */
699         };
700
701         return ops[write << 2 | dix << 1 | dif];
702 }
703
704 /*
705  * Returns a mask of the protection flags that are valid for a given DIX
706  * operation.
707  */
708 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
709 {
710         static const unsigned int flag_mask[] = {
711                 [SCSI_PROT_NORMAL]              = 0,
712
713                 [SCSI_PROT_READ_STRIP]          = SCSI_PROT_TRANSFER_PI |
714                                                   SCSI_PROT_GUARD_CHECK |
715                                                   SCSI_PROT_REF_CHECK |
716                                                   SCSI_PROT_REF_INCREMENT,
717
718                 [SCSI_PROT_READ_INSERT]         = SCSI_PROT_REF_INCREMENT |
719                                                   SCSI_PROT_IP_CHECKSUM,
720
721                 [SCSI_PROT_READ_PASS]           = SCSI_PROT_TRANSFER_PI |
722                                                   SCSI_PROT_GUARD_CHECK |
723                                                   SCSI_PROT_REF_CHECK |
724                                                   SCSI_PROT_REF_INCREMENT |
725                                                   SCSI_PROT_IP_CHECKSUM,
726
727                 [SCSI_PROT_WRITE_INSERT]        = SCSI_PROT_TRANSFER_PI |
728                                                   SCSI_PROT_REF_INCREMENT,
729
730                 [SCSI_PROT_WRITE_STRIP]         = SCSI_PROT_GUARD_CHECK |
731                                                   SCSI_PROT_REF_CHECK |
732                                                   SCSI_PROT_REF_INCREMENT |
733                                                   SCSI_PROT_IP_CHECKSUM,
734
735                 [SCSI_PROT_WRITE_PASS]          = SCSI_PROT_TRANSFER_PI |
736                                                   SCSI_PROT_GUARD_CHECK |
737                                                   SCSI_PROT_REF_CHECK |
738                                                   SCSI_PROT_REF_INCREMENT |
739                                                   SCSI_PROT_IP_CHECKSUM,
740         };
741
742         return flag_mask[prot_op];
743 }
744
745 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
746                                            unsigned int dix, unsigned int dif)
747 {
748         struct request *rq = scsi_cmd_to_rq(scmd);
749         struct bio *bio = rq->bio;
750         unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
751         unsigned int protect = 0;
752
753         if (dix) {                              /* DIX Type 0, 1, 2, 3 */
754                 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
755                         scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
756
757                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
758                         scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
759         }
760
761         if (dif != T10_PI_TYPE3_PROTECTION) {   /* DIX/DIF Type 0, 1, 2 */
762                 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
763
764                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
765                         scmd->prot_flags |= SCSI_PROT_REF_CHECK;
766         }
767
768         if (dif) {                              /* DIX/DIF Type 1, 2, 3 */
769                 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
770
771                 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
772                         protect = 3 << 5;       /* Disable target PI checking */
773                 else
774                         protect = 1 << 5;       /* Enable target PI checking */
775         }
776
777         scsi_set_prot_op(scmd, prot_op);
778         scsi_set_prot_type(scmd, dif);
779         scmd->prot_flags &= sd_prot_flag_mask(prot_op);
780
781         return protect;
782 }
783
784 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
785 {
786         struct request_queue *q = sdkp->disk->queue;
787         unsigned int logical_block_size = sdkp->device->sector_size;
788         unsigned int max_blocks = 0;
789
790         q->limits.discard_alignment =
791                 sdkp->unmap_alignment * logical_block_size;
792         q->limits.discard_granularity =
793                 max(sdkp->physical_block_size,
794                     sdkp->unmap_granularity * logical_block_size);
795         sdkp->provisioning_mode = mode;
796
797         switch (mode) {
798
799         case SD_LBP_FULL:
800         case SD_LBP_DISABLE:
801                 blk_queue_max_discard_sectors(q, 0);
802                 return;
803
804         case SD_LBP_UNMAP:
805                 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
806                                           (u32)SD_MAX_WS16_BLOCKS);
807                 break;
808
809         case SD_LBP_WS16:
810                 if (sdkp->device->unmap_limit_for_ws)
811                         max_blocks = sdkp->max_unmap_blocks;
812                 else
813                         max_blocks = sdkp->max_ws_blocks;
814
815                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
816                 break;
817
818         case SD_LBP_WS10:
819                 if (sdkp->device->unmap_limit_for_ws)
820                         max_blocks = sdkp->max_unmap_blocks;
821                 else
822                         max_blocks = sdkp->max_ws_blocks;
823
824                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
825                 break;
826
827         case SD_LBP_ZERO:
828                 max_blocks = min_not_zero(sdkp->max_ws_blocks,
829                                           (u32)SD_MAX_WS10_BLOCKS);
830                 break;
831         }
832
833         blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
834 }
835
836 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
837 {
838         struct page *page;
839
840         page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
841         if (!page)
842                 return NULL;
843         clear_highpage(page);
844         bvec_set_page(&rq->special_vec, page, data_len, 0);
845         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
846         return bvec_virt(&rq->special_vec);
847 }
848
849 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
850 {
851         struct scsi_device *sdp = cmd->device;
852         struct request *rq = scsi_cmd_to_rq(cmd);
853         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
854         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
855         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
856         unsigned int data_len = 24;
857         char *buf;
858
859         buf = sd_set_special_bvec(rq, data_len);
860         if (!buf)
861                 return BLK_STS_RESOURCE;
862
863         cmd->cmd_len = 10;
864         cmd->cmnd[0] = UNMAP;
865         cmd->cmnd[8] = 24;
866
867         put_unaligned_be16(6 + 16, &buf[0]);
868         put_unaligned_be16(16, &buf[2]);
869         put_unaligned_be64(lba, &buf[8]);
870         put_unaligned_be32(nr_blocks, &buf[16]);
871
872         cmd->allowed = sdkp->max_retries;
873         cmd->transfersize = data_len;
874         rq->timeout = SD_TIMEOUT;
875
876         return scsi_alloc_sgtables(cmd);
877 }
878
879 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
880                 bool unmap)
881 {
882         struct scsi_device *sdp = cmd->device;
883         struct request *rq = scsi_cmd_to_rq(cmd);
884         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
885         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
886         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
887         u32 data_len = sdp->sector_size;
888
889         if (!sd_set_special_bvec(rq, data_len))
890                 return BLK_STS_RESOURCE;
891
892         cmd->cmd_len = 16;
893         cmd->cmnd[0] = WRITE_SAME_16;
894         if (unmap)
895                 cmd->cmnd[1] = 0x8; /* UNMAP */
896         put_unaligned_be64(lba, &cmd->cmnd[2]);
897         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
898
899         cmd->allowed = sdkp->max_retries;
900         cmd->transfersize = data_len;
901         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
902
903         return scsi_alloc_sgtables(cmd);
904 }
905
906 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
907                 bool unmap)
908 {
909         struct scsi_device *sdp = cmd->device;
910         struct request *rq = scsi_cmd_to_rq(cmd);
911         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
912         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
913         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
914         u32 data_len = sdp->sector_size;
915
916         if (!sd_set_special_bvec(rq, data_len))
917                 return BLK_STS_RESOURCE;
918
919         cmd->cmd_len = 10;
920         cmd->cmnd[0] = WRITE_SAME;
921         if (unmap)
922                 cmd->cmnd[1] = 0x8; /* UNMAP */
923         put_unaligned_be32(lba, &cmd->cmnd[2]);
924         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
925
926         cmd->allowed = sdkp->max_retries;
927         cmd->transfersize = data_len;
928         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
929
930         return scsi_alloc_sgtables(cmd);
931 }
932
933 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
934 {
935         struct request *rq = scsi_cmd_to_rq(cmd);
936         struct scsi_device *sdp = cmd->device;
937         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
938         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
939         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
940
941         if (!(rq->cmd_flags & REQ_NOUNMAP)) {
942                 switch (sdkp->zeroing_mode) {
943                 case SD_ZERO_WS16_UNMAP:
944                         return sd_setup_write_same16_cmnd(cmd, true);
945                 case SD_ZERO_WS10_UNMAP:
946                         return sd_setup_write_same10_cmnd(cmd, true);
947                 }
948         }
949
950         if (sdp->no_write_same) {
951                 rq->rq_flags |= RQF_QUIET;
952                 return BLK_STS_TARGET;
953         }
954
955         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
956                 return sd_setup_write_same16_cmnd(cmd, false);
957
958         return sd_setup_write_same10_cmnd(cmd, false);
959 }
960
961 static void sd_config_write_same(struct scsi_disk *sdkp)
962 {
963         struct request_queue *q = sdkp->disk->queue;
964         unsigned int logical_block_size = sdkp->device->sector_size;
965
966         if (sdkp->device->no_write_same) {
967                 sdkp->max_ws_blocks = 0;
968                 goto out;
969         }
970
971         /* Some devices can not handle block counts above 0xffff despite
972          * supporting WRITE SAME(16). Consequently we default to 64k
973          * blocks per I/O unless the device explicitly advertises a
974          * bigger limit.
975          */
976         if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
977                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
978                                                    (u32)SD_MAX_WS16_BLOCKS);
979         else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
980                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
981                                                    (u32)SD_MAX_WS10_BLOCKS);
982         else {
983                 sdkp->device->no_write_same = 1;
984                 sdkp->max_ws_blocks = 0;
985         }
986
987         if (sdkp->lbprz && sdkp->lbpws)
988                 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
989         else if (sdkp->lbprz && sdkp->lbpws10)
990                 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
991         else if (sdkp->max_ws_blocks)
992                 sdkp->zeroing_mode = SD_ZERO_WS;
993         else
994                 sdkp->zeroing_mode = SD_ZERO_WRITE;
995
996         if (sdkp->max_ws_blocks &&
997             sdkp->physical_block_size > logical_block_size) {
998                 /*
999                  * Reporting a maximum number of blocks that is not aligned
1000                  * on the device physical size would cause a large write same
1001                  * request to be split into physically unaligned chunks by
1002                  * __blkdev_issue_write_zeroes() even if the caller of this
1003                  * functions took care to align the large request. So make sure
1004                  * the maximum reported is aligned to the device physical block
1005                  * size. This is only an optional optimization for regular
1006                  * disks, but this is mandatory to avoid failure of large write
1007                  * same requests directed at sequential write required zones of
1008                  * host-managed ZBC disks.
1009                  */
1010                 sdkp->max_ws_blocks =
1011                         round_down(sdkp->max_ws_blocks,
1012                                    bytes_to_logical(sdkp->device,
1013                                                     sdkp->physical_block_size));
1014         }
1015
1016 out:
1017         blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1018                                          (logical_block_size >> 9));
1019 }
1020
1021 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1022 {
1023         struct request *rq = scsi_cmd_to_rq(cmd);
1024         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1025
1026         /* flush requests don't perform I/O, zero the S/G table */
1027         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1028
1029         if (cmd->device->use_16_for_sync) {
1030                 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1031                 cmd->cmd_len = 16;
1032         } else {
1033                 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1034                 cmd->cmd_len = 10;
1035         }
1036         cmd->transfersize = 0;
1037         cmd->allowed = sdkp->max_retries;
1038
1039         rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1040         return BLK_STS_OK;
1041 }
1042
1043 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1044                                        sector_t lba, unsigned int nr_blocks,
1045                                        unsigned char flags, unsigned int dld)
1046 {
1047         cmd->cmd_len = SD_EXT_CDB_SIZE;
1048         cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1049         cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1050         cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1051         cmd->cmnd[10] = flags;
1052         cmd->cmnd[11] = dld & 0x07;
1053         put_unaligned_be64(lba, &cmd->cmnd[12]);
1054         put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1055         put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1056
1057         return BLK_STS_OK;
1058 }
1059
1060 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1061                                        sector_t lba, unsigned int nr_blocks,
1062                                        unsigned char flags, unsigned int dld)
1063 {
1064         cmd->cmd_len  = 16;
1065         cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1066         cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1067         cmd->cmnd[14] = (dld & 0x03) << 6;
1068         cmd->cmnd[15] = 0;
1069         put_unaligned_be64(lba, &cmd->cmnd[2]);
1070         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1071
1072         return BLK_STS_OK;
1073 }
1074
1075 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1076                                        sector_t lba, unsigned int nr_blocks,
1077                                        unsigned char flags)
1078 {
1079         cmd->cmd_len = 10;
1080         cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1081         cmd->cmnd[1] = flags;
1082         cmd->cmnd[6] = 0;
1083         cmd->cmnd[9] = 0;
1084         put_unaligned_be32(lba, &cmd->cmnd[2]);
1085         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1086
1087         return BLK_STS_OK;
1088 }
1089
1090 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1091                                       sector_t lba, unsigned int nr_blocks,
1092                                       unsigned char flags)
1093 {
1094         /* Avoid that 0 blocks gets translated into 256 blocks. */
1095         if (WARN_ON_ONCE(nr_blocks == 0))
1096                 return BLK_STS_IOERR;
1097
1098         if (unlikely(flags & 0x8)) {
1099                 /*
1100                  * This happens only if this drive failed 10byte rw
1101                  * command with ILLEGAL_REQUEST during operation and
1102                  * thus turned off use_10_for_rw.
1103                  */
1104                 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1105                 return BLK_STS_IOERR;
1106         }
1107
1108         cmd->cmd_len = 6;
1109         cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1110         cmd->cmnd[1] = (lba >> 16) & 0x1f;
1111         cmd->cmnd[2] = (lba >> 8) & 0xff;
1112         cmd->cmnd[3] = lba & 0xff;
1113         cmd->cmnd[4] = nr_blocks;
1114         cmd->cmnd[5] = 0;
1115
1116         return BLK_STS_OK;
1117 }
1118
1119 /*
1120  * Check if a command has a duration limit set. If it does, and the target
1121  * device supports CDL and the feature is enabled, return the limit
1122  * descriptor index to use. Return 0 (no limit) otherwise.
1123  */
1124 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1125 {
1126         struct scsi_device *sdp = sdkp->device;
1127         int hint;
1128
1129         if (!sdp->cdl_supported || !sdp->cdl_enable)
1130                 return 0;
1131
1132         /*
1133          * Use "no limit" if the request ioprio does not specify a duration
1134          * limit hint.
1135          */
1136         hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1137         if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1138             hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1139                 return 0;
1140
1141         return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1142 }
1143
1144 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1145 {
1146         struct request *rq = scsi_cmd_to_rq(cmd);
1147         struct scsi_device *sdp = cmd->device;
1148         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1149         sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1150         sector_t threshold;
1151         unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1152         unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1153         bool write = rq_data_dir(rq) == WRITE;
1154         unsigned char protect, fua;
1155         unsigned int dld;
1156         blk_status_t ret;
1157         unsigned int dif;
1158         bool dix;
1159
1160         ret = scsi_alloc_sgtables(cmd);
1161         if (ret != BLK_STS_OK)
1162                 return ret;
1163
1164         ret = BLK_STS_IOERR;
1165         if (!scsi_device_online(sdp) || sdp->changed) {
1166                 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1167                 goto fail;
1168         }
1169
1170         if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1171                 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1172                 goto fail;
1173         }
1174
1175         if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1176                 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1177                 goto fail;
1178         }
1179
1180         /*
1181          * Some SD card readers can't handle accesses which touch the
1182          * last one or two logical blocks. Split accesses as needed.
1183          */
1184         threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1185
1186         if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1187                 if (lba < threshold) {
1188                         /* Access up to the threshold but not beyond */
1189                         nr_blocks = threshold - lba;
1190                 } else {
1191                         /* Access only a single logical block */
1192                         nr_blocks = 1;
1193                 }
1194         }
1195
1196         if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1197                 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1198                 if (ret)
1199                         goto fail;
1200         }
1201
1202         fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1203         dix = scsi_prot_sg_count(cmd);
1204         dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1205         dld = sd_cdl_dld(sdkp, cmd);
1206
1207         if (dif || dix)
1208                 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1209         else
1210                 protect = 0;
1211
1212         if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1213                 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1214                                          protect | fua, dld);
1215         } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1216                 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1217                                          protect | fua, dld);
1218         } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1219                    sdp->use_10_for_rw || protect) {
1220                 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1221                                          protect | fua);
1222         } else {
1223                 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1224                                         protect | fua);
1225         }
1226
1227         if (unlikely(ret != BLK_STS_OK))
1228                 goto fail;
1229
1230         /*
1231          * We shouldn't disconnect in the middle of a sector, so with a dumb
1232          * host adapter, it's safe to assume that we can at least transfer
1233          * this many bytes between each connect / disconnect.
1234          */
1235         cmd->transfersize = sdp->sector_size;
1236         cmd->underflow = nr_blocks << 9;
1237         cmd->allowed = sdkp->max_retries;
1238         cmd->sdb.length = nr_blocks * sdp->sector_size;
1239
1240         SCSI_LOG_HLQUEUE(1,
1241                          scmd_printk(KERN_INFO, cmd,
1242                                      "%s: block=%llu, count=%d\n", __func__,
1243                                      (unsigned long long)blk_rq_pos(rq),
1244                                      blk_rq_sectors(rq)));
1245         SCSI_LOG_HLQUEUE(2,
1246                          scmd_printk(KERN_INFO, cmd,
1247                                      "%s %d/%u 512 byte blocks.\n",
1248                                      write ? "writing" : "reading", nr_blocks,
1249                                      blk_rq_sectors(rq)));
1250
1251         /*
1252          * This indicates that the command is ready from our end to be queued.
1253          */
1254         return BLK_STS_OK;
1255 fail:
1256         scsi_free_sgtables(cmd);
1257         return ret;
1258 }
1259
1260 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1261 {
1262         struct request *rq = scsi_cmd_to_rq(cmd);
1263
1264         switch (req_op(rq)) {
1265         case REQ_OP_DISCARD:
1266                 switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1267                 case SD_LBP_UNMAP:
1268                         return sd_setup_unmap_cmnd(cmd);
1269                 case SD_LBP_WS16:
1270                         return sd_setup_write_same16_cmnd(cmd, true);
1271                 case SD_LBP_WS10:
1272                         return sd_setup_write_same10_cmnd(cmd, true);
1273                 case SD_LBP_ZERO:
1274                         return sd_setup_write_same10_cmnd(cmd, false);
1275                 default:
1276                         return BLK_STS_TARGET;
1277                 }
1278         case REQ_OP_WRITE_ZEROES:
1279                 return sd_setup_write_zeroes_cmnd(cmd);
1280         case REQ_OP_FLUSH:
1281                 return sd_setup_flush_cmnd(cmd);
1282         case REQ_OP_READ:
1283         case REQ_OP_WRITE:
1284         case REQ_OP_ZONE_APPEND:
1285                 return sd_setup_read_write_cmnd(cmd);
1286         case REQ_OP_ZONE_RESET:
1287                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1288                                                    false);
1289         case REQ_OP_ZONE_RESET_ALL:
1290                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1291                                                    true);
1292         case REQ_OP_ZONE_OPEN:
1293                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1294         case REQ_OP_ZONE_CLOSE:
1295                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1296         case REQ_OP_ZONE_FINISH:
1297                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1298         default:
1299                 WARN_ON_ONCE(1);
1300                 return BLK_STS_NOTSUPP;
1301         }
1302 }
1303
1304 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1305 {
1306         struct request *rq = scsi_cmd_to_rq(SCpnt);
1307
1308         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1309                 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1310 }
1311
1312 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1313 {
1314         if (sdkp->device->removable || sdkp->write_prot) {
1315                 if (disk_check_media_change(disk))
1316                         return true;
1317         }
1318
1319         /*
1320          * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1321          * nothing to do with partitions, BLKRRPART is used to force a full
1322          * revalidate after things like a format for historical reasons.
1323          */
1324         return test_bit(GD_NEED_PART_SCAN, &disk->state);
1325 }
1326
1327 /**
1328  *      sd_open - open a scsi disk device
1329  *      @disk: disk to open
1330  *      @mode: open mode
1331  *
1332  *      Returns 0 if successful. Returns a negated errno value in case 
1333  *      of error.
1334  *
1335  *      Note: This can be called from a user context (e.g. fsck(1) )
1336  *      or from within the kernel (e.g. as a result of a mount(1) ).
1337  *      In the latter case @inode and @filp carry an abridged amount
1338  *      of information as noted above.
1339  *
1340  *      Locking: called with disk->open_mutex held.
1341  **/
1342 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1343 {
1344         struct scsi_disk *sdkp = scsi_disk(disk);
1345         struct scsi_device *sdev = sdkp->device;
1346         int retval;
1347
1348         if (scsi_device_get(sdev))
1349                 return -ENXIO;
1350
1351         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1352
1353         /*
1354          * If the device is in error recovery, wait until it is done.
1355          * If the device is offline, then disallow any access to it.
1356          */
1357         retval = -ENXIO;
1358         if (!scsi_block_when_processing_errors(sdev))
1359                 goto error_out;
1360
1361         if (sd_need_revalidate(disk, sdkp))
1362                 sd_revalidate_disk(disk);
1363
1364         /*
1365          * If the drive is empty, just let the open fail.
1366          */
1367         retval = -ENOMEDIUM;
1368         if (sdev->removable && !sdkp->media_present &&
1369             !(mode & BLK_OPEN_NDELAY))
1370                 goto error_out;
1371
1372         /*
1373          * If the device has the write protect tab set, have the open fail
1374          * if the user expects to be able to write to the thing.
1375          */
1376         retval = -EROFS;
1377         if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1378                 goto error_out;
1379
1380         /*
1381          * It is possible that the disk changing stuff resulted in
1382          * the device being taken offline.  If this is the case,
1383          * report this to the user, and don't pretend that the
1384          * open actually succeeded.
1385          */
1386         retval = -ENXIO;
1387         if (!scsi_device_online(sdev))
1388                 goto error_out;
1389
1390         if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1391                 if (scsi_block_when_processing_errors(sdev))
1392                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1393         }
1394
1395         return 0;
1396
1397 error_out:
1398         scsi_device_put(sdev);
1399         return retval;  
1400 }
1401
1402 /**
1403  *      sd_release - invoked when the (last) close(2) is called on this
1404  *      scsi disk.
1405  *      @disk: disk to release
1406  *
1407  *      Returns 0. 
1408  *
1409  *      Note: may block (uninterruptible) if error recovery is underway
1410  *      on this disk.
1411  *
1412  *      Locking: called with disk->open_mutex held.
1413  **/
1414 static void sd_release(struct gendisk *disk)
1415 {
1416         struct scsi_disk *sdkp = scsi_disk(disk);
1417         struct scsi_device *sdev = sdkp->device;
1418
1419         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1420
1421         if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1422                 if (scsi_block_when_processing_errors(sdev))
1423                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1424         }
1425
1426         scsi_device_put(sdev);
1427 }
1428
1429 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1430 {
1431         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1432         struct scsi_device *sdp = sdkp->device;
1433         struct Scsi_Host *host = sdp->host;
1434         sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1435         int diskinfo[4];
1436
1437         /* default to most commonly used values */
1438         diskinfo[0] = 0x40;     /* 1 << 6 */
1439         diskinfo[1] = 0x20;     /* 1 << 5 */
1440         diskinfo[2] = capacity >> 11;
1441
1442         /* override with calculated, extended default, or driver values */
1443         if (host->hostt->bios_param)
1444                 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1445         else
1446                 scsicam_bios_param(bdev, capacity, diskinfo);
1447
1448         geo->heads = diskinfo[0];
1449         geo->sectors = diskinfo[1];
1450         geo->cylinders = diskinfo[2];
1451         return 0;
1452 }
1453
1454 /**
1455  *      sd_ioctl - process an ioctl
1456  *      @bdev: target block device
1457  *      @mode: open mode
1458  *      @cmd: ioctl command number
1459  *      @arg: this is third argument given to ioctl(2) system call.
1460  *      Often contains a pointer.
1461  *
1462  *      Returns 0 if successful (some ioctls return positive numbers on
1463  *      success as well). Returns a negated errno value in case of error.
1464  *
1465  *      Note: most ioctls are forward onto the block subsystem or further
1466  *      down in the scsi subsystem.
1467  **/
1468 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1469                     unsigned int cmd, unsigned long arg)
1470 {
1471         struct gendisk *disk = bdev->bd_disk;
1472         struct scsi_disk *sdkp = scsi_disk(disk);
1473         struct scsi_device *sdp = sdkp->device;
1474         void __user *p = (void __user *)arg;
1475         int error;
1476     
1477         SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1478                                     "cmd=0x%x\n", disk->disk_name, cmd));
1479
1480         if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1481                 return -ENOIOCTLCMD;
1482
1483         /*
1484          * If we are in the middle of error recovery, don't let anyone
1485          * else try and use this device.  Also, if error recovery fails, it
1486          * may try and take the device offline, in which case all further
1487          * access to the device is prohibited.
1488          */
1489         error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1490                         (mode & BLK_OPEN_NDELAY));
1491         if (error)
1492                 return error;
1493
1494         if (is_sed_ioctl(cmd))
1495                 return sed_ioctl(sdkp->opal_dev, cmd, p);
1496         return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1497 }
1498
1499 static void set_media_not_present(struct scsi_disk *sdkp)
1500 {
1501         if (sdkp->media_present)
1502                 sdkp->device->changed = 1;
1503
1504         if (sdkp->device->removable) {
1505                 sdkp->media_present = 0;
1506                 sdkp->capacity = 0;
1507         }
1508 }
1509
1510 static int media_not_present(struct scsi_disk *sdkp,
1511                              struct scsi_sense_hdr *sshdr)
1512 {
1513         if (!scsi_sense_valid(sshdr))
1514                 return 0;
1515
1516         /* not invoked for commands that could return deferred errors */
1517         switch (sshdr->sense_key) {
1518         case UNIT_ATTENTION:
1519         case NOT_READY:
1520                 /* medium not present */
1521                 if (sshdr->asc == 0x3A) {
1522                         set_media_not_present(sdkp);
1523                         return 1;
1524                 }
1525         }
1526         return 0;
1527 }
1528
1529 /**
1530  *      sd_check_events - check media events
1531  *      @disk: kernel device descriptor
1532  *      @clearing: disk events currently being cleared
1533  *
1534  *      Returns mask of DISK_EVENT_*.
1535  *
1536  *      Note: this function is invoked from the block subsystem.
1537  **/
1538 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1539 {
1540         struct scsi_disk *sdkp = disk->private_data;
1541         struct scsi_device *sdp;
1542         int retval;
1543         bool disk_changed;
1544
1545         if (!sdkp)
1546                 return 0;
1547
1548         sdp = sdkp->device;
1549         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1550
1551         /*
1552          * If the device is offline, don't send any commands - just pretend as
1553          * if the command failed.  If the device ever comes back online, we
1554          * can deal with it then.  It is only because of unrecoverable errors
1555          * that we would ever take a device offline in the first place.
1556          */
1557         if (!scsi_device_online(sdp)) {
1558                 set_media_not_present(sdkp);
1559                 goto out;
1560         }
1561
1562         /*
1563          * Using TEST_UNIT_READY enables differentiation between drive with
1564          * no cartridge loaded - NOT READY, drive with changed cartridge -
1565          * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1566          *
1567          * Drives that auto spin down. eg iomega jaz 1G, will be started
1568          * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1569          * sd_revalidate() is called.
1570          */
1571         if (scsi_block_when_processing_errors(sdp)) {
1572                 struct scsi_sense_hdr sshdr = { 0, };
1573
1574                 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1575                                               &sshdr);
1576
1577                 /* failed to execute TUR, assume media not present */
1578                 if (retval < 0 || host_byte(retval)) {
1579                         set_media_not_present(sdkp);
1580                         goto out;
1581                 }
1582
1583                 if (media_not_present(sdkp, &sshdr))
1584                         goto out;
1585         }
1586
1587         /*
1588          * For removable scsi disk we have to recognise the presence
1589          * of a disk in the drive.
1590          */
1591         if (!sdkp->media_present)
1592                 sdp->changed = 1;
1593         sdkp->media_present = 1;
1594 out:
1595         /*
1596          * sdp->changed is set under the following conditions:
1597          *
1598          *      Medium present state has changed in either direction.
1599          *      Device has indicated UNIT_ATTENTION.
1600          */
1601         disk_changed = sdp->changed;
1602         sdp->changed = 0;
1603         return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1604 }
1605
1606 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1607 {
1608         int retries, res;
1609         struct scsi_device *sdp = sdkp->device;
1610         const int timeout = sdp->request_queue->rq_timeout
1611                 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1612         struct scsi_sense_hdr my_sshdr;
1613         const struct scsi_exec_args exec_args = {
1614                 .req_flags = BLK_MQ_REQ_PM,
1615                 /* caller might not be interested in sense, but we need it */
1616                 .sshdr = sshdr ? : &my_sshdr,
1617         };
1618
1619         if (!scsi_device_online(sdp))
1620                 return -ENODEV;
1621
1622         sshdr = exec_args.sshdr;
1623
1624         for (retries = 3; retries > 0; --retries) {
1625                 unsigned char cmd[16] = { 0 };
1626
1627                 if (sdp->use_16_for_sync)
1628                         cmd[0] = SYNCHRONIZE_CACHE_16;
1629                 else
1630                         cmd[0] = SYNCHRONIZE_CACHE;
1631                 /*
1632                  * Leave the rest of the command zero to indicate
1633                  * flush everything.
1634                  */
1635                 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
1636                                        timeout, sdkp->max_retries, &exec_args);
1637                 if (res == 0)
1638                         break;
1639         }
1640
1641         if (res) {
1642                 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1643
1644                 if (res < 0)
1645                         return res;
1646
1647                 if (scsi_status_is_check_condition(res) &&
1648                     scsi_sense_valid(sshdr)) {
1649                         sd_print_sense_hdr(sdkp, sshdr);
1650
1651                         /* we need to evaluate the error return  */
1652                         if (sshdr->asc == 0x3a ||       /* medium not present */
1653                             sshdr->asc == 0x20 ||       /* invalid command */
1654                             (sshdr->asc == 0x74 && sshdr->ascq == 0x71))        /* drive is password locked */
1655                                 /* this is no error here */
1656                                 return 0;
1657                 }
1658
1659                 switch (host_byte(res)) {
1660                 /* ignore errors due to racing a disconnection */
1661                 case DID_BAD_TARGET:
1662                 case DID_NO_CONNECT:
1663                         return 0;
1664                 /* signal the upper layer it might try again */
1665                 case DID_BUS_BUSY:
1666                 case DID_IMM_RETRY:
1667                 case DID_REQUEUE:
1668                 case DID_SOFT_ERROR:
1669                         return -EBUSY;
1670                 default:
1671                         return -EIO;
1672                 }
1673         }
1674         return 0;
1675 }
1676
1677 static void sd_rescan(struct device *dev)
1678 {
1679         struct scsi_disk *sdkp = dev_get_drvdata(dev);
1680
1681         sd_revalidate_disk(sdkp->disk);
1682 }
1683
1684 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1685                 enum blk_unique_id type)
1686 {
1687         struct scsi_device *sdev = scsi_disk(disk)->device;
1688         const struct scsi_vpd *vpd;
1689         const unsigned char *d;
1690         int ret = -ENXIO, len;
1691
1692         rcu_read_lock();
1693         vpd = rcu_dereference(sdev->vpd_pg83);
1694         if (!vpd)
1695                 goto out_unlock;
1696
1697         ret = -EINVAL;
1698         for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1699                 /* we only care about designators with LU association */
1700                 if (((d[1] >> 4) & 0x3) != 0x00)
1701                         continue;
1702                 if ((d[1] & 0xf) != type)
1703                         continue;
1704
1705                 /*
1706                  * Only exit early if a 16-byte descriptor was found.  Otherwise
1707                  * keep looking as one with more entropy might still show up.
1708                  */
1709                 len = d[3];
1710                 if (len != 8 && len != 12 && len != 16)
1711                         continue;
1712                 ret = len;
1713                 memcpy(id, d + 4, len);
1714                 if (len == 16)
1715                         break;
1716         }
1717 out_unlock:
1718         rcu_read_unlock();
1719         return ret;
1720 }
1721
1722 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1723 {
1724         switch (host_byte(result)) {
1725         case DID_TRANSPORT_MARGINAL:
1726         case DID_TRANSPORT_DISRUPTED:
1727         case DID_BUS_BUSY:
1728                 return PR_STS_RETRY_PATH_FAILURE;
1729         case DID_NO_CONNECT:
1730                 return PR_STS_PATH_FAILED;
1731         case DID_TRANSPORT_FAILFAST:
1732                 return PR_STS_PATH_FAST_FAILED;
1733         }
1734
1735         switch (status_byte(result)) {
1736         case SAM_STAT_RESERVATION_CONFLICT:
1737                 return PR_STS_RESERVATION_CONFLICT;
1738         case SAM_STAT_CHECK_CONDITION:
1739                 if (!scsi_sense_valid(sshdr))
1740                         return PR_STS_IOERR;
1741
1742                 if (sshdr->sense_key == ILLEGAL_REQUEST &&
1743                     (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1744                         return -EINVAL;
1745
1746                 fallthrough;
1747         default:
1748                 return PR_STS_IOERR;
1749         }
1750 }
1751
1752 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1753                             unsigned char *data, int data_len)
1754 {
1755         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1756         struct scsi_device *sdev = sdkp->device;
1757         struct scsi_sense_hdr sshdr;
1758         u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1759         const struct scsi_exec_args exec_args = {
1760                 .sshdr = &sshdr,
1761         };
1762         int result;
1763
1764         put_unaligned_be16(data_len, &cmd[7]);
1765
1766         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1767                                   SD_TIMEOUT, sdkp->max_retries, &exec_args);
1768         if (scsi_status_is_check_condition(result) &&
1769             scsi_sense_valid(&sshdr)) {
1770                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1771                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1772         }
1773
1774         if (result <= 0)
1775                 return result;
1776
1777         return sd_scsi_to_pr_err(&sshdr, result);
1778 }
1779
1780 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1781 {
1782         int result, i, data_offset, num_copy_keys;
1783         u32 num_keys = keys_info->num_keys;
1784         int data_len = num_keys * 8 + 8;
1785         u8 *data;
1786
1787         data = kzalloc(data_len, GFP_KERNEL);
1788         if (!data)
1789                 return -ENOMEM;
1790
1791         result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1792         if (result)
1793                 goto free_data;
1794
1795         keys_info->generation = get_unaligned_be32(&data[0]);
1796         keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1797
1798         data_offset = 8;
1799         num_copy_keys = min(num_keys, keys_info->num_keys);
1800
1801         for (i = 0; i < num_copy_keys; i++) {
1802                 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1803                 data_offset += 8;
1804         }
1805
1806 free_data:
1807         kfree(data);
1808         return result;
1809 }
1810
1811 static int sd_pr_read_reservation(struct block_device *bdev,
1812                                   struct pr_held_reservation *rsv)
1813 {
1814         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1815         struct scsi_device *sdev = sdkp->device;
1816         u8 data[24] = { };
1817         int result, len;
1818
1819         result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
1820         if (result)
1821                 return result;
1822
1823         len = get_unaligned_be32(&data[4]);
1824         if (!len)
1825                 return 0;
1826
1827         /* Make sure we have at least the key and type */
1828         if (len < 14) {
1829                 sdev_printk(KERN_INFO, sdev,
1830                             "READ RESERVATION failed due to short return buffer of %d bytes\n",
1831                             len);
1832                 return -EINVAL;
1833         }
1834
1835         rsv->generation = get_unaligned_be32(&data[0]);
1836         rsv->key = get_unaligned_be64(&data[8]);
1837         rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
1838         return 0;
1839 }
1840
1841 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1842                              u64 sa_key, enum scsi_pr_type type, u8 flags)
1843 {
1844         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1845         struct scsi_device *sdev = sdkp->device;
1846         struct scsi_sense_hdr sshdr;
1847         const struct scsi_exec_args exec_args = {
1848                 .sshdr = &sshdr,
1849         };
1850         int result;
1851         u8 cmd[16] = { 0, };
1852         u8 data[24] = { 0, };
1853
1854         cmd[0] = PERSISTENT_RESERVE_OUT;
1855         cmd[1] = sa;
1856         cmd[2] = type;
1857         put_unaligned_be32(sizeof(data), &cmd[5]);
1858
1859         put_unaligned_be64(key, &data[0]);
1860         put_unaligned_be64(sa_key, &data[8]);
1861         data[20] = flags;
1862
1863         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1864                                   sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1865                                   &exec_args);
1866
1867         if (scsi_status_is_check_condition(result) &&
1868             scsi_sense_valid(&sshdr)) {
1869                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1870                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1871         }
1872
1873         if (result <= 0)
1874                 return result;
1875
1876         return sd_scsi_to_pr_err(&sshdr, result);
1877 }
1878
1879 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1880                 u32 flags)
1881 {
1882         if (flags & ~PR_FL_IGNORE_KEY)
1883                 return -EOPNOTSUPP;
1884         return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1885                         old_key, new_key, 0,
1886                         (1 << 0) /* APTPL */);
1887 }
1888
1889 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1890                 u32 flags)
1891 {
1892         if (flags)
1893                 return -EOPNOTSUPP;
1894         return sd_pr_out_command(bdev, 0x01, key, 0,
1895                                  block_pr_type_to_scsi(type), 0);
1896 }
1897
1898 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1899 {
1900         return sd_pr_out_command(bdev, 0x02, key, 0,
1901                                  block_pr_type_to_scsi(type), 0);
1902 }
1903
1904 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1905                 enum pr_type type, bool abort)
1906 {
1907         return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1908                                  block_pr_type_to_scsi(type), 0);
1909 }
1910
1911 static int sd_pr_clear(struct block_device *bdev, u64 key)
1912 {
1913         return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
1914 }
1915
1916 static const struct pr_ops sd_pr_ops = {
1917         .pr_register    = sd_pr_register,
1918         .pr_reserve     = sd_pr_reserve,
1919         .pr_release     = sd_pr_release,
1920         .pr_preempt     = sd_pr_preempt,
1921         .pr_clear       = sd_pr_clear,
1922         .pr_read_keys   = sd_pr_read_keys,
1923         .pr_read_reservation = sd_pr_read_reservation,
1924 };
1925
1926 static void scsi_disk_free_disk(struct gendisk *disk)
1927 {
1928         struct scsi_disk *sdkp = scsi_disk(disk);
1929
1930         put_device(&sdkp->disk_dev);
1931 }
1932
1933 static const struct block_device_operations sd_fops = {
1934         .owner                  = THIS_MODULE,
1935         .open                   = sd_open,
1936         .release                = sd_release,
1937         .ioctl                  = sd_ioctl,
1938         .getgeo                 = sd_getgeo,
1939         .compat_ioctl           = blkdev_compat_ptr_ioctl,
1940         .check_events           = sd_check_events,
1941         .unlock_native_capacity = sd_unlock_native_capacity,
1942         .report_zones           = sd_zbc_report_zones,
1943         .get_unique_id          = sd_get_unique_id,
1944         .free_disk              = scsi_disk_free_disk,
1945         .pr_ops                 = &sd_pr_ops,
1946 };
1947
1948 /**
1949  *      sd_eh_reset - reset error handling callback
1950  *      @scmd:          sd-issued command that has failed
1951  *
1952  *      This function is called by the SCSI midlayer before starting
1953  *      SCSI EH. When counting medium access failures we have to be
1954  *      careful to register it only only once per device and SCSI EH run;
1955  *      there might be several timed out commands which will cause the
1956  *      'max_medium_access_timeouts' counter to trigger after the first
1957  *      SCSI EH run already and set the device to offline.
1958  *      So this function resets the internal counter before starting SCSI EH.
1959  **/
1960 static void sd_eh_reset(struct scsi_cmnd *scmd)
1961 {
1962         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1963
1964         /* New SCSI EH run, reset gate variable */
1965         sdkp->ignore_medium_access_errors = false;
1966 }
1967
1968 /**
1969  *      sd_eh_action - error handling callback
1970  *      @scmd:          sd-issued command that has failed
1971  *      @eh_disp:       The recovery disposition suggested by the midlayer
1972  *
1973  *      This function is called by the SCSI midlayer upon completion of an
1974  *      error test command (currently TEST UNIT READY). The result of sending
1975  *      the eh command is passed in eh_disp.  We're looking for devices that
1976  *      fail medium access commands but are OK with non access commands like
1977  *      test unit ready (so wrongly see the device as having a successful
1978  *      recovery)
1979  **/
1980 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1981 {
1982         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1983         struct scsi_device *sdev = scmd->device;
1984
1985         if (!scsi_device_online(sdev) ||
1986             !scsi_medium_access_command(scmd) ||
1987             host_byte(scmd->result) != DID_TIME_OUT ||
1988             eh_disp != SUCCESS)
1989                 return eh_disp;
1990
1991         /*
1992          * The device has timed out executing a medium access command.
1993          * However, the TEST UNIT READY command sent during error
1994          * handling completed successfully. Either the device is in the
1995          * process of recovering or has it suffered an internal failure
1996          * that prevents access to the storage medium.
1997          */
1998         if (!sdkp->ignore_medium_access_errors) {
1999                 sdkp->medium_access_timed_out++;
2000                 sdkp->ignore_medium_access_errors = true;
2001         }
2002
2003         /*
2004          * If the device keeps failing read/write commands but TEST UNIT
2005          * READY always completes successfully we assume that medium
2006          * access is no longer possible and take the device offline.
2007          */
2008         if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2009                 scmd_printk(KERN_ERR, scmd,
2010                             "Medium access timeout failure. Offlining disk!\n");
2011                 mutex_lock(&sdev->state_mutex);
2012                 scsi_device_set_state(sdev, SDEV_OFFLINE);
2013                 mutex_unlock(&sdev->state_mutex);
2014
2015                 return SUCCESS;
2016         }
2017
2018         return eh_disp;
2019 }
2020
2021 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2022 {
2023         struct request *req = scsi_cmd_to_rq(scmd);
2024         struct scsi_device *sdev = scmd->device;
2025         unsigned int transferred, good_bytes;
2026         u64 start_lba, end_lba, bad_lba;
2027
2028         /*
2029          * Some commands have a payload smaller than the device logical
2030          * block size (e.g. INQUIRY on a 4K disk).
2031          */
2032         if (scsi_bufflen(scmd) <= sdev->sector_size)
2033                 return 0;
2034
2035         /* Check if we have a 'bad_lba' information */
2036         if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2037                                      SCSI_SENSE_BUFFERSIZE,
2038                                      &bad_lba))
2039                 return 0;
2040
2041         /*
2042          * If the bad lba was reported incorrectly, we have no idea where
2043          * the error is.
2044          */
2045         start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2046         end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2047         if (bad_lba < start_lba || bad_lba >= end_lba)
2048                 return 0;
2049
2050         /*
2051          * resid is optional but mostly filled in.  When it's unused,
2052          * its value is zero, so we assume the whole buffer transferred
2053          */
2054         transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2055
2056         /* This computation should always be done in terms of the
2057          * resolution of the device's medium.
2058          */
2059         good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2060
2061         return min(good_bytes, transferred);
2062 }
2063
2064 /**
2065  *      sd_done - bottom half handler: called when the lower level
2066  *      driver has completed (successfully or otherwise) a scsi command.
2067  *      @SCpnt: mid-level's per command structure.
2068  *
2069  *      Note: potentially run from within an ISR. Must not block.
2070  **/
2071 static int sd_done(struct scsi_cmnd *SCpnt)
2072 {
2073         int result = SCpnt->result;
2074         unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2075         unsigned int sector_size = SCpnt->device->sector_size;
2076         unsigned int resid;
2077         struct scsi_sense_hdr sshdr;
2078         struct request *req = scsi_cmd_to_rq(SCpnt);
2079         struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2080         int sense_valid = 0;
2081         int sense_deferred = 0;
2082
2083         switch (req_op(req)) {
2084         case REQ_OP_DISCARD:
2085         case REQ_OP_WRITE_ZEROES:
2086         case REQ_OP_ZONE_RESET:
2087         case REQ_OP_ZONE_RESET_ALL:
2088         case REQ_OP_ZONE_OPEN:
2089         case REQ_OP_ZONE_CLOSE:
2090         case REQ_OP_ZONE_FINISH:
2091                 if (!result) {
2092                         good_bytes = blk_rq_bytes(req);
2093                         scsi_set_resid(SCpnt, 0);
2094                 } else {
2095                         good_bytes = 0;
2096                         scsi_set_resid(SCpnt, blk_rq_bytes(req));
2097                 }
2098                 break;
2099         default:
2100                 /*
2101                  * In case of bogus fw or device, we could end up having
2102                  * an unaligned partial completion. Check this here and force
2103                  * alignment.
2104                  */
2105                 resid = scsi_get_resid(SCpnt);
2106                 if (resid & (sector_size - 1)) {
2107                         sd_printk(KERN_INFO, sdkp,
2108                                 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2109                                 resid, sector_size);
2110                         scsi_print_command(SCpnt);
2111                         resid = min(scsi_bufflen(SCpnt),
2112                                     round_up(resid, sector_size));
2113                         scsi_set_resid(SCpnt, resid);
2114                 }
2115         }
2116
2117         if (result) {
2118                 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2119                 if (sense_valid)
2120                         sense_deferred = scsi_sense_is_deferred(&sshdr);
2121         }
2122         sdkp->medium_access_timed_out = 0;
2123
2124         if (!scsi_status_is_check_condition(result) &&
2125             (!sense_valid || sense_deferred))
2126                 goto out;
2127
2128         switch (sshdr.sense_key) {
2129         case HARDWARE_ERROR:
2130         case MEDIUM_ERROR:
2131                 good_bytes = sd_completed_bytes(SCpnt);
2132                 break;
2133         case RECOVERED_ERROR:
2134                 good_bytes = scsi_bufflen(SCpnt);
2135                 break;
2136         case NO_SENSE:
2137                 /* This indicates a false check condition, so ignore it.  An
2138                  * unknown amount of data was transferred so treat it as an
2139                  * error.
2140                  */
2141                 SCpnt->result = 0;
2142                 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2143                 break;
2144         case ABORTED_COMMAND:
2145                 if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2146                         good_bytes = sd_completed_bytes(SCpnt);
2147                 break;
2148         case ILLEGAL_REQUEST:
2149                 switch (sshdr.asc) {
2150                 case 0x10:      /* DIX: Host detected corruption */
2151                         good_bytes = sd_completed_bytes(SCpnt);
2152                         break;
2153                 case 0x20:      /* INVALID COMMAND OPCODE */
2154                 case 0x24:      /* INVALID FIELD IN CDB */
2155                         switch (SCpnt->cmnd[0]) {
2156                         case UNMAP:
2157                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2158                                 break;
2159                         case WRITE_SAME_16:
2160                         case WRITE_SAME:
2161                                 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2162                                         sd_config_discard(sdkp, SD_LBP_DISABLE);
2163                                 } else {
2164                                         sdkp->device->no_write_same = 1;
2165                                         sd_config_write_same(sdkp);
2166                                         req->rq_flags |= RQF_QUIET;
2167                                 }
2168                                 break;
2169                         }
2170                 }
2171                 break;
2172         default:
2173                 break;
2174         }
2175
2176  out:
2177         if (sd_is_zoned(sdkp))
2178                 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2179
2180         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2181                                            "sd_done: completed %d of %d bytes\n",
2182                                            good_bytes, scsi_bufflen(SCpnt)));
2183
2184         return good_bytes;
2185 }
2186
2187 /*
2188  * spinup disk - called only in sd_revalidate_disk()
2189  */
2190 static void
2191 sd_spinup_disk(struct scsi_disk *sdkp)
2192 {
2193         unsigned char cmd[10];
2194         unsigned long spintime_expire = 0;
2195         int retries, spintime;
2196         unsigned int the_result;
2197         struct scsi_sense_hdr sshdr;
2198         const struct scsi_exec_args exec_args = {
2199                 .sshdr = &sshdr,
2200         };
2201         int sense_valid = 0;
2202
2203         spintime = 0;
2204
2205         /* Spin up drives, as required.  Only do this at boot time */
2206         /* Spinup needs to be done for module loads too. */
2207         do {
2208                 retries = 0;
2209
2210                 do {
2211                         bool media_was_present = sdkp->media_present;
2212
2213                         cmd[0] = TEST_UNIT_READY;
2214                         memset((void *) &cmd[1], 0, 9);
2215
2216                         the_result = scsi_execute_cmd(sdkp->device, cmd,
2217                                                       REQ_OP_DRV_IN, NULL, 0,
2218                                                       SD_TIMEOUT,
2219                                                       sdkp->max_retries,
2220                                                       &exec_args);
2221
2222                         /*
2223                          * If the drive has indicated to us that it
2224                          * doesn't have any media in it, don't bother
2225                          * with any more polling.
2226                          */
2227                         if (media_not_present(sdkp, &sshdr)) {
2228                                 if (media_was_present)
2229                                         sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2230                                 return;
2231                         }
2232
2233                         if (the_result)
2234                                 sense_valid = scsi_sense_valid(&sshdr);
2235                         retries++;
2236                 } while (retries < 3 &&
2237                          (!scsi_status_is_good(the_result) ||
2238                           (scsi_status_is_check_condition(the_result) &&
2239                           sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2240
2241                 if (!scsi_status_is_check_condition(the_result)) {
2242                         /* no sense, TUR either succeeded or failed
2243                          * with a status error */
2244                         if(!spintime && !scsi_status_is_good(the_result)) {
2245                                 sd_print_result(sdkp, "Test Unit Ready failed",
2246                                                 the_result);
2247                         }
2248                         break;
2249                 }
2250
2251                 /*
2252                  * The device does not want the automatic start to be issued.
2253                  */
2254                 if (sdkp->device->no_start_on_add)
2255                         break;
2256
2257                 if (sense_valid && sshdr.sense_key == NOT_READY) {
2258                         if (sshdr.asc == 4 && sshdr.ascq == 3)
2259                                 break;  /* manual intervention required */
2260                         if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2261                                 break;  /* standby */
2262                         if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2263                                 break;  /* unavailable */
2264                         if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2265                                 break;  /* sanitize in progress */
2266                         /*
2267                          * Issue command to spin up drive when not ready
2268                          */
2269                         if (!spintime) {
2270                                 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2271                                 cmd[0] = START_STOP;
2272                                 cmd[1] = 1;     /* Return immediately */
2273                                 memset((void *) &cmd[2], 0, 8);
2274                                 cmd[4] = 1;     /* Start spin cycle */
2275                                 if (sdkp->device->start_stop_pwr_cond)
2276                                         cmd[4] |= 1 << 4;
2277                                 scsi_execute_cmd(sdkp->device, cmd,
2278                                                  REQ_OP_DRV_IN, NULL, 0,
2279                                                  SD_TIMEOUT, sdkp->max_retries,
2280                                                  &exec_args);
2281                                 spintime_expire = jiffies + 100 * HZ;
2282                                 spintime = 1;
2283                         }
2284                         /* Wait 1 second for next try */
2285                         msleep(1000);
2286                         printk(KERN_CONT ".");
2287
2288                 /*
2289                  * Wait for USB flash devices with slow firmware.
2290                  * Yes, this sense key/ASC combination shouldn't
2291                  * occur here.  It's characteristic of these devices.
2292                  */
2293                 } else if (sense_valid &&
2294                                 sshdr.sense_key == UNIT_ATTENTION &&
2295                                 sshdr.asc == 0x28) {
2296                         if (!spintime) {
2297                                 spintime_expire = jiffies + 5 * HZ;
2298                                 spintime = 1;
2299                         }
2300                         /* Wait 1 second for next try */
2301                         msleep(1000);
2302                 } else {
2303                         /* we don't understand the sense code, so it's
2304                          * probably pointless to loop */
2305                         if(!spintime) {
2306                                 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2307                                 sd_print_sense_hdr(sdkp, &sshdr);
2308                         }
2309                         break;
2310                 }
2311                                 
2312         } while (spintime && time_before_eq(jiffies, spintime_expire));
2313
2314         if (spintime) {
2315                 if (scsi_status_is_good(the_result))
2316                         printk(KERN_CONT "ready\n");
2317                 else
2318                         printk(KERN_CONT "not responding...\n");
2319         }
2320 }
2321
2322 /*
2323  * Determine whether disk supports Data Integrity Field.
2324  */
2325 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2326 {
2327         struct scsi_device *sdp = sdkp->device;
2328         u8 type;
2329
2330         if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2331                 sdkp->protection_type = 0;
2332                 return 0;
2333         }
2334
2335         type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2336
2337         if (type > T10_PI_TYPE3_PROTECTION) {
2338                 sd_printk(KERN_ERR, sdkp, "formatted with unsupported"  \
2339                           " protection type %u. Disabling disk!\n",
2340                           type);
2341                 sdkp->protection_type = 0;
2342                 return -ENODEV;
2343         }
2344
2345         sdkp->protection_type = type;
2346
2347         return 0;
2348 }
2349
2350 static void sd_config_protection(struct scsi_disk *sdkp)
2351 {
2352         struct scsi_device *sdp = sdkp->device;
2353
2354         sd_dif_config_host(sdkp);
2355
2356         if (!sdkp->protection_type)
2357                 return;
2358
2359         if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2360                 sd_first_printk(KERN_NOTICE, sdkp,
2361                                 "Disabling DIF Type %u protection\n",
2362                                 sdkp->protection_type);
2363                 sdkp->protection_type = 0;
2364         }
2365
2366         sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2367                         sdkp->protection_type);
2368 }
2369
2370 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2371                         struct scsi_sense_hdr *sshdr, int sense_valid,
2372                         int the_result)
2373 {
2374         if (sense_valid)
2375                 sd_print_sense_hdr(sdkp, sshdr);
2376         else
2377                 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2378
2379         /*
2380          * Set dirty bit for removable devices if not ready -
2381          * sometimes drives will not report this properly.
2382          */
2383         if (sdp->removable &&
2384             sense_valid && sshdr->sense_key == NOT_READY)
2385                 set_media_not_present(sdkp);
2386
2387         /*
2388          * We used to set media_present to 0 here to indicate no media
2389          * in the drive, but some drives fail read capacity even with
2390          * media present, so we can't do that.
2391          */
2392         sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2393 }
2394
2395 #define RC16_LEN 32
2396 #if RC16_LEN > SD_BUF_SIZE
2397 #error RC16_LEN must not be more than SD_BUF_SIZE
2398 #endif
2399
2400 #define READ_CAPACITY_RETRIES_ON_RESET  10
2401
2402 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2403                                                 unsigned char *buffer)
2404 {
2405         unsigned char cmd[16];
2406         struct scsi_sense_hdr sshdr;
2407         const struct scsi_exec_args exec_args = {
2408                 .sshdr = &sshdr,
2409         };
2410         int sense_valid = 0;
2411         int the_result;
2412         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2413         unsigned int alignment;
2414         unsigned long long lba;
2415         unsigned sector_size;
2416
2417         if (sdp->no_read_capacity_16)
2418                 return -EINVAL;
2419
2420         do {
2421                 memset(cmd, 0, 16);
2422                 cmd[0] = SERVICE_ACTION_IN_16;
2423                 cmd[1] = SAI_READ_CAPACITY_16;
2424                 cmd[13] = RC16_LEN;
2425                 memset(buffer, 0, RC16_LEN);
2426
2427                 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2428                                               buffer, RC16_LEN, SD_TIMEOUT,
2429                                               sdkp->max_retries, &exec_args);
2430
2431                 if (media_not_present(sdkp, &sshdr))
2432                         return -ENODEV;
2433
2434                 if (the_result > 0) {
2435                         sense_valid = scsi_sense_valid(&sshdr);
2436                         if (sense_valid &&
2437                             sshdr.sense_key == ILLEGAL_REQUEST &&
2438                             (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2439                             sshdr.ascq == 0x00)
2440                                 /* Invalid Command Operation Code or
2441                                  * Invalid Field in CDB, just retry
2442                                  * silently with RC10 */
2443                                 return -EINVAL;
2444                         if (sense_valid &&
2445                             sshdr.sense_key == UNIT_ATTENTION &&
2446                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2447                                 /* Device reset might occur several times,
2448                                  * give it one more chance */
2449                                 if (--reset_retries > 0)
2450                                         continue;
2451                 }
2452                 retries--;
2453
2454         } while (the_result && retries);
2455
2456         if (the_result) {
2457                 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2458                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2459                 return -EINVAL;
2460         }
2461
2462         sector_size = get_unaligned_be32(&buffer[8]);
2463         lba = get_unaligned_be64(&buffer[0]);
2464
2465         if (sd_read_protection_type(sdkp, buffer) < 0) {
2466                 sdkp->capacity = 0;
2467                 return -ENODEV;
2468         }
2469
2470         /* Logical blocks per physical block exponent */
2471         sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2472
2473         /* RC basis */
2474         sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2475
2476         /* Lowest aligned logical block */
2477         alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2478         blk_queue_alignment_offset(sdp->request_queue, alignment);
2479         if (alignment && sdkp->first_scan)
2480                 sd_printk(KERN_NOTICE, sdkp,
2481                           "physical block alignment offset: %u\n", alignment);
2482
2483         if (buffer[14] & 0x80) { /* LBPME */
2484                 sdkp->lbpme = 1;
2485
2486                 if (buffer[14] & 0x40) /* LBPRZ */
2487                         sdkp->lbprz = 1;
2488
2489                 sd_config_discard(sdkp, SD_LBP_WS16);
2490         }
2491
2492         sdkp->capacity = lba + 1;
2493         return sector_size;
2494 }
2495
2496 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2497                                                 unsigned char *buffer)
2498 {
2499         unsigned char cmd[16];
2500         struct scsi_sense_hdr sshdr;
2501         const struct scsi_exec_args exec_args = {
2502                 .sshdr = &sshdr,
2503         };
2504         int sense_valid = 0;
2505         int the_result;
2506         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2507         sector_t lba;
2508         unsigned sector_size;
2509
2510         do {
2511                 cmd[0] = READ_CAPACITY;
2512                 memset(&cmd[1], 0, 9);
2513                 memset(buffer, 0, 8);
2514
2515                 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2516                                               8, SD_TIMEOUT, sdkp->max_retries,
2517                                               &exec_args);
2518
2519                 if (media_not_present(sdkp, &sshdr))
2520                         return -ENODEV;
2521
2522                 if (the_result > 0) {
2523                         sense_valid = scsi_sense_valid(&sshdr);
2524                         if (sense_valid &&
2525                             sshdr.sense_key == UNIT_ATTENTION &&
2526                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2527                                 /* Device reset might occur several times,
2528                                  * give it one more chance */
2529                                 if (--reset_retries > 0)
2530                                         continue;
2531                 }
2532                 retries--;
2533
2534         } while (the_result && retries);
2535
2536         if (the_result) {
2537                 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2538                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2539                 return -EINVAL;
2540         }
2541
2542         sector_size = get_unaligned_be32(&buffer[4]);
2543         lba = get_unaligned_be32(&buffer[0]);
2544
2545         if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2546                 /* Some buggy (usb cardreader) devices return an lba of
2547                    0xffffffff when the want to report a size of 0 (with
2548                    which they really mean no media is present) */
2549                 sdkp->capacity = 0;
2550                 sdkp->physical_block_size = sector_size;
2551                 return sector_size;
2552         }
2553
2554         sdkp->capacity = lba + 1;
2555         sdkp->physical_block_size = sector_size;
2556         return sector_size;
2557 }
2558
2559 static int sd_try_rc16_first(struct scsi_device *sdp)
2560 {
2561         if (sdp->host->max_cmd_len < 16)
2562                 return 0;
2563         if (sdp->try_rc_10_first)
2564                 return 0;
2565         if (sdp->scsi_level > SCSI_SPC_2)
2566                 return 1;
2567         if (scsi_device_protection(sdp))
2568                 return 1;
2569         return 0;
2570 }
2571
2572 /*
2573  * read disk capacity
2574  */
2575 static void
2576 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2577 {
2578         int sector_size;
2579         struct scsi_device *sdp = sdkp->device;
2580
2581         if (sd_try_rc16_first(sdp)) {
2582                 sector_size = read_capacity_16(sdkp, sdp, buffer);
2583                 if (sector_size == -EOVERFLOW)
2584                         goto got_data;
2585                 if (sector_size == -ENODEV)
2586                         return;
2587                 if (sector_size < 0)
2588                         sector_size = read_capacity_10(sdkp, sdp, buffer);
2589                 if (sector_size < 0)
2590                         return;
2591         } else {
2592                 sector_size = read_capacity_10(sdkp, sdp, buffer);
2593                 if (sector_size == -EOVERFLOW)
2594                         goto got_data;
2595                 if (sector_size < 0)
2596                         return;
2597                 if ((sizeof(sdkp->capacity) > 4) &&
2598                     (sdkp->capacity > 0xffffffffULL)) {
2599                         int old_sector_size = sector_size;
2600                         sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2601                                         "Trying to use READ CAPACITY(16).\n");
2602                         sector_size = read_capacity_16(sdkp, sdp, buffer);
2603                         if (sector_size < 0) {
2604                                 sd_printk(KERN_NOTICE, sdkp,
2605                                         "Using 0xffffffff as device size\n");
2606                                 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2607                                 sector_size = old_sector_size;
2608                                 goto got_data;
2609                         }
2610                         /* Remember that READ CAPACITY(16) succeeded */
2611                         sdp->try_rc_10_first = 0;
2612                 }
2613         }
2614
2615         /* Some devices are known to return the total number of blocks,
2616          * not the highest block number.  Some devices have versions
2617          * which do this and others which do not.  Some devices we might
2618          * suspect of doing this but we don't know for certain.
2619          *
2620          * If we know the reported capacity is wrong, decrement it.  If
2621          * we can only guess, then assume the number of blocks is even
2622          * (usually true but not always) and err on the side of lowering
2623          * the capacity.
2624          */
2625         if (sdp->fix_capacity ||
2626             (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2627                 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2628                                 "from its reported value: %llu\n",
2629                                 (unsigned long long) sdkp->capacity);
2630                 --sdkp->capacity;
2631         }
2632
2633 got_data:
2634         if (sector_size == 0) {
2635                 sector_size = 512;
2636                 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2637                           "assuming 512.\n");
2638         }
2639
2640         if (sector_size != 512 &&
2641             sector_size != 1024 &&
2642             sector_size != 2048 &&
2643             sector_size != 4096) {
2644                 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2645                           sector_size);
2646                 /*
2647                  * The user might want to re-format the drive with
2648                  * a supported sectorsize.  Once this happens, it
2649                  * would be relatively trivial to set the thing up.
2650                  * For this reason, we leave the thing in the table.
2651                  */
2652                 sdkp->capacity = 0;
2653                 /*
2654                  * set a bogus sector size so the normal read/write
2655                  * logic in the block layer will eventually refuse any
2656                  * request on this device without tripping over power
2657                  * of two sector size assumptions
2658                  */
2659                 sector_size = 512;
2660         }
2661         blk_queue_logical_block_size(sdp->request_queue, sector_size);
2662         blk_queue_physical_block_size(sdp->request_queue,
2663                                       sdkp->physical_block_size);
2664         sdkp->device->sector_size = sector_size;
2665
2666         if (sdkp->capacity > 0xffffffff)
2667                 sdp->use_16_for_rw = 1;
2668
2669 }
2670
2671 /*
2672  * Print disk capacity
2673  */
2674 static void
2675 sd_print_capacity(struct scsi_disk *sdkp,
2676                   sector_t old_capacity)
2677 {
2678         int sector_size = sdkp->device->sector_size;
2679         char cap_str_2[10], cap_str_10[10];
2680
2681         if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2682                 return;
2683
2684         string_get_size(sdkp->capacity, sector_size,
2685                         STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2686         string_get_size(sdkp->capacity, sector_size,
2687                         STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2688
2689         sd_printk(KERN_NOTICE, sdkp,
2690                   "%llu %d-byte logical blocks: (%s/%s)\n",
2691                   (unsigned long long)sdkp->capacity,
2692                   sector_size, cap_str_10, cap_str_2);
2693
2694         if (sdkp->physical_block_size != sector_size)
2695                 sd_printk(KERN_NOTICE, sdkp,
2696                           "%u-byte physical blocks\n",
2697                           sdkp->physical_block_size);
2698 }
2699
2700 /* called with buffer of length 512 */
2701 static inline int
2702 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2703                  unsigned char *buffer, int len, struct scsi_mode_data *data,
2704                  struct scsi_sense_hdr *sshdr)
2705 {
2706         /*
2707          * If we must use MODE SENSE(10), make sure that the buffer length
2708          * is at least 8 bytes so that the mode sense header fits.
2709          */
2710         if (sdkp->device->use_10_for_ms && len < 8)
2711                 len = 8;
2712
2713         return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2714                                SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2715 }
2716
2717 /*
2718  * read write protect setting, if possible - called only in sd_revalidate_disk()
2719  * called with buffer of length SD_BUF_SIZE
2720  */
2721 static void
2722 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2723 {
2724         int res;
2725         struct scsi_device *sdp = sdkp->device;
2726         struct scsi_mode_data data;
2727         int old_wp = sdkp->write_prot;
2728
2729         set_disk_ro(sdkp->disk, 0);
2730         if (sdp->skip_ms_page_3f) {
2731                 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2732                 return;
2733         }
2734
2735         if (sdp->use_192_bytes_for_3f) {
2736                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2737         } else {
2738                 /*
2739                  * First attempt: ask for all pages (0x3F), but only 4 bytes.
2740                  * We have to start carefully: some devices hang if we ask
2741                  * for more than is available.
2742                  */
2743                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2744
2745                 /*
2746                  * Second attempt: ask for page 0 When only page 0 is
2747                  * implemented, a request for page 3F may return Sense Key
2748                  * 5: Illegal Request, Sense Code 24: Invalid field in
2749                  * CDB.
2750                  */
2751                 if (res < 0)
2752                         res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2753
2754                 /*
2755                  * Third attempt: ask 255 bytes, as we did earlier.
2756                  */
2757                 if (res < 0)
2758                         res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2759                                                &data, NULL);
2760         }
2761
2762         if (res < 0) {
2763                 sd_first_printk(KERN_WARNING, sdkp,
2764                           "Test WP failed, assume Write Enabled\n");
2765         } else {
2766                 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2767                 set_disk_ro(sdkp->disk, sdkp->write_prot);
2768                 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2769                         sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2770                                   sdkp->write_prot ? "on" : "off");
2771                         sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2772                 }
2773         }
2774 }
2775
2776 /*
2777  * sd_read_cache_type - called only from sd_revalidate_disk()
2778  * called with buffer of length SD_BUF_SIZE
2779  */
2780 static void
2781 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2782 {
2783         int len = 0, res;
2784         struct scsi_device *sdp = sdkp->device;
2785
2786         int dbd;
2787         int modepage;
2788         int first_len;
2789         struct scsi_mode_data data;
2790         struct scsi_sense_hdr sshdr;
2791         int old_wce = sdkp->WCE;
2792         int old_rcd = sdkp->RCD;
2793         int old_dpofua = sdkp->DPOFUA;
2794
2795
2796         if (sdkp->cache_override)
2797                 return;
2798
2799         first_len = 4;
2800         if (sdp->skip_ms_page_8) {
2801                 if (sdp->type == TYPE_RBC)
2802                         goto defaults;
2803                 else {
2804                         if (sdp->skip_ms_page_3f)
2805                                 goto defaults;
2806                         modepage = 0x3F;
2807                         if (sdp->use_192_bytes_for_3f)
2808                                 first_len = 192;
2809                         dbd = 0;
2810                 }
2811         } else if (sdp->type == TYPE_RBC) {
2812                 modepage = 6;
2813                 dbd = 8;
2814         } else {
2815                 modepage = 8;
2816                 dbd = 0;
2817         }
2818
2819         /* cautiously ask */
2820         res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2821                         &data, &sshdr);
2822
2823         if (res < 0)
2824                 goto bad_sense;
2825
2826         if (!data.header_length) {
2827                 modepage = 6;
2828                 first_len = 0;
2829                 sd_first_printk(KERN_ERR, sdkp,
2830                                 "Missing header in MODE_SENSE response\n");
2831         }
2832
2833         /* that went OK, now ask for the proper length */
2834         len = data.length;
2835
2836         /*
2837          * We're only interested in the first three bytes, actually.
2838          * But the data cache page is defined for the first 20.
2839          */
2840         if (len < 3)
2841                 goto bad_sense;
2842         else if (len > SD_BUF_SIZE) {
2843                 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2844                           "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2845                 len = SD_BUF_SIZE;
2846         }
2847         if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2848                 len = 192;
2849
2850         /* Get the data */
2851         if (len > first_len)
2852                 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2853                                 &data, &sshdr);
2854
2855         if (!res) {
2856                 int offset = data.header_length + data.block_descriptor_length;
2857
2858                 while (offset < len) {
2859                         u8 page_code = buffer[offset] & 0x3F;
2860                         u8 spf       = buffer[offset] & 0x40;
2861
2862                         if (page_code == 8 || page_code == 6) {
2863                                 /* We're interested only in the first 3 bytes.
2864                                  */
2865                                 if (len - offset <= 2) {
2866                                         sd_first_printk(KERN_ERR, sdkp,
2867                                                 "Incomplete mode parameter "
2868                                                         "data\n");
2869                                         goto defaults;
2870                                 } else {
2871                                         modepage = page_code;
2872                                         goto Page_found;
2873                                 }
2874                         } else {
2875                                 /* Go to the next page */
2876                                 if (spf && len - offset > 3)
2877                                         offset += 4 + (buffer[offset+2] << 8) +
2878                                                 buffer[offset+3];
2879                                 else if (!spf && len - offset > 1)
2880                                         offset += 2 + buffer[offset+1];
2881                                 else {
2882                                         sd_first_printk(KERN_ERR, sdkp,
2883                                                         "Incomplete mode "
2884                                                         "parameter data\n");
2885                                         goto defaults;
2886                                 }
2887                         }
2888                 }
2889
2890                 sd_first_printk(KERN_WARNING, sdkp,
2891                                 "No Caching mode page found\n");
2892                 goto defaults;
2893
2894         Page_found:
2895                 if (modepage == 8) {
2896                         sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2897                         sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2898                 } else {
2899                         sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2900                         sdkp->RCD = 0;
2901                 }
2902
2903                 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2904                 if (sdp->broken_fua) {
2905                         sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2906                         sdkp->DPOFUA = 0;
2907                 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2908                            !sdkp->device->use_16_for_rw) {
2909                         sd_first_printk(KERN_NOTICE, sdkp,
2910                                   "Uses READ/WRITE(6), disabling FUA\n");
2911                         sdkp->DPOFUA = 0;
2912                 }
2913
2914                 /* No cache flush allowed for write protected devices */
2915                 if (sdkp->WCE && sdkp->write_prot)
2916                         sdkp->WCE = 0;
2917
2918                 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2919                     old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2920                         sd_printk(KERN_NOTICE, sdkp,
2921                                   "Write cache: %s, read cache: %s, %s\n",
2922                                   sdkp->WCE ? "enabled" : "disabled",
2923                                   sdkp->RCD ? "disabled" : "enabled",
2924                                   sdkp->DPOFUA ? "supports DPO and FUA"
2925                                   : "doesn't support DPO or FUA");
2926
2927                 return;
2928         }
2929
2930 bad_sense:
2931         if (scsi_sense_valid(&sshdr) &&
2932             sshdr.sense_key == ILLEGAL_REQUEST &&
2933             sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2934                 /* Invalid field in CDB */
2935                 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2936         else
2937                 sd_first_printk(KERN_ERR, sdkp,
2938                                 "Asking for cache data failed\n");
2939
2940 defaults:
2941         if (sdp->wce_default_on) {
2942                 sd_first_printk(KERN_NOTICE, sdkp,
2943                                 "Assuming drive cache: write back\n");
2944                 sdkp->WCE = 1;
2945         } else {
2946                 sd_first_printk(KERN_WARNING, sdkp,
2947                                 "Assuming drive cache: write through\n");
2948                 sdkp->WCE = 0;
2949         }
2950         sdkp->RCD = 0;
2951         sdkp->DPOFUA = 0;
2952 }
2953
2954 /*
2955  * The ATO bit indicates whether the DIF application tag is available
2956  * for use by the operating system.
2957  */
2958 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2959 {
2960         int res, offset;
2961         struct scsi_device *sdp = sdkp->device;
2962         struct scsi_mode_data data;
2963         struct scsi_sense_hdr sshdr;
2964
2965         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2966                 return;
2967
2968         if (sdkp->protection_type == 0)
2969                 return;
2970
2971         res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
2972                               sdkp->max_retries, &data, &sshdr);
2973
2974         if (res < 0 || !data.header_length ||
2975             data.length < 6) {
2976                 sd_first_printk(KERN_WARNING, sdkp,
2977                           "getting Control mode page failed, assume no ATO\n");
2978
2979                 if (scsi_sense_valid(&sshdr))
2980                         sd_print_sense_hdr(sdkp, &sshdr);
2981
2982                 return;
2983         }
2984
2985         offset = data.header_length + data.block_descriptor_length;
2986
2987         if ((buffer[offset] & 0x3f) != 0x0a) {
2988                 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2989                 return;
2990         }
2991
2992         if ((buffer[offset + 5] & 0x80) == 0)
2993                 return;
2994
2995         sdkp->ATO = 1;
2996
2997         return;
2998 }
2999
3000 /**
3001  * sd_read_block_limits - Query disk device for preferred I/O sizes.
3002  * @sdkp: disk to query
3003  */
3004 static void sd_read_block_limits(struct scsi_disk *sdkp)
3005 {
3006         struct scsi_vpd *vpd;
3007
3008         rcu_read_lock();
3009
3010         vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3011         if (!vpd || vpd->len < 16)
3012                 goto out;
3013
3014         sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3015         sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3016         sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3017
3018         if (vpd->len >= 64) {
3019                 unsigned int lba_count, desc_count;
3020
3021                 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3022
3023                 if (!sdkp->lbpme)
3024                         goto out;
3025
3026                 lba_count = get_unaligned_be32(&vpd->data[20]);
3027                 desc_count = get_unaligned_be32(&vpd->data[24]);
3028
3029                 if (lba_count && desc_count)
3030                         sdkp->max_unmap_blocks = lba_count;
3031
3032                 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3033
3034                 if (vpd->data[32] & 0x80)
3035                         sdkp->unmap_alignment =
3036                                 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3037
3038                 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
3039
3040                         if (sdkp->max_unmap_blocks)
3041                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
3042                         else
3043                                 sd_config_discard(sdkp, SD_LBP_WS16);
3044
3045                 } else {        /* LBP VPD page tells us what to use */
3046                         if (sdkp->lbpu && sdkp->max_unmap_blocks)
3047                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
3048                         else if (sdkp->lbpws)
3049                                 sd_config_discard(sdkp, SD_LBP_WS16);
3050                         else if (sdkp->lbpws10)
3051                                 sd_config_discard(sdkp, SD_LBP_WS10);
3052                         else
3053                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
3054                 }
3055         }
3056
3057  out:
3058         rcu_read_unlock();
3059 }
3060
3061 /**
3062  * sd_read_block_characteristics - Query block dev. characteristics
3063  * @sdkp: disk to query
3064  */
3065 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3066 {
3067         struct request_queue *q = sdkp->disk->queue;
3068         struct scsi_vpd *vpd;
3069         u16 rot;
3070         u8 zoned;
3071
3072         rcu_read_lock();
3073         vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3074
3075         if (!vpd || vpd->len < 8) {
3076                 rcu_read_unlock();
3077                 return;
3078         }
3079
3080         rot = get_unaligned_be16(&vpd->data[4]);
3081         zoned = (vpd->data[8] >> 4) & 3;
3082         rcu_read_unlock();
3083
3084         if (rot == 1) {
3085                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3086                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3087         }
3088
3089         if (sdkp->device->type == TYPE_ZBC) {
3090                 /*
3091                  * Host-managed: Per ZBC and ZAC specifications, writes in
3092                  * sequential write required zones of host-managed devices must
3093                  * be aligned to the device physical block size.
3094                  */
3095                 disk_set_zoned(sdkp->disk, BLK_ZONED_HM);
3096                 blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
3097         } else {
3098                 sdkp->zoned = zoned;
3099                 if (sdkp->zoned == 1) {
3100                         /* Host-aware */
3101                         disk_set_zoned(sdkp->disk, BLK_ZONED_HA);
3102                 } else {
3103                         /* Regular disk or drive managed disk */
3104                         disk_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3105                 }
3106         }
3107
3108         if (!sdkp->first_scan)
3109                 return;
3110
3111         if (blk_queue_is_zoned(q)) {
3112                 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3113                       q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3114         } else {
3115                 if (sdkp->zoned == 1)
3116                         sd_printk(KERN_NOTICE, sdkp,
3117                                   "Host-aware SMR disk used as regular disk\n");
3118                 else if (sdkp->zoned == 2)
3119                         sd_printk(KERN_NOTICE, sdkp,
3120                                   "Drive-managed SMR disk\n");
3121         }
3122 }
3123
3124 /**
3125  * sd_read_block_provisioning - Query provisioning VPD page
3126  * @sdkp: disk to query
3127  */
3128 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3129 {
3130         struct scsi_vpd *vpd;
3131
3132         if (sdkp->lbpme == 0)
3133                 return;
3134
3135         rcu_read_lock();
3136         vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3137
3138         if (!vpd || vpd->len < 8) {
3139                 rcu_read_unlock();
3140                 return;
3141         }
3142
3143         sdkp->lbpvpd    = 1;
3144         sdkp->lbpu      = (vpd->data[5] >> 7) & 1; /* UNMAP */
3145         sdkp->lbpws     = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3146         sdkp->lbpws10   = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3147         rcu_read_unlock();
3148 }
3149
3150 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3151 {
3152         struct scsi_device *sdev = sdkp->device;
3153
3154         if (sdev->host->no_write_same) {
3155                 sdev->no_write_same = 1;
3156
3157                 return;
3158         }
3159
3160         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3161                 struct scsi_vpd *vpd;
3162
3163                 sdev->no_report_opcodes = 1;
3164
3165                 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3166                  * CODES is unsupported and the device has an ATA
3167                  * Information VPD page (SAT).
3168                  */
3169                 rcu_read_lock();
3170                 vpd = rcu_dereference(sdev->vpd_pg89);
3171                 if (vpd)
3172                         sdev->no_write_same = 1;
3173                 rcu_read_unlock();
3174         }
3175
3176         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3177                 sdkp->ws16 = 1;
3178
3179         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3180                 sdkp->ws10 = 1;
3181 }
3182
3183 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3184 {
3185         struct scsi_device *sdev = sdkp->device;
3186
3187         if (!sdev->security_supported)
3188                 return;
3189
3190         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3191                         SECURITY_PROTOCOL_IN, 0) == 1 &&
3192             scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3193                         SECURITY_PROTOCOL_OUT, 0) == 1)
3194                 sdkp->security = 1;
3195 }
3196
3197 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3198 {
3199         return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3200 }
3201
3202 /**
3203  * sd_read_cpr - Query concurrent positioning ranges
3204  * @sdkp:       disk to query
3205  */
3206 static void sd_read_cpr(struct scsi_disk *sdkp)
3207 {
3208         struct blk_independent_access_ranges *iars = NULL;
3209         unsigned char *buffer = NULL;
3210         unsigned int nr_cpr = 0;
3211         int i, vpd_len, buf_len = SD_BUF_SIZE;
3212         u8 *desc;
3213
3214         /*
3215          * We need to have the capacity set first for the block layer to be
3216          * able to check the ranges.
3217          */
3218         if (sdkp->first_scan)
3219                 return;
3220
3221         if (!sdkp->capacity)
3222                 goto out;
3223
3224         /*
3225          * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3226          * leading to a maximum page size of 64 + 256*32 bytes.
3227          */
3228         buf_len = 64 + 256*32;
3229         buffer = kmalloc(buf_len, GFP_KERNEL);
3230         if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3231                 goto out;
3232
3233         /* We must have at least a 64B header and one 32B range descriptor */
3234         vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3235         if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3236                 sd_printk(KERN_ERR, sdkp,
3237                           "Invalid Concurrent Positioning Ranges VPD page\n");
3238                 goto out;
3239         }
3240
3241         nr_cpr = (vpd_len - 64) / 32;
3242         if (nr_cpr == 1) {
3243                 nr_cpr = 0;
3244                 goto out;
3245         }
3246
3247         iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3248         if (!iars) {
3249                 nr_cpr = 0;
3250                 goto out;
3251         }
3252
3253         desc = &buffer[64];
3254         for (i = 0; i < nr_cpr; i++, desc += 32) {
3255                 if (desc[0] != i) {
3256                         sd_printk(KERN_ERR, sdkp,
3257                                 "Invalid Concurrent Positioning Range number\n");
3258                         nr_cpr = 0;
3259                         break;
3260                 }
3261
3262                 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3263                 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3264         }
3265
3266 out:
3267         disk_set_independent_access_ranges(sdkp->disk, iars);
3268         if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3269                 sd_printk(KERN_NOTICE, sdkp,
3270                           "%u concurrent positioning ranges\n", nr_cpr);
3271                 sdkp->nr_actuators = nr_cpr;
3272         }
3273
3274         kfree(buffer);
3275 }
3276
3277 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3278 {
3279         struct scsi_device *sdp = sdkp->device;
3280         unsigned int min_xfer_bytes =
3281                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3282
3283         if (sdkp->min_xfer_blocks == 0)
3284                 return false;
3285
3286         if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3287                 sd_first_printk(KERN_WARNING, sdkp,
3288                                 "Preferred minimum I/O size %u bytes not a " \
3289                                 "multiple of physical block size (%u bytes)\n",
3290                                 min_xfer_bytes, sdkp->physical_block_size);
3291                 sdkp->min_xfer_blocks = 0;
3292                 return false;
3293         }
3294
3295         sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3296                         min_xfer_bytes);
3297         return true;
3298 }
3299
3300 /*
3301  * Determine the device's preferred I/O size for reads and writes
3302  * unless the reported value is unreasonably small, large, not a
3303  * multiple of the physical block size, or simply garbage.
3304  */
3305 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3306                                       unsigned int dev_max)
3307 {
3308         struct scsi_device *sdp = sdkp->device;
3309         unsigned int opt_xfer_bytes =
3310                 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3311         unsigned int min_xfer_bytes =
3312                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3313
3314         if (sdkp->opt_xfer_blocks == 0)
3315                 return false;
3316
3317         if (sdkp->opt_xfer_blocks > dev_max) {
3318                 sd_first_printk(KERN_WARNING, sdkp,
3319                                 "Optimal transfer size %u logical blocks " \
3320                                 "> dev_max (%u logical blocks)\n",
3321                                 sdkp->opt_xfer_blocks, dev_max);
3322                 return false;
3323         }
3324
3325         if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3326                 sd_first_printk(KERN_WARNING, sdkp,
3327                                 "Optimal transfer size %u logical blocks " \
3328                                 "> sd driver limit (%u logical blocks)\n",
3329                                 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3330                 return false;
3331         }
3332
3333         if (opt_xfer_bytes < PAGE_SIZE) {
3334                 sd_first_printk(KERN_WARNING, sdkp,
3335                                 "Optimal transfer size %u bytes < " \
3336                                 "PAGE_SIZE (%u bytes)\n",
3337                                 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3338                 return false;
3339         }
3340
3341         if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3342                 sd_first_printk(KERN_WARNING, sdkp,
3343                                 "Optimal transfer size %u bytes not a " \
3344                                 "multiple of preferred minimum block " \
3345                                 "size (%u bytes)\n",
3346                                 opt_xfer_bytes, min_xfer_bytes);
3347                 return false;
3348         }
3349
3350         if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3351                 sd_first_printk(KERN_WARNING, sdkp,
3352                                 "Optimal transfer size %u bytes not a " \
3353                                 "multiple of physical block size (%u bytes)\n",
3354                                 opt_xfer_bytes, sdkp->physical_block_size);
3355                 return false;
3356         }
3357
3358         sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3359                         opt_xfer_bytes);
3360         return true;
3361 }
3362
3363 /**
3364  *      sd_revalidate_disk - called the first time a new disk is seen,
3365  *      performs disk spin up, read_capacity, etc.
3366  *      @disk: struct gendisk we care about
3367  **/
3368 static int sd_revalidate_disk(struct gendisk *disk)
3369 {
3370         struct scsi_disk *sdkp = scsi_disk(disk);
3371         struct scsi_device *sdp = sdkp->device;
3372         struct request_queue *q = sdkp->disk->queue;
3373         sector_t old_capacity = sdkp->capacity;
3374         unsigned char *buffer;
3375         unsigned int dev_max, rw_max;
3376
3377         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3378                                       "sd_revalidate_disk\n"));
3379
3380         /*
3381          * If the device is offline, don't try and read capacity or any
3382          * of the other niceties.
3383          */
3384         if (!scsi_device_online(sdp))
3385                 goto out;
3386
3387         buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3388         if (!buffer) {
3389                 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3390                           "allocation failure.\n");
3391                 goto out;
3392         }
3393
3394         sd_spinup_disk(sdkp);
3395
3396         /*
3397          * Without media there is no reason to ask; moreover, some devices
3398          * react badly if we do.
3399          */
3400         if (sdkp->media_present) {
3401                 sd_read_capacity(sdkp, buffer);
3402
3403                 /*
3404                  * set the default to rotational.  All non-rotational devices
3405                  * support the block characteristics VPD page, which will
3406                  * cause this to be updated correctly and any device which
3407                  * doesn't support it should be treated as rotational.
3408                  */
3409                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3410                 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3411
3412                 if (scsi_device_supports_vpd(sdp)) {
3413                         sd_read_block_provisioning(sdkp);
3414                         sd_read_block_limits(sdkp);
3415                         sd_read_block_characteristics(sdkp);
3416                         sd_zbc_read_zones(sdkp, buffer);
3417                         sd_read_cpr(sdkp);
3418                 }
3419
3420                 sd_print_capacity(sdkp, old_capacity);
3421
3422                 sd_read_write_protect_flag(sdkp, buffer);
3423                 sd_read_cache_type(sdkp, buffer);
3424                 sd_read_app_tag_own(sdkp, buffer);
3425                 sd_read_write_same(sdkp, buffer);
3426                 sd_read_security(sdkp, buffer);
3427                 sd_config_protection(sdkp);
3428         }
3429
3430         /*
3431          * We now have all cache related info, determine how we deal
3432          * with flush requests.
3433          */
3434         sd_set_flush_flag(sdkp);
3435
3436         /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3437         dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3438
3439         /* Some devices report a maximum block count for READ/WRITE requests. */
3440         dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3441         q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3442
3443         if (sd_validate_min_xfer_size(sdkp))
3444                 blk_queue_io_min(sdkp->disk->queue,
3445                                  logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3446         else
3447                 blk_queue_io_min(sdkp->disk->queue, 0);
3448
3449         if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3450                 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3451                 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3452         } else {
3453                 q->limits.io_opt = 0;
3454                 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3455                                       (sector_t)BLK_DEF_MAX_SECTORS);
3456         }
3457
3458         /*
3459          * Limit default to SCSI host optimal sector limit if set. There may be
3460          * an impact on performance for when the size of a request exceeds this
3461          * host limit.
3462          */
3463         rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3464
3465         /* Do not exceed controller limit */
3466         rw_max = min(rw_max, queue_max_hw_sectors(q));
3467
3468         /*
3469          * Only update max_sectors if previously unset or if the current value
3470          * exceeds the capabilities of the hardware.
3471          */
3472         if (sdkp->first_scan ||
3473             q->limits.max_sectors > q->limits.max_dev_sectors ||
3474             q->limits.max_sectors > q->limits.max_hw_sectors)
3475                 q->limits.max_sectors = rw_max;
3476
3477         sdkp->first_scan = 0;
3478
3479         set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3480         sd_config_write_same(sdkp);
3481         kfree(buffer);
3482
3483         /*
3484          * For a zoned drive, revalidating the zones can be done only once
3485          * the gendisk capacity is set. So if this fails, set back the gendisk
3486          * capacity to 0.
3487          */
3488         if (sd_zbc_revalidate_zones(sdkp))
3489                 set_capacity_and_notify(disk, 0);
3490
3491  out:
3492         return 0;
3493 }
3494
3495 /**
3496  *      sd_unlock_native_capacity - unlock native capacity
3497  *      @disk: struct gendisk to set capacity for
3498  *
3499  *      Block layer calls this function if it detects that partitions
3500  *      on @disk reach beyond the end of the device.  If the SCSI host
3501  *      implements ->unlock_native_capacity() method, it's invoked to
3502  *      give it a chance to adjust the device capacity.
3503  *
3504  *      CONTEXT:
3505  *      Defined by block layer.  Might sleep.
3506  */
3507 static void sd_unlock_native_capacity(struct gendisk *disk)
3508 {
3509         struct scsi_device *sdev = scsi_disk(disk)->device;
3510
3511         if (sdev->host->hostt->unlock_native_capacity)
3512                 sdev->host->hostt->unlock_native_capacity(sdev);
3513 }
3514
3515 /**
3516  *      sd_format_disk_name - format disk name
3517  *      @prefix: name prefix - ie. "sd" for SCSI disks
3518  *      @index: index of the disk to format name for
3519  *      @buf: output buffer
3520  *      @buflen: length of the output buffer
3521  *
3522  *      SCSI disk names starts at sda.  The 26th device is sdz and the
3523  *      27th is sdaa.  The last one for two lettered suffix is sdzz
3524  *      which is followed by sdaaa.
3525  *
3526  *      This is basically 26 base counting with one extra 'nil' entry
3527  *      at the beginning from the second digit on and can be
3528  *      determined using similar method as 26 base conversion with the
3529  *      index shifted -1 after each digit is computed.
3530  *
3531  *      CONTEXT:
3532  *      Don't care.
3533  *
3534  *      RETURNS:
3535  *      0 on success, -errno on failure.
3536  */
3537 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3538 {
3539         const int base = 'z' - 'a' + 1;
3540         char *begin = buf + strlen(prefix);
3541         char *end = buf + buflen;
3542         char *p;
3543         int unit;
3544
3545         p = end - 1;
3546         *p = '\0';
3547         unit = base;
3548         do {
3549                 if (p == begin)
3550                         return -EINVAL;
3551                 *--p = 'a' + (index % unit);
3552                 index = (index / unit) - 1;
3553         } while (index >= 0);
3554
3555         memmove(begin, p, end - p);
3556         memcpy(buf, prefix, strlen(prefix));
3557
3558         return 0;
3559 }
3560
3561 /**
3562  *      sd_probe - called during driver initialization and whenever a
3563  *      new scsi device is attached to the system. It is called once
3564  *      for each scsi device (not just disks) present.
3565  *      @dev: pointer to device object
3566  *
3567  *      Returns 0 if successful (or not interested in this scsi device 
3568  *      (e.g. scanner)); 1 when there is an error.
3569  *
3570  *      Note: this function is invoked from the scsi mid-level.
3571  *      This function sets up the mapping between a given 
3572  *      <host,channel,id,lun> (found in sdp) and new device name 
3573  *      (e.g. /dev/sda). More precisely it is the block device major 
3574  *      and minor number that is chosen here.
3575  *
3576  *      Assume sd_probe is not re-entrant (for time being)
3577  *      Also think about sd_probe() and sd_remove() running coincidentally.
3578  **/
3579 static int sd_probe(struct device *dev)
3580 {
3581         struct scsi_device *sdp = to_scsi_device(dev);
3582         struct scsi_disk *sdkp;
3583         struct gendisk *gd;
3584         int index;
3585         int error;
3586
3587         scsi_autopm_get_device(sdp);
3588         error = -ENODEV;
3589         if (sdp->type != TYPE_DISK &&
3590             sdp->type != TYPE_ZBC &&
3591             sdp->type != TYPE_MOD &&
3592             sdp->type != TYPE_RBC)
3593                 goto out;
3594
3595         if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3596                 sdev_printk(KERN_WARNING, sdp,
3597                             "Unsupported ZBC host-managed device.\n");
3598                 goto out;
3599         }
3600
3601         SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3602                                         "sd_probe\n"));
3603
3604         error = -ENOMEM;
3605         sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3606         if (!sdkp)
3607                 goto out;
3608
3609         gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3610                                          &sd_bio_compl_lkclass);
3611         if (!gd)
3612                 goto out_free;
3613
3614         index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3615         if (index < 0) {
3616                 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3617                 goto out_put;
3618         }
3619
3620         error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3621         if (error) {
3622                 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3623                 goto out_free_index;
3624         }
3625
3626         sdkp->device = sdp;
3627         sdkp->disk = gd;
3628         sdkp->index = index;
3629         sdkp->max_retries = SD_MAX_RETRIES;
3630         atomic_set(&sdkp->openers, 0);
3631         atomic_set(&sdkp->device->ioerr_cnt, 0);
3632
3633         if (!sdp->request_queue->rq_timeout) {
3634                 if (sdp->type != TYPE_MOD)
3635                         blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3636                 else
3637                         blk_queue_rq_timeout(sdp->request_queue,
3638                                              SD_MOD_TIMEOUT);
3639         }
3640
3641         device_initialize(&sdkp->disk_dev);
3642         sdkp->disk_dev.parent = get_device(dev);
3643         sdkp->disk_dev.class = &sd_disk_class;
3644         dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3645
3646         error = device_add(&sdkp->disk_dev);
3647         if (error) {
3648                 put_device(&sdkp->disk_dev);
3649                 goto out;
3650         }
3651
3652         dev_set_drvdata(dev, sdkp);
3653
3654         gd->major = sd_major((index & 0xf0) >> 4);
3655         gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3656         gd->minors = SD_MINORS;
3657
3658         gd->fops = &sd_fops;
3659         gd->private_data = sdkp;
3660
3661         /* defaults, until the device tells us otherwise */
3662         sdp->sector_size = 512;
3663         sdkp->capacity = 0;
3664         sdkp->media_present = 1;
3665         sdkp->write_prot = 0;
3666         sdkp->cache_override = 0;
3667         sdkp->WCE = 0;
3668         sdkp->RCD = 0;
3669         sdkp->ATO = 0;
3670         sdkp->first_scan = 1;
3671         sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3672
3673         sd_revalidate_disk(gd);
3674
3675         if (sdp->removable) {
3676                 gd->flags |= GENHD_FL_REMOVABLE;
3677                 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3678                 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3679         }
3680
3681         blk_pm_runtime_init(sdp->request_queue, dev);
3682         if (sdp->rpm_autosuspend) {
3683                 pm_runtime_set_autosuspend_delay(dev,
3684                         sdp->host->hostt->rpm_autosuspend_delay);
3685         }
3686
3687         error = device_add_disk(dev, gd, NULL);
3688         if (error) {
3689                 put_device(&sdkp->disk_dev);
3690                 put_disk(gd);
3691                 goto out;
3692         }
3693
3694         if (sdkp->security) {
3695                 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3696                 if (sdkp->opal_dev)
3697                         sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3698         }
3699
3700         sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3701                   sdp->removable ? "removable " : "");
3702         scsi_autopm_put_device(sdp);
3703
3704         return 0;
3705
3706  out_free_index:
3707         ida_free(&sd_index_ida, index);
3708  out_put:
3709         put_disk(gd);
3710  out_free:
3711         kfree(sdkp);
3712  out:
3713         scsi_autopm_put_device(sdp);
3714         return error;
3715 }
3716
3717 /**
3718  *      sd_remove - called whenever a scsi disk (previously recognized by
3719  *      sd_probe) is detached from the system. It is called (potentially
3720  *      multiple times) during sd module unload.
3721  *      @dev: pointer to device object
3722  *
3723  *      Note: this function is invoked from the scsi mid-level.
3724  *      This function potentially frees up a device name (e.g. /dev/sdc)
3725  *      that could be re-used by a subsequent sd_probe().
3726  *      This function is not called when the built-in sd driver is "exit-ed".
3727  **/
3728 static int sd_remove(struct device *dev)
3729 {
3730         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3731
3732         scsi_autopm_get_device(sdkp->device);
3733
3734         device_del(&sdkp->disk_dev);
3735         del_gendisk(sdkp->disk);
3736         sd_shutdown(dev);
3737
3738         put_disk(sdkp->disk);
3739         return 0;
3740 }
3741
3742 static void scsi_disk_release(struct device *dev)
3743 {
3744         struct scsi_disk *sdkp = to_scsi_disk(dev);
3745
3746         ida_free(&sd_index_ida, sdkp->index);
3747         sd_zbc_free_zone_info(sdkp);
3748         put_device(&sdkp->device->sdev_gendev);
3749         free_opal_dev(sdkp->opal_dev);
3750
3751         kfree(sdkp);
3752 }
3753
3754 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3755 {
3756         unsigned char cmd[6] = { START_STOP };  /* START_VALID */
3757         struct scsi_sense_hdr sshdr;
3758         const struct scsi_exec_args exec_args = {
3759                 .sshdr = &sshdr,
3760                 .req_flags = BLK_MQ_REQ_PM,
3761         };
3762         struct scsi_device *sdp = sdkp->device;
3763         int res;
3764
3765         if (start)
3766                 cmd[4] |= 1;    /* START */
3767
3768         if (sdp->start_stop_pwr_cond)
3769                 cmd[4] |= start ? 1 << 4 : 3 << 4;      /* Active or Standby */
3770
3771         if (!scsi_device_online(sdp))
3772                 return -ENODEV;
3773
3774         res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
3775                                sdkp->max_retries, &exec_args);
3776         if (res) {
3777                 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3778                 if (res > 0 && scsi_sense_valid(&sshdr)) {
3779                         sd_print_sense_hdr(sdkp, &sshdr);
3780                         /* 0x3a is medium not present */
3781                         if (sshdr.asc == 0x3a)
3782                                 res = 0;
3783                 }
3784         }
3785
3786         /* SCSI error codes must not go to the generic layer */
3787         if (res)
3788                 return -EIO;
3789
3790         return 0;
3791 }
3792
3793 /*
3794  * Send a SYNCHRONIZE CACHE instruction down to the device through
3795  * the normal SCSI command structure.  Wait for the command to
3796  * complete.
3797  */
3798 static void sd_shutdown(struct device *dev)
3799 {
3800         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3801
3802         if (!sdkp)
3803                 return;         /* this can happen */
3804
3805         if (pm_runtime_suspended(dev))
3806                 return;
3807
3808         if (sdkp->WCE && sdkp->media_present) {
3809                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3810                 sd_sync_cache(sdkp, NULL);
3811         }
3812
3813         if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3814                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3815                 sd_start_stop_device(sdkp, 0);
3816         }
3817 }
3818
3819 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3820 {
3821         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3822         struct scsi_sense_hdr sshdr;
3823         int ret = 0;
3824
3825         if (!sdkp)      /* E.g.: runtime suspend following sd_remove() */
3826                 return 0;
3827
3828         if (sdkp->WCE && sdkp->media_present) {
3829                 if (!sdkp->device->silence_suspend)
3830                         sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3831                 ret = sd_sync_cache(sdkp, &sshdr);
3832
3833                 if (ret) {
3834                         /* ignore OFFLINE device */
3835                         if (ret == -ENODEV)
3836                                 return 0;
3837
3838                         if (!scsi_sense_valid(&sshdr) ||
3839                             sshdr.sense_key != ILLEGAL_REQUEST)
3840                                 return ret;
3841
3842                         /*
3843                          * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3844                          * doesn't support sync. There's not much to do and
3845                          * suspend shouldn't fail.
3846                          */
3847                         ret = 0;
3848                 }
3849         }
3850
3851         if (sdkp->device->manage_start_stop) {
3852                 if (!sdkp->device->silence_suspend)
3853                         sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3854                 /* an error is not worth aborting a system sleep */
3855                 ret = sd_start_stop_device(sdkp, 0);
3856                 if (ignore_stop_errors)
3857                         ret = 0;
3858         }
3859
3860         return ret;
3861 }
3862
3863 static int sd_suspend_system(struct device *dev)
3864 {
3865         if (pm_runtime_suspended(dev))
3866                 return 0;
3867
3868         return sd_suspend_common(dev, true);
3869 }
3870
3871 static int sd_suspend_runtime(struct device *dev)
3872 {
3873         return sd_suspend_common(dev, false);
3874 }
3875
3876 static int sd_resume(struct device *dev)
3877 {
3878         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3879         int ret;
3880
3881         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3882                 return 0;
3883
3884         if (!sdkp->device->manage_start_stop)
3885                 return 0;
3886
3887         sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3888         ret = sd_start_stop_device(sdkp, 1);
3889         if (!ret)
3890                 opal_unlock_from_suspend(sdkp->opal_dev);
3891         return ret;
3892 }
3893
3894 static int sd_resume_system(struct device *dev)
3895 {
3896         if (pm_runtime_suspended(dev))
3897                 return 0;
3898
3899         return sd_resume(dev);
3900 }
3901
3902 static int sd_resume_runtime(struct device *dev)
3903 {
3904         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3905         struct scsi_device *sdp;
3906
3907         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3908                 return 0;
3909
3910         sdp = sdkp->device;
3911
3912         if (sdp->ignore_media_change) {
3913                 /* clear the device's sense data */
3914                 static const u8 cmd[10] = { REQUEST_SENSE };
3915                 const struct scsi_exec_args exec_args = {
3916                         .req_flags = BLK_MQ_REQ_PM,
3917                 };
3918
3919                 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
3920                                      sdp->request_queue->rq_timeout, 1,
3921                                      &exec_args))
3922                         sd_printk(KERN_NOTICE, sdkp,
3923                                   "Failed to clear sense data\n");
3924         }
3925
3926         return sd_resume(dev);
3927 }
3928
3929 /**
3930  *      init_sd - entry point for this driver (both when built in or when
3931  *      a module).
3932  *
3933  *      Note: this function registers this driver with the scsi mid-level.
3934  **/
3935 static int __init init_sd(void)
3936 {
3937         int majors = 0, i, err;
3938
3939         SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3940
3941         for (i = 0; i < SD_MAJORS; i++) {
3942                 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3943                         continue;
3944                 majors++;
3945         }
3946
3947         if (!majors)
3948                 return -ENODEV;
3949
3950         err = class_register(&sd_disk_class);
3951         if (err)
3952                 goto err_out;
3953
3954         sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3955         if (!sd_page_pool) {
3956                 printk(KERN_ERR "sd: can't init discard page pool\n");
3957                 err = -ENOMEM;
3958                 goto err_out_class;
3959         }
3960
3961         err = scsi_register_driver(&sd_template.gendrv);
3962         if (err)
3963                 goto err_out_driver;
3964
3965         return 0;
3966
3967 err_out_driver:
3968         mempool_destroy(sd_page_pool);
3969 err_out_class:
3970         class_unregister(&sd_disk_class);
3971 err_out:
3972         for (i = 0; i < SD_MAJORS; i++)
3973                 unregister_blkdev(sd_major(i), "sd");
3974         return err;
3975 }
3976
3977 /**
3978  *      exit_sd - exit point for this driver (when it is a module).
3979  *
3980  *      Note: this function unregisters this driver from the scsi mid-level.
3981  **/
3982 static void __exit exit_sd(void)
3983 {
3984         int i;
3985
3986         SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3987
3988         scsi_unregister_driver(&sd_template.gendrv);
3989         mempool_destroy(sd_page_pool);
3990
3991         class_unregister(&sd_disk_class);
3992
3993         for (i = 0; i < SD_MAJORS; i++)
3994                 unregister_blkdev(sd_major(i), "sd");
3995 }
3996
3997 module_init(init_sd);
3998 module_exit(exit_sd);
3999
4000 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4001 {
4002         scsi_print_sense_hdr(sdkp->device,
4003                              sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4004 }
4005
4006 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4007 {
4008         const char *hb_string = scsi_hostbyte_string(result);
4009
4010         if (hb_string)
4011                 sd_printk(KERN_INFO, sdkp,
4012                           "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4013                           hb_string ? hb_string : "invalid",
4014                           "DRIVER_OK");
4015         else
4016                 sd_printk(KERN_INFO, sdkp,
4017                           "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4018                           msg, host_byte(result), "DRIVER_OK");
4019 }