drivers: usb: dwc3: add FS/LS bus instance parkmode disable bit
[platform/kernel/linux-rpi.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *      Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *       - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
18  *         sd_init and cleanups.
19  *       - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *         not being read in sd_open. Fix problem where removable media 
21  *         could be ejected after sd_open.
22  *       - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *       - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
24  *         <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
25  *         Support 32k/1M disks.
26  *
27  *      Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *       - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *       - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *       - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *       - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *      Note: when the logging level is set by the user, it must be greater
33  *      than the level indicated above to trigger output.       
34  */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/major.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70 #include <scsi/scsi_common.h>
71
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100
101 #define SD_MINORS       16
102
103 static void sd_config_discard(struct scsi_disk *, unsigned int);
104 static void sd_config_write_same(struct scsi_disk *);
105 static int  sd_revalidate_disk(struct gendisk *);
106 static void sd_unlock_native_capacity(struct gendisk *disk);
107 static void sd_shutdown(struct device *);
108 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
109 static void scsi_disk_release(struct device *cdev);
110
111 static DEFINE_IDA(sd_index_ida);
112
113 static mempool_t *sd_page_pool;
114 static struct lock_class_key sd_bio_compl_lkclass;
115
116 static const char *sd_cache_types[] = {
117         "write through", "none", "write back",
118         "write back, no read (daft)"
119 };
120
121 static void sd_set_flush_flag(struct scsi_disk *sdkp)
122 {
123         bool wc = false, fua = false;
124
125         if (sdkp->WCE) {
126                 wc = true;
127                 if (sdkp->DPOFUA)
128                         fua = true;
129         }
130
131         blk_queue_write_cache(sdkp->disk->queue, wc, fua);
132 }
133
134 static ssize_t
135 cache_type_store(struct device *dev, struct device_attribute *attr,
136                  const char *buf, size_t count)
137 {
138         int ct, rcd, wce, sp;
139         struct scsi_disk *sdkp = to_scsi_disk(dev);
140         struct scsi_device *sdp = sdkp->device;
141         char buffer[64];
142         char *buffer_data;
143         struct scsi_mode_data data;
144         struct scsi_sense_hdr sshdr;
145         static const char temp[] = "temporary ";
146         int len;
147
148         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
149                 /* no cache control on RBC devices; theoretically they
150                  * can do it, but there's probably so many exceptions
151                  * it's not worth the risk */
152                 return -EINVAL;
153
154         if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
155                 buf += sizeof(temp) - 1;
156                 sdkp->cache_override = 1;
157         } else {
158                 sdkp->cache_override = 0;
159         }
160
161         ct = sysfs_match_string(sd_cache_types, buf);
162         if (ct < 0)
163                 return -EINVAL;
164
165         rcd = ct & 0x01 ? 1 : 0;
166         wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
167
168         if (sdkp->cache_override) {
169                 sdkp->WCE = wce;
170                 sdkp->RCD = rcd;
171                 sd_set_flush_flag(sdkp);
172                 return count;
173         }
174
175         if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
176                             sdkp->max_retries, &data, NULL))
177                 return -EINVAL;
178         len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
179                   data.block_descriptor_length);
180         buffer_data = buffer + data.header_length +
181                 data.block_descriptor_length;
182         buffer_data[2] &= ~0x05;
183         buffer_data[2] |= wce << 2 | rcd;
184         sp = buffer_data[0] & 0x80 ? 1 : 0;
185         buffer_data[0] &= ~0x80;
186
187         /*
188          * Ensure WP, DPOFUA, and RESERVED fields are cleared in
189          * received mode parameter buffer before doing MODE SELECT.
190          */
191         data.device_specific = 0;
192
193         if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
194                              sdkp->max_retries, &data, &sshdr)) {
195                 if (scsi_sense_valid(&sshdr))
196                         sd_print_sense_hdr(sdkp, &sshdr);
197                 return -EINVAL;
198         }
199         sd_revalidate_disk(sdkp->disk);
200         return count;
201 }
202
203 static ssize_t
204 manage_start_stop_show(struct device *dev,
205                        struct device_attribute *attr, char *buf)
206 {
207         struct scsi_disk *sdkp = to_scsi_disk(dev);
208         struct scsi_device *sdp = sdkp->device;
209
210         return sysfs_emit(buf, "%u\n",
211                           sdp->manage_system_start_stop &&
212                           sdp->manage_runtime_start_stop &&
213                           sdp->manage_shutdown);
214 }
215 static DEVICE_ATTR_RO(manage_start_stop);
216
217 static ssize_t
218 manage_system_start_stop_show(struct device *dev,
219                               struct device_attribute *attr, char *buf)
220 {
221         struct scsi_disk *sdkp = to_scsi_disk(dev);
222         struct scsi_device *sdp = sdkp->device;
223
224         return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
225 }
226
227 static ssize_t
228 manage_system_start_stop_store(struct device *dev,
229                                struct device_attribute *attr,
230                                const char *buf, size_t count)
231 {
232         struct scsi_disk *sdkp = to_scsi_disk(dev);
233         struct scsi_device *sdp = sdkp->device;
234         bool v;
235
236         if (!capable(CAP_SYS_ADMIN))
237                 return -EACCES;
238
239         if (kstrtobool(buf, &v))
240                 return -EINVAL;
241
242         sdp->manage_system_start_stop = v;
243
244         return count;
245 }
246 static DEVICE_ATTR_RW(manage_system_start_stop);
247
248 static ssize_t
249 manage_runtime_start_stop_show(struct device *dev,
250                                struct device_attribute *attr, char *buf)
251 {
252         struct scsi_disk *sdkp = to_scsi_disk(dev);
253         struct scsi_device *sdp = sdkp->device;
254
255         return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
256 }
257
258 static ssize_t
259 manage_runtime_start_stop_store(struct device *dev,
260                                 struct device_attribute *attr,
261                                 const char *buf, size_t count)
262 {
263         struct scsi_disk *sdkp = to_scsi_disk(dev);
264         struct scsi_device *sdp = sdkp->device;
265         bool v;
266
267         if (!capable(CAP_SYS_ADMIN))
268                 return -EACCES;
269
270         if (kstrtobool(buf, &v))
271                 return -EINVAL;
272
273         sdp->manage_runtime_start_stop = v;
274
275         return count;
276 }
277 static DEVICE_ATTR_RW(manage_runtime_start_stop);
278
279 static ssize_t manage_shutdown_show(struct device *dev,
280                                     struct device_attribute *attr, char *buf)
281 {
282         struct scsi_disk *sdkp = to_scsi_disk(dev);
283         struct scsi_device *sdp = sdkp->device;
284
285         return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
286 }
287
288 static ssize_t manage_shutdown_store(struct device *dev,
289                                      struct device_attribute *attr,
290                                      const char *buf, size_t count)
291 {
292         struct scsi_disk *sdkp = to_scsi_disk(dev);
293         struct scsi_device *sdp = sdkp->device;
294         bool v;
295
296         if (!capable(CAP_SYS_ADMIN))
297                 return -EACCES;
298
299         if (kstrtobool(buf, &v))
300                 return -EINVAL;
301
302         sdp->manage_shutdown = v;
303
304         return count;
305 }
306 static DEVICE_ATTR_RW(manage_shutdown);
307
308 static ssize_t
309 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
310 {
311         struct scsi_disk *sdkp = to_scsi_disk(dev);
312
313         return sprintf(buf, "%u\n", sdkp->device->allow_restart);
314 }
315
316 static ssize_t
317 allow_restart_store(struct device *dev, struct device_attribute *attr,
318                     const char *buf, size_t count)
319 {
320         bool v;
321         struct scsi_disk *sdkp = to_scsi_disk(dev);
322         struct scsi_device *sdp = sdkp->device;
323
324         if (!capable(CAP_SYS_ADMIN))
325                 return -EACCES;
326
327         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
328                 return -EINVAL;
329
330         if (kstrtobool(buf, &v))
331                 return -EINVAL;
332
333         sdp->allow_restart = v;
334
335         return count;
336 }
337 static DEVICE_ATTR_RW(allow_restart);
338
339 static ssize_t
340 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
341 {
342         struct scsi_disk *sdkp = to_scsi_disk(dev);
343         int ct = sdkp->RCD + 2*sdkp->WCE;
344
345         return sprintf(buf, "%s\n", sd_cache_types[ct]);
346 }
347 static DEVICE_ATTR_RW(cache_type);
348
349 static ssize_t
350 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
351 {
352         struct scsi_disk *sdkp = to_scsi_disk(dev);
353
354         return sprintf(buf, "%u\n", sdkp->DPOFUA);
355 }
356 static DEVICE_ATTR_RO(FUA);
357
358 static ssize_t
359 protection_type_show(struct device *dev, struct device_attribute *attr,
360                      char *buf)
361 {
362         struct scsi_disk *sdkp = to_scsi_disk(dev);
363
364         return sprintf(buf, "%u\n", sdkp->protection_type);
365 }
366
367 static ssize_t
368 protection_type_store(struct device *dev, struct device_attribute *attr,
369                       const char *buf, size_t count)
370 {
371         struct scsi_disk *sdkp = to_scsi_disk(dev);
372         unsigned int val;
373         int err;
374
375         if (!capable(CAP_SYS_ADMIN))
376                 return -EACCES;
377
378         err = kstrtouint(buf, 10, &val);
379
380         if (err)
381                 return err;
382
383         if (val <= T10_PI_TYPE3_PROTECTION)
384                 sdkp->protection_type = val;
385
386         return count;
387 }
388 static DEVICE_ATTR_RW(protection_type);
389
390 static ssize_t
391 protection_mode_show(struct device *dev, struct device_attribute *attr,
392                      char *buf)
393 {
394         struct scsi_disk *sdkp = to_scsi_disk(dev);
395         struct scsi_device *sdp = sdkp->device;
396         unsigned int dif, dix;
397
398         dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
399         dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
400
401         if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
402                 dif = 0;
403                 dix = 1;
404         }
405
406         if (!dif && !dix)
407                 return sprintf(buf, "none\n");
408
409         return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
410 }
411 static DEVICE_ATTR_RO(protection_mode);
412
413 static ssize_t
414 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
415 {
416         struct scsi_disk *sdkp = to_scsi_disk(dev);
417
418         return sprintf(buf, "%u\n", sdkp->ATO);
419 }
420 static DEVICE_ATTR_RO(app_tag_own);
421
422 static ssize_t
423 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
424                        char *buf)
425 {
426         struct scsi_disk *sdkp = to_scsi_disk(dev);
427
428         return sprintf(buf, "%u\n", sdkp->lbpme);
429 }
430 static DEVICE_ATTR_RO(thin_provisioning);
431
432 /* sysfs_match_string() requires dense arrays */
433 static const char *lbp_mode[] = {
434         [SD_LBP_FULL]           = "full",
435         [SD_LBP_UNMAP]          = "unmap",
436         [SD_LBP_WS16]           = "writesame_16",
437         [SD_LBP_WS10]           = "writesame_10",
438         [SD_LBP_ZERO]           = "writesame_zero",
439         [SD_LBP_DISABLE]        = "disabled",
440 };
441
442 static ssize_t
443 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
444                        char *buf)
445 {
446         struct scsi_disk *sdkp = to_scsi_disk(dev);
447
448         return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
449 }
450
451 static ssize_t
452 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
453                         const char *buf, size_t count)
454 {
455         struct scsi_disk *sdkp = to_scsi_disk(dev);
456         struct scsi_device *sdp = sdkp->device;
457         int mode;
458
459         if (!capable(CAP_SYS_ADMIN))
460                 return -EACCES;
461
462         if (sd_is_zoned(sdkp)) {
463                 sd_config_discard(sdkp, SD_LBP_DISABLE);
464                 return count;
465         }
466
467         if (sdp->type != TYPE_DISK)
468                 return -EINVAL;
469
470         mode = sysfs_match_string(lbp_mode, buf);
471         if (mode < 0)
472                 return -EINVAL;
473
474         sd_config_discard(sdkp, mode);
475
476         return count;
477 }
478 static DEVICE_ATTR_RW(provisioning_mode);
479
480 /* sysfs_match_string() requires dense arrays */
481 static const char *zeroing_mode[] = {
482         [SD_ZERO_WRITE]         = "write",
483         [SD_ZERO_WS]            = "writesame",
484         [SD_ZERO_WS16_UNMAP]    = "writesame_16_unmap",
485         [SD_ZERO_WS10_UNMAP]    = "writesame_10_unmap",
486 };
487
488 static ssize_t
489 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
490                   char *buf)
491 {
492         struct scsi_disk *sdkp = to_scsi_disk(dev);
493
494         return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
495 }
496
497 static ssize_t
498 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
499                    const char *buf, size_t count)
500 {
501         struct scsi_disk *sdkp = to_scsi_disk(dev);
502         int mode;
503
504         if (!capable(CAP_SYS_ADMIN))
505                 return -EACCES;
506
507         mode = sysfs_match_string(zeroing_mode, buf);
508         if (mode < 0)
509                 return -EINVAL;
510
511         sdkp->zeroing_mode = mode;
512
513         return count;
514 }
515 static DEVICE_ATTR_RW(zeroing_mode);
516
517 static ssize_t
518 max_medium_access_timeouts_show(struct device *dev,
519                                 struct device_attribute *attr, char *buf)
520 {
521         struct scsi_disk *sdkp = to_scsi_disk(dev);
522
523         return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
524 }
525
526 static ssize_t
527 max_medium_access_timeouts_store(struct device *dev,
528                                  struct device_attribute *attr, const char *buf,
529                                  size_t count)
530 {
531         struct scsi_disk *sdkp = to_scsi_disk(dev);
532         int err;
533
534         if (!capable(CAP_SYS_ADMIN))
535                 return -EACCES;
536
537         err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
538
539         return err ? err : count;
540 }
541 static DEVICE_ATTR_RW(max_medium_access_timeouts);
542
543 static ssize_t
544 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
545                            char *buf)
546 {
547         struct scsi_disk *sdkp = to_scsi_disk(dev);
548
549         return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
550 }
551
552 static ssize_t
553 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
554                             const char *buf, size_t count)
555 {
556         struct scsi_disk *sdkp = to_scsi_disk(dev);
557         struct scsi_device *sdp = sdkp->device;
558         unsigned long max;
559         int err;
560
561         if (!capable(CAP_SYS_ADMIN))
562                 return -EACCES;
563
564         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
565                 return -EINVAL;
566
567         err = kstrtoul(buf, 10, &max);
568
569         if (err)
570                 return err;
571
572         if (max == 0)
573                 sdp->no_write_same = 1;
574         else if (max <= SD_MAX_WS16_BLOCKS) {
575                 sdp->no_write_same = 0;
576                 sdkp->max_ws_blocks = max;
577         }
578
579         sd_config_write_same(sdkp);
580
581         return count;
582 }
583 static DEVICE_ATTR_RW(max_write_same_blocks);
584
585 static ssize_t
586 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
587 {
588         struct scsi_disk *sdkp = to_scsi_disk(dev);
589
590         if (sdkp->device->type == TYPE_ZBC)
591                 return sprintf(buf, "host-managed\n");
592         if (sdkp->zoned == 1)
593                 return sprintf(buf, "host-aware\n");
594         if (sdkp->zoned == 2)
595                 return sprintf(buf, "drive-managed\n");
596         return sprintf(buf, "none\n");
597 }
598 static DEVICE_ATTR_RO(zoned_cap);
599
600 static ssize_t
601 max_retries_store(struct device *dev, struct device_attribute *attr,
602                   const char *buf, size_t count)
603 {
604         struct scsi_disk *sdkp = to_scsi_disk(dev);
605         struct scsi_device *sdev = sdkp->device;
606         int retries, err;
607
608         err = kstrtoint(buf, 10, &retries);
609         if (err)
610                 return err;
611
612         if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
613                 sdkp->max_retries = retries;
614                 return count;
615         }
616
617         sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
618                     SD_MAX_RETRIES);
619         return -EINVAL;
620 }
621
622 static ssize_t
623 max_retries_show(struct device *dev, struct device_attribute *attr,
624                  char *buf)
625 {
626         struct scsi_disk *sdkp = to_scsi_disk(dev);
627
628         return sprintf(buf, "%d\n", sdkp->max_retries);
629 }
630
631 static DEVICE_ATTR_RW(max_retries);
632
633 static struct attribute *sd_disk_attrs[] = {
634         &dev_attr_cache_type.attr,
635         &dev_attr_FUA.attr,
636         &dev_attr_allow_restart.attr,
637         &dev_attr_manage_start_stop.attr,
638         &dev_attr_manage_system_start_stop.attr,
639         &dev_attr_manage_runtime_start_stop.attr,
640         &dev_attr_manage_shutdown.attr,
641         &dev_attr_protection_type.attr,
642         &dev_attr_protection_mode.attr,
643         &dev_attr_app_tag_own.attr,
644         &dev_attr_thin_provisioning.attr,
645         &dev_attr_provisioning_mode.attr,
646         &dev_attr_zeroing_mode.attr,
647         &dev_attr_max_write_same_blocks.attr,
648         &dev_attr_max_medium_access_timeouts.attr,
649         &dev_attr_zoned_cap.attr,
650         &dev_attr_max_retries.attr,
651         NULL,
652 };
653 ATTRIBUTE_GROUPS(sd_disk);
654
655 static struct class sd_disk_class = {
656         .name           = "scsi_disk",
657         .dev_release    = scsi_disk_release,
658         .dev_groups     = sd_disk_groups,
659 };
660
661 /*
662  * Don't request a new module, as that could deadlock in multipath
663  * environment.
664  */
665 static void sd_default_probe(dev_t devt)
666 {
667 }
668
669 /*
670  * Device no to disk mapping:
671  * 
672  *       major         disc2     disc  p1
673  *   |............|.............|....|....| <- dev_t
674  *    31        20 19          8 7  4 3  0
675  * 
676  * Inside a major, we have 16k disks, however mapped non-
677  * contiguously. The first 16 disks are for major0, the next
678  * ones with major1, ... Disk 256 is for major0 again, disk 272 
679  * for major1, ... 
680  * As we stay compatible with our numbering scheme, we can reuse 
681  * the well-know SCSI majors 8, 65--71, 136--143.
682  */
683 static int sd_major(int major_idx)
684 {
685         switch (major_idx) {
686         case 0:
687                 return SCSI_DISK0_MAJOR;
688         case 1 ... 7:
689                 return SCSI_DISK1_MAJOR + major_idx - 1;
690         case 8 ... 15:
691                 return SCSI_DISK8_MAJOR + major_idx - 8;
692         default:
693                 BUG();
694                 return 0;       /* shut up gcc */
695         }
696 }
697
698 #ifdef CONFIG_BLK_SED_OPAL
699 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
700                 size_t len, bool send)
701 {
702         struct scsi_disk *sdkp = data;
703         struct scsi_device *sdev = sdkp->device;
704         u8 cdb[12] = { 0, };
705         const struct scsi_exec_args exec_args = {
706                 .req_flags = BLK_MQ_REQ_PM,
707         };
708         int ret;
709
710         cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
711         cdb[1] = secp;
712         put_unaligned_be16(spsp, &cdb[2]);
713         put_unaligned_be32(len, &cdb[6]);
714
715         ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
716                                buffer, len, SD_TIMEOUT, sdkp->max_retries,
717                                &exec_args);
718         return ret <= 0 ? ret : -EIO;
719 }
720 #endif /* CONFIG_BLK_SED_OPAL */
721
722 /*
723  * Look up the DIX operation based on whether the command is read or
724  * write and whether dix and dif are enabled.
725  */
726 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
727 {
728         /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
729         static const unsigned int ops[] = {     /* wrt dix dif */
730                 SCSI_PROT_NORMAL,               /*  0   0   0  */
731                 SCSI_PROT_READ_STRIP,           /*  0   0   1  */
732                 SCSI_PROT_READ_INSERT,          /*  0   1   0  */
733                 SCSI_PROT_READ_PASS,            /*  0   1   1  */
734                 SCSI_PROT_NORMAL,               /*  1   0   0  */
735                 SCSI_PROT_WRITE_INSERT,         /*  1   0   1  */
736                 SCSI_PROT_WRITE_STRIP,          /*  1   1   0  */
737                 SCSI_PROT_WRITE_PASS,           /*  1   1   1  */
738         };
739
740         return ops[write << 2 | dix << 1 | dif];
741 }
742
743 /*
744  * Returns a mask of the protection flags that are valid for a given DIX
745  * operation.
746  */
747 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
748 {
749         static const unsigned int flag_mask[] = {
750                 [SCSI_PROT_NORMAL]              = 0,
751
752                 [SCSI_PROT_READ_STRIP]          = SCSI_PROT_TRANSFER_PI |
753                                                   SCSI_PROT_GUARD_CHECK |
754                                                   SCSI_PROT_REF_CHECK |
755                                                   SCSI_PROT_REF_INCREMENT,
756
757                 [SCSI_PROT_READ_INSERT]         = SCSI_PROT_REF_INCREMENT |
758                                                   SCSI_PROT_IP_CHECKSUM,
759
760                 [SCSI_PROT_READ_PASS]           = SCSI_PROT_TRANSFER_PI |
761                                                   SCSI_PROT_GUARD_CHECK |
762                                                   SCSI_PROT_REF_CHECK |
763                                                   SCSI_PROT_REF_INCREMENT |
764                                                   SCSI_PROT_IP_CHECKSUM,
765
766                 [SCSI_PROT_WRITE_INSERT]        = SCSI_PROT_TRANSFER_PI |
767                                                   SCSI_PROT_REF_INCREMENT,
768
769                 [SCSI_PROT_WRITE_STRIP]         = SCSI_PROT_GUARD_CHECK |
770                                                   SCSI_PROT_REF_CHECK |
771                                                   SCSI_PROT_REF_INCREMENT |
772                                                   SCSI_PROT_IP_CHECKSUM,
773
774                 [SCSI_PROT_WRITE_PASS]          = SCSI_PROT_TRANSFER_PI |
775                                                   SCSI_PROT_GUARD_CHECK |
776                                                   SCSI_PROT_REF_CHECK |
777                                                   SCSI_PROT_REF_INCREMENT |
778                                                   SCSI_PROT_IP_CHECKSUM,
779         };
780
781         return flag_mask[prot_op];
782 }
783
784 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
785                                            unsigned int dix, unsigned int dif)
786 {
787         struct request *rq = scsi_cmd_to_rq(scmd);
788         struct bio *bio = rq->bio;
789         unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
790         unsigned int protect = 0;
791
792         if (dix) {                              /* DIX Type 0, 1, 2, 3 */
793                 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
794                         scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
795
796                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
797                         scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
798         }
799
800         if (dif != T10_PI_TYPE3_PROTECTION) {   /* DIX/DIF Type 0, 1, 2 */
801                 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
802
803                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
804                         scmd->prot_flags |= SCSI_PROT_REF_CHECK;
805         }
806
807         if (dif) {                              /* DIX/DIF Type 1, 2, 3 */
808                 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
809
810                 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
811                         protect = 3 << 5;       /* Disable target PI checking */
812                 else
813                         protect = 1 << 5;       /* Enable target PI checking */
814         }
815
816         scsi_set_prot_op(scmd, prot_op);
817         scsi_set_prot_type(scmd, dif);
818         scmd->prot_flags &= sd_prot_flag_mask(prot_op);
819
820         return protect;
821 }
822
823 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
824 {
825         struct request_queue *q = sdkp->disk->queue;
826         unsigned int logical_block_size = sdkp->device->sector_size;
827         unsigned int max_blocks = 0;
828
829         q->limits.discard_alignment =
830                 sdkp->unmap_alignment * logical_block_size;
831         q->limits.discard_granularity =
832                 max(sdkp->physical_block_size,
833                     sdkp->unmap_granularity * logical_block_size);
834         sdkp->provisioning_mode = mode;
835
836         switch (mode) {
837
838         case SD_LBP_FULL:
839         case SD_LBP_DISABLE:
840                 blk_queue_max_discard_sectors(q, 0);
841                 return;
842
843         case SD_LBP_UNMAP:
844                 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
845                                           (u32)SD_MAX_WS16_BLOCKS);
846                 break;
847
848         case SD_LBP_WS16:
849                 if (sdkp->device->unmap_limit_for_ws)
850                         max_blocks = sdkp->max_unmap_blocks;
851                 else
852                         max_blocks = sdkp->max_ws_blocks;
853
854                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
855                 break;
856
857         case SD_LBP_WS10:
858                 if (sdkp->device->unmap_limit_for_ws)
859                         max_blocks = sdkp->max_unmap_blocks;
860                 else
861                         max_blocks = sdkp->max_ws_blocks;
862
863                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
864                 break;
865
866         case SD_LBP_ZERO:
867                 max_blocks = min_not_zero(sdkp->max_ws_blocks,
868                                           (u32)SD_MAX_WS10_BLOCKS);
869                 break;
870         }
871
872         blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
873 }
874
875 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
876 {
877         struct page *page;
878
879         page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
880         if (!page)
881                 return NULL;
882         clear_highpage(page);
883         bvec_set_page(&rq->special_vec, page, data_len, 0);
884         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
885         return bvec_virt(&rq->special_vec);
886 }
887
888 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
889 {
890         struct scsi_device *sdp = cmd->device;
891         struct request *rq = scsi_cmd_to_rq(cmd);
892         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
893         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
894         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
895         unsigned int data_len = 24;
896         char *buf;
897
898         buf = sd_set_special_bvec(rq, data_len);
899         if (!buf)
900                 return BLK_STS_RESOURCE;
901
902         cmd->cmd_len = 10;
903         cmd->cmnd[0] = UNMAP;
904         cmd->cmnd[8] = 24;
905
906         put_unaligned_be16(6 + 16, &buf[0]);
907         put_unaligned_be16(16, &buf[2]);
908         put_unaligned_be64(lba, &buf[8]);
909         put_unaligned_be32(nr_blocks, &buf[16]);
910
911         cmd->allowed = sdkp->max_retries;
912         cmd->transfersize = data_len;
913         rq->timeout = SD_TIMEOUT;
914
915         return scsi_alloc_sgtables(cmd);
916 }
917
918 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
919                 bool unmap)
920 {
921         struct scsi_device *sdp = cmd->device;
922         struct request *rq = scsi_cmd_to_rq(cmd);
923         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
924         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
925         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
926         u32 data_len = sdp->sector_size;
927
928         if (!sd_set_special_bvec(rq, data_len))
929                 return BLK_STS_RESOURCE;
930
931         cmd->cmd_len = 16;
932         cmd->cmnd[0] = WRITE_SAME_16;
933         if (unmap)
934                 cmd->cmnd[1] = 0x8; /* UNMAP */
935         put_unaligned_be64(lba, &cmd->cmnd[2]);
936         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
937
938         cmd->allowed = sdkp->max_retries;
939         cmd->transfersize = data_len;
940         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
941
942         return scsi_alloc_sgtables(cmd);
943 }
944
945 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
946                 bool unmap)
947 {
948         struct scsi_device *sdp = cmd->device;
949         struct request *rq = scsi_cmd_to_rq(cmd);
950         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
951         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
952         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
953         u32 data_len = sdp->sector_size;
954
955         if (!sd_set_special_bvec(rq, data_len))
956                 return BLK_STS_RESOURCE;
957
958         cmd->cmd_len = 10;
959         cmd->cmnd[0] = WRITE_SAME;
960         if (unmap)
961                 cmd->cmnd[1] = 0x8; /* UNMAP */
962         put_unaligned_be32(lba, &cmd->cmnd[2]);
963         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
964
965         cmd->allowed = sdkp->max_retries;
966         cmd->transfersize = data_len;
967         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
968
969         return scsi_alloc_sgtables(cmd);
970 }
971
972 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
973 {
974         struct request *rq = scsi_cmd_to_rq(cmd);
975         struct scsi_device *sdp = cmd->device;
976         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
977         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
978         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
979
980         if (!(rq->cmd_flags & REQ_NOUNMAP)) {
981                 switch (sdkp->zeroing_mode) {
982                 case SD_ZERO_WS16_UNMAP:
983                         return sd_setup_write_same16_cmnd(cmd, true);
984                 case SD_ZERO_WS10_UNMAP:
985                         return sd_setup_write_same10_cmnd(cmd, true);
986                 }
987         }
988
989         if (sdp->no_write_same) {
990                 rq->rq_flags |= RQF_QUIET;
991                 return BLK_STS_TARGET;
992         }
993
994         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
995                 return sd_setup_write_same16_cmnd(cmd, false);
996
997         return sd_setup_write_same10_cmnd(cmd, false);
998 }
999
1000 static void sd_config_write_same(struct scsi_disk *sdkp)
1001 {
1002         struct request_queue *q = sdkp->disk->queue;
1003         unsigned int logical_block_size = sdkp->device->sector_size;
1004
1005         if (sdkp->device->no_write_same) {
1006                 sdkp->max_ws_blocks = 0;
1007                 goto out;
1008         }
1009
1010         /* Some devices can not handle block counts above 0xffff despite
1011          * supporting WRITE SAME(16). Consequently we default to 64k
1012          * blocks per I/O unless the device explicitly advertises a
1013          * bigger limit.
1014          */
1015         if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1016                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1017                                                    (u32)SD_MAX_WS16_BLOCKS);
1018         else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1019                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1020                                                    (u32)SD_MAX_WS10_BLOCKS);
1021         else {
1022                 sdkp->device->no_write_same = 1;
1023                 sdkp->max_ws_blocks = 0;
1024         }
1025
1026         if (sdkp->lbprz && sdkp->lbpws)
1027                 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1028         else if (sdkp->lbprz && sdkp->lbpws10)
1029                 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1030         else if (sdkp->max_ws_blocks)
1031                 sdkp->zeroing_mode = SD_ZERO_WS;
1032         else
1033                 sdkp->zeroing_mode = SD_ZERO_WRITE;
1034
1035         if (sdkp->max_ws_blocks &&
1036             sdkp->physical_block_size > logical_block_size) {
1037                 /*
1038                  * Reporting a maximum number of blocks that is not aligned
1039                  * on the device physical size would cause a large write same
1040                  * request to be split into physically unaligned chunks by
1041                  * __blkdev_issue_write_zeroes() even if the caller of this
1042                  * functions took care to align the large request. So make sure
1043                  * the maximum reported is aligned to the device physical block
1044                  * size. This is only an optional optimization for regular
1045                  * disks, but this is mandatory to avoid failure of large write
1046                  * same requests directed at sequential write required zones of
1047                  * host-managed ZBC disks.
1048                  */
1049                 sdkp->max_ws_blocks =
1050                         round_down(sdkp->max_ws_blocks,
1051                                    bytes_to_logical(sdkp->device,
1052                                                     sdkp->physical_block_size));
1053         }
1054
1055 out:
1056         blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1057                                          (logical_block_size >> 9));
1058 }
1059
1060 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1061 {
1062         struct request *rq = scsi_cmd_to_rq(cmd);
1063         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1064
1065         /* flush requests don't perform I/O, zero the S/G table */
1066         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1067
1068         if (cmd->device->use_16_for_sync) {
1069                 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1070                 cmd->cmd_len = 16;
1071         } else {
1072                 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1073                 cmd->cmd_len = 10;
1074         }
1075         cmd->transfersize = 0;
1076         cmd->allowed = sdkp->max_retries;
1077
1078         rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1079         return BLK_STS_OK;
1080 }
1081
1082 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1083                                        sector_t lba, unsigned int nr_blocks,
1084                                        unsigned char flags, unsigned int dld)
1085 {
1086         cmd->cmd_len = SD_EXT_CDB_SIZE;
1087         cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1088         cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1089         cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1090         cmd->cmnd[10] = flags;
1091         cmd->cmnd[11] = dld & 0x07;
1092         put_unaligned_be64(lba, &cmd->cmnd[12]);
1093         put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1094         put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1095
1096         return BLK_STS_OK;
1097 }
1098
1099 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1100                                        sector_t lba, unsigned int nr_blocks,
1101                                        unsigned char flags, unsigned int dld)
1102 {
1103         cmd->cmd_len  = 16;
1104         cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1105         cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1106         cmd->cmnd[14] = (dld & 0x03) << 6;
1107         cmd->cmnd[15] = 0;
1108         put_unaligned_be64(lba, &cmd->cmnd[2]);
1109         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1110
1111         return BLK_STS_OK;
1112 }
1113
1114 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1115                                        sector_t lba, unsigned int nr_blocks,
1116                                        unsigned char flags)
1117 {
1118         cmd->cmd_len = 10;
1119         cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1120         cmd->cmnd[1] = flags;
1121         cmd->cmnd[6] = 0;
1122         cmd->cmnd[9] = 0;
1123         put_unaligned_be32(lba, &cmd->cmnd[2]);
1124         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1125
1126         return BLK_STS_OK;
1127 }
1128
1129 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1130                                       sector_t lba, unsigned int nr_blocks,
1131                                       unsigned char flags)
1132 {
1133         /* Avoid that 0 blocks gets translated into 256 blocks. */
1134         if (WARN_ON_ONCE(nr_blocks == 0))
1135                 return BLK_STS_IOERR;
1136
1137         if (unlikely(flags & 0x8)) {
1138                 /*
1139                  * This happens only if this drive failed 10byte rw
1140                  * command with ILLEGAL_REQUEST during operation and
1141                  * thus turned off use_10_for_rw.
1142                  */
1143                 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1144                 return BLK_STS_IOERR;
1145         }
1146
1147         cmd->cmd_len = 6;
1148         cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1149         cmd->cmnd[1] = (lba >> 16) & 0x1f;
1150         cmd->cmnd[2] = (lba >> 8) & 0xff;
1151         cmd->cmnd[3] = lba & 0xff;
1152         cmd->cmnd[4] = nr_blocks;
1153         cmd->cmnd[5] = 0;
1154
1155         return BLK_STS_OK;
1156 }
1157
1158 /*
1159  * Check if a command has a duration limit set. If it does, and the target
1160  * device supports CDL and the feature is enabled, return the limit
1161  * descriptor index to use. Return 0 (no limit) otherwise.
1162  */
1163 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1164 {
1165         struct scsi_device *sdp = sdkp->device;
1166         int hint;
1167
1168         if (!sdp->cdl_supported || !sdp->cdl_enable)
1169                 return 0;
1170
1171         /*
1172          * Use "no limit" if the request ioprio does not specify a duration
1173          * limit hint.
1174          */
1175         hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1176         if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1177             hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1178                 return 0;
1179
1180         return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1181 }
1182
1183 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1184 {
1185         struct request *rq = scsi_cmd_to_rq(cmd);
1186         struct scsi_device *sdp = cmd->device;
1187         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1188         sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1189         sector_t threshold;
1190         unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1191         unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1192         bool write = rq_data_dir(rq) == WRITE;
1193         unsigned char protect, fua;
1194         unsigned int dld;
1195         blk_status_t ret;
1196         unsigned int dif;
1197         bool dix;
1198
1199         ret = scsi_alloc_sgtables(cmd);
1200         if (ret != BLK_STS_OK)
1201                 return ret;
1202
1203         ret = BLK_STS_IOERR;
1204         if (!scsi_device_online(sdp) || sdp->changed) {
1205                 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1206                 goto fail;
1207         }
1208
1209         if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1210                 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1211                 goto fail;
1212         }
1213
1214         if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1215                 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1216                 goto fail;
1217         }
1218
1219         /*
1220          * Some SD card readers can't handle accesses which touch the
1221          * last one or two logical blocks. Split accesses as needed.
1222          */
1223         threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1224
1225         if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1226                 if (lba < threshold) {
1227                         /* Access up to the threshold but not beyond */
1228                         nr_blocks = threshold - lba;
1229                 } else {
1230                         /* Access only a single logical block */
1231                         nr_blocks = 1;
1232                 }
1233         }
1234
1235         if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1236                 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1237                 if (ret)
1238                         goto fail;
1239         }
1240
1241         fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1242         dix = scsi_prot_sg_count(cmd);
1243         dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1244         dld = sd_cdl_dld(sdkp, cmd);
1245
1246         if (dif || dix)
1247                 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1248         else
1249                 protect = 0;
1250
1251         if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1252                 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1253                                          protect | fua, dld);
1254         } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1255                 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1256                                          protect | fua, dld);
1257         } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1258                    sdp->use_10_for_rw || protect) {
1259                 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1260                                          protect | fua);
1261         } else {
1262                 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1263                                         protect | fua);
1264         }
1265
1266         if (unlikely(ret != BLK_STS_OK))
1267                 goto fail;
1268
1269         /*
1270          * We shouldn't disconnect in the middle of a sector, so with a dumb
1271          * host adapter, it's safe to assume that we can at least transfer
1272          * this many bytes between each connect / disconnect.
1273          */
1274         cmd->transfersize = sdp->sector_size;
1275         cmd->underflow = nr_blocks << 9;
1276         cmd->allowed = sdkp->max_retries;
1277         cmd->sdb.length = nr_blocks * sdp->sector_size;
1278
1279         SCSI_LOG_HLQUEUE(1,
1280                          scmd_printk(KERN_INFO, cmd,
1281                                      "%s: block=%llu, count=%d\n", __func__,
1282                                      (unsigned long long)blk_rq_pos(rq),
1283                                      blk_rq_sectors(rq)));
1284         SCSI_LOG_HLQUEUE(2,
1285                          scmd_printk(KERN_INFO, cmd,
1286                                      "%s %d/%u 512 byte blocks.\n",
1287                                      write ? "writing" : "reading", nr_blocks,
1288                                      blk_rq_sectors(rq)));
1289
1290         /*
1291          * This indicates that the command is ready from our end to be queued.
1292          */
1293         return BLK_STS_OK;
1294 fail:
1295         scsi_free_sgtables(cmd);
1296         return ret;
1297 }
1298
1299 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1300 {
1301         struct request *rq = scsi_cmd_to_rq(cmd);
1302
1303         switch (req_op(rq)) {
1304         case REQ_OP_DISCARD:
1305                 switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1306                 case SD_LBP_UNMAP:
1307                         return sd_setup_unmap_cmnd(cmd);
1308                 case SD_LBP_WS16:
1309                         return sd_setup_write_same16_cmnd(cmd, true);
1310                 case SD_LBP_WS10:
1311                         return sd_setup_write_same10_cmnd(cmd, true);
1312                 case SD_LBP_ZERO:
1313                         return sd_setup_write_same10_cmnd(cmd, false);
1314                 default:
1315                         return BLK_STS_TARGET;
1316                 }
1317         case REQ_OP_WRITE_ZEROES:
1318                 return sd_setup_write_zeroes_cmnd(cmd);
1319         case REQ_OP_FLUSH:
1320                 return sd_setup_flush_cmnd(cmd);
1321         case REQ_OP_READ:
1322         case REQ_OP_WRITE:
1323         case REQ_OP_ZONE_APPEND:
1324                 return sd_setup_read_write_cmnd(cmd);
1325         case REQ_OP_ZONE_RESET:
1326                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1327                                                    false);
1328         case REQ_OP_ZONE_RESET_ALL:
1329                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1330                                                    true);
1331         case REQ_OP_ZONE_OPEN:
1332                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1333         case REQ_OP_ZONE_CLOSE:
1334                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1335         case REQ_OP_ZONE_FINISH:
1336                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1337         default:
1338                 WARN_ON_ONCE(1);
1339                 return BLK_STS_NOTSUPP;
1340         }
1341 }
1342
1343 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1344 {
1345         struct request *rq = scsi_cmd_to_rq(SCpnt);
1346
1347         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1348                 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1349 }
1350
1351 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1352 {
1353         if (sdkp->device->removable || sdkp->write_prot) {
1354                 if (disk_check_media_change(disk))
1355                         return true;
1356         }
1357
1358         /*
1359          * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1360          * nothing to do with partitions, BLKRRPART is used to force a full
1361          * revalidate after things like a format for historical reasons.
1362          */
1363         return test_bit(GD_NEED_PART_SCAN, &disk->state);
1364 }
1365
1366 /**
1367  *      sd_open - open a scsi disk device
1368  *      @disk: disk to open
1369  *      @mode: open mode
1370  *
1371  *      Returns 0 if successful. Returns a negated errno value in case 
1372  *      of error.
1373  *
1374  *      Note: This can be called from a user context (e.g. fsck(1) )
1375  *      or from within the kernel (e.g. as a result of a mount(1) ).
1376  *      In the latter case @inode and @filp carry an abridged amount
1377  *      of information as noted above.
1378  *
1379  *      Locking: called with disk->open_mutex held.
1380  **/
1381 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1382 {
1383         struct scsi_disk *sdkp = scsi_disk(disk);
1384         struct scsi_device *sdev = sdkp->device;
1385         int retval;
1386
1387         if (scsi_device_get(sdev))
1388                 return -ENXIO;
1389
1390         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1391
1392         /*
1393          * If the device is in error recovery, wait until it is done.
1394          * If the device is offline, then disallow any access to it.
1395          */
1396         retval = -ENXIO;
1397         if (!scsi_block_when_processing_errors(sdev))
1398                 goto error_out;
1399
1400         if (sd_need_revalidate(disk, sdkp))
1401                 sd_revalidate_disk(disk);
1402
1403         /*
1404          * If the drive is empty, just let the open fail.
1405          */
1406         retval = -ENOMEDIUM;
1407         if (sdev->removable && !sdkp->media_present &&
1408             !(mode & BLK_OPEN_NDELAY))
1409                 goto error_out;
1410
1411         /*
1412          * If the device has the write protect tab set, have the open fail
1413          * if the user expects to be able to write to the thing.
1414          */
1415         retval = -EROFS;
1416         if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1417                 goto error_out;
1418
1419         /*
1420          * It is possible that the disk changing stuff resulted in
1421          * the device being taken offline.  If this is the case,
1422          * report this to the user, and don't pretend that the
1423          * open actually succeeded.
1424          */
1425         retval = -ENXIO;
1426         if (!scsi_device_online(sdev))
1427                 goto error_out;
1428
1429         if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1430                 if (scsi_block_when_processing_errors(sdev))
1431                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1432         }
1433
1434         return 0;
1435
1436 error_out:
1437         scsi_device_put(sdev);
1438         return retval;  
1439 }
1440
1441 /**
1442  *      sd_release - invoked when the (last) close(2) is called on this
1443  *      scsi disk.
1444  *      @disk: disk to release
1445  *
1446  *      Returns 0. 
1447  *
1448  *      Note: may block (uninterruptible) if error recovery is underway
1449  *      on this disk.
1450  *
1451  *      Locking: called with disk->open_mutex held.
1452  **/
1453 static void sd_release(struct gendisk *disk)
1454 {
1455         struct scsi_disk *sdkp = scsi_disk(disk);
1456         struct scsi_device *sdev = sdkp->device;
1457
1458         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1459
1460         if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1461                 if (scsi_block_when_processing_errors(sdev))
1462                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1463         }
1464
1465         scsi_device_put(sdev);
1466 }
1467
1468 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1469 {
1470         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1471         struct scsi_device *sdp = sdkp->device;
1472         struct Scsi_Host *host = sdp->host;
1473         sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1474         int diskinfo[4];
1475
1476         /* default to most commonly used values */
1477         diskinfo[0] = 0x40;     /* 1 << 6 */
1478         diskinfo[1] = 0x20;     /* 1 << 5 */
1479         diskinfo[2] = capacity >> 11;
1480
1481         /* override with calculated, extended default, or driver values */
1482         if (host->hostt->bios_param)
1483                 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1484         else
1485                 scsicam_bios_param(bdev, capacity, diskinfo);
1486
1487         geo->heads = diskinfo[0];
1488         geo->sectors = diskinfo[1];
1489         geo->cylinders = diskinfo[2];
1490         return 0;
1491 }
1492
1493 /**
1494  *      sd_ioctl - process an ioctl
1495  *      @bdev: target block device
1496  *      @mode: open mode
1497  *      @cmd: ioctl command number
1498  *      @arg: this is third argument given to ioctl(2) system call.
1499  *      Often contains a pointer.
1500  *
1501  *      Returns 0 if successful (some ioctls return positive numbers on
1502  *      success as well). Returns a negated errno value in case of error.
1503  *
1504  *      Note: most ioctls are forward onto the block subsystem or further
1505  *      down in the scsi subsystem.
1506  **/
1507 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1508                     unsigned int cmd, unsigned long arg)
1509 {
1510         struct gendisk *disk = bdev->bd_disk;
1511         struct scsi_disk *sdkp = scsi_disk(disk);
1512         struct scsi_device *sdp = sdkp->device;
1513         void __user *p = (void __user *)arg;
1514         int error;
1515     
1516         SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1517                                     "cmd=0x%x\n", disk->disk_name, cmd));
1518
1519         if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1520                 return -ENOIOCTLCMD;
1521
1522         /*
1523          * If we are in the middle of error recovery, don't let anyone
1524          * else try and use this device.  Also, if error recovery fails, it
1525          * may try and take the device offline, in which case all further
1526          * access to the device is prohibited.
1527          */
1528         error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1529                         (mode & BLK_OPEN_NDELAY));
1530         if (error)
1531                 return error;
1532
1533         if (is_sed_ioctl(cmd))
1534                 return sed_ioctl(sdkp->opal_dev, cmd, p);
1535         return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1536 }
1537
1538 static void set_media_not_present(struct scsi_disk *sdkp)
1539 {
1540         if (sdkp->media_present)
1541                 sdkp->device->changed = 1;
1542
1543         if (sdkp->device->removable) {
1544                 sdkp->media_present = 0;
1545                 sdkp->capacity = 0;
1546         }
1547 }
1548
1549 static int media_not_present(struct scsi_disk *sdkp,
1550                              struct scsi_sense_hdr *sshdr)
1551 {
1552         if (!scsi_sense_valid(sshdr))
1553                 return 0;
1554
1555         /* not invoked for commands that could return deferred errors */
1556         switch (sshdr->sense_key) {
1557         case UNIT_ATTENTION:
1558         case NOT_READY:
1559                 /* medium not present */
1560                 if (sshdr->asc == 0x3A) {
1561                         set_media_not_present(sdkp);
1562                         return 1;
1563                 }
1564         }
1565         return 0;
1566 }
1567
1568 /**
1569  *      sd_check_events - check media events
1570  *      @disk: kernel device descriptor
1571  *      @clearing: disk events currently being cleared
1572  *
1573  *      Returns mask of DISK_EVENT_*.
1574  *
1575  *      Note: this function is invoked from the block subsystem.
1576  **/
1577 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1578 {
1579         struct scsi_disk *sdkp = disk->private_data;
1580         struct scsi_device *sdp;
1581         int retval;
1582         bool disk_changed;
1583
1584         if (!sdkp)
1585                 return 0;
1586
1587         sdp = sdkp->device;
1588         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1589
1590         /*
1591          * If the device is offline, don't send any commands - just pretend as
1592          * if the command failed.  If the device ever comes back online, we
1593          * can deal with it then.  It is only because of unrecoverable errors
1594          * that we would ever take a device offline in the first place.
1595          */
1596         if (!scsi_device_online(sdp)) {
1597                 set_media_not_present(sdkp);
1598                 goto out;
1599         }
1600
1601         /*
1602          * Using TEST_UNIT_READY enables differentiation between drive with
1603          * no cartridge loaded - NOT READY, drive with changed cartridge -
1604          * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1605          *
1606          * Drives that auto spin down. eg iomega jaz 1G, will be started
1607          * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1608          * sd_revalidate() is called.
1609          */
1610         if (scsi_block_when_processing_errors(sdp)) {
1611                 struct scsi_sense_hdr sshdr = { 0, };
1612
1613                 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1614                                               &sshdr);
1615
1616                 /* failed to execute TUR, assume media not present */
1617                 if (retval < 0 || host_byte(retval)) {
1618                         set_media_not_present(sdkp);
1619                         goto out;
1620                 }
1621
1622                 if (media_not_present(sdkp, &sshdr))
1623                         goto out;
1624         }
1625
1626         /*
1627          * For removable scsi disk we have to recognise the presence
1628          * of a disk in the drive.
1629          */
1630         if (!sdkp->media_present)
1631                 sdp->changed = 1;
1632         sdkp->media_present = 1;
1633 out:
1634         /*
1635          * sdp->changed is set under the following conditions:
1636          *
1637          *      Medium present state has changed in either direction.
1638          *      Device has indicated UNIT_ATTENTION.
1639          */
1640         disk_changed = sdp->changed;
1641         sdp->changed = 0;
1642         return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1643 }
1644
1645 static int sd_sync_cache(struct scsi_disk *sdkp)
1646 {
1647         int retries, res;
1648         struct scsi_device *sdp = sdkp->device;
1649         const int timeout = sdp->request_queue->rq_timeout
1650                 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1651         struct scsi_sense_hdr sshdr;
1652         const struct scsi_exec_args exec_args = {
1653                 .req_flags = BLK_MQ_REQ_PM,
1654                 .sshdr = &sshdr,
1655         };
1656
1657         if (!scsi_device_online(sdp))
1658                 return -ENODEV;
1659
1660         for (retries = 3; retries > 0; --retries) {
1661                 unsigned char cmd[16] = { 0 };
1662
1663                 if (sdp->use_16_for_sync)
1664                         cmd[0] = SYNCHRONIZE_CACHE_16;
1665                 else
1666                         cmd[0] = SYNCHRONIZE_CACHE;
1667                 /*
1668                  * Leave the rest of the command zero to indicate
1669                  * flush everything.
1670                  */
1671                 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
1672                                        timeout, sdkp->max_retries, &exec_args);
1673                 if (res == 0)
1674                         break;
1675         }
1676
1677         if (res) {
1678                 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1679
1680                 if (res < 0)
1681                         return res;
1682
1683                 if (scsi_status_is_check_condition(res) &&
1684                     scsi_sense_valid(&sshdr)) {
1685                         sd_print_sense_hdr(sdkp, &sshdr);
1686
1687                         /* we need to evaluate the error return  */
1688                         if (sshdr.asc == 0x3a ||        /* medium not present */
1689                             sshdr.asc == 0x20 ||        /* invalid command */
1690                             (sshdr.asc == 0x74 && sshdr.ascq == 0x71))  /* drive is password locked */
1691                                 /* this is no error here */
1692                                 return 0;
1693                         /*
1694                          * This drive doesn't support sync and there's not much
1695                          * we can do because this is called during shutdown
1696                          * or suspend so just return success so those operations
1697                          * can proceed.
1698                          */
1699                         if (sshdr.sense_key == ILLEGAL_REQUEST)
1700                                 return 0;
1701                 }
1702
1703                 switch (host_byte(res)) {
1704                 /* ignore errors due to racing a disconnection */
1705                 case DID_BAD_TARGET:
1706                 case DID_NO_CONNECT:
1707                         return 0;
1708                 /* signal the upper layer it might try again */
1709                 case DID_BUS_BUSY:
1710                 case DID_IMM_RETRY:
1711                 case DID_REQUEUE:
1712                 case DID_SOFT_ERROR:
1713                         return -EBUSY;
1714                 default:
1715                         return -EIO;
1716                 }
1717         }
1718         return 0;
1719 }
1720
1721 static void sd_rescan(struct device *dev)
1722 {
1723         struct scsi_disk *sdkp = dev_get_drvdata(dev);
1724
1725         sd_revalidate_disk(sdkp->disk);
1726 }
1727
1728 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1729                 enum blk_unique_id type)
1730 {
1731         struct scsi_device *sdev = scsi_disk(disk)->device;
1732         const struct scsi_vpd *vpd;
1733         const unsigned char *d;
1734         int ret = -ENXIO, len;
1735
1736         rcu_read_lock();
1737         vpd = rcu_dereference(sdev->vpd_pg83);
1738         if (!vpd)
1739                 goto out_unlock;
1740
1741         ret = -EINVAL;
1742         for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1743                 /* we only care about designators with LU association */
1744                 if (((d[1] >> 4) & 0x3) != 0x00)
1745                         continue;
1746                 if ((d[1] & 0xf) != type)
1747                         continue;
1748
1749                 /*
1750                  * Only exit early if a 16-byte descriptor was found.  Otherwise
1751                  * keep looking as one with more entropy might still show up.
1752                  */
1753                 len = d[3];
1754                 if (len != 8 && len != 12 && len != 16)
1755                         continue;
1756                 ret = len;
1757                 memcpy(id, d + 4, len);
1758                 if (len == 16)
1759                         break;
1760         }
1761 out_unlock:
1762         rcu_read_unlock();
1763         return ret;
1764 }
1765
1766 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1767 {
1768         switch (host_byte(result)) {
1769         case DID_TRANSPORT_MARGINAL:
1770         case DID_TRANSPORT_DISRUPTED:
1771         case DID_BUS_BUSY:
1772                 return PR_STS_RETRY_PATH_FAILURE;
1773         case DID_NO_CONNECT:
1774                 return PR_STS_PATH_FAILED;
1775         case DID_TRANSPORT_FAILFAST:
1776                 return PR_STS_PATH_FAST_FAILED;
1777         }
1778
1779         switch (status_byte(result)) {
1780         case SAM_STAT_RESERVATION_CONFLICT:
1781                 return PR_STS_RESERVATION_CONFLICT;
1782         case SAM_STAT_CHECK_CONDITION:
1783                 if (!scsi_sense_valid(sshdr))
1784                         return PR_STS_IOERR;
1785
1786                 if (sshdr->sense_key == ILLEGAL_REQUEST &&
1787                     (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1788                         return -EINVAL;
1789
1790                 fallthrough;
1791         default:
1792                 return PR_STS_IOERR;
1793         }
1794 }
1795
1796 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1797                             unsigned char *data, int data_len)
1798 {
1799         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1800         struct scsi_device *sdev = sdkp->device;
1801         struct scsi_sense_hdr sshdr;
1802         u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1803         const struct scsi_exec_args exec_args = {
1804                 .sshdr = &sshdr,
1805         };
1806         int result;
1807
1808         put_unaligned_be16(data_len, &cmd[7]);
1809
1810         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1811                                   SD_TIMEOUT, sdkp->max_retries, &exec_args);
1812         if (scsi_status_is_check_condition(result) &&
1813             scsi_sense_valid(&sshdr)) {
1814                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1815                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1816         }
1817
1818         if (result <= 0)
1819                 return result;
1820
1821         return sd_scsi_to_pr_err(&sshdr, result);
1822 }
1823
1824 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1825 {
1826         int result, i, data_offset, num_copy_keys;
1827         u32 num_keys = keys_info->num_keys;
1828         int data_len = num_keys * 8 + 8;
1829         u8 *data;
1830
1831         data = kzalloc(data_len, GFP_KERNEL);
1832         if (!data)
1833                 return -ENOMEM;
1834
1835         result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1836         if (result)
1837                 goto free_data;
1838
1839         keys_info->generation = get_unaligned_be32(&data[0]);
1840         keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1841
1842         data_offset = 8;
1843         num_copy_keys = min(num_keys, keys_info->num_keys);
1844
1845         for (i = 0; i < num_copy_keys; i++) {
1846                 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1847                 data_offset += 8;
1848         }
1849
1850 free_data:
1851         kfree(data);
1852         return result;
1853 }
1854
1855 static int sd_pr_read_reservation(struct block_device *bdev,
1856                                   struct pr_held_reservation *rsv)
1857 {
1858         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1859         struct scsi_device *sdev = sdkp->device;
1860         u8 data[24] = { };
1861         int result, len;
1862
1863         result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
1864         if (result)
1865                 return result;
1866
1867         len = get_unaligned_be32(&data[4]);
1868         if (!len)
1869                 return 0;
1870
1871         /* Make sure we have at least the key and type */
1872         if (len < 14) {
1873                 sdev_printk(KERN_INFO, sdev,
1874                             "READ RESERVATION failed due to short return buffer of %d bytes\n",
1875                             len);
1876                 return -EINVAL;
1877         }
1878
1879         rsv->generation = get_unaligned_be32(&data[0]);
1880         rsv->key = get_unaligned_be64(&data[8]);
1881         rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
1882         return 0;
1883 }
1884
1885 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1886                              u64 sa_key, enum scsi_pr_type type, u8 flags)
1887 {
1888         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1889         struct scsi_device *sdev = sdkp->device;
1890         struct scsi_sense_hdr sshdr;
1891         const struct scsi_exec_args exec_args = {
1892                 .sshdr = &sshdr,
1893         };
1894         int result;
1895         u8 cmd[16] = { 0, };
1896         u8 data[24] = { 0, };
1897
1898         cmd[0] = PERSISTENT_RESERVE_OUT;
1899         cmd[1] = sa;
1900         cmd[2] = type;
1901         put_unaligned_be32(sizeof(data), &cmd[5]);
1902
1903         put_unaligned_be64(key, &data[0]);
1904         put_unaligned_be64(sa_key, &data[8]);
1905         data[20] = flags;
1906
1907         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1908                                   sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1909                                   &exec_args);
1910
1911         if (scsi_status_is_check_condition(result) &&
1912             scsi_sense_valid(&sshdr)) {
1913                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1914                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1915         }
1916
1917         if (result <= 0)
1918                 return result;
1919
1920         return sd_scsi_to_pr_err(&sshdr, result);
1921 }
1922
1923 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1924                 u32 flags)
1925 {
1926         if (flags & ~PR_FL_IGNORE_KEY)
1927                 return -EOPNOTSUPP;
1928         return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1929                         old_key, new_key, 0,
1930                         (1 << 0) /* APTPL */);
1931 }
1932
1933 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1934                 u32 flags)
1935 {
1936         if (flags)
1937                 return -EOPNOTSUPP;
1938         return sd_pr_out_command(bdev, 0x01, key, 0,
1939                                  block_pr_type_to_scsi(type), 0);
1940 }
1941
1942 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1943 {
1944         return sd_pr_out_command(bdev, 0x02, key, 0,
1945                                  block_pr_type_to_scsi(type), 0);
1946 }
1947
1948 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1949                 enum pr_type type, bool abort)
1950 {
1951         return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1952                                  block_pr_type_to_scsi(type), 0);
1953 }
1954
1955 static int sd_pr_clear(struct block_device *bdev, u64 key)
1956 {
1957         return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
1958 }
1959
1960 static const struct pr_ops sd_pr_ops = {
1961         .pr_register    = sd_pr_register,
1962         .pr_reserve     = sd_pr_reserve,
1963         .pr_release     = sd_pr_release,
1964         .pr_preempt     = sd_pr_preempt,
1965         .pr_clear       = sd_pr_clear,
1966         .pr_read_keys   = sd_pr_read_keys,
1967         .pr_read_reservation = sd_pr_read_reservation,
1968 };
1969
1970 static void scsi_disk_free_disk(struct gendisk *disk)
1971 {
1972         struct scsi_disk *sdkp = scsi_disk(disk);
1973
1974         put_device(&sdkp->disk_dev);
1975 }
1976
1977 static const struct block_device_operations sd_fops = {
1978         .owner                  = THIS_MODULE,
1979         .open                   = sd_open,
1980         .release                = sd_release,
1981         .ioctl                  = sd_ioctl,
1982         .getgeo                 = sd_getgeo,
1983         .compat_ioctl           = blkdev_compat_ptr_ioctl,
1984         .check_events           = sd_check_events,
1985         .unlock_native_capacity = sd_unlock_native_capacity,
1986         .report_zones           = sd_zbc_report_zones,
1987         .get_unique_id          = sd_get_unique_id,
1988         .free_disk              = scsi_disk_free_disk,
1989         .pr_ops                 = &sd_pr_ops,
1990 };
1991
1992 /**
1993  *      sd_eh_reset - reset error handling callback
1994  *      @scmd:          sd-issued command that has failed
1995  *
1996  *      This function is called by the SCSI midlayer before starting
1997  *      SCSI EH. When counting medium access failures we have to be
1998  *      careful to register it only only once per device and SCSI EH run;
1999  *      there might be several timed out commands which will cause the
2000  *      'max_medium_access_timeouts' counter to trigger after the first
2001  *      SCSI EH run already and set the device to offline.
2002  *      So this function resets the internal counter before starting SCSI EH.
2003  **/
2004 static void sd_eh_reset(struct scsi_cmnd *scmd)
2005 {
2006         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2007
2008         /* New SCSI EH run, reset gate variable */
2009         sdkp->ignore_medium_access_errors = false;
2010 }
2011
2012 /**
2013  *      sd_eh_action - error handling callback
2014  *      @scmd:          sd-issued command that has failed
2015  *      @eh_disp:       The recovery disposition suggested by the midlayer
2016  *
2017  *      This function is called by the SCSI midlayer upon completion of an
2018  *      error test command (currently TEST UNIT READY). The result of sending
2019  *      the eh command is passed in eh_disp.  We're looking for devices that
2020  *      fail medium access commands but are OK with non access commands like
2021  *      test unit ready (so wrongly see the device as having a successful
2022  *      recovery)
2023  **/
2024 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2025 {
2026         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2027         struct scsi_device *sdev = scmd->device;
2028
2029         if (!scsi_device_online(sdev) ||
2030             !scsi_medium_access_command(scmd) ||
2031             host_byte(scmd->result) != DID_TIME_OUT ||
2032             eh_disp != SUCCESS)
2033                 return eh_disp;
2034
2035         /*
2036          * The device has timed out executing a medium access command.
2037          * However, the TEST UNIT READY command sent during error
2038          * handling completed successfully. Either the device is in the
2039          * process of recovering or has it suffered an internal failure
2040          * that prevents access to the storage medium.
2041          */
2042         if (!sdkp->ignore_medium_access_errors) {
2043                 sdkp->medium_access_timed_out++;
2044                 sdkp->ignore_medium_access_errors = true;
2045         }
2046
2047         /*
2048          * If the device keeps failing read/write commands but TEST UNIT
2049          * READY always completes successfully we assume that medium
2050          * access is no longer possible and take the device offline.
2051          */
2052         if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2053                 scmd_printk(KERN_ERR, scmd,
2054                             "Medium access timeout failure. Offlining disk!\n");
2055                 mutex_lock(&sdev->state_mutex);
2056                 scsi_device_set_state(sdev, SDEV_OFFLINE);
2057                 mutex_unlock(&sdev->state_mutex);
2058
2059                 return SUCCESS;
2060         }
2061
2062         return eh_disp;
2063 }
2064
2065 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2066 {
2067         struct request *req = scsi_cmd_to_rq(scmd);
2068         struct scsi_device *sdev = scmd->device;
2069         unsigned int transferred, good_bytes;
2070         u64 start_lba, end_lba, bad_lba;
2071
2072         /*
2073          * Some commands have a payload smaller than the device logical
2074          * block size (e.g. INQUIRY on a 4K disk).
2075          */
2076         if (scsi_bufflen(scmd) <= sdev->sector_size)
2077                 return 0;
2078
2079         /* Check if we have a 'bad_lba' information */
2080         if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2081                                      SCSI_SENSE_BUFFERSIZE,
2082                                      &bad_lba))
2083                 return 0;
2084
2085         /*
2086          * If the bad lba was reported incorrectly, we have no idea where
2087          * the error is.
2088          */
2089         start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2090         end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2091         if (bad_lba < start_lba || bad_lba >= end_lba)
2092                 return 0;
2093
2094         /*
2095          * resid is optional but mostly filled in.  When it's unused,
2096          * its value is zero, so we assume the whole buffer transferred
2097          */
2098         transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2099
2100         /* This computation should always be done in terms of the
2101          * resolution of the device's medium.
2102          */
2103         good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2104
2105         return min(good_bytes, transferred);
2106 }
2107
2108 /**
2109  *      sd_done - bottom half handler: called when the lower level
2110  *      driver has completed (successfully or otherwise) a scsi command.
2111  *      @SCpnt: mid-level's per command structure.
2112  *
2113  *      Note: potentially run from within an ISR. Must not block.
2114  **/
2115 static int sd_done(struct scsi_cmnd *SCpnt)
2116 {
2117         int result = SCpnt->result;
2118         unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2119         unsigned int sector_size = SCpnt->device->sector_size;
2120         unsigned int resid;
2121         struct scsi_sense_hdr sshdr;
2122         struct request *req = scsi_cmd_to_rq(SCpnt);
2123         struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2124         int sense_valid = 0;
2125         int sense_deferred = 0;
2126
2127         switch (req_op(req)) {
2128         case REQ_OP_DISCARD:
2129         case REQ_OP_WRITE_ZEROES:
2130         case REQ_OP_ZONE_RESET:
2131         case REQ_OP_ZONE_RESET_ALL:
2132         case REQ_OP_ZONE_OPEN:
2133         case REQ_OP_ZONE_CLOSE:
2134         case REQ_OP_ZONE_FINISH:
2135                 if (!result) {
2136                         good_bytes = blk_rq_bytes(req);
2137                         scsi_set_resid(SCpnt, 0);
2138                 } else {
2139                         good_bytes = 0;
2140                         scsi_set_resid(SCpnt, blk_rq_bytes(req));
2141                 }
2142                 break;
2143         default:
2144                 /*
2145                  * In case of bogus fw or device, we could end up having
2146                  * an unaligned partial completion. Check this here and force
2147                  * alignment.
2148                  */
2149                 resid = scsi_get_resid(SCpnt);
2150                 if (resid & (sector_size - 1)) {
2151                         sd_printk(KERN_INFO, sdkp,
2152                                 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2153                                 resid, sector_size);
2154                         scsi_print_command(SCpnt);
2155                         resid = min(scsi_bufflen(SCpnt),
2156                                     round_up(resid, sector_size));
2157                         scsi_set_resid(SCpnt, resid);
2158                 }
2159         }
2160
2161         if (result) {
2162                 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2163                 if (sense_valid)
2164                         sense_deferred = scsi_sense_is_deferred(&sshdr);
2165         }
2166         sdkp->medium_access_timed_out = 0;
2167
2168         if (!scsi_status_is_check_condition(result) &&
2169             (!sense_valid || sense_deferred))
2170                 goto out;
2171
2172         switch (sshdr.sense_key) {
2173         case HARDWARE_ERROR:
2174         case MEDIUM_ERROR:
2175                 good_bytes = sd_completed_bytes(SCpnt);
2176                 break;
2177         case RECOVERED_ERROR:
2178                 good_bytes = scsi_bufflen(SCpnt);
2179                 break;
2180         case NO_SENSE:
2181                 /* This indicates a false check condition, so ignore it.  An
2182                  * unknown amount of data was transferred so treat it as an
2183                  * error.
2184                  */
2185                 SCpnt->result = 0;
2186                 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2187                 break;
2188         case ABORTED_COMMAND:
2189                 if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2190                         good_bytes = sd_completed_bytes(SCpnt);
2191                 break;
2192         case ILLEGAL_REQUEST:
2193                 switch (sshdr.asc) {
2194                 case 0x10:      /* DIX: Host detected corruption */
2195                         good_bytes = sd_completed_bytes(SCpnt);
2196                         break;
2197                 case 0x20:      /* INVALID COMMAND OPCODE */
2198                 case 0x24:      /* INVALID FIELD IN CDB */
2199                         switch (SCpnt->cmnd[0]) {
2200                         case UNMAP:
2201                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2202                                 break;
2203                         case WRITE_SAME_16:
2204                         case WRITE_SAME:
2205                                 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2206                                         sd_config_discard(sdkp, SD_LBP_DISABLE);
2207                                 } else {
2208                                         sdkp->device->no_write_same = 1;
2209                                         sd_config_write_same(sdkp);
2210                                         req->rq_flags |= RQF_QUIET;
2211                                 }
2212                                 break;
2213                         }
2214                 }
2215                 break;
2216         default:
2217                 break;
2218         }
2219
2220  out:
2221         if (sd_is_zoned(sdkp))
2222                 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2223
2224         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2225                                            "sd_done: completed %d of %d bytes\n",
2226                                            good_bytes, scsi_bufflen(SCpnt)));
2227
2228         return good_bytes;
2229 }
2230
2231 /*
2232  * spinup disk - called only in sd_revalidate_disk()
2233  */
2234 static void
2235 sd_spinup_disk(struct scsi_disk *sdkp)
2236 {
2237         unsigned char cmd[10];
2238         unsigned long spintime_expire = 0;
2239         int retries, spintime;
2240         unsigned int the_result;
2241         struct scsi_sense_hdr sshdr;
2242         const struct scsi_exec_args exec_args = {
2243                 .sshdr = &sshdr,
2244         };
2245         int sense_valid = 0;
2246
2247         spintime = 0;
2248
2249         /* Spin up drives, as required.  Only do this at boot time */
2250         /* Spinup needs to be done for module loads too. */
2251         do {
2252                 retries = 0;
2253
2254                 do {
2255                         bool media_was_present = sdkp->media_present;
2256
2257                         cmd[0] = TEST_UNIT_READY;
2258                         memset((void *) &cmd[1], 0, 9);
2259
2260                         the_result = scsi_execute_cmd(sdkp->device, cmd,
2261                                                       REQ_OP_DRV_IN, NULL, 0,
2262                                                       SD_TIMEOUT,
2263                                                       sdkp->max_retries,
2264                                                       &exec_args);
2265
2266                         /*
2267                          * If the drive has indicated to us that it
2268                          * doesn't have any media in it, don't bother
2269                          * with any more polling.
2270                          */
2271                         if (media_not_present(sdkp, &sshdr)) {
2272                                 if (media_was_present)
2273                                         sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2274                                 return;
2275                         }
2276
2277                         if (the_result)
2278                                 sense_valid = scsi_sense_valid(&sshdr);
2279                         retries++;
2280                 } while (retries < 3 &&
2281                          (!scsi_status_is_good(the_result) ||
2282                           (scsi_status_is_check_condition(the_result) &&
2283                           sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2284
2285                 if (!scsi_status_is_check_condition(the_result)) {
2286                         /* no sense, TUR either succeeded or failed
2287                          * with a status error */
2288                         if(!spintime && !scsi_status_is_good(the_result)) {
2289                                 sd_print_result(sdkp, "Test Unit Ready failed",
2290                                                 the_result);
2291                         }
2292                         break;
2293                 }
2294
2295                 /*
2296                  * The device does not want the automatic start to be issued.
2297                  */
2298                 if (sdkp->device->no_start_on_add)
2299                         break;
2300
2301                 if (sense_valid && sshdr.sense_key == NOT_READY) {
2302                         if (sshdr.asc == 4 && sshdr.ascq == 3)
2303                                 break;  /* manual intervention required */
2304                         if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2305                                 break;  /* standby */
2306                         if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2307                                 break;  /* unavailable */
2308                         if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2309                                 break;  /* sanitize in progress */
2310                         /*
2311                          * Issue command to spin up drive when not ready
2312                          */
2313                         if (!spintime) {
2314                                 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2315                                 cmd[0] = START_STOP;
2316                                 cmd[1] = 1;     /* Return immediately */
2317                                 memset((void *) &cmd[2], 0, 8);
2318                                 cmd[4] = 1;     /* Start spin cycle */
2319                                 if (sdkp->device->start_stop_pwr_cond)
2320                                         cmd[4] |= 1 << 4;
2321                                 scsi_execute_cmd(sdkp->device, cmd,
2322                                                  REQ_OP_DRV_IN, NULL, 0,
2323                                                  SD_TIMEOUT, sdkp->max_retries,
2324                                                  &exec_args);
2325                                 spintime_expire = jiffies + 100 * HZ;
2326                                 spintime = 1;
2327                         }
2328                         /* Wait 1 second for next try */
2329                         msleep(1000);
2330                         printk(KERN_CONT ".");
2331
2332                 /*
2333                  * Wait for USB flash devices with slow firmware.
2334                  * Yes, this sense key/ASC combination shouldn't
2335                  * occur here.  It's characteristic of these devices.
2336                  */
2337                 } else if (sense_valid &&
2338                                 sshdr.sense_key == UNIT_ATTENTION &&
2339                                 sshdr.asc == 0x28) {
2340                         if (!spintime) {
2341                                 spintime_expire = jiffies + 5 * HZ;
2342                                 spintime = 1;
2343                         }
2344                         /* Wait 1 second for next try */
2345                         msleep(1000);
2346                 } else {
2347                         /* we don't understand the sense code, so it's
2348                          * probably pointless to loop */
2349                         if(!spintime) {
2350                                 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2351                                 sd_print_sense_hdr(sdkp, &sshdr);
2352                         }
2353                         break;
2354                 }
2355                                 
2356         } while (spintime && time_before_eq(jiffies, spintime_expire));
2357
2358         if (spintime) {
2359                 if (scsi_status_is_good(the_result))
2360                         printk(KERN_CONT "ready\n");
2361                 else
2362                         printk(KERN_CONT "not responding...\n");
2363         }
2364 }
2365
2366 /*
2367  * Determine whether disk supports Data Integrity Field.
2368  */
2369 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2370 {
2371         struct scsi_device *sdp = sdkp->device;
2372         u8 type;
2373
2374         if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2375                 sdkp->protection_type = 0;
2376                 return 0;
2377         }
2378
2379         type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2380
2381         if (type > T10_PI_TYPE3_PROTECTION) {
2382                 sd_printk(KERN_ERR, sdkp, "formatted with unsupported"  \
2383                           " protection type %u. Disabling disk!\n",
2384                           type);
2385                 sdkp->protection_type = 0;
2386                 return -ENODEV;
2387         }
2388
2389         sdkp->protection_type = type;
2390
2391         return 0;
2392 }
2393
2394 static void sd_config_protection(struct scsi_disk *sdkp)
2395 {
2396         struct scsi_device *sdp = sdkp->device;
2397
2398         sd_dif_config_host(sdkp);
2399
2400         if (!sdkp->protection_type)
2401                 return;
2402
2403         if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2404                 sd_first_printk(KERN_NOTICE, sdkp,
2405                                 "Disabling DIF Type %u protection\n",
2406                                 sdkp->protection_type);
2407                 sdkp->protection_type = 0;
2408         }
2409
2410         sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2411                         sdkp->protection_type);
2412 }
2413
2414 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2415                         struct scsi_sense_hdr *sshdr, int sense_valid,
2416                         int the_result)
2417 {
2418         if (sense_valid)
2419                 sd_print_sense_hdr(sdkp, sshdr);
2420         else
2421                 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2422
2423         /*
2424          * Set dirty bit for removable devices if not ready -
2425          * sometimes drives will not report this properly.
2426          */
2427         if (sdp->removable &&
2428             sense_valid && sshdr->sense_key == NOT_READY)
2429                 set_media_not_present(sdkp);
2430
2431         /*
2432          * We used to set media_present to 0 here to indicate no media
2433          * in the drive, but some drives fail read capacity even with
2434          * media present, so we can't do that.
2435          */
2436         sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2437 }
2438
2439 #define RC16_LEN 32
2440 #if RC16_LEN > SD_BUF_SIZE
2441 #error RC16_LEN must not be more than SD_BUF_SIZE
2442 #endif
2443
2444 #define READ_CAPACITY_RETRIES_ON_RESET  10
2445
2446 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2447                                                 unsigned char *buffer)
2448 {
2449         unsigned char cmd[16];
2450         struct scsi_sense_hdr sshdr;
2451         const struct scsi_exec_args exec_args = {
2452                 .sshdr = &sshdr,
2453         };
2454         int sense_valid = 0;
2455         int the_result;
2456         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2457         unsigned int alignment;
2458         unsigned long long lba;
2459         unsigned sector_size;
2460
2461         if (sdp->no_read_capacity_16)
2462                 return -EINVAL;
2463
2464         do {
2465                 memset(cmd, 0, 16);
2466                 cmd[0] = SERVICE_ACTION_IN_16;
2467                 cmd[1] = SAI_READ_CAPACITY_16;
2468                 cmd[13] = RC16_LEN;
2469                 memset(buffer, 0, RC16_LEN);
2470
2471                 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2472                                               buffer, RC16_LEN, SD_TIMEOUT,
2473                                               sdkp->max_retries, &exec_args);
2474
2475                 if (media_not_present(sdkp, &sshdr))
2476                         return -ENODEV;
2477
2478                 if (the_result > 0) {
2479                         sense_valid = scsi_sense_valid(&sshdr);
2480                         if (sense_valid &&
2481                             sshdr.sense_key == ILLEGAL_REQUEST &&
2482                             (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2483                             sshdr.ascq == 0x00)
2484                                 /* Invalid Command Operation Code or
2485                                  * Invalid Field in CDB, just retry
2486                                  * silently with RC10 */
2487                                 return -EINVAL;
2488                         if (sense_valid &&
2489                             sshdr.sense_key == UNIT_ATTENTION &&
2490                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2491                                 /* Device reset might occur several times,
2492                                  * give it one more chance */
2493                                 if (--reset_retries > 0)
2494                                         continue;
2495                 }
2496                 retries--;
2497
2498         } while (the_result && retries);
2499
2500         if (the_result) {
2501                 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2502                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2503                 return -EINVAL;
2504         }
2505
2506         sector_size = get_unaligned_be32(&buffer[8]);
2507         lba = get_unaligned_be64(&buffer[0]);
2508
2509         if (sd_read_protection_type(sdkp, buffer) < 0) {
2510                 sdkp->capacity = 0;
2511                 return -ENODEV;
2512         }
2513
2514         /* Logical blocks per physical block exponent */
2515         sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2516
2517         /* RC basis */
2518         sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2519
2520         /* Lowest aligned logical block */
2521         alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2522         blk_queue_alignment_offset(sdp->request_queue, alignment);
2523         if (alignment && sdkp->first_scan)
2524                 sd_printk(KERN_NOTICE, sdkp,
2525                           "physical block alignment offset: %u\n", alignment);
2526
2527         if (buffer[14] & 0x80) { /* LBPME */
2528                 sdkp->lbpme = 1;
2529
2530                 if (buffer[14] & 0x40) /* LBPRZ */
2531                         sdkp->lbprz = 1;
2532
2533                 sd_config_discard(sdkp, SD_LBP_WS16);
2534         }
2535
2536         sdkp->capacity = lba + 1;
2537         return sector_size;
2538 }
2539
2540 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2541                                                 unsigned char *buffer)
2542 {
2543         unsigned char cmd[16];
2544         struct scsi_sense_hdr sshdr;
2545         const struct scsi_exec_args exec_args = {
2546                 .sshdr = &sshdr,
2547         };
2548         int sense_valid = 0;
2549         int the_result;
2550         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2551         sector_t lba;
2552         unsigned sector_size;
2553
2554         do {
2555                 cmd[0] = READ_CAPACITY;
2556                 memset(&cmd[1], 0, 9);
2557                 memset(buffer, 0, 8);
2558
2559                 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2560                                               8, SD_TIMEOUT, sdkp->max_retries,
2561                                               &exec_args);
2562
2563                 if (media_not_present(sdkp, &sshdr))
2564                         return -ENODEV;
2565
2566                 if (the_result > 0) {
2567                         sense_valid = scsi_sense_valid(&sshdr);
2568                         if (sense_valid &&
2569                             sshdr.sense_key == UNIT_ATTENTION &&
2570                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2571                                 /* Device reset might occur several times,
2572                                  * give it one more chance */
2573                                 if (--reset_retries > 0)
2574                                         continue;
2575                 }
2576                 retries--;
2577
2578         } while (the_result && retries);
2579
2580         if (the_result) {
2581                 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2582                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2583                 return -EINVAL;
2584         }
2585
2586         sector_size = get_unaligned_be32(&buffer[4]);
2587         lba = get_unaligned_be32(&buffer[0]);
2588
2589         if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2590                 /* Some buggy (usb cardreader) devices return an lba of
2591                    0xffffffff when the want to report a size of 0 (with
2592                    which they really mean no media is present) */
2593                 sdkp->capacity = 0;
2594                 sdkp->physical_block_size = sector_size;
2595                 return sector_size;
2596         }
2597
2598         sdkp->capacity = lba + 1;
2599         sdkp->physical_block_size = sector_size;
2600         return sector_size;
2601 }
2602
2603 static int sd_try_rc16_first(struct scsi_device *sdp)
2604 {
2605         if (sdp->host->max_cmd_len < 16)
2606                 return 0;
2607         if (sdp->try_rc_10_first)
2608                 return 0;
2609         if (sdp->scsi_level > SCSI_SPC_2)
2610                 return 1;
2611         if (scsi_device_protection(sdp))
2612                 return 1;
2613         return 0;
2614 }
2615
2616 /*
2617  * read disk capacity
2618  */
2619 static void
2620 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2621 {
2622         int sector_size;
2623         struct scsi_device *sdp = sdkp->device;
2624
2625         if (sd_try_rc16_first(sdp)) {
2626                 sector_size = read_capacity_16(sdkp, sdp, buffer);
2627                 if (sector_size == -EOVERFLOW)
2628                         goto got_data;
2629                 if (sector_size == -ENODEV)
2630                         return;
2631                 if (sector_size < 0)
2632                         sector_size = read_capacity_10(sdkp, sdp, buffer);
2633                 if (sector_size < 0)
2634                         return;
2635         } else {
2636                 sector_size = read_capacity_10(sdkp, sdp, buffer);
2637                 if (sector_size == -EOVERFLOW)
2638                         goto got_data;
2639                 if (sector_size < 0)
2640                         return;
2641                 if ((sizeof(sdkp->capacity) > 4) &&
2642                     (sdkp->capacity > 0xffffffffULL)) {
2643                         int old_sector_size = sector_size;
2644                         sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2645                                         "Trying to use READ CAPACITY(16).\n");
2646                         sector_size = read_capacity_16(sdkp, sdp, buffer);
2647                         if (sector_size < 0) {
2648                                 sd_printk(KERN_NOTICE, sdkp,
2649                                         "Using 0xffffffff as device size\n");
2650                                 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2651                                 sector_size = old_sector_size;
2652                                 goto got_data;
2653                         }
2654                         /* Remember that READ CAPACITY(16) succeeded */
2655                         sdp->try_rc_10_first = 0;
2656                 }
2657         }
2658
2659         /* Some devices are known to return the total number of blocks,
2660          * not the highest block number.  Some devices have versions
2661          * which do this and others which do not.  Some devices we might
2662          * suspect of doing this but we don't know for certain.
2663          *
2664          * If we know the reported capacity is wrong, decrement it.  If
2665          * we can only guess, then assume the number of blocks is even
2666          * (usually true but not always) and err on the side of lowering
2667          * the capacity.
2668          */
2669         if (sdp->fix_capacity ||
2670             (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2671                 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2672                                 "from its reported value: %llu\n",
2673                                 (unsigned long long) sdkp->capacity);
2674                 --sdkp->capacity;
2675         }
2676
2677 got_data:
2678         if (sector_size == 0) {
2679                 sector_size = 512;
2680                 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2681                           "assuming 512.\n");
2682         }
2683
2684         if (sector_size != 512 &&
2685             sector_size != 1024 &&
2686             sector_size != 2048 &&
2687             sector_size != 4096) {
2688                 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2689                           sector_size);
2690                 /*
2691                  * The user might want to re-format the drive with
2692                  * a supported sectorsize.  Once this happens, it
2693                  * would be relatively trivial to set the thing up.
2694                  * For this reason, we leave the thing in the table.
2695                  */
2696                 sdkp->capacity = 0;
2697                 /*
2698                  * set a bogus sector size so the normal read/write
2699                  * logic in the block layer will eventually refuse any
2700                  * request on this device without tripping over power
2701                  * of two sector size assumptions
2702                  */
2703                 sector_size = 512;
2704         }
2705         blk_queue_logical_block_size(sdp->request_queue, sector_size);
2706         blk_queue_physical_block_size(sdp->request_queue,
2707                                       sdkp->physical_block_size);
2708         sdkp->device->sector_size = sector_size;
2709
2710         if (sdkp->capacity > 0xffffffff)
2711                 sdp->use_16_for_rw = 1;
2712
2713 }
2714
2715 /*
2716  * Print disk capacity
2717  */
2718 static void
2719 sd_print_capacity(struct scsi_disk *sdkp,
2720                   sector_t old_capacity)
2721 {
2722         int sector_size = sdkp->device->sector_size;
2723         char cap_str_2[10], cap_str_10[10];
2724
2725         if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2726                 return;
2727
2728         string_get_size(sdkp->capacity, sector_size,
2729                         STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2730         string_get_size(sdkp->capacity, sector_size,
2731                         STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2732
2733         sd_printk(KERN_NOTICE, sdkp,
2734                   "%llu %d-byte logical blocks: (%s/%s)\n",
2735                   (unsigned long long)sdkp->capacity,
2736                   sector_size, cap_str_10, cap_str_2);
2737
2738         if (sdkp->physical_block_size != sector_size)
2739                 sd_printk(KERN_NOTICE, sdkp,
2740                           "%u-byte physical blocks\n",
2741                           sdkp->physical_block_size);
2742 }
2743
2744 /* called with buffer of length 512 */
2745 static inline int
2746 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2747                  unsigned char *buffer, int len, struct scsi_mode_data *data,
2748                  struct scsi_sense_hdr *sshdr)
2749 {
2750         /*
2751          * If we must use MODE SENSE(10), make sure that the buffer length
2752          * is at least 8 bytes so that the mode sense header fits.
2753          */
2754         if (sdkp->device->use_10_for_ms && len < 8)
2755                 len = 8;
2756
2757         return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2758                                SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2759 }
2760
2761 /*
2762  * read write protect setting, if possible - called only in sd_revalidate_disk()
2763  * called with buffer of length SD_BUF_SIZE
2764  */
2765 static void
2766 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2767 {
2768         int res;
2769         struct scsi_device *sdp = sdkp->device;
2770         struct scsi_mode_data data;
2771         int old_wp = sdkp->write_prot;
2772
2773         set_disk_ro(sdkp->disk, 0);
2774         if (sdp->skip_ms_page_3f) {
2775                 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2776                 return;
2777         }
2778
2779         if (sdp->use_192_bytes_for_3f) {
2780                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2781         } else {
2782                 /*
2783                  * First attempt: ask for all pages (0x3F), but only 4 bytes.
2784                  * We have to start carefully: some devices hang if we ask
2785                  * for more than is available.
2786                  */
2787                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2788
2789                 /*
2790                  * Second attempt: ask for page 0 When only page 0 is
2791                  * implemented, a request for page 3F may return Sense Key
2792                  * 5: Illegal Request, Sense Code 24: Invalid field in
2793                  * CDB.
2794                  */
2795                 if (res < 0)
2796                         res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2797
2798                 /*
2799                  * Third attempt: ask 255 bytes, as we did earlier.
2800                  */
2801                 if (res < 0)
2802                         res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2803                                                &data, NULL);
2804         }
2805
2806         if (res < 0) {
2807                 sd_first_printk(KERN_WARNING, sdkp,
2808                           "Test WP failed, assume Write Enabled\n");
2809         } else {
2810                 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2811                 set_disk_ro(sdkp->disk, sdkp->write_prot);
2812                 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2813                         sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2814                                   sdkp->write_prot ? "on" : "off");
2815                         sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2816                 }
2817         }
2818 }
2819
2820 /*
2821  * sd_read_cache_type - called only from sd_revalidate_disk()
2822  * called with buffer of length SD_BUF_SIZE
2823  */
2824 static void
2825 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2826 {
2827         int len = 0, res;
2828         struct scsi_device *sdp = sdkp->device;
2829
2830         int dbd;
2831         int modepage;
2832         int first_len;
2833         struct scsi_mode_data data;
2834         struct scsi_sense_hdr sshdr;
2835         int old_wce = sdkp->WCE;
2836         int old_rcd = sdkp->RCD;
2837         int old_dpofua = sdkp->DPOFUA;
2838
2839
2840         if (sdkp->cache_override)
2841                 return;
2842
2843         first_len = 4;
2844         if (sdp->skip_ms_page_8) {
2845                 if (sdp->type == TYPE_RBC)
2846                         goto defaults;
2847                 else {
2848                         if (sdp->skip_ms_page_3f)
2849                                 goto defaults;
2850                         modepage = 0x3F;
2851                         if (sdp->use_192_bytes_for_3f)
2852                                 first_len = 192;
2853                         dbd = 0;
2854                 }
2855         } else if (sdp->type == TYPE_RBC) {
2856                 modepage = 6;
2857                 dbd = 8;
2858         } else {
2859                 modepage = 8;
2860                 dbd = 0;
2861         }
2862
2863         /* cautiously ask */
2864         res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2865                         &data, &sshdr);
2866
2867         if (res < 0)
2868                 goto bad_sense;
2869
2870         if (!data.header_length) {
2871                 modepage = 6;
2872                 first_len = 0;
2873                 sd_first_printk(KERN_ERR, sdkp,
2874                                 "Missing header in MODE_SENSE response\n");
2875         }
2876
2877         /* that went OK, now ask for the proper length */
2878         len = data.length;
2879
2880         /*
2881          * We're only interested in the first three bytes, actually.
2882          * But the data cache page is defined for the first 20.
2883          */
2884         if (len < 3)
2885                 goto bad_sense;
2886         else if (len > SD_BUF_SIZE) {
2887                 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2888                           "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2889                 len = SD_BUF_SIZE;
2890         }
2891         if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2892                 len = 192;
2893
2894         /* Get the data */
2895         if (len > first_len)
2896                 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2897                                 &data, &sshdr);
2898
2899         if (!res) {
2900                 int offset = data.header_length + data.block_descriptor_length;
2901
2902                 while (offset < len) {
2903                         u8 page_code = buffer[offset] & 0x3F;
2904                         u8 spf       = buffer[offset] & 0x40;
2905
2906                         if (page_code == 8 || page_code == 6) {
2907                                 /* We're interested only in the first 3 bytes.
2908                                  */
2909                                 if (len - offset <= 2) {
2910                                         sd_first_printk(KERN_ERR, sdkp,
2911                                                 "Incomplete mode parameter "
2912                                                         "data\n");
2913                                         goto defaults;
2914                                 } else {
2915                                         modepage = page_code;
2916                                         goto Page_found;
2917                                 }
2918                         } else {
2919                                 /* Go to the next page */
2920                                 if (spf && len - offset > 3)
2921                                         offset += 4 + (buffer[offset+2] << 8) +
2922                                                 buffer[offset+3];
2923                                 else if (!spf && len - offset > 1)
2924                                         offset += 2 + buffer[offset+1];
2925                                 else {
2926                                         sd_first_printk(KERN_ERR, sdkp,
2927                                                         "Incomplete mode "
2928                                                         "parameter data\n");
2929                                         goto defaults;
2930                                 }
2931                         }
2932                 }
2933
2934                 sd_first_printk(KERN_WARNING, sdkp,
2935                                 "No Caching mode page found\n");
2936                 goto defaults;
2937
2938         Page_found:
2939                 if (modepage == 8) {
2940                         sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2941                         sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2942                 } else {
2943                         sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2944                         sdkp->RCD = 0;
2945                 }
2946
2947                 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2948                 if (sdp->broken_fua) {
2949                         sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2950                         sdkp->DPOFUA = 0;
2951                 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2952                            !sdkp->device->use_16_for_rw) {
2953                         sd_first_printk(KERN_NOTICE, sdkp,
2954                                   "Uses READ/WRITE(6), disabling FUA\n");
2955                         sdkp->DPOFUA = 0;
2956                 }
2957
2958                 /* No cache flush allowed for write protected devices */
2959                 if (sdkp->WCE && sdkp->write_prot)
2960                         sdkp->WCE = 0;
2961
2962                 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2963                     old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2964                         sd_printk(KERN_NOTICE, sdkp,
2965                                   "Write cache: %s, read cache: %s, %s\n",
2966                                   sdkp->WCE ? "enabled" : "disabled",
2967                                   sdkp->RCD ? "disabled" : "enabled",
2968                                   sdkp->DPOFUA ? "supports DPO and FUA"
2969                                   : "doesn't support DPO or FUA");
2970
2971                 return;
2972         }
2973
2974 bad_sense:
2975         if (scsi_sense_valid(&sshdr) &&
2976             sshdr.sense_key == ILLEGAL_REQUEST &&
2977             sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2978                 /* Invalid field in CDB */
2979                 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2980         else
2981                 sd_first_printk(KERN_ERR, sdkp,
2982                                 "Asking for cache data failed\n");
2983
2984 defaults:
2985         if (sdp->wce_default_on) {
2986                 sd_first_printk(KERN_NOTICE, sdkp,
2987                                 "Assuming drive cache: write back\n");
2988                 sdkp->WCE = 1;
2989         } else {
2990                 sd_first_printk(KERN_WARNING, sdkp,
2991                                 "Assuming drive cache: write through\n");
2992                 sdkp->WCE = 0;
2993         }
2994         sdkp->RCD = 0;
2995         sdkp->DPOFUA = 0;
2996 }
2997
2998 /*
2999  * The ATO bit indicates whether the DIF application tag is available
3000  * for use by the operating system.
3001  */
3002 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3003 {
3004         int res, offset;
3005         struct scsi_device *sdp = sdkp->device;
3006         struct scsi_mode_data data;
3007         struct scsi_sense_hdr sshdr;
3008
3009         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3010                 return;
3011
3012         if (sdkp->protection_type == 0)
3013                 return;
3014
3015         res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3016                               sdkp->max_retries, &data, &sshdr);
3017
3018         if (res < 0 || !data.header_length ||
3019             data.length < 6) {
3020                 sd_first_printk(KERN_WARNING, sdkp,
3021                           "getting Control mode page failed, assume no ATO\n");
3022
3023                 if (scsi_sense_valid(&sshdr))
3024                         sd_print_sense_hdr(sdkp, &sshdr);
3025
3026                 return;
3027         }
3028
3029         offset = data.header_length + data.block_descriptor_length;
3030
3031         if ((buffer[offset] & 0x3f) != 0x0a) {
3032                 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3033                 return;
3034         }
3035
3036         if ((buffer[offset + 5] & 0x80) == 0)
3037                 return;
3038
3039         sdkp->ATO = 1;
3040
3041         return;
3042 }
3043
3044 /**
3045  * sd_read_block_limits - Query disk device for preferred I/O sizes.
3046  * @sdkp: disk to query
3047  */
3048 static void sd_read_block_limits(struct scsi_disk *sdkp)
3049 {
3050         struct scsi_vpd *vpd;
3051
3052         rcu_read_lock();
3053
3054         vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3055         if (!vpd || vpd->len < 16)
3056                 goto out;
3057
3058         sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3059         sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3060         sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3061
3062         if (vpd->len >= 64) {
3063                 unsigned int lba_count, desc_count;
3064
3065                 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3066
3067                 if (!sdkp->lbpme)
3068                         goto out;
3069
3070                 lba_count = get_unaligned_be32(&vpd->data[20]);
3071                 desc_count = get_unaligned_be32(&vpd->data[24]);
3072
3073                 if (lba_count && desc_count)
3074                         sdkp->max_unmap_blocks = lba_count;
3075
3076                 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3077
3078                 if (vpd->data[32] & 0x80)
3079                         sdkp->unmap_alignment =
3080                                 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3081
3082                 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
3083
3084                         if (sdkp->max_unmap_blocks)
3085                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
3086                         else
3087                                 sd_config_discard(sdkp, SD_LBP_WS16);
3088
3089                 } else {        /* LBP VPD page tells us what to use */
3090                         if (sdkp->lbpu && sdkp->max_unmap_blocks)
3091                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
3092                         else if (sdkp->lbpws)
3093                                 sd_config_discard(sdkp, SD_LBP_WS16);
3094                         else if (sdkp->lbpws10)
3095                                 sd_config_discard(sdkp, SD_LBP_WS10);
3096                         else
3097                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
3098                 }
3099         }
3100
3101  out:
3102         rcu_read_unlock();
3103 }
3104
3105 /**
3106  * sd_read_block_characteristics - Query block dev. characteristics
3107  * @sdkp: disk to query
3108  */
3109 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3110 {
3111         struct request_queue *q = sdkp->disk->queue;
3112         struct scsi_vpd *vpd;
3113         u16 rot;
3114         u8 zoned;
3115
3116         rcu_read_lock();
3117         vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3118
3119         if (!vpd || vpd->len < 8) {
3120                 rcu_read_unlock();
3121                 return;
3122         }
3123
3124         rot = get_unaligned_be16(&vpd->data[4]);
3125         zoned = (vpd->data[8] >> 4) & 3;
3126         rcu_read_unlock();
3127
3128         if (rot == 1) {
3129                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3130                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3131         }
3132
3133         if (sdkp->device->type == TYPE_ZBC) {
3134                 /*
3135                  * Host-managed: Per ZBC and ZAC specifications, writes in
3136                  * sequential write required zones of host-managed devices must
3137                  * be aligned to the device physical block size.
3138                  */
3139                 disk_set_zoned(sdkp->disk, BLK_ZONED_HM);
3140                 blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
3141         } else {
3142                 sdkp->zoned = zoned;
3143                 if (sdkp->zoned == 1) {
3144                         /* Host-aware */
3145                         disk_set_zoned(sdkp->disk, BLK_ZONED_HA);
3146                 } else {
3147                         /* Regular disk or drive managed disk */
3148                         disk_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3149                 }
3150         }
3151
3152         if (!sdkp->first_scan)
3153                 return;
3154
3155         if (blk_queue_is_zoned(q)) {
3156                 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3157                       q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3158         } else {
3159                 if (sdkp->zoned == 1)
3160                         sd_printk(KERN_NOTICE, sdkp,
3161                                   "Host-aware SMR disk used as regular disk\n");
3162                 else if (sdkp->zoned == 2)
3163                         sd_printk(KERN_NOTICE, sdkp,
3164                                   "Drive-managed SMR disk\n");
3165         }
3166 }
3167
3168 /**
3169  * sd_read_block_provisioning - Query provisioning VPD page
3170  * @sdkp: disk to query
3171  */
3172 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3173 {
3174         struct scsi_vpd *vpd;
3175
3176         if (sdkp->lbpme == 0)
3177                 return;
3178
3179         rcu_read_lock();
3180         vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3181
3182         if (!vpd || vpd->len < 8) {
3183                 rcu_read_unlock();
3184                 return;
3185         }
3186
3187         sdkp->lbpvpd    = 1;
3188         sdkp->lbpu      = (vpd->data[5] >> 7) & 1; /* UNMAP */
3189         sdkp->lbpws     = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3190         sdkp->lbpws10   = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3191         rcu_read_unlock();
3192 }
3193
3194 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3195 {
3196         struct scsi_device *sdev = sdkp->device;
3197
3198         if (sdev->host->no_write_same) {
3199                 sdev->no_write_same = 1;
3200
3201                 return;
3202         }
3203
3204         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3205                 struct scsi_vpd *vpd;
3206
3207                 sdev->no_report_opcodes = 1;
3208
3209                 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3210                  * CODES is unsupported and the device has an ATA
3211                  * Information VPD page (SAT).
3212                  */
3213                 rcu_read_lock();
3214                 vpd = rcu_dereference(sdev->vpd_pg89);
3215                 if (vpd)
3216                         sdev->no_write_same = 1;
3217                 rcu_read_unlock();
3218         }
3219
3220         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3221                 sdkp->ws16 = 1;
3222
3223         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3224                 sdkp->ws10 = 1;
3225 }
3226
3227 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3228 {
3229         struct scsi_device *sdev = sdkp->device;
3230
3231         if (!sdev->security_supported)
3232                 return;
3233
3234         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3235                         SECURITY_PROTOCOL_IN, 0) == 1 &&
3236             scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3237                         SECURITY_PROTOCOL_OUT, 0) == 1)
3238                 sdkp->security = 1;
3239 }
3240
3241 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3242 {
3243         return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3244 }
3245
3246 /**
3247  * sd_read_cpr - Query concurrent positioning ranges
3248  * @sdkp:       disk to query
3249  */
3250 static void sd_read_cpr(struct scsi_disk *sdkp)
3251 {
3252         struct blk_independent_access_ranges *iars = NULL;
3253         unsigned char *buffer = NULL;
3254         unsigned int nr_cpr = 0;
3255         int i, vpd_len, buf_len = SD_BUF_SIZE;
3256         u8 *desc;
3257
3258         /*
3259          * We need to have the capacity set first for the block layer to be
3260          * able to check the ranges.
3261          */
3262         if (sdkp->first_scan)
3263                 return;
3264
3265         if (!sdkp->capacity)
3266                 goto out;
3267
3268         /*
3269          * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3270          * leading to a maximum page size of 64 + 256*32 bytes.
3271          */
3272         buf_len = 64 + 256*32;
3273         buffer = kmalloc(buf_len, GFP_KERNEL);
3274         if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3275                 goto out;
3276
3277         /* We must have at least a 64B header and one 32B range descriptor */
3278         vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3279         if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3280                 sd_printk(KERN_ERR, sdkp,
3281                           "Invalid Concurrent Positioning Ranges VPD page\n");
3282                 goto out;
3283         }
3284
3285         nr_cpr = (vpd_len - 64) / 32;
3286         if (nr_cpr == 1) {
3287                 nr_cpr = 0;
3288                 goto out;
3289         }
3290
3291         iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3292         if (!iars) {
3293                 nr_cpr = 0;
3294                 goto out;
3295         }
3296
3297         desc = &buffer[64];
3298         for (i = 0; i < nr_cpr; i++, desc += 32) {
3299                 if (desc[0] != i) {
3300                         sd_printk(KERN_ERR, sdkp,
3301                                 "Invalid Concurrent Positioning Range number\n");
3302                         nr_cpr = 0;
3303                         break;
3304                 }
3305
3306                 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3307                 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3308         }
3309
3310 out:
3311         disk_set_independent_access_ranges(sdkp->disk, iars);
3312         if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3313                 sd_printk(KERN_NOTICE, sdkp,
3314                           "%u concurrent positioning ranges\n", nr_cpr);
3315                 sdkp->nr_actuators = nr_cpr;
3316         }
3317
3318         kfree(buffer);
3319 }
3320
3321 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3322 {
3323         struct scsi_device *sdp = sdkp->device;
3324         unsigned int min_xfer_bytes =
3325                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3326
3327         if (sdkp->min_xfer_blocks == 0)
3328                 return false;
3329
3330         if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3331                 sd_first_printk(KERN_WARNING, sdkp,
3332                                 "Preferred minimum I/O size %u bytes not a " \
3333                                 "multiple of physical block size (%u bytes)\n",
3334                                 min_xfer_bytes, sdkp->physical_block_size);
3335                 sdkp->min_xfer_blocks = 0;
3336                 return false;
3337         }
3338
3339         sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3340                         min_xfer_bytes);
3341         return true;
3342 }
3343
3344 /*
3345  * Determine the device's preferred I/O size for reads and writes
3346  * unless the reported value is unreasonably small, large, not a
3347  * multiple of the physical block size, or simply garbage.
3348  */
3349 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3350                                       unsigned int dev_max)
3351 {
3352         struct scsi_device *sdp = sdkp->device;
3353         unsigned int opt_xfer_bytes =
3354                 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3355         unsigned int min_xfer_bytes =
3356                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3357
3358         if (sdkp->opt_xfer_blocks == 0)
3359                 return false;
3360
3361         if (sdkp->opt_xfer_blocks > dev_max) {
3362                 sd_first_printk(KERN_WARNING, sdkp,
3363                                 "Optimal transfer size %u logical blocks " \
3364                                 "> dev_max (%u logical blocks)\n",
3365                                 sdkp->opt_xfer_blocks, dev_max);
3366                 return false;
3367         }
3368
3369         if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3370                 sd_first_printk(KERN_WARNING, sdkp,
3371                                 "Optimal transfer size %u logical blocks " \
3372                                 "> sd driver limit (%u logical blocks)\n",
3373                                 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3374                 return false;
3375         }
3376
3377         if (opt_xfer_bytes < PAGE_SIZE) {
3378                 sd_first_printk(KERN_WARNING, sdkp,
3379                                 "Optimal transfer size %u bytes < " \
3380                                 "PAGE_SIZE (%u bytes)\n",
3381                                 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3382                 return false;
3383         }
3384
3385         if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3386                 sd_first_printk(KERN_WARNING, sdkp,
3387                                 "Optimal transfer size %u bytes not a " \
3388                                 "multiple of preferred minimum block " \
3389                                 "size (%u bytes)\n",
3390                                 opt_xfer_bytes, min_xfer_bytes);
3391                 return false;
3392         }
3393
3394         if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3395                 sd_first_printk(KERN_WARNING, sdkp,
3396                                 "Optimal transfer size %u bytes not a " \
3397                                 "multiple of physical block size (%u bytes)\n",
3398                                 opt_xfer_bytes, sdkp->physical_block_size);
3399                 return false;
3400         }
3401
3402         sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3403                         opt_xfer_bytes);
3404         return true;
3405 }
3406
3407 /**
3408  *      sd_revalidate_disk - called the first time a new disk is seen,
3409  *      performs disk spin up, read_capacity, etc.
3410  *      @disk: struct gendisk we care about
3411  **/
3412 static int sd_revalidate_disk(struct gendisk *disk)
3413 {
3414         struct scsi_disk *sdkp = scsi_disk(disk);
3415         struct scsi_device *sdp = sdkp->device;
3416         struct request_queue *q = sdkp->disk->queue;
3417         sector_t old_capacity = sdkp->capacity;
3418         unsigned char *buffer;
3419         unsigned int dev_max, rw_max;
3420
3421         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3422                                       "sd_revalidate_disk\n"));
3423
3424         /*
3425          * If the device is offline, don't try and read capacity or any
3426          * of the other niceties.
3427          */
3428         if (!scsi_device_online(sdp))
3429                 goto out;
3430
3431         buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3432         if (!buffer) {
3433                 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3434                           "allocation failure.\n");
3435                 goto out;
3436         }
3437
3438         sd_spinup_disk(sdkp);
3439
3440         /*
3441          * Without media there is no reason to ask; moreover, some devices
3442          * react badly if we do.
3443          */
3444         if (sdkp->media_present) {
3445                 sd_read_capacity(sdkp, buffer);
3446
3447                 /*
3448                  * set the default to rotational.  All non-rotational devices
3449                  * support the block characteristics VPD page, which will
3450                  * cause this to be updated correctly and any device which
3451                  * doesn't support it should be treated as rotational.
3452                  */
3453                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3454                 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3455
3456                 if (scsi_device_supports_vpd(sdp)) {
3457                         sd_read_block_provisioning(sdkp);
3458                         sd_read_block_limits(sdkp);
3459                         sd_read_block_characteristics(sdkp);
3460                         sd_zbc_read_zones(sdkp, buffer);
3461                         sd_read_cpr(sdkp);
3462                 }
3463
3464                 sd_print_capacity(sdkp, old_capacity);
3465
3466                 sd_read_write_protect_flag(sdkp, buffer);
3467                 sd_read_cache_type(sdkp, buffer);
3468                 sd_read_app_tag_own(sdkp, buffer);
3469                 sd_read_write_same(sdkp, buffer);
3470                 sd_read_security(sdkp, buffer);
3471                 sd_config_protection(sdkp);
3472         }
3473
3474         /*
3475          * We now have all cache related info, determine how we deal
3476          * with flush requests.
3477          */
3478         sd_set_flush_flag(sdkp);
3479
3480         /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3481         dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3482
3483         /* Some devices report a maximum block count for READ/WRITE requests. */
3484         dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3485         q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3486
3487         if (sd_validate_min_xfer_size(sdkp))
3488                 blk_queue_io_min(sdkp->disk->queue,
3489                                  logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3490         else
3491                 blk_queue_io_min(sdkp->disk->queue, 0);
3492
3493         if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3494                 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3495                 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3496         } else {
3497                 q->limits.io_opt = 0;
3498                 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3499                                       (sector_t)BLK_DEF_MAX_SECTORS);
3500         }
3501
3502         /*
3503          * Limit default to SCSI host optimal sector limit if set. There may be
3504          * an impact on performance for when the size of a request exceeds this
3505          * host limit.
3506          */
3507         rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3508
3509         /* Do not exceed controller limit */
3510         rw_max = min(rw_max, queue_max_hw_sectors(q));
3511
3512         /*
3513          * Only update max_sectors if previously unset or if the current value
3514          * exceeds the capabilities of the hardware.
3515          */
3516         if (sdkp->first_scan ||
3517             q->limits.max_sectors > q->limits.max_dev_sectors ||
3518             q->limits.max_sectors > q->limits.max_hw_sectors)
3519                 q->limits.max_sectors = rw_max;
3520
3521         sdkp->first_scan = 0;
3522
3523         set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3524         sd_config_write_same(sdkp);
3525         kfree(buffer);
3526
3527         /*
3528          * For a zoned drive, revalidating the zones can be done only once
3529          * the gendisk capacity is set. So if this fails, set back the gendisk
3530          * capacity to 0.
3531          */
3532         if (sd_zbc_revalidate_zones(sdkp))
3533                 set_capacity_and_notify(disk, 0);
3534
3535  out:
3536         return 0;
3537 }
3538
3539 /**
3540  *      sd_unlock_native_capacity - unlock native capacity
3541  *      @disk: struct gendisk to set capacity for
3542  *
3543  *      Block layer calls this function if it detects that partitions
3544  *      on @disk reach beyond the end of the device.  If the SCSI host
3545  *      implements ->unlock_native_capacity() method, it's invoked to
3546  *      give it a chance to adjust the device capacity.
3547  *
3548  *      CONTEXT:
3549  *      Defined by block layer.  Might sleep.
3550  */
3551 static void sd_unlock_native_capacity(struct gendisk *disk)
3552 {
3553         struct scsi_device *sdev = scsi_disk(disk)->device;
3554
3555         if (sdev->host->hostt->unlock_native_capacity)
3556                 sdev->host->hostt->unlock_native_capacity(sdev);
3557 }
3558
3559 /**
3560  *      sd_format_disk_name - format disk name
3561  *      @prefix: name prefix - ie. "sd" for SCSI disks
3562  *      @index: index of the disk to format name for
3563  *      @buf: output buffer
3564  *      @buflen: length of the output buffer
3565  *
3566  *      SCSI disk names starts at sda.  The 26th device is sdz and the
3567  *      27th is sdaa.  The last one for two lettered suffix is sdzz
3568  *      which is followed by sdaaa.
3569  *
3570  *      This is basically 26 base counting with one extra 'nil' entry
3571  *      at the beginning from the second digit on and can be
3572  *      determined using similar method as 26 base conversion with the
3573  *      index shifted -1 after each digit is computed.
3574  *
3575  *      CONTEXT:
3576  *      Don't care.
3577  *
3578  *      RETURNS:
3579  *      0 on success, -errno on failure.
3580  */
3581 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3582 {
3583         const int base = 'z' - 'a' + 1;
3584         char *begin = buf + strlen(prefix);
3585         char *end = buf + buflen;
3586         char *p;
3587         int unit;
3588
3589         p = end - 1;
3590         *p = '\0';
3591         unit = base;
3592         do {
3593                 if (p == begin)
3594                         return -EINVAL;
3595                 *--p = 'a' + (index % unit);
3596                 index = (index / unit) - 1;
3597         } while (index >= 0);
3598
3599         memmove(begin, p, end - p);
3600         memcpy(buf, prefix, strlen(prefix));
3601
3602         return 0;
3603 }
3604
3605 /**
3606  *      sd_probe - called during driver initialization and whenever a
3607  *      new scsi device is attached to the system. It is called once
3608  *      for each scsi device (not just disks) present.
3609  *      @dev: pointer to device object
3610  *
3611  *      Returns 0 if successful (or not interested in this scsi device 
3612  *      (e.g. scanner)); 1 when there is an error.
3613  *
3614  *      Note: this function is invoked from the scsi mid-level.
3615  *      This function sets up the mapping between a given 
3616  *      <host,channel,id,lun> (found in sdp) and new device name 
3617  *      (e.g. /dev/sda). More precisely it is the block device major 
3618  *      and minor number that is chosen here.
3619  *
3620  *      Assume sd_probe is not re-entrant (for time being)
3621  *      Also think about sd_probe() and sd_remove() running coincidentally.
3622  **/
3623 static int sd_probe(struct device *dev)
3624 {
3625         struct scsi_device *sdp = to_scsi_device(dev);
3626         struct scsi_disk *sdkp;
3627         struct gendisk *gd;
3628         int index;
3629         int error;
3630
3631         scsi_autopm_get_device(sdp);
3632         error = -ENODEV;
3633         if (sdp->type != TYPE_DISK &&
3634             sdp->type != TYPE_ZBC &&
3635             sdp->type != TYPE_MOD &&
3636             sdp->type != TYPE_RBC)
3637                 goto out;
3638
3639         if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3640                 sdev_printk(KERN_WARNING, sdp,
3641                             "Unsupported ZBC host-managed device.\n");
3642                 goto out;
3643         }
3644
3645         SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3646                                         "sd_probe\n"));
3647
3648         error = -ENOMEM;
3649         sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3650         if (!sdkp)
3651                 goto out;
3652
3653         gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3654                                          &sd_bio_compl_lkclass);
3655         if (!gd)
3656                 goto out_free;
3657
3658         index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3659         if (index < 0) {
3660                 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3661                 goto out_put;
3662         }
3663
3664         error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3665         if (error) {
3666                 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3667                 goto out_free_index;
3668         }
3669
3670         sdkp->device = sdp;
3671         sdkp->disk = gd;
3672         sdkp->index = index;
3673         sdkp->max_retries = SD_MAX_RETRIES;
3674         atomic_set(&sdkp->openers, 0);
3675         atomic_set(&sdkp->device->ioerr_cnt, 0);
3676
3677         if (!sdp->request_queue->rq_timeout) {
3678                 if (sdp->type != TYPE_MOD)
3679                         blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3680                 else
3681                         blk_queue_rq_timeout(sdp->request_queue,
3682                                              SD_MOD_TIMEOUT);
3683         }
3684
3685         device_initialize(&sdkp->disk_dev);
3686         sdkp->disk_dev.parent = get_device(dev);
3687         sdkp->disk_dev.class = &sd_disk_class;
3688         dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3689
3690         error = device_add(&sdkp->disk_dev);
3691         if (error) {
3692                 put_device(&sdkp->disk_dev);
3693                 goto out;
3694         }
3695
3696         dev_set_drvdata(dev, sdkp);
3697
3698         gd->major = sd_major((index & 0xf0) >> 4);
3699         gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3700         gd->minors = SD_MINORS;
3701
3702         gd->fops = &sd_fops;
3703         gd->private_data = sdkp;
3704
3705         /* defaults, until the device tells us otherwise */
3706         sdp->sector_size = 512;
3707         sdkp->capacity = 0;
3708         sdkp->media_present = 1;
3709         sdkp->write_prot = 0;
3710         sdkp->cache_override = 0;
3711         sdkp->WCE = 0;
3712         sdkp->RCD = 0;
3713         sdkp->ATO = 0;
3714         sdkp->first_scan = 1;
3715         sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3716
3717         sd_revalidate_disk(gd);
3718
3719         if (sdp->removable) {
3720                 gd->flags |= GENHD_FL_REMOVABLE;
3721                 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3722                 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3723         }
3724
3725         blk_pm_runtime_init(sdp->request_queue, dev);
3726         if (sdp->rpm_autosuspend) {
3727                 pm_runtime_set_autosuspend_delay(dev,
3728                         sdp->host->hostt->rpm_autosuspend_delay);
3729         }
3730
3731         error = device_add_disk(dev, gd, NULL);
3732         if (error) {
3733                 put_device(&sdkp->disk_dev);
3734                 put_disk(gd);
3735                 goto out;
3736         }
3737
3738         if (sdkp->security) {
3739                 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3740                 if (sdkp->opal_dev)
3741                         sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3742         }
3743
3744         sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3745                   sdp->removable ? "removable " : "");
3746         scsi_autopm_put_device(sdp);
3747
3748         return 0;
3749
3750  out_free_index:
3751         ida_free(&sd_index_ida, index);
3752  out_put:
3753         put_disk(gd);
3754  out_free:
3755         kfree(sdkp);
3756  out:
3757         scsi_autopm_put_device(sdp);
3758         return error;
3759 }
3760
3761 /**
3762  *      sd_remove - called whenever a scsi disk (previously recognized by
3763  *      sd_probe) is detached from the system. It is called (potentially
3764  *      multiple times) during sd module unload.
3765  *      @dev: pointer to device object
3766  *
3767  *      Note: this function is invoked from the scsi mid-level.
3768  *      This function potentially frees up a device name (e.g. /dev/sdc)
3769  *      that could be re-used by a subsequent sd_probe().
3770  *      This function is not called when the built-in sd driver is "exit-ed".
3771  **/
3772 static int sd_remove(struct device *dev)
3773 {
3774         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3775
3776         scsi_autopm_get_device(sdkp->device);
3777
3778         device_del(&sdkp->disk_dev);
3779         del_gendisk(sdkp->disk);
3780         if (!sdkp->suspended)
3781                 sd_shutdown(dev);
3782
3783         put_disk(sdkp->disk);
3784         return 0;
3785 }
3786
3787 static void scsi_disk_release(struct device *dev)
3788 {
3789         struct scsi_disk *sdkp = to_scsi_disk(dev);
3790
3791         ida_free(&sd_index_ida, sdkp->index);
3792         sd_zbc_free_zone_info(sdkp);
3793         put_device(&sdkp->device->sdev_gendev);
3794         free_opal_dev(sdkp->opal_dev);
3795
3796         kfree(sdkp);
3797 }
3798
3799 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3800 {
3801         unsigned char cmd[6] = { START_STOP };  /* START_VALID */
3802         struct scsi_sense_hdr sshdr;
3803         const struct scsi_exec_args exec_args = {
3804                 .sshdr = &sshdr,
3805                 .req_flags = BLK_MQ_REQ_PM,
3806         };
3807         struct scsi_device *sdp = sdkp->device;
3808         int res;
3809
3810         if (start)
3811                 cmd[4] |= 1;    /* START */
3812
3813         if (sdp->start_stop_pwr_cond)
3814                 cmd[4] |= start ? 1 << 4 : 3 << 4;      /* Active or Standby */
3815
3816         if (!scsi_device_online(sdp))
3817                 return -ENODEV;
3818
3819         res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
3820                                sdkp->max_retries, &exec_args);
3821         if (res) {
3822                 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3823                 if (res > 0 && scsi_sense_valid(&sshdr)) {
3824                         sd_print_sense_hdr(sdkp, &sshdr);
3825                         /* 0x3a is medium not present */
3826                         if (sshdr.asc == 0x3a)
3827                                 res = 0;
3828                 }
3829         }
3830
3831         /* SCSI error codes must not go to the generic layer */
3832         if (res)
3833                 return -EIO;
3834
3835         return 0;
3836 }
3837
3838 /*
3839  * Send a SYNCHRONIZE CACHE instruction down to the device through
3840  * the normal SCSI command structure.  Wait for the command to
3841  * complete.
3842  */
3843 static void sd_shutdown(struct device *dev)
3844 {
3845         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3846
3847         if (!sdkp)
3848                 return;         /* this can happen */
3849
3850         if (pm_runtime_suspended(dev))
3851                 return;
3852
3853         if (sdkp->WCE && sdkp->media_present) {
3854                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3855                 sd_sync_cache(sdkp);
3856         }
3857
3858         if ((system_state != SYSTEM_RESTART &&
3859              sdkp->device->manage_system_start_stop) ||
3860             (system_state == SYSTEM_POWER_OFF &&
3861              sdkp->device->manage_shutdown)) {
3862                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3863                 sd_start_stop_device(sdkp, 0);
3864         }
3865 }
3866
3867 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
3868 {
3869         return (sdev->manage_system_start_stop && !runtime) ||
3870                 (sdev->manage_runtime_start_stop && runtime);
3871 }
3872
3873 static int sd_suspend_common(struct device *dev, bool runtime)
3874 {
3875         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3876         int ret = 0;
3877
3878         if (!sdkp)      /* E.g.: runtime suspend following sd_remove() */
3879                 return 0;
3880
3881         if (sdkp->WCE && sdkp->media_present) {
3882                 if (!sdkp->device->silence_suspend)
3883                         sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3884                 ret = sd_sync_cache(sdkp);
3885                 /* ignore OFFLINE device */
3886                 if (ret == -ENODEV)
3887                         return 0;
3888
3889                 if (ret)
3890                         return ret;
3891         }
3892
3893         if (sd_do_start_stop(sdkp->device, runtime)) {
3894                 if (!sdkp->device->silence_suspend)
3895                         sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3896                 /* an error is not worth aborting a system sleep */
3897                 ret = sd_start_stop_device(sdkp, 0);
3898                 if (!runtime)
3899                         ret = 0;
3900         }
3901
3902         if (!ret)
3903                 sdkp->suspended = true;
3904
3905         return ret;
3906 }
3907
3908 static int sd_suspend_system(struct device *dev)
3909 {
3910         if (pm_runtime_suspended(dev))
3911                 return 0;
3912
3913         return sd_suspend_common(dev, false);
3914 }
3915
3916 static int sd_suspend_runtime(struct device *dev)
3917 {
3918         return sd_suspend_common(dev, true);
3919 }
3920
3921 static int sd_resume(struct device *dev, bool runtime)
3922 {
3923         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3924         int ret = 0;
3925
3926         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3927                 return 0;
3928
3929         if (!sd_do_start_stop(sdkp->device, runtime)) {
3930                 sdkp->suspended = false;
3931                 return 0;
3932         }
3933
3934         if (!sdkp->device->no_start_on_resume) {
3935                 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3936                 ret = sd_start_stop_device(sdkp, 1);
3937         }
3938
3939         if (!ret) {
3940                 opal_unlock_from_suspend(sdkp->opal_dev);
3941                 sdkp->suspended = false;
3942         }
3943
3944         return ret;
3945 }
3946
3947 static int sd_resume_system(struct device *dev)
3948 {
3949         if (pm_runtime_suspended(dev)) {
3950                 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3951                 struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
3952
3953                 if (sdp && sdp->force_runtime_start_on_system_start)
3954                         pm_request_resume(dev);
3955
3956                 return 0;
3957         }
3958
3959         return sd_resume(dev, false);
3960 }
3961
3962 static int sd_resume_runtime(struct device *dev)
3963 {
3964         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3965         struct scsi_device *sdp;
3966
3967         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3968                 return 0;
3969
3970         sdp = sdkp->device;
3971
3972         if (sdp->ignore_media_change) {
3973                 /* clear the device's sense data */
3974                 static const u8 cmd[10] = { REQUEST_SENSE };
3975                 const struct scsi_exec_args exec_args = {
3976                         .req_flags = BLK_MQ_REQ_PM,
3977                 };
3978
3979                 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
3980                                      sdp->request_queue->rq_timeout, 1,
3981                                      &exec_args))
3982                         sd_printk(KERN_NOTICE, sdkp,
3983                                   "Failed to clear sense data\n");
3984         }
3985
3986         return sd_resume(dev, true);
3987 }
3988
3989 static const struct dev_pm_ops sd_pm_ops = {
3990         .suspend                = sd_suspend_system,
3991         .resume                 = sd_resume_system,
3992         .poweroff               = sd_suspend_system,
3993         .restore                = sd_resume_system,
3994         .runtime_suspend        = sd_suspend_runtime,
3995         .runtime_resume         = sd_resume_runtime,
3996 };
3997
3998 static struct scsi_driver sd_template = {
3999         .gendrv = {
4000                 .name           = "sd",
4001                 .owner          = THIS_MODULE,
4002                 .probe          = sd_probe,
4003                 .probe_type     = PROBE_PREFER_ASYNCHRONOUS,
4004                 .remove         = sd_remove,
4005                 .shutdown       = sd_shutdown,
4006                 .pm             = &sd_pm_ops,
4007         },
4008         .rescan                 = sd_rescan,
4009         .init_command           = sd_init_command,
4010         .uninit_command         = sd_uninit_command,
4011         .done                   = sd_done,
4012         .eh_action              = sd_eh_action,
4013         .eh_reset               = sd_eh_reset,
4014 };
4015
4016 /**
4017  *      init_sd - entry point for this driver (both when built in or when
4018  *      a module).
4019  *
4020  *      Note: this function registers this driver with the scsi mid-level.
4021  **/
4022 static int __init init_sd(void)
4023 {
4024         int majors = 0, i, err;
4025
4026         SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4027
4028         for (i = 0; i < SD_MAJORS; i++) {
4029                 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4030                         continue;
4031                 majors++;
4032         }
4033
4034         if (!majors)
4035                 return -ENODEV;
4036
4037         err = class_register(&sd_disk_class);
4038         if (err)
4039                 goto err_out;
4040
4041         sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4042         if (!sd_page_pool) {
4043                 printk(KERN_ERR "sd: can't init discard page pool\n");
4044                 err = -ENOMEM;
4045                 goto err_out_class;
4046         }
4047
4048         err = scsi_register_driver(&sd_template.gendrv);
4049         if (err)
4050                 goto err_out_driver;
4051
4052         return 0;
4053
4054 err_out_driver:
4055         mempool_destroy(sd_page_pool);
4056 err_out_class:
4057         class_unregister(&sd_disk_class);
4058 err_out:
4059         for (i = 0; i < SD_MAJORS; i++)
4060                 unregister_blkdev(sd_major(i), "sd");
4061         return err;
4062 }
4063
4064 /**
4065  *      exit_sd - exit point for this driver (when it is a module).
4066  *
4067  *      Note: this function unregisters this driver from the scsi mid-level.
4068  **/
4069 static void __exit exit_sd(void)
4070 {
4071         int i;
4072
4073         SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4074
4075         scsi_unregister_driver(&sd_template.gendrv);
4076         mempool_destroy(sd_page_pool);
4077
4078         class_unregister(&sd_disk_class);
4079
4080         for (i = 0; i < SD_MAJORS; i++)
4081                 unregister_blkdev(sd_major(i), "sd");
4082 }
4083
4084 module_init(init_sd);
4085 module_exit(exit_sd);
4086
4087 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4088 {
4089         scsi_print_sense_hdr(sdkp->device,
4090                              sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4091 }
4092
4093 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4094 {
4095         const char *hb_string = scsi_hostbyte_string(result);
4096
4097         if (hb_string)
4098                 sd_printk(KERN_INFO, sdkp,
4099                           "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4100                           hb_string ? hb_string : "invalid",
4101                           "DRIVER_OK");
4102         else
4103                 sd_printk(KERN_INFO, sdkp,
4104                           "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4105                           msg, host_byte(result), "DRIVER_OK");
4106 }