Merge tag 'm68knommu-for-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg...
[platform/kernel/linux-starfive.git] / drivers / scsi / scsi_lib.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37
38 #include <trace/events/scsi.h>
39
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63         int ret = 0;
64
65         mutex_lock(&scsi_sense_cache_mutex);
66         if (!scsi_sense_cache) {
67                 scsi_sense_cache =
68                         kmem_cache_create_usercopy("scsi_sense_cache",
69                                 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70                                 0, SCSI_SENSE_BUFFERSIZE, NULL);
71                 if (!scsi_sense_cache)
72                         ret = -ENOMEM;
73         }
74         mutex_unlock(&scsi_sense_cache_mutex);
75         return ret;
76 }
77
78 static void
79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81         struct Scsi_Host *host = cmd->device->host;
82         struct scsi_device *device = cmd->device;
83         struct scsi_target *starget = scsi_target(device);
84
85         /*
86          * Set the appropriate busy bit for the device/host.
87          *
88          * If the host/device isn't busy, assume that something actually
89          * completed, and that we should be able to queue a command now.
90          *
91          * Note that the prior mid-layer assumption that any host could
92          * always queue at least one command is now broken.  The mid-layer
93          * will implement a user specifiable stall (see
94          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95          * if a command is requeued with no other commands outstanding
96          * either for the device or for the host.
97          */
98         switch (reason) {
99         case SCSI_MLQUEUE_HOST_BUSY:
100                 atomic_set(&host->host_blocked, host->max_host_blocked);
101                 break;
102         case SCSI_MLQUEUE_DEVICE_BUSY:
103         case SCSI_MLQUEUE_EH_RETRY:
104                 atomic_set(&device->device_blocked,
105                            device->max_device_blocked);
106                 break;
107         case SCSI_MLQUEUE_TARGET_BUSY:
108                 atomic_set(&starget->target_blocked,
109                            starget->max_target_blocked);
110                 break;
111         }
112 }
113
114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116         struct request *rq = scsi_cmd_to_rq(cmd);
117
118         if (rq->rq_flags & RQF_DONTPREP) {
119                 rq->rq_flags &= ~RQF_DONTPREP;
120                 scsi_mq_uninit_cmd(cmd);
121         } else {
122                 WARN_ON_ONCE(true);
123         }
124
125         if (msecs) {
126                 blk_mq_requeue_request(rq, false);
127                 blk_mq_delay_kick_requeue_list(rq->q, msecs);
128         } else
129                 blk_mq_requeue_request(rq, true);
130 }
131
132 /**
133  * __scsi_queue_insert - private queue insertion
134  * @cmd: The SCSI command being requeued
135  * @reason:  The reason for the requeue
136  * @unbusy: Whether the queue should be unbusied
137  *
138  * This is a private queue insertion.  The public interface
139  * scsi_queue_insert() always assumes the queue should be unbusied
140  * because it's always called before the completion.  This function is
141  * for a requeue after completion, which should only occur in this
142  * file.
143  */
144 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
145 {
146         struct scsi_device *device = cmd->device;
147
148         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
149                 "Inserting command %p into mlqueue\n", cmd));
150
151         scsi_set_blocked(cmd, reason);
152
153         /*
154          * Decrement the counters, since these commands are no longer
155          * active on the host/device.
156          */
157         if (unbusy)
158                 scsi_device_unbusy(device, cmd);
159
160         /*
161          * Requeue this command.  It will go before all other commands
162          * that are already in the queue. Schedule requeue work under
163          * lock such that the kblockd_schedule_work() call happens
164          * before blk_mq_destroy_queue() finishes.
165          */
166         cmd->result = 0;
167
168         blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
169 }
170
171 /**
172  * scsi_queue_insert - Reinsert a command in the queue.
173  * @cmd:    command that we are adding to queue.
174  * @reason: why we are inserting command to queue.
175  *
176  * We do this for one of two cases. Either the host is busy and it cannot accept
177  * any more commands for the time being, or the device returned QUEUE_FULL and
178  * can accept no more commands.
179  *
180  * Context: This could be called either from an interrupt context or a normal
181  * process context.
182  */
183 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
184 {
185         __scsi_queue_insert(cmd, reason, true);
186 }
187
188 /**
189  * scsi_execute_cmd - insert request and wait for the result
190  * @sdev:       scsi_device
191  * @cmd:        scsi command
192  * @opf:        block layer request cmd_flags
193  * @buffer:     data buffer
194  * @bufflen:    len of buffer
195  * @timeout:    request timeout in HZ
196  * @retries:    number of times to retry request
197  * @args:       Optional args. See struct definition for field descriptions
198  *
199  * Returns the scsi_cmnd result field if a command was executed, or a negative
200  * Linux error code if we didn't get that far.
201  */
202 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
203                      blk_opf_t opf, void *buffer, unsigned int bufflen,
204                      int timeout, int retries,
205                      const struct scsi_exec_args *args)
206 {
207         static const struct scsi_exec_args default_args;
208         struct request *req;
209         struct scsi_cmnd *scmd;
210         int ret;
211
212         if (!args)
213                 args = &default_args;
214         else if (WARN_ON_ONCE(args->sense &&
215                               args->sense_len != SCSI_SENSE_BUFFERSIZE))
216                 return -EINVAL;
217
218         req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
219         if (IS_ERR(req))
220                 return PTR_ERR(req);
221
222         if (bufflen) {
223                 ret = blk_rq_map_kern(sdev->request_queue, req,
224                                       buffer, bufflen, GFP_NOIO);
225                 if (ret)
226                         goto out;
227         }
228         scmd = blk_mq_rq_to_pdu(req);
229         scmd->cmd_len = COMMAND_SIZE(cmd[0]);
230         memcpy(scmd->cmnd, cmd, scmd->cmd_len);
231         scmd->allowed = retries;
232         scmd->flags |= args->scmd_flags;
233         req->timeout = timeout;
234         req->rq_flags |= RQF_QUIET;
235
236         /*
237          * head injection *required* here otherwise quiesce won't work
238          */
239         blk_execute_rq(req, true);
240
241         /*
242          * Some devices (USB mass-storage in particular) may transfer
243          * garbage data together with a residue indicating that the data
244          * is invalid.  Prevent the garbage from being misinterpreted
245          * and prevent security leaks by zeroing out the excess data.
246          */
247         if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
248                 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
249
250         if (args->resid)
251                 *args->resid = scmd->resid_len;
252         if (args->sense)
253                 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
254         if (args->sshdr)
255                 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
256                                      args->sshdr);
257
258         ret = scmd->result;
259  out:
260         blk_mq_free_request(req);
261
262         return ret;
263 }
264 EXPORT_SYMBOL(scsi_execute_cmd);
265
266 /*
267  * Wake up the error handler if necessary. Avoid as follows that the error
268  * handler is not woken up if host in-flight requests number ==
269  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
270  * with an RCU read lock in this function to ensure that this function in
271  * its entirety either finishes before scsi_eh_scmd_add() increases the
272  * host_failed counter or that it notices the shost state change made by
273  * scsi_eh_scmd_add().
274  */
275 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
276 {
277         unsigned long flags;
278
279         rcu_read_lock();
280         __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
281         if (unlikely(scsi_host_in_recovery(shost))) {
282                 spin_lock_irqsave(shost->host_lock, flags);
283                 if (shost->host_failed || shost->host_eh_scheduled)
284                         scsi_eh_wakeup(shost);
285                 spin_unlock_irqrestore(shost->host_lock, flags);
286         }
287         rcu_read_unlock();
288 }
289
290 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
291 {
292         struct Scsi_Host *shost = sdev->host;
293         struct scsi_target *starget = scsi_target(sdev);
294
295         scsi_dec_host_busy(shost, cmd);
296
297         if (starget->can_queue > 0)
298                 atomic_dec(&starget->target_busy);
299
300         sbitmap_put(&sdev->budget_map, cmd->budget_token);
301         cmd->budget_token = -1;
302 }
303
304 static void scsi_kick_queue(struct request_queue *q)
305 {
306         blk_mq_run_hw_queues(q, false);
307 }
308
309 /*
310  * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
311  * interrupts disabled.
312  */
313 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
314 {
315         struct scsi_device *current_sdev = data;
316
317         if (sdev != current_sdev)
318                 blk_mq_run_hw_queues(sdev->request_queue, true);
319 }
320
321 /*
322  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
323  * and call blk_run_queue for all the scsi_devices on the target -
324  * including current_sdev first.
325  *
326  * Called with *no* scsi locks held.
327  */
328 static void scsi_single_lun_run(struct scsi_device *current_sdev)
329 {
330         struct Scsi_Host *shost = current_sdev->host;
331         struct scsi_target *starget = scsi_target(current_sdev);
332         unsigned long flags;
333
334         spin_lock_irqsave(shost->host_lock, flags);
335         starget->starget_sdev_user = NULL;
336         spin_unlock_irqrestore(shost->host_lock, flags);
337
338         /*
339          * Call blk_run_queue for all LUNs on the target, starting with
340          * current_sdev. We race with others (to set starget_sdev_user),
341          * but in most cases, we will be first. Ideally, each LU on the
342          * target would get some limited time or requests on the target.
343          */
344         scsi_kick_queue(current_sdev->request_queue);
345
346         spin_lock_irqsave(shost->host_lock, flags);
347         if (!starget->starget_sdev_user)
348                 __starget_for_each_device(starget, current_sdev,
349                                           scsi_kick_sdev_queue);
350         spin_unlock_irqrestore(shost->host_lock, flags);
351 }
352
353 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
354 {
355         if (scsi_device_busy(sdev) >= sdev->queue_depth)
356                 return true;
357         if (atomic_read(&sdev->device_blocked) > 0)
358                 return true;
359         return false;
360 }
361
362 static inline bool scsi_target_is_busy(struct scsi_target *starget)
363 {
364         if (starget->can_queue > 0) {
365                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
366                         return true;
367                 if (atomic_read(&starget->target_blocked) > 0)
368                         return true;
369         }
370         return false;
371 }
372
373 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
374 {
375         if (atomic_read(&shost->host_blocked) > 0)
376                 return true;
377         if (shost->host_self_blocked)
378                 return true;
379         return false;
380 }
381
382 static void scsi_starved_list_run(struct Scsi_Host *shost)
383 {
384         LIST_HEAD(starved_list);
385         struct scsi_device *sdev;
386         unsigned long flags;
387
388         spin_lock_irqsave(shost->host_lock, flags);
389         list_splice_init(&shost->starved_list, &starved_list);
390
391         while (!list_empty(&starved_list)) {
392                 struct request_queue *slq;
393
394                 /*
395                  * As long as shost is accepting commands and we have
396                  * starved queues, call blk_run_queue. scsi_request_fn
397                  * drops the queue_lock and can add us back to the
398                  * starved_list.
399                  *
400                  * host_lock protects the starved_list and starved_entry.
401                  * scsi_request_fn must get the host_lock before checking
402                  * or modifying starved_list or starved_entry.
403                  */
404                 if (scsi_host_is_busy(shost))
405                         break;
406
407                 sdev = list_entry(starved_list.next,
408                                   struct scsi_device, starved_entry);
409                 list_del_init(&sdev->starved_entry);
410                 if (scsi_target_is_busy(scsi_target(sdev))) {
411                         list_move_tail(&sdev->starved_entry,
412                                        &shost->starved_list);
413                         continue;
414                 }
415
416                 /*
417                  * Once we drop the host lock, a racing scsi_remove_device()
418                  * call may remove the sdev from the starved list and destroy
419                  * it and the queue.  Mitigate by taking a reference to the
420                  * queue and never touching the sdev again after we drop the
421                  * host lock.  Note: if __scsi_remove_device() invokes
422                  * blk_mq_destroy_queue() before the queue is run from this
423                  * function then blk_run_queue() will return immediately since
424                  * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
425                  */
426                 slq = sdev->request_queue;
427                 if (!blk_get_queue(slq))
428                         continue;
429                 spin_unlock_irqrestore(shost->host_lock, flags);
430
431                 scsi_kick_queue(slq);
432                 blk_put_queue(slq);
433
434                 spin_lock_irqsave(shost->host_lock, flags);
435         }
436         /* put any unprocessed entries back */
437         list_splice(&starved_list, &shost->starved_list);
438         spin_unlock_irqrestore(shost->host_lock, flags);
439 }
440
441 /**
442  * scsi_run_queue - Select a proper request queue to serve next.
443  * @q:  last request's queue
444  *
445  * The previous command was completely finished, start a new one if possible.
446  */
447 static void scsi_run_queue(struct request_queue *q)
448 {
449         struct scsi_device *sdev = q->queuedata;
450
451         if (scsi_target(sdev)->single_lun)
452                 scsi_single_lun_run(sdev);
453         if (!list_empty(&sdev->host->starved_list))
454                 scsi_starved_list_run(sdev->host);
455
456         blk_mq_run_hw_queues(q, false);
457 }
458
459 void scsi_requeue_run_queue(struct work_struct *work)
460 {
461         struct scsi_device *sdev;
462         struct request_queue *q;
463
464         sdev = container_of(work, struct scsi_device, requeue_work);
465         q = sdev->request_queue;
466         scsi_run_queue(q);
467 }
468
469 void scsi_run_host_queues(struct Scsi_Host *shost)
470 {
471         struct scsi_device *sdev;
472
473         shost_for_each_device(sdev, shost)
474                 scsi_run_queue(sdev->request_queue);
475 }
476
477 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
478 {
479         if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
480                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
481
482                 if (drv->uninit_command)
483                         drv->uninit_command(cmd);
484         }
485 }
486
487 void scsi_free_sgtables(struct scsi_cmnd *cmd)
488 {
489         if (cmd->sdb.table.nents)
490                 sg_free_table_chained(&cmd->sdb.table,
491                                 SCSI_INLINE_SG_CNT);
492         if (scsi_prot_sg_count(cmd))
493                 sg_free_table_chained(&cmd->prot_sdb->table,
494                                 SCSI_INLINE_PROT_SG_CNT);
495 }
496 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
497
498 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
499 {
500         scsi_free_sgtables(cmd);
501         scsi_uninit_cmd(cmd);
502 }
503
504 static void scsi_run_queue_async(struct scsi_device *sdev)
505 {
506         if (scsi_target(sdev)->single_lun ||
507             !list_empty(&sdev->host->starved_list)) {
508                 kblockd_schedule_work(&sdev->requeue_work);
509         } else {
510                 /*
511                  * smp_mb() present in sbitmap_queue_clear() or implied in
512                  * .end_io is for ordering writing .device_busy in
513                  * scsi_device_unbusy() and reading sdev->restarts.
514                  */
515                 int old = atomic_read(&sdev->restarts);
516
517                 /*
518                  * ->restarts has to be kept as non-zero if new budget
519                  *  contention occurs.
520                  *
521                  *  No need to run queue when either another re-run
522                  *  queue wins in updating ->restarts or a new budget
523                  *  contention occurs.
524                  */
525                 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
526                         blk_mq_run_hw_queues(sdev->request_queue, true);
527         }
528 }
529
530 /* Returns false when no more bytes to process, true if there are more */
531 static bool scsi_end_request(struct request *req, blk_status_t error,
532                 unsigned int bytes)
533 {
534         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
535         struct scsi_device *sdev = cmd->device;
536         struct request_queue *q = sdev->request_queue;
537
538         if (blk_update_request(req, error, bytes))
539                 return true;
540
541         // XXX:
542         if (blk_queue_add_random(q))
543                 add_disk_randomness(req->q->disk);
544
545         if (!blk_rq_is_passthrough(req)) {
546                 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
547                 cmd->flags &= ~SCMD_INITIALIZED;
548         }
549
550         /*
551          * Calling rcu_barrier() is not necessary here because the
552          * SCSI error handler guarantees that the function called by
553          * call_rcu() has been called before scsi_end_request() is
554          * called.
555          */
556         destroy_rcu_head(&cmd->rcu);
557
558         /*
559          * In the MQ case the command gets freed by __blk_mq_end_request,
560          * so we have to do all cleanup that depends on it earlier.
561          *
562          * We also can't kick the queues from irq context, so we
563          * will have to defer it to a workqueue.
564          */
565         scsi_mq_uninit_cmd(cmd);
566
567         /*
568          * queue is still alive, so grab the ref for preventing it
569          * from being cleaned up during running queue.
570          */
571         percpu_ref_get(&q->q_usage_counter);
572
573         __blk_mq_end_request(req, error);
574
575         scsi_run_queue_async(sdev);
576
577         percpu_ref_put(&q->q_usage_counter);
578         return false;
579 }
580
581 static inline u8 get_scsi_ml_byte(int result)
582 {
583         return (result >> 8) & 0xff;
584 }
585
586 /**
587  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
588  * @result:     scsi error code
589  *
590  * Translate a SCSI result code into a blk_status_t value.
591  */
592 static blk_status_t scsi_result_to_blk_status(int result)
593 {
594         /*
595          * Check the scsi-ml byte first in case we converted a host or status
596          * byte.
597          */
598         switch (get_scsi_ml_byte(result)) {
599         case SCSIML_STAT_OK:
600                 break;
601         case SCSIML_STAT_RESV_CONFLICT:
602                 return BLK_STS_NEXUS;
603         case SCSIML_STAT_NOSPC:
604                 return BLK_STS_NOSPC;
605         case SCSIML_STAT_MED_ERROR:
606                 return BLK_STS_MEDIUM;
607         case SCSIML_STAT_TGT_FAILURE:
608                 return BLK_STS_TARGET;
609         }
610
611         switch (host_byte(result)) {
612         case DID_OK:
613                 if (scsi_status_is_good(result))
614                         return BLK_STS_OK;
615                 return BLK_STS_IOERR;
616         case DID_TRANSPORT_FAILFAST:
617         case DID_TRANSPORT_MARGINAL:
618                 return BLK_STS_TRANSPORT;
619         default:
620                 return BLK_STS_IOERR;
621         }
622 }
623
624 /**
625  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
626  * @rq: request to examine
627  *
628  * Description:
629  *     A request could be merge of IOs which require different failure
630  *     handling.  This function determines the number of bytes which
631  *     can be failed from the beginning of the request without
632  *     crossing into area which need to be retried further.
633  *
634  * Return:
635  *     The number of bytes to fail.
636  */
637 static unsigned int scsi_rq_err_bytes(const struct request *rq)
638 {
639         blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
640         unsigned int bytes = 0;
641         struct bio *bio;
642
643         if (!(rq->rq_flags & RQF_MIXED_MERGE))
644                 return blk_rq_bytes(rq);
645
646         /*
647          * Currently the only 'mixing' which can happen is between
648          * different fastfail types.  We can safely fail portions
649          * which have all the failfast bits that the first one has -
650          * the ones which are at least as eager to fail as the first
651          * one.
652          */
653         for (bio = rq->bio; bio; bio = bio->bi_next) {
654                 if ((bio->bi_opf & ff) != ff)
655                         break;
656                 bytes += bio->bi_iter.bi_size;
657         }
658
659         /* this could lead to infinite loop */
660         BUG_ON(blk_rq_bytes(rq) && !bytes);
661         return bytes;
662 }
663
664 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
665 {
666         struct request *req = scsi_cmd_to_rq(cmd);
667         unsigned long wait_for;
668
669         if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
670                 return false;
671
672         wait_for = (cmd->allowed + 1) * req->timeout;
673         if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
674                 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
675                             wait_for/HZ);
676                 return true;
677         }
678         return false;
679 }
680
681 /*
682  * When ALUA transition state is returned, reprep the cmd to
683  * use the ALUA handler's transition timeout. Delay the reprep
684  * 1 sec to avoid aggressive retries of the target in that
685  * state.
686  */
687 #define ALUA_TRANSITION_REPREP_DELAY    1000
688
689 /* Helper for scsi_io_completion() when special action required. */
690 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
691 {
692         struct request *req = scsi_cmd_to_rq(cmd);
693         int level = 0;
694         enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
695               ACTION_RETRY, ACTION_DELAYED_RETRY} action;
696         struct scsi_sense_hdr sshdr;
697         bool sense_valid;
698         bool sense_current = true;      /* false implies "deferred sense" */
699         blk_status_t blk_stat;
700
701         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
702         if (sense_valid)
703                 sense_current = !scsi_sense_is_deferred(&sshdr);
704
705         blk_stat = scsi_result_to_blk_status(result);
706
707         if (host_byte(result) == DID_RESET) {
708                 /* Third party bus reset or reset for error recovery
709                  * reasons.  Just retry the command and see what
710                  * happens.
711                  */
712                 action = ACTION_RETRY;
713         } else if (sense_valid && sense_current) {
714                 switch (sshdr.sense_key) {
715                 case UNIT_ATTENTION:
716                         if (cmd->device->removable) {
717                                 /* Detected disc change.  Set a bit
718                                  * and quietly refuse further access.
719                                  */
720                                 cmd->device->changed = 1;
721                                 action = ACTION_FAIL;
722                         } else {
723                                 /* Must have been a power glitch, or a
724                                  * bus reset.  Could not have been a
725                                  * media change, so we just retry the
726                                  * command and see what happens.
727                                  */
728                                 action = ACTION_RETRY;
729                         }
730                         break;
731                 case ILLEGAL_REQUEST:
732                         /* If we had an ILLEGAL REQUEST returned, then
733                          * we may have performed an unsupported
734                          * command.  The only thing this should be
735                          * would be a ten byte read where only a six
736                          * byte read was supported.  Also, on a system
737                          * where READ CAPACITY failed, we may have
738                          * read past the end of the disk.
739                          */
740                         if ((cmd->device->use_10_for_rw &&
741                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
742                             (cmd->cmnd[0] == READ_10 ||
743                              cmd->cmnd[0] == WRITE_10)) {
744                                 /* This will issue a new 6-byte command. */
745                                 cmd->device->use_10_for_rw = 0;
746                                 action = ACTION_REPREP;
747                         } else if (sshdr.asc == 0x10) /* DIX */ {
748                                 action = ACTION_FAIL;
749                                 blk_stat = BLK_STS_PROTECTION;
750                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
751                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
752                                 action = ACTION_FAIL;
753                                 blk_stat = BLK_STS_TARGET;
754                         } else
755                                 action = ACTION_FAIL;
756                         break;
757                 case ABORTED_COMMAND:
758                         action = ACTION_FAIL;
759                         if (sshdr.asc == 0x10) /* DIF */
760                                 blk_stat = BLK_STS_PROTECTION;
761                         break;
762                 case NOT_READY:
763                         /* If the device is in the process of becoming
764                          * ready, or has a temporary blockage, retry.
765                          */
766                         if (sshdr.asc == 0x04) {
767                                 switch (sshdr.ascq) {
768                                 case 0x01: /* becoming ready */
769                                 case 0x04: /* format in progress */
770                                 case 0x05: /* rebuild in progress */
771                                 case 0x06: /* recalculation in progress */
772                                 case 0x07: /* operation in progress */
773                                 case 0x08: /* Long write in progress */
774                                 case 0x09: /* self test in progress */
775                                 case 0x11: /* notify (enable spinup) required */
776                                 case 0x14: /* space allocation in progress */
777                                 case 0x1a: /* start stop unit in progress */
778                                 case 0x1b: /* sanitize in progress */
779                                 case 0x1d: /* configuration in progress */
780                                 case 0x24: /* depopulation in progress */
781                                         action = ACTION_DELAYED_RETRY;
782                                         break;
783                                 case 0x0a: /* ALUA state transition */
784                                         action = ACTION_DELAYED_REPREP;
785                                         break;
786                                 default:
787                                         action = ACTION_FAIL;
788                                         break;
789                                 }
790                         } else
791                                 action = ACTION_FAIL;
792                         break;
793                 case VOLUME_OVERFLOW:
794                         /* See SSC3rXX or current. */
795                         action = ACTION_FAIL;
796                         break;
797                 case DATA_PROTECT:
798                         action = ACTION_FAIL;
799                         if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
800                             (sshdr.asc == 0x55 &&
801                              (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
802                                 /* Insufficient zone resources */
803                                 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
804                         }
805                         break;
806                 default:
807                         action = ACTION_FAIL;
808                         break;
809                 }
810         } else
811                 action = ACTION_FAIL;
812
813         if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
814                 action = ACTION_FAIL;
815
816         switch (action) {
817         case ACTION_FAIL:
818                 /* Give up and fail the remainder of the request */
819                 if (!(req->rq_flags & RQF_QUIET)) {
820                         static DEFINE_RATELIMIT_STATE(_rs,
821                                         DEFAULT_RATELIMIT_INTERVAL,
822                                         DEFAULT_RATELIMIT_BURST);
823
824                         if (unlikely(scsi_logging_level))
825                                 level =
826                                      SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
827                                                     SCSI_LOG_MLCOMPLETE_BITS);
828
829                         /*
830                          * if logging is enabled the failure will be printed
831                          * in scsi_log_completion(), so avoid duplicate messages
832                          */
833                         if (!level && __ratelimit(&_rs)) {
834                                 scsi_print_result(cmd, NULL, FAILED);
835                                 if (sense_valid)
836                                         scsi_print_sense(cmd);
837                                 scsi_print_command(cmd);
838                         }
839                 }
840                 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
841                         return;
842                 fallthrough;
843         case ACTION_REPREP:
844                 scsi_mq_requeue_cmd(cmd, 0);
845                 break;
846         case ACTION_DELAYED_REPREP:
847                 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
848                 break;
849         case ACTION_RETRY:
850                 /* Retry the same command immediately */
851                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
852                 break;
853         case ACTION_DELAYED_RETRY:
854                 /* Retry the same command after a delay */
855                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
856                 break;
857         }
858 }
859
860 /*
861  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
862  * new result that may suppress further error checking. Also modifies
863  * *blk_statp in some cases.
864  */
865 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
866                                         blk_status_t *blk_statp)
867 {
868         bool sense_valid;
869         bool sense_current = true;      /* false implies "deferred sense" */
870         struct request *req = scsi_cmd_to_rq(cmd);
871         struct scsi_sense_hdr sshdr;
872
873         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
874         if (sense_valid)
875                 sense_current = !scsi_sense_is_deferred(&sshdr);
876
877         if (blk_rq_is_passthrough(req)) {
878                 if (sense_valid) {
879                         /*
880                          * SG_IO wants current and deferred errors
881                          */
882                         cmd->sense_len = min(8 + cmd->sense_buffer[7],
883                                              SCSI_SENSE_BUFFERSIZE);
884                 }
885                 if (sense_current)
886                         *blk_statp = scsi_result_to_blk_status(result);
887         } else if (blk_rq_bytes(req) == 0 && sense_current) {
888                 /*
889                  * Flush commands do not transfers any data, and thus cannot use
890                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
891                  * This sets *blk_statp explicitly for the problem case.
892                  */
893                 *blk_statp = scsi_result_to_blk_status(result);
894         }
895         /*
896          * Recovered errors need reporting, but they're always treated as
897          * success, so fiddle the result code here.  For passthrough requests
898          * we already took a copy of the original into sreq->result which
899          * is what gets returned to the user
900          */
901         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
902                 bool do_print = true;
903                 /*
904                  * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
905                  * skip print since caller wants ATA registers. Only occurs
906                  * on SCSI ATA PASS_THROUGH commands when CK_COND=1
907                  */
908                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
909                         do_print = false;
910                 else if (req->rq_flags & RQF_QUIET)
911                         do_print = false;
912                 if (do_print)
913                         scsi_print_sense(cmd);
914                 result = 0;
915                 /* for passthrough, *blk_statp may be set */
916                 *blk_statp = BLK_STS_OK;
917         }
918         /*
919          * Another corner case: the SCSI status byte is non-zero but 'good'.
920          * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
921          * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
922          * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
923          * intermediate statuses (both obsolete in SAM-4) as good.
924          */
925         if ((result & 0xff) && scsi_status_is_good(result)) {
926                 result = 0;
927                 *blk_statp = BLK_STS_OK;
928         }
929         return result;
930 }
931
932 /**
933  * scsi_io_completion - Completion processing for SCSI commands.
934  * @cmd:        command that is finished.
935  * @good_bytes: number of processed bytes.
936  *
937  * We will finish off the specified number of sectors. If we are done, the
938  * command block will be released and the queue function will be goosed. If we
939  * are not done then we have to figure out what to do next:
940  *
941  *   a) We can call scsi_mq_requeue_cmd().  The request will be
942  *      unprepared and put back on the queue.  Then a new command will
943  *      be created for it.  This should be used if we made forward
944  *      progress, or if we want to switch from READ(10) to READ(6) for
945  *      example.
946  *
947  *   b) We can call scsi_io_completion_action().  The request will be
948  *      put back on the queue and retried using the same command as
949  *      before, possibly after a delay.
950  *
951  *   c) We can call scsi_end_request() with blk_stat other than
952  *      BLK_STS_OK, to fail the remainder of the request.
953  */
954 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
955 {
956         int result = cmd->result;
957         struct request *req = scsi_cmd_to_rq(cmd);
958         blk_status_t blk_stat = BLK_STS_OK;
959
960         if (unlikely(result))   /* a nz result may or may not be an error */
961                 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
962
963         /*
964          * Next deal with any sectors which we were able to correctly
965          * handle.
966          */
967         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
968                 "%u sectors total, %d bytes done.\n",
969                 blk_rq_sectors(req), good_bytes));
970
971         /*
972          * Failed, zero length commands always need to drop down
973          * to retry code. Fast path should return in this block.
974          */
975         if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
976                 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
977                         return; /* no bytes remaining */
978         }
979
980         /* Kill remainder if no retries. */
981         if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
982                 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
983                         WARN_ONCE(true,
984                             "Bytes remaining after failed, no-retry command");
985                 return;
986         }
987
988         /*
989          * If there had been no error, but we have leftover bytes in the
990          * request just queue the command up again.
991          */
992         if (likely(result == 0))
993                 scsi_mq_requeue_cmd(cmd, 0);
994         else
995                 scsi_io_completion_action(cmd, result);
996 }
997
998 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
999                 struct request *rq)
1000 {
1001         return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1002                !op_is_write(req_op(rq)) &&
1003                sdev->host->hostt->dma_need_drain(rq);
1004 }
1005
1006 /**
1007  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1008  * @cmd: SCSI command data structure to initialize.
1009  *
1010  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1011  * for @cmd.
1012  *
1013  * Returns:
1014  * * BLK_STS_OK       - on success
1015  * * BLK_STS_RESOURCE - if the failure is retryable
1016  * * BLK_STS_IOERR    - if the failure is fatal
1017  */
1018 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1019 {
1020         struct scsi_device *sdev = cmd->device;
1021         struct request *rq = scsi_cmd_to_rq(cmd);
1022         unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1023         struct scatterlist *last_sg = NULL;
1024         blk_status_t ret;
1025         bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1026         int count;
1027
1028         if (WARN_ON_ONCE(!nr_segs))
1029                 return BLK_STS_IOERR;
1030
1031         /*
1032          * Make sure there is space for the drain.  The driver must adjust
1033          * max_hw_segments to be prepared for this.
1034          */
1035         if (need_drain)
1036                 nr_segs++;
1037
1038         /*
1039          * If sg table allocation fails, requeue request later.
1040          */
1041         if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1042                         cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1043                 return BLK_STS_RESOURCE;
1044
1045         /*
1046          * Next, walk the list, and fill in the addresses and sizes of
1047          * each segment.
1048          */
1049         count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1050
1051         if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1052                 unsigned int pad_len =
1053                         (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1054
1055                 last_sg->length += pad_len;
1056                 cmd->extra_len += pad_len;
1057         }
1058
1059         if (need_drain) {
1060                 sg_unmark_end(last_sg);
1061                 last_sg = sg_next(last_sg);
1062                 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1063                 sg_mark_end(last_sg);
1064
1065                 cmd->extra_len += sdev->dma_drain_len;
1066                 count++;
1067         }
1068
1069         BUG_ON(count > cmd->sdb.table.nents);
1070         cmd->sdb.table.nents = count;
1071         cmd->sdb.length = blk_rq_payload_bytes(rq);
1072
1073         if (blk_integrity_rq(rq)) {
1074                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1075                 int ivecs;
1076
1077                 if (WARN_ON_ONCE(!prot_sdb)) {
1078                         /*
1079                          * This can happen if someone (e.g. multipath)
1080                          * queues a command to a device on an adapter
1081                          * that does not support DIX.
1082                          */
1083                         ret = BLK_STS_IOERR;
1084                         goto out_free_sgtables;
1085                 }
1086
1087                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1088
1089                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1090                                 prot_sdb->table.sgl,
1091                                 SCSI_INLINE_PROT_SG_CNT)) {
1092                         ret = BLK_STS_RESOURCE;
1093                         goto out_free_sgtables;
1094                 }
1095
1096                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1097                                                 prot_sdb->table.sgl);
1098                 BUG_ON(count > ivecs);
1099                 BUG_ON(count > queue_max_integrity_segments(rq->q));
1100
1101                 cmd->prot_sdb = prot_sdb;
1102                 cmd->prot_sdb->table.nents = count;
1103         }
1104
1105         return BLK_STS_OK;
1106 out_free_sgtables:
1107         scsi_free_sgtables(cmd);
1108         return ret;
1109 }
1110 EXPORT_SYMBOL(scsi_alloc_sgtables);
1111
1112 /**
1113  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1114  * @rq: Request associated with the SCSI command to be initialized.
1115  *
1116  * This function initializes the members of struct scsi_cmnd that must be
1117  * initialized before request processing starts and that won't be
1118  * reinitialized if a SCSI command is requeued.
1119  */
1120 static void scsi_initialize_rq(struct request *rq)
1121 {
1122         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1123
1124         memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1125         cmd->cmd_len = MAX_COMMAND_SIZE;
1126         cmd->sense_len = 0;
1127         init_rcu_head(&cmd->rcu);
1128         cmd->jiffies_at_alloc = jiffies;
1129         cmd->retries = 0;
1130 }
1131
1132 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1133                                    blk_mq_req_flags_t flags)
1134 {
1135         struct request *rq;
1136
1137         rq = blk_mq_alloc_request(q, opf, flags);
1138         if (!IS_ERR(rq))
1139                 scsi_initialize_rq(rq);
1140         return rq;
1141 }
1142 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1143
1144 /*
1145  * Only called when the request isn't completed by SCSI, and not freed by
1146  * SCSI
1147  */
1148 static void scsi_cleanup_rq(struct request *rq)
1149 {
1150         if (rq->rq_flags & RQF_DONTPREP) {
1151                 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1152                 rq->rq_flags &= ~RQF_DONTPREP;
1153         }
1154 }
1155
1156 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1157 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1158 {
1159         struct request *rq = scsi_cmd_to_rq(cmd);
1160
1161         if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1162                 cmd->flags |= SCMD_INITIALIZED;
1163                 scsi_initialize_rq(rq);
1164         }
1165
1166         cmd->device = dev;
1167         INIT_LIST_HEAD(&cmd->eh_entry);
1168         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1169 }
1170
1171 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1172                 struct request *req)
1173 {
1174         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1175
1176         /*
1177          * Passthrough requests may transfer data, in which case they must
1178          * a bio attached to them.  Or they might contain a SCSI command
1179          * that does not transfer data, in which case they may optionally
1180          * submit a request without an attached bio.
1181          */
1182         if (req->bio) {
1183                 blk_status_t ret = scsi_alloc_sgtables(cmd);
1184                 if (unlikely(ret != BLK_STS_OK))
1185                         return ret;
1186         } else {
1187                 BUG_ON(blk_rq_bytes(req));
1188
1189                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1190         }
1191
1192         cmd->transfersize = blk_rq_bytes(req);
1193         return BLK_STS_OK;
1194 }
1195
1196 static blk_status_t
1197 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1198 {
1199         switch (sdev->sdev_state) {
1200         case SDEV_CREATED:
1201                 return BLK_STS_OK;
1202         case SDEV_OFFLINE:
1203         case SDEV_TRANSPORT_OFFLINE:
1204                 /*
1205                  * If the device is offline we refuse to process any
1206                  * commands.  The device must be brought online
1207                  * before trying any recovery commands.
1208                  */
1209                 if (!sdev->offline_already) {
1210                         sdev->offline_already = true;
1211                         sdev_printk(KERN_ERR, sdev,
1212                                     "rejecting I/O to offline device\n");
1213                 }
1214                 return BLK_STS_IOERR;
1215         case SDEV_DEL:
1216                 /*
1217                  * If the device is fully deleted, we refuse to
1218                  * process any commands as well.
1219                  */
1220                 sdev_printk(KERN_ERR, sdev,
1221                             "rejecting I/O to dead device\n");
1222                 return BLK_STS_IOERR;
1223         case SDEV_BLOCK:
1224         case SDEV_CREATED_BLOCK:
1225                 return BLK_STS_RESOURCE;
1226         case SDEV_QUIESCE:
1227                 /*
1228                  * If the device is blocked we only accept power management
1229                  * commands.
1230                  */
1231                 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1232                         return BLK_STS_RESOURCE;
1233                 return BLK_STS_OK;
1234         default:
1235                 /*
1236                  * For any other not fully online state we only allow
1237                  * power management commands.
1238                  */
1239                 if (req && !(req->rq_flags & RQF_PM))
1240                         return BLK_STS_OFFLINE;
1241                 return BLK_STS_OK;
1242         }
1243 }
1244
1245 /*
1246  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1247  * and return the token else return -1.
1248  */
1249 static inline int scsi_dev_queue_ready(struct request_queue *q,
1250                                   struct scsi_device *sdev)
1251 {
1252         int token;
1253
1254         token = sbitmap_get(&sdev->budget_map);
1255         if (atomic_read(&sdev->device_blocked)) {
1256                 if (token < 0)
1257                         goto out;
1258
1259                 if (scsi_device_busy(sdev) > 1)
1260                         goto out_dec;
1261
1262                 /*
1263                  * unblock after device_blocked iterates to zero
1264                  */
1265                 if (atomic_dec_return(&sdev->device_blocked) > 0)
1266                         goto out_dec;
1267                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1268                                    "unblocking device at zero depth\n"));
1269         }
1270
1271         return token;
1272 out_dec:
1273         if (token >= 0)
1274                 sbitmap_put(&sdev->budget_map, token);
1275 out:
1276         return -1;
1277 }
1278
1279 /*
1280  * scsi_target_queue_ready: checks if there we can send commands to target
1281  * @sdev: scsi device on starget to check.
1282  */
1283 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1284                                            struct scsi_device *sdev)
1285 {
1286         struct scsi_target *starget = scsi_target(sdev);
1287         unsigned int busy;
1288
1289         if (starget->single_lun) {
1290                 spin_lock_irq(shost->host_lock);
1291                 if (starget->starget_sdev_user &&
1292                     starget->starget_sdev_user != sdev) {
1293                         spin_unlock_irq(shost->host_lock);
1294                         return 0;
1295                 }
1296                 starget->starget_sdev_user = sdev;
1297                 spin_unlock_irq(shost->host_lock);
1298         }
1299
1300         if (starget->can_queue <= 0)
1301                 return 1;
1302
1303         busy = atomic_inc_return(&starget->target_busy) - 1;
1304         if (atomic_read(&starget->target_blocked) > 0) {
1305                 if (busy)
1306                         goto starved;
1307
1308                 /*
1309                  * unblock after target_blocked iterates to zero
1310                  */
1311                 if (atomic_dec_return(&starget->target_blocked) > 0)
1312                         goto out_dec;
1313
1314                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1315                                  "unblocking target at zero depth\n"));
1316         }
1317
1318         if (busy >= starget->can_queue)
1319                 goto starved;
1320
1321         return 1;
1322
1323 starved:
1324         spin_lock_irq(shost->host_lock);
1325         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1326         spin_unlock_irq(shost->host_lock);
1327 out_dec:
1328         if (starget->can_queue > 0)
1329                 atomic_dec(&starget->target_busy);
1330         return 0;
1331 }
1332
1333 /*
1334  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1335  * return 0. We must end up running the queue again whenever 0 is
1336  * returned, else IO can hang.
1337  */
1338 static inline int scsi_host_queue_ready(struct request_queue *q,
1339                                    struct Scsi_Host *shost,
1340                                    struct scsi_device *sdev,
1341                                    struct scsi_cmnd *cmd)
1342 {
1343         if (atomic_read(&shost->host_blocked) > 0) {
1344                 if (scsi_host_busy(shost) > 0)
1345                         goto starved;
1346
1347                 /*
1348                  * unblock after host_blocked iterates to zero
1349                  */
1350                 if (atomic_dec_return(&shost->host_blocked) > 0)
1351                         goto out_dec;
1352
1353                 SCSI_LOG_MLQUEUE(3,
1354                         shost_printk(KERN_INFO, shost,
1355                                      "unblocking host at zero depth\n"));
1356         }
1357
1358         if (shost->host_self_blocked)
1359                 goto starved;
1360
1361         /* We're OK to process the command, so we can't be starved */
1362         if (!list_empty(&sdev->starved_entry)) {
1363                 spin_lock_irq(shost->host_lock);
1364                 if (!list_empty(&sdev->starved_entry))
1365                         list_del_init(&sdev->starved_entry);
1366                 spin_unlock_irq(shost->host_lock);
1367         }
1368
1369         __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1370
1371         return 1;
1372
1373 starved:
1374         spin_lock_irq(shost->host_lock);
1375         if (list_empty(&sdev->starved_entry))
1376                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1377         spin_unlock_irq(shost->host_lock);
1378 out_dec:
1379         scsi_dec_host_busy(shost, cmd);
1380         return 0;
1381 }
1382
1383 /*
1384  * Busy state exporting function for request stacking drivers.
1385  *
1386  * For efficiency, no lock is taken to check the busy state of
1387  * shost/starget/sdev, since the returned value is not guaranteed and
1388  * may be changed after request stacking drivers call the function,
1389  * regardless of taking lock or not.
1390  *
1391  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1392  * needs to return 'not busy'. Otherwise, request stacking drivers
1393  * may hold requests forever.
1394  */
1395 static bool scsi_mq_lld_busy(struct request_queue *q)
1396 {
1397         struct scsi_device *sdev = q->queuedata;
1398         struct Scsi_Host *shost;
1399
1400         if (blk_queue_dying(q))
1401                 return false;
1402
1403         shost = sdev->host;
1404
1405         /*
1406          * Ignore host/starget busy state.
1407          * Since block layer does not have a concept of fairness across
1408          * multiple queues, congestion of host/starget needs to be handled
1409          * in SCSI layer.
1410          */
1411         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1412                 return true;
1413
1414         return false;
1415 }
1416
1417 /*
1418  * Block layer request completion callback. May be called from interrupt
1419  * context.
1420  */
1421 static void scsi_complete(struct request *rq)
1422 {
1423         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1424         enum scsi_disposition disposition;
1425
1426         INIT_LIST_HEAD(&cmd->eh_entry);
1427
1428         atomic_inc(&cmd->device->iodone_cnt);
1429         if (cmd->result)
1430                 atomic_inc(&cmd->device->ioerr_cnt);
1431
1432         disposition = scsi_decide_disposition(cmd);
1433         if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1434                 disposition = SUCCESS;
1435
1436         scsi_log_completion(cmd, disposition);
1437
1438         switch (disposition) {
1439         case SUCCESS:
1440                 scsi_finish_command(cmd);
1441                 break;
1442         case NEEDS_RETRY:
1443                 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1444                 break;
1445         case ADD_TO_MLQUEUE:
1446                 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1447                 break;
1448         default:
1449                 scsi_eh_scmd_add(cmd);
1450                 break;
1451         }
1452 }
1453
1454 /**
1455  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1456  * @cmd: command block we are dispatching.
1457  *
1458  * Return: nonzero return request was rejected and device's queue needs to be
1459  * plugged.
1460  */
1461 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1462 {
1463         struct Scsi_Host *host = cmd->device->host;
1464         int rtn = 0;
1465
1466         /* check if the device is still usable */
1467         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1468                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1469                  * returns an immediate error upwards, and signals
1470                  * that the device is no longer present */
1471                 cmd->result = DID_NO_CONNECT << 16;
1472                 goto done;
1473         }
1474
1475         /* Check to see if the scsi lld made this device blocked. */
1476         if (unlikely(scsi_device_blocked(cmd->device))) {
1477                 /*
1478                  * in blocked state, the command is just put back on
1479                  * the device queue.  The suspend state has already
1480                  * blocked the queue so future requests should not
1481                  * occur until the device transitions out of the
1482                  * suspend state.
1483                  */
1484                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1485                         "queuecommand : device blocked\n"));
1486                 return SCSI_MLQUEUE_DEVICE_BUSY;
1487         }
1488
1489         /* Store the LUN value in cmnd, if needed. */
1490         if (cmd->device->lun_in_cdb)
1491                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1492                                (cmd->device->lun << 5 & 0xe0);
1493
1494         scsi_log_send(cmd);
1495
1496         /*
1497          * Before we queue this command, check if the command
1498          * length exceeds what the host adapter can handle.
1499          */
1500         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1501                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1502                                "queuecommand : command too long. "
1503                                "cdb_size=%d host->max_cmd_len=%d\n",
1504                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1505                 cmd->result = (DID_ABORT << 16);
1506                 goto done;
1507         }
1508
1509         if (unlikely(host->shost_state == SHOST_DEL)) {
1510                 cmd->result = (DID_NO_CONNECT << 16);
1511                 goto done;
1512
1513         }
1514
1515         trace_scsi_dispatch_cmd_start(cmd);
1516         rtn = host->hostt->queuecommand(host, cmd);
1517         if (rtn) {
1518                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1519                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1520                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1521                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1522
1523                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1524                         "queuecommand : request rejected\n"));
1525         }
1526
1527         return rtn;
1528  done:
1529         scsi_done(cmd);
1530         return 0;
1531 }
1532
1533 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1534 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1535 {
1536         return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1537                 sizeof(struct scatterlist);
1538 }
1539
1540 static blk_status_t scsi_prepare_cmd(struct request *req)
1541 {
1542         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1543         struct scsi_device *sdev = req->q->queuedata;
1544         struct Scsi_Host *shost = sdev->host;
1545         bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1546         struct scatterlist *sg;
1547
1548         scsi_init_command(sdev, cmd);
1549
1550         cmd->eh_eflags = 0;
1551         cmd->prot_type = 0;
1552         cmd->prot_flags = 0;
1553         cmd->submitter = 0;
1554         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1555         cmd->underflow = 0;
1556         cmd->transfersize = 0;
1557         cmd->host_scribble = NULL;
1558         cmd->result = 0;
1559         cmd->extra_len = 0;
1560         cmd->state = 0;
1561         if (in_flight)
1562                 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1563
1564         /*
1565          * Only clear the driver-private command data if the LLD does not supply
1566          * a function to initialize that data.
1567          */
1568         if (!shost->hostt->init_cmd_priv)
1569                 memset(cmd + 1, 0, shost->hostt->cmd_size);
1570
1571         cmd->prot_op = SCSI_PROT_NORMAL;
1572         if (blk_rq_bytes(req))
1573                 cmd->sc_data_direction = rq_dma_dir(req);
1574         else
1575                 cmd->sc_data_direction = DMA_NONE;
1576
1577         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1578         cmd->sdb.table.sgl = sg;
1579
1580         if (scsi_host_get_prot(shost)) {
1581                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1582
1583                 cmd->prot_sdb->table.sgl =
1584                         (struct scatterlist *)(cmd->prot_sdb + 1);
1585         }
1586
1587         /*
1588          * Special handling for passthrough commands, which don't go to the ULP
1589          * at all:
1590          */
1591         if (blk_rq_is_passthrough(req))
1592                 return scsi_setup_scsi_cmnd(sdev, req);
1593
1594         if (sdev->handler && sdev->handler->prep_fn) {
1595                 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1596
1597                 if (ret != BLK_STS_OK)
1598                         return ret;
1599         }
1600
1601         /* Usually overridden by the ULP */
1602         cmd->allowed = 0;
1603         memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1604         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1605 }
1606
1607 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1608 {
1609         struct request *req = scsi_cmd_to_rq(cmd);
1610
1611         switch (cmd->submitter) {
1612         case SUBMITTED_BY_BLOCK_LAYER:
1613                 break;
1614         case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1615                 return scsi_eh_done(cmd);
1616         case SUBMITTED_BY_SCSI_RESET_IOCTL:
1617                 return;
1618         }
1619
1620         if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1621                 return;
1622         if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1623                 return;
1624         trace_scsi_dispatch_cmd_done(cmd);
1625
1626         if (complete_directly)
1627                 blk_mq_complete_request_direct(req, scsi_complete);
1628         else
1629                 blk_mq_complete_request(req);
1630 }
1631
1632 void scsi_done(struct scsi_cmnd *cmd)
1633 {
1634         scsi_done_internal(cmd, false);
1635 }
1636 EXPORT_SYMBOL(scsi_done);
1637
1638 void scsi_done_direct(struct scsi_cmnd *cmd)
1639 {
1640         scsi_done_internal(cmd, true);
1641 }
1642 EXPORT_SYMBOL(scsi_done_direct);
1643
1644 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1645 {
1646         struct scsi_device *sdev = q->queuedata;
1647
1648         sbitmap_put(&sdev->budget_map, budget_token);
1649 }
1650
1651 /*
1652  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1653  * not change behaviour from the previous unplug mechanism, experimentation
1654  * may prove this needs changing.
1655  */
1656 #define SCSI_QUEUE_DELAY 3
1657
1658 static int scsi_mq_get_budget(struct request_queue *q)
1659 {
1660         struct scsi_device *sdev = q->queuedata;
1661         int token = scsi_dev_queue_ready(q, sdev);
1662
1663         if (token >= 0)
1664                 return token;
1665
1666         atomic_inc(&sdev->restarts);
1667
1668         /*
1669          * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1670          * .restarts must be incremented before .device_busy is read because the
1671          * code in scsi_run_queue_async() depends on the order of these operations.
1672          */
1673         smp_mb__after_atomic();
1674
1675         /*
1676          * If all in-flight requests originated from this LUN are completed
1677          * before reading .device_busy, sdev->device_busy will be observed as
1678          * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1679          * soon. Otherwise, completion of one of these requests will observe
1680          * the .restarts flag, and the request queue will be run for handling
1681          * this request, see scsi_end_request().
1682          */
1683         if (unlikely(scsi_device_busy(sdev) == 0 &&
1684                                 !scsi_device_blocked(sdev)))
1685                 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1686         return -1;
1687 }
1688
1689 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1690 {
1691         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1692
1693         cmd->budget_token = token;
1694 }
1695
1696 static int scsi_mq_get_rq_budget_token(struct request *req)
1697 {
1698         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1699
1700         return cmd->budget_token;
1701 }
1702
1703 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1704                          const struct blk_mq_queue_data *bd)
1705 {
1706         struct request *req = bd->rq;
1707         struct request_queue *q = req->q;
1708         struct scsi_device *sdev = q->queuedata;
1709         struct Scsi_Host *shost = sdev->host;
1710         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1711         blk_status_t ret;
1712         int reason;
1713
1714         WARN_ON_ONCE(cmd->budget_token < 0);
1715
1716         /*
1717          * If the device is not in running state we will reject some or all
1718          * commands.
1719          */
1720         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1721                 ret = scsi_device_state_check(sdev, req);
1722                 if (ret != BLK_STS_OK)
1723                         goto out_put_budget;
1724         }
1725
1726         ret = BLK_STS_RESOURCE;
1727         if (!scsi_target_queue_ready(shost, sdev))
1728                 goto out_put_budget;
1729         if (unlikely(scsi_host_in_recovery(shost))) {
1730                 if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1731                         ret = BLK_STS_OFFLINE;
1732                 goto out_dec_target_busy;
1733         }
1734         if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1735                 goto out_dec_target_busy;
1736
1737         if (!(req->rq_flags & RQF_DONTPREP)) {
1738                 ret = scsi_prepare_cmd(req);
1739                 if (ret != BLK_STS_OK)
1740                         goto out_dec_host_busy;
1741                 req->rq_flags |= RQF_DONTPREP;
1742         } else {
1743                 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1744         }
1745
1746         cmd->flags &= SCMD_PRESERVED_FLAGS;
1747         if (sdev->simple_tags)
1748                 cmd->flags |= SCMD_TAGGED;
1749         if (bd->last)
1750                 cmd->flags |= SCMD_LAST;
1751
1752         scsi_set_resid(cmd, 0);
1753         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1754         cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1755
1756         blk_mq_start_request(req);
1757         reason = scsi_dispatch_cmd(cmd);
1758         if (reason) {
1759                 scsi_set_blocked(cmd, reason);
1760                 ret = BLK_STS_RESOURCE;
1761                 goto out_dec_host_busy;
1762         }
1763
1764         atomic_inc(&cmd->device->iorequest_cnt);
1765         return BLK_STS_OK;
1766
1767 out_dec_host_busy:
1768         scsi_dec_host_busy(shost, cmd);
1769 out_dec_target_busy:
1770         if (scsi_target(sdev)->can_queue > 0)
1771                 atomic_dec(&scsi_target(sdev)->target_busy);
1772 out_put_budget:
1773         scsi_mq_put_budget(q, cmd->budget_token);
1774         cmd->budget_token = -1;
1775         switch (ret) {
1776         case BLK_STS_OK:
1777                 break;
1778         case BLK_STS_RESOURCE:
1779         case BLK_STS_ZONE_RESOURCE:
1780                 if (scsi_device_blocked(sdev))
1781                         ret = BLK_STS_DEV_RESOURCE;
1782                 break;
1783         case BLK_STS_AGAIN:
1784                 cmd->result = DID_BUS_BUSY << 16;
1785                 if (req->rq_flags & RQF_DONTPREP)
1786                         scsi_mq_uninit_cmd(cmd);
1787                 break;
1788         default:
1789                 if (unlikely(!scsi_device_online(sdev)))
1790                         cmd->result = DID_NO_CONNECT << 16;
1791                 else
1792                         cmd->result = DID_ERROR << 16;
1793                 /*
1794                  * Make sure to release all allocated resources when
1795                  * we hit an error, as we will never see this command
1796                  * again.
1797                  */
1798                 if (req->rq_flags & RQF_DONTPREP)
1799                         scsi_mq_uninit_cmd(cmd);
1800                 scsi_run_queue_async(sdev);
1801                 break;
1802         }
1803         return ret;
1804 }
1805
1806 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1807                                 unsigned int hctx_idx, unsigned int numa_node)
1808 {
1809         struct Scsi_Host *shost = set->driver_data;
1810         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1811         struct scatterlist *sg;
1812         int ret = 0;
1813
1814         cmd->sense_buffer =
1815                 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1816         if (!cmd->sense_buffer)
1817                 return -ENOMEM;
1818
1819         if (scsi_host_get_prot(shost)) {
1820                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1821                         shost->hostt->cmd_size;
1822                 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1823         }
1824
1825         if (shost->hostt->init_cmd_priv) {
1826                 ret = shost->hostt->init_cmd_priv(shost, cmd);
1827                 if (ret < 0)
1828                         kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1829         }
1830
1831         return ret;
1832 }
1833
1834 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1835                                  unsigned int hctx_idx)
1836 {
1837         struct Scsi_Host *shost = set->driver_data;
1838         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1839
1840         if (shost->hostt->exit_cmd_priv)
1841                 shost->hostt->exit_cmd_priv(shost, cmd);
1842         kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1843 }
1844
1845
1846 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1847 {
1848         struct Scsi_Host *shost = hctx->driver_data;
1849
1850         if (shost->hostt->mq_poll)
1851                 return shost->hostt->mq_poll(shost, hctx->queue_num);
1852
1853         return 0;
1854 }
1855
1856 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1857                           unsigned int hctx_idx)
1858 {
1859         struct Scsi_Host *shost = data;
1860
1861         hctx->driver_data = shost;
1862         return 0;
1863 }
1864
1865 static void scsi_map_queues(struct blk_mq_tag_set *set)
1866 {
1867         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1868
1869         if (shost->hostt->map_queues)
1870                 return shost->hostt->map_queues(shost);
1871         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1872 }
1873
1874 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1875 {
1876         struct device *dev = shost->dma_dev;
1877
1878         /*
1879          * this limit is imposed by hardware restrictions
1880          */
1881         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1882                                         SG_MAX_SEGMENTS));
1883
1884         if (scsi_host_prot_dma(shost)) {
1885                 shost->sg_prot_tablesize =
1886                         min_not_zero(shost->sg_prot_tablesize,
1887                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1888                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1889                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1890         }
1891
1892         blk_queue_max_hw_sectors(q, shost->max_sectors);
1893         blk_queue_segment_boundary(q, shost->dma_boundary);
1894         dma_set_seg_boundary(dev, shost->dma_boundary);
1895
1896         blk_queue_max_segment_size(q, shost->max_segment_size);
1897         blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1898         dma_set_max_seg_size(dev, queue_max_segment_size(q));
1899
1900         /*
1901          * Set a reasonable default alignment:  The larger of 32-byte (dword),
1902          * which is a common minimum for HBAs, and the minimum DMA alignment,
1903          * which is set by the platform.
1904          *
1905          * Devices that require a bigger alignment can increase it later.
1906          */
1907         blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1908 }
1909 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1910
1911 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1912         .get_budget     = scsi_mq_get_budget,
1913         .put_budget     = scsi_mq_put_budget,
1914         .queue_rq       = scsi_queue_rq,
1915         .complete       = scsi_complete,
1916         .timeout        = scsi_timeout,
1917 #ifdef CONFIG_BLK_DEBUG_FS
1918         .show_rq        = scsi_show_rq,
1919 #endif
1920         .init_request   = scsi_mq_init_request,
1921         .exit_request   = scsi_mq_exit_request,
1922         .cleanup_rq     = scsi_cleanup_rq,
1923         .busy           = scsi_mq_lld_busy,
1924         .map_queues     = scsi_map_queues,
1925         .init_hctx      = scsi_init_hctx,
1926         .poll           = scsi_mq_poll,
1927         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1928         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1929 };
1930
1931
1932 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1933 {
1934         struct Scsi_Host *shost = hctx->driver_data;
1935
1936         shost->hostt->commit_rqs(shost, hctx->queue_num);
1937 }
1938
1939 static const struct blk_mq_ops scsi_mq_ops = {
1940         .get_budget     = scsi_mq_get_budget,
1941         .put_budget     = scsi_mq_put_budget,
1942         .queue_rq       = scsi_queue_rq,
1943         .commit_rqs     = scsi_commit_rqs,
1944         .complete       = scsi_complete,
1945         .timeout        = scsi_timeout,
1946 #ifdef CONFIG_BLK_DEBUG_FS
1947         .show_rq        = scsi_show_rq,
1948 #endif
1949         .init_request   = scsi_mq_init_request,
1950         .exit_request   = scsi_mq_exit_request,
1951         .cleanup_rq     = scsi_cleanup_rq,
1952         .busy           = scsi_mq_lld_busy,
1953         .map_queues     = scsi_map_queues,
1954         .init_hctx      = scsi_init_hctx,
1955         .poll           = scsi_mq_poll,
1956         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1957         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1958 };
1959
1960 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1961 {
1962         unsigned int cmd_size, sgl_size;
1963         struct blk_mq_tag_set *tag_set = &shost->tag_set;
1964
1965         sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1966                                 scsi_mq_inline_sgl_size(shost));
1967         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1968         if (scsi_host_get_prot(shost))
1969                 cmd_size += sizeof(struct scsi_data_buffer) +
1970                         sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1971
1972         memset(tag_set, 0, sizeof(*tag_set));
1973         if (shost->hostt->commit_rqs)
1974                 tag_set->ops = &scsi_mq_ops;
1975         else
1976                 tag_set->ops = &scsi_mq_ops_no_commit;
1977         tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1978         tag_set->nr_maps = shost->nr_maps ? : 1;
1979         tag_set->queue_depth = shost->can_queue;
1980         tag_set->cmd_size = cmd_size;
1981         tag_set->numa_node = dev_to_node(shost->dma_dev);
1982         tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1983         tag_set->flags |=
1984                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1985         tag_set->driver_data = shost;
1986         if (shost->host_tagset)
1987                 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1988
1989         return blk_mq_alloc_tag_set(tag_set);
1990 }
1991
1992 void scsi_mq_free_tags(struct kref *kref)
1993 {
1994         struct Scsi_Host *shost = container_of(kref, typeof(*shost),
1995                                                tagset_refcnt);
1996
1997         blk_mq_free_tag_set(&shost->tag_set);
1998         complete(&shost->tagset_freed);
1999 }
2000
2001 /**
2002  * scsi_device_from_queue - return sdev associated with a request_queue
2003  * @q: The request queue to return the sdev from
2004  *
2005  * Return the sdev associated with a request queue or NULL if the
2006  * request_queue does not reference a SCSI device.
2007  */
2008 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2009 {
2010         struct scsi_device *sdev = NULL;
2011
2012         if (q->mq_ops == &scsi_mq_ops_no_commit ||
2013             q->mq_ops == &scsi_mq_ops)
2014                 sdev = q->queuedata;
2015         if (!sdev || !get_device(&sdev->sdev_gendev))
2016                 sdev = NULL;
2017
2018         return sdev;
2019 }
2020 /*
2021  * pktcdvd should have been integrated into the SCSI layers, but for historical
2022  * reasons like the old IDE driver it isn't.  This export allows it to safely
2023  * probe if a given device is a SCSI one and only attach to that.
2024  */
2025 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2026 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2027 #endif
2028
2029 /**
2030  * scsi_block_requests - Utility function used by low-level drivers to prevent
2031  * further commands from being queued to the device.
2032  * @shost:  host in question
2033  *
2034  * There is no timer nor any other means by which the requests get unblocked
2035  * other than the low-level driver calling scsi_unblock_requests().
2036  */
2037 void scsi_block_requests(struct Scsi_Host *shost)
2038 {
2039         shost->host_self_blocked = 1;
2040 }
2041 EXPORT_SYMBOL(scsi_block_requests);
2042
2043 /**
2044  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2045  * further commands to be queued to the device.
2046  * @shost:  host in question
2047  *
2048  * There is no timer nor any other means by which the requests get unblocked
2049  * other than the low-level driver calling scsi_unblock_requests(). This is done
2050  * as an API function so that changes to the internals of the scsi mid-layer
2051  * won't require wholesale changes to drivers that use this feature.
2052  */
2053 void scsi_unblock_requests(struct Scsi_Host *shost)
2054 {
2055         shost->host_self_blocked = 0;
2056         scsi_run_host_queues(shost);
2057 }
2058 EXPORT_SYMBOL(scsi_unblock_requests);
2059
2060 void scsi_exit_queue(void)
2061 {
2062         kmem_cache_destroy(scsi_sense_cache);
2063 }
2064
2065 /**
2066  *      scsi_mode_select - issue a mode select
2067  *      @sdev:  SCSI device to be queried
2068  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2069  *      @sp:    Save page bit (0 == don't save, 1 == save)
2070  *      @buffer: request buffer (may not be smaller than eight bytes)
2071  *      @len:   length of request buffer.
2072  *      @timeout: command timeout
2073  *      @retries: number of retries before failing
2074  *      @data: returns a structure abstracting the mode header data
2075  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2076  *              must be SCSI_SENSE_BUFFERSIZE big.
2077  *
2078  *      Returns zero if successful; negative error number or scsi
2079  *      status on error
2080  *
2081  */
2082 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2083                      unsigned char *buffer, int len, int timeout, int retries,
2084                      struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2085 {
2086         unsigned char cmd[10];
2087         unsigned char *real_buffer;
2088         const struct scsi_exec_args exec_args = {
2089                 .sshdr = sshdr,
2090         };
2091         int ret;
2092
2093         memset(cmd, 0, sizeof(cmd));
2094         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2095
2096         /*
2097          * Use MODE SELECT(10) if the device asked for it or if the mode page
2098          * and the mode select header cannot fit within the maximumm 255 bytes
2099          * of the MODE SELECT(6) command.
2100          */
2101         if (sdev->use_10_for_ms ||
2102             len + 4 > 255 ||
2103             data->block_descriptor_length > 255) {
2104                 if (len > 65535 - 8)
2105                         return -EINVAL;
2106                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2107                 if (!real_buffer)
2108                         return -ENOMEM;
2109                 memcpy(real_buffer + 8, buffer, len);
2110                 len += 8;
2111                 real_buffer[0] = 0;
2112                 real_buffer[1] = 0;
2113                 real_buffer[2] = data->medium_type;
2114                 real_buffer[3] = data->device_specific;
2115                 real_buffer[4] = data->longlba ? 0x01 : 0;
2116                 real_buffer[5] = 0;
2117                 put_unaligned_be16(data->block_descriptor_length,
2118                                    &real_buffer[6]);
2119
2120                 cmd[0] = MODE_SELECT_10;
2121                 put_unaligned_be16(len, &cmd[7]);
2122         } else {
2123                 if (data->longlba)
2124                         return -EINVAL;
2125
2126                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2127                 if (!real_buffer)
2128                         return -ENOMEM;
2129                 memcpy(real_buffer + 4, buffer, len);
2130                 len += 4;
2131                 real_buffer[0] = 0;
2132                 real_buffer[1] = data->medium_type;
2133                 real_buffer[2] = data->device_specific;
2134                 real_buffer[3] = data->block_descriptor_length;
2135
2136                 cmd[0] = MODE_SELECT;
2137                 cmd[4] = len;
2138         }
2139
2140         ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2141                                timeout, retries, &exec_args);
2142         kfree(real_buffer);
2143         return ret;
2144 }
2145 EXPORT_SYMBOL_GPL(scsi_mode_select);
2146
2147 /**
2148  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2149  *      @sdev:  SCSI device to be queried
2150  *      @dbd:   set to prevent mode sense from returning block descriptors
2151  *      @modepage: mode page being requested
2152  *      @buffer: request buffer (may not be smaller than eight bytes)
2153  *      @len:   length of request buffer.
2154  *      @timeout: command timeout
2155  *      @retries: number of retries before failing
2156  *      @data: returns a structure abstracting the mode header data
2157  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2158  *              must be SCSI_SENSE_BUFFERSIZE big.
2159  *
2160  *      Returns zero if successful, or a negative error number on failure
2161  */
2162 int
2163 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2164                   unsigned char *buffer, int len, int timeout, int retries,
2165                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2166 {
2167         unsigned char cmd[12];
2168         int use_10_for_ms;
2169         int header_length;
2170         int result, retry_count = retries;
2171         struct scsi_sense_hdr my_sshdr;
2172         const struct scsi_exec_args exec_args = {
2173                 /* caller might not be interested in sense, but we need it */
2174                 .sshdr = sshdr ? : &my_sshdr,
2175         };
2176
2177         memset(data, 0, sizeof(*data));
2178         memset(&cmd[0], 0, 12);
2179
2180         dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2181         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2182         cmd[2] = modepage;
2183
2184         sshdr = exec_args.sshdr;
2185
2186  retry:
2187         use_10_for_ms = sdev->use_10_for_ms || len > 255;
2188
2189         if (use_10_for_ms) {
2190                 if (len < 8 || len > 65535)
2191                         return -EINVAL;
2192
2193                 cmd[0] = MODE_SENSE_10;
2194                 put_unaligned_be16(len, &cmd[7]);
2195                 header_length = 8;
2196         } else {
2197                 if (len < 4)
2198                         return -EINVAL;
2199
2200                 cmd[0] = MODE_SENSE;
2201                 cmd[4] = len;
2202                 header_length = 4;
2203         }
2204
2205         memset(buffer, 0, len);
2206
2207         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2208                                   timeout, retries, &exec_args);
2209         if (result < 0)
2210                 return result;
2211
2212         /* This code looks awful: what it's doing is making sure an
2213          * ILLEGAL REQUEST sense return identifies the actual command
2214          * byte as the problem.  MODE_SENSE commands can return
2215          * ILLEGAL REQUEST if the code page isn't supported */
2216
2217         if (!scsi_status_is_good(result)) {
2218                 if (scsi_sense_valid(sshdr)) {
2219                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2220                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2221                                 /*
2222                                  * Invalid command operation code: retry using
2223                                  * MODE SENSE(6) if this was a MODE SENSE(10)
2224                                  * request, except if the request mode page is
2225                                  * too large for MODE SENSE single byte
2226                                  * allocation length field.
2227                                  */
2228                                 if (use_10_for_ms) {
2229                                         if (len > 255)
2230                                                 return -EIO;
2231                                         sdev->use_10_for_ms = 0;
2232                                         goto retry;
2233                                 }
2234                         }
2235                         if (scsi_status_is_check_condition(result) &&
2236                             sshdr->sense_key == UNIT_ATTENTION &&
2237                             retry_count) {
2238                                 retry_count--;
2239                                 goto retry;
2240                         }
2241                 }
2242                 return -EIO;
2243         }
2244         if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2245                      (modepage == 6 || modepage == 8))) {
2246                 /* Initio breakage? */
2247                 header_length = 0;
2248                 data->length = 13;
2249                 data->medium_type = 0;
2250                 data->device_specific = 0;
2251                 data->longlba = 0;
2252                 data->block_descriptor_length = 0;
2253         } else if (use_10_for_ms) {
2254                 data->length = get_unaligned_be16(&buffer[0]) + 2;
2255                 data->medium_type = buffer[2];
2256                 data->device_specific = buffer[3];
2257                 data->longlba = buffer[4] & 0x01;
2258                 data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2259         } else {
2260                 data->length = buffer[0] + 1;
2261                 data->medium_type = buffer[1];
2262                 data->device_specific = buffer[2];
2263                 data->block_descriptor_length = buffer[3];
2264         }
2265         data->header_length = header_length;
2266
2267         return 0;
2268 }
2269 EXPORT_SYMBOL(scsi_mode_sense);
2270
2271 /**
2272  *      scsi_test_unit_ready - test if unit is ready
2273  *      @sdev:  scsi device to change the state of.
2274  *      @timeout: command timeout
2275  *      @retries: number of retries before failing
2276  *      @sshdr: outpout pointer for decoded sense information.
2277  *
2278  *      Returns zero if unsuccessful or an error if TUR failed.  For
2279  *      removable media, UNIT_ATTENTION sets ->changed flag.
2280  **/
2281 int
2282 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2283                      struct scsi_sense_hdr *sshdr)
2284 {
2285         char cmd[] = {
2286                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2287         };
2288         const struct scsi_exec_args exec_args = {
2289                 .sshdr = sshdr,
2290         };
2291         int result;
2292
2293         /* try to eat the UNIT_ATTENTION if there are enough retries */
2294         do {
2295                 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2296                                           timeout, 1, &exec_args);
2297                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2298                     sshdr->sense_key == UNIT_ATTENTION)
2299                         sdev->changed = 1;
2300         } while (scsi_sense_valid(sshdr) &&
2301                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2302
2303         return result;
2304 }
2305 EXPORT_SYMBOL(scsi_test_unit_ready);
2306
2307 /**
2308  *      scsi_device_set_state - Take the given device through the device state model.
2309  *      @sdev:  scsi device to change the state of.
2310  *      @state: state to change to.
2311  *
2312  *      Returns zero if successful or an error if the requested
2313  *      transition is illegal.
2314  */
2315 int
2316 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2317 {
2318         enum scsi_device_state oldstate = sdev->sdev_state;
2319
2320         if (state == oldstate)
2321                 return 0;
2322
2323         switch (state) {
2324         case SDEV_CREATED:
2325                 switch (oldstate) {
2326                 case SDEV_CREATED_BLOCK:
2327                         break;
2328                 default:
2329                         goto illegal;
2330                 }
2331                 break;
2332
2333         case SDEV_RUNNING:
2334                 switch (oldstate) {
2335                 case SDEV_CREATED:
2336                 case SDEV_OFFLINE:
2337                 case SDEV_TRANSPORT_OFFLINE:
2338                 case SDEV_QUIESCE:
2339                 case SDEV_BLOCK:
2340                         break;
2341                 default:
2342                         goto illegal;
2343                 }
2344                 break;
2345
2346         case SDEV_QUIESCE:
2347                 switch (oldstate) {
2348                 case SDEV_RUNNING:
2349                 case SDEV_OFFLINE:
2350                 case SDEV_TRANSPORT_OFFLINE:
2351                         break;
2352                 default:
2353                         goto illegal;
2354                 }
2355                 break;
2356
2357         case SDEV_OFFLINE:
2358         case SDEV_TRANSPORT_OFFLINE:
2359                 switch (oldstate) {
2360                 case SDEV_CREATED:
2361                 case SDEV_RUNNING:
2362                 case SDEV_QUIESCE:
2363                 case SDEV_BLOCK:
2364                         break;
2365                 default:
2366                         goto illegal;
2367                 }
2368                 break;
2369
2370         case SDEV_BLOCK:
2371                 switch (oldstate) {
2372                 case SDEV_RUNNING:
2373                 case SDEV_CREATED_BLOCK:
2374                 case SDEV_QUIESCE:
2375                 case SDEV_OFFLINE:
2376                         break;
2377                 default:
2378                         goto illegal;
2379                 }
2380                 break;
2381
2382         case SDEV_CREATED_BLOCK:
2383                 switch (oldstate) {
2384                 case SDEV_CREATED:
2385                         break;
2386                 default:
2387                         goto illegal;
2388                 }
2389                 break;
2390
2391         case SDEV_CANCEL:
2392                 switch (oldstate) {
2393                 case SDEV_CREATED:
2394                 case SDEV_RUNNING:
2395                 case SDEV_QUIESCE:
2396                 case SDEV_OFFLINE:
2397                 case SDEV_TRANSPORT_OFFLINE:
2398                         break;
2399                 default:
2400                         goto illegal;
2401                 }
2402                 break;
2403
2404         case SDEV_DEL:
2405                 switch (oldstate) {
2406                 case SDEV_CREATED:
2407                 case SDEV_RUNNING:
2408                 case SDEV_OFFLINE:
2409                 case SDEV_TRANSPORT_OFFLINE:
2410                 case SDEV_CANCEL:
2411                 case SDEV_BLOCK:
2412                 case SDEV_CREATED_BLOCK:
2413                         break;
2414                 default:
2415                         goto illegal;
2416                 }
2417                 break;
2418
2419         }
2420         sdev->offline_already = false;
2421         sdev->sdev_state = state;
2422         return 0;
2423
2424  illegal:
2425         SCSI_LOG_ERROR_RECOVERY(1,
2426                                 sdev_printk(KERN_ERR, sdev,
2427                                             "Illegal state transition %s->%s",
2428                                             scsi_device_state_name(oldstate),
2429                                             scsi_device_state_name(state))
2430                                 );
2431         return -EINVAL;
2432 }
2433 EXPORT_SYMBOL(scsi_device_set_state);
2434
2435 /**
2436  *      scsi_evt_emit - emit a single SCSI device uevent
2437  *      @sdev: associated SCSI device
2438  *      @evt: event to emit
2439  *
2440  *      Send a single uevent (scsi_event) to the associated scsi_device.
2441  */
2442 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2443 {
2444         int idx = 0;
2445         char *envp[3];
2446
2447         switch (evt->evt_type) {
2448         case SDEV_EVT_MEDIA_CHANGE:
2449                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2450                 break;
2451         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2452                 scsi_rescan_device(&sdev->sdev_gendev);
2453                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2454                 break;
2455         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2456                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2457                 break;
2458         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2459                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2460                 break;
2461         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2462                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2463                 break;
2464         case SDEV_EVT_LUN_CHANGE_REPORTED:
2465                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2466                 break;
2467         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2468                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2469                 break;
2470         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2471                 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2472                 break;
2473         default:
2474                 /* do nothing */
2475                 break;
2476         }
2477
2478         envp[idx++] = NULL;
2479
2480         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2481 }
2482
2483 /**
2484  *      scsi_evt_thread - send a uevent for each scsi event
2485  *      @work: work struct for scsi_device
2486  *
2487  *      Dispatch queued events to their associated scsi_device kobjects
2488  *      as uevents.
2489  */
2490 void scsi_evt_thread(struct work_struct *work)
2491 {
2492         struct scsi_device *sdev;
2493         enum scsi_device_event evt_type;
2494         LIST_HEAD(event_list);
2495
2496         sdev = container_of(work, struct scsi_device, event_work);
2497
2498         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2499                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2500                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2501
2502         while (1) {
2503                 struct scsi_event *evt;
2504                 struct list_head *this, *tmp;
2505                 unsigned long flags;
2506
2507                 spin_lock_irqsave(&sdev->list_lock, flags);
2508                 list_splice_init(&sdev->event_list, &event_list);
2509                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2510
2511                 if (list_empty(&event_list))
2512                         break;
2513
2514                 list_for_each_safe(this, tmp, &event_list) {
2515                         evt = list_entry(this, struct scsi_event, node);
2516                         list_del(&evt->node);
2517                         scsi_evt_emit(sdev, evt);
2518                         kfree(evt);
2519                 }
2520         }
2521 }
2522
2523 /**
2524  *      sdev_evt_send - send asserted event to uevent thread
2525  *      @sdev: scsi_device event occurred on
2526  *      @evt: event to send
2527  *
2528  *      Assert scsi device event asynchronously.
2529  */
2530 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2531 {
2532         unsigned long flags;
2533
2534 #if 0
2535         /* FIXME: currently this check eliminates all media change events
2536          * for polled devices.  Need to update to discriminate between AN
2537          * and polled events */
2538         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2539                 kfree(evt);
2540                 return;
2541         }
2542 #endif
2543
2544         spin_lock_irqsave(&sdev->list_lock, flags);
2545         list_add_tail(&evt->node, &sdev->event_list);
2546         schedule_work(&sdev->event_work);
2547         spin_unlock_irqrestore(&sdev->list_lock, flags);
2548 }
2549 EXPORT_SYMBOL_GPL(sdev_evt_send);
2550
2551 /**
2552  *      sdev_evt_alloc - allocate a new scsi event
2553  *      @evt_type: type of event to allocate
2554  *      @gfpflags: GFP flags for allocation
2555  *
2556  *      Allocates and returns a new scsi_event.
2557  */
2558 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2559                                   gfp_t gfpflags)
2560 {
2561         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2562         if (!evt)
2563                 return NULL;
2564
2565         evt->evt_type = evt_type;
2566         INIT_LIST_HEAD(&evt->node);
2567
2568         /* evt_type-specific initialization, if any */
2569         switch (evt_type) {
2570         case SDEV_EVT_MEDIA_CHANGE:
2571         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2572         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2573         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2574         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2575         case SDEV_EVT_LUN_CHANGE_REPORTED:
2576         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2577         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2578         default:
2579                 /* do nothing */
2580                 break;
2581         }
2582
2583         return evt;
2584 }
2585 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2586
2587 /**
2588  *      sdev_evt_send_simple - send asserted event to uevent thread
2589  *      @sdev: scsi_device event occurred on
2590  *      @evt_type: type of event to send
2591  *      @gfpflags: GFP flags for allocation
2592  *
2593  *      Assert scsi device event asynchronously, given an event type.
2594  */
2595 void sdev_evt_send_simple(struct scsi_device *sdev,
2596                           enum scsi_device_event evt_type, gfp_t gfpflags)
2597 {
2598         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2599         if (!evt) {
2600                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2601                             evt_type);
2602                 return;
2603         }
2604
2605         sdev_evt_send(sdev, evt);
2606 }
2607 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2608
2609 /**
2610  *      scsi_device_quiesce - Block all commands except power management.
2611  *      @sdev:  scsi device to quiesce.
2612  *
2613  *      This works by trying to transition to the SDEV_QUIESCE state
2614  *      (which must be a legal transition).  When the device is in this
2615  *      state, only power management requests will be accepted, all others will
2616  *      be deferred.
2617  *
2618  *      Must be called with user context, may sleep.
2619  *
2620  *      Returns zero if unsuccessful or an error if not.
2621  */
2622 int
2623 scsi_device_quiesce(struct scsi_device *sdev)
2624 {
2625         struct request_queue *q = sdev->request_queue;
2626         int err;
2627
2628         /*
2629          * It is allowed to call scsi_device_quiesce() multiple times from
2630          * the same context but concurrent scsi_device_quiesce() calls are
2631          * not allowed.
2632          */
2633         WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2634
2635         if (sdev->quiesced_by == current)
2636                 return 0;
2637
2638         blk_set_pm_only(q);
2639
2640         blk_mq_freeze_queue(q);
2641         /*
2642          * Ensure that the effect of blk_set_pm_only() will be visible
2643          * for percpu_ref_tryget() callers that occur after the queue
2644          * unfreeze even if the queue was already frozen before this function
2645          * was called. See also https://lwn.net/Articles/573497/.
2646          */
2647         synchronize_rcu();
2648         blk_mq_unfreeze_queue(q);
2649
2650         mutex_lock(&sdev->state_mutex);
2651         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2652         if (err == 0)
2653                 sdev->quiesced_by = current;
2654         else
2655                 blk_clear_pm_only(q);
2656         mutex_unlock(&sdev->state_mutex);
2657
2658         return err;
2659 }
2660 EXPORT_SYMBOL(scsi_device_quiesce);
2661
2662 /**
2663  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2664  *      @sdev:  scsi device to resume.
2665  *
2666  *      Moves the device from quiesced back to running and restarts the
2667  *      queues.
2668  *
2669  *      Must be called with user context, may sleep.
2670  */
2671 void scsi_device_resume(struct scsi_device *sdev)
2672 {
2673         /* check if the device state was mutated prior to resume, and if
2674          * so assume the state is being managed elsewhere (for example
2675          * device deleted during suspend)
2676          */
2677         mutex_lock(&sdev->state_mutex);
2678         if (sdev->sdev_state == SDEV_QUIESCE)
2679                 scsi_device_set_state(sdev, SDEV_RUNNING);
2680         if (sdev->quiesced_by) {
2681                 sdev->quiesced_by = NULL;
2682                 blk_clear_pm_only(sdev->request_queue);
2683         }
2684         mutex_unlock(&sdev->state_mutex);
2685 }
2686 EXPORT_SYMBOL(scsi_device_resume);
2687
2688 static void
2689 device_quiesce_fn(struct scsi_device *sdev, void *data)
2690 {
2691         scsi_device_quiesce(sdev);
2692 }
2693
2694 void
2695 scsi_target_quiesce(struct scsi_target *starget)
2696 {
2697         starget_for_each_device(starget, NULL, device_quiesce_fn);
2698 }
2699 EXPORT_SYMBOL(scsi_target_quiesce);
2700
2701 static void
2702 device_resume_fn(struct scsi_device *sdev, void *data)
2703 {
2704         scsi_device_resume(sdev);
2705 }
2706
2707 void
2708 scsi_target_resume(struct scsi_target *starget)
2709 {
2710         starget_for_each_device(starget, NULL, device_resume_fn);
2711 }
2712 EXPORT_SYMBOL(scsi_target_resume);
2713
2714 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2715 {
2716         if (scsi_device_set_state(sdev, SDEV_BLOCK))
2717                 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2718
2719         return 0;
2720 }
2721
2722 void scsi_start_queue(struct scsi_device *sdev)
2723 {
2724         if (cmpxchg(&sdev->queue_stopped, 1, 0))
2725                 blk_mq_unquiesce_queue(sdev->request_queue);
2726 }
2727
2728 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait)
2729 {
2730         /*
2731          * The atomic variable of ->queue_stopped covers that
2732          * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2733          *
2734          * However, we still need to wait until quiesce is done
2735          * in case that queue has been stopped.
2736          */
2737         if (!cmpxchg(&sdev->queue_stopped, 0, 1)) {
2738                 if (nowait)
2739                         blk_mq_quiesce_queue_nowait(sdev->request_queue);
2740                 else
2741                         blk_mq_quiesce_queue(sdev->request_queue);
2742         } else {
2743                 if (!nowait)
2744                         blk_mq_wait_quiesce_done(sdev->request_queue->tag_set);
2745         }
2746 }
2747
2748 /**
2749  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2750  * @sdev: device to block
2751  *
2752  * Pause SCSI command processing on the specified device. Does not sleep.
2753  *
2754  * Returns zero if successful or a negative error code upon failure.
2755  *
2756  * Notes:
2757  * This routine transitions the device to the SDEV_BLOCK state (which must be
2758  * a legal transition). When the device is in this state, command processing
2759  * is paused until the device leaves the SDEV_BLOCK state. See also
2760  * scsi_internal_device_unblock_nowait().
2761  */
2762 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2763 {
2764         int ret = __scsi_internal_device_block_nowait(sdev);
2765
2766         /*
2767          * The device has transitioned to SDEV_BLOCK.  Stop the
2768          * block layer from calling the midlayer with this device's
2769          * request queue.
2770          */
2771         if (!ret)
2772                 scsi_stop_queue(sdev, true);
2773         return ret;
2774 }
2775 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2776
2777 /**
2778  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2779  * @sdev: device to block
2780  *
2781  * Pause SCSI command processing on the specified device and wait until all
2782  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2783  *
2784  * Returns zero if successful or a negative error code upon failure.
2785  *
2786  * Note:
2787  * This routine transitions the device to the SDEV_BLOCK state (which must be
2788  * a legal transition). When the device is in this state, command processing
2789  * is paused until the device leaves the SDEV_BLOCK state. See also
2790  * scsi_internal_device_unblock().
2791  */
2792 static int scsi_internal_device_block(struct scsi_device *sdev)
2793 {
2794         int err;
2795
2796         mutex_lock(&sdev->state_mutex);
2797         err = __scsi_internal_device_block_nowait(sdev);
2798         if (err == 0)
2799                 scsi_stop_queue(sdev, false);
2800         mutex_unlock(&sdev->state_mutex);
2801
2802         return err;
2803 }
2804
2805 /**
2806  * scsi_internal_device_unblock_nowait - resume a device after a block request
2807  * @sdev:       device to resume
2808  * @new_state:  state to set the device to after unblocking
2809  *
2810  * Restart the device queue for a previously suspended SCSI device. Does not
2811  * sleep.
2812  *
2813  * Returns zero if successful or a negative error code upon failure.
2814  *
2815  * Notes:
2816  * This routine transitions the device to the SDEV_RUNNING state or to one of
2817  * the offline states (which must be a legal transition) allowing the midlayer
2818  * to goose the queue for this device.
2819  */
2820 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2821                                         enum scsi_device_state new_state)
2822 {
2823         switch (new_state) {
2824         case SDEV_RUNNING:
2825         case SDEV_TRANSPORT_OFFLINE:
2826                 break;
2827         default:
2828                 return -EINVAL;
2829         }
2830
2831         /*
2832          * Try to transition the scsi device to SDEV_RUNNING or one of the
2833          * offlined states and goose the device queue if successful.
2834          */
2835         switch (sdev->sdev_state) {
2836         case SDEV_BLOCK:
2837         case SDEV_TRANSPORT_OFFLINE:
2838                 sdev->sdev_state = new_state;
2839                 break;
2840         case SDEV_CREATED_BLOCK:
2841                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2842                     new_state == SDEV_OFFLINE)
2843                         sdev->sdev_state = new_state;
2844                 else
2845                         sdev->sdev_state = SDEV_CREATED;
2846                 break;
2847         case SDEV_CANCEL:
2848         case SDEV_OFFLINE:
2849                 break;
2850         default:
2851                 return -EINVAL;
2852         }
2853         scsi_start_queue(sdev);
2854
2855         return 0;
2856 }
2857 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2858
2859 /**
2860  * scsi_internal_device_unblock - resume a device after a block request
2861  * @sdev:       device to resume
2862  * @new_state:  state to set the device to after unblocking
2863  *
2864  * Restart the device queue for a previously suspended SCSI device. May sleep.
2865  *
2866  * Returns zero if successful or a negative error code upon failure.
2867  *
2868  * Notes:
2869  * This routine transitions the device to the SDEV_RUNNING state or to one of
2870  * the offline states (which must be a legal transition) allowing the midlayer
2871  * to goose the queue for this device.
2872  */
2873 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2874                                         enum scsi_device_state new_state)
2875 {
2876         int ret;
2877
2878         mutex_lock(&sdev->state_mutex);
2879         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2880         mutex_unlock(&sdev->state_mutex);
2881
2882         return ret;
2883 }
2884
2885 static void
2886 device_block(struct scsi_device *sdev, void *data)
2887 {
2888         int ret;
2889
2890         ret = scsi_internal_device_block(sdev);
2891
2892         WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2893                   dev_name(&sdev->sdev_gendev), ret);
2894 }
2895
2896 static int
2897 target_block(struct device *dev, void *data)
2898 {
2899         if (scsi_is_target_device(dev))
2900                 starget_for_each_device(to_scsi_target(dev), NULL,
2901                                         device_block);
2902         return 0;
2903 }
2904
2905 void
2906 scsi_target_block(struct device *dev)
2907 {
2908         if (scsi_is_target_device(dev))
2909                 starget_for_each_device(to_scsi_target(dev), NULL,
2910                                         device_block);
2911         else
2912                 device_for_each_child(dev, NULL, target_block);
2913 }
2914 EXPORT_SYMBOL_GPL(scsi_target_block);
2915
2916 static void
2917 device_unblock(struct scsi_device *sdev, void *data)
2918 {
2919         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2920 }
2921
2922 static int
2923 target_unblock(struct device *dev, void *data)
2924 {
2925         if (scsi_is_target_device(dev))
2926                 starget_for_each_device(to_scsi_target(dev), data,
2927                                         device_unblock);
2928         return 0;
2929 }
2930
2931 void
2932 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2933 {
2934         if (scsi_is_target_device(dev))
2935                 starget_for_each_device(to_scsi_target(dev), &new_state,
2936                                         device_unblock);
2937         else
2938                 device_for_each_child(dev, &new_state, target_unblock);
2939 }
2940 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2941
2942 int
2943 scsi_host_block(struct Scsi_Host *shost)
2944 {
2945         struct scsi_device *sdev;
2946         int ret = 0;
2947
2948         /*
2949          * Call scsi_internal_device_block_nowait so we can avoid
2950          * calling synchronize_rcu() for each LUN.
2951          */
2952         shost_for_each_device(sdev, shost) {
2953                 mutex_lock(&sdev->state_mutex);
2954                 ret = scsi_internal_device_block_nowait(sdev);
2955                 mutex_unlock(&sdev->state_mutex);
2956                 if (ret) {
2957                         scsi_device_put(sdev);
2958                         break;
2959                 }
2960         }
2961
2962         /*
2963          * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2964          * calling synchronize_rcu() once is enough.
2965          */
2966         WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2967
2968         if (!ret)
2969                 synchronize_rcu();
2970
2971         return ret;
2972 }
2973 EXPORT_SYMBOL_GPL(scsi_host_block);
2974
2975 int
2976 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2977 {
2978         struct scsi_device *sdev;
2979         int ret = 0;
2980
2981         shost_for_each_device(sdev, shost) {
2982                 ret = scsi_internal_device_unblock(sdev, new_state);
2983                 if (ret) {
2984                         scsi_device_put(sdev);
2985                         break;
2986                 }
2987         }
2988         return ret;
2989 }
2990 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2991
2992 /**
2993  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2994  * @sgl:        scatter-gather list
2995  * @sg_count:   number of segments in sg
2996  * @offset:     offset in bytes into sg, on return offset into the mapped area
2997  * @len:        bytes to map, on return number of bytes mapped
2998  *
2999  * Returns virtual address of the start of the mapped page
3000  */
3001 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3002                           size_t *offset, size_t *len)
3003 {
3004         int i;
3005         size_t sg_len = 0, len_complete = 0;
3006         struct scatterlist *sg;
3007         struct page *page;
3008
3009         WARN_ON(!irqs_disabled());
3010
3011         for_each_sg(sgl, sg, sg_count, i) {
3012                 len_complete = sg_len; /* Complete sg-entries */
3013                 sg_len += sg->length;
3014                 if (sg_len > *offset)
3015                         break;
3016         }
3017
3018         if (unlikely(i == sg_count)) {
3019                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3020                         "elements %d\n",
3021                        __func__, sg_len, *offset, sg_count);
3022                 WARN_ON(1);
3023                 return NULL;
3024         }
3025
3026         /* Offset starting from the beginning of first page in this sg-entry */
3027         *offset = *offset - len_complete + sg->offset;
3028
3029         /* Assumption: contiguous pages can be accessed as "page + i" */
3030         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3031         *offset &= ~PAGE_MASK;
3032
3033         /* Bytes in this sg-entry from *offset to the end of the page */
3034         sg_len = PAGE_SIZE - *offset;
3035         if (*len > sg_len)
3036                 *len = sg_len;
3037
3038         return kmap_atomic(page);
3039 }
3040 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3041
3042 /**
3043  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3044  * @virt:       virtual address to be unmapped
3045  */
3046 void scsi_kunmap_atomic_sg(void *virt)
3047 {
3048         kunmap_atomic(virt);
3049 }
3050 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3051
3052 void sdev_disable_disk_events(struct scsi_device *sdev)
3053 {
3054         atomic_inc(&sdev->disk_events_disable_depth);
3055 }
3056 EXPORT_SYMBOL(sdev_disable_disk_events);
3057
3058 void sdev_enable_disk_events(struct scsi_device *sdev)
3059 {
3060         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3061                 return;
3062         atomic_dec(&sdev->disk_events_disable_depth);
3063 }
3064 EXPORT_SYMBOL(sdev_enable_disk_events);
3065
3066 static unsigned char designator_prio(const unsigned char *d)
3067 {
3068         if (d[1] & 0x30)
3069                 /* not associated with LUN */
3070                 return 0;
3071
3072         if (d[3] == 0)
3073                 /* invalid length */
3074                 return 0;
3075
3076         /*
3077          * Order of preference for lun descriptor:
3078          * - SCSI name string
3079          * - NAA IEEE Registered Extended
3080          * - EUI-64 based 16-byte
3081          * - EUI-64 based 12-byte
3082          * - NAA IEEE Registered
3083          * - NAA IEEE Extended
3084          * - EUI-64 based 8-byte
3085          * - SCSI name string (truncated)
3086          * - T10 Vendor ID
3087          * as longer descriptors reduce the likelyhood
3088          * of identification clashes.
3089          */
3090
3091         switch (d[1] & 0xf) {
3092         case 8:
3093                 /* SCSI name string, variable-length UTF-8 */
3094                 return 9;
3095         case 3:
3096                 switch (d[4] >> 4) {
3097                 case 6:
3098                         /* NAA registered extended */
3099                         return 8;
3100                 case 5:
3101                         /* NAA registered */
3102                         return 5;
3103                 case 4:
3104                         /* NAA extended */
3105                         return 4;
3106                 case 3:
3107                         /* NAA locally assigned */
3108                         return 1;
3109                 default:
3110                         break;
3111                 }
3112                 break;
3113         case 2:
3114                 switch (d[3]) {
3115                 case 16:
3116                         /* EUI64-based, 16 byte */
3117                         return 7;
3118                 case 12:
3119                         /* EUI64-based, 12 byte */
3120                         return 6;
3121                 case 8:
3122                         /* EUI64-based, 8 byte */
3123                         return 3;
3124                 default:
3125                         break;
3126                 }
3127                 break;
3128         case 1:
3129                 /* T10 vendor ID */
3130                 return 1;
3131         default:
3132                 break;
3133         }
3134
3135         return 0;
3136 }
3137
3138 /**
3139  * scsi_vpd_lun_id - return a unique device identification
3140  * @sdev: SCSI device
3141  * @id:   buffer for the identification
3142  * @id_len:  length of the buffer
3143  *
3144  * Copies a unique device identification into @id based
3145  * on the information in the VPD page 0x83 of the device.
3146  * The string will be formatted as a SCSI name string.
3147  *
3148  * Returns the length of the identification or error on failure.
3149  * If the identifier is longer than the supplied buffer the actual
3150  * identifier length is returned and the buffer is not zero-padded.
3151  */
3152 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3153 {
3154         u8 cur_id_prio = 0;
3155         u8 cur_id_size = 0;
3156         const unsigned char *d, *cur_id_str;
3157         const struct scsi_vpd *vpd_pg83;
3158         int id_size = -EINVAL;
3159
3160         rcu_read_lock();
3161         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3162         if (!vpd_pg83) {
3163                 rcu_read_unlock();
3164                 return -ENXIO;
3165         }
3166
3167         /* The id string must be at least 20 bytes + terminating NULL byte */
3168         if (id_len < 21) {
3169                 rcu_read_unlock();
3170                 return -EINVAL;
3171         }
3172
3173         memset(id, 0, id_len);
3174         for (d = vpd_pg83->data + 4;
3175              d < vpd_pg83->data + vpd_pg83->len;
3176              d += d[3] + 4) {
3177                 u8 prio = designator_prio(d);
3178
3179                 if (prio == 0 || cur_id_prio > prio)
3180                         continue;
3181
3182                 switch (d[1] & 0xf) {
3183                 case 0x1:
3184                         /* T10 Vendor ID */
3185                         if (cur_id_size > d[3])
3186                                 break;
3187                         cur_id_prio = prio;
3188                         cur_id_size = d[3];
3189                         if (cur_id_size + 4 > id_len)
3190                                 cur_id_size = id_len - 4;
3191                         cur_id_str = d + 4;
3192                         id_size = snprintf(id, id_len, "t10.%*pE",
3193                                            cur_id_size, cur_id_str);
3194                         break;
3195                 case 0x2:
3196                         /* EUI-64 */
3197                         cur_id_prio = prio;
3198                         cur_id_size = d[3];
3199                         cur_id_str = d + 4;
3200                         switch (cur_id_size) {
3201                         case 8:
3202                                 id_size = snprintf(id, id_len,
3203                                                    "eui.%8phN",
3204                                                    cur_id_str);
3205                                 break;
3206                         case 12:
3207                                 id_size = snprintf(id, id_len,
3208                                                    "eui.%12phN",
3209                                                    cur_id_str);
3210                                 break;
3211                         case 16:
3212                                 id_size = snprintf(id, id_len,
3213                                                    "eui.%16phN",
3214                                                    cur_id_str);
3215                                 break;
3216                         default:
3217                                 break;
3218                         }
3219                         break;
3220                 case 0x3:
3221                         /* NAA */
3222                         cur_id_prio = prio;
3223                         cur_id_size = d[3];
3224                         cur_id_str = d + 4;
3225                         switch (cur_id_size) {
3226                         case 8:
3227                                 id_size = snprintf(id, id_len,
3228                                                    "naa.%8phN",
3229                                                    cur_id_str);
3230                                 break;
3231                         case 16:
3232                                 id_size = snprintf(id, id_len,
3233                                                    "naa.%16phN",
3234                                                    cur_id_str);
3235                                 break;
3236                         default:
3237                                 break;
3238                         }
3239                         break;
3240                 case 0x8:
3241                         /* SCSI name string */
3242                         if (cur_id_size > d[3])
3243                                 break;
3244                         /* Prefer others for truncated descriptor */
3245                         if (d[3] > id_len) {
3246                                 prio = 2;
3247                                 if (cur_id_prio > prio)
3248                                         break;
3249                         }
3250                         cur_id_prio = prio;
3251                         cur_id_size = id_size = d[3];
3252                         cur_id_str = d + 4;
3253                         if (cur_id_size >= id_len)
3254                                 cur_id_size = id_len - 1;
3255                         memcpy(id, cur_id_str, cur_id_size);
3256                         break;
3257                 default:
3258                         break;
3259                 }
3260         }
3261         rcu_read_unlock();
3262
3263         return id_size;
3264 }
3265 EXPORT_SYMBOL(scsi_vpd_lun_id);
3266
3267 /*
3268  * scsi_vpd_tpg_id - return a target port group identifier
3269  * @sdev: SCSI device
3270  *
3271  * Returns the Target Port Group identifier from the information
3272  * froom VPD page 0x83 of the device.
3273  *
3274  * Returns the identifier or error on failure.
3275  */
3276 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3277 {
3278         const unsigned char *d;
3279         const struct scsi_vpd *vpd_pg83;
3280         int group_id = -EAGAIN, rel_port = -1;
3281
3282         rcu_read_lock();
3283         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3284         if (!vpd_pg83) {
3285                 rcu_read_unlock();
3286                 return -ENXIO;
3287         }
3288
3289         d = vpd_pg83->data + 4;
3290         while (d < vpd_pg83->data + vpd_pg83->len) {
3291                 switch (d[1] & 0xf) {
3292                 case 0x4:
3293                         /* Relative target port */
3294                         rel_port = get_unaligned_be16(&d[6]);
3295                         break;
3296                 case 0x5:
3297                         /* Target port group */
3298                         group_id = get_unaligned_be16(&d[6]);
3299                         break;
3300                 default:
3301                         break;
3302                 }
3303                 d += d[3] + 4;
3304         }
3305         rcu_read_unlock();
3306
3307         if (group_id >= 0 && rel_id && rel_port != -1)
3308                 *rel_id = rel_port;
3309
3310         return group_id;
3311 }
3312 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3313
3314 /**
3315  * scsi_build_sense - build sense data for a command
3316  * @scmd:       scsi command for which the sense should be formatted
3317  * @desc:       Sense format (non-zero == descriptor format,
3318  *              0 == fixed format)
3319  * @key:        Sense key
3320  * @asc:        Additional sense code
3321  * @ascq:       Additional sense code qualifier
3322  *
3323  **/
3324 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3325 {
3326         scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3327         scmd->result = SAM_STAT_CHECK_CONDITION;
3328 }
3329 EXPORT_SYMBOL_GPL(scsi_build_sense);