2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE 2
39 struct scsi_host_sg_pool {
42 struct kmem_cache *slab;
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
65 SP(SCSI_MAX_SG_SEGMENTS)
69 struct kmem_cache *scsi_sdb_cache;
72 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73 * not change behaviour from the previous unplug mechanism, experimentation
74 * may prove this needs changing.
76 #define SCSI_QUEUE_DELAY 3
79 * Function: scsi_unprep_request()
81 * Purpose: Remove all preparation done for a request, including its
82 * associated scsi_cmnd, so that it can be requeued.
84 * Arguments: req - request to unprepare
86 * Lock status: Assumed that no locks are held upon entry.
90 static void scsi_unprep_request(struct request *req)
92 struct scsi_cmnd *cmd = req->special;
94 blk_unprep_request(req);
97 scsi_put_command(cmd);
101 * __scsi_queue_insert - private queue insertion
102 * @cmd: The SCSI command being requeued
103 * @reason: The reason for the requeue
104 * @unbusy: Whether the queue should be unbusied
106 * This is a private queue insertion. The public interface
107 * scsi_queue_insert() always assumes the queue should be unbusied
108 * because it's always called before the completion. This function is
109 * for a requeue after completion, which should only occur in this
112 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
114 struct Scsi_Host *host = cmd->device->host;
115 struct scsi_device *device = cmd->device;
116 struct scsi_target *starget = scsi_target(device);
117 struct request_queue *q = device->request_queue;
121 printk("Inserting command %p into mlqueue\n", cmd));
124 * Set the appropriate busy bit for the device/host.
126 * If the host/device isn't busy, assume that something actually
127 * completed, and that we should be able to queue a command now.
129 * Note that the prior mid-layer assumption that any host could
130 * always queue at least one command is now broken. The mid-layer
131 * will implement a user specifiable stall (see
132 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133 * if a command is requeued with no other commands outstanding
134 * either for the device or for the host.
137 case SCSI_MLQUEUE_HOST_BUSY:
138 host->host_blocked = host->max_host_blocked;
140 case SCSI_MLQUEUE_DEVICE_BUSY:
141 case SCSI_MLQUEUE_EH_RETRY:
142 device->device_blocked = device->max_device_blocked;
144 case SCSI_MLQUEUE_TARGET_BUSY:
145 starget->target_blocked = starget->max_target_blocked;
150 * Decrement the counters, since these commands are no longer
151 * active on the host/device.
154 scsi_device_unbusy(device);
157 * Requeue this command. It will go before all other commands
158 * that are already in the queue.
160 spin_lock_irqsave(q->queue_lock, flags);
161 blk_requeue_request(q, cmd->request);
162 spin_unlock_irqrestore(q->queue_lock, flags);
164 kblockd_schedule_work(q, &device->requeue_work);
170 * Function: scsi_queue_insert()
172 * Purpose: Insert a command in the midlevel queue.
174 * Arguments: cmd - command that we are adding to queue.
175 * reason - why we are inserting command to queue.
177 * Lock status: Assumed that lock is not held upon entry.
181 * Notes: We do this for one of two cases. Either the host is busy
182 * and it cannot accept any more commands for the time being,
183 * or the device returned QUEUE_FULL and can accept no more
185 * Notes: This could be called either from an interrupt context or a
186 * normal process context.
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
190 return __scsi_queue_insert(cmd, reason, 1);
193 * scsi_execute - insert request and wait for the result
196 * @data_direction: data direction
197 * @buffer: data buffer
198 * @bufflen: len of buffer
199 * @sense: optional sense buffer
200 * @timeout: request timeout in seconds
201 * @retries: number of times to retry request
202 * @flags: or into request flags;
203 * @resid: optional residual length
205 * returns the req->errors value which is the scsi_cmnd result
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 int data_direction, void *buffer, unsigned bufflen,
210 unsigned char *sense, int timeout, int retries, int flags,
214 int write = (data_direction == DMA_TO_DEVICE);
215 int ret = DRIVER_ERROR << 24;
217 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
221 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
222 buffer, bufflen, __GFP_WAIT))
225 req->cmd_len = COMMAND_SIZE(cmd[0]);
226 memcpy(req->cmd, cmd, req->cmd_len);
229 req->retries = retries;
230 req->timeout = timeout;
231 req->cmd_type = REQ_TYPE_BLOCK_PC;
232 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
235 * head injection *required* here otherwise quiesce won't work
237 blk_execute_rq(req->q, NULL, req, 1);
240 * Some devices (USB mass-storage in particular) may transfer
241 * garbage data together with a residue indicating that the data
242 * is invalid. Prevent the garbage from being misinterpreted
243 * and prevent security leaks by zeroing out the excess data.
245 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
246 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
249 *resid = req->resid_len;
252 blk_put_request(req);
256 EXPORT_SYMBOL(scsi_execute);
259 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
260 int data_direction, void *buffer, unsigned bufflen,
261 struct scsi_sense_hdr *sshdr, int timeout, int retries,
268 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
270 return DRIVER_ERROR << 24;
272 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
273 sense, timeout, retries, 0, resid);
275 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
280 EXPORT_SYMBOL(scsi_execute_req);
283 * Function: scsi_init_cmd_errh()
285 * Purpose: Initialize cmd fields related to error handling.
287 * Arguments: cmd - command that is ready to be queued.
289 * Notes: This function has the job of initializing a number of
290 * fields related to error handling. Typically this will
291 * be called once for each command, as required.
293 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
295 cmd->serial_number = 0;
296 scsi_set_resid(cmd, 0);
297 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
298 if (cmd->cmd_len == 0)
299 cmd->cmd_len = scsi_command_size(cmd->cmnd);
302 void scsi_device_unbusy(struct scsi_device *sdev)
304 struct Scsi_Host *shost = sdev->host;
305 struct scsi_target *starget = scsi_target(sdev);
308 spin_lock_irqsave(shost->host_lock, flags);
310 starget->target_busy--;
311 if (unlikely(scsi_host_in_recovery(shost) &&
312 (shost->host_failed || shost->host_eh_scheduled)))
313 scsi_eh_wakeup(shost);
314 spin_unlock(shost->host_lock);
315 spin_lock(sdev->request_queue->queue_lock);
317 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
321 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
322 * and call blk_run_queue for all the scsi_devices on the target -
323 * including current_sdev first.
325 * Called with *no* scsi locks held.
327 static void scsi_single_lun_run(struct scsi_device *current_sdev)
329 struct Scsi_Host *shost = current_sdev->host;
330 struct scsi_device *sdev, *tmp;
331 struct scsi_target *starget = scsi_target(current_sdev);
334 spin_lock_irqsave(shost->host_lock, flags);
335 starget->starget_sdev_user = NULL;
336 spin_unlock_irqrestore(shost->host_lock, flags);
339 * Call blk_run_queue for all LUNs on the target, starting with
340 * current_sdev. We race with others (to set starget_sdev_user),
341 * but in most cases, we will be first. Ideally, each LU on the
342 * target would get some limited time or requests on the target.
344 blk_run_queue(current_sdev->request_queue);
346 spin_lock_irqsave(shost->host_lock, flags);
347 if (starget->starget_sdev_user)
349 list_for_each_entry_safe(sdev, tmp, &starget->devices,
350 same_target_siblings) {
351 if (sdev == current_sdev)
353 if (scsi_device_get(sdev))
356 spin_unlock_irqrestore(shost->host_lock, flags);
357 blk_run_queue(sdev->request_queue);
358 spin_lock_irqsave(shost->host_lock, flags);
360 scsi_device_put(sdev);
363 spin_unlock_irqrestore(shost->host_lock, flags);
366 static inline int scsi_device_is_busy(struct scsi_device *sdev)
368 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
374 static inline int scsi_target_is_busy(struct scsi_target *starget)
376 return ((starget->can_queue > 0 &&
377 starget->target_busy >= starget->can_queue) ||
378 starget->target_blocked);
381 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
383 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
384 shost->host_blocked || shost->host_self_blocked)
391 * Function: scsi_run_queue()
393 * Purpose: Select a proper request queue to serve next
395 * Arguments: q - last request's queue
399 * Notes: The previous command was completely finished, start
400 * a new one if possible.
402 static void scsi_run_queue(struct request_queue *q)
404 struct scsi_device *sdev = q->queuedata;
405 struct Scsi_Host *shost;
406 LIST_HEAD(starved_list);
409 /* if the device is dead, sdev will be NULL, so no queue to run */
414 if (scsi_target(sdev)->single_lun)
415 scsi_single_lun_run(sdev);
417 spin_lock_irqsave(shost->host_lock, flags);
418 list_splice_init(&shost->starved_list, &starved_list);
420 while (!list_empty(&starved_list)) {
422 * As long as shost is accepting commands and we have
423 * starved queues, call blk_run_queue. scsi_request_fn
424 * drops the queue_lock and can add us back to the
427 * host_lock protects the starved_list and starved_entry.
428 * scsi_request_fn must get the host_lock before checking
429 * or modifying starved_list or starved_entry.
431 if (scsi_host_is_busy(shost))
434 sdev = list_entry(starved_list.next,
435 struct scsi_device, starved_entry);
436 list_del_init(&sdev->starved_entry);
437 if (scsi_target_is_busy(scsi_target(sdev))) {
438 list_move_tail(&sdev->starved_entry,
439 &shost->starved_list);
443 spin_unlock(shost->host_lock);
444 spin_lock(sdev->request_queue->queue_lock);
445 __blk_run_queue(sdev->request_queue);
446 spin_unlock(sdev->request_queue->queue_lock);
447 spin_lock(shost->host_lock);
449 /* put any unprocessed entries back */
450 list_splice(&starved_list, &shost->starved_list);
451 spin_unlock_irqrestore(shost->host_lock, flags);
456 void scsi_requeue_run_queue(struct work_struct *work)
458 struct scsi_device *sdev;
459 struct request_queue *q;
461 sdev = container_of(work, struct scsi_device, requeue_work);
462 q = sdev->request_queue;
467 * Function: scsi_requeue_command()
469 * Purpose: Handle post-processing of completed commands.
471 * Arguments: q - queue to operate on
472 * cmd - command that may need to be requeued.
476 * Notes: After command completion, there may be blocks left
477 * over which weren't finished by the previous command
478 * this can be for a number of reasons - the main one is
479 * I/O errors in the middle of the request, in which case
480 * we need to request the blocks that come after the bad
482 * Notes: Upon return, cmd is a stale pointer.
484 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
486 struct request *req = cmd->request;
489 spin_lock_irqsave(q->queue_lock, flags);
490 scsi_unprep_request(req);
491 blk_requeue_request(q, req);
492 spin_unlock_irqrestore(q->queue_lock, flags);
497 void scsi_next_command(struct scsi_cmnd *cmd)
499 struct scsi_device *sdev = cmd->device;
500 struct request_queue *q = sdev->request_queue;
502 /* need to hold a reference on the device before we let go of the cmd */
503 get_device(&sdev->sdev_gendev);
505 scsi_put_command(cmd);
508 /* ok to remove device now */
509 put_device(&sdev->sdev_gendev);
512 void scsi_run_host_queues(struct Scsi_Host *shost)
514 struct scsi_device *sdev;
516 shost_for_each_device(sdev, shost)
517 scsi_run_queue(sdev->request_queue);
520 static void __scsi_release_buffers(struct scsi_cmnd *, int);
523 * Function: scsi_end_request()
525 * Purpose: Post-processing of completed commands (usually invoked at end
526 * of upper level post-processing and scsi_io_completion).
528 * Arguments: cmd - command that is complete.
529 * error - 0 if I/O indicates success, < 0 for I/O error.
530 * bytes - number of bytes of completed I/O
531 * requeue - indicates whether we should requeue leftovers.
533 * Lock status: Assumed that lock is not held upon entry.
535 * Returns: cmd if requeue required, NULL otherwise.
537 * Notes: This is called for block device requests in order to
538 * mark some number of sectors as complete.
540 * We are guaranteeing that the request queue will be goosed
541 * at some point during this call.
542 * Notes: If cmd was requeued, upon return it will be a stale pointer.
544 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
545 int bytes, int requeue)
547 struct request_queue *q = cmd->device->request_queue;
548 struct request *req = cmd->request;
551 * If there are blocks left over at the end, set up the command
552 * to queue the remainder of them.
554 if (blk_end_request(req, error, bytes)) {
555 /* kill remainder if no retrys */
556 if (error && scsi_noretry_cmd(cmd))
557 blk_end_request_all(req, error);
561 * Bleah. Leftovers again. Stick the
562 * leftovers in the front of the
563 * queue, and goose the queue again.
565 scsi_release_buffers(cmd);
566 scsi_requeue_command(q, cmd);
574 * This will goose the queue request function at the end, so we don't
575 * need to worry about launching another command.
577 __scsi_release_buffers(cmd, 0);
578 scsi_next_command(cmd);
582 static inline unsigned int scsi_sgtable_index(unsigned short nents)
586 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
591 index = get_count_order(nents) - 3;
596 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
598 struct scsi_host_sg_pool *sgp;
600 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
601 mempool_free(sgl, sgp->pool);
604 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
606 struct scsi_host_sg_pool *sgp;
608 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
609 return mempool_alloc(sgp->pool, gfp_mask);
612 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
619 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
620 gfp_mask, scsi_sg_alloc);
622 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
628 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
630 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
633 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
636 if (cmd->sdb.table.nents)
637 scsi_free_sgtable(&cmd->sdb);
639 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
641 if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
642 struct scsi_data_buffer *bidi_sdb =
643 cmd->request->next_rq->special;
644 scsi_free_sgtable(bidi_sdb);
645 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
646 cmd->request->next_rq->special = NULL;
649 if (scsi_prot_sg_count(cmd))
650 scsi_free_sgtable(cmd->prot_sdb);
654 * Function: scsi_release_buffers()
656 * Purpose: Completion processing for block device I/O requests.
658 * Arguments: cmd - command that we are bailing.
660 * Lock status: Assumed that no lock is held upon entry.
664 * Notes: In the event that an upper level driver rejects a
665 * command, we must release resources allocated during
666 * the __init_io() function. Primarily this would involve
667 * the scatter-gather table, and potentially any bounce
670 void scsi_release_buffers(struct scsi_cmnd *cmd)
672 __scsi_release_buffers(cmd, 1);
674 EXPORT_SYMBOL(scsi_release_buffers);
676 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
680 switch(host_byte(result)) {
681 case DID_TRANSPORT_FAILFAST:
684 case DID_TARGET_FAILURE:
685 set_host_byte(cmd, DID_OK);
688 case DID_NEXUS_FAILURE:
689 set_host_byte(cmd, DID_OK);
701 * Function: scsi_io_completion()
703 * Purpose: Completion processing for block device I/O requests.
705 * Arguments: cmd - command that is finished.
707 * Lock status: Assumed that no lock is held upon entry.
711 * Notes: This function is matched in terms of capabilities to
712 * the function that created the scatter-gather list.
713 * In other words, if there are no bounce buffers
714 * (the normal case for most drivers), we don't need
715 * the logic to deal with cleaning up afterwards.
717 * We must call scsi_end_request(). This will finish off
718 * the specified number of sectors. If we are done, the
719 * command block will be released and the queue function
720 * will be goosed. If we are not done then we have to
721 * figure out what to do next:
723 * a) We can call scsi_requeue_command(). The request
724 * will be unprepared and put back on the queue. Then
725 * a new command will be created for it. This should
726 * be used if we made forward progress, or if we want
727 * to switch from READ(10) to READ(6) for example.
729 * b) We can call scsi_queue_insert(). The request will
730 * be put back on the queue and retried using the same
731 * command as before, possibly after a delay.
733 * c) We can call blk_end_request() with -EIO to fail
734 * the remainder of the request.
736 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
738 int result = cmd->result;
739 struct request_queue *q = cmd->device->request_queue;
740 struct request *req = cmd->request;
742 struct scsi_sense_hdr sshdr;
744 int sense_deferred = 0;
745 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
746 ACTION_DELAYED_RETRY} action;
747 char *description = NULL;
750 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
752 sense_deferred = scsi_sense_is_deferred(&sshdr);
755 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
756 req->errors = result;
758 if (sense_valid && req->sense) {
760 * SG_IO wants current and deferred errors
762 int len = 8 + cmd->sense_buffer[7];
764 if (len > SCSI_SENSE_BUFFERSIZE)
765 len = SCSI_SENSE_BUFFERSIZE;
766 memcpy(req->sense, cmd->sense_buffer, len);
767 req->sense_len = len;
770 error = __scsi_error_from_host_byte(cmd, result);
773 req->resid_len = scsi_get_resid(cmd);
775 if (scsi_bidi_cmnd(cmd)) {
777 * Bidi commands Must be complete as a whole,
778 * both sides at once.
780 req->next_rq->resid_len = scsi_in(cmd)->resid;
782 scsi_release_buffers(cmd);
783 blk_end_request_all(req, 0);
785 scsi_next_command(cmd);
790 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
791 BUG_ON(blk_bidi_rq(req));
794 * Next deal with any sectors which we were able to correctly
797 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
799 blk_rq_sectors(req), good_bytes));
802 * Recovered errors need reporting, but they're always treated
803 * as success, so fiddle the result code here. For BLOCK_PC
804 * we already took a copy of the original into rq->errors which
805 * is what gets returned to the user
807 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
808 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
809 * print since caller wants ATA registers. Only occurs on
810 * SCSI ATA PASS_THROUGH commands when CK_COND=1
812 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
814 else if (!(req->cmd_flags & REQ_QUIET))
815 scsi_print_sense("", cmd);
817 /* BLOCK_PC may have set error */
822 * A number of bytes were successfully read. If there
823 * are leftovers and there is some kind of error
824 * (result != 0), retry the rest.
826 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
829 error = __scsi_error_from_host_byte(cmd, result);
831 if (host_byte(result) == DID_RESET) {
832 /* Third party bus reset or reset for error recovery
833 * reasons. Just retry the command and see what
836 action = ACTION_RETRY;
837 } else if (sense_valid && !sense_deferred) {
838 switch (sshdr.sense_key) {
840 if (cmd->device->removable) {
841 /* Detected disc change. Set a bit
842 * and quietly refuse further access.
844 cmd->device->changed = 1;
845 description = "Media Changed";
846 action = ACTION_FAIL;
848 /* Must have been a power glitch, or a
849 * bus reset. Could not have been a
850 * media change, so we just retry the
851 * command and see what happens.
853 action = ACTION_RETRY;
856 case ILLEGAL_REQUEST:
857 /* If we had an ILLEGAL REQUEST returned, then
858 * we may have performed an unsupported
859 * command. The only thing this should be
860 * would be a ten byte read where only a six
861 * byte read was supported. Also, on a system
862 * where READ CAPACITY failed, we may have
863 * read past the end of the disk.
865 if ((cmd->device->use_10_for_rw &&
866 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
867 (cmd->cmnd[0] == READ_10 ||
868 cmd->cmnd[0] == WRITE_10)) {
869 /* This will issue a new 6-byte command. */
870 cmd->device->use_10_for_rw = 0;
871 action = ACTION_REPREP;
872 } else if (sshdr.asc == 0x10) /* DIX */ {
873 description = "Host Data Integrity Failure";
874 action = ACTION_FAIL;
876 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
877 } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
878 (cmd->cmnd[0] == UNMAP ||
879 cmd->cmnd[0] == WRITE_SAME_16 ||
880 cmd->cmnd[0] == WRITE_SAME)) {
881 description = "Discard failure";
882 action = ACTION_FAIL;
885 action = ACTION_FAIL;
887 case ABORTED_COMMAND:
888 action = ACTION_FAIL;
889 if (sshdr.asc == 0x10) { /* DIF */
890 description = "Target Data Integrity Failure";
895 /* If the device is in the process of becoming
896 * ready, or has a temporary blockage, retry.
898 if (sshdr.asc == 0x04) {
899 switch (sshdr.ascq) {
900 case 0x01: /* becoming ready */
901 case 0x04: /* format in progress */
902 case 0x05: /* rebuild in progress */
903 case 0x06: /* recalculation in progress */
904 case 0x07: /* operation in progress */
905 case 0x08: /* Long write in progress */
906 case 0x09: /* self test in progress */
907 case 0x14: /* space allocation in progress */
908 action = ACTION_DELAYED_RETRY;
911 description = "Device not ready";
912 action = ACTION_FAIL;
916 description = "Device not ready";
917 action = ACTION_FAIL;
920 case VOLUME_OVERFLOW:
921 /* See SSC3rXX or current. */
922 action = ACTION_FAIL;
925 description = "Unhandled sense code";
926 action = ACTION_FAIL;
930 description = "Unhandled error code";
931 action = ACTION_FAIL;
936 /* Give up and fail the remainder of the request */
937 scsi_release_buffers(cmd);
938 if (!(req->cmd_flags & REQ_QUIET)) {
940 scmd_printk(KERN_INFO, cmd, "%s\n",
942 scsi_print_result(cmd);
943 if (driver_byte(result) & DRIVER_SENSE)
944 scsi_print_sense("", cmd);
945 scsi_print_command(cmd);
947 if (blk_end_request_err(req, error))
948 scsi_requeue_command(q, cmd);
950 scsi_next_command(cmd);
953 /* Unprep the request and put it back at the head of the queue.
954 * A new command will be prepared and issued.
956 scsi_release_buffers(cmd);
957 scsi_requeue_command(q, cmd);
960 /* Retry the same command immediately */
961 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
963 case ACTION_DELAYED_RETRY:
964 /* Retry the same command after a delay */
965 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
970 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
976 * If sg table allocation fails, requeue request later.
978 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
980 return BLKPREP_DEFER;
986 * Next, walk the list, and fill in the addresses and sizes of
989 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
990 BUG_ON(count > sdb->table.nents);
991 sdb->table.nents = count;
992 sdb->length = blk_rq_bytes(req);
997 * Function: scsi_init_io()
999 * Purpose: SCSI I/O initialize function.
1001 * Arguments: cmd - Command descriptor we wish to initialize
1003 * Returns: 0 on success
1004 * BLKPREP_DEFER if the failure is retryable
1005 * BLKPREP_KILL if the failure is fatal
1007 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1009 struct request *rq = cmd->request;
1011 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1015 if (blk_bidi_rq(rq)) {
1016 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1017 scsi_sdb_cache, GFP_ATOMIC);
1019 error = BLKPREP_DEFER;
1023 rq->next_rq->special = bidi_sdb;
1024 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1029 if (blk_integrity_rq(rq)) {
1030 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1033 BUG_ON(prot_sdb == NULL);
1034 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1036 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1037 error = BLKPREP_DEFER;
1041 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1042 prot_sdb->table.sgl);
1043 BUG_ON(unlikely(count > ivecs));
1044 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1046 cmd->prot_sdb = prot_sdb;
1047 cmd->prot_sdb->table.nents = count;
1053 scsi_release_buffers(cmd);
1054 cmd->request->special = NULL;
1055 scsi_put_command(cmd);
1058 EXPORT_SYMBOL(scsi_init_io);
1060 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1061 struct request *req)
1063 struct scsi_cmnd *cmd;
1065 if (!req->special) {
1066 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1074 /* pull a tag out of the request if we have one */
1075 cmd->tag = req->tag;
1078 cmd->cmnd = req->cmd;
1079 cmd->prot_op = SCSI_PROT_NORMAL;
1084 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1086 struct scsi_cmnd *cmd;
1087 int ret = scsi_prep_state_check(sdev, req);
1089 if (ret != BLKPREP_OK)
1092 cmd = scsi_get_cmd_from_req(sdev, req);
1094 return BLKPREP_DEFER;
1097 * BLOCK_PC requests may transfer data, in which case they must
1098 * a bio attached to them. Or they might contain a SCSI command
1099 * that does not transfer data, in which case they may optionally
1100 * submit a request without an attached bio.
1105 BUG_ON(!req->nr_phys_segments);
1107 ret = scsi_init_io(cmd, GFP_ATOMIC);
1111 BUG_ON(blk_rq_bytes(req));
1113 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1117 cmd->cmd_len = req->cmd_len;
1118 if (!blk_rq_bytes(req))
1119 cmd->sc_data_direction = DMA_NONE;
1120 else if (rq_data_dir(req) == WRITE)
1121 cmd->sc_data_direction = DMA_TO_DEVICE;
1123 cmd->sc_data_direction = DMA_FROM_DEVICE;
1125 cmd->transfersize = blk_rq_bytes(req);
1126 cmd->allowed = req->retries;
1129 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1132 * Setup a REQ_TYPE_FS command. These are simple read/write request
1133 * from filesystems that still need to be translated to SCSI CDBs from
1136 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1138 struct scsi_cmnd *cmd;
1139 int ret = scsi_prep_state_check(sdev, req);
1141 if (ret != BLKPREP_OK)
1144 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1145 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1146 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1147 if (ret != BLKPREP_OK)
1152 * Filesystem requests must transfer data.
1154 BUG_ON(!req->nr_phys_segments);
1156 cmd = scsi_get_cmd_from_req(sdev, req);
1158 return BLKPREP_DEFER;
1160 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1161 return scsi_init_io(cmd, GFP_ATOMIC);
1163 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1165 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1167 int ret = BLKPREP_OK;
1170 * If the device is not in running state we will reject some
1173 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1174 switch (sdev->sdev_state) {
1177 * If the device is offline we refuse to process any
1178 * commands. The device must be brought online
1179 * before trying any recovery commands.
1181 sdev_printk(KERN_ERR, sdev,
1182 "rejecting I/O to offline device\n");
1187 * If the device is fully deleted, we refuse to
1188 * process any commands as well.
1190 sdev_printk(KERN_ERR, sdev,
1191 "rejecting I/O to dead device\n");
1196 case SDEV_CREATED_BLOCK:
1198 * If the devices is blocked we defer normal commands.
1200 if (!(req->cmd_flags & REQ_PREEMPT))
1201 ret = BLKPREP_DEFER;
1205 * For any other not fully online state we only allow
1206 * special commands. In particular any user initiated
1207 * command is not allowed.
1209 if (!(req->cmd_flags & REQ_PREEMPT))
1216 EXPORT_SYMBOL(scsi_prep_state_check);
1218 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1220 struct scsi_device *sdev = q->queuedata;
1224 req->errors = DID_NO_CONNECT << 16;
1225 /* release the command and kill it */
1227 struct scsi_cmnd *cmd = req->special;
1228 scsi_release_buffers(cmd);
1229 scsi_put_command(cmd);
1230 req->special = NULL;
1235 * If we defer, the blk_peek_request() returns NULL, but the
1236 * queue must be restarted, so we schedule a callback to happen
1239 if (sdev->device_busy == 0)
1240 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1243 req->cmd_flags |= REQ_DONTPREP;
1248 EXPORT_SYMBOL(scsi_prep_return);
1250 int scsi_prep_fn(struct request_queue *q, struct request *req)
1252 struct scsi_device *sdev = q->queuedata;
1253 int ret = BLKPREP_KILL;
1255 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1256 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1257 return scsi_prep_return(q, req, ret);
1259 EXPORT_SYMBOL(scsi_prep_fn);
1262 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1265 * Called with the queue_lock held.
1267 static inline int scsi_dev_queue_ready(struct request_queue *q,
1268 struct scsi_device *sdev)
1270 if (sdev->device_busy == 0 && sdev->device_blocked) {
1272 * unblock after device_blocked iterates to zero
1274 if (--sdev->device_blocked == 0) {
1276 sdev_printk(KERN_INFO, sdev,
1277 "unblocking device at zero depth\n"));
1279 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1283 if (scsi_device_is_busy(sdev))
1291 * scsi_target_queue_ready: checks if there we can send commands to target
1292 * @sdev: scsi device on starget to check.
1294 * Called with the host lock held.
1296 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1297 struct scsi_device *sdev)
1299 struct scsi_target *starget = scsi_target(sdev);
1301 if (starget->single_lun) {
1302 if (starget->starget_sdev_user &&
1303 starget->starget_sdev_user != sdev)
1305 starget->starget_sdev_user = sdev;
1308 if (starget->target_busy == 0 && starget->target_blocked) {
1310 * unblock after target_blocked iterates to zero
1312 if (--starget->target_blocked == 0) {
1313 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1314 "unblocking target at zero depth\n"));
1319 if (scsi_target_is_busy(starget)) {
1320 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1328 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1329 * return 0. We must end up running the queue again whenever 0 is
1330 * returned, else IO can hang.
1332 * Called with host_lock held.
1334 static inline int scsi_host_queue_ready(struct request_queue *q,
1335 struct Scsi_Host *shost,
1336 struct scsi_device *sdev)
1338 if (scsi_host_in_recovery(shost))
1340 if (shost->host_busy == 0 && shost->host_blocked) {
1342 * unblock after host_blocked iterates to zero
1344 if (--shost->host_blocked == 0) {
1346 printk("scsi%d unblocking host at zero depth\n",
1352 if (scsi_host_is_busy(shost)) {
1353 if (list_empty(&sdev->starved_entry))
1354 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1358 /* We're OK to process the command, so we can't be starved */
1359 if (!list_empty(&sdev->starved_entry))
1360 list_del_init(&sdev->starved_entry);
1366 * Busy state exporting function for request stacking drivers.
1368 * For efficiency, no lock is taken to check the busy state of
1369 * shost/starget/sdev, since the returned value is not guaranteed and
1370 * may be changed after request stacking drivers call the function,
1371 * regardless of taking lock or not.
1373 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1374 * (e.g. !sdev), scsi needs to return 'not busy'.
1375 * Otherwise, request stacking drivers may hold requests forever.
1377 static int scsi_lld_busy(struct request_queue *q)
1379 struct scsi_device *sdev = q->queuedata;
1380 struct Scsi_Host *shost;
1381 struct scsi_target *starget;
1387 starget = scsi_target(sdev);
1389 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1390 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1397 * Kill a request for a dead device
1399 static void scsi_kill_request(struct request *req, struct request_queue *q)
1401 struct scsi_cmnd *cmd = req->special;
1402 struct scsi_device *sdev;
1403 struct scsi_target *starget;
1404 struct Scsi_Host *shost;
1406 blk_start_request(req);
1408 scmd_printk(KERN_INFO, cmd, "killing request\n");
1411 starget = scsi_target(sdev);
1413 scsi_init_cmd_errh(cmd);
1414 cmd->result = DID_NO_CONNECT << 16;
1415 atomic_inc(&cmd->device->iorequest_cnt);
1418 * SCSI request completion path will do scsi_device_unbusy(),
1419 * bump busy counts. To bump the counters, we need to dance
1420 * with the locks as normal issue path does.
1422 sdev->device_busy++;
1423 spin_unlock(sdev->request_queue->queue_lock);
1424 spin_lock(shost->host_lock);
1426 starget->target_busy++;
1427 spin_unlock(shost->host_lock);
1428 spin_lock(sdev->request_queue->queue_lock);
1430 blk_complete_request(req);
1433 static void scsi_softirq_done(struct request *rq)
1435 struct scsi_cmnd *cmd = rq->special;
1436 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1439 INIT_LIST_HEAD(&cmd->eh_entry);
1441 atomic_inc(&cmd->device->iodone_cnt);
1443 atomic_inc(&cmd->device->ioerr_cnt);
1445 disposition = scsi_decide_disposition(cmd);
1446 if (disposition != SUCCESS &&
1447 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1448 sdev_printk(KERN_ERR, cmd->device,
1449 "timing out command, waited %lus\n",
1451 disposition = SUCCESS;
1454 scsi_log_completion(cmd, disposition);
1456 switch (disposition) {
1458 scsi_finish_command(cmd);
1461 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1463 case ADD_TO_MLQUEUE:
1464 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1467 if (!scsi_eh_scmd_add(cmd, 0))
1468 scsi_finish_command(cmd);
1473 * Function: scsi_request_fn()
1475 * Purpose: Main strategy routine for SCSI.
1477 * Arguments: q - Pointer to actual queue.
1481 * Lock status: IO request lock assumed to be held when called.
1483 static void scsi_request_fn(struct request_queue *q)
1485 struct scsi_device *sdev = q->queuedata;
1486 struct Scsi_Host *shost;
1487 struct scsi_cmnd *cmd;
1488 struct request *req;
1491 while ((req = blk_peek_request(q)) != NULL)
1492 scsi_kill_request(req, q);
1496 if(!get_device(&sdev->sdev_gendev))
1497 /* We must be tearing the block queue down already */
1501 * To start with, we keep looping until the queue is empty, or until
1502 * the host is no longer able to accept any more requests.
1508 * get next queueable request. We do this early to make sure
1509 * that the request is fully prepared even if we cannot
1512 req = blk_peek_request(q);
1513 if (!req || !scsi_dev_queue_ready(q, sdev))
1516 if (unlikely(!scsi_device_online(sdev))) {
1517 sdev_printk(KERN_ERR, sdev,
1518 "rejecting I/O to offline device\n");
1519 scsi_kill_request(req, q);
1525 * Remove the request from the request list.
1527 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1528 blk_start_request(req);
1529 sdev->device_busy++;
1531 spin_unlock(q->queue_lock);
1533 if (unlikely(cmd == NULL)) {
1534 printk(KERN_CRIT "impossible request in %s.\n"
1535 "please mail a stack trace to "
1536 "linux-scsi@vger.kernel.org\n",
1538 blk_dump_rq_flags(req, "foo");
1541 spin_lock(shost->host_lock);
1544 * We hit this when the driver is using a host wide
1545 * tag map. For device level tag maps the queue_depth check
1546 * in the device ready fn would prevent us from trying
1547 * to allocate a tag. Since the map is a shared host resource
1548 * we add the dev to the starved list so it eventually gets
1549 * a run when a tag is freed.
1551 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1552 if (list_empty(&sdev->starved_entry))
1553 list_add_tail(&sdev->starved_entry,
1554 &shost->starved_list);
1558 if (!scsi_target_queue_ready(shost, sdev))
1561 if (!scsi_host_queue_ready(q, shost, sdev))
1564 scsi_target(sdev)->target_busy++;
1568 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1569 * take the lock again.
1571 spin_unlock_irq(shost->host_lock);
1574 * Finally, initialize any error handling parameters, and set up
1575 * the timers for timeouts.
1577 scsi_init_cmd_errh(cmd);
1580 * Dispatch the command to the low-level driver.
1582 rtn = scsi_dispatch_cmd(cmd);
1583 spin_lock_irq(q->queue_lock);
1591 spin_unlock_irq(shost->host_lock);
1594 * lock q, handle tag, requeue req, and decrement device_busy. We
1595 * must return with queue_lock held.
1597 * Decrementing device_busy without checking it is OK, as all such
1598 * cases (host limits or settings) should run the queue at some
1601 spin_lock_irq(q->queue_lock);
1602 blk_requeue_request(q, req);
1603 sdev->device_busy--;
1605 if (sdev->device_busy == 0)
1606 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1608 /* must be careful here...if we trigger the ->remove() function
1609 * we cannot be holding the q lock */
1610 spin_unlock_irq(q->queue_lock);
1611 put_device(&sdev->sdev_gendev);
1612 spin_lock_irq(q->queue_lock);
1615 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1617 struct device *host_dev;
1618 u64 bounce_limit = 0xffffffff;
1620 if (shost->unchecked_isa_dma)
1621 return BLK_BOUNCE_ISA;
1623 * Platforms with virtual-DMA translation
1624 * hardware have no practical limit.
1626 if (!PCI_DMA_BUS_IS_PHYS)
1627 return BLK_BOUNCE_ANY;
1629 host_dev = scsi_get_device(shost);
1630 if (host_dev && host_dev->dma_mask)
1631 bounce_limit = *host_dev->dma_mask;
1633 return bounce_limit;
1635 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1637 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1638 request_fn_proc *request_fn)
1640 struct request_queue *q;
1641 struct device *dev = shost->dma_dev;
1643 q = blk_init_queue(request_fn, NULL);
1648 * this limit is imposed by hardware restrictions
1650 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1651 SCSI_MAX_SG_CHAIN_SEGMENTS));
1653 if (scsi_host_prot_dma(shost)) {
1654 shost->sg_prot_tablesize =
1655 min_not_zero(shost->sg_prot_tablesize,
1656 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1657 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1658 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1661 blk_queue_max_hw_sectors(q, shost->max_sectors);
1662 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1663 blk_queue_segment_boundary(q, shost->dma_boundary);
1664 dma_set_seg_boundary(dev, shost->dma_boundary);
1666 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1668 if (!shost->use_clustering)
1669 q->limits.cluster = 0;
1672 * set a reasonable default alignment on word boundaries: the
1673 * host and device may alter it using
1674 * blk_queue_update_dma_alignment() later.
1676 blk_queue_dma_alignment(q, 0x03);
1680 EXPORT_SYMBOL(__scsi_alloc_queue);
1682 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1684 struct request_queue *q;
1686 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1690 blk_queue_prep_rq(q, scsi_prep_fn);
1691 blk_queue_softirq_done(q, scsi_softirq_done);
1692 blk_queue_rq_timed_out(q, scsi_times_out);
1693 blk_queue_lld_busy(q, scsi_lld_busy);
1697 void scsi_free_queue(struct request_queue *q)
1699 unsigned long flags;
1701 WARN_ON(q->queuedata);
1703 /* cause scsi_request_fn() to kill all non-finished requests */
1704 spin_lock_irqsave(q->queue_lock, flags);
1706 spin_unlock_irqrestore(q->queue_lock, flags);
1708 blk_cleanup_queue(q);
1712 * Function: scsi_block_requests()
1714 * Purpose: Utility function used by low-level drivers to prevent further
1715 * commands from being queued to the device.
1717 * Arguments: shost - Host in question
1721 * Lock status: No locks are assumed held.
1723 * Notes: There is no timer nor any other means by which the requests
1724 * get unblocked other than the low-level driver calling
1725 * scsi_unblock_requests().
1727 void scsi_block_requests(struct Scsi_Host *shost)
1729 shost->host_self_blocked = 1;
1731 EXPORT_SYMBOL(scsi_block_requests);
1734 * Function: scsi_unblock_requests()
1736 * Purpose: Utility function used by low-level drivers to allow further
1737 * commands from being queued to the device.
1739 * Arguments: shost - Host in question
1743 * Lock status: No locks are assumed held.
1745 * Notes: There is no timer nor any other means by which the requests
1746 * get unblocked other than the low-level driver calling
1747 * scsi_unblock_requests().
1749 * This is done as an API function so that changes to the
1750 * internals of the scsi mid-layer won't require wholesale
1751 * changes to drivers that use this feature.
1753 void scsi_unblock_requests(struct Scsi_Host *shost)
1755 shost->host_self_blocked = 0;
1756 scsi_run_host_queues(shost);
1758 EXPORT_SYMBOL(scsi_unblock_requests);
1760 int __init scsi_init_queue(void)
1764 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1765 sizeof(struct scsi_data_buffer),
1767 if (!scsi_sdb_cache) {
1768 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1772 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1773 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1774 int size = sgp->size * sizeof(struct scatterlist);
1776 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1777 SLAB_HWCACHE_ALIGN, NULL);
1779 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1784 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1787 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1796 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1797 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1799 mempool_destroy(sgp->pool);
1801 kmem_cache_destroy(sgp->slab);
1803 kmem_cache_destroy(scsi_sdb_cache);
1808 void scsi_exit_queue(void)
1812 kmem_cache_destroy(scsi_sdb_cache);
1814 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1815 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1816 mempool_destroy(sgp->pool);
1817 kmem_cache_destroy(sgp->slab);
1822 * scsi_mode_select - issue a mode select
1823 * @sdev: SCSI device to be queried
1824 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1825 * @sp: Save page bit (0 == don't save, 1 == save)
1826 * @modepage: mode page being requested
1827 * @buffer: request buffer (may not be smaller than eight bytes)
1828 * @len: length of request buffer.
1829 * @timeout: command timeout
1830 * @retries: number of retries before failing
1831 * @data: returns a structure abstracting the mode header data
1832 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1833 * must be SCSI_SENSE_BUFFERSIZE big.
1835 * Returns zero if successful; negative error number or scsi
1840 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1841 unsigned char *buffer, int len, int timeout, int retries,
1842 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1844 unsigned char cmd[10];
1845 unsigned char *real_buffer;
1848 memset(cmd, 0, sizeof(cmd));
1849 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1851 if (sdev->use_10_for_ms) {
1854 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1857 memcpy(real_buffer + 8, buffer, len);
1861 real_buffer[2] = data->medium_type;
1862 real_buffer[3] = data->device_specific;
1863 real_buffer[4] = data->longlba ? 0x01 : 0;
1865 real_buffer[6] = data->block_descriptor_length >> 8;
1866 real_buffer[7] = data->block_descriptor_length;
1868 cmd[0] = MODE_SELECT_10;
1872 if (len > 255 || data->block_descriptor_length > 255 ||
1876 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1879 memcpy(real_buffer + 4, buffer, len);
1882 real_buffer[1] = data->medium_type;
1883 real_buffer[2] = data->device_specific;
1884 real_buffer[3] = data->block_descriptor_length;
1887 cmd[0] = MODE_SELECT;
1891 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1892 sshdr, timeout, retries, NULL);
1896 EXPORT_SYMBOL_GPL(scsi_mode_select);
1899 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1900 * @sdev: SCSI device to be queried
1901 * @dbd: set if mode sense will allow block descriptors to be returned
1902 * @modepage: mode page being requested
1903 * @buffer: request buffer (may not be smaller than eight bytes)
1904 * @len: length of request buffer.
1905 * @timeout: command timeout
1906 * @retries: number of retries before failing
1907 * @data: returns a structure abstracting the mode header data
1908 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1909 * must be SCSI_SENSE_BUFFERSIZE big.
1911 * Returns zero if unsuccessful, or the header offset (either 4
1912 * or 8 depending on whether a six or ten byte command was
1913 * issued) if successful.
1916 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1917 unsigned char *buffer, int len, int timeout, int retries,
1918 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1920 unsigned char cmd[12];
1924 struct scsi_sense_hdr my_sshdr;
1926 memset(data, 0, sizeof(*data));
1927 memset(&cmd[0], 0, 12);
1928 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1931 /* caller might not be interested in sense, but we need it */
1936 use_10_for_ms = sdev->use_10_for_ms;
1938 if (use_10_for_ms) {
1942 cmd[0] = MODE_SENSE_10;
1949 cmd[0] = MODE_SENSE;
1954 memset(buffer, 0, len);
1956 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1957 sshdr, timeout, retries, NULL);
1959 /* This code looks awful: what it's doing is making sure an
1960 * ILLEGAL REQUEST sense return identifies the actual command
1961 * byte as the problem. MODE_SENSE commands can return
1962 * ILLEGAL REQUEST if the code page isn't supported */
1964 if (use_10_for_ms && !scsi_status_is_good(result) &&
1965 (driver_byte(result) & DRIVER_SENSE)) {
1966 if (scsi_sense_valid(sshdr)) {
1967 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1968 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1970 * Invalid command operation code
1972 sdev->use_10_for_ms = 0;
1978 if(scsi_status_is_good(result)) {
1979 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1980 (modepage == 6 || modepage == 8))) {
1981 /* Initio breakage? */
1984 data->medium_type = 0;
1985 data->device_specific = 0;
1987 data->block_descriptor_length = 0;
1988 } else if(use_10_for_ms) {
1989 data->length = buffer[0]*256 + buffer[1] + 2;
1990 data->medium_type = buffer[2];
1991 data->device_specific = buffer[3];
1992 data->longlba = buffer[4] & 0x01;
1993 data->block_descriptor_length = buffer[6]*256
1996 data->length = buffer[0] + 1;
1997 data->medium_type = buffer[1];
1998 data->device_specific = buffer[2];
1999 data->block_descriptor_length = buffer[3];
2001 data->header_length = header_length;
2006 EXPORT_SYMBOL(scsi_mode_sense);
2009 * scsi_test_unit_ready - test if unit is ready
2010 * @sdev: scsi device to change the state of.
2011 * @timeout: command timeout
2012 * @retries: number of retries before failing
2013 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2014 * returning sense. Make sure that this is cleared before passing
2017 * Returns zero if unsuccessful or an error if TUR failed. For
2018 * removable media, UNIT_ATTENTION sets ->changed flag.
2021 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2022 struct scsi_sense_hdr *sshdr_external)
2025 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2027 struct scsi_sense_hdr *sshdr;
2030 if (!sshdr_external)
2031 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2033 sshdr = sshdr_external;
2035 /* try to eat the UNIT_ATTENTION if there are enough retries */
2037 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2038 timeout, retries, NULL);
2039 if (sdev->removable && scsi_sense_valid(sshdr) &&
2040 sshdr->sense_key == UNIT_ATTENTION)
2042 } while (scsi_sense_valid(sshdr) &&
2043 sshdr->sense_key == UNIT_ATTENTION && --retries);
2045 if (!sshdr_external)
2049 EXPORT_SYMBOL(scsi_test_unit_ready);
2052 * scsi_device_set_state - Take the given device through the device state model.
2053 * @sdev: scsi device to change the state of.
2054 * @state: state to change to.
2056 * Returns zero if unsuccessful or an error if the requested
2057 * transition is illegal.
2060 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2062 enum scsi_device_state oldstate = sdev->sdev_state;
2064 if (state == oldstate)
2070 case SDEV_CREATED_BLOCK:
2114 case SDEV_CREATED_BLOCK:
2121 case SDEV_CREATED_BLOCK:
2156 sdev->sdev_state = state;
2160 SCSI_LOG_ERROR_RECOVERY(1,
2161 sdev_printk(KERN_ERR, sdev,
2162 "Illegal state transition %s->%s\n",
2163 scsi_device_state_name(oldstate),
2164 scsi_device_state_name(state))
2168 EXPORT_SYMBOL(scsi_device_set_state);
2171 * sdev_evt_emit - emit a single SCSI device uevent
2172 * @sdev: associated SCSI device
2173 * @evt: event to emit
2175 * Send a single uevent (scsi_event) to the associated scsi_device.
2177 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2182 switch (evt->evt_type) {
2183 case SDEV_EVT_MEDIA_CHANGE:
2184 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2194 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2198 * sdev_evt_thread - send a uevent for each scsi event
2199 * @work: work struct for scsi_device
2201 * Dispatch queued events to their associated scsi_device kobjects
2204 void scsi_evt_thread(struct work_struct *work)
2206 struct scsi_device *sdev;
2207 LIST_HEAD(event_list);
2209 sdev = container_of(work, struct scsi_device, event_work);
2212 struct scsi_event *evt;
2213 struct list_head *this, *tmp;
2214 unsigned long flags;
2216 spin_lock_irqsave(&sdev->list_lock, flags);
2217 list_splice_init(&sdev->event_list, &event_list);
2218 spin_unlock_irqrestore(&sdev->list_lock, flags);
2220 if (list_empty(&event_list))
2223 list_for_each_safe(this, tmp, &event_list) {
2224 evt = list_entry(this, struct scsi_event, node);
2225 list_del(&evt->node);
2226 scsi_evt_emit(sdev, evt);
2233 * sdev_evt_send - send asserted event to uevent thread
2234 * @sdev: scsi_device event occurred on
2235 * @evt: event to send
2237 * Assert scsi device event asynchronously.
2239 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2241 unsigned long flags;
2244 /* FIXME: currently this check eliminates all media change events
2245 * for polled devices. Need to update to discriminate between AN
2246 * and polled events */
2247 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2253 spin_lock_irqsave(&sdev->list_lock, flags);
2254 list_add_tail(&evt->node, &sdev->event_list);
2255 schedule_work(&sdev->event_work);
2256 spin_unlock_irqrestore(&sdev->list_lock, flags);
2258 EXPORT_SYMBOL_GPL(sdev_evt_send);
2261 * sdev_evt_alloc - allocate a new scsi event
2262 * @evt_type: type of event to allocate
2263 * @gfpflags: GFP flags for allocation
2265 * Allocates and returns a new scsi_event.
2267 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2270 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2274 evt->evt_type = evt_type;
2275 INIT_LIST_HEAD(&evt->node);
2277 /* evt_type-specific initialization, if any */
2279 case SDEV_EVT_MEDIA_CHANGE:
2287 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2290 * sdev_evt_send_simple - send asserted event to uevent thread
2291 * @sdev: scsi_device event occurred on
2292 * @evt_type: type of event to send
2293 * @gfpflags: GFP flags for allocation
2295 * Assert scsi device event asynchronously, given an event type.
2297 void sdev_evt_send_simple(struct scsi_device *sdev,
2298 enum scsi_device_event evt_type, gfp_t gfpflags)
2300 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2302 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2307 sdev_evt_send(sdev, evt);
2309 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2312 * scsi_device_quiesce - Block user issued commands.
2313 * @sdev: scsi device to quiesce.
2315 * This works by trying to transition to the SDEV_QUIESCE state
2316 * (which must be a legal transition). When the device is in this
2317 * state, only special requests will be accepted, all others will
2318 * be deferred. Since special requests may also be requeued requests,
2319 * a successful return doesn't guarantee the device will be
2320 * totally quiescent.
2322 * Must be called with user context, may sleep.
2324 * Returns zero if unsuccessful or an error if not.
2327 scsi_device_quiesce(struct scsi_device *sdev)
2329 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2333 scsi_run_queue(sdev->request_queue);
2334 while (sdev->device_busy) {
2335 msleep_interruptible(200);
2336 scsi_run_queue(sdev->request_queue);
2340 EXPORT_SYMBOL(scsi_device_quiesce);
2343 * scsi_device_resume - Restart user issued commands to a quiesced device.
2344 * @sdev: scsi device to resume.
2346 * Moves the device from quiesced back to running and restarts the
2349 * Must be called with user context, may sleep.
2351 void scsi_device_resume(struct scsi_device *sdev)
2353 /* check if the device state was mutated prior to resume, and if
2354 * so assume the state is being managed elsewhere (for example
2355 * device deleted during suspend)
2357 if (sdev->sdev_state != SDEV_QUIESCE ||
2358 scsi_device_set_state(sdev, SDEV_RUNNING))
2360 scsi_run_queue(sdev->request_queue);
2362 EXPORT_SYMBOL(scsi_device_resume);
2365 device_quiesce_fn(struct scsi_device *sdev, void *data)
2367 scsi_device_quiesce(sdev);
2371 scsi_target_quiesce(struct scsi_target *starget)
2373 starget_for_each_device(starget, NULL, device_quiesce_fn);
2375 EXPORT_SYMBOL(scsi_target_quiesce);
2378 device_resume_fn(struct scsi_device *sdev, void *data)
2380 scsi_device_resume(sdev);
2384 scsi_target_resume(struct scsi_target *starget)
2386 starget_for_each_device(starget, NULL, device_resume_fn);
2388 EXPORT_SYMBOL(scsi_target_resume);
2391 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2392 * @sdev: device to block
2394 * Block request made by scsi lld's to temporarily stop all
2395 * scsi commands on the specified device. Called from interrupt
2396 * or normal process context.
2398 * Returns zero if successful or error if not
2401 * This routine transitions the device to the SDEV_BLOCK state
2402 * (which must be a legal transition). When the device is in this
2403 * state, all commands are deferred until the scsi lld reenables
2404 * the device with scsi_device_unblock or device_block_tmo fires.
2405 * This routine assumes the host_lock is held on entry.
2408 scsi_internal_device_block(struct scsi_device *sdev)
2410 struct request_queue *q = sdev->request_queue;
2411 unsigned long flags;
2414 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2416 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2423 * The device has transitioned to SDEV_BLOCK. Stop the
2424 * block layer from calling the midlayer with this device's
2427 spin_lock_irqsave(q->queue_lock, flags);
2429 spin_unlock_irqrestore(q->queue_lock, flags);
2433 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2436 * scsi_internal_device_unblock - resume a device after a block request
2437 * @sdev: device to resume
2439 * Called by scsi lld's or the midlayer to restart the device queue
2440 * for the previously suspended scsi device. Called from interrupt or
2441 * normal process context.
2443 * Returns zero if successful or error if not.
2446 * This routine transitions the device to the SDEV_RUNNING state
2447 * (which must be a legal transition) allowing the midlayer to
2448 * goose the queue for this device. This routine assumes the
2449 * host_lock is held upon entry.
2452 scsi_internal_device_unblock(struct scsi_device *sdev)
2454 struct request_queue *q = sdev->request_queue;
2455 unsigned long flags;
2458 * Try to transition the scsi device to SDEV_RUNNING
2459 * and goose the device queue if successful.
2461 if (sdev->sdev_state == SDEV_BLOCK)
2462 sdev->sdev_state = SDEV_RUNNING;
2463 else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2464 sdev->sdev_state = SDEV_CREATED;
2465 else if (sdev->sdev_state != SDEV_CANCEL &&
2466 sdev->sdev_state != SDEV_OFFLINE)
2469 spin_lock_irqsave(q->queue_lock, flags);
2471 spin_unlock_irqrestore(q->queue_lock, flags);
2475 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2478 device_block(struct scsi_device *sdev, void *data)
2480 scsi_internal_device_block(sdev);
2484 target_block(struct device *dev, void *data)
2486 if (scsi_is_target_device(dev))
2487 starget_for_each_device(to_scsi_target(dev), NULL,
2493 scsi_target_block(struct device *dev)
2495 if (scsi_is_target_device(dev))
2496 starget_for_each_device(to_scsi_target(dev), NULL,
2499 device_for_each_child(dev, NULL, target_block);
2501 EXPORT_SYMBOL_GPL(scsi_target_block);
2504 device_unblock(struct scsi_device *sdev, void *data)
2506 scsi_internal_device_unblock(sdev);
2510 target_unblock(struct device *dev, void *data)
2512 if (scsi_is_target_device(dev))
2513 starget_for_each_device(to_scsi_target(dev), NULL,
2519 scsi_target_unblock(struct device *dev)
2521 if (scsi_is_target_device(dev))
2522 starget_for_each_device(to_scsi_target(dev), NULL,
2525 device_for_each_child(dev, NULL, target_unblock);
2527 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2530 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2531 * @sgl: scatter-gather list
2532 * @sg_count: number of segments in sg
2533 * @offset: offset in bytes into sg, on return offset into the mapped area
2534 * @len: bytes to map, on return number of bytes mapped
2536 * Returns virtual address of the start of the mapped page
2538 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2539 size_t *offset, size_t *len)
2542 size_t sg_len = 0, len_complete = 0;
2543 struct scatterlist *sg;
2546 WARN_ON(!irqs_disabled());
2548 for_each_sg(sgl, sg, sg_count, i) {
2549 len_complete = sg_len; /* Complete sg-entries */
2550 sg_len += sg->length;
2551 if (sg_len > *offset)
2555 if (unlikely(i == sg_count)) {
2556 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2558 __func__, sg_len, *offset, sg_count);
2563 /* Offset starting from the beginning of first page in this sg-entry */
2564 *offset = *offset - len_complete + sg->offset;
2566 /* Assumption: contiguous pages can be accessed as "page + i" */
2567 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2568 *offset &= ~PAGE_MASK;
2570 /* Bytes in this sg-entry from *offset to the end of the page */
2571 sg_len = PAGE_SIZE - *offset;
2575 return kmap_atomic(page);
2577 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2580 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2581 * @virt: virtual address to be unmapped
2583 void scsi_kunmap_atomic_sg(void *virt)
2585 kunmap_atomic(virt);
2587 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);