1 // SPDX-License-Identifier: GPL-2.0-only
3 * sd.c Copyright (C) 1992 Drew Eckhardt
4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
6 * Linux scsi disk driver
7 * Initial versions: Drew Eckhardt
8 * Subsequent revisions: Eric Youngdale
9 * Modification history:
10 * - Drew Eckhardt <drew@colorado.edu> original
11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12 * outstanding request, and other enhancements.
13 * Support loadable low-level scsi drivers.
14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15 * eight major numbers.
16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18 * sd_init and cleanups.
19 * - Alex Davis <letmein@erols.com> Fix problem where partition info
20 * not being read in sd_open. Fix problem where removable media
21 * could be ejected after sd_open.
22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25 * Support 32k/1M disks.
27 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31 * - entering other commands: SCSI_LOG_HLQUEUE level 3
32 * Note: when the logging level is set by the user, it must be greater
33 * than the level indicated above to trigger output.
36 #include <linux/module.h>
38 #include <linux/kernel.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/async.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_driver.h>
67 #include <scsi/scsi_eh.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_ioctl.h>
70 #include <scsi/scsicam.h>
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
103 static void sd_config_discard(struct scsi_disk *, unsigned int);
104 static void sd_config_write_same(struct scsi_disk *);
105 static int sd_revalidate_disk(struct gendisk *);
106 static void sd_unlock_native_capacity(struct gendisk *disk);
107 static int sd_probe(struct device *);
108 static int sd_remove(struct device *);
109 static void sd_shutdown(struct device *);
110 static int sd_suspend_system(struct device *);
111 static int sd_suspend_runtime(struct device *);
112 static int sd_resume(struct device *);
113 static int sd_resume_runtime(struct device *);
114 static void sd_rescan(struct device *);
115 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
116 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
117 static int sd_done(struct scsi_cmnd *);
118 static void sd_eh_reset(struct scsi_cmnd *);
119 static int sd_eh_action(struct scsi_cmnd *, int);
120 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
121 static void scsi_disk_release(struct device *cdev);
123 static DEFINE_IDA(sd_index_ida);
125 /* This semaphore is used to mediate the 0->1 reference get in the
126 * face of object destruction (i.e. we can't allow a get on an
127 * object after last put) */
128 static DEFINE_MUTEX(sd_ref_mutex);
130 static struct kmem_cache *sd_cdb_cache;
131 static mempool_t *sd_cdb_pool;
132 static mempool_t *sd_page_pool;
133 static struct lock_class_key sd_bio_compl_lkclass;
135 static const char *sd_cache_types[] = {
136 "write through", "none", "write back",
137 "write back, no read (daft)"
140 static void sd_set_flush_flag(struct scsi_disk *sdkp)
142 bool wc = false, fua = false;
150 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
154 cache_type_store(struct device *dev, struct device_attribute *attr,
155 const char *buf, size_t count)
157 int ct, rcd, wce, sp;
158 struct scsi_disk *sdkp = to_scsi_disk(dev);
159 struct scsi_device *sdp = sdkp->device;
162 struct scsi_mode_data data;
163 struct scsi_sense_hdr sshdr;
164 static const char temp[] = "temporary ";
167 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
168 /* no cache control on RBC devices; theoretically they
169 * can do it, but there's probably so many exceptions
170 * it's not worth the risk */
173 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
174 buf += sizeof(temp) - 1;
175 sdkp->cache_override = 1;
177 sdkp->cache_override = 0;
180 ct = sysfs_match_string(sd_cache_types, buf);
184 rcd = ct & 0x01 ? 1 : 0;
185 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
187 if (sdkp->cache_override) {
190 sd_set_flush_flag(sdkp);
194 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
195 sdkp->max_retries, &data, NULL))
197 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
198 data.block_descriptor_length);
199 buffer_data = buffer + data.header_length +
200 data.block_descriptor_length;
201 buffer_data[2] &= ~0x05;
202 buffer_data[2] |= wce << 2 | rcd;
203 sp = buffer_data[0] & 0x80 ? 1 : 0;
204 buffer_data[0] &= ~0x80;
207 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
208 * received mode parameter buffer before doing MODE SELECT.
210 data.device_specific = 0;
212 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
213 sdkp->max_retries, &data, &sshdr)) {
214 if (scsi_sense_valid(&sshdr))
215 sd_print_sense_hdr(sdkp, &sshdr);
218 sd_revalidate_disk(sdkp->disk);
223 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
226 struct scsi_disk *sdkp = to_scsi_disk(dev);
227 struct scsi_device *sdp = sdkp->device;
229 return sprintf(buf, "%u\n", sdp->manage_start_stop);
233 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
234 const char *buf, size_t count)
236 struct scsi_disk *sdkp = to_scsi_disk(dev);
237 struct scsi_device *sdp = sdkp->device;
240 if (!capable(CAP_SYS_ADMIN))
243 if (kstrtobool(buf, &v))
246 sdp->manage_start_stop = v;
250 static DEVICE_ATTR_RW(manage_start_stop);
253 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
255 struct scsi_disk *sdkp = to_scsi_disk(dev);
257 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
261 allow_restart_store(struct device *dev, struct device_attribute *attr,
262 const char *buf, size_t count)
265 struct scsi_disk *sdkp = to_scsi_disk(dev);
266 struct scsi_device *sdp = sdkp->device;
268 if (!capable(CAP_SYS_ADMIN))
271 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
274 if (kstrtobool(buf, &v))
277 sdp->allow_restart = v;
281 static DEVICE_ATTR_RW(allow_restart);
284 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
286 struct scsi_disk *sdkp = to_scsi_disk(dev);
287 int ct = sdkp->RCD + 2*sdkp->WCE;
289 return sprintf(buf, "%s\n", sd_cache_types[ct]);
291 static DEVICE_ATTR_RW(cache_type);
294 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
296 struct scsi_disk *sdkp = to_scsi_disk(dev);
298 return sprintf(buf, "%u\n", sdkp->DPOFUA);
300 static DEVICE_ATTR_RO(FUA);
303 protection_type_show(struct device *dev, struct device_attribute *attr,
306 struct scsi_disk *sdkp = to_scsi_disk(dev);
308 return sprintf(buf, "%u\n", sdkp->protection_type);
312 protection_type_store(struct device *dev, struct device_attribute *attr,
313 const char *buf, size_t count)
315 struct scsi_disk *sdkp = to_scsi_disk(dev);
319 if (!capable(CAP_SYS_ADMIN))
322 err = kstrtouint(buf, 10, &val);
327 if (val <= T10_PI_TYPE3_PROTECTION)
328 sdkp->protection_type = val;
332 static DEVICE_ATTR_RW(protection_type);
335 protection_mode_show(struct device *dev, struct device_attribute *attr,
338 struct scsi_disk *sdkp = to_scsi_disk(dev);
339 struct scsi_device *sdp = sdkp->device;
340 unsigned int dif, dix;
342 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
343 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
345 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
351 return sprintf(buf, "none\n");
353 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
355 static DEVICE_ATTR_RO(protection_mode);
358 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
360 struct scsi_disk *sdkp = to_scsi_disk(dev);
362 return sprintf(buf, "%u\n", sdkp->ATO);
364 static DEVICE_ATTR_RO(app_tag_own);
367 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
370 struct scsi_disk *sdkp = to_scsi_disk(dev);
372 return sprintf(buf, "%u\n", sdkp->lbpme);
374 static DEVICE_ATTR_RO(thin_provisioning);
376 /* sysfs_match_string() requires dense arrays */
377 static const char *lbp_mode[] = {
378 [SD_LBP_FULL] = "full",
379 [SD_LBP_UNMAP] = "unmap",
380 [SD_LBP_WS16] = "writesame_16",
381 [SD_LBP_WS10] = "writesame_10",
382 [SD_LBP_ZERO] = "writesame_zero",
383 [SD_LBP_DISABLE] = "disabled",
387 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
390 struct scsi_disk *sdkp = to_scsi_disk(dev);
392 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
396 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
397 const char *buf, size_t count)
399 struct scsi_disk *sdkp = to_scsi_disk(dev);
400 struct scsi_device *sdp = sdkp->device;
403 if (!capable(CAP_SYS_ADMIN))
406 if (sd_is_zoned(sdkp)) {
407 sd_config_discard(sdkp, SD_LBP_DISABLE);
411 if (sdp->type != TYPE_DISK)
414 mode = sysfs_match_string(lbp_mode, buf);
418 sd_config_discard(sdkp, mode);
422 static DEVICE_ATTR_RW(provisioning_mode);
424 /* sysfs_match_string() requires dense arrays */
425 static const char *zeroing_mode[] = {
426 [SD_ZERO_WRITE] = "write",
427 [SD_ZERO_WS] = "writesame",
428 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
429 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
433 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
436 struct scsi_disk *sdkp = to_scsi_disk(dev);
438 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
442 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
443 const char *buf, size_t count)
445 struct scsi_disk *sdkp = to_scsi_disk(dev);
448 if (!capable(CAP_SYS_ADMIN))
451 mode = sysfs_match_string(zeroing_mode, buf);
455 sdkp->zeroing_mode = mode;
459 static DEVICE_ATTR_RW(zeroing_mode);
462 max_medium_access_timeouts_show(struct device *dev,
463 struct device_attribute *attr, char *buf)
465 struct scsi_disk *sdkp = to_scsi_disk(dev);
467 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
471 max_medium_access_timeouts_store(struct device *dev,
472 struct device_attribute *attr, const char *buf,
475 struct scsi_disk *sdkp = to_scsi_disk(dev);
478 if (!capable(CAP_SYS_ADMIN))
481 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
483 return err ? err : count;
485 static DEVICE_ATTR_RW(max_medium_access_timeouts);
488 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
491 struct scsi_disk *sdkp = to_scsi_disk(dev);
493 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
497 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
498 const char *buf, size_t count)
500 struct scsi_disk *sdkp = to_scsi_disk(dev);
501 struct scsi_device *sdp = sdkp->device;
505 if (!capable(CAP_SYS_ADMIN))
508 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
511 err = kstrtoul(buf, 10, &max);
517 sdp->no_write_same = 1;
518 else if (max <= SD_MAX_WS16_BLOCKS) {
519 sdp->no_write_same = 0;
520 sdkp->max_ws_blocks = max;
523 sd_config_write_same(sdkp);
527 static DEVICE_ATTR_RW(max_write_same_blocks);
530 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
532 struct scsi_disk *sdkp = to_scsi_disk(dev);
534 if (sdkp->device->type == TYPE_ZBC)
535 return sprintf(buf, "host-managed\n");
536 if (sdkp->zoned == 1)
537 return sprintf(buf, "host-aware\n");
538 if (sdkp->zoned == 2)
539 return sprintf(buf, "drive-managed\n");
540 return sprintf(buf, "none\n");
542 static DEVICE_ATTR_RO(zoned_cap);
545 max_retries_store(struct device *dev, struct device_attribute *attr,
546 const char *buf, size_t count)
548 struct scsi_disk *sdkp = to_scsi_disk(dev);
549 struct scsi_device *sdev = sdkp->device;
552 err = kstrtoint(buf, 10, &retries);
556 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
557 sdkp->max_retries = retries;
561 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
567 max_retries_show(struct device *dev, struct device_attribute *attr,
570 struct scsi_disk *sdkp = to_scsi_disk(dev);
572 return sprintf(buf, "%d\n", sdkp->max_retries);
575 static DEVICE_ATTR_RW(max_retries);
577 static struct attribute *sd_disk_attrs[] = {
578 &dev_attr_cache_type.attr,
580 &dev_attr_allow_restart.attr,
581 &dev_attr_manage_start_stop.attr,
582 &dev_attr_protection_type.attr,
583 &dev_attr_protection_mode.attr,
584 &dev_attr_app_tag_own.attr,
585 &dev_attr_thin_provisioning.attr,
586 &dev_attr_provisioning_mode.attr,
587 &dev_attr_zeroing_mode.attr,
588 &dev_attr_max_write_same_blocks.attr,
589 &dev_attr_max_medium_access_timeouts.attr,
590 &dev_attr_zoned_cap.attr,
591 &dev_attr_max_retries.attr,
594 ATTRIBUTE_GROUPS(sd_disk);
596 static struct class sd_disk_class = {
598 .owner = THIS_MODULE,
599 .dev_release = scsi_disk_release,
600 .dev_groups = sd_disk_groups,
603 static const struct dev_pm_ops sd_pm_ops = {
604 .suspend = sd_suspend_system,
606 .poweroff = sd_suspend_system,
607 .restore = sd_resume,
608 .runtime_suspend = sd_suspend_runtime,
609 .runtime_resume = sd_resume_runtime,
612 static struct scsi_driver sd_template = {
615 .owner = THIS_MODULE,
617 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
619 .shutdown = sd_shutdown,
623 .init_command = sd_init_command,
624 .uninit_command = sd_uninit_command,
626 .eh_action = sd_eh_action,
627 .eh_reset = sd_eh_reset,
631 * Don't request a new module, as that could deadlock in multipath
634 static void sd_default_probe(dev_t devt)
639 * Device no to disk mapping:
641 * major disc2 disc p1
642 * |............|.............|....|....| <- dev_t
645 * Inside a major, we have 16k disks, however mapped non-
646 * contiguously. The first 16 disks are for major0, the next
647 * ones with major1, ... Disk 256 is for major0 again, disk 272
649 * As we stay compatible with our numbering scheme, we can reuse
650 * the well-know SCSI majors 8, 65--71, 136--143.
652 static int sd_major(int major_idx)
656 return SCSI_DISK0_MAJOR;
658 return SCSI_DISK1_MAJOR + major_idx - 1;
660 return SCSI_DISK8_MAJOR + major_idx - 8;
663 return 0; /* shut up gcc */
667 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
669 struct scsi_disk *sdkp = NULL;
671 mutex_lock(&sd_ref_mutex);
673 if (disk->private_data) {
674 sdkp = scsi_disk(disk);
675 if (scsi_device_get(sdkp->device) == 0)
676 get_device(&sdkp->dev);
680 mutex_unlock(&sd_ref_mutex);
684 static void scsi_disk_put(struct scsi_disk *sdkp)
686 struct scsi_device *sdev = sdkp->device;
688 mutex_lock(&sd_ref_mutex);
689 put_device(&sdkp->dev);
690 scsi_device_put(sdev);
691 mutex_unlock(&sd_ref_mutex);
694 #ifdef CONFIG_BLK_SED_OPAL
695 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
696 size_t len, bool send)
698 struct scsi_disk *sdkp = data;
699 struct scsi_device *sdev = sdkp->device;
703 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
705 put_unaligned_be16(spsp, &cdb[2]);
706 put_unaligned_be32(len, &cdb[6]);
708 ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
709 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0,
711 return ret <= 0 ? ret : -EIO;
713 #endif /* CONFIG_BLK_SED_OPAL */
716 * Look up the DIX operation based on whether the command is read or
717 * write and whether dix and dif are enabled.
719 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
721 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
722 static const unsigned int ops[] = { /* wrt dix dif */
723 SCSI_PROT_NORMAL, /* 0 0 0 */
724 SCSI_PROT_READ_STRIP, /* 0 0 1 */
725 SCSI_PROT_READ_INSERT, /* 0 1 0 */
726 SCSI_PROT_READ_PASS, /* 0 1 1 */
727 SCSI_PROT_NORMAL, /* 1 0 0 */
728 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */
729 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */
730 SCSI_PROT_WRITE_PASS, /* 1 1 1 */
733 return ops[write << 2 | dix << 1 | dif];
737 * Returns a mask of the protection flags that are valid for a given DIX
740 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
742 static const unsigned int flag_mask[] = {
743 [SCSI_PROT_NORMAL] = 0,
745 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI |
746 SCSI_PROT_GUARD_CHECK |
747 SCSI_PROT_REF_CHECK |
748 SCSI_PROT_REF_INCREMENT,
750 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT |
751 SCSI_PROT_IP_CHECKSUM,
753 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI |
754 SCSI_PROT_GUARD_CHECK |
755 SCSI_PROT_REF_CHECK |
756 SCSI_PROT_REF_INCREMENT |
757 SCSI_PROT_IP_CHECKSUM,
759 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI |
760 SCSI_PROT_REF_INCREMENT,
762 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK |
763 SCSI_PROT_REF_CHECK |
764 SCSI_PROT_REF_INCREMENT |
765 SCSI_PROT_IP_CHECKSUM,
767 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI |
768 SCSI_PROT_GUARD_CHECK |
769 SCSI_PROT_REF_CHECK |
770 SCSI_PROT_REF_INCREMENT |
771 SCSI_PROT_IP_CHECKSUM,
774 return flag_mask[prot_op];
777 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
778 unsigned int dix, unsigned int dif)
780 struct request *rq = scsi_cmd_to_rq(scmd);
781 struct bio *bio = rq->bio;
782 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
783 unsigned int protect = 0;
785 if (dix) { /* DIX Type 0, 1, 2, 3 */
786 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
787 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
789 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
790 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
793 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
794 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
796 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
797 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
800 if (dif) { /* DIX/DIF Type 1, 2, 3 */
801 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
803 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
804 protect = 3 << 5; /* Disable target PI checking */
806 protect = 1 << 5; /* Enable target PI checking */
809 scsi_set_prot_op(scmd, prot_op);
810 scsi_set_prot_type(scmd, dif);
811 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
816 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
818 struct request_queue *q = sdkp->disk->queue;
819 unsigned int logical_block_size = sdkp->device->sector_size;
820 unsigned int max_blocks = 0;
822 q->limits.discard_alignment =
823 sdkp->unmap_alignment * logical_block_size;
824 q->limits.discard_granularity =
825 max(sdkp->physical_block_size,
826 sdkp->unmap_granularity * logical_block_size);
827 sdkp->provisioning_mode = mode;
833 blk_queue_max_discard_sectors(q, 0);
834 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
838 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
839 (u32)SD_MAX_WS16_BLOCKS);
843 if (sdkp->device->unmap_limit_for_ws)
844 max_blocks = sdkp->max_unmap_blocks;
846 max_blocks = sdkp->max_ws_blocks;
848 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
852 if (sdkp->device->unmap_limit_for_ws)
853 max_blocks = sdkp->max_unmap_blocks;
855 max_blocks = sdkp->max_ws_blocks;
857 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
861 max_blocks = min_not_zero(sdkp->max_ws_blocks,
862 (u32)SD_MAX_WS10_BLOCKS);
866 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
867 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
870 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
872 struct scsi_device *sdp = cmd->device;
873 struct request *rq = scsi_cmd_to_rq(cmd);
874 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
875 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
876 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
877 unsigned int data_len = 24;
880 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
881 if (!rq->special_vec.bv_page)
882 return BLK_STS_RESOURCE;
883 clear_highpage(rq->special_vec.bv_page);
884 rq->special_vec.bv_offset = 0;
885 rq->special_vec.bv_len = data_len;
886 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
889 cmd->cmnd[0] = UNMAP;
892 buf = bvec_virt(&rq->special_vec);
893 put_unaligned_be16(6 + 16, &buf[0]);
894 put_unaligned_be16(16, &buf[2]);
895 put_unaligned_be64(lba, &buf[8]);
896 put_unaligned_be32(nr_blocks, &buf[16]);
898 cmd->allowed = sdkp->max_retries;
899 cmd->transfersize = data_len;
900 rq->timeout = SD_TIMEOUT;
902 return scsi_alloc_sgtables(cmd);
905 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
908 struct scsi_device *sdp = cmd->device;
909 struct request *rq = scsi_cmd_to_rq(cmd);
910 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
911 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
912 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
913 u32 data_len = sdp->sector_size;
915 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
916 if (!rq->special_vec.bv_page)
917 return BLK_STS_RESOURCE;
918 clear_highpage(rq->special_vec.bv_page);
919 rq->special_vec.bv_offset = 0;
920 rq->special_vec.bv_len = data_len;
921 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
924 cmd->cmnd[0] = WRITE_SAME_16;
926 cmd->cmnd[1] = 0x8; /* UNMAP */
927 put_unaligned_be64(lba, &cmd->cmnd[2]);
928 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
930 cmd->allowed = sdkp->max_retries;
931 cmd->transfersize = data_len;
932 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
934 return scsi_alloc_sgtables(cmd);
937 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
940 struct scsi_device *sdp = cmd->device;
941 struct request *rq = scsi_cmd_to_rq(cmd);
942 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
943 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
944 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
945 u32 data_len = sdp->sector_size;
947 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
948 if (!rq->special_vec.bv_page)
949 return BLK_STS_RESOURCE;
950 clear_highpage(rq->special_vec.bv_page);
951 rq->special_vec.bv_offset = 0;
952 rq->special_vec.bv_len = data_len;
953 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
956 cmd->cmnd[0] = WRITE_SAME;
958 cmd->cmnd[1] = 0x8; /* UNMAP */
959 put_unaligned_be32(lba, &cmd->cmnd[2]);
960 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
962 cmd->allowed = sdkp->max_retries;
963 cmd->transfersize = data_len;
964 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
966 return scsi_alloc_sgtables(cmd);
969 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
971 struct request *rq = scsi_cmd_to_rq(cmd);
972 struct scsi_device *sdp = cmd->device;
973 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
974 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
975 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
977 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
978 switch (sdkp->zeroing_mode) {
979 case SD_ZERO_WS16_UNMAP:
980 return sd_setup_write_same16_cmnd(cmd, true);
981 case SD_ZERO_WS10_UNMAP:
982 return sd_setup_write_same10_cmnd(cmd, true);
986 if (sdp->no_write_same) {
987 rq->rq_flags |= RQF_QUIET;
988 return BLK_STS_TARGET;
991 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
992 return sd_setup_write_same16_cmnd(cmd, false);
994 return sd_setup_write_same10_cmnd(cmd, false);
997 static void sd_config_write_same(struct scsi_disk *sdkp)
999 struct request_queue *q = sdkp->disk->queue;
1000 unsigned int logical_block_size = sdkp->device->sector_size;
1002 if (sdkp->device->no_write_same) {
1003 sdkp->max_ws_blocks = 0;
1007 /* Some devices can not handle block counts above 0xffff despite
1008 * supporting WRITE SAME(16). Consequently we default to 64k
1009 * blocks per I/O unless the device explicitly advertises a
1012 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1013 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1014 (u32)SD_MAX_WS16_BLOCKS);
1015 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1016 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1017 (u32)SD_MAX_WS10_BLOCKS);
1019 sdkp->device->no_write_same = 1;
1020 sdkp->max_ws_blocks = 0;
1023 if (sdkp->lbprz && sdkp->lbpws)
1024 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1025 else if (sdkp->lbprz && sdkp->lbpws10)
1026 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1027 else if (sdkp->max_ws_blocks)
1028 sdkp->zeroing_mode = SD_ZERO_WS;
1030 sdkp->zeroing_mode = SD_ZERO_WRITE;
1032 if (sdkp->max_ws_blocks &&
1033 sdkp->physical_block_size > logical_block_size) {
1035 * Reporting a maximum number of blocks that is not aligned
1036 * on the device physical size would cause a large write same
1037 * request to be split into physically unaligned chunks by
1038 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
1039 * even if the caller of these functions took care to align the
1040 * large request. So make sure the maximum reported is aligned
1041 * to the device physical block size. This is only an optional
1042 * optimization for regular disks, but this is mandatory to
1043 * avoid failure of large write same requests directed at
1044 * sequential write required zones of host-managed ZBC disks.
1046 sdkp->max_ws_blocks =
1047 round_down(sdkp->max_ws_blocks,
1048 bytes_to_logical(sdkp->device,
1049 sdkp->physical_block_size));
1053 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1054 (logical_block_size >> 9));
1055 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1056 (logical_block_size >> 9));
1060 * sd_setup_write_same_cmnd - write the same data to multiple blocks
1061 * @cmd: command to prepare
1063 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1064 * the preference indicated by the target device.
1066 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1068 struct request *rq = scsi_cmd_to_rq(cmd);
1069 struct scsi_device *sdp = cmd->device;
1070 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1071 struct bio *bio = rq->bio;
1072 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1073 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1076 if (sdkp->device->no_write_same)
1077 return BLK_STS_TARGET;
1079 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1081 rq->timeout = SD_WRITE_SAME_TIMEOUT;
1083 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1085 cmd->cmnd[0] = WRITE_SAME_16;
1086 put_unaligned_be64(lba, &cmd->cmnd[2]);
1087 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1090 cmd->cmnd[0] = WRITE_SAME;
1091 put_unaligned_be32(lba, &cmd->cmnd[2]);
1092 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1095 cmd->transfersize = sdp->sector_size;
1096 cmd->allowed = sdkp->max_retries;
1099 * For WRITE SAME the data transferred via the DATA OUT buffer is
1100 * different from the amount of data actually written to the target.
1102 * We set up __data_len to the amount of data transferred via the
1103 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1104 * to transfer a single sector of data first, but then reset it to
1105 * the amount of data to be written right after so that the I/O path
1106 * knows how much to actually write.
1108 rq->__data_len = sdp->sector_size;
1109 ret = scsi_alloc_sgtables(cmd);
1110 rq->__data_len = blk_rq_bytes(rq);
1115 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1117 struct request *rq = scsi_cmd_to_rq(cmd);
1118 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1120 /* flush requests don't perform I/O, zero the S/G table */
1121 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1123 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1125 cmd->transfersize = 0;
1126 cmd->allowed = sdkp->max_retries;
1128 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1132 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1133 sector_t lba, unsigned int nr_blocks,
1134 unsigned char flags)
1136 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1137 if (unlikely(cmd->cmnd == NULL))
1138 return BLK_STS_RESOURCE;
1140 cmd->cmd_len = SD_EXT_CDB_SIZE;
1141 memset(cmd->cmnd, 0, cmd->cmd_len);
1143 cmd->cmnd[0] = VARIABLE_LENGTH_CMD;
1144 cmd->cmnd[7] = 0x18; /* Additional CDB len */
1145 cmd->cmnd[9] = write ? WRITE_32 : READ_32;
1146 cmd->cmnd[10] = flags;
1147 put_unaligned_be64(lba, &cmd->cmnd[12]);
1148 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1149 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1154 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1155 sector_t lba, unsigned int nr_blocks,
1156 unsigned char flags)
1159 cmd->cmnd[0] = write ? WRITE_16 : READ_16;
1160 cmd->cmnd[1] = flags;
1163 put_unaligned_be64(lba, &cmd->cmnd[2]);
1164 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1169 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1170 sector_t lba, unsigned int nr_blocks,
1171 unsigned char flags)
1174 cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1175 cmd->cmnd[1] = flags;
1178 put_unaligned_be32(lba, &cmd->cmnd[2]);
1179 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1184 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1185 sector_t lba, unsigned int nr_blocks,
1186 unsigned char flags)
1188 /* Avoid that 0 blocks gets translated into 256 blocks. */
1189 if (WARN_ON_ONCE(nr_blocks == 0))
1190 return BLK_STS_IOERR;
1192 if (unlikely(flags & 0x8)) {
1194 * This happens only if this drive failed 10byte rw
1195 * command with ILLEGAL_REQUEST during operation and
1196 * thus turned off use_10_for_rw.
1198 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1199 return BLK_STS_IOERR;
1203 cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1204 cmd->cmnd[1] = (lba >> 16) & 0x1f;
1205 cmd->cmnd[2] = (lba >> 8) & 0xff;
1206 cmd->cmnd[3] = lba & 0xff;
1207 cmd->cmnd[4] = nr_blocks;
1213 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1215 struct request *rq = scsi_cmd_to_rq(cmd);
1216 struct scsi_device *sdp = cmd->device;
1217 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1218 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1220 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1221 unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1222 bool write = rq_data_dir(rq) == WRITE;
1223 unsigned char protect, fua;
1228 ret = scsi_alloc_sgtables(cmd);
1229 if (ret != BLK_STS_OK)
1232 ret = BLK_STS_IOERR;
1233 if (!scsi_device_online(sdp) || sdp->changed) {
1234 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1238 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1239 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1243 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1244 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1249 * Some SD card readers can't handle accesses which touch the
1250 * last one or two logical blocks. Split accesses as needed.
1252 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1254 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1255 if (lba < threshold) {
1256 /* Access up to the threshold but not beyond */
1257 nr_blocks = threshold - lba;
1259 /* Access only a single logical block */
1264 if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1265 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1270 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1271 dix = scsi_prot_sg_count(cmd);
1272 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1275 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1279 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1280 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1282 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1283 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1285 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1286 sdp->use_10_for_rw || protect) {
1287 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1290 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1294 if (unlikely(ret != BLK_STS_OK))
1298 * We shouldn't disconnect in the middle of a sector, so with a dumb
1299 * host adapter, it's safe to assume that we can at least transfer
1300 * this many bytes between each connect / disconnect.
1302 cmd->transfersize = sdp->sector_size;
1303 cmd->underflow = nr_blocks << 9;
1304 cmd->allowed = sdkp->max_retries;
1305 cmd->sdb.length = nr_blocks * sdp->sector_size;
1308 scmd_printk(KERN_INFO, cmd,
1309 "%s: block=%llu, count=%d\n", __func__,
1310 (unsigned long long)blk_rq_pos(rq),
1311 blk_rq_sectors(rq)));
1313 scmd_printk(KERN_INFO, cmd,
1314 "%s %d/%u 512 byte blocks.\n",
1315 write ? "writing" : "reading", nr_blocks,
1316 blk_rq_sectors(rq)));
1319 * This indicates that the command is ready from our end to be queued.
1323 scsi_free_sgtables(cmd);
1327 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1329 struct request *rq = scsi_cmd_to_rq(cmd);
1331 switch (req_op(rq)) {
1332 case REQ_OP_DISCARD:
1333 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1335 return sd_setup_unmap_cmnd(cmd);
1337 return sd_setup_write_same16_cmnd(cmd, true);
1339 return sd_setup_write_same10_cmnd(cmd, true);
1341 return sd_setup_write_same10_cmnd(cmd, false);
1343 return BLK_STS_TARGET;
1345 case REQ_OP_WRITE_ZEROES:
1346 return sd_setup_write_zeroes_cmnd(cmd);
1347 case REQ_OP_WRITE_SAME:
1348 return sd_setup_write_same_cmnd(cmd);
1350 return sd_setup_flush_cmnd(cmd);
1353 case REQ_OP_ZONE_APPEND:
1354 return sd_setup_read_write_cmnd(cmd);
1355 case REQ_OP_ZONE_RESET:
1356 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1358 case REQ_OP_ZONE_RESET_ALL:
1359 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1361 case REQ_OP_ZONE_OPEN:
1362 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1363 case REQ_OP_ZONE_CLOSE:
1364 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1365 case REQ_OP_ZONE_FINISH:
1366 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1369 return BLK_STS_NOTSUPP;
1373 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1375 struct request *rq = scsi_cmd_to_rq(SCpnt);
1378 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1379 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1381 if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1385 mempool_free(cmnd, sd_cdb_pool);
1389 static bool sd_need_revalidate(struct block_device *bdev,
1390 struct scsi_disk *sdkp)
1392 if (sdkp->device->removable || sdkp->write_prot) {
1393 if (bdev_check_media_change(bdev))
1398 * Force a full rescan after ioctl(BLKRRPART). While the disk state has
1399 * nothing to do with partitions, BLKRRPART is used to force a full
1400 * revalidate after things like a format for historical reasons.
1402 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1406 * sd_open - open a scsi disk device
1407 * @bdev: Block device of the scsi disk to open
1408 * @mode: FMODE_* mask
1410 * Returns 0 if successful. Returns a negated errno value in case
1413 * Note: This can be called from a user context (e.g. fsck(1) )
1414 * or from within the kernel (e.g. as a result of a mount(1) ).
1415 * In the latter case @inode and @filp carry an abridged amount
1416 * of information as noted above.
1418 * Locking: called with bdev->bd_disk->open_mutex held.
1420 static int sd_open(struct block_device *bdev, fmode_t mode)
1422 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1423 struct scsi_device *sdev;
1429 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1431 sdev = sdkp->device;
1434 * If the device is in error recovery, wait until it is done.
1435 * If the device is offline, then disallow any access to it.
1438 if (!scsi_block_when_processing_errors(sdev))
1441 if (sd_need_revalidate(bdev, sdkp))
1442 sd_revalidate_disk(bdev->bd_disk);
1445 * If the drive is empty, just let the open fail.
1447 retval = -ENOMEDIUM;
1448 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1452 * If the device has the write protect tab set, have the open fail
1453 * if the user expects to be able to write to the thing.
1456 if (sdkp->write_prot && (mode & FMODE_WRITE))
1460 * It is possible that the disk changing stuff resulted in
1461 * the device being taken offline. If this is the case,
1462 * report this to the user, and don't pretend that the
1463 * open actually succeeded.
1466 if (!scsi_device_online(sdev))
1469 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1470 if (scsi_block_when_processing_errors(sdev))
1471 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1477 scsi_disk_put(sdkp);
1482 * sd_release - invoked when the (last) close(2) is called on this
1484 * @disk: disk to release
1485 * @mode: FMODE_* mask
1489 * Note: may block (uninterruptible) if error recovery is underway
1492 * Locking: called with bdev->bd_disk->open_mutex held.
1494 static void sd_release(struct gendisk *disk, fmode_t mode)
1496 struct scsi_disk *sdkp = scsi_disk(disk);
1497 struct scsi_device *sdev = sdkp->device;
1499 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1501 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1502 if (scsi_block_when_processing_errors(sdev))
1503 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1506 scsi_disk_put(sdkp);
1509 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1511 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1512 struct scsi_device *sdp = sdkp->device;
1513 struct Scsi_Host *host = sdp->host;
1514 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1517 /* default to most commonly used values */
1518 diskinfo[0] = 0x40; /* 1 << 6 */
1519 diskinfo[1] = 0x20; /* 1 << 5 */
1520 diskinfo[2] = capacity >> 11;
1522 /* override with calculated, extended default, or driver values */
1523 if (host->hostt->bios_param)
1524 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1526 scsicam_bios_param(bdev, capacity, diskinfo);
1528 geo->heads = diskinfo[0];
1529 geo->sectors = diskinfo[1];
1530 geo->cylinders = diskinfo[2];
1535 * sd_ioctl - process an ioctl
1536 * @bdev: target block device
1537 * @mode: FMODE_* mask
1538 * @cmd: ioctl command number
1539 * @arg: this is third argument given to ioctl(2) system call.
1540 * Often contains a pointer.
1542 * Returns 0 if successful (some ioctls return positive numbers on
1543 * success as well). Returns a negated errno value in case of error.
1545 * Note: most ioctls are forward onto the block subsystem or further
1546 * down in the scsi subsystem.
1548 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1549 unsigned int cmd, unsigned long arg)
1551 struct gendisk *disk = bdev->bd_disk;
1552 struct scsi_disk *sdkp = scsi_disk(disk);
1553 struct scsi_device *sdp = sdkp->device;
1554 void __user *p = (void __user *)arg;
1557 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1558 "cmd=0x%x\n", disk->disk_name, cmd));
1560 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1561 return -ENOIOCTLCMD;
1564 * If we are in the middle of error recovery, don't let anyone
1565 * else try and use this device. Also, if error recovery fails, it
1566 * may try and take the device offline, in which case all further
1567 * access to the device is prohibited.
1569 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1570 (mode & FMODE_NDELAY) != 0);
1574 if (is_sed_ioctl(cmd))
1575 return sed_ioctl(sdkp->opal_dev, cmd, p);
1576 return scsi_ioctl(sdp, disk, mode, cmd, p);
1579 static void set_media_not_present(struct scsi_disk *sdkp)
1581 if (sdkp->media_present)
1582 sdkp->device->changed = 1;
1584 if (sdkp->device->removable) {
1585 sdkp->media_present = 0;
1590 static int media_not_present(struct scsi_disk *sdkp,
1591 struct scsi_sense_hdr *sshdr)
1593 if (!scsi_sense_valid(sshdr))
1596 /* not invoked for commands that could return deferred errors */
1597 switch (sshdr->sense_key) {
1598 case UNIT_ATTENTION:
1600 /* medium not present */
1601 if (sshdr->asc == 0x3A) {
1602 set_media_not_present(sdkp);
1610 * sd_check_events - check media events
1611 * @disk: kernel device descriptor
1612 * @clearing: disk events currently being cleared
1614 * Returns mask of DISK_EVENT_*.
1616 * Note: this function is invoked from the block subsystem.
1618 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1620 struct scsi_disk *sdkp = scsi_disk_get(disk);
1621 struct scsi_device *sdp;
1629 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1632 * If the device is offline, don't send any commands - just pretend as
1633 * if the command failed. If the device ever comes back online, we
1634 * can deal with it then. It is only because of unrecoverable errors
1635 * that we would ever take a device offline in the first place.
1637 if (!scsi_device_online(sdp)) {
1638 set_media_not_present(sdkp);
1643 * Using TEST_UNIT_READY enables differentiation between drive with
1644 * no cartridge loaded - NOT READY, drive with changed cartridge -
1645 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1647 * Drives that auto spin down. eg iomega jaz 1G, will be started
1648 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1649 * sd_revalidate() is called.
1651 if (scsi_block_when_processing_errors(sdp)) {
1652 struct scsi_sense_hdr sshdr = { 0, };
1654 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1657 /* failed to execute TUR, assume media not present */
1658 if (retval < 0 || host_byte(retval)) {
1659 set_media_not_present(sdkp);
1663 if (media_not_present(sdkp, &sshdr))
1668 * For removable scsi disk we have to recognise the presence
1669 * of a disk in the drive.
1671 if (!sdkp->media_present)
1673 sdkp->media_present = 1;
1676 * sdp->changed is set under the following conditions:
1678 * Medium present state has changed in either direction.
1679 * Device has indicated UNIT_ATTENTION.
1681 disk_changed = sdp->changed;
1683 scsi_disk_put(sdkp);
1684 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1687 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1690 struct scsi_device *sdp = sdkp->device;
1691 const int timeout = sdp->request_queue->rq_timeout
1692 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1693 struct scsi_sense_hdr my_sshdr;
1695 if (!scsi_device_online(sdp))
1698 /* caller might not be interested in sense, but we need it */
1702 for (retries = 3; retries > 0; --retries) {
1703 unsigned char cmd[10] = { 0 };
1705 cmd[0] = SYNCHRONIZE_CACHE;
1707 * Leave the rest of the command zero to indicate
1710 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1711 timeout, sdkp->max_retries, 0, RQF_PM, NULL);
1717 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1722 if (scsi_status_is_check_condition(res) &&
1723 scsi_sense_valid(sshdr)) {
1724 sd_print_sense_hdr(sdkp, sshdr);
1726 /* we need to evaluate the error return */
1727 if (sshdr->asc == 0x3a || /* medium not present */
1728 sshdr->asc == 0x20 || /* invalid command */
1729 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */
1730 /* this is no error here */
1734 switch (host_byte(res)) {
1735 /* ignore errors due to racing a disconnection */
1736 case DID_BAD_TARGET:
1737 case DID_NO_CONNECT:
1739 /* signal the upper layer it might try again */
1743 case DID_SOFT_ERROR:
1752 static void sd_rescan(struct device *dev)
1754 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1756 sd_revalidate_disk(sdkp->disk);
1759 static char sd_pr_type(enum pr_type type)
1762 case PR_WRITE_EXCLUSIVE:
1764 case PR_EXCLUSIVE_ACCESS:
1766 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1768 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1770 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1772 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1779 static int sd_pr_command(struct block_device *bdev, u8 sa,
1780 u64 key, u64 sa_key, u8 type, u8 flags)
1782 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1783 struct scsi_device *sdev = sdkp->device;
1784 struct scsi_sense_hdr sshdr;
1786 u8 cmd[16] = { 0, };
1787 u8 data[24] = { 0, };
1789 cmd[0] = PERSISTENT_RESERVE_OUT;
1792 put_unaligned_be32(sizeof(data), &cmd[5]);
1794 put_unaligned_be64(key, &data[0]);
1795 put_unaligned_be64(sa_key, &data[8]);
1798 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1799 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL);
1801 if (scsi_status_is_check_condition(result) &&
1802 scsi_sense_valid(&sshdr)) {
1803 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1804 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1810 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1813 if (flags & ~PR_FL_IGNORE_KEY)
1815 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1816 old_key, new_key, 0,
1817 (1 << 0) /* APTPL */);
1820 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1825 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1828 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1830 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1833 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1834 enum pr_type type, bool abort)
1836 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1837 sd_pr_type(type), 0);
1840 static int sd_pr_clear(struct block_device *bdev, u64 key)
1842 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1845 static const struct pr_ops sd_pr_ops = {
1846 .pr_register = sd_pr_register,
1847 .pr_reserve = sd_pr_reserve,
1848 .pr_release = sd_pr_release,
1849 .pr_preempt = sd_pr_preempt,
1850 .pr_clear = sd_pr_clear,
1853 static const struct block_device_operations sd_fops = {
1854 .owner = THIS_MODULE,
1856 .release = sd_release,
1858 .getgeo = sd_getgeo,
1859 .compat_ioctl = blkdev_compat_ptr_ioctl,
1860 .check_events = sd_check_events,
1861 .unlock_native_capacity = sd_unlock_native_capacity,
1862 .report_zones = sd_zbc_report_zones,
1863 .pr_ops = &sd_pr_ops,
1867 * sd_eh_reset - reset error handling callback
1868 * @scmd: sd-issued command that has failed
1870 * This function is called by the SCSI midlayer before starting
1871 * SCSI EH. When counting medium access failures we have to be
1872 * careful to register it only only once per device and SCSI EH run;
1873 * there might be several timed out commands which will cause the
1874 * 'max_medium_access_timeouts' counter to trigger after the first
1875 * SCSI EH run already and set the device to offline.
1876 * So this function resets the internal counter before starting SCSI EH.
1878 static void sd_eh_reset(struct scsi_cmnd *scmd)
1880 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->rq_disk);
1882 /* New SCSI EH run, reset gate variable */
1883 sdkp->ignore_medium_access_errors = false;
1887 * sd_eh_action - error handling callback
1888 * @scmd: sd-issued command that has failed
1889 * @eh_disp: The recovery disposition suggested by the midlayer
1891 * This function is called by the SCSI midlayer upon completion of an
1892 * error test command (currently TEST UNIT READY). The result of sending
1893 * the eh command is passed in eh_disp. We're looking for devices that
1894 * fail medium access commands but are OK with non access commands like
1895 * test unit ready (so wrongly see the device as having a successful
1898 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1900 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->rq_disk);
1901 struct scsi_device *sdev = scmd->device;
1903 if (!scsi_device_online(sdev) ||
1904 !scsi_medium_access_command(scmd) ||
1905 host_byte(scmd->result) != DID_TIME_OUT ||
1910 * The device has timed out executing a medium access command.
1911 * However, the TEST UNIT READY command sent during error
1912 * handling completed successfully. Either the device is in the
1913 * process of recovering or has it suffered an internal failure
1914 * that prevents access to the storage medium.
1916 if (!sdkp->ignore_medium_access_errors) {
1917 sdkp->medium_access_timed_out++;
1918 sdkp->ignore_medium_access_errors = true;
1922 * If the device keeps failing read/write commands but TEST UNIT
1923 * READY always completes successfully we assume that medium
1924 * access is no longer possible and take the device offline.
1926 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1927 scmd_printk(KERN_ERR, scmd,
1928 "Medium access timeout failure. Offlining disk!\n");
1929 mutex_lock(&sdev->state_mutex);
1930 scsi_device_set_state(sdev, SDEV_OFFLINE);
1931 mutex_unlock(&sdev->state_mutex);
1939 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1941 struct request *req = scsi_cmd_to_rq(scmd);
1942 struct scsi_device *sdev = scmd->device;
1943 unsigned int transferred, good_bytes;
1944 u64 start_lba, end_lba, bad_lba;
1947 * Some commands have a payload smaller than the device logical
1948 * block size (e.g. INQUIRY on a 4K disk).
1950 if (scsi_bufflen(scmd) <= sdev->sector_size)
1953 /* Check if we have a 'bad_lba' information */
1954 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1955 SCSI_SENSE_BUFFERSIZE,
1960 * If the bad lba was reported incorrectly, we have no idea where
1963 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1964 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1965 if (bad_lba < start_lba || bad_lba >= end_lba)
1969 * resid is optional but mostly filled in. When it's unused,
1970 * its value is zero, so we assume the whole buffer transferred
1972 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1974 /* This computation should always be done in terms of the
1975 * resolution of the device's medium.
1977 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1979 return min(good_bytes, transferred);
1983 * sd_done - bottom half handler: called when the lower level
1984 * driver has completed (successfully or otherwise) a scsi command.
1985 * @SCpnt: mid-level's per command structure.
1987 * Note: potentially run from within an ISR. Must not block.
1989 static int sd_done(struct scsi_cmnd *SCpnt)
1991 int result = SCpnt->result;
1992 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1993 unsigned int sector_size = SCpnt->device->sector_size;
1995 struct scsi_sense_hdr sshdr;
1996 struct request *req = scsi_cmd_to_rq(SCpnt);
1997 struct scsi_disk *sdkp = scsi_disk(req->rq_disk);
1998 int sense_valid = 0;
1999 int sense_deferred = 0;
2001 switch (req_op(req)) {
2002 case REQ_OP_DISCARD:
2003 case REQ_OP_WRITE_ZEROES:
2004 case REQ_OP_WRITE_SAME:
2005 case REQ_OP_ZONE_RESET:
2006 case REQ_OP_ZONE_RESET_ALL:
2007 case REQ_OP_ZONE_OPEN:
2008 case REQ_OP_ZONE_CLOSE:
2009 case REQ_OP_ZONE_FINISH:
2011 good_bytes = blk_rq_bytes(req);
2012 scsi_set_resid(SCpnt, 0);
2015 scsi_set_resid(SCpnt, blk_rq_bytes(req));
2020 * In case of bogus fw or device, we could end up having
2021 * an unaligned partial completion. Check this here and force
2024 resid = scsi_get_resid(SCpnt);
2025 if (resid & (sector_size - 1)) {
2026 sd_printk(KERN_INFO, sdkp,
2027 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2028 resid, sector_size);
2029 scsi_print_command(SCpnt);
2030 resid = min(scsi_bufflen(SCpnt),
2031 round_up(resid, sector_size));
2032 scsi_set_resid(SCpnt, resid);
2037 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2039 sense_deferred = scsi_sense_is_deferred(&sshdr);
2041 sdkp->medium_access_timed_out = 0;
2043 if (!scsi_status_is_check_condition(result) &&
2044 (!sense_valid || sense_deferred))
2047 switch (sshdr.sense_key) {
2048 case HARDWARE_ERROR:
2050 good_bytes = sd_completed_bytes(SCpnt);
2052 case RECOVERED_ERROR:
2053 good_bytes = scsi_bufflen(SCpnt);
2056 /* This indicates a false check condition, so ignore it. An
2057 * unknown amount of data was transferred so treat it as an
2061 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2063 case ABORTED_COMMAND:
2064 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2065 good_bytes = sd_completed_bytes(SCpnt);
2067 case ILLEGAL_REQUEST:
2068 switch (sshdr.asc) {
2069 case 0x10: /* DIX: Host detected corruption */
2070 good_bytes = sd_completed_bytes(SCpnt);
2072 case 0x20: /* INVALID COMMAND OPCODE */
2073 case 0x24: /* INVALID FIELD IN CDB */
2074 switch (SCpnt->cmnd[0]) {
2076 sd_config_discard(sdkp, SD_LBP_DISABLE);
2080 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2081 sd_config_discard(sdkp, SD_LBP_DISABLE);
2083 sdkp->device->no_write_same = 1;
2084 sd_config_write_same(sdkp);
2085 req->rq_flags |= RQF_QUIET;
2096 if (sd_is_zoned(sdkp))
2097 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2099 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2100 "sd_done: completed %d of %d bytes\n",
2101 good_bytes, scsi_bufflen(SCpnt)));
2107 * spinup disk - called only in sd_revalidate_disk()
2110 sd_spinup_disk(struct scsi_disk *sdkp)
2112 unsigned char cmd[10];
2113 unsigned long spintime_expire = 0;
2114 int retries, spintime;
2115 unsigned int the_result;
2116 struct scsi_sense_hdr sshdr;
2117 int sense_valid = 0;
2121 /* Spin up drives, as required. Only do this at boot time */
2122 /* Spinup needs to be done for module loads too. */
2127 bool media_was_present = sdkp->media_present;
2129 cmd[0] = TEST_UNIT_READY;
2130 memset((void *) &cmd[1], 0, 9);
2132 the_result = scsi_execute_req(sdkp->device, cmd,
2135 sdkp->max_retries, NULL);
2138 * If the drive has indicated to us that it
2139 * doesn't have any media in it, don't bother
2140 * with any more polling.
2142 if (media_not_present(sdkp, &sshdr)) {
2143 if (media_was_present)
2144 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2149 sense_valid = scsi_sense_valid(&sshdr);
2151 } while (retries < 3 &&
2152 (!scsi_status_is_good(the_result) ||
2153 (scsi_status_is_check_condition(the_result) &&
2154 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2156 if (!scsi_status_is_check_condition(the_result)) {
2157 /* no sense, TUR either succeeded or failed
2158 * with a status error */
2159 if(!spintime && !scsi_status_is_good(the_result)) {
2160 sd_print_result(sdkp, "Test Unit Ready failed",
2167 * The device does not want the automatic start to be issued.
2169 if (sdkp->device->no_start_on_add)
2172 if (sense_valid && sshdr.sense_key == NOT_READY) {
2173 if (sshdr.asc == 4 && sshdr.ascq == 3)
2174 break; /* manual intervention required */
2175 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2176 break; /* standby */
2177 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2178 break; /* unavailable */
2179 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2180 break; /* sanitize in progress */
2182 * Issue command to spin up drive when not ready
2185 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2186 cmd[0] = START_STOP;
2187 cmd[1] = 1; /* Return immediately */
2188 memset((void *) &cmd[2], 0, 8);
2189 cmd[4] = 1; /* Start spin cycle */
2190 if (sdkp->device->start_stop_pwr_cond)
2192 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2194 SD_TIMEOUT, sdkp->max_retries,
2196 spintime_expire = jiffies + 100 * HZ;
2199 /* Wait 1 second for next try */
2201 printk(KERN_CONT ".");
2204 * Wait for USB flash devices with slow firmware.
2205 * Yes, this sense key/ASC combination shouldn't
2206 * occur here. It's characteristic of these devices.
2208 } else if (sense_valid &&
2209 sshdr.sense_key == UNIT_ATTENTION &&
2210 sshdr.asc == 0x28) {
2212 spintime_expire = jiffies + 5 * HZ;
2215 /* Wait 1 second for next try */
2218 /* we don't understand the sense code, so it's
2219 * probably pointless to loop */
2221 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2222 sd_print_sense_hdr(sdkp, &sshdr);
2227 } while (spintime && time_before_eq(jiffies, spintime_expire));
2230 if (scsi_status_is_good(the_result))
2231 printk(KERN_CONT "ready\n");
2233 printk(KERN_CONT "not responding...\n");
2238 * Determine whether disk supports Data Integrity Field.
2240 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2242 struct scsi_device *sdp = sdkp->device;
2246 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2247 sdkp->protection_type = 0;
2251 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2253 if (type > T10_PI_TYPE3_PROTECTION)
2255 else if (scsi_host_dif_capable(sdp->host, type))
2258 if (sdkp->first_scan || type != sdkp->protection_type)
2261 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2262 " protection type %u. Disabling disk!\n",
2266 sd_printk(KERN_NOTICE, sdkp,
2267 "Enabling DIF Type %u protection\n", type);
2270 sd_printk(KERN_NOTICE, sdkp,
2271 "Disabling DIF Type %u protection\n", type);
2275 sdkp->protection_type = type;
2280 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2281 struct scsi_sense_hdr *sshdr, int sense_valid,
2285 sd_print_sense_hdr(sdkp, sshdr);
2287 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2290 * Set dirty bit for removable devices if not ready -
2291 * sometimes drives will not report this properly.
2293 if (sdp->removable &&
2294 sense_valid && sshdr->sense_key == NOT_READY)
2295 set_media_not_present(sdkp);
2298 * We used to set media_present to 0 here to indicate no media
2299 * in the drive, but some drives fail read capacity even with
2300 * media present, so we can't do that.
2302 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2306 #if RC16_LEN > SD_BUF_SIZE
2307 #error RC16_LEN must not be more than SD_BUF_SIZE
2310 #define READ_CAPACITY_RETRIES_ON_RESET 10
2312 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2313 unsigned char *buffer)
2315 unsigned char cmd[16];
2316 struct scsi_sense_hdr sshdr;
2317 int sense_valid = 0;
2319 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2320 unsigned int alignment;
2321 unsigned long long lba;
2322 unsigned sector_size;
2324 if (sdp->no_read_capacity_16)
2329 cmd[0] = SERVICE_ACTION_IN_16;
2330 cmd[1] = SAI_READ_CAPACITY_16;
2332 memset(buffer, 0, RC16_LEN);
2334 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2335 buffer, RC16_LEN, &sshdr,
2336 SD_TIMEOUT, sdkp->max_retries, NULL);
2338 if (media_not_present(sdkp, &sshdr))
2341 if (the_result > 0) {
2342 sense_valid = scsi_sense_valid(&sshdr);
2344 sshdr.sense_key == ILLEGAL_REQUEST &&
2345 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2347 /* Invalid Command Operation Code or
2348 * Invalid Field in CDB, just retry
2349 * silently with RC10 */
2352 sshdr.sense_key == UNIT_ATTENTION &&
2353 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2354 /* Device reset might occur several times,
2355 * give it one more chance */
2356 if (--reset_retries > 0)
2361 } while (the_result && retries);
2364 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2365 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2369 sector_size = get_unaligned_be32(&buffer[8]);
2370 lba = get_unaligned_be64(&buffer[0]);
2372 if (sd_read_protection_type(sdkp, buffer) < 0) {
2377 /* Logical blocks per physical block exponent */
2378 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2381 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2383 /* Lowest aligned logical block */
2384 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2385 blk_queue_alignment_offset(sdp->request_queue, alignment);
2386 if (alignment && sdkp->first_scan)
2387 sd_printk(KERN_NOTICE, sdkp,
2388 "physical block alignment offset: %u\n", alignment);
2390 if (buffer[14] & 0x80) { /* LBPME */
2393 if (buffer[14] & 0x40) /* LBPRZ */
2396 sd_config_discard(sdkp, SD_LBP_WS16);
2399 sdkp->capacity = lba + 1;
2403 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2404 unsigned char *buffer)
2406 unsigned char cmd[16];
2407 struct scsi_sense_hdr sshdr;
2408 int sense_valid = 0;
2410 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2412 unsigned sector_size;
2415 cmd[0] = READ_CAPACITY;
2416 memset(&cmd[1], 0, 9);
2417 memset(buffer, 0, 8);
2419 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2421 SD_TIMEOUT, sdkp->max_retries, NULL);
2423 if (media_not_present(sdkp, &sshdr))
2426 if (the_result > 0) {
2427 sense_valid = scsi_sense_valid(&sshdr);
2429 sshdr.sense_key == UNIT_ATTENTION &&
2430 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2431 /* Device reset might occur several times,
2432 * give it one more chance */
2433 if (--reset_retries > 0)
2438 } while (the_result && retries);
2441 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2442 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2446 sector_size = get_unaligned_be32(&buffer[4]);
2447 lba = get_unaligned_be32(&buffer[0]);
2449 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2450 /* Some buggy (usb cardreader) devices return an lba of
2451 0xffffffff when the want to report a size of 0 (with
2452 which they really mean no media is present) */
2454 sdkp->physical_block_size = sector_size;
2458 sdkp->capacity = lba + 1;
2459 sdkp->physical_block_size = sector_size;
2463 static int sd_try_rc16_first(struct scsi_device *sdp)
2465 if (sdp->host->max_cmd_len < 16)
2467 if (sdp->try_rc_10_first)
2469 if (sdp->scsi_level > SCSI_SPC_2)
2471 if (scsi_device_protection(sdp))
2477 * read disk capacity
2480 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2483 struct scsi_device *sdp = sdkp->device;
2485 if (sd_try_rc16_first(sdp)) {
2486 sector_size = read_capacity_16(sdkp, sdp, buffer);
2487 if (sector_size == -EOVERFLOW)
2489 if (sector_size == -ENODEV)
2491 if (sector_size < 0)
2492 sector_size = read_capacity_10(sdkp, sdp, buffer);
2493 if (sector_size < 0)
2496 sector_size = read_capacity_10(sdkp, sdp, buffer);
2497 if (sector_size == -EOVERFLOW)
2499 if (sector_size < 0)
2501 if ((sizeof(sdkp->capacity) > 4) &&
2502 (sdkp->capacity > 0xffffffffULL)) {
2503 int old_sector_size = sector_size;
2504 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2505 "Trying to use READ CAPACITY(16).\n");
2506 sector_size = read_capacity_16(sdkp, sdp, buffer);
2507 if (sector_size < 0) {
2508 sd_printk(KERN_NOTICE, sdkp,
2509 "Using 0xffffffff as device size\n");
2510 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2511 sector_size = old_sector_size;
2514 /* Remember that READ CAPACITY(16) succeeded */
2515 sdp->try_rc_10_first = 0;
2519 /* Some devices are known to return the total number of blocks,
2520 * not the highest block number. Some devices have versions
2521 * which do this and others which do not. Some devices we might
2522 * suspect of doing this but we don't know for certain.
2524 * If we know the reported capacity is wrong, decrement it. If
2525 * we can only guess, then assume the number of blocks is even
2526 * (usually true but not always) and err on the side of lowering
2529 if (sdp->fix_capacity ||
2530 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2531 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2532 "from its reported value: %llu\n",
2533 (unsigned long long) sdkp->capacity);
2538 if (sector_size == 0) {
2540 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2544 if (sector_size != 512 &&
2545 sector_size != 1024 &&
2546 sector_size != 2048 &&
2547 sector_size != 4096) {
2548 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2551 * The user might want to re-format the drive with
2552 * a supported sectorsize. Once this happens, it
2553 * would be relatively trivial to set the thing up.
2554 * For this reason, we leave the thing in the table.
2558 * set a bogus sector size so the normal read/write
2559 * logic in the block layer will eventually refuse any
2560 * request on this device without tripping over power
2561 * of two sector size assumptions
2565 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2566 blk_queue_physical_block_size(sdp->request_queue,
2567 sdkp->physical_block_size);
2568 sdkp->device->sector_size = sector_size;
2570 if (sdkp->capacity > 0xffffffff)
2571 sdp->use_16_for_rw = 1;
2576 * Print disk capacity
2579 sd_print_capacity(struct scsi_disk *sdkp,
2580 sector_t old_capacity)
2582 int sector_size = sdkp->device->sector_size;
2583 char cap_str_2[10], cap_str_10[10];
2585 if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2588 string_get_size(sdkp->capacity, sector_size,
2589 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2590 string_get_size(sdkp->capacity, sector_size,
2591 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2593 sd_printk(KERN_NOTICE, sdkp,
2594 "%llu %d-byte logical blocks: (%s/%s)\n",
2595 (unsigned long long)sdkp->capacity,
2596 sector_size, cap_str_10, cap_str_2);
2598 if (sdkp->physical_block_size != sector_size)
2599 sd_printk(KERN_NOTICE, sdkp,
2600 "%u-byte physical blocks\n",
2601 sdkp->physical_block_size);
2604 /* called with buffer of length 512 */
2606 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2607 unsigned char *buffer, int len, struct scsi_mode_data *data,
2608 struct scsi_sense_hdr *sshdr)
2610 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2611 SD_TIMEOUT, sdkp->max_retries, data,
2616 * read write protect setting, if possible - called only in sd_revalidate_disk()
2617 * called with buffer of length SD_BUF_SIZE
2620 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2623 struct scsi_device *sdp = sdkp->device;
2624 struct scsi_mode_data data;
2625 int old_wp = sdkp->write_prot;
2627 set_disk_ro(sdkp->disk, 0);
2628 if (sdp->skip_ms_page_3f) {
2629 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2633 if (sdp->use_192_bytes_for_3f) {
2634 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2637 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2638 * We have to start carefully: some devices hang if we ask
2639 * for more than is available.
2641 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2644 * Second attempt: ask for page 0 When only page 0 is
2645 * implemented, a request for page 3F may return Sense Key
2646 * 5: Illegal Request, Sense Code 24: Invalid field in
2650 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2653 * Third attempt: ask 255 bytes, as we did earlier.
2656 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2661 sd_first_printk(KERN_WARNING, sdkp,
2662 "Test WP failed, assume Write Enabled\n");
2664 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2665 set_disk_ro(sdkp->disk, sdkp->write_prot);
2666 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2667 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2668 sdkp->write_prot ? "on" : "off");
2669 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2675 * sd_read_cache_type - called only from sd_revalidate_disk()
2676 * called with buffer of length SD_BUF_SIZE
2679 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2682 struct scsi_device *sdp = sdkp->device;
2687 struct scsi_mode_data data;
2688 struct scsi_sense_hdr sshdr;
2689 int old_wce = sdkp->WCE;
2690 int old_rcd = sdkp->RCD;
2691 int old_dpofua = sdkp->DPOFUA;
2694 if (sdkp->cache_override)
2698 if (sdp->skip_ms_page_8) {
2699 if (sdp->type == TYPE_RBC)
2702 if (sdp->skip_ms_page_3f)
2705 if (sdp->use_192_bytes_for_3f)
2709 } else if (sdp->type == TYPE_RBC) {
2717 /* cautiously ask */
2718 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2724 if (!data.header_length) {
2727 sd_first_printk(KERN_ERR, sdkp,
2728 "Missing header in MODE_SENSE response\n");
2731 /* that went OK, now ask for the proper length */
2735 * We're only interested in the first three bytes, actually.
2736 * But the data cache page is defined for the first 20.
2740 else if (len > SD_BUF_SIZE) {
2741 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2742 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2745 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2749 if (len > first_len)
2750 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2754 int offset = data.header_length + data.block_descriptor_length;
2756 while (offset < len) {
2757 u8 page_code = buffer[offset] & 0x3F;
2758 u8 spf = buffer[offset] & 0x40;
2760 if (page_code == 8 || page_code == 6) {
2761 /* We're interested only in the first 3 bytes.
2763 if (len - offset <= 2) {
2764 sd_first_printk(KERN_ERR, sdkp,
2765 "Incomplete mode parameter "
2769 modepage = page_code;
2773 /* Go to the next page */
2774 if (spf && len - offset > 3)
2775 offset += 4 + (buffer[offset+2] << 8) +
2777 else if (!spf && len - offset > 1)
2778 offset += 2 + buffer[offset+1];
2780 sd_first_printk(KERN_ERR, sdkp,
2782 "parameter data\n");
2788 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2792 if (modepage == 8) {
2793 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2794 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2796 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2800 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2801 if (sdp->broken_fua) {
2802 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2804 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2805 !sdkp->device->use_16_for_rw) {
2806 sd_first_printk(KERN_NOTICE, sdkp,
2807 "Uses READ/WRITE(6), disabling FUA\n");
2811 /* No cache flush allowed for write protected devices */
2812 if (sdkp->WCE && sdkp->write_prot)
2815 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2816 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2817 sd_printk(KERN_NOTICE, sdkp,
2818 "Write cache: %s, read cache: %s, %s\n",
2819 sdkp->WCE ? "enabled" : "disabled",
2820 sdkp->RCD ? "disabled" : "enabled",
2821 sdkp->DPOFUA ? "supports DPO and FUA"
2822 : "doesn't support DPO or FUA");
2828 if (scsi_sense_valid(&sshdr) &&
2829 sshdr.sense_key == ILLEGAL_REQUEST &&
2830 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2831 /* Invalid field in CDB */
2832 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2834 sd_first_printk(KERN_ERR, sdkp,
2835 "Asking for cache data failed\n");
2838 if (sdp->wce_default_on) {
2839 sd_first_printk(KERN_NOTICE, sdkp,
2840 "Assuming drive cache: write back\n");
2843 sd_first_printk(KERN_ERR, sdkp,
2844 "Assuming drive cache: write through\n");
2852 * The ATO bit indicates whether the DIF application tag is available
2853 * for use by the operating system.
2855 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2858 struct scsi_device *sdp = sdkp->device;
2859 struct scsi_mode_data data;
2860 struct scsi_sense_hdr sshdr;
2862 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2865 if (sdkp->protection_type == 0)
2868 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2869 sdkp->max_retries, &data, &sshdr);
2871 if (res < 0 || !data.header_length ||
2873 sd_first_printk(KERN_WARNING, sdkp,
2874 "getting Control mode page failed, assume no ATO\n");
2876 if (scsi_sense_valid(&sshdr))
2877 sd_print_sense_hdr(sdkp, &sshdr);
2882 offset = data.header_length + data.block_descriptor_length;
2884 if ((buffer[offset] & 0x3f) != 0x0a) {
2885 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2889 if ((buffer[offset + 5] & 0x80) == 0)
2898 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2899 * @sdkp: disk to query
2901 static void sd_read_block_limits(struct scsi_disk *sdkp)
2903 unsigned int sector_sz = sdkp->device->sector_size;
2904 const int vpd_len = 64;
2905 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2908 /* Block Limits VPD */
2909 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2912 blk_queue_io_min(sdkp->disk->queue,
2913 get_unaligned_be16(&buffer[6]) * sector_sz);
2915 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2916 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2918 if (buffer[3] == 0x3c) {
2919 unsigned int lba_count, desc_count;
2921 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2926 lba_count = get_unaligned_be32(&buffer[20]);
2927 desc_count = get_unaligned_be32(&buffer[24]);
2929 if (lba_count && desc_count)
2930 sdkp->max_unmap_blocks = lba_count;
2932 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2934 if (buffer[32] & 0x80)
2935 sdkp->unmap_alignment =
2936 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2938 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2940 if (sdkp->max_unmap_blocks)
2941 sd_config_discard(sdkp, SD_LBP_UNMAP);
2943 sd_config_discard(sdkp, SD_LBP_WS16);
2945 } else { /* LBP VPD page tells us what to use */
2946 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2947 sd_config_discard(sdkp, SD_LBP_UNMAP);
2948 else if (sdkp->lbpws)
2949 sd_config_discard(sdkp, SD_LBP_WS16);
2950 else if (sdkp->lbpws10)
2951 sd_config_discard(sdkp, SD_LBP_WS10);
2953 sd_config_discard(sdkp, SD_LBP_DISABLE);
2962 * sd_read_block_characteristics - Query block dev. characteristics
2963 * @sdkp: disk to query
2965 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2967 struct request_queue *q = sdkp->disk->queue;
2968 unsigned char *buffer;
2970 const int vpd_len = 64;
2972 buffer = kmalloc(vpd_len, GFP_KERNEL);
2975 /* Block Device Characteristics VPD */
2976 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2979 rot = get_unaligned_be16(&buffer[4]);
2982 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2983 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2986 if (sdkp->device->type == TYPE_ZBC) {
2988 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM);
2990 sdkp->zoned = (buffer[8] >> 4) & 3;
2991 if (sdkp->zoned == 1) {
2993 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA);
2995 /* Regular disk or drive managed disk */
2996 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3000 if (!sdkp->first_scan)
3003 if (blk_queue_is_zoned(q)) {
3004 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3005 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3007 if (sdkp->zoned == 1)
3008 sd_printk(KERN_NOTICE, sdkp,
3009 "Host-aware SMR disk used as regular disk\n");
3010 else if (sdkp->zoned == 2)
3011 sd_printk(KERN_NOTICE, sdkp,
3012 "Drive-managed SMR disk\n");
3020 * sd_read_block_provisioning - Query provisioning VPD page
3021 * @sdkp: disk to query
3023 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3025 unsigned char *buffer;
3026 const int vpd_len = 8;
3028 if (sdkp->lbpme == 0)
3031 buffer = kmalloc(vpd_len, GFP_KERNEL);
3033 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3037 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
3038 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
3039 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
3045 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3047 struct scsi_device *sdev = sdkp->device;
3049 if (sdev->host->no_write_same) {
3050 sdev->no_write_same = 1;
3055 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3056 /* too large values might cause issues with arcmsr */
3057 int vpd_buf_len = 64;
3059 sdev->no_report_opcodes = 1;
3061 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3062 * CODES is unsupported and the device has an ATA
3063 * Information VPD page (SAT).
3065 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3066 sdev->no_write_same = 1;
3069 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3072 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3076 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3078 struct scsi_device *sdev = sdkp->device;
3080 if (!sdev->security_supported)
3083 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3084 SECURITY_PROTOCOL_IN) == 1 &&
3085 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3086 SECURITY_PROTOCOL_OUT) == 1)
3091 * Determine the device's preferred I/O size for reads and writes
3092 * unless the reported value is unreasonably small, large, not a
3093 * multiple of the physical block size, or simply garbage.
3095 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3096 unsigned int dev_max)
3098 struct scsi_device *sdp = sdkp->device;
3099 unsigned int opt_xfer_bytes =
3100 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3102 if (sdkp->opt_xfer_blocks == 0)
3105 if (sdkp->opt_xfer_blocks > dev_max) {
3106 sd_first_printk(KERN_WARNING, sdkp,
3107 "Optimal transfer size %u logical blocks " \
3108 "> dev_max (%u logical blocks)\n",
3109 sdkp->opt_xfer_blocks, dev_max);
3113 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3114 sd_first_printk(KERN_WARNING, sdkp,
3115 "Optimal transfer size %u logical blocks " \
3116 "> sd driver limit (%u logical blocks)\n",
3117 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3121 if (opt_xfer_bytes < PAGE_SIZE) {
3122 sd_first_printk(KERN_WARNING, sdkp,
3123 "Optimal transfer size %u bytes < " \
3124 "PAGE_SIZE (%u bytes)\n",
3125 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3129 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3130 sd_first_printk(KERN_WARNING, sdkp,
3131 "Optimal transfer size %u bytes not a " \
3132 "multiple of physical block size (%u bytes)\n",
3133 opt_xfer_bytes, sdkp->physical_block_size);
3137 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3143 * sd_revalidate_disk - called the first time a new disk is seen,
3144 * performs disk spin up, read_capacity, etc.
3145 * @disk: struct gendisk we care about
3147 static int sd_revalidate_disk(struct gendisk *disk)
3149 struct scsi_disk *sdkp = scsi_disk(disk);
3150 struct scsi_device *sdp = sdkp->device;
3151 struct request_queue *q = sdkp->disk->queue;
3152 sector_t old_capacity = sdkp->capacity;
3153 unsigned char *buffer;
3154 unsigned int dev_max, rw_max;
3156 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3157 "sd_revalidate_disk\n"));
3160 * If the device is offline, don't try and read capacity or any
3161 * of the other niceties.
3163 if (!scsi_device_online(sdp))
3166 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3168 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3169 "allocation failure.\n");
3173 sd_spinup_disk(sdkp);
3176 * Without media there is no reason to ask; moreover, some devices
3177 * react badly if we do.
3179 if (sdkp->media_present) {
3180 sd_read_capacity(sdkp, buffer);
3183 * set the default to rotational. All non-rotational devices
3184 * support the block characteristics VPD page, which will
3185 * cause this to be updated correctly and any device which
3186 * doesn't support it should be treated as rotational.
3188 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3189 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3191 if (scsi_device_supports_vpd(sdp)) {
3192 sd_read_block_provisioning(sdkp);
3193 sd_read_block_limits(sdkp);
3194 sd_read_block_characteristics(sdkp);
3195 sd_zbc_read_zones(sdkp, buffer);
3198 sd_print_capacity(sdkp, old_capacity);
3200 sd_read_write_protect_flag(sdkp, buffer);
3201 sd_read_cache_type(sdkp, buffer);
3202 sd_read_app_tag_own(sdkp, buffer);
3203 sd_read_write_same(sdkp, buffer);
3204 sd_read_security(sdkp, buffer);
3208 * We now have all cache related info, determine how we deal
3209 * with flush requests.
3211 sd_set_flush_flag(sdkp);
3213 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3214 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3216 /* Some devices report a maximum block count for READ/WRITE requests. */
3217 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3218 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3220 if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3221 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3222 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3224 q->limits.io_opt = 0;
3225 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3226 (sector_t)BLK_DEF_MAX_SECTORS);
3229 /* Do not exceed controller limit */
3230 rw_max = min(rw_max, queue_max_hw_sectors(q));
3233 * Only update max_sectors if previously unset or if the current value
3234 * exceeds the capabilities of the hardware.
3236 if (sdkp->first_scan ||
3237 q->limits.max_sectors > q->limits.max_dev_sectors ||
3238 q->limits.max_sectors > q->limits.max_hw_sectors)
3239 q->limits.max_sectors = rw_max;
3241 sdkp->first_scan = 0;
3243 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3244 sd_config_write_same(sdkp);
3248 * For a zoned drive, revalidating the zones can be done only once
3249 * the gendisk capacity is set. So if this fails, set back the gendisk
3252 if (sd_zbc_revalidate_zones(sdkp))
3253 set_capacity_and_notify(disk, 0);
3260 * sd_unlock_native_capacity - unlock native capacity
3261 * @disk: struct gendisk to set capacity for
3263 * Block layer calls this function if it detects that partitions
3264 * on @disk reach beyond the end of the device. If the SCSI host
3265 * implements ->unlock_native_capacity() method, it's invoked to
3266 * give it a chance to adjust the device capacity.
3269 * Defined by block layer. Might sleep.
3271 static void sd_unlock_native_capacity(struct gendisk *disk)
3273 struct scsi_device *sdev = scsi_disk(disk)->device;
3275 if (sdev->host->hostt->unlock_native_capacity)
3276 sdev->host->hostt->unlock_native_capacity(sdev);
3280 * sd_format_disk_name - format disk name
3281 * @prefix: name prefix - ie. "sd" for SCSI disks
3282 * @index: index of the disk to format name for
3283 * @buf: output buffer
3284 * @buflen: length of the output buffer
3286 * SCSI disk names starts at sda. The 26th device is sdz and the
3287 * 27th is sdaa. The last one for two lettered suffix is sdzz
3288 * which is followed by sdaaa.
3290 * This is basically 26 base counting with one extra 'nil' entry
3291 * at the beginning from the second digit on and can be
3292 * determined using similar method as 26 base conversion with the
3293 * index shifted -1 after each digit is computed.
3299 * 0 on success, -errno on failure.
3301 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3303 const int base = 'z' - 'a' + 1;
3304 char *begin = buf + strlen(prefix);
3305 char *end = buf + buflen;
3315 *--p = 'a' + (index % unit);
3316 index = (index / unit) - 1;
3317 } while (index >= 0);
3319 memmove(begin, p, end - p);
3320 memcpy(buf, prefix, strlen(prefix));
3326 * sd_probe - called during driver initialization and whenever a
3327 * new scsi device is attached to the system. It is called once
3328 * for each scsi device (not just disks) present.
3329 * @dev: pointer to device object
3331 * Returns 0 if successful (or not interested in this scsi device
3332 * (e.g. scanner)); 1 when there is an error.
3334 * Note: this function is invoked from the scsi mid-level.
3335 * This function sets up the mapping between a given
3336 * <host,channel,id,lun> (found in sdp) and new device name
3337 * (e.g. /dev/sda). More precisely it is the block device major
3338 * and minor number that is chosen here.
3340 * Assume sd_probe is not re-entrant (for time being)
3341 * Also think about sd_probe() and sd_remove() running coincidentally.
3343 static int sd_probe(struct device *dev)
3345 struct scsi_device *sdp = to_scsi_device(dev);
3346 struct scsi_disk *sdkp;
3351 scsi_autopm_get_device(sdp);
3353 if (sdp->type != TYPE_DISK &&
3354 sdp->type != TYPE_ZBC &&
3355 sdp->type != TYPE_MOD &&
3356 sdp->type != TYPE_RBC)
3359 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3360 sdev_printk(KERN_WARNING, sdp,
3361 "Unsupported ZBC host-managed device.\n");
3365 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3369 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3373 gd = __alloc_disk_node(sdp->request_queue, NUMA_NO_NODE,
3374 &sd_bio_compl_lkclass);
3378 index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3380 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3384 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3386 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3387 goto out_free_index;
3391 sdkp->driver = &sd_template;
3393 sdkp->index = index;
3394 sdkp->max_retries = SD_MAX_RETRIES;
3395 atomic_set(&sdkp->openers, 0);
3396 atomic_set(&sdkp->device->ioerr_cnt, 0);
3398 if (!sdp->request_queue->rq_timeout) {
3399 if (sdp->type != TYPE_MOD)
3400 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3402 blk_queue_rq_timeout(sdp->request_queue,
3406 device_initialize(&sdkp->dev);
3407 sdkp->dev.parent = get_device(dev);
3408 sdkp->dev.class = &sd_disk_class;
3409 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3411 error = device_add(&sdkp->dev);
3413 put_device(&sdkp->dev);
3417 dev_set_drvdata(dev, sdkp);
3419 gd->major = sd_major((index & 0xf0) >> 4);
3420 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3421 gd->minors = SD_MINORS;
3423 gd->fops = &sd_fops;
3424 gd->private_data = &sdkp->driver;
3426 /* defaults, until the device tells us otherwise */
3427 sdp->sector_size = 512;
3429 sdkp->media_present = 1;
3430 sdkp->write_prot = 0;
3431 sdkp->cache_override = 0;
3435 sdkp->first_scan = 1;
3436 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3438 sd_revalidate_disk(gd);
3440 gd->flags = GENHD_FL_EXT_DEVT;
3441 if (sdp->removable) {
3442 gd->flags |= GENHD_FL_REMOVABLE;
3443 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3444 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3447 blk_pm_runtime_init(sdp->request_queue, dev);
3448 if (sdp->rpm_autosuspend) {
3449 pm_runtime_set_autosuspend_delay(dev,
3450 sdp->host->hostt->rpm_autosuspend_delay);
3452 device_add_disk(dev, gd, NULL);
3454 sd_dif_config_host(sdkp);
3456 sd_revalidate_disk(gd);
3458 if (sdkp->security) {
3459 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3461 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3464 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3465 sdp->removable ? "removable " : "");
3466 scsi_autopm_put_device(sdp);
3471 ida_free(&sd_index_ida, index);
3475 sd_zbc_release_disk(sdkp);
3478 scsi_autopm_put_device(sdp);
3483 * sd_remove - called whenever a scsi disk (previously recognized by
3484 * sd_probe) is detached from the system. It is called (potentially
3485 * multiple times) during sd module unload.
3486 * @dev: pointer to device object
3488 * Note: this function is invoked from the scsi mid-level.
3489 * This function potentially frees up a device name (e.g. /dev/sdc)
3490 * that could be re-used by a subsequent sd_probe().
3491 * This function is not called when the built-in sd driver is "exit-ed".
3493 static int sd_remove(struct device *dev)
3495 struct scsi_disk *sdkp;
3497 sdkp = dev_get_drvdata(dev);
3498 scsi_autopm_get_device(sdkp->device);
3500 async_synchronize_full_domain(&scsi_sd_pm_domain);
3501 device_del(&sdkp->dev);
3502 del_gendisk(sdkp->disk);
3505 free_opal_dev(sdkp->opal_dev);
3507 mutex_lock(&sd_ref_mutex);
3508 dev_set_drvdata(dev, NULL);
3509 put_device(&sdkp->dev);
3510 mutex_unlock(&sd_ref_mutex);
3516 * scsi_disk_release - Called to free the scsi_disk structure
3517 * @dev: pointer to embedded class device
3519 * sd_ref_mutex must be held entering this routine. Because it is
3520 * called on last put, you should always use the scsi_disk_get()
3521 * scsi_disk_put() helpers which manipulate the semaphore directly
3522 * and never do a direct put_device.
3524 static void scsi_disk_release(struct device *dev)
3526 struct scsi_disk *sdkp = to_scsi_disk(dev);
3527 struct gendisk *disk = sdkp->disk;
3528 struct request_queue *q = disk->queue;
3530 ida_free(&sd_index_ida, sdkp->index);
3533 * Wait until all requests that are in progress have completed.
3534 * This is necessary to avoid that e.g. scsi_end_request() crashes
3535 * due to clearing the disk->private_data pointer. Wait from inside
3536 * scsi_disk_release() instead of from sd_release() to avoid that
3537 * freezing and unfreezing the request queue affects user space I/O
3538 * in case multiple processes open a /dev/sd... node concurrently.
3540 blk_mq_freeze_queue(q);
3541 blk_mq_unfreeze_queue(q);
3543 disk->private_data = NULL;
3545 put_device(&sdkp->device->sdev_gendev);
3547 sd_zbc_release_disk(sdkp);
3552 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3554 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3555 struct scsi_sense_hdr sshdr;
3556 struct scsi_device *sdp = sdkp->device;
3560 cmd[4] |= 1; /* START */
3562 if (sdp->start_stop_pwr_cond)
3563 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3565 if (!scsi_device_online(sdp))
3568 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3569 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL);
3571 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3572 if (res > 0 && scsi_sense_valid(&sshdr)) {
3573 sd_print_sense_hdr(sdkp, &sshdr);
3574 /* 0x3a is medium not present */
3575 if (sshdr.asc == 0x3a)
3580 /* SCSI error codes must not go to the generic layer */
3588 * Send a SYNCHRONIZE CACHE instruction down to the device through
3589 * the normal SCSI command structure. Wait for the command to
3592 static void sd_shutdown(struct device *dev)
3594 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3597 return; /* this can happen */
3599 if (pm_runtime_suspended(dev))
3602 if (sdkp->WCE && sdkp->media_present) {
3603 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3604 sd_sync_cache(sdkp, NULL);
3607 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3608 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3609 sd_start_stop_device(sdkp, 0);
3613 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3615 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3616 struct scsi_sense_hdr sshdr;
3619 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3622 if (sdkp->WCE && sdkp->media_present) {
3623 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3624 ret = sd_sync_cache(sdkp, &sshdr);
3627 /* ignore OFFLINE device */
3631 if (!scsi_sense_valid(&sshdr) ||
3632 sshdr.sense_key != ILLEGAL_REQUEST)
3636 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3637 * doesn't support sync. There's not much to do and
3638 * suspend shouldn't fail.
3644 if (sdkp->device->manage_start_stop) {
3645 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3646 /* an error is not worth aborting a system sleep */
3647 ret = sd_start_stop_device(sdkp, 0);
3648 if (ignore_stop_errors)
3655 static int sd_suspend_system(struct device *dev)
3657 return sd_suspend_common(dev, true);
3660 static int sd_suspend_runtime(struct device *dev)
3662 return sd_suspend_common(dev, false);
3665 static int sd_resume(struct device *dev)
3667 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3670 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3673 if (!sdkp->device->manage_start_stop)
3676 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3677 ret = sd_start_stop_device(sdkp, 1);
3679 opal_unlock_from_suspend(sdkp->opal_dev);
3683 static int sd_resume_runtime(struct device *dev)
3685 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3686 struct scsi_device *sdp = sdkp->device;
3688 if (sdp->ignore_media_change) {
3689 /* clear the device's sense data */
3690 static const u8 cmd[10] = { REQUEST_SENSE };
3692 if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL,
3693 NULL, sdp->request_queue->rq_timeout, 1, 0,
3695 sd_printk(KERN_NOTICE, sdkp,
3696 "Failed to clear sense data\n");
3699 return sd_resume(dev);
3703 * init_sd - entry point for this driver (both when built in or when
3706 * Note: this function registers this driver with the scsi mid-level.
3708 static int __init init_sd(void)
3710 int majors = 0, i, err;
3712 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3714 for (i = 0; i < SD_MAJORS; i++) {
3715 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3723 err = class_register(&sd_disk_class);
3727 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3729 if (!sd_cdb_cache) {
3730 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3735 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3737 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3742 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3743 if (!sd_page_pool) {
3744 printk(KERN_ERR "sd: can't init discard page pool\n");
3749 err = scsi_register_driver(&sd_template.gendrv);
3751 goto err_out_driver;
3756 mempool_destroy(sd_page_pool);
3759 mempool_destroy(sd_cdb_pool);
3762 kmem_cache_destroy(sd_cdb_cache);
3765 class_unregister(&sd_disk_class);
3767 for (i = 0; i < SD_MAJORS; i++)
3768 unregister_blkdev(sd_major(i), "sd");
3773 * exit_sd - exit point for this driver (when it is a module).
3775 * Note: this function unregisters this driver from the scsi mid-level.
3777 static void __exit exit_sd(void)
3781 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3783 scsi_unregister_driver(&sd_template.gendrv);
3784 mempool_destroy(sd_cdb_pool);
3785 mempool_destroy(sd_page_pool);
3786 kmem_cache_destroy(sd_cdb_cache);
3788 class_unregister(&sd_disk_class);
3790 for (i = 0; i < SD_MAJORS; i++)
3791 unregister_blkdev(sd_major(i), "sd");
3794 module_init(init_sd);
3795 module_exit(exit_sd);
3797 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3799 scsi_print_sense_hdr(sdkp->device,
3800 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3803 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3805 const char *hb_string = scsi_hostbyte_string(result);
3808 sd_printk(KERN_INFO, sdkp,
3809 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3810 hb_string ? hb_string : "invalid",
3813 sd_printk(KERN_INFO, sdkp,
3814 "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
3815 msg, host_byte(result), "DRIVER_OK");