RISCV: config: tizen_visionfive2: Enable USB_DUMMY_HCD as module for usb hcd tetst
[platform/kernel/linux-starfive.git] / drivers / scsi / scsi_lib.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37
38 #include <trace/events/scsi.h>
39
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63         int ret = 0;
64
65         mutex_lock(&scsi_sense_cache_mutex);
66         if (!scsi_sense_cache) {
67                 scsi_sense_cache =
68                         kmem_cache_create_usercopy("scsi_sense_cache",
69                                 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70                                 0, SCSI_SENSE_BUFFERSIZE, NULL);
71                 if (!scsi_sense_cache)
72                         ret = -ENOMEM;
73         }
74         mutex_unlock(&scsi_sense_cache_mutex);
75         return ret;
76 }
77
78 static void
79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81         struct Scsi_Host *host = cmd->device->host;
82         struct scsi_device *device = cmd->device;
83         struct scsi_target *starget = scsi_target(device);
84
85         /*
86          * Set the appropriate busy bit for the device/host.
87          *
88          * If the host/device isn't busy, assume that something actually
89          * completed, and that we should be able to queue a command now.
90          *
91          * Note that the prior mid-layer assumption that any host could
92          * always queue at least one command is now broken.  The mid-layer
93          * will implement a user specifiable stall (see
94          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95          * if a command is requeued with no other commands outstanding
96          * either for the device or for the host.
97          */
98         switch (reason) {
99         case SCSI_MLQUEUE_HOST_BUSY:
100                 atomic_set(&host->host_blocked, host->max_host_blocked);
101                 break;
102         case SCSI_MLQUEUE_DEVICE_BUSY:
103         case SCSI_MLQUEUE_EH_RETRY:
104                 atomic_set(&device->device_blocked,
105                            device->max_device_blocked);
106                 break;
107         case SCSI_MLQUEUE_TARGET_BUSY:
108                 atomic_set(&starget->target_blocked,
109                            starget->max_target_blocked);
110                 break;
111         }
112 }
113
114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116         struct request *rq = scsi_cmd_to_rq(cmd);
117
118         if (rq->rq_flags & RQF_DONTPREP) {
119                 rq->rq_flags &= ~RQF_DONTPREP;
120                 scsi_mq_uninit_cmd(cmd);
121         } else {
122                 WARN_ON_ONCE(true);
123         }
124
125         if (msecs) {
126                 blk_mq_requeue_request(rq, false);
127                 blk_mq_delay_kick_requeue_list(rq->q, msecs);
128         } else
129                 blk_mq_requeue_request(rq, true);
130 }
131
132 /**
133  * __scsi_queue_insert - private queue insertion
134  * @cmd: The SCSI command being requeued
135  * @reason:  The reason for the requeue
136  * @unbusy: Whether the queue should be unbusied
137  *
138  * This is a private queue insertion.  The public interface
139  * scsi_queue_insert() always assumes the queue should be unbusied
140  * because it's always called before the completion.  This function is
141  * for a requeue after completion, which should only occur in this
142  * file.
143  */
144 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
145 {
146         struct scsi_device *device = cmd->device;
147
148         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
149                 "Inserting command %p into mlqueue\n", cmd));
150
151         scsi_set_blocked(cmd, reason);
152
153         /*
154          * Decrement the counters, since these commands are no longer
155          * active on the host/device.
156          */
157         if (unbusy)
158                 scsi_device_unbusy(device, cmd);
159
160         /*
161          * Requeue this command.  It will go before all other commands
162          * that are already in the queue. Schedule requeue work under
163          * lock such that the kblockd_schedule_work() call happens
164          * before blk_mq_destroy_queue() finishes.
165          */
166         cmd->result = 0;
167
168         blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
169 }
170
171 /**
172  * scsi_queue_insert - Reinsert a command in the queue.
173  * @cmd:    command that we are adding to queue.
174  * @reason: why we are inserting command to queue.
175  *
176  * We do this for one of two cases. Either the host is busy and it cannot accept
177  * any more commands for the time being, or the device returned QUEUE_FULL and
178  * can accept no more commands.
179  *
180  * Context: This could be called either from an interrupt context or a normal
181  * process context.
182  */
183 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
184 {
185         __scsi_queue_insert(cmd, reason, true);
186 }
187
188
189 /**
190  * __scsi_execute - insert request and wait for the result
191  * @sdev:       scsi device
192  * @cmd:        scsi command
193  * @data_direction: data direction
194  * @buffer:     data buffer
195  * @bufflen:    len of buffer
196  * @sense:      optional sense buffer
197  * @sshdr:      optional decoded sense header
198  * @timeout:    request timeout in HZ
199  * @retries:    number of times to retry request
200  * @flags:      flags for ->cmd_flags
201  * @rq_flags:   flags for ->rq_flags
202  * @resid:      optional residual length
203  *
204  * Returns the scsi_cmnd result field if a command was executed, or a negative
205  * Linux error code if we didn't get that far.
206  */
207 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
208                  int data_direction, void *buffer, unsigned bufflen,
209                  unsigned char *sense, struct scsi_sense_hdr *sshdr,
210                  int timeout, int retries, blk_opf_t flags,
211                  req_flags_t rq_flags, int *resid)
212 {
213         struct request *req;
214         struct scsi_cmnd *scmd;
215         int ret;
216
217         req = scsi_alloc_request(sdev->request_queue,
218                         data_direction == DMA_TO_DEVICE ?
219                         REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
220                         rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
221         if (IS_ERR(req))
222                 return PTR_ERR(req);
223
224         if (bufflen) {
225                 ret = blk_rq_map_kern(sdev->request_queue, req,
226                                       buffer, bufflen, GFP_NOIO);
227                 if (ret)
228                         goto out;
229         }
230         scmd = blk_mq_rq_to_pdu(req);
231         scmd->cmd_len = COMMAND_SIZE(cmd[0]);
232         memcpy(scmd->cmnd, cmd, scmd->cmd_len);
233         scmd->allowed = retries;
234         req->timeout = timeout;
235         req->cmd_flags |= flags;
236         req->rq_flags |= rq_flags | RQF_QUIET;
237
238         /*
239          * head injection *required* here otherwise quiesce won't work
240          */
241         blk_execute_rq(req, true);
242
243         /*
244          * Some devices (USB mass-storage in particular) may transfer
245          * garbage data together with a residue indicating that the data
246          * is invalid.  Prevent the garbage from being misinterpreted
247          * and prevent security leaks by zeroing out the excess data.
248          */
249         if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
250                 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
251
252         if (resid)
253                 *resid = scmd->resid_len;
254         if (sense && scmd->sense_len)
255                 memcpy(sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
256         if (sshdr)
257                 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
258                                      sshdr);
259         ret = scmd->result;
260  out:
261         blk_mq_free_request(req);
262
263         return ret;
264 }
265 EXPORT_SYMBOL(__scsi_execute);
266
267 /*
268  * Wake up the error handler if necessary. Avoid as follows that the error
269  * handler is not woken up if host in-flight requests number ==
270  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
271  * with an RCU read lock in this function to ensure that this function in
272  * its entirety either finishes before scsi_eh_scmd_add() increases the
273  * host_failed counter or that it notices the shost state change made by
274  * scsi_eh_scmd_add().
275  */
276 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
277 {
278         unsigned long flags;
279
280         rcu_read_lock();
281         __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
282         if (unlikely(scsi_host_in_recovery(shost))) {
283                 spin_lock_irqsave(shost->host_lock, flags);
284                 if (shost->host_failed || shost->host_eh_scheduled)
285                         scsi_eh_wakeup(shost);
286                 spin_unlock_irqrestore(shost->host_lock, flags);
287         }
288         rcu_read_unlock();
289 }
290
291 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
292 {
293         struct Scsi_Host *shost = sdev->host;
294         struct scsi_target *starget = scsi_target(sdev);
295
296         scsi_dec_host_busy(shost, cmd);
297
298         if (starget->can_queue > 0)
299                 atomic_dec(&starget->target_busy);
300
301         sbitmap_put(&sdev->budget_map, cmd->budget_token);
302         cmd->budget_token = -1;
303 }
304
305 static void scsi_kick_queue(struct request_queue *q)
306 {
307         blk_mq_run_hw_queues(q, false);
308 }
309
310 /*
311  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
312  * and call blk_run_queue for all the scsi_devices on the target -
313  * including current_sdev first.
314  *
315  * Called with *no* scsi locks held.
316  */
317 static void scsi_single_lun_run(struct scsi_device *current_sdev)
318 {
319         struct Scsi_Host *shost = current_sdev->host;
320         struct scsi_device *sdev, *tmp;
321         struct scsi_target *starget = scsi_target(current_sdev);
322         unsigned long flags;
323
324         spin_lock_irqsave(shost->host_lock, flags);
325         starget->starget_sdev_user = NULL;
326         spin_unlock_irqrestore(shost->host_lock, flags);
327
328         /*
329          * Call blk_run_queue for all LUNs on the target, starting with
330          * current_sdev. We race with others (to set starget_sdev_user),
331          * but in most cases, we will be first. Ideally, each LU on the
332          * target would get some limited time or requests on the target.
333          */
334         scsi_kick_queue(current_sdev->request_queue);
335
336         spin_lock_irqsave(shost->host_lock, flags);
337         if (starget->starget_sdev_user)
338                 goto out;
339         list_for_each_entry_safe(sdev, tmp, &starget->devices,
340                         same_target_siblings) {
341                 if (sdev == current_sdev)
342                         continue;
343                 if (scsi_device_get(sdev))
344                         continue;
345
346                 spin_unlock_irqrestore(shost->host_lock, flags);
347                 scsi_kick_queue(sdev->request_queue);
348                 spin_lock_irqsave(shost->host_lock, flags);
349
350                 scsi_device_put(sdev);
351         }
352  out:
353         spin_unlock_irqrestore(shost->host_lock, flags);
354 }
355
356 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
357 {
358         if (scsi_device_busy(sdev) >= sdev->queue_depth)
359                 return true;
360         if (atomic_read(&sdev->device_blocked) > 0)
361                 return true;
362         return false;
363 }
364
365 static inline bool scsi_target_is_busy(struct scsi_target *starget)
366 {
367         if (starget->can_queue > 0) {
368                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
369                         return true;
370                 if (atomic_read(&starget->target_blocked) > 0)
371                         return true;
372         }
373         return false;
374 }
375
376 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
377 {
378         if (atomic_read(&shost->host_blocked) > 0)
379                 return true;
380         if (shost->host_self_blocked)
381                 return true;
382         return false;
383 }
384
385 static void scsi_starved_list_run(struct Scsi_Host *shost)
386 {
387         LIST_HEAD(starved_list);
388         struct scsi_device *sdev;
389         unsigned long flags;
390
391         spin_lock_irqsave(shost->host_lock, flags);
392         list_splice_init(&shost->starved_list, &starved_list);
393
394         while (!list_empty(&starved_list)) {
395                 struct request_queue *slq;
396
397                 /*
398                  * As long as shost is accepting commands and we have
399                  * starved queues, call blk_run_queue. scsi_request_fn
400                  * drops the queue_lock and can add us back to the
401                  * starved_list.
402                  *
403                  * host_lock protects the starved_list and starved_entry.
404                  * scsi_request_fn must get the host_lock before checking
405                  * or modifying starved_list or starved_entry.
406                  */
407                 if (scsi_host_is_busy(shost))
408                         break;
409
410                 sdev = list_entry(starved_list.next,
411                                   struct scsi_device, starved_entry);
412                 list_del_init(&sdev->starved_entry);
413                 if (scsi_target_is_busy(scsi_target(sdev))) {
414                         list_move_tail(&sdev->starved_entry,
415                                        &shost->starved_list);
416                         continue;
417                 }
418
419                 /*
420                  * Once we drop the host lock, a racing scsi_remove_device()
421                  * call may remove the sdev from the starved list and destroy
422                  * it and the queue.  Mitigate by taking a reference to the
423                  * queue and never touching the sdev again after we drop the
424                  * host lock.  Note: if __scsi_remove_device() invokes
425                  * blk_mq_destroy_queue() before the queue is run from this
426                  * function then blk_run_queue() will return immediately since
427                  * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
428                  */
429                 slq = sdev->request_queue;
430                 if (!blk_get_queue(slq))
431                         continue;
432                 spin_unlock_irqrestore(shost->host_lock, flags);
433
434                 scsi_kick_queue(slq);
435                 blk_put_queue(slq);
436
437                 spin_lock_irqsave(shost->host_lock, flags);
438         }
439         /* put any unprocessed entries back */
440         list_splice(&starved_list, &shost->starved_list);
441         spin_unlock_irqrestore(shost->host_lock, flags);
442 }
443
444 /**
445  * scsi_run_queue - Select a proper request queue to serve next.
446  * @q:  last request's queue
447  *
448  * The previous command was completely finished, start a new one if possible.
449  */
450 static void scsi_run_queue(struct request_queue *q)
451 {
452         struct scsi_device *sdev = q->queuedata;
453
454         if (scsi_target(sdev)->single_lun)
455                 scsi_single_lun_run(sdev);
456         if (!list_empty(&sdev->host->starved_list))
457                 scsi_starved_list_run(sdev->host);
458
459         blk_mq_run_hw_queues(q, false);
460 }
461
462 void scsi_requeue_run_queue(struct work_struct *work)
463 {
464         struct scsi_device *sdev;
465         struct request_queue *q;
466
467         sdev = container_of(work, struct scsi_device, requeue_work);
468         q = sdev->request_queue;
469         scsi_run_queue(q);
470 }
471
472 void scsi_run_host_queues(struct Scsi_Host *shost)
473 {
474         struct scsi_device *sdev;
475
476         shost_for_each_device(sdev, shost)
477                 scsi_run_queue(sdev->request_queue);
478 }
479
480 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
481 {
482         if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
483                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
484
485                 if (drv->uninit_command)
486                         drv->uninit_command(cmd);
487         }
488 }
489
490 void scsi_free_sgtables(struct scsi_cmnd *cmd)
491 {
492         if (cmd->sdb.table.nents)
493                 sg_free_table_chained(&cmd->sdb.table,
494                                 SCSI_INLINE_SG_CNT);
495         if (scsi_prot_sg_count(cmd))
496                 sg_free_table_chained(&cmd->prot_sdb->table,
497                                 SCSI_INLINE_PROT_SG_CNT);
498 }
499 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
500
501 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
502 {
503         scsi_free_sgtables(cmd);
504         scsi_uninit_cmd(cmd);
505 }
506
507 static void scsi_run_queue_async(struct scsi_device *sdev)
508 {
509         if (scsi_target(sdev)->single_lun ||
510             !list_empty(&sdev->host->starved_list)) {
511                 kblockd_schedule_work(&sdev->requeue_work);
512         } else {
513                 /*
514                  * smp_mb() present in sbitmap_queue_clear() or implied in
515                  * .end_io is for ordering writing .device_busy in
516                  * scsi_device_unbusy() and reading sdev->restarts.
517                  */
518                 int old = atomic_read(&sdev->restarts);
519
520                 /*
521                  * ->restarts has to be kept as non-zero if new budget
522                  *  contention occurs.
523                  *
524                  *  No need to run queue when either another re-run
525                  *  queue wins in updating ->restarts or a new budget
526                  *  contention occurs.
527                  */
528                 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
529                         blk_mq_run_hw_queues(sdev->request_queue, true);
530         }
531 }
532
533 /* Returns false when no more bytes to process, true if there are more */
534 static bool scsi_end_request(struct request *req, blk_status_t error,
535                 unsigned int bytes)
536 {
537         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
538         struct scsi_device *sdev = cmd->device;
539         struct request_queue *q = sdev->request_queue;
540
541         if (blk_update_request(req, error, bytes))
542                 return true;
543
544         // XXX:
545         if (blk_queue_add_random(q))
546                 add_disk_randomness(req->q->disk);
547
548         if (!blk_rq_is_passthrough(req)) {
549                 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
550                 cmd->flags &= ~SCMD_INITIALIZED;
551         }
552
553         /*
554          * Calling rcu_barrier() is not necessary here because the
555          * SCSI error handler guarantees that the function called by
556          * call_rcu() has been called before scsi_end_request() is
557          * called.
558          */
559         destroy_rcu_head(&cmd->rcu);
560
561         /*
562          * In the MQ case the command gets freed by __blk_mq_end_request,
563          * so we have to do all cleanup that depends on it earlier.
564          *
565          * We also can't kick the queues from irq context, so we
566          * will have to defer it to a workqueue.
567          */
568         scsi_mq_uninit_cmd(cmd);
569
570         /*
571          * queue is still alive, so grab the ref for preventing it
572          * from being cleaned up during running queue.
573          */
574         percpu_ref_get(&q->q_usage_counter);
575
576         __blk_mq_end_request(req, error);
577
578         scsi_run_queue_async(sdev);
579
580         percpu_ref_put(&q->q_usage_counter);
581         return false;
582 }
583
584 static inline u8 get_scsi_ml_byte(int result)
585 {
586         return (result >> 8) & 0xff;
587 }
588
589 /**
590  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
591  * @result:     scsi error code
592  *
593  * Translate a SCSI result code into a blk_status_t value.
594  */
595 static blk_status_t scsi_result_to_blk_status(int result)
596 {
597         /*
598          * Check the scsi-ml byte first in case we converted a host or status
599          * byte.
600          */
601         switch (get_scsi_ml_byte(result)) {
602         case SCSIML_STAT_OK:
603                 break;
604         case SCSIML_STAT_RESV_CONFLICT:
605                 return BLK_STS_NEXUS;
606         case SCSIML_STAT_NOSPC:
607                 return BLK_STS_NOSPC;
608         case SCSIML_STAT_MED_ERROR:
609                 return BLK_STS_MEDIUM;
610         case SCSIML_STAT_TGT_FAILURE:
611                 return BLK_STS_TARGET;
612         }
613
614         switch (host_byte(result)) {
615         case DID_OK:
616                 if (scsi_status_is_good(result))
617                         return BLK_STS_OK;
618                 return BLK_STS_IOERR;
619         case DID_TRANSPORT_FAILFAST:
620         case DID_TRANSPORT_MARGINAL:
621                 return BLK_STS_TRANSPORT;
622         default:
623                 return BLK_STS_IOERR;
624         }
625 }
626
627 /**
628  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
629  * @rq: request to examine
630  *
631  * Description:
632  *     A request could be merge of IOs which require different failure
633  *     handling.  This function determines the number of bytes which
634  *     can be failed from the beginning of the request without
635  *     crossing into area which need to be retried further.
636  *
637  * Return:
638  *     The number of bytes to fail.
639  */
640 static unsigned int scsi_rq_err_bytes(const struct request *rq)
641 {
642         blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
643         unsigned int bytes = 0;
644         struct bio *bio;
645
646         if (!(rq->rq_flags & RQF_MIXED_MERGE))
647                 return blk_rq_bytes(rq);
648
649         /*
650          * Currently the only 'mixing' which can happen is between
651          * different fastfail types.  We can safely fail portions
652          * which have all the failfast bits that the first one has -
653          * the ones which are at least as eager to fail as the first
654          * one.
655          */
656         for (bio = rq->bio; bio; bio = bio->bi_next) {
657                 if ((bio->bi_opf & ff) != ff)
658                         break;
659                 bytes += bio->bi_iter.bi_size;
660         }
661
662         /* this could lead to infinite loop */
663         BUG_ON(blk_rq_bytes(rq) && !bytes);
664         return bytes;
665 }
666
667 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
668 {
669         struct request *req = scsi_cmd_to_rq(cmd);
670         unsigned long wait_for;
671
672         if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
673                 return false;
674
675         wait_for = (cmd->allowed + 1) * req->timeout;
676         if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
677                 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
678                             wait_for/HZ);
679                 return true;
680         }
681         return false;
682 }
683
684 /*
685  * When ALUA transition state is returned, reprep the cmd to
686  * use the ALUA handler's transition timeout. Delay the reprep
687  * 1 sec to avoid aggressive retries of the target in that
688  * state.
689  */
690 #define ALUA_TRANSITION_REPREP_DELAY    1000
691
692 /* Helper for scsi_io_completion() when special action required. */
693 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
694 {
695         struct request *req = scsi_cmd_to_rq(cmd);
696         int level = 0;
697         enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
698               ACTION_RETRY, ACTION_DELAYED_RETRY} action;
699         struct scsi_sense_hdr sshdr;
700         bool sense_valid;
701         bool sense_current = true;      /* false implies "deferred sense" */
702         blk_status_t blk_stat;
703
704         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
705         if (sense_valid)
706                 sense_current = !scsi_sense_is_deferred(&sshdr);
707
708         blk_stat = scsi_result_to_blk_status(result);
709
710         if (host_byte(result) == DID_RESET) {
711                 /* Third party bus reset or reset for error recovery
712                  * reasons.  Just retry the command and see what
713                  * happens.
714                  */
715                 action = ACTION_RETRY;
716         } else if (sense_valid && sense_current) {
717                 switch (sshdr.sense_key) {
718                 case UNIT_ATTENTION:
719                         if (cmd->device->removable) {
720                                 /* Detected disc change.  Set a bit
721                                  * and quietly refuse further access.
722                                  */
723                                 cmd->device->changed = 1;
724                                 action = ACTION_FAIL;
725                         } else {
726                                 /* Must have been a power glitch, or a
727                                  * bus reset.  Could not have been a
728                                  * media change, so we just retry the
729                                  * command and see what happens.
730                                  */
731                                 action = ACTION_RETRY;
732                         }
733                         break;
734                 case ILLEGAL_REQUEST:
735                         /* If we had an ILLEGAL REQUEST returned, then
736                          * we may have performed an unsupported
737                          * command.  The only thing this should be
738                          * would be a ten byte read where only a six
739                          * byte read was supported.  Also, on a system
740                          * where READ CAPACITY failed, we may have
741                          * read past the end of the disk.
742                          */
743                         if ((cmd->device->use_10_for_rw &&
744                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
745                             (cmd->cmnd[0] == READ_10 ||
746                              cmd->cmnd[0] == WRITE_10)) {
747                                 /* This will issue a new 6-byte command. */
748                                 cmd->device->use_10_for_rw = 0;
749                                 action = ACTION_REPREP;
750                         } else if (sshdr.asc == 0x10) /* DIX */ {
751                                 action = ACTION_FAIL;
752                                 blk_stat = BLK_STS_PROTECTION;
753                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
754                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
755                                 action = ACTION_FAIL;
756                                 blk_stat = BLK_STS_TARGET;
757                         } else
758                                 action = ACTION_FAIL;
759                         break;
760                 case ABORTED_COMMAND:
761                         action = ACTION_FAIL;
762                         if (sshdr.asc == 0x10) /* DIF */
763                                 blk_stat = BLK_STS_PROTECTION;
764                         break;
765                 case NOT_READY:
766                         /* If the device is in the process of becoming
767                          * ready, or has a temporary blockage, retry.
768                          */
769                         if (sshdr.asc == 0x04) {
770                                 switch (sshdr.ascq) {
771                                 case 0x01: /* becoming ready */
772                                 case 0x04: /* format in progress */
773                                 case 0x05: /* rebuild in progress */
774                                 case 0x06: /* recalculation in progress */
775                                 case 0x07: /* operation in progress */
776                                 case 0x08: /* Long write in progress */
777                                 case 0x09: /* self test in progress */
778                                 case 0x11: /* notify (enable spinup) required */
779                                 case 0x14: /* space allocation in progress */
780                                 case 0x1a: /* start stop unit in progress */
781                                 case 0x1b: /* sanitize in progress */
782                                 case 0x1d: /* configuration in progress */
783                                 case 0x24: /* depopulation in progress */
784                                         action = ACTION_DELAYED_RETRY;
785                                         break;
786                                 case 0x0a: /* ALUA state transition */
787                                         action = ACTION_DELAYED_REPREP;
788                                         break;
789                                 default:
790                                         action = ACTION_FAIL;
791                                         break;
792                                 }
793                         } else
794                                 action = ACTION_FAIL;
795                         break;
796                 case VOLUME_OVERFLOW:
797                         /* See SSC3rXX or current. */
798                         action = ACTION_FAIL;
799                         break;
800                 case DATA_PROTECT:
801                         action = ACTION_FAIL;
802                         if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
803                             (sshdr.asc == 0x55 &&
804                              (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
805                                 /* Insufficient zone resources */
806                                 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
807                         }
808                         break;
809                 default:
810                         action = ACTION_FAIL;
811                         break;
812                 }
813         } else
814                 action = ACTION_FAIL;
815
816         if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
817                 action = ACTION_FAIL;
818
819         switch (action) {
820         case ACTION_FAIL:
821                 /* Give up and fail the remainder of the request */
822                 if (!(req->rq_flags & RQF_QUIET)) {
823                         static DEFINE_RATELIMIT_STATE(_rs,
824                                         DEFAULT_RATELIMIT_INTERVAL,
825                                         DEFAULT_RATELIMIT_BURST);
826
827                         if (unlikely(scsi_logging_level))
828                                 level =
829                                      SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
830                                                     SCSI_LOG_MLCOMPLETE_BITS);
831
832                         /*
833                          * if logging is enabled the failure will be printed
834                          * in scsi_log_completion(), so avoid duplicate messages
835                          */
836                         if (!level && __ratelimit(&_rs)) {
837                                 scsi_print_result(cmd, NULL, FAILED);
838                                 if (sense_valid)
839                                         scsi_print_sense(cmd);
840                                 scsi_print_command(cmd);
841                         }
842                 }
843                 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
844                         return;
845                 fallthrough;
846         case ACTION_REPREP:
847                 scsi_mq_requeue_cmd(cmd, 0);
848                 break;
849         case ACTION_DELAYED_REPREP:
850                 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
851                 break;
852         case ACTION_RETRY:
853                 /* Retry the same command immediately */
854                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
855                 break;
856         case ACTION_DELAYED_RETRY:
857                 /* Retry the same command after a delay */
858                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
859                 break;
860         }
861 }
862
863 /*
864  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
865  * new result that may suppress further error checking. Also modifies
866  * *blk_statp in some cases.
867  */
868 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
869                                         blk_status_t *blk_statp)
870 {
871         bool sense_valid;
872         bool sense_current = true;      /* false implies "deferred sense" */
873         struct request *req = scsi_cmd_to_rq(cmd);
874         struct scsi_sense_hdr sshdr;
875
876         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
877         if (sense_valid)
878                 sense_current = !scsi_sense_is_deferred(&sshdr);
879
880         if (blk_rq_is_passthrough(req)) {
881                 if (sense_valid) {
882                         /*
883                          * SG_IO wants current and deferred errors
884                          */
885                         cmd->sense_len = min(8 + cmd->sense_buffer[7],
886                                              SCSI_SENSE_BUFFERSIZE);
887                 }
888                 if (sense_current)
889                         *blk_statp = scsi_result_to_blk_status(result);
890         } else if (blk_rq_bytes(req) == 0 && sense_current) {
891                 /*
892                  * Flush commands do not transfers any data, and thus cannot use
893                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
894                  * This sets *blk_statp explicitly for the problem case.
895                  */
896                 *blk_statp = scsi_result_to_blk_status(result);
897         }
898         /*
899          * Recovered errors need reporting, but they're always treated as
900          * success, so fiddle the result code here.  For passthrough requests
901          * we already took a copy of the original into sreq->result which
902          * is what gets returned to the user
903          */
904         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
905                 bool do_print = true;
906                 /*
907                  * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
908                  * skip print since caller wants ATA registers. Only occurs
909                  * on SCSI ATA PASS_THROUGH commands when CK_COND=1
910                  */
911                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
912                         do_print = false;
913                 else if (req->rq_flags & RQF_QUIET)
914                         do_print = false;
915                 if (do_print)
916                         scsi_print_sense(cmd);
917                 result = 0;
918                 /* for passthrough, *blk_statp may be set */
919                 *blk_statp = BLK_STS_OK;
920         }
921         /*
922          * Another corner case: the SCSI status byte is non-zero but 'good'.
923          * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
924          * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
925          * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
926          * intermediate statuses (both obsolete in SAM-4) as good.
927          */
928         if ((result & 0xff) && scsi_status_is_good(result)) {
929                 result = 0;
930                 *blk_statp = BLK_STS_OK;
931         }
932         return result;
933 }
934
935 /**
936  * scsi_io_completion - Completion processing for SCSI commands.
937  * @cmd:        command that is finished.
938  * @good_bytes: number of processed bytes.
939  *
940  * We will finish off the specified number of sectors. If we are done, the
941  * command block will be released and the queue function will be goosed. If we
942  * are not done then we have to figure out what to do next:
943  *
944  *   a) We can call scsi_mq_requeue_cmd().  The request will be
945  *      unprepared and put back on the queue.  Then a new command will
946  *      be created for it.  This should be used if we made forward
947  *      progress, or if we want to switch from READ(10) to READ(6) for
948  *      example.
949  *
950  *   b) We can call scsi_io_completion_action().  The request will be
951  *      put back on the queue and retried using the same command as
952  *      before, possibly after a delay.
953  *
954  *   c) We can call scsi_end_request() with blk_stat other than
955  *      BLK_STS_OK, to fail the remainder of the request.
956  */
957 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
958 {
959         int result = cmd->result;
960         struct request *req = scsi_cmd_to_rq(cmd);
961         blk_status_t blk_stat = BLK_STS_OK;
962
963         if (unlikely(result))   /* a nz result may or may not be an error */
964                 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
965
966         /*
967          * Next deal with any sectors which we were able to correctly
968          * handle.
969          */
970         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
971                 "%u sectors total, %d bytes done.\n",
972                 blk_rq_sectors(req), good_bytes));
973
974         /*
975          * Failed, zero length commands always need to drop down
976          * to retry code. Fast path should return in this block.
977          */
978         if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
979                 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
980                         return; /* no bytes remaining */
981         }
982
983         /* Kill remainder if no retries. */
984         if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
985                 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
986                         WARN_ONCE(true,
987                             "Bytes remaining after failed, no-retry command");
988                 return;
989         }
990
991         /*
992          * If there had been no error, but we have leftover bytes in the
993          * request just queue the command up again.
994          */
995         if (likely(result == 0))
996                 scsi_mq_requeue_cmd(cmd, 0);
997         else
998                 scsi_io_completion_action(cmd, result);
999 }
1000
1001 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1002                 struct request *rq)
1003 {
1004         return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1005                !op_is_write(req_op(rq)) &&
1006                sdev->host->hostt->dma_need_drain(rq);
1007 }
1008
1009 /**
1010  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1011  * @cmd: SCSI command data structure to initialize.
1012  *
1013  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1014  * for @cmd.
1015  *
1016  * Returns:
1017  * * BLK_STS_OK       - on success
1018  * * BLK_STS_RESOURCE - if the failure is retryable
1019  * * BLK_STS_IOERR    - if the failure is fatal
1020  */
1021 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1022 {
1023         struct scsi_device *sdev = cmd->device;
1024         struct request *rq = scsi_cmd_to_rq(cmd);
1025         unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1026         struct scatterlist *last_sg = NULL;
1027         blk_status_t ret;
1028         bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1029         int count;
1030
1031         if (WARN_ON_ONCE(!nr_segs))
1032                 return BLK_STS_IOERR;
1033
1034         /*
1035          * Make sure there is space for the drain.  The driver must adjust
1036          * max_hw_segments to be prepared for this.
1037          */
1038         if (need_drain)
1039                 nr_segs++;
1040
1041         /*
1042          * If sg table allocation fails, requeue request later.
1043          */
1044         if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1045                         cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1046                 return BLK_STS_RESOURCE;
1047
1048         /*
1049          * Next, walk the list, and fill in the addresses and sizes of
1050          * each segment.
1051          */
1052         count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1053
1054         if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1055                 unsigned int pad_len =
1056                         (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1057
1058                 last_sg->length += pad_len;
1059                 cmd->extra_len += pad_len;
1060         }
1061
1062         if (need_drain) {
1063                 sg_unmark_end(last_sg);
1064                 last_sg = sg_next(last_sg);
1065                 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1066                 sg_mark_end(last_sg);
1067
1068                 cmd->extra_len += sdev->dma_drain_len;
1069                 count++;
1070         }
1071
1072         BUG_ON(count > cmd->sdb.table.nents);
1073         cmd->sdb.table.nents = count;
1074         cmd->sdb.length = blk_rq_payload_bytes(rq);
1075
1076         if (blk_integrity_rq(rq)) {
1077                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1078                 int ivecs;
1079
1080                 if (WARN_ON_ONCE(!prot_sdb)) {
1081                         /*
1082                          * This can happen if someone (e.g. multipath)
1083                          * queues a command to a device on an adapter
1084                          * that does not support DIX.
1085                          */
1086                         ret = BLK_STS_IOERR;
1087                         goto out_free_sgtables;
1088                 }
1089
1090                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1091
1092                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1093                                 prot_sdb->table.sgl,
1094                                 SCSI_INLINE_PROT_SG_CNT)) {
1095                         ret = BLK_STS_RESOURCE;
1096                         goto out_free_sgtables;
1097                 }
1098
1099                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1100                                                 prot_sdb->table.sgl);
1101                 BUG_ON(count > ivecs);
1102                 BUG_ON(count > queue_max_integrity_segments(rq->q));
1103
1104                 cmd->prot_sdb = prot_sdb;
1105                 cmd->prot_sdb->table.nents = count;
1106         }
1107
1108         return BLK_STS_OK;
1109 out_free_sgtables:
1110         scsi_free_sgtables(cmd);
1111         return ret;
1112 }
1113 EXPORT_SYMBOL(scsi_alloc_sgtables);
1114
1115 /**
1116  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1117  * @rq: Request associated with the SCSI command to be initialized.
1118  *
1119  * This function initializes the members of struct scsi_cmnd that must be
1120  * initialized before request processing starts and that won't be
1121  * reinitialized if a SCSI command is requeued.
1122  */
1123 static void scsi_initialize_rq(struct request *rq)
1124 {
1125         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1126
1127         memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1128         cmd->cmd_len = MAX_COMMAND_SIZE;
1129         cmd->sense_len = 0;
1130         init_rcu_head(&cmd->rcu);
1131         cmd->jiffies_at_alloc = jiffies;
1132         cmd->retries = 0;
1133 }
1134
1135 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1136                                    blk_mq_req_flags_t flags)
1137 {
1138         struct request *rq;
1139
1140         rq = blk_mq_alloc_request(q, opf, flags);
1141         if (!IS_ERR(rq))
1142                 scsi_initialize_rq(rq);
1143         return rq;
1144 }
1145 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1146
1147 /*
1148  * Only called when the request isn't completed by SCSI, and not freed by
1149  * SCSI
1150  */
1151 static void scsi_cleanup_rq(struct request *rq)
1152 {
1153         if (rq->rq_flags & RQF_DONTPREP) {
1154                 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1155                 rq->rq_flags &= ~RQF_DONTPREP;
1156         }
1157 }
1158
1159 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1160 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1161 {
1162         struct request *rq = scsi_cmd_to_rq(cmd);
1163
1164         if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1165                 cmd->flags |= SCMD_INITIALIZED;
1166                 scsi_initialize_rq(rq);
1167         }
1168
1169         cmd->device = dev;
1170         INIT_LIST_HEAD(&cmd->eh_entry);
1171         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1172 }
1173
1174 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1175                 struct request *req)
1176 {
1177         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1178
1179         /*
1180          * Passthrough requests may transfer data, in which case they must
1181          * a bio attached to them.  Or they might contain a SCSI command
1182          * that does not transfer data, in which case they may optionally
1183          * submit a request without an attached bio.
1184          */
1185         if (req->bio) {
1186                 blk_status_t ret = scsi_alloc_sgtables(cmd);
1187                 if (unlikely(ret != BLK_STS_OK))
1188                         return ret;
1189         } else {
1190                 BUG_ON(blk_rq_bytes(req));
1191
1192                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1193         }
1194
1195         cmd->transfersize = blk_rq_bytes(req);
1196         return BLK_STS_OK;
1197 }
1198
1199 static blk_status_t
1200 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1201 {
1202         switch (sdev->sdev_state) {
1203         case SDEV_CREATED:
1204                 return BLK_STS_OK;
1205         case SDEV_OFFLINE:
1206         case SDEV_TRANSPORT_OFFLINE:
1207                 /*
1208                  * If the device is offline we refuse to process any
1209                  * commands.  The device must be brought online
1210                  * before trying any recovery commands.
1211                  */
1212                 if (!sdev->offline_already) {
1213                         sdev->offline_already = true;
1214                         sdev_printk(KERN_ERR, sdev,
1215                                     "rejecting I/O to offline device\n");
1216                 }
1217                 return BLK_STS_IOERR;
1218         case SDEV_DEL:
1219                 /*
1220                  * If the device is fully deleted, we refuse to
1221                  * process any commands as well.
1222                  */
1223                 sdev_printk(KERN_ERR, sdev,
1224                             "rejecting I/O to dead device\n");
1225                 return BLK_STS_IOERR;
1226         case SDEV_BLOCK:
1227         case SDEV_CREATED_BLOCK:
1228                 return BLK_STS_RESOURCE;
1229         case SDEV_QUIESCE:
1230                 /*
1231                  * If the device is blocked we only accept power management
1232                  * commands.
1233                  */
1234                 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1235                         return BLK_STS_RESOURCE;
1236                 return BLK_STS_OK;
1237         default:
1238                 /*
1239                  * For any other not fully online state we only allow
1240                  * power management commands.
1241                  */
1242                 if (req && !(req->rq_flags & RQF_PM))
1243                         return BLK_STS_OFFLINE;
1244                 return BLK_STS_OK;
1245         }
1246 }
1247
1248 /*
1249  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1250  * and return the token else return -1.
1251  */
1252 static inline int scsi_dev_queue_ready(struct request_queue *q,
1253                                   struct scsi_device *sdev)
1254 {
1255         int token;
1256
1257         token = sbitmap_get(&sdev->budget_map);
1258         if (atomic_read(&sdev->device_blocked)) {
1259                 if (token < 0)
1260                         goto out;
1261
1262                 if (scsi_device_busy(sdev) > 1)
1263                         goto out_dec;
1264
1265                 /*
1266                  * unblock after device_blocked iterates to zero
1267                  */
1268                 if (atomic_dec_return(&sdev->device_blocked) > 0)
1269                         goto out_dec;
1270                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1271                                    "unblocking device at zero depth\n"));
1272         }
1273
1274         return token;
1275 out_dec:
1276         if (token >= 0)
1277                 sbitmap_put(&sdev->budget_map, token);
1278 out:
1279         return -1;
1280 }
1281
1282 /*
1283  * scsi_target_queue_ready: checks if there we can send commands to target
1284  * @sdev: scsi device on starget to check.
1285  */
1286 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1287                                            struct scsi_device *sdev)
1288 {
1289         struct scsi_target *starget = scsi_target(sdev);
1290         unsigned int busy;
1291
1292         if (starget->single_lun) {
1293                 spin_lock_irq(shost->host_lock);
1294                 if (starget->starget_sdev_user &&
1295                     starget->starget_sdev_user != sdev) {
1296                         spin_unlock_irq(shost->host_lock);
1297                         return 0;
1298                 }
1299                 starget->starget_sdev_user = sdev;
1300                 spin_unlock_irq(shost->host_lock);
1301         }
1302
1303         if (starget->can_queue <= 0)
1304                 return 1;
1305
1306         busy = atomic_inc_return(&starget->target_busy) - 1;
1307         if (atomic_read(&starget->target_blocked) > 0) {
1308                 if (busy)
1309                         goto starved;
1310
1311                 /*
1312                  * unblock after target_blocked iterates to zero
1313                  */
1314                 if (atomic_dec_return(&starget->target_blocked) > 0)
1315                         goto out_dec;
1316
1317                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1318                                  "unblocking target at zero depth\n"));
1319         }
1320
1321         if (busy >= starget->can_queue)
1322                 goto starved;
1323
1324         return 1;
1325
1326 starved:
1327         spin_lock_irq(shost->host_lock);
1328         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1329         spin_unlock_irq(shost->host_lock);
1330 out_dec:
1331         if (starget->can_queue > 0)
1332                 atomic_dec(&starget->target_busy);
1333         return 0;
1334 }
1335
1336 /*
1337  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1338  * return 0. We must end up running the queue again whenever 0 is
1339  * returned, else IO can hang.
1340  */
1341 static inline int scsi_host_queue_ready(struct request_queue *q,
1342                                    struct Scsi_Host *shost,
1343                                    struct scsi_device *sdev,
1344                                    struct scsi_cmnd *cmd)
1345 {
1346         if (scsi_host_in_recovery(shost))
1347                 return 0;
1348
1349         if (atomic_read(&shost->host_blocked) > 0) {
1350                 if (scsi_host_busy(shost) > 0)
1351                         goto starved;
1352
1353                 /*
1354                  * unblock after host_blocked iterates to zero
1355                  */
1356                 if (atomic_dec_return(&shost->host_blocked) > 0)
1357                         goto out_dec;
1358
1359                 SCSI_LOG_MLQUEUE(3,
1360                         shost_printk(KERN_INFO, shost,
1361                                      "unblocking host at zero depth\n"));
1362         }
1363
1364         if (shost->host_self_blocked)
1365                 goto starved;
1366
1367         /* We're OK to process the command, so we can't be starved */
1368         if (!list_empty(&sdev->starved_entry)) {
1369                 spin_lock_irq(shost->host_lock);
1370                 if (!list_empty(&sdev->starved_entry))
1371                         list_del_init(&sdev->starved_entry);
1372                 spin_unlock_irq(shost->host_lock);
1373         }
1374
1375         __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1376
1377         return 1;
1378
1379 starved:
1380         spin_lock_irq(shost->host_lock);
1381         if (list_empty(&sdev->starved_entry))
1382                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1383         spin_unlock_irq(shost->host_lock);
1384 out_dec:
1385         scsi_dec_host_busy(shost, cmd);
1386         return 0;
1387 }
1388
1389 /*
1390  * Busy state exporting function for request stacking drivers.
1391  *
1392  * For efficiency, no lock is taken to check the busy state of
1393  * shost/starget/sdev, since the returned value is not guaranteed and
1394  * may be changed after request stacking drivers call the function,
1395  * regardless of taking lock or not.
1396  *
1397  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1398  * needs to return 'not busy'. Otherwise, request stacking drivers
1399  * may hold requests forever.
1400  */
1401 static bool scsi_mq_lld_busy(struct request_queue *q)
1402 {
1403         struct scsi_device *sdev = q->queuedata;
1404         struct Scsi_Host *shost;
1405
1406         if (blk_queue_dying(q))
1407                 return false;
1408
1409         shost = sdev->host;
1410
1411         /*
1412          * Ignore host/starget busy state.
1413          * Since block layer does not have a concept of fairness across
1414          * multiple queues, congestion of host/starget needs to be handled
1415          * in SCSI layer.
1416          */
1417         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1418                 return true;
1419
1420         return false;
1421 }
1422
1423 /*
1424  * Block layer request completion callback. May be called from interrupt
1425  * context.
1426  */
1427 static void scsi_complete(struct request *rq)
1428 {
1429         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1430         enum scsi_disposition disposition;
1431
1432         INIT_LIST_HEAD(&cmd->eh_entry);
1433
1434         atomic_inc(&cmd->device->iodone_cnt);
1435         if (cmd->result)
1436                 atomic_inc(&cmd->device->ioerr_cnt);
1437
1438         disposition = scsi_decide_disposition(cmd);
1439         if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1440                 disposition = SUCCESS;
1441
1442         scsi_log_completion(cmd, disposition);
1443
1444         switch (disposition) {
1445         case SUCCESS:
1446                 scsi_finish_command(cmd);
1447                 break;
1448         case NEEDS_RETRY:
1449                 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1450                 break;
1451         case ADD_TO_MLQUEUE:
1452                 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1453                 break;
1454         default:
1455                 scsi_eh_scmd_add(cmd);
1456                 break;
1457         }
1458 }
1459
1460 /**
1461  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1462  * @cmd: command block we are dispatching.
1463  *
1464  * Return: nonzero return request was rejected and device's queue needs to be
1465  * plugged.
1466  */
1467 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1468 {
1469         struct Scsi_Host *host = cmd->device->host;
1470         int rtn = 0;
1471
1472         atomic_inc(&cmd->device->iorequest_cnt);
1473
1474         /* check if the device is still usable */
1475         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1476                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1477                  * returns an immediate error upwards, and signals
1478                  * that the device is no longer present */
1479                 cmd->result = DID_NO_CONNECT << 16;
1480                 goto done;
1481         }
1482
1483         /* Check to see if the scsi lld made this device blocked. */
1484         if (unlikely(scsi_device_blocked(cmd->device))) {
1485                 /*
1486                  * in blocked state, the command is just put back on
1487                  * the device queue.  The suspend state has already
1488                  * blocked the queue so future requests should not
1489                  * occur until the device transitions out of the
1490                  * suspend state.
1491                  */
1492                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1493                         "queuecommand : device blocked\n"));
1494                 atomic_dec(&cmd->device->iorequest_cnt);
1495                 return SCSI_MLQUEUE_DEVICE_BUSY;
1496         }
1497
1498         /* Store the LUN value in cmnd, if needed. */
1499         if (cmd->device->lun_in_cdb)
1500                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1501                                (cmd->device->lun << 5 & 0xe0);
1502
1503         scsi_log_send(cmd);
1504
1505         /*
1506          * Before we queue this command, check if the command
1507          * length exceeds what the host adapter can handle.
1508          */
1509         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1510                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1511                                "queuecommand : command too long. "
1512                                "cdb_size=%d host->max_cmd_len=%d\n",
1513                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1514                 cmd->result = (DID_ABORT << 16);
1515                 goto done;
1516         }
1517
1518         if (unlikely(host->shost_state == SHOST_DEL)) {
1519                 cmd->result = (DID_NO_CONNECT << 16);
1520                 goto done;
1521
1522         }
1523
1524         trace_scsi_dispatch_cmd_start(cmd);
1525         rtn = host->hostt->queuecommand(host, cmd);
1526         if (rtn) {
1527                 atomic_dec(&cmd->device->iorequest_cnt);
1528                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1529                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1530                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1531                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1532
1533                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1534                         "queuecommand : request rejected\n"));
1535         }
1536
1537         return rtn;
1538  done:
1539         scsi_done(cmd);
1540         return 0;
1541 }
1542
1543 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1544 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1545 {
1546         return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1547                 sizeof(struct scatterlist);
1548 }
1549
1550 static blk_status_t scsi_prepare_cmd(struct request *req)
1551 {
1552         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1553         struct scsi_device *sdev = req->q->queuedata;
1554         struct Scsi_Host *shost = sdev->host;
1555         bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1556         struct scatterlist *sg;
1557
1558         scsi_init_command(sdev, cmd);
1559
1560         cmd->eh_eflags = 0;
1561         cmd->prot_type = 0;
1562         cmd->prot_flags = 0;
1563         cmd->submitter = 0;
1564         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1565         cmd->underflow = 0;
1566         cmd->transfersize = 0;
1567         cmd->host_scribble = NULL;
1568         cmd->result = 0;
1569         cmd->extra_len = 0;
1570         cmd->state = 0;
1571         if (in_flight)
1572                 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1573
1574         /*
1575          * Only clear the driver-private command data if the LLD does not supply
1576          * a function to initialize that data.
1577          */
1578         if (!shost->hostt->init_cmd_priv)
1579                 memset(cmd + 1, 0, shost->hostt->cmd_size);
1580
1581         cmd->prot_op = SCSI_PROT_NORMAL;
1582         if (blk_rq_bytes(req))
1583                 cmd->sc_data_direction = rq_dma_dir(req);
1584         else
1585                 cmd->sc_data_direction = DMA_NONE;
1586
1587         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1588         cmd->sdb.table.sgl = sg;
1589
1590         if (scsi_host_get_prot(shost)) {
1591                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1592
1593                 cmd->prot_sdb->table.sgl =
1594                         (struct scatterlist *)(cmd->prot_sdb + 1);
1595         }
1596
1597         /*
1598          * Special handling for passthrough commands, which don't go to the ULP
1599          * at all:
1600          */
1601         if (blk_rq_is_passthrough(req))
1602                 return scsi_setup_scsi_cmnd(sdev, req);
1603
1604         if (sdev->handler && sdev->handler->prep_fn) {
1605                 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1606
1607                 if (ret != BLK_STS_OK)
1608                         return ret;
1609         }
1610
1611         /* Usually overridden by the ULP */
1612         cmd->allowed = 0;
1613         memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1614         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1615 }
1616
1617 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1618 {
1619         struct request *req = scsi_cmd_to_rq(cmd);
1620
1621         switch (cmd->submitter) {
1622         case SUBMITTED_BY_BLOCK_LAYER:
1623                 break;
1624         case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1625                 return scsi_eh_done(cmd);
1626         case SUBMITTED_BY_SCSI_RESET_IOCTL:
1627                 return;
1628         }
1629
1630         if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1631                 return;
1632         if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1633                 return;
1634         trace_scsi_dispatch_cmd_done(cmd);
1635
1636         if (complete_directly)
1637                 blk_mq_complete_request_direct(req, scsi_complete);
1638         else
1639                 blk_mq_complete_request(req);
1640 }
1641
1642 void scsi_done(struct scsi_cmnd *cmd)
1643 {
1644         scsi_done_internal(cmd, false);
1645 }
1646 EXPORT_SYMBOL(scsi_done);
1647
1648 void scsi_done_direct(struct scsi_cmnd *cmd)
1649 {
1650         scsi_done_internal(cmd, true);
1651 }
1652 EXPORT_SYMBOL(scsi_done_direct);
1653
1654 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1655 {
1656         struct scsi_device *sdev = q->queuedata;
1657
1658         sbitmap_put(&sdev->budget_map, budget_token);
1659 }
1660
1661 /*
1662  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1663  * not change behaviour from the previous unplug mechanism, experimentation
1664  * may prove this needs changing.
1665  */
1666 #define SCSI_QUEUE_DELAY 3
1667
1668 static int scsi_mq_get_budget(struct request_queue *q)
1669 {
1670         struct scsi_device *sdev = q->queuedata;
1671         int token = scsi_dev_queue_ready(q, sdev);
1672
1673         if (token >= 0)
1674                 return token;
1675
1676         atomic_inc(&sdev->restarts);
1677
1678         /*
1679          * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1680          * .restarts must be incremented before .device_busy is read because the
1681          * code in scsi_run_queue_async() depends on the order of these operations.
1682          */
1683         smp_mb__after_atomic();
1684
1685         /*
1686          * If all in-flight requests originated from this LUN are completed
1687          * before reading .device_busy, sdev->device_busy will be observed as
1688          * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1689          * soon. Otherwise, completion of one of these requests will observe
1690          * the .restarts flag, and the request queue will be run for handling
1691          * this request, see scsi_end_request().
1692          */
1693         if (unlikely(scsi_device_busy(sdev) == 0 &&
1694                                 !scsi_device_blocked(sdev)))
1695                 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1696         return -1;
1697 }
1698
1699 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1700 {
1701         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1702
1703         cmd->budget_token = token;
1704 }
1705
1706 static int scsi_mq_get_rq_budget_token(struct request *req)
1707 {
1708         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1709
1710         return cmd->budget_token;
1711 }
1712
1713 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1714                          const struct blk_mq_queue_data *bd)
1715 {
1716         struct request *req = bd->rq;
1717         struct request_queue *q = req->q;
1718         struct scsi_device *sdev = q->queuedata;
1719         struct Scsi_Host *shost = sdev->host;
1720         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1721         blk_status_t ret;
1722         int reason;
1723
1724         WARN_ON_ONCE(cmd->budget_token < 0);
1725
1726         /*
1727          * If the device is not in running state we will reject some or all
1728          * commands.
1729          */
1730         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1731                 ret = scsi_device_state_check(sdev, req);
1732                 if (ret != BLK_STS_OK)
1733                         goto out_put_budget;
1734         }
1735
1736         ret = BLK_STS_RESOURCE;
1737         if (!scsi_target_queue_ready(shost, sdev))
1738                 goto out_put_budget;
1739         if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1740                 goto out_dec_target_busy;
1741
1742         if (!(req->rq_flags & RQF_DONTPREP)) {
1743                 ret = scsi_prepare_cmd(req);
1744                 if (ret != BLK_STS_OK)
1745                         goto out_dec_host_busy;
1746                 req->rq_flags |= RQF_DONTPREP;
1747         } else {
1748                 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1749         }
1750
1751         cmd->flags &= SCMD_PRESERVED_FLAGS;
1752         if (sdev->simple_tags)
1753                 cmd->flags |= SCMD_TAGGED;
1754         if (bd->last)
1755                 cmd->flags |= SCMD_LAST;
1756
1757         scsi_set_resid(cmd, 0);
1758         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1759         cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1760
1761         blk_mq_start_request(req);
1762         reason = scsi_dispatch_cmd(cmd);
1763         if (reason) {
1764                 scsi_set_blocked(cmd, reason);
1765                 ret = BLK_STS_RESOURCE;
1766                 goto out_dec_host_busy;
1767         }
1768
1769         return BLK_STS_OK;
1770
1771 out_dec_host_busy:
1772         scsi_dec_host_busy(shost, cmd);
1773 out_dec_target_busy:
1774         if (scsi_target(sdev)->can_queue > 0)
1775                 atomic_dec(&scsi_target(sdev)->target_busy);
1776 out_put_budget:
1777         scsi_mq_put_budget(q, cmd->budget_token);
1778         cmd->budget_token = -1;
1779         switch (ret) {
1780         case BLK_STS_OK:
1781                 break;
1782         case BLK_STS_RESOURCE:
1783         case BLK_STS_ZONE_RESOURCE:
1784                 if (scsi_device_blocked(sdev))
1785                         ret = BLK_STS_DEV_RESOURCE;
1786                 break;
1787         case BLK_STS_AGAIN:
1788                 cmd->result = DID_BUS_BUSY << 16;
1789                 if (req->rq_flags & RQF_DONTPREP)
1790                         scsi_mq_uninit_cmd(cmd);
1791                 break;
1792         default:
1793                 if (unlikely(!scsi_device_online(sdev)))
1794                         cmd->result = DID_NO_CONNECT << 16;
1795                 else
1796                         cmd->result = DID_ERROR << 16;
1797                 /*
1798                  * Make sure to release all allocated resources when
1799                  * we hit an error, as we will never see this command
1800                  * again.
1801                  */
1802                 if (req->rq_flags & RQF_DONTPREP)
1803                         scsi_mq_uninit_cmd(cmd);
1804                 scsi_run_queue_async(sdev);
1805                 break;
1806         }
1807         return ret;
1808 }
1809
1810 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1811                                 unsigned int hctx_idx, unsigned int numa_node)
1812 {
1813         struct Scsi_Host *shost = set->driver_data;
1814         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1815         struct scatterlist *sg;
1816         int ret = 0;
1817
1818         cmd->sense_buffer =
1819                 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1820         if (!cmd->sense_buffer)
1821                 return -ENOMEM;
1822
1823         if (scsi_host_get_prot(shost)) {
1824                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1825                         shost->hostt->cmd_size;
1826                 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1827         }
1828
1829         if (shost->hostt->init_cmd_priv) {
1830                 ret = shost->hostt->init_cmd_priv(shost, cmd);
1831                 if (ret < 0)
1832                         kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1833         }
1834
1835         return ret;
1836 }
1837
1838 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1839                                  unsigned int hctx_idx)
1840 {
1841         struct Scsi_Host *shost = set->driver_data;
1842         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1843
1844         if (shost->hostt->exit_cmd_priv)
1845                 shost->hostt->exit_cmd_priv(shost, cmd);
1846         kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1847 }
1848
1849
1850 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1851 {
1852         struct Scsi_Host *shost = hctx->driver_data;
1853
1854         if (shost->hostt->mq_poll)
1855                 return shost->hostt->mq_poll(shost, hctx->queue_num);
1856
1857         return 0;
1858 }
1859
1860 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1861                           unsigned int hctx_idx)
1862 {
1863         struct Scsi_Host *shost = data;
1864
1865         hctx->driver_data = shost;
1866         return 0;
1867 }
1868
1869 static void scsi_map_queues(struct blk_mq_tag_set *set)
1870 {
1871         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1872
1873         if (shost->hostt->map_queues)
1874                 return shost->hostt->map_queues(shost);
1875         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1876 }
1877
1878 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1879 {
1880         struct device *dev = shost->dma_dev;
1881
1882         /*
1883          * this limit is imposed by hardware restrictions
1884          */
1885         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1886                                         SG_MAX_SEGMENTS));
1887
1888         if (scsi_host_prot_dma(shost)) {
1889                 shost->sg_prot_tablesize =
1890                         min_not_zero(shost->sg_prot_tablesize,
1891                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1892                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1893                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1894         }
1895
1896         blk_queue_max_hw_sectors(q, shost->max_sectors);
1897         blk_queue_segment_boundary(q, shost->dma_boundary);
1898         dma_set_seg_boundary(dev, shost->dma_boundary);
1899
1900         blk_queue_max_segment_size(q, shost->max_segment_size);
1901         blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1902         dma_set_max_seg_size(dev, queue_max_segment_size(q));
1903
1904         /*
1905          * Set a reasonable default alignment:  The larger of 32-byte (dword),
1906          * which is a common minimum for HBAs, and the minimum DMA alignment,
1907          * which is set by the platform.
1908          *
1909          * Devices that require a bigger alignment can increase it later.
1910          */
1911         blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1912 }
1913 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1914
1915 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1916         .get_budget     = scsi_mq_get_budget,
1917         .put_budget     = scsi_mq_put_budget,
1918         .queue_rq       = scsi_queue_rq,
1919         .complete       = scsi_complete,
1920         .timeout        = scsi_timeout,
1921 #ifdef CONFIG_BLK_DEBUG_FS
1922         .show_rq        = scsi_show_rq,
1923 #endif
1924         .init_request   = scsi_mq_init_request,
1925         .exit_request   = scsi_mq_exit_request,
1926         .cleanup_rq     = scsi_cleanup_rq,
1927         .busy           = scsi_mq_lld_busy,
1928         .map_queues     = scsi_map_queues,
1929         .init_hctx      = scsi_init_hctx,
1930         .poll           = scsi_mq_poll,
1931         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1932         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1933 };
1934
1935
1936 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1937 {
1938         struct Scsi_Host *shost = hctx->driver_data;
1939
1940         shost->hostt->commit_rqs(shost, hctx->queue_num);
1941 }
1942
1943 static const struct blk_mq_ops scsi_mq_ops = {
1944         .get_budget     = scsi_mq_get_budget,
1945         .put_budget     = scsi_mq_put_budget,
1946         .queue_rq       = scsi_queue_rq,
1947         .commit_rqs     = scsi_commit_rqs,
1948         .complete       = scsi_complete,
1949         .timeout        = scsi_timeout,
1950 #ifdef CONFIG_BLK_DEBUG_FS
1951         .show_rq        = scsi_show_rq,
1952 #endif
1953         .init_request   = scsi_mq_init_request,
1954         .exit_request   = scsi_mq_exit_request,
1955         .cleanup_rq     = scsi_cleanup_rq,
1956         .busy           = scsi_mq_lld_busy,
1957         .map_queues     = scsi_map_queues,
1958         .init_hctx      = scsi_init_hctx,
1959         .poll           = scsi_mq_poll,
1960         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1961         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1962 };
1963
1964 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1965 {
1966         unsigned int cmd_size, sgl_size;
1967         struct blk_mq_tag_set *tag_set = &shost->tag_set;
1968
1969         sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1970                                 scsi_mq_inline_sgl_size(shost));
1971         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1972         if (scsi_host_get_prot(shost))
1973                 cmd_size += sizeof(struct scsi_data_buffer) +
1974                         sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1975
1976         memset(tag_set, 0, sizeof(*tag_set));
1977         if (shost->hostt->commit_rqs)
1978                 tag_set->ops = &scsi_mq_ops;
1979         else
1980                 tag_set->ops = &scsi_mq_ops_no_commit;
1981         tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1982         tag_set->nr_maps = shost->nr_maps ? : 1;
1983         tag_set->queue_depth = shost->can_queue;
1984         tag_set->cmd_size = cmd_size;
1985         tag_set->numa_node = dev_to_node(shost->dma_dev);
1986         tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1987         tag_set->flags |=
1988                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1989         tag_set->driver_data = shost;
1990         if (shost->host_tagset)
1991                 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1992
1993         return blk_mq_alloc_tag_set(tag_set);
1994 }
1995
1996 void scsi_mq_free_tags(struct kref *kref)
1997 {
1998         struct Scsi_Host *shost = container_of(kref, typeof(*shost),
1999                                                tagset_refcnt);
2000
2001         blk_mq_free_tag_set(&shost->tag_set);
2002         complete(&shost->tagset_freed);
2003 }
2004
2005 /**
2006  * scsi_device_from_queue - return sdev associated with a request_queue
2007  * @q: The request queue to return the sdev from
2008  *
2009  * Return the sdev associated with a request queue or NULL if the
2010  * request_queue does not reference a SCSI device.
2011  */
2012 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2013 {
2014         struct scsi_device *sdev = NULL;
2015
2016         if (q->mq_ops == &scsi_mq_ops_no_commit ||
2017             q->mq_ops == &scsi_mq_ops)
2018                 sdev = q->queuedata;
2019         if (!sdev || !get_device(&sdev->sdev_gendev))
2020                 sdev = NULL;
2021
2022         return sdev;
2023 }
2024 /*
2025  * pktcdvd should have been integrated into the SCSI layers, but for historical
2026  * reasons like the old IDE driver it isn't.  This export allows it to safely
2027  * probe if a given device is a SCSI one and only attach to that.
2028  */
2029 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2030 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2031 #endif
2032
2033 /**
2034  * scsi_block_requests - Utility function used by low-level drivers to prevent
2035  * further commands from being queued to the device.
2036  * @shost:  host in question
2037  *
2038  * There is no timer nor any other means by which the requests get unblocked
2039  * other than the low-level driver calling scsi_unblock_requests().
2040  */
2041 void scsi_block_requests(struct Scsi_Host *shost)
2042 {
2043         shost->host_self_blocked = 1;
2044 }
2045 EXPORT_SYMBOL(scsi_block_requests);
2046
2047 /**
2048  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2049  * further commands to be queued to the device.
2050  * @shost:  host in question
2051  *
2052  * There is no timer nor any other means by which the requests get unblocked
2053  * other than the low-level driver calling scsi_unblock_requests(). This is done
2054  * as an API function so that changes to the internals of the scsi mid-layer
2055  * won't require wholesale changes to drivers that use this feature.
2056  */
2057 void scsi_unblock_requests(struct Scsi_Host *shost)
2058 {
2059         shost->host_self_blocked = 0;
2060         scsi_run_host_queues(shost);
2061 }
2062 EXPORT_SYMBOL(scsi_unblock_requests);
2063
2064 void scsi_exit_queue(void)
2065 {
2066         kmem_cache_destroy(scsi_sense_cache);
2067 }
2068
2069 /**
2070  *      scsi_mode_select - issue a mode select
2071  *      @sdev:  SCSI device to be queried
2072  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2073  *      @sp:    Save page bit (0 == don't save, 1 == save)
2074  *      @buffer: request buffer (may not be smaller than eight bytes)
2075  *      @len:   length of request buffer.
2076  *      @timeout: command timeout
2077  *      @retries: number of retries before failing
2078  *      @data: returns a structure abstracting the mode header data
2079  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2080  *              must be SCSI_SENSE_BUFFERSIZE big.
2081  *
2082  *      Returns zero if successful; negative error number or scsi
2083  *      status on error
2084  *
2085  */
2086 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2087                      unsigned char *buffer, int len, int timeout, int retries,
2088                      struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2089 {
2090         unsigned char cmd[10];
2091         unsigned char *real_buffer;
2092         int ret;
2093
2094         memset(cmd, 0, sizeof(cmd));
2095         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2096
2097         /*
2098          * Use MODE SELECT(10) if the device asked for it or if the mode page
2099          * and the mode select header cannot fit within the maximumm 255 bytes
2100          * of the MODE SELECT(6) command.
2101          */
2102         if (sdev->use_10_for_ms ||
2103             len + 4 > 255 ||
2104             data->block_descriptor_length > 255) {
2105                 if (len > 65535 - 8)
2106                         return -EINVAL;
2107                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2108                 if (!real_buffer)
2109                         return -ENOMEM;
2110                 memcpy(real_buffer + 8, buffer, len);
2111                 len += 8;
2112                 real_buffer[0] = 0;
2113                 real_buffer[1] = 0;
2114                 real_buffer[2] = data->medium_type;
2115                 real_buffer[3] = data->device_specific;
2116                 real_buffer[4] = data->longlba ? 0x01 : 0;
2117                 real_buffer[5] = 0;
2118                 put_unaligned_be16(data->block_descriptor_length,
2119                                    &real_buffer[6]);
2120
2121                 cmd[0] = MODE_SELECT_10;
2122                 put_unaligned_be16(len, &cmd[7]);
2123         } else {
2124                 if (data->longlba)
2125                         return -EINVAL;
2126
2127                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2128                 if (!real_buffer)
2129                         return -ENOMEM;
2130                 memcpy(real_buffer + 4, buffer, len);
2131                 len += 4;
2132                 real_buffer[0] = 0;
2133                 real_buffer[1] = data->medium_type;
2134                 real_buffer[2] = data->device_specific;
2135                 real_buffer[3] = data->block_descriptor_length;
2136
2137                 cmd[0] = MODE_SELECT;
2138                 cmd[4] = len;
2139         }
2140
2141         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2142                                sshdr, timeout, retries, NULL);
2143         kfree(real_buffer);
2144         return ret;
2145 }
2146 EXPORT_SYMBOL_GPL(scsi_mode_select);
2147
2148 /**
2149  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2150  *      @sdev:  SCSI device to be queried
2151  *      @dbd:   set to prevent mode sense from returning block descriptors
2152  *      @modepage: mode page being requested
2153  *      @buffer: request buffer (may not be smaller than eight bytes)
2154  *      @len:   length of request buffer.
2155  *      @timeout: command timeout
2156  *      @retries: number of retries before failing
2157  *      @data: returns a structure abstracting the mode header data
2158  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2159  *              must be SCSI_SENSE_BUFFERSIZE big.
2160  *
2161  *      Returns zero if successful, or a negative error number on failure
2162  */
2163 int
2164 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2165                   unsigned char *buffer, int len, int timeout, int retries,
2166                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2167 {
2168         unsigned char cmd[12];
2169         int use_10_for_ms;
2170         int header_length;
2171         int result, retry_count = retries;
2172         struct scsi_sense_hdr my_sshdr;
2173
2174         memset(data, 0, sizeof(*data));
2175         memset(&cmd[0], 0, 12);
2176
2177         dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2178         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2179         cmd[2] = modepage;
2180
2181         /* caller might not be interested in sense, but we need it */
2182         if (!sshdr)
2183                 sshdr = &my_sshdr;
2184
2185  retry:
2186         use_10_for_ms = sdev->use_10_for_ms || len > 255;
2187
2188         if (use_10_for_ms) {
2189                 if (len < 8 || len > 65535)
2190                         return -EINVAL;
2191
2192                 cmd[0] = MODE_SENSE_10;
2193                 put_unaligned_be16(len, &cmd[7]);
2194                 header_length = 8;
2195         } else {
2196                 if (len < 4)
2197                         return -EINVAL;
2198
2199                 cmd[0] = MODE_SENSE;
2200                 cmd[4] = len;
2201                 header_length = 4;
2202         }
2203
2204         memset(buffer, 0, len);
2205
2206         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2207                                   sshdr, timeout, retries, NULL);
2208         if (result < 0)
2209                 return result;
2210
2211         /* This code looks awful: what it's doing is making sure an
2212          * ILLEGAL REQUEST sense return identifies the actual command
2213          * byte as the problem.  MODE_SENSE commands can return
2214          * ILLEGAL REQUEST if the code page isn't supported */
2215
2216         if (!scsi_status_is_good(result)) {
2217                 if (scsi_sense_valid(sshdr)) {
2218                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2219                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2220                                 /*
2221                                  * Invalid command operation code: retry using
2222                                  * MODE SENSE(6) if this was a MODE SENSE(10)
2223                                  * request, except if the request mode page is
2224                                  * too large for MODE SENSE single byte
2225                                  * allocation length field.
2226                                  */
2227                                 if (use_10_for_ms) {
2228                                         if (len > 255)
2229                                                 return -EIO;
2230                                         sdev->use_10_for_ms = 0;
2231                                         goto retry;
2232                                 }
2233                         }
2234                         if (scsi_status_is_check_condition(result) &&
2235                             sshdr->sense_key == UNIT_ATTENTION &&
2236                             retry_count) {
2237                                 retry_count--;
2238                                 goto retry;
2239                         }
2240                 }
2241                 return -EIO;
2242         }
2243         if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2244                      (modepage == 6 || modepage == 8))) {
2245                 /* Initio breakage? */
2246                 header_length = 0;
2247                 data->length = 13;
2248                 data->medium_type = 0;
2249                 data->device_specific = 0;
2250                 data->longlba = 0;
2251                 data->block_descriptor_length = 0;
2252         } else if (use_10_for_ms) {
2253                 data->length = get_unaligned_be16(&buffer[0]) + 2;
2254                 data->medium_type = buffer[2];
2255                 data->device_specific = buffer[3];
2256                 data->longlba = buffer[4] & 0x01;
2257                 data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2258         } else {
2259                 data->length = buffer[0] + 1;
2260                 data->medium_type = buffer[1];
2261                 data->device_specific = buffer[2];
2262                 data->block_descriptor_length = buffer[3];
2263         }
2264         data->header_length = header_length;
2265
2266         return 0;
2267 }
2268 EXPORT_SYMBOL(scsi_mode_sense);
2269
2270 /**
2271  *      scsi_test_unit_ready - test if unit is ready
2272  *      @sdev:  scsi device to change the state of.
2273  *      @timeout: command timeout
2274  *      @retries: number of retries before failing
2275  *      @sshdr: outpout pointer for decoded sense information.
2276  *
2277  *      Returns zero if unsuccessful or an error if TUR failed.  For
2278  *      removable media, UNIT_ATTENTION sets ->changed flag.
2279  **/
2280 int
2281 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2282                      struct scsi_sense_hdr *sshdr)
2283 {
2284         char cmd[] = {
2285                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2286         };
2287         int result;
2288
2289         /* try to eat the UNIT_ATTENTION if there are enough retries */
2290         do {
2291                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2292                                           timeout, 1, NULL);
2293                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2294                     sshdr->sense_key == UNIT_ATTENTION)
2295                         sdev->changed = 1;
2296         } while (scsi_sense_valid(sshdr) &&
2297                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2298
2299         return result;
2300 }
2301 EXPORT_SYMBOL(scsi_test_unit_ready);
2302
2303 /**
2304  *      scsi_device_set_state - Take the given device through the device state model.
2305  *      @sdev:  scsi device to change the state of.
2306  *      @state: state to change to.
2307  *
2308  *      Returns zero if successful or an error if the requested
2309  *      transition is illegal.
2310  */
2311 int
2312 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2313 {
2314         enum scsi_device_state oldstate = sdev->sdev_state;
2315
2316         if (state == oldstate)
2317                 return 0;
2318
2319         switch (state) {
2320         case SDEV_CREATED:
2321                 switch (oldstate) {
2322                 case SDEV_CREATED_BLOCK:
2323                         break;
2324                 default:
2325                         goto illegal;
2326                 }
2327                 break;
2328
2329         case SDEV_RUNNING:
2330                 switch (oldstate) {
2331                 case SDEV_CREATED:
2332                 case SDEV_OFFLINE:
2333                 case SDEV_TRANSPORT_OFFLINE:
2334                 case SDEV_QUIESCE:
2335                 case SDEV_BLOCK:
2336                         break;
2337                 default:
2338                         goto illegal;
2339                 }
2340                 break;
2341
2342         case SDEV_QUIESCE:
2343                 switch (oldstate) {
2344                 case SDEV_RUNNING:
2345                 case SDEV_OFFLINE:
2346                 case SDEV_TRANSPORT_OFFLINE:
2347                         break;
2348                 default:
2349                         goto illegal;
2350                 }
2351                 break;
2352
2353         case SDEV_OFFLINE:
2354         case SDEV_TRANSPORT_OFFLINE:
2355                 switch (oldstate) {
2356                 case SDEV_CREATED:
2357                 case SDEV_RUNNING:
2358                 case SDEV_QUIESCE:
2359                 case SDEV_BLOCK:
2360                         break;
2361                 default:
2362                         goto illegal;
2363                 }
2364                 break;
2365
2366         case SDEV_BLOCK:
2367                 switch (oldstate) {
2368                 case SDEV_RUNNING:
2369                 case SDEV_CREATED_BLOCK:
2370                 case SDEV_QUIESCE:
2371                 case SDEV_OFFLINE:
2372                         break;
2373                 default:
2374                         goto illegal;
2375                 }
2376                 break;
2377
2378         case SDEV_CREATED_BLOCK:
2379                 switch (oldstate) {
2380                 case SDEV_CREATED:
2381                         break;
2382                 default:
2383                         goto illegal;
2384                 }
2385                 break;
2386
2387         case SDEV_CANCEL:
2388                 switch (oldstate) {
2389                 case SDEV_CREATED:
2390                 case SDEV_RUNNING:
2391                 case SDEV_QUIESCE:
2392                 case SDEV_OFFLINE:
2393                 case SDEV_TRANSPORT_OFFLINE:
2394                         break;
2395                 default:
2396                         goto illegal;
2397                 }
2398                 break;
2399
2400         case SDEV_DEL:
2401                 switch (oldstate) {
2402                 case SDEV_CREATED:
2403                 case SDEV_RUNNING:
2404                 case SDEV_OFFLINE:
2405                 case SDEV_TRANSPORT_OFFLINE:
2406                 case SDEV_CANCEL:
2407                 case SDEV_BLOCK:
2408                 case SDEV_CREATED_BLOCK:
2409                         break;
2410                 default:
2411                         goto illegal;
2412                 }
2413                 break;
2414
2415         }
2416         sdev->offline_already = false;
2417         sdev->sdev_state = state;
2418         return 0;
2419
2420  illegal:
2421         SCSI_LOG_ERROR_RECOVERY(1,
2422                                 sdev_printk(KERN_ERR, sdev,
2423                                             "Illegal state transition %s->%s",
2424                                             scsi_device_state_name(oldstate),
2425                                             scsi_device_state_name(state))
2426                                 );
2427         return -EINVAL;
2428 }
2429 EXPORT_SYMBOL(scsi_device_set_state);
2430
2431 /**
2432  *      scsi_evt_emit - emit a single SCSI device uevent
2433  *      @sdev: associated SCSI device
2434  *      @evt: event to emit
2435  *
2436  *      Send a single uevent (scsi_event) to the associated scsi_device.
2437  */
2438 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2439 {
2440         int idx = 0;
2441         char *envp[3];
2442
2443         switch (evt->evt_type) {
2444         case SDEV_EVT_MEDIA_CHANGE:
2445                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2446                 break;
2447         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2448                 scsi_rescan_device(&sdev->sdev_gendev);
2449                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2450                 break;
2451         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2452                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2453                 break;
2454         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2455                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2456                 break;
2457         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2458                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2459                 break;
2460         case SDEV_EVT_LUN_CHANGE_REPORTED:
2461                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2462                 break;
2463         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2464                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2465                 break;
2466         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2467                 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2468                 break;
2469         default:
2470                 /* do nothing */
2471                 break;
2472         }
2473
2474         envp[idx++] = NULL;
2475
2476         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2477 }
2478
2479 /**
2480  *      scsi_evt_thread - send a uevent for each scsi event
2481  *      @work: work struct for scsi_device
2482  *
2483  *      Dispatch queued events to their associated scsi_device kobjects
2484  *      as uevents.
2485  */
2486 void scsi_evt_thread(struct work_struct *work)
2487 {
2488         struct scsi_device *sdev;
2489         enum scsi_device_event evt_type;
2490         LIST_HEAD(event_list);
2491
2492         sdev = container_of(work, struct scsi_device, event_work);
2493
2494         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2495                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2496                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2497
2498         while (1) {
2499                 struct scsi_event *evt;
2500                 struct list_head *this, *tmp;
2501                 unsigned long flags;
2502
2503                 spin_lock_irqsave(&sdev->list_lock, flags);
2504                 list_splice_init(&sdev->event_list, &event_list);
2505                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2506
2507                 if (list_empty(&event_list))
2508                         break;
2509
2510                 list_for_each_safe(this, tmp, &event_list) {
2511                         evt = list_entry(this, struct scsi_event, node);
2512                         list_del(&evt->node);
2513                         scsi_evt_emit(sdev, evt);
2514                         kfree(evt);
2515                 }
2516         }
2517 }
2518
2519 /**
2520  *      sdev_evt_send - send asserted event to uevent thread
2521  *      @sdev: scsi_device event occurred on
2522  *      @evt: event to send
2523  *
2524  *      Assert scsi device event asynchronously.
2525  */
2526 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2527 {
2528         unsigned long flags;
2529
2530 #if 0
2531         /* FIXME: currently this check eliminates all media change events
2532          * for polled devices.  Need to update to discriminate between AN
2533          * and polled events */
2534         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2535                 kfree(evt);
2536                 return;
2537         }
2538 #endif
2539
2540         spin_lock_irqsave(&sdev->list_lock, flags);
2541         list_add_tail(&evt->node, &sdev->event_list);
2542         schedule_work(&sdev->event_work);
2543         spin_unlock_irqrestore(&sdev->list_lock, flags);
2544 }
2545 EXPORT_SYMBOL_GPL(sdev_evt_send);
2546
2547 /**
2548  *      sdev_evt_alloc - allocate a new scsi event
2549  *      @evt_type: type of event to allocate
2550  *      @gfpflags: GFP flags for allocation
2551  *
2552  *      Allocates and returns a new scsi_event.
2553  */
2554 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2555                                   gfp_t gfpflags)
2556 {
2557         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2558         if (!evt)
2559                 return NULL;
2560
2561         evt->evt_type = evt_type;
2562         INIT_LIST_HEAD(&evt->node);
2563
2564         /* evt_type-specific initialization, if any */
2565         switch (evt_type) {
2566         case SDEV_EVT_MEDIA_CHANGE:
2567         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2568         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2569         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2570         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2571         case SDEV_EVT_LUN_CHANGE_REPORTED:
2572         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2573         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2574         default:
2575                 /* do nothing */
2576                 break;
2577         }
2578
2579         return evt;
2580 }
2581 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2582
2583 /**
2584  *      sdev_evt_send_simple - send asserted event to uevent thread
2585  *      @sdev: scsi_device event occurred on
2586  *      @evt_type: type of event to send
2587  *      @gfpflags: GFP flags for allocation
2588  *
2589  *      Assert scsi device event asynchronously, given an event type.
2590  */
2591 void sdev_evt_send_simple(struct scsi_device *sdev,
2592                           enum scsi_device_event evt_type, gfp_t gfpflags)
2593 {
2594         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2595         if (!evt) {
2596                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2597                             evt_type);
2598                 return;
2599         }
2600
2601         sdev_evt_send(sdev, evt);
2602 }
2603 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2604
2605 /**
2606  *      scsi_device_quiesce - Block all commands except power management.
2607  *      @sdev:  scsi device to quiesce.
2608  *
2609  *      This works by trying to transition to the SDEV_QUIESCE state
2610  *      (which must be a legal transition).  When the device is in this
2611  *      state, only power management requests will be accepted, all others will
2612  *      be deferred.
2613  *
2614  *      Must be called with user context, may sleep.
2615  *
2616  *      Returns zero if unsuccessful or an error if not.
2617  */
2618 int
2619 scsi_device_quiesce(struct scsi_device *sdev)
2620 {
2621         struct request_queue *q = sdev->request_queue;
2622         int err;
2623
2624         /*
2625          * It is allowed to call scsi_device_quiesce() multiple times from
2626          * the same context but concurrent scsi_device_quiesce() calls are
2627          * not allowed.
2628          */
2629         WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2630
2631         if (sdev->quiesced_by == current)
2632                 return 0;
2633
2634         blk_set_pm_only(q);
2635
2636         blk_mq_freeze_queue(q);
2637         /*
2638          * Ensure that the effect of blk_set_pm_only() will be visible
2639          * for percpu_ref_tryget() callers that occur after the queue
2640          * unfreeze even if the queue was already frozen before this function
2641          * was called. See also https://lwn.net/Articles/573497/.
2642          */
2643         synchronize_rcu();
2644         blk_mq_unfreeze_queue(q);
2645
2646         mutex_lock(&sdev->state_mutex);
2647         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2648         if (err == 0)
2649                 sdev->quiesced_by = current;
2650         else
2651                 blk_clear_pm_only(q);
2652         mutex_unlock(&sdev->state_mutex);
2653
2654         return err;
2655 }
2656 EXPORT_SYMBOL(scsi_device_quiesce);
2657
2658 /**
2659  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2660  *      @sdev:  scsi device to resume.
2661  *
2662  *      Moves the device from quiesced back to running and restarts the
2663  *      queues.
2664  *
2665  *      Must be called with user context, may sleep.
2666  */
2667 void scsi_device_resume(struct scsi_device *sdev)
2668 {
2669         /* check if the device state was mutated prior to resume, and if
2670          * so assume the state is being managed elsewhere (for example
2671          * device deleted during suspend)
2672          */
2673         mutex_lock(&sdev->state_mutex);
2674         if (sdev->sdev_state == SDEV_QUIESCE)
2675                 scsi_device_set_state(sdev, SDEV_RUNNING);
2676         if (sdev->quiesced_by) {
2677                 sdev->quiesced_by = NULL;
2678                 blk_clear_pm_only(sdev->request_queue);
2679         }
2680         mutex_unlock(&sdev->state_mutex);
2681 }
2682 EXPORT_SYMBOL(scsi_device_resume);
2683
2684 static void
2685 device_quiesce_fn(struct scsi_device *sdev, void *data)
2686 {
2687         scsi_device_quiesce(sdev);
2688 }
2689
2690 void
2691 scsi_target_quiesce(struct scsi_target *starget)
2692 {
2693         starget_for_each_device(starget, NULL, device_quiesce_fn);
2694 }
2695 EXPORT_SYMBOL(scsi_target_quiesce);
2696
2697 static void
2698 device_resume_fn(struct scsi_device *sdev, void *data)
2699 {
2700         scsi_device_resume(sdev);
2701 }
2702
2703 void
2704 scsi_target_resume(struct scsi_target *starget)
2705 {
2706         starget_for_each_device(starget, NULL, device_resume_fn);
2707 }
2708 EXPORT_SYMBOL(scsi_target_resume);
2709
2710 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2711 {
2712         if (scsi_device_set_state(sdev, SDEV_BLOCK))
2713                 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2714
2715         return 0;
2716 }
2717
2718 void scsi_start_queue(struct scsi_device *sdev)
2719 {
2720         if (cmpxchg(&sdev->queue_stopped, 1, 0))
2721                 blk_mq_unquiesce_queue(sdev->request_queue);
2722 }
2723
2724 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait)
2725 {
2726         /*
2727          * The atomic variable of ->queue_stopped covers that
2728          * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2729          *
2730          * However, we still need to wait until quiesce is done
2731          * in case that queue has been stopped.
2732          */
2733         if (!cmpxchg(&sdev->queue_stopped, 0, 1)) {
2734                 if (nowait)
2735                         blk_mq_quiesce_queue_nowait(sdev->request_queue);
2736                 else
2737                         blk_mq_quiesce_queue(sdev->request_queue);
2738         } else {
2739                 if (!nowait)
2740                         blk_mq_wait_quiesce_done(sdev->request_queue);
2741         }
2742 }
2743
2744 /**
2745  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2746  * @sdev: device to block
2747  *
2748  * Pause SCSI command processing on the specified device. Does not sleep.
2749  *
2750  * Returns zero if successful or a negative error code upon failure.
2751  *
2752  * Notes:
2753  * This routine transitions the device to the SDEV_BLOCK state (which must be
2754  * a legal transition). When the device is in this state, command processing
2755  * is paused until the device leaves the SDEV_BLOCK state. See also
2756  * scsi_internal_device_unblock_nowait().
2757  */
2758 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2759 {
2760         int ret = __scsi_internal_device_block_nowait(sdev);
2761
2762         /*
2763          * The device has transitioned to SDEV_BLOCK.  Stop the
2764          * block layer from calling the midlayer with this device's
2765          * request queue.
2766          */
2767         if (!ret)
2768                 scsi_stop_queue(sdev, true);
2769         return ret;
2770 }
2771 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2772
2773 /**
2774  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2775  * @sdev: device to block
2776  *
2777  * Pause SCSI command processing on the specified device and wait until all
2778  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2779  *
2780  * Returns zero if successful or a negative error code upon failure.
2781  *
2782  * Note:
2783  * This routine transitions the device to the SDEV_BLOCK state (which must be
2784  * a legal transition). When the device is in this state, command processing
2785  * is paused until the device leaves the SDEV_BLOCK state. See also
2786  * scsi_internal_device_unblock().
2787  */
2788 static int scsi_internal_device_block(struct scsi_device *sdev)
2789 {
2790         int err;
2791
2792         mutex_lock(&sdev->state_mutex);
2793         err = __scsi_internal_device_block_nowait(sdev);
2794         if (err == 0)
2795                 scsi_stop_queue(sdev, false);
2796         mutex_unlock(&sdev->state_mutex);
2797
2798         return err;
2799 }
2800
2801 /**
2802  * scsi_internal_device_unblock_nowait - resume a device after a block request
2803  * @sdev:       device to resume
2804  * @new_state:  state to set the device to after unblocking
2805  *
2806  * Restart the device queue for a previously suspended SCSI device. Does not
2807  * sleep.
2808  *
2809  * Returns zero if successful or a negative error code upon failure.
2810  *
2811  * Notes:
2812  * This routine transitions the device to the SDEV_RUNNING state or to one of
2813  * the offline states (which must be a legal transition) allowing the midlayer
2814  * to goose the queue for this device.
2815  */
2816 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2817                                         enum scsi_device_state new_state)
2818 {
2819         switch (new_state) {
2820         case SDEV_RUNNING:
2821         case SDEV_TRANSPORT_OFFLINE:
2822                 break;
2823         default:
2824                 return -EINVAL;
2825         }
2826
2827         /*
2828          * Try to transition the scsi device to SDEV_RUNNING or one of the
2829          * offlined states and goose the device queue if successful.
2830          */
2831         switch (sdev->sdev_state) {
2832         case SDEV_BLOCK:
2833         case SDEV_TRANSPORT_OFFLINE:
2834                 sdev->sdev_state = new_state;
2835                 break;
2836         case SDEV_CREATED_BLOCK:
2837                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2838                     new_state == SDEV_OFFLINE)
2839                         sdev->sdev_state = new_state;
2840                 else
2841                         sdev->sdev_state = SDEV_CREATED;
2842                 break;
2843         case SDEV_CANCEL:
2844         case SDEV_OFFLINE:
2845                 break;
2846         default:
2847                 return -EINVAL;
2848         }
2849         scsi_start_queue(sdev);
2850
2851         return 0;
2852 }
2853 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2854
2855 /**
2856  * scsi_internal_device_unblock - resume a device after a block request
2857  * @sdev:       device to resume
2858  * @new_state:  state to set the device to after unblocking
2859  *
2860  * Restart the device queue for a previously suspended SCSI device. May sleep.
2861  *
2862  * Returns zero if successful or a negative error code upon failure.
2863  *
2864  * Notes:
2865  * This routine transitions the device to the SDEV_RUNNING state or to one of
2866  * the offline states (which must be a legal transition) allowing the midlayer
2867  * to goose the queue for this device.
2868  */
2869 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2870                                         enum scsi_device_state new_state)
2871 {
2872         int ret;
2873
2874         mutex_lock(&sdev->state_mutex);
2875         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2876         mutex_unlock(&sdev->state_mutex);
2877
2878         return ret;
2879 }
2880
2881 static void
2882 device_block(struct scsi_device *sdev, void *data)
2883 {
2884         int ret;
2885
2886         ret = scsi_internal_device_block(sdev);
2887
2888         WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2889                   dev_name(&sdev->sdev_gendev), ret);
2890 }
2891
2892 static int
2893 target_block(struct device *dev, void *data)
2894 {
2895         if (scsi_is_target_device(dev))
2896                 starget_for_each_device(to_scsi_target(dev), NULL,
2897                                         device_block);
2898         return 0;
2899 }
2900
2901 void
2902 scsi_target_block(struct device *dev)
2903 {
2904         if (scsi_is_target_device(dev))
2905                 starget_for_each_device(to_scsi_target(dev), NULL,
2906                                         device_block);
2907         else
2908                 device_for_each_child(dev, NULL, target_block);
2909 }
2910 EXPORT_SYMBOL_GPL(scsi_target_block);
2911
2912 static void
2913 device_unblock(struct scsi_device *sdev, void *data)
2914 {
2915         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2916 }
2917
2918 static int
2919 target_unblock(struct device *dev, void *data)
2920 {
2921         if (scsi_is_target_device(dev))
2922                 starget_for_each_device(to_scsi_target(dev), data,
2923                                         device_unblock);
2924         return 0;
2925 }
2926
2927 void
2928 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2929 {
2930         if (scsi_is_target_device(dev))
2931                 starget_for_each_device(to_scsi_target(dev), &new_state,
2932                                         device_unblock);
2933         else
2934                 device_for_each_child(dev, &new_state, target_unblock);
2935 }
2936 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2937
2938 int
2939 scsi_host_block(struct Scsi_Host *shost)
2940 {
2941         struct scsi_device *sdev;
2942         int ret = 0;
2943
2944         /*
2945          * Call scsi_internal_device_block_nowait so we can avoid
2946          * calling synchronize_rcu() for each LUN.
2947          */
2948         shost_for_each_device(sdev, shost) {
2949                 mutex_lock(&sdev->state_mutex);
2950                 ret = scsi_internal_device_block_nowait(sdev);
2951                 mutex_unlock(&sdev->state_mutex);
2952                 if (ret) {
2953                         scsi_device_put(sdev);
2954                         break;
2955                 }
2956         }
2957
2958         /*
2959          * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2960          * calling synchronize_rcu() once is enough.
2961          */
2962         WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2963
2964         if (!ret)
2965                 synchronize_rcu();
2966
2967         return ret;
2968 }
2969 EXPORT_SYMBOL_GPL(scsi_host_block);
2970
2971 int
2972 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2973 {
2974         struct scsi_device *sdev;
2975         int ret = 0;
2976
2977         shost_for_each_device(sdev, shost) {
2978                 ret = scsi_internal_device_unblock(sdev, new_state);
2979                 if (ret) {
2980                         scsi_device_put(sdev);
2981                         break;
2982                 }
2983         }
2984         return ret;
2985 }
2986 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2987
2988 /**
2989  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2990  * @sgl:        scatter-gather list
2991  * @sg_count:   number of segments in sg
2992  * @offset:     offset in bytes into sg, on return offset into the mapped area
2993  * @len:        bytes to map, on return number of bytes mapped
2994  *
2995  * Returns virtual address of the start of the mapped page
2996  */
2997 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2998                           size_t *offset, size_t *len)
2999 {
3000         int i;
3001         size_t sg_len = 0, len_complete = 0;
3002         struct scatterlist *sg;
3003         struct page *page;
3004
3005         WARN_ON(!irqs_disabled());
3006
3007         for_each_sg(sgl, sg, sg_count, i) {
3008                 len_complete = sg_len; /* Complete sg-entries */
3009                 sg_len += sg->length;
3010                 if (sg_len > *offset)
3011                         break;
3012         }
3013
3014         if (unlikely(i == sg_count)) {
3015                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3016                         "elements %d\n",
3017                        __func__, sg_len, *offset, sg_count);
3018                 WARN_ON(1);
3019                 return NULL;
3020         }
3021
3022         /* Offset starting from the beginning of first page in this sg-entry */
3023         *offset = *offset - len_complete + sg->offset;
3024
3025         /* Assumption: contiguous pages can be accessed as "page + i" */
3026         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3027         *offset &= ~PAGE_MASK;
3028
3029         /* Bytes in this sg-entry from *offset to the end of the page */
3030         sg_len = PAGE_SIZE - *offset;
3031         if (*len > sg_len)
3032                 *len = sg_len;
3033
3034         return kmap_atomic(page);
3035 }
3036 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3037
3038 /**
3039  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3040  * @virt:       virtual address to be unmapped
3041  */
3042 void scsi_kunmap_atomic_sg(void *virt)
3043 {
3044         kunmap_atomic(virt);
3045 }
3046 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3047
3048 void sdev_disable_disk_events(struct scsi_device *sdev)
3049 {
3050         atomic_inc(&sdev->disk_events_disable_depth);
3051 }
3052 EXPORT_SYMBOL(sdev_disable_disk_events);
3053
3054 void sdev_enable_disk_events(struct scsi_device *sdev)
3055 {
3056         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3057                 return;
3058         atomic_dec(&sdev->disk_events_disable_depth);
3059 }
3060 EXPORT_SYMBOL(sdev_enable_disk_events);
3061
3062 static unsigned char designator_prio(const unsigned char *d)
3063 {
3064         if (d[1] & 0x30)
3065                 /* not associated with LUN */
3066                 return 0;
3067
3068         if (d[3] == 0)
3069                 /* invalid length */
3070                 return 0;
3071
3072         /*
3073          * Order of preference for lun descriptor:
3074          * - SCSI name string
3075          * - NAA IEEE Registered Extended
3076          * - EUI-64 based 16-byte
3077          * - EUI-64 based 12-byte
3078          * - NAA IEEE Registered
3079          * - NAA IEEE Extended
3080          * - EUI-64 based 8-byte
3081          * - SCSI name string (truncated)
3082          * - T10 Vendor ID
3083          * as longer descriptors reduce the likelyhood
3084          * of identification clashes.
3085          */
3086
3087         switch (d[1] & 0xf) {
3088         case 8:
3089                 /* SCSI name string, variable-length UTF-8 */
3090                 return 9;
3091         case 3:
3092                 switch (d[4] >> 4) {
3093                 case 6:
3094                         /* NAA registered extended */
3095                         return 8;
3096                 case 5:
3097                         /* NAA registered */
3098                         return 5;
3099                 case 4:
3100                         /* NAA extended */
3101                         return 4;
3102                 case 3:
3103                         /* NAA locally assigned */
3104                         return 1;
3105                 default:
3106                         break;
3107                 }
3108                 break;
3109         case 2:
3110                 switch (d[3]) {
3111                 case 16:
3112                         /* EUI64-based, 16 byte */
3113                         return 7;
3114                 case 12:
3115                         /* EUI64-based, 12 byte */
3116                         return 6;
3117                 case 8:
3118                         /* EUI64-based, 8 byte */
3119                         return 3;
3120                 default:
3121                         break;
3122                 }
3123                 break;
3124         case 1:
3125                 /* T10 vendor ID */
3126                 return 1;
3127         default:
3128                 break;
3129         }
3130
3131         return 0;
3132 }
3133
3134 /**
3135  * scsi_vpd_lun_id - return a unique device identification
3136  * @sdev: SCSI device
3137  * @id:   buffer for the identification
3138  * @id_len:  length of the buffer
3139  *
3140  * Copies a unique device identification into @id based
3141  * on the information in the VPD page 0x83 of the device.
3142  * The string will be formatted as a SCSI name string.
3143  *
3144  * Returns the length of the identification or error on failure.
3145  * If the identifier is longer than the supplied buffer the actual
3146  * identifier length is returned and the buffer is not zero-padded.
3147  */
3148 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3149 {
3150         u8 cur_id_prio = 0;
3151         u8 cur_id_size = 0;
3152         const unsigned char *d, *cur_id_str;
3153         const struct scsi_vpd *vpd_pg83;
3154         int id_size = -EINVAL;
3155
3156         rcu_read_lock();
3157         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3158         if (!vpd_pg83) {
3159                 rcu_read_unlock();
3160                 return -ENXIO;
3161         }
3162
3163         /* The id string must be at least 20 bytes + terminating NULL byte */
3164         if (id_len < 21) {
3165                 rcu_read_unlock();
3166                 return -EINVAL;
3167         }
3168
3169         memset(id, 0, id_len);
3170         for (d = vpd_pg83->data + 4;
3171              d < vpd_pg83->data + vpd_pg83->len;
3172              d += d[3] + 4) {
3173                 u8 prio = designator_prio(d);
3174
3175                 if (prio == 0 || cur_id_prio > prio)
3176                         continue;
3177
3178                 switch (d[1] & 0xf) {
3179                 case 0x1:
3180                         /* T10 Vendor ID */
3181                         if (cur_id_size > d[3])
3182                                 break;
3183                         cur_id_prio = prio;
3184                         cur_id_size = d[3];
3185                         if (cur_id_size + 4 > id_len)
3186                                 cur_id_size = id_len - 4;
3187                         cur_id_str = d + 4;
3188                         id_size = snprintf(id, id_len, "t10.%*pE",
3189                                            cur_id_size, cur_id_str);
3190                         break;
3191                 case 0x2:
3192                         /* EUI-64 */
3193                         cur_id_prio = prio;
3194                         cur_id_size = d[3];
3195                         cur_id_str = d + 4;
3196                         switch (cur_id_size) {
3197                         case 8:
3198                                 id_size = snprintf(id, id_len,
3199                                                    "eui.%8phN",
3200                                                    cur_id_str);
3201                                 break;
3202                         case 12:
3203                                 id_size = snprintf(id, id_len,
3204                                                    "eui.%12phN",
3205                                                    cur_id_str);
3206                                 break;
3207                         case 16:
3208                                 id_size = snprintf(id, id_len,
3209                                                    "eui.%16phN",
3210                                                    cur_id_str);
3211                                 break;
3212                         default:
3213                                 break;
3214                         }
3215                         break;
3216                 case 0x3:
3217                         /* NAA */
3218                         cur_id_prio = prio;
3219                         cur_id_size = d[3];
3220                         cur_id_str = d + 4;
3221                         switch (cur_id_size) {
3222                         case 8:
3223                                 id_size = snprintf(id, id_len,
3224                                                    "naa.%8phN",
3225                                                    cur_id_str);
3226                                 break;
3227                         case 16:
3228                                 id_size = snprintf(id, id_len,
3229                                                    "naa.%16phN",
3230                                                    cur_id_str);
3231                                 break;
3232                         default:
3233                                 break;
3234                         }
3235                         break;
3236                 case 0x8:
3237                         /* SCSI name string */
3238                         if (cur_id_size > d[3])
3239                                 break;
3240                         /* Prefer others for truncated descriptor */
3241                         if (d[3] > id_len) {
3242                                 prio = 2;
3243                                 if (cur_id_prio > prio)
3244                                         break;
3245                         }
3246                         cur_id_prio = prio;
3247                         cur_id_size = id_size = d[3];
3248                         cur_id_str = d + 4;
3249                         if (cur_id_size >= id_len)
3250                                 cur_id_size = id_len - 1;
3251                         memcpy(id, cur_id_str, cur_id_size);
3252                         break;
3253                 default:
3254                         break;
3255                 }
3256         }
3257         rcu_read_unlock();
3258
3259         return id_size;
3260 }
3261 EXPORT_SYMBOL(scsi_vpd_lun_id);
3262
3263 /*
3264  * scsi_vpd_tpg_id - return a target port group identifier
3265  * @sdev: SCSI device
3266  *
3267  * Returns the Target Port Group identifier from the information
3268  * froom VPD page 0x83 of the device.
3269  *
3270  * Returns the identifier or error on failure.
3271  */
3272 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3273 {
3274         const unsigned char *d;
3275         const struct scsi_vpd *vpd_pg83;
3276         int group_id = -EAGAIN, rel_port = -1;
3277
3278         rcu_read_lock();
3279         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3280         if (!vpd_pg83) {
3281                 rcu_read_unlock();
3282                 return -ENXIO;
3283         }
3284
3285         d = vpd_pg83->data + 4;
3286         while (d < vpd_pg83->data + vpd_pg83->len) {
3287                 switch (d[1] & 0xf) {
3288                 case 0x4:
3289                         /* Relative target port */
3290                         rel_port = get_unaligned_be16(&d[6]);
3291                         break;
3292                 case 0x5:
3293                         /* Target port group */
3294                         group_id = get_unaligned_be16(&d[6]);
3295                         break;
3296                 default:
3297                         break;
3298                 }
3299                 d += d[3] + 4;
3300         }
3301         rcu_read_unlock();
3302
3303         if (group_id >= 0 && rel_id && rel_port != -1)
3304                 *rel_id = rel_port;
3305
3306         return group_id;
3307 }
3308 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3309
3310 /**
3311  * scsi_build_sense - build sense data for a command
3312  * @scmd:       scsi command for which the sense should be formatted
3313  * @desc:       Sense format (non-zero == descriptor format,
3314  *              0 == fixed format)
3315  * @key:        Sense key
3316  * @asc:        Additional sense code
3317  * @ascq:       Additional sense code qualifier
3318  *
3319  **/
3320 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3321 {
3322         scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3323         scmd->result = SAM_STAT_CHECK_CONDITION;
3324 }
3325 EXPORT_SYMBOL_GPL(scsi_build_sense);