Merge tag 'usb-6.5-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[platform/kernel/linux-rpi.git] / drivers / scsi / scsi_lib.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37
38 #include <trace/events/scsi.h>
39
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63         int ret = 0;
64
65         mutex_lock(&scsi_sense_cache_mutex);
66         if (!scsi_sense_cache) {
67                 scsi_sense_cache =
68                         kmem_cache_create_usercopy("scsi_sense_cache",
69                                 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70                                 0, SCSI_SENSE_BUFFERSIZE, NULL);
71                 if (!scsi_sense_cache)
72                         ret = -ENOMEM;
73         }
74         mutex_unlock(&scsi_sense_cache_mutex);
75         return ret;
76 }
77
78 static void
79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81         struct Scsi_Host *host = cmd->device->host;
82         struct scsi_device *device = cmd->device;
83         struct scsi_target *starget = scsi_target(device);
84
85         /*
86          * Set the appropriate busy bit for the device/host.
87          *
88          * If the host/device isn't busy, assume that something actually
89          * completed, and that we should be able to queue a command now.
90          *
91          * Note that the prior mid-layer assumption that any host could
92          * always queue at least one command is now broken.  The mid-layer
93          * will implement a user specifiable stall (see
94          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95          * if a command is requeued with no other commands outstanding
96          * either for the device or for the host.
97          */
98         switch (reason) {
99         case SCSI_MLQUEUE_HOST_BUSY:
100                 atomic_set(&host->host_blocked, host->max_host_blocked);
101                 break;
102         case SCSI_MLQUEUE_DEVICE_BUSY:
103         case SCSI_MLQUEUE_EH_RETRY:
104                 atomic_set(&device->device_blocked,
105                            device->max_device_blocked);
106                 break;
107         case SCSI_MLQUEUE_TARGET_BUSY:
108                 atomic_set(&starget->target_blocked,
109                            starget->max_target_blocked);
110                 break;
111         }
112 }
113
114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116         struct request *rq = scsi_cmd_to_rq(cmd);
117
118         if (rq->rq_flags & RQF_DONTPREP) {
119                 rq->rq_flags &= ~RQF_DONTPREP;
120                 scsi_mq_uninit_cmd(cmd);
121         } else {
122                 WARN_ON_ONCE(true);
123         }
124
125         blk_mq_requeue_request(rq, false);
126         if (!scsi_host_in_recovery(cmd->device->host))
127                 blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 }
129
130 /**
131  * __scsi_queue_insert - private queue insertion
132  * @cmd: The SCSI command being requeued
133  * @reason:  The reason for the requeue
134  * @unbusy: Whether the queue should be unbusied
135  *
136  * This is a private queue insertion.  The public interface
137  * scsi_queue_insert() always assumes the queue should be unbusied
138  * because it's always called before the completion.  This function is
139  * for a requeue after completion, which should only occur in this
140  * file.
141  */
142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
143 {
144         struct scsi_device *device = cmd->device;
145
146         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147                 "Inserting command %p into mlqueue\n", cmd));
148
149         scsi_set_blocked(cmd, reason);
150
151         /*
152          * Decrement the counters, since these commands are no longer
153          * active on the host/device.
154          */
155         if (unbusy)
156                 scsi_device_unbusy(device, cmd);
157
158         /*
159          * Requeue this command.  It will go before all other commands
160          * that are already in the queue. Schedule requeue work under
161          * lock such that the kblockd_schedule_work() call happens
162          * before blk_mq_destroy_queue() finishes.
163          */
164         cmd->result = 0;
165
166         blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
167                                !scsi_host_in_recovery(cmd->device->host));
168 }
169
170 /**
171  * scsi_queue_insert - Reinsert a command in the queue.
172  * @cmd:    command that we are adding to queue.
173  * @reason: why we are inserting command to queue.
174  *
175  * We do this for one of two cases. Either the host is busy and it cannot accept
176  * any more commands for the time being, or the device returned QUEUE_FULL and
177  * can accept no more commands.
178  *
179  * Context: This could be called either from an interrupt context or a normal
180  * process context.
181  */
182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183 {
184         __scsi_queue_insert(cmd, reason, true);
185 }
186
187 /**
188  * scsi_execute_cmd - insert request and wait for the result
189  * @sdev:       scsi_device
190  * @cmd:        scsi command
191  * @opf:        block layer request cmd_flags
192  * @buffer:     data buffer
193  * @bufflen:    len of buffer
194  * @timeout:    request timeout in HZ
195  * @retries:    number of times to retry request
196  * @args:       Optional args. See struct definition for field descriptions
197  *
198  * Returns the scsi_cmnd result field if a command was executed, or a negative
199  * Linux error code if we didn't get that far.
200  */
201 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
202                      blk_opf_t opf, void *buffer, unsigned int bufflen,
203                      int timeout, int retries,
204                      const struct scsi_exec_args *args)
205 {
206         static const struct scsi_exec_args default_args;
207         struct request *req;
208         struct scsi_cmnd *scmd;
209         int ret;
210
211         if (!args)
212                 args = &default_args;
213         else if (WARN_ON_ONCE(args->sense &&
214                               args->sense_len != SCSI_SENSE_BUFFERSIZE))
215                 return -EINVAL;
216
217         req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
218         if (IS_ERR(req))
219                 return PTR_ERR(req);
220
221         if (bufflen) {
222                 ret = blk_rq_map_kern(sdev->request_queue, req,
223                                       buffer, bufflen, GFP_NOIO);
224                 if (ret)
225                         goto out;
226         }
227         scmd = blk_mq_rq_to_pdu(req);
228         scmd->cmd_len = COMMAND_SIZE(cmd[0]);
229         memcpy(scmd->cmnd, cmd, scmd->cmd_len);
230         scmd->allowed = retries;
231         scmd->flags |= args->scmd_flags;
232         req->timeout = timeout;
233         req->rq_flags |= RQF_QUIET;
234
235         /*
236          * head injection *required* here otherwise quiesce won't work
237          */
238         blk_execute_rq(req, true);
239
240         /*
241          * Some devices (USB mass-storage in particular) may transfer
242          * garbage data together with a residue indicating that the data
243          * is invalid.  Prevent the garbage from being misinterpreted
244          * and prevent security leaks by zeroing out the excess data.
245          */
246         if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
247                 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
248
249         if (args->resid)
250                 *args->resid = scmd->resid_len;
251         if (args->sense)
252                 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
253         if (args->sshdr)
254                 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
255                                      args->sshdr);
256
257         ret = scmd->result;
258  out:
259         blk_mq_free_request(req);
260
261         return ret;
262 }
263 EXPORT_SYMBOL(scsi_execute_cmd);
264
265 /*
266  * Wake up the error handler if necessary. Avoid as follows that the error
267  * handler is not woken up if host in-flight requests number ==
268  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
269  * with an RCU read lock in this function to ensure that this function in
270  * its entirety either finishes before scsi_eh_scmd_add() increases the
271  * host_failed counter or that it notices the shost state change made by
272  * scsi_eh_scmd_add().
273  */
274 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
275 {
276         unsigned long flags;
277
278         rcu_read_lock();
279         __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
280         if (unlikely(scsi_host_in_recovery(shost))) {
281                 spin_lock_irqsave(shost->host_lock, flags);
282                 if (shost->host_failed || shost->host_eh_scheduled)
283                         scsi_eh_wakeup(shost);
284                 spin_unlock_irqrestore(shost->host_lock, flags);
285         }
286         rcu_read_unlock();
287 }
288
289 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
290 {
291         struct Scsi_Host *shost = sdev->host;
292         struct scsi_target *starget = scsi_target(sdev);
293
294         scsi_dec_host_busy(shost, cmd);
295
296         if (starget->can_queue > 0)
297                 atomic_dec(&starget->target_busy);
298
299         sbitmap_put(&sdev->budget_map, cmd->budget_token);
300         cmd->budget_token = -1;
301 }
302
303 static void scsi_kick_queue(struct request_queue *q)
304 {
305         blk_mq_run_hw_queues(q, false);
306 }
307
308 /*
309  * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
310  * interrupts disabled.
311  */
312 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
313 {
314         struct scsi_device *current_sdev = data;
315
316         if (sdev != current_sdev)
317                 blk_mq_run_hw_queues(sdev->request_queue, true);
318 }
319
320 /*
321  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
322  * and call blk_run_queue for all the scsi_devices on the target -
323  * including current_sdev first.
324  *
325  * Called with *no* scsi locks held.
326  */
327 static void scsi_single_lun_run(struct scsi_device *current_sdev)
328 {
329         struct Scsi_Host *shost = current_sdev->host;
330         struct scsi_target *starget = scsi_target(current_sdev);
331         unsigned long flags;
332
333         spin_lock_irqsave(shost->host_lock, flags);
334         starget->starget_sdev_user = NULL;
335         spin_unlock_irqrestore(shost->host_lock, flags);
336
337         /*
338          * Call blk_run_queue for all LUNs on the target, starting with
339          * current_sdev. We race with others (to set starget_sdev_user),
340          * but in most cases, we will be first. Ideally, each LU on the
341          * target would get some limited time or requests on the target.
342          */
343         scsi_kick_queue(current_sdev->request_queue);
344
345         spin_lock_irqsave(shost->host_lock, flags);
346         if (!starget->starget_sdev_user)
347                 __starget_for_each_device(starget, current_sdev,
348                                           scsi_kick_sdev_queue);
349         spin_unlock_irqrestore(shost->host_lock, flags);
350 }
351
352 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
353 {
354         if (scsi_device_busy(sdev) >= sdev->queue_depth)
355                 return true;
356         if (atomic_read(&sdev->device_blocked) > 0)
357                 return true;
358         return false;
359 }
360
361 static inline bool scsi_target_is_busy(struct scsi_target *starget)
362 {
363         if (starget->can_queue > 0) {
364                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
365                         return true;
366                 if (atomic_read(&starget->target_blocked) > 0)
367                         return true;
368         }
369         return false;
370 }
371
372 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
373 {
374         if (atomic_read(&shost->host_blocked) > 0)
375                 return true;
376         if (shost->host_self_blocked)
377                 return true;
378         return false;
379 }
380
381 static void scsi_starved_list_run(struct Scsi_Host *shost)
382 {
383         LIST_HEAD(starved_list);
384         struct scsi_device *sdev;
385         unsigned long flags;
386
387         spin_lock_irqsave(shost->host_lock, flags);
388         list_splice_init(&shost->starved_list, &starved_list);
389
390         while (!list_empty(&starved_list)) {
391                 struct request_queue *slq;
392
393                 /*
394                  * As long as shost is accepting commands and we have
395                  * starved queues, call blk_run_queue. scsi_request_fn
396                  * drops the queue_lock and can add us back to the
397                  * starved_list.
398                  *
399                  * host_lock protects the starved_list and starved_entry.
400                  * scsi_request_fn must get the host_lock before checking
401                  * or modifying starved_list or starved_entry.
402                  */
403                 if (scsi_host_is_busy(shost))
404                         break;
405
406                 sdev = list_entry(starved_list.next,
407                                   struct scsi_device, starved_entry);
408                 list_del_init(&sdev->starved_entry);
409                 if (scsi_target_is_busy(scsi_target(sdev))) {
410                         list_move_tail(&sdev->starved_entry,
411                                        &shost->starved_list);
412                         continue;
413                 }
414
415                 /*
416                  * Once we drop the host lock, a racing scsi_remove_device()
417                  * call may remove the sdev from the starved list and destroy
418                  * it and the queue.  Mitigate by taking a reference to the
419                  * queue and never touching the sdev again after we drop the
420                  * host lock.  Note: if __scsi_remove_device() invokes
421                  * blk_mq_destroy_queue() before the queue is run from this
422                  * function then blk_run_queue() will return immediately since
423                  * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
424                  */
425                 slq = sdev->request_queue;
426                 if (!blk_get_queue(slq))
427                         continue;
428                 spin_unlock_irqrestore(shost->host_lock, flags);
429
430                 scsi_kick_queue(slq);
431                 blk_put_queue(slq);
432
433                 spin_lock_irqsave(shost->host_lock, flags);
434         }
435         /* put any unprocessed entries back */
436         list_splice(&starved_list, &shost->starved_list);
437         spin_unlock_irqrestore(shost->host_lock, flags);
438 }
439
440 /**
441  * scsi_run_queue - Select a proper request queue to serve next.
442  * @q:  last request's queue
443  *
444  * The previous command was completely finished, start a new one if possible.
445  */
446 static void scsi_run_queue(struct request_queue *q)
447 {
448         struct scsi_device *sdev = q->queuedata;
449
450         if (scsi_target(sdev)->single_lun)
451                 scsi_single_lun_run(sdev);
452         if (!list_empty(&sdev->host->starved_list))
453                 scsi_starved_list_run(sdev->host);
454
455         blk_mq_kick_requeue_list(q);
456         blk_mq_run_hw_queues(q, false);
457 }
458
459 void scsi_requeue_run_queue(struct work_struct *work)
460 {
461         struct scsi_device *sdev;
462         struct request_queue *q;
463
464         sdev = container_of(work, struct scsi_device, requeue_work);
465         q = sdev->request_queue;
466         scsi_run_queue(q);
467 }
468
469 void scsi_run_host_queues(struct Scsi_Host *shost)
470 {
471         struct scsi_device *sdev;
472
473         shost_for_each_device(sdev, shost)
474                 scsi_run_queue(sdev->request_queue);
475 }
476
477 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
478 {
479         if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
480                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
481
482                 if (drv->uninit_command)
483                         drv->uninit_command(cmd);
484         }
485 }
486
487 void scsi_free_sgtables(struct scsi_cmnd *cmd)
488 {
489         if (cmd->sdb.table.nents)
490                 sg_free_table_chained(&cmd->sdb.table,
491                                 SCSI_INLINE_SG_CNT);
492         if (scsi_prot_sg_count(cmd))
493                 sg_free_table_chained(&cmd->prot_sdb->table,
494                                 SCSI_INLINE_PROT_SG_CNT);
495 }
496 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
497
498 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
499 {
500         scsi_free_sgtables(cmd);
501         scsi_uninit_cmd(cmd);
502 }
503
504 static void scsi_run_queue_async(struct scsi_device *sdev)
505 {
506         if (scsi_host_in_recovery(sdev->host))
507                 return;
508
509         if (scsi_target(sdev)->single_lun ||
510             !list_empty(&sdev->host->starved_list)) {
511                 kblockd_schedule_work(&sdev->requeue_work);
512         } else {
513                 /*
514                  * smp_mb() present in sbitmap_queue_clear() or implied in
515                  * .end_io is for ordering writing .device_busy in
516                  * scsi_device_unbusy() and reading sdev->restarts.
517                  */
518                 int old = atomic_read(&sdev->restarts);
519
520                 /*
521                  * ->restarts has to be kept as non-zero if new budget
522                  *  contention occurs.
523                  *
524                  *  No need to run queue when either another re-run
525                  *  queue wins in updating ->restarts or a new budget
526                  *  contention occurs.
527                  */
528                 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
529                         blk_mq_run_hw_queues(sdev->request_queue, true);
530         }
531 }
532
533 /* Returns false when no more bytes to process, true if there are more */
534 static bool scsi_end_request(struct request *req, blk_status_t error,
535                 unsigned int bytes)
536 {
537         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
538         struct scsi_device *sdev = cmd->device;
539         struct request_queue *q = sdev->request_queue;
540
541         if (blk_update_request(req, error, bytes))
542                 return true;
543
544         // XXX:
545         if (blk_queue_add_random(q))
546                 add_disk_randomness(req->q->disk);
547
548         if (!blk_rq_is_passthrough(req)) {
549                 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
550                 cmd->flags &= ~SCMD_INITIALIZED;
551         }
552
553         /*
554          * Calling rcu_barrier() is not necessary here because the
555          * SCSI error handler guarantees that the function called by
556          * call_rcu() has been called before scsi_end_request() is
557          * called.
558          */
559         destroy_rcu_head(&cmd->rcu);
560
561         /*
562          * In the MQ case the command gets freed by __blk_mq_end_request,
563          * so we have to do all cleanup that depends on it earlier.
564          *
565          * We also can't kick the queues from irq context, so we
566          * will have to defer it to a workqueue.
567          */
568         scsi_mq_uninit_cmd(cmd);
569
570         /*
571          * queue is still alive, so grab the ref for preventing it
572          * from being cleaned up during running queue.
573          */
574         percpu_ref_get(&q->q_usage_counter);
575
576         __blk_mq_end_request(req, error);
577
578         scsi_run_queue_async(sdev);
579
580         percpu_ref_put(&q->q_usage_counter);
581         return false;
582 }
583
584 /**
585  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
586  * @result:     scsi error code
587  *
588  * Translate a SCSI result code into a blk_status_t value.
589  */
590 static blk_status_t scsi_result_to_blk_status(int result)
591 {
592         /*
593          * Check the scsi-ml byte first in case we converted a host or status
594          * byte.
595          */
596         switch (scsi_ml_byte(result)) {
597         case SCSIML_STAT_OK:
598                 break;
599         case SCSIML_STAT_RESV_CONFLICT:
600                 return BLK_STS_RESV_CONFLICT;
601         case SCSIML_STAT_NOSPC:
602                 return BLK_STS_NOSPC;
603         case SCSIML_STAT_MED_ERROR:
604                 return BLK_STS_MEDIUM;
605         case SCSIML_STAT_TGT_FAILURE:
606                 return BLK_STS_TARGET;
607         case SCSIML_STAT_DL_TIMEOUT:
608                 return BLK_STS_DURATION_LIMIT;
609         }
610
611         switch (host_byte(result)) {
612         case DID_OK:
613                 if (scsi_status_is_good(result))
614                         return BLK_STS_OK;
615                 return BLK_STS_IOERR;
616         case DID_TRANSPORT_FAILFAST:
617         case DID_TRANSPORT_MARGINAL:
618                 return BLK_STS_TRANSPORT;
619         default:
620                 return BLK_STS_IOERR;
621         }
622 }
623
624 /**
625  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
626  * @rq: request to examine
627  *
628  * Description:
629  *     A request could be merge of IOs which require different failure
630  *     handling.  This function determines the number of bytes which
631  *     can be failed from the beginning of the request without
632  *     crossing into area which need to be retried further.
633  *
634  * Return:
635  *     The number of bytes to fail.
636  */
637 static unsigned int scsi_rq_err_bytes(const struct request *rq)
638 {
639         blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
640         unsigned int bytes = 0;
641         struct bio *bio;
642
643         if (!(rq->rq_flags & RQF_MIXED_MERGE))
644                 return blk_rq_bytes(rq);
645
646         /*
647          * Currently the only 'mixing' which can happen is between
648          * different fastfail types.  We can safely fail portions
649          * which have all the failfast bits that the first one has -
650          * the ones which are at least as eager to fail as the first
651          * one.
652          */
653         for (bio = rq->bio; bio; bio = bio->bi_next) {
654                 if ((bio->bi_opf & ff) != ff)
655                         break;
656                 bytes += bio->bi_iter.bi_size;
657         }
658
659         /* this could lead to infinite loop */
660         BUG_ON(blk_rq_bytes(rq) && !bytes);
661         return bytes;
662 }
663
664 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
665 {
666         struct request *req = scsi_cmd_to_rq(cmd);
667         unsigned long wait_for;
668
669         if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
670                 return false;
671
672         wait_for = (cmd->allowed + 1) * req->timeout;
673         if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
674                 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
675                             wait_for/HZ);
676                 return true;
677         }
678         return false;
679 }
680
681 /*
682  * When ALUA transition state is returned, reprep the cmd to
683  * use the ALUA handler's transition timeout. Delay the reprep
684  * 1 sec to avoid aggressive retries of the target in that
685  * state.
686  */
687 #define ALUA_TRANSITION_REPREP_DELAY    1000
688
689 /* Helper for scsi_io_completion() when special action required. */
690 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
691 {
692         struct request *req = scsi_cmd_to_rq(cmd);
693         int level = 0;
694         enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
695               ACTION_RETRY, ACTION_DELAYED_RETRY} action;
696         struct scsi_sense_hdr sshdr;
697         bool sense_valid;
698         bool sense_current = true;      /* false implies "deferred sense" */
699         blk_status_t blk_stat;
700
701         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
702         if (sense_valid)
703                 sense_current = !scsi_sense_is_deferred(&sshdr);
704
705         blk_stat = scsi_result_to_blk_status(result);
706
707         if (host_byte(result) == DID_RESET) {
708                 /* Third party bus reset or reset for error recovery
709                  * reasons.  Just retry the command and see what
710                  * happens.
711                  */
712                 action = ACTION_RETRY;
713         } else if (sense_valid && sense_current) {
714                 switch (sshdr.sense_key) {
715                 case UNIT_ATTENTION:
716                         if (cmd->device->removable) {
717                                 /* Detected disc change.  Set a bit
718                                  * and quietly refuse further access.
719                                  */
720                                 cmd->device->changed = 1;
721                                 action = ACTION_FAIL;
722                         } else {
723                                 /* Must have been a power glitch, or a
724                                  * bus reset.  Could not have been a
725                                  * media change, so we just retry the
726                                  * command and see what happens.
727                                  */
728                                 action = ACTION_RETRY;
729                         }
730                         break;
731                 case ILLEGAL_REQUEST:
732                         /* If we had an ILLEGAL REQUEST returned, then
733                          * we may have performed an unsupported
734                          * command.  The only thing this should be
735                          * would be a ten byte read where only a six
736                          * byte read was supported.  Also, on a system
737                          * where READ CAPACITY failed, we may have
738                          * read past the end of the disk.
739                          */
740                         if ((cmd->device->use_10_for_rw &&
741                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
742                             (cmd->cmnd[0] == READ_10 ||
743                              cmd->cmnd[0] == WRITE_10)) {
744                                 /* This will issue a new 6-byte command. */
745                                 cmd->device->use_10_for_rw = 0;
746                                 action = ACTION_REPREP;
747                         } else if (sshdr.asc == 0x10) /* DIX */ {
748                                 action = ACTION_FAIL;
749                                 blk_stat = BLK_STS_PROTECTION;
750                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
751                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
752                                 action = ACTION_FAIL;
753                                 blk_stat = BLK_STS_TARGET;
754                         } else
755                                 action = ACTION_FAIL;
756                         break;
757                 case ABORTED_COMMAND:
758                         action = ACTION_FAIL;
759                         if (sshdr.asc == 0x10) /* DIF */
760                                 blk_stat = BLK_STS_PROTECTION;
761                         break;
762                 case NOT_READY:
763                         /* If the device is in the process of becoming
764                          * ready, or has a temporary blockage, retry.
765                          */
766                         if (sshdr.asc == 0x04) {
767                                 switch (sshdr.ascq) {
768                                 case 0x01: /* becoming ready */
769                                 case 0x04: /* format in progress */
770                                 case 0x05: /* rebuild in progress */
771                                 case 0x06: /* recalculation in progress */
772                                 case 0x07: /* operation in progress */
773                                 case 0x08: /* Long write in progress */
774                                 case 0x09: /* self test in progress */
775                                 case 0x11: /* notify (enable spinup) required */
776                                 case 0x14: /* space allocation in progress */
777                                 case 0x1a: /* start stop unit in progress */
778                                 case 0x1b: /* sanitize in progress */
779                                 case 0x1d: /* configuration in progress */
780                                 case 0x24: /* depopulation in progress */
781                                         action = ACTION_DELAYED_RETRY;
782                                         break;
783                                 case 0x0a: /* ALUA state transition */
784                                         action = ACTION_DELAYED_REPREP;
785                                         break;
786                                 default:
787                                         action = ACTION_FAIL;
788                                         break;
789                                 }
790                         } else
791                                 action = ACTION_FAIL;
792                         break;
793                 case VOLUME_OVERFLOW:
794                         /* See SSC3rXX or current. */
795                         action = ACTION_FAIL;
796                         break;
797                 case DATA_PROTECT:
798                         action = ACTION_FAIL;
799                         if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
800                             (sshdr.asc == 0x55 &&
801                              (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
802                                 /* Insufficient zone resources */
803                                 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
804                         }
805                         break;
806                 case COMPLETED:
807                         fallthrough;
808                 default:
809                         action = ACTION_FAIL;
810                         break;
811                 }
812         } else
813                 action = ACTION_FAIL;
814
815         if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
816                 action = ACTION_FAIL;
817
818         switch (action) {
819         case ACTION_FAIL:
820                 /* Give up and fail the remainder of the request */
821                 if (!(req->rq_flags & RQF_QUIET)) {
822                         static DEFINE_RATELIMIT_STATE(_rs,
823                                         DEFAULT_RATELIMIT_INTERVAL,
824                                         DEFAULT_RATELIMIT_BURST);
825
826                         if (unlikely(scsi_logging_level))
827                                 level =
828                                      SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
829                                                     SCSI_LOG_MLCOMPLETE_BITS);
830
831                         /*
832                          * if logging is enabled the failure will be printed
833                          * in scsi_log_completion(), so avoid duplicate messages
834                          */
835                         if (!level && __ratelimit(&_rs)) {
836                                 scsi_print_result(cmd, NULL, FAILED);
837                                 if (sense_valid)
838                                         scsi_print_sense(cmd);
839                                 scsi_print_command(cmd);
840                         }
841                 }
842                 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
843                         return;
844                 fallthrough;
845         case ACTION_REPREP:
846                 scsi_mq_requeue_cmd(cmd, 0);
847                 break;
848         case ACTION_DELAYED_REPREP:
849                 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
850                 break;
851         case ACTION_RETRY:
852                 /* Retry the same command immediately */
853                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
854                 break;
855         case ACTION_DELAYED_RETRY:
856                 /* Retry the same command after a delay */
857                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
858                 break;
859         }
860 }
861
862 /*
863  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
864  * new result that may suppress further error checking. Also modifies
865  * *blk_statp in some cases.
866  */
867 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
868                                         blk_status_t *blk_statp)
869 {
870         bool sense_valid;
871         bool sense_current = true;      /* false implies "deferred sense" */
872         struct request *req = scsi_cmd_to_rq(cmd);
873         struct scsi_sense_hdr sshdr;
874
875         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
876         if (sense_valid)
877                 sense_current = !scsi_sense_is_deferred(&sshdr);
878
879         if (blk_rq_is_passthrough(req)) {
880                 if (sense_valid) {
881                         /*
882                          * SG_IO wants current and deferred errors
883                          */
884                         cmd->sense_len = min(8 + cmd->sense_buffer[7],
885                                              SCSI_SENSE_BUFFERSIZE);
886                 }
887                 if (sense_current)
888                         *blk_statp = scsi_result_to_blk_status(result);
889         } else if (blk_rq_bytes(req) == 0 && sense_current) {
890                 /*
891                  * Flush commands do not transfers any data, and thus cannot use
892                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
893                  * This sets *blk_statp explicitly for the problem case.
894                  */
895                 *blk_statp = scsi_result_to_blk_status(result);
896         }
897         /*
898          * Recovered errors need reporting, but they're always treated as
899          * success, so fiddle the result code here.  For passthrough requests
900          * we already took a copy of the original into sreq->result which
901          * is what gets returned to the user
902          */
903         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
904                 bool do_print = true;
905                 /*
906                  * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
907                  * skip print since caller wants ATA registers. Only occurs
908                  * on SCSI ATA PASS_THROUGH commands when CK_COND=1
909                  */
910                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
911                         do_print = false;
912                 else if (req->rq_flags & RQF_QUIET)
913                         do_print = false;
914                 if (do_print)
915                         scsi_print_sense(cmd);
916                 result = 0;
917                 /* for passthrough, *blk_statp may be set */
918                 *blk_statp = BLK_STS_OK;
919         }
920         /*
921          * Another corner case: the SCSI status byte is non-zero but 'good'.
922          * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
923          * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
924          * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
925          * intermediate statuses (both obsolete in SAM-4) as good.
926          */
927         if ((result & 0xff) && scsi_status_is_good(result)) {
928                 result = 0;
929                 *blk_statp = BLK_STS_OK;
930         }
931         return result;
932 }
933
934 /**
935  * scsi_io_completion - Completion processing for SCSI commands.
936  * @cmd:        command that is finished.
937  * @good_bytes: number of processed bytes.
938  *
939  * We will finish off the specified number of sectors. If we are done, the
940  * command block will be released and the queue function will be goosed. If we
941  * are not done then we have to figure out what to do next:
942  *
943  *   a) We can call scsi_mq_requeue_cmd().  The request will be
944  *      unprepared and put back on the queue.  Then a new command will
945  *      be created for it.  This should be used if we made forward
946  *      progress, or if we want to switch from READ(10) to READ(6) for
947  *      example.
948  *
949  *   b) We can call scsi_io_completion_action().  The request will be
950  *      put back on the queue and retried using the same command as
951  *      before, possibly after a delay.
952  *
953  *   c) We can call scsi_end_request() with blk_stat other than
954  *      BLK_STS_OK, to fail the remainder of the request.
955  */
956 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
957 {
958         int result = cmd->result;
959         struct request *req = scsi_cmd_to_rq(cmd);
960         blk_status_t blk_stat = BLK_STS_OK;
961
962         if (unlikely(result))   /* a nz result may or may not be an error */
963                 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
964
965         /*
966          * Next deal with any sectors which we were able to correctly
967          * handle.
968          */
969         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
970                 "%u sectors total, %d bytes done.\n",
971                 blk_rq_sectors(req), good_bytes));
972
973         /*
974          * Failed, zero length commands always need to drop down
975          * to retry code. Fast path should return in this block.
976          */
977         if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
978                 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
979                         return; /* no bytes remaining */
980         }
981
982         /* Kill remainder if no retries. */
983         if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
984                 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
985                         WARN_ONCE(true,
986                             "Bytes remaining after failed, no-retry command");
987                 return;
988         }
989
990         /*
991          * If there had been no error, but we have leftover bytes in the
992          * request just queue the command up again.
993          */
994         if (likely(result == 0))
995                 scsi_mq_requeue_cmd(cmd, 0);
996         else
997                 scsi_io_completion_action(cmd, result);
998 }
999
1000 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1001                 struct request *rq)
1002 {
1003         return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1004                !op_is_write(req_op(rq)) &&
1005                sdev->host->hostt->dma_need_drain(rq);
1006 }
1007
1008 /**
1009  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1010  * @cmd: SCSI command data structure to initialize.
1011  *
1012  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1013  * for @cmd.
1014  *
1015  * Returns:
1016  * * BLK_STS_OK       - on success
1017  * * BLK_STS_RESOURCE - if the failure is retryable
1018  * * BLK_STS_IOERR    - if the failure is fatal
1019  */
1020 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1021 {
1022         struct scsi_device *sdev = cmd->device;
1023         struct request *rq = scsi_cmd_to_rq(cmd);
1024         unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1025         struct scatterlist *last_sg = NULL;
1026         blk_status_t ret;
1027         bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1028         int count;
1029
1030         if (WARN_ON_ONCE(!nr_segs))
1031                 return BLK_STS_IOERR;
1032
1033         /*
1034          * Make sure there is space for the drain.  The driver must adjust
1035          * max_hw_segments to be prepared for this.
1036          */
1037         if (need_drain)
1038                 nr_segs++;
1039
1040         /*
1041          * If sg table allocation fails, requeue request later.
1042          */
1043         if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1044                         cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1045                 return BLK_STS_RESOURCE;
1046
1047         /*
1048          * Next, walk the list, and fill in the addresses and sizes of
1049          * each segment.
1050          */
1051         count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1052
1053         if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1054                 unsigned int pad_len =
1055                         (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1056
1057                 last_sg->length += pad_len;
1058                 cmd->extra_len += pad_len;
1059         }
1060
1061         if (need_drain) {
1062                 sg_unmark_end(last_sg);
1063                 last_sg = sg_next(last_sg);
1064                 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1065                 sg_mark_end(last_sg);
1066
1067                 cmd->extra_len += sdev->dma_drain_len;
1068                 count++;
1069         }
1070
1071         BUG_ON(count > cmd->sdb.table.nents);
1072         cmd->sdb.table.nents = count;
1073         cmd->sdb.length = blk_rq_payload_bytes(rq);
1074
1075         if (blk_integrity_rq(rq)) {
1076                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1077                 int ivecs;
1078
1079                 if (WARN_ON_ONCE(!prot_sdb)) {
1080                         /*
1081                          * This can happen if someone (e.g. multipath)
1082                          * queues a command to a device on an adapter
1083                          * that does not support DIX.
1084                          */
1085                         ret = BLK_STS_IOERR;
1086                         goto out_free_sgtables;
1087                 }
1088
1089                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1090
1091                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1092                                 prot_sdb->table.sgl,
1093                                 SCSI_INLINE_PROT_SG_CNT)) {
1094                         ret = BLK_STS_RESOURCE;
1095                         goto out_free_sgtables;
1096                 }
1097
1098                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1099                                                 prot_sdb->table.sgl);
1100                 BUG_ON(count > ivecs);
1101                 BUG_ON(count > queue_max_integrity_segments(rq->q));
1102
1103                 cmd->prot_sdb = prot_sdb;
1104                 cmd->prot_sdb->table.nents = count;
1105         }
1106
1107         return BLK_STS_OK;
1108 out_free_sgtables:
1109         scsi_free_sgtables(cmd);
1110         return ret;
1111 }
1112 EXPORT_SYMBOL(scsi_alloc_sgtables);
1113
1114 /**
1115  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1116  * @rq: Request associated with the SCSI command to be initialized.
1117  *
1118  * This function initializes the members of struct scsi_cmnd that must be
1119  * initialized before request processing starts and that won't be
1120  * reinitialized if a SCSI command is requeued.
1121  */
1122 static void scsi_initialize_rq(struct request *rq)
1123 {
1124         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1125
1126         memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1127         cmd->cmd_len = MAX_COMMAND_SIZE;
1128         cmd->sense_len = 0;
1129         init_rcu_head(&cmd->rcu);
1130         cmd->jiffies_at_alloc = jiffies;
1131         cmd->retries = 0;
1132 }
1133
1134 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1135                                    blk_mq_req_flags_t flags)
1136 {
1137         struct request *rq;
1138
1139         rq = blk_mq_alloc_request(q, opf, flags);
1140         if (!IS_ERR(rq))
1141                 scsi_initialize_rq(rq);
1142         return rq;
1143 }
1144 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1145
1146 /*
1147  * Only called when the request isn't completed by SCSI, and not freed by
1148  * SCSI
1149  */
1150 static void scsi_cleanup_rq(struct request *rq)
1151 {
1152         if (rq->rq_flags & RQF_DONTPREP) {
1153                 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1154                 rq->rq_flags &= ~RQF_DONTPREP;
1155         }
1156 }
1157
1158 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1159 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1160 {
1161         struct request *rq = scsi_cmd_to_rq(cmd);
1162
1163         if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1164                 cmd->flags |= SCMD_INITIALIZED;
1165                 scsi_initialize_rq(rq);
1166         }
1167
1168         cmd->device = dev;
1169         INIT_LIST_HEAD(&cmd->eh_entry);
1170         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1171 }
1172
1173 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1174                 struct request *req)
1175 {
1176         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1177
1178         /*
1179          * Passthrough requests may transfer data, in which case they must
1180          * a bio attached to them.  Or they might contain a SCSI command
1181          * that does not transfer data, in which case they may optionally
1182          * submit a request without an attached bio.
1183          */
1184         if (req->bio) {
1185                 blk_status_t ret = scsi_alloc_sgtables(cmd);
1186                 if (unlikely(ret != BLK_STS_OK))
1187                         return ret;
1188         } else {
1189                 BUG_ON(blk_rq_bytes(req));
1190
1191                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1192         }
1193
1194         cmd->transfersize = blk_rq_bytes(req);
1195         return BLK_STS_OK;
1196 }
1197
1198 static blk_status_t
1199 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1200 {
1201         switch (sdev->sdev_state) {
1202         case SDEV_CREATED:
1203                 return BLK_STS_OK;
1204         case SDEV_OFFLINE:
1205         case SDEV_TRANSPORT_OFFLINE:
1206                 /*
1207                  * If the device is offline we refuse to process any
1208                  * commands.  The device must be brought online
1209                  * before trying any recovery commands.
1210                  */
1211                 if (!sdev->offline_already) {
1212                         sdev->offline_already = true;
1213                         sdev_printk(KERN_ERR, sdev,
1214                                     "rejecting I/O to offline device\n");
1215                 }
1216                 return BLK_STS_IOERR;
1217         case SDEV_DEL:
1218                 /*
1219                  * If the device is fully deleted, we refuse to
1220                  * process any commands as well.
1221                  */
1222                 sdev_printk(KERN_ERR, sdev,
1223                             "rejecting I/O to dead device\n");
1224                 return BLK_STS_IOERR;
1225         case SDEV_BLOCK:
1226         case SDEV_CREATED_BLOCK:
1227                 return BLK_STS_RESOURCE;
1228         case SDEV_QUIESCE:
1229                 /*
1230                  * If the device is blocked we only accept power management
1231                  * commands.
1232                  */
1233                 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1234                         return BLK_STS_RESOURCE;
1235                 return BLK_STS_OK;
1236         default:
1237                 /*
1238                  * For any other not fully online state we only allow
1239                  * power management commands.
1240                  */
1241                 if (req && !(req->rq_flags & RQF_PM))
1242                         return BLK_STS_OFFLINE;
1243                 return BLK_STS_OK;
1244         }
1245 }
1246
1247 /*
1248  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1249  * and return the token else return -1.
1250  */
1251 static inline int scsi_dev_queue_ready(struct request_queue *q,
1252                                   struct scsi_device *sdev)
1253 {
1254         int token;
1255
1256         token = sbitmap_get(&sdev->budget_map);
1257         if (atomic_read(&sdev->device_blocked)) {
1258                 if (token < 0)
1259                         goto out;
1260
1261                 if (scsi_device_busy(sdev) > 1)
1262                         goto out_dec;
1263
1264                 /*
1265                  * unblock after device_blocked iterates to zero
1266                  */
1267                 if (atomic_dec_return(&sdev->device_blocked) > 0)
1268                         goto out_dec;
1269                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1270                                    "unblocking device at zero depth\n"));
1271         }
1272
1273         return token;
1274 out_dec:
1275         if (token >= 0)
1276                 sbitmap_put(&sdev->budget_map, token);
1277 out:
1278         return -1;
1279 }
1280
1281 /*
1282  * scsi_target_queue_ready: checks if there we can send commands to target
1283  * @sdev: scsi device on starget to check.
1284  */
1285 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1286                                            struct scsi_device *sdev)
1287 {
1288         struct scsi_target *starget = scsi_target(sdev);
1289         unsigned int busy;
1290
1291         if (starget->single_lun) {
1292                 spin_lock_irq(shost->host_lock);
1293                 if (starget->starget_sdev_user &&
1294                     starget->starget_sdev_user != sdev) {
1295                         spin_unlock_irq(shost->host_lock);
1296                         return 0;
1297                 }
1298                 starget->starget_sdev_user = sdev;
1299                 spin_unlock_irq(shost->host_lock);
1300         }
1301
1302         if (starget->can_queue <= 0)
1303                 return 1;
1304
1305         busy = atomic_inc_return(&starget->target_busy) - 1;
1306         if (atomic_read(&starget->target_blocked) > 0) {
1307                 if (busy)
1308                         goto starved;
1309
1310                 /*
1311                  * unblock after target_blocked iterates to zero
1312                  */
1313                 if (atomic_dec_return(&starget->target_blocked) > 0)
1314                         goto out_dec;
1315
1316                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1317                                  "unblocking target at zero depth\n"));
1318         }
1319
1320         if (busy >= starget->can_queue)
1321                 goto starved;
1322
1323         return 1;
1324
1325 starved:
1326         spin_lock_irq(shost->host_lock);
1327         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1328         spin_unlock_irq(shost->host_lock);
1329 out_dec:
1330         if (starget->can_queue > 0)
1331                 atomic_dec(&starget->target_busy);
1332         return 0;
1333 }
1334
1335 /*
1336  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1337  * return 0. We must end up running the queue again whenever 0 is
1338  * returned, else IO can hang.
1339  */
1340 static inline int scsi_host_queue_ready(struct request_queue *q,
1341                                    struct Scsi_Host *shost,
1342                                    struct scsi_device *sdev,
1343                                    struct scsi_cmnd *cmd)
1344 {
1345         if (atomic_read(&shost->host_blocked) > 0) {
1346                 if (scsi_host_busy(shost) > 0)
1347                         goto starved;
1348
1349                 /*
1350                  * unblock after host_blocked iterates to zero
1351                  */
1352                 if (atomic_dec_return(&shost->host_blocked) > 0)
1353                         goto out_dec;
1354
1355                 SCSI_LOG_MLQUEUE(3,
1356                         shost_printk(KERN_INFO, shost,
1357                                      "unblocking host at zero depth\n"));
1358         }
1359
1360         if (shost->host_self_blocked)
1361                 goto starved;
1362
1363         /* We're OK to process the command, so we can't be starved */
1364         if (!list_empty(&sdev->starved_entry)) {
1365                 spin_lock_irq(shost->host_lock);
1366                 if (!list_empty(&sdev->starved_entry))
1367                         list_del_init(&sdev->starved_entry);
1368                 spin_unlock_irq(shost->host_lock);
1369         }
1370
1371         __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1372
1373         return 1;
1374
1375 starved:
1376         spin_lock_irq(shost->host_lock);
1377         if (list_empty(&sdev->starved_entry))
1378                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1379         spin_unlock_irq(shost->host_lock);
1380 out_dec:
1381         scsi_dec_host_busy(shost, cmd);
1382         return 0;
1383 }
1384
1385 /*
1386  * Busy state exporting function for request stacking drivers.
1387  *
1388  * For efficiency, no lock is taken to check the busy state of
1389  * shost/starget/sdev, since the returned value is not guaranteed and
1390  * may be changed after request stacking drivers call the function,
1391  * regardless of taking lock or not.
1392  *
1393  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1394  * needs to return 'not busy'. Otherwise, request stacking drivers
1395  * may hold requests forever.
1396  */
1397 static bool scsi_mq_lld_busy(struct request_queue *q)
1398 {
1399         struct scsi_device *sdev = q->queuedata;
1400         struct Scsi_Host *shost;
1401
1402         if (blk_queue_dying(q))
1403                 return false;
1404
1405         shost = sdev->host;
1406
1407         /*
1408          * Ignore host/starget busy state.
1409          * Since block layer does not have a concept of fairness across
1410          * multiple queues, congestion of host/starget needs to be handled
1411          * in SCSI layer.
1412          */
1413         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1414                 return true;
1415
1416         return false;
1417 }
1418
1419 /*
1420  * Block layer request completion callback. May be called from interrupt
1421  * context.
1422  */
1423 static void scsi_complete(struct request *rq)
1424 {
1425         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1426         enum scsi_disposition disposition;
1427
1428         INIT_LIST_HEAD(&cmd->eh_entry);
1429
1430         atomic_inc(&cmd->device->iodone_cnt);
1431         if (cmd->result)
1432                 atomic_inc(&cmd->device->ioerr_cnt);
1433
1434         disposition = scsi_decide_disposition(cmd);
1435         if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1436                 disposition = SUCCESS;
1437
1438         scsi_log_completion(cmd, disposition);
1439
1440         switch (disposition) {
1441         case SUCCESS:
1442                 scsi_finish_command(cmd);
1443                 break;
1444         case NEEDS_RETRY:
1445                 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1446                 break;
1447         case ADD_TO_MLQUEUE:
1448                 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1449                 break;
1450         default:
1451                 scsi_eh_scmd_add(cmd);
1452                 break;
1453         }
1454 }
1455
1456 /**
1457  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1458  * @cmd: command block we are dispatching.
1459  *
1460  * Return: nonzero return request was rejected and device's queue needs to be
1461  * plugged.
1462  */
1463 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1464 {
1465         struct Scsi_Host *host = cmd->device->host;
1466         int rtn = 0;
1467
1468         atomic_inc(&cmd->device->iorequest_cnt);
1469
1470         /* check if the device is still usable */
1471         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1472                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1473                  * returns an immediate error upwards, and signals
1474                  * that the device is no longer present */
1475                 cmd->result = DID_NO_CONNECT << 16;
1476                 goto done;
1477         }
1478
1479         /* Check to see if the scsi lld made this device blocked. */
1480         if (unlikely(scsi_device_blocked(cmd->device))) {
1481                 /*
1482                  * in blocked state, the command is just put back on
1483                  * the device queue.  The suspend state has already
1484                  * blocked the queue so future requests should not
1485                  * occur until the device transitions out of the
1486                  * suspend state.
1487                  */
1488                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1489                         "queuecommand : device blocked\n"));
1490                 atomic_dec(&cmd->device->iorequest_cnt);
1491                 return SCSI_MLQUEUE_DEVICE_BUSY;
1492         }
1493
1494         /* Store the LUN value in cmnd, if needed. */
1495         if (cmd->device->lun_in_cdb)
1496                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1497                                (cmd->device->lun << 5 & 0xe0);
1498
1499         scsi_log_send(cmd);
1500
1501         /*
1502          * Before we queue this command, check if the command
1503          * length exceeds what the host adapter can handle.
1504          */
1505         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1506                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1507                                "queuecommand : command too long. "
1508                                "cdb_size=%d host->max_cmd_len=%d\n",
1509                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1510                 cmd->result = (DID_ABORT << 16);
1511                 goto done;
1512         }
1513
1514         if (unlikely(host->shost_state == SHOST_DEL)) {
1515                 cmd->result = (DID_NO_CONNECT << 16);
1516                 goto done;
1517
1518         }
1519
1520         trace_scsi_dispatch_cmd_start(cmd);
1521         rtn = host->hostt->queuecommand(host, cmd);
1522         if (rtn) {
1523                 atomic_dec(&cmd->device->iorequest_cnt);
1524                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1525                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1526                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1527                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1528
1529                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1530                         "queuecommand : request rejected\n"));
1531         }
1532
1533         return rtn;
1534  done:
1535         scsi_done(cmd);
1536         return 0;
1537 }
1538
1539 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1540 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1541 {
1542         return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1543                 sizeof(struct scatterlist);
1544 }
1545
1546 static blk_status_t scsi_prepare_cmd(struct request *req)
1547 {
1548         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1549         struct scsi_device *sdev = req->q->queuedata;
1550         struct Scsi_Host *shost = sdev->host;
1551         bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1552         struct scatterlist *sg;
1553
1554         scsi_init_command(sdev, cmd);
1555
1556         cmd->eh_eflags = 0;
1557         cmd->prot_type = 0;
1558         cmd->prot_flags = 0;
1559         cmd->submitter = 0;
1560         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1561         cmd->underflow = 0;
1562         cmd->transfersize = 0;
1563         cmd->host_scribble = NULL;
1564         cmd->result = 0;
1565         cmd->extra_len = 0;
1566         cmd->state = 0;
1567         if (in_flight)
1568                 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1569
1570         /*
1571          * Only clear the driver-private command data if the LLD does not supply
1572          * a function to initialize that data.
1573          */
1574         if (!shost->hostt->init_cmd_priv)
1575                 memset(cmd + 1, 0, shost->hostt->cmd_size);
1576
1577         cmd->prot_op = SCSI_PROT_NORMAL;
1578         if (blk_rq_bytes(req))
1579                 cmd->sc_data_direction = rq_dma_dir(req);
1580         else
1581                 cmd->sc_data_direction = DMA_NONE;
1582
1583         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1584         cmd->sdb.table.sgl = sg;
1585
1586         if (scsi_host_get_prot(shost)) {
1587                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1588
1589                 cmd->prot_sdb->table.sgl =
1590                         (struct scatterlist *)(cmd->prot_sdb + 1);
1591         }
1592
1593         /*
1594          * Special handling for passthrough commands, which don't go to the ULP
1595          * at all:
1596          */
1597         if (blk_rq_is_passthrough(req))
1598                 return scsi_setup_scsi_cmnd(sdev, req);
1599
1600         if (sdev->handler && sdev->handler->prep_fn) {
1601                 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1602
1603                 if (ret != BLK_STS_OK)
1604                         return ret;
1605         }
1606
1607         /* Usually overridden by the ULP */
1608         cmd->allowed = 0;
1609         memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1610         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1611 }
1612
1613 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1614 {
1615         struct request *req = scsi_cmd_to_rq(cmd);
1616
1617         switch (cmd->submitter) {
1618         case SUBMITTED_BY_BLOCK_LAYER:
1619                 break;
1620         case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1621                 return scsi_eh_done(cmd);
1622         case SUBMITTED_BY_SCSI_RESET_IOCTL:
1623                 return;
1624         }
1625
1626         if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1627                 return;
1628         if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1629                 return;
1630         trace_scsi_dispatch_cmd_done(cmd);
1631
1632         if (complete_directly)
1633                 blk_mq_complete_request_direct(req, scsi_complete);
1634         else
1635                 blk_mq_complete_request(req);
1636 }
1637
1638 void scsi_done(struct scsi_cmnd *cmd)
1639 {
1640         scsi_done_internal(cmd, false);
1641 }
1642 EXPORT_SYMBOL(scsi_done);
1643
1644 void scsi_done_direct(struct scsi_cmnd *cmd)
1645 {
1646         scsi_done_internal(cmd, true);
1647 }
1648 EXPORT_SYMBOL(scsi_done_direct);
1649
1650 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1651 {
1652         struct scsi_device *sdev = q->queuedata;
1653
1654         sbitmap_put(&sdev->budget_map, budget_token);
1655 }
1656
1657 /*
1658  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1659  * not change behaviour from the previous unplug mechanism, experimentation
1660  * may prove this needs changing.
1661  */
1662 #define SCSI_QUEUE_DELAY 3
1663
1664 static int scsi_mq_get_budget(struct request_queue *q)
1665 {
1666         struct scsi_device *sdev = q->queuedata;
1667         int token = scsi_dev_queue_ready(q, sdev);
1668
1669         if (token >= 0)
1670                 return token;
1671
1672         atomic_inc(&sdev->restarts);
1673
1674         /*
1675          * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1676          * .restarts must be incremented before .device_busy is read because the
1677          * code in scsi_run_queue_async() depends on the order of these operations.
1678          */
1679         smp_mb__after_atomic();
1680
1681         /*
1682          * If all in-flight requests originated from this LUN are completed
1683          * before reading .device_busy, sdev->device_busy will be observed as
1684          * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1685          * soon. Otherwise, completion of one of these requests will observe
1686          * the .restarts flag, and the request queue will be run for handling
1687          * this request, see scsi_end_request().
1688          */
1689         if (unlikely(scsi_device_busy(sdev) == 0 &&
1690                                 !scsi_device_blocked(sdev)))
1691                 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1692         return -1;
1693 }
1694
1695 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1696 {
1697         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1698
1699         cmd->budget_token = token;
1700 }
1701
1702 static int scsi_mq_get_rq_budget_token(struct request *req)
1703 {
1704         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1705
1706         return cmd->budget_token;
1707 }
1708
1709 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1710                          const struct blk_mq_queue_data *bd)
1711 {
1712         struct request *req = bd->rq;
1713         struct request_queue *q = req->q;
1714         struct scsi_device *sdev = q->queuedata;
1715         struct Scsi_Host *shost = sdev->host;
1716         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1717         blk_status_t ret;
1718         int reason;
1719
1720         WARN_ON_ONCE(cmd->budget_token < 0);
1721
1722         /*
1723          * If the device is not in running state we will reject some or all
1724          * commands.
1725          */
1726         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1727                 ret = scsi_device_state_check(sdev, req);
1728                 if (ret != BLK_STS_OK)
1729                         goto out_put_budget;
1730         }
1731
1732         ret = BLK_STS_RESOURCE;
1733         if (!scsi_target_queue_ready(shost, sdev))
1734                 goto out_put_budget;
1735         if (unlikely(scsi_host_in_recovery(shost))) {
1736                 if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1737                         ret = BLK_STS_OFFLINE;
1738                 goto out_dec_target_busy;
1739         }
1740         if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1741                 goto out_dec_target_busy;
1742
1743         if (!(req->rq_flags & RQF_DONTPREP)) {
1744                 ret = scsi_prepare_cmd(req);
1745                 if (ret != BLK_STS_OK)
1746                         goto out_dec_host_busy;
1747                 req->rq_flags |= RQF_DONTPREP;
1748         } else {
1749                 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1750         }
1751
1752         cmd->flags &= SCMD_PRESERVED_FLAGS;
1753         if (sdev->simple_tags)
1754                 cmd->flags |= SCMD_TAGGED;
1755         if (bd->last)
1756                 cmd->flags |= SCMD_LAST;
1757
1758         scsi_set_resid(cmd, 0);
1759         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1760         cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1761
1762         blk_mq_start_request(req);
1763         reason = scsi_dispatch_cmd(cmd);
1764         if (reason) {
1765                 scsi_set_blocked(cmd, reason);
1766                 ret = BLK_STS_RESOURCE;
1767                 goto out_dec_host_busy;
1768         }
1769
1770         return BLK_STS_OK;
1771
1772 out_dec_host_busy:
1773         scsi_dec_host_busy(shost, cmd);
1774 out_dec_target_busy:
1775         if (scsi_target(sdev)->can_queue > 0)
1776                 atomic_dec(&scsi_target(sdev)->target_busy);
1777 out_put_budget:
1778         scsi_mq_put_budget(q, cmd->budget_token);
1779         cmd->budget_token = -1;
1780         switch (ret) {
1781         case BLK_STS_OK:
1782                 break;
1783         case BLK_STS_RESOURCE:
1784         case BLK_STS_ZONE_RESOURCE:
1785                 if (scsi_device_blocked(sdev))
1786                         ret = BLK_STS_DEV_RESOURCE;
1787                 break;
1788         case BLK_STS_AGAIN:
1789                 cmd->result = DID_BUS_BUSY << 16;
1790                 if (req->rq_flags & RQF_DONTPREP)
1791                         scsi_mq_uninit_cmd(cmd);
1792                 break;
1793         default:
1794                 if (unlikely(!scsi_device_online(sdev)))
1795                         cmd->result = DID_NO_CONNECT << 16;
1796                 else
1797                         cmd->result = DID_ERROR << 16;
1798                 /*
1799                  * Make sure to release all allocated resources when
1800                  * we hit an error, as we will never see this command
1801                  * again.
1802                  */
1803                 if (req->rq_flags & RQF_DONTPREP)
1804                         scsi_mq_uninit_cmd(cmd);
1805                 scsi_run_queue_async(sdev);
1806                 break;
1807         }
1808         return ret;
1809 }
1810
1811 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1812                                 unsigned int hctx_idx, unsigned int numa_node)
1813 {
1814         struct Scsi_Host *shost = set->driver_data;
1815         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1816         struct scatterlist *sg;
1817         int ret = 0;
1818
1819         cmd->sense_buffer =
1820                 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1821         if (!cmd->sense_buffer)
1822                 return -ENOMEM;
1823
1824         if (scsi_host_get_prot(shost)) {
1825                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1826                         shost->hostt->cmd_size;
1827                 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1828         }
1829
1830         if (shost->hostt->init_cmd_priv) {
1831                 ret = shost->hostt->init_cmd_priv(shost, cmd);
1832                 if (ret < 0)
1833                         kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1834         }
1835
1836         return ret;
1837 }
1838
1839 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1840                                  unsigned int hctx_idx)
1841 {
1842         struct Scsi_Host *shost = set->driver_data;
1843         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1844
1845         if (shost->hostt->exit_cmd_priv)
1846                 shost->hostt->exit_cmd_priv(shost, cmd);
1847         kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1848 }
1849
1850
1851 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1852 {
1853         struct Scsi_Host *shost = hctx->driver_data;
1854
1855         if (shost->hostt->mq_poll)
1856                 return shost->hostt->mq_poll(shost, hctx->queue_num);
1857
1858         return 0;
1859 }
1860
1861 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1862                           unsigned int hctx_idx)
1863 {
1864         struct Scsi_Host *shost = data;
1865
1866         hctx->driver_data = shost;
1867         return 0;
1868 }
1869
1870 static void scsi_map_queues(struct blk_mq_tag_set *set)
1871 {
1872         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1873
1874         if (shost->hostt->map_queues)
1875                 return shost->hostt->map_queues(shost);
1876         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1877 }
1878
1879 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1880 {
1881         struct device *dev = shost->dma_dev;
1882
1883         /*
1884          * this limit is imposed by hardware restrictions
1885          */
1886         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1887                                         SG_MAX_SEGMENTS));
1888
1889         if (scsi_host_prot_dma(shost)) {
1890                 shost->sg_prot_tablesize =
1891                         min_not_zero(shost->sg_prot_tablesize,
1892                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1893                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1894                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1895         }
1896
1897         blk_queue_max_hw_sectors(q, shost->max_sectors);
1898         blk_queue_segment_boundary(q, shost->dma_boundary);
1899         dma_set_seg_boundary(dev, shost->dma_boundary);
1900
1901         blk_queue_max_segment_size(q, shost->max_segment_size);
1902         blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1903         dma_set_max_seg_size(dev, queue_max_segment_size(q));
1904
1905         /*
1906          * Set a reasonable default alignment:  The larger of 32-byte (dword),
1907          * which is a common minimum for HBAs, and the minimum DMA alignment,
1908          * which is set by the platform.
1909          *
1910          * Devices that require a bigger alignment can increase it later.
1911          */
1912         blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1913 }
1914 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1915
1916 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1917         .get_budget     = scsi_mq_get_budget,
1918         .put_budget     = scsi_mq_put_budget,
1919         .queue_rq       = scsi_queue_rq,
1920         .complete       = scsi_complete,
1921         .timeout        = scsi_timeout,
1922 #ifdef CONFIG_BLK_DEBUG_FS
1923         .show_rq        = scsi_show_rq,
1924 #endif
1925         .init_request   = scsi_mq_init_request,
1926         .exit_request   = scsi_mq_exit_request,
1927         .cleanup_rq     = scsi_cleanup_rq,
1928         .busy           = scsi_mq_lld_busy,
1929         .map_queues     = scsi_map_queues,
1930         .init_hctx      = scsi_init_hctx,
1931         .poll           = scsi_mq_poll,
1932         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1933         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1934 };
1935
1936
1937 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1938 {
1939         struct Scsi_Host *shost = hctx->driver_data;
1940
1941         shost->hostt->commit_rqs(shost, hctx->queue_num);
1942 }
1943
1944 static const struct blk_mq_ops scsi_mq_ops = {
1945         .get_budget     = scsi_mq_get_budget,
1946         .put_budget     = scsi_mq_put_budget,
1947         .queue_rq       = scsi_queue_rq,
1948         .commit_rqs     = scsi_commit_rqs,
1949         .complete       = scsi_complete,
1950         .timeout        = scsi_timeout,
1951 #ifdef CONFIG_BLK_DEBUG_FS
1952         .show_rq        = scsi_show_rq,
1953 #endif
1954         .init_request   = scsi_mq_init_request,
1955         .exit_request   = scsi_mq_exit_request,
1956         .cleanup_rq     = scsi_cleanup_rq,
1957         .busy           = scsi_mq_lld_busy,
1958         .map_queues     = scsi_map_queues,
1959         .init_hctx      = scsi_init_hctx,
1960         .poll           = scsi_mq_poll,
1961         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1962         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1963 };
1964
1965 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1966 {
1967         unsigned int cmd_size, sgl_size;
1968         struct blk_mq_tag_set *tag_set = &shost->tag_set;
1969
1970         sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1971                                 scsi_mq_inline_sgl_size(shost));
1972         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1973         if (scsi_host_get_prot(shost))
1974                 cmd_size += sizeof(struct scsi_data_buffer) +
1975                         sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1976
1977         memset(tag_set, 0, sizeof(*tag_set));
1978         if (shost->hostt->commit_rqs)
1979                 tag_set->ops = &scsi_mq_ops;
1980         else
1981                 tag_set->ops = &scsi_mq_ops_no_commit;
1982         tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1983         tag_set->nr_maps = shost->nr_maps ? : 1;
1984         tag_set->queue_depth = shost->can_queue;
1985         tag_set->cmd_size = cmd_size;
1986         tag_set->numa_node = dev_to_node(shost->dma_dev);
1987         tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1988         tag_set->flags |=
1989                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1990         if (shost->queuecommand_may_block)
1991                 tag_set->flags |= BLK_MQ_F_BLOCKING;
1992         tag_set->driver_data = shost;
1993         if (shost->host_tagset)
1994                 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1995
1996         return blk_mq_alloc_tag_set(tag_set);
1997 }
1998
1999 void scsi_mq_free_tags(struct kref *kref)
2000 {
2001         struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2002                                                tagset_refcnt);
2003
2004         blk_mq_free_tag_set(&shost->tag_set);
2005         complete(&shost->tagset_freed);
2006 }
2007
2008 /**
2009  * scsi_device_from_queue - return sdev associated with a request_queue
2010  * @q: The request queue to return the sdev from
2011  *
2012  * Return the sdev associated with a request queue or NULL if the
2013  * request_queue does not reference a SCSI device.
2014  */
2015 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2016 {
2017         struct scsi_device *sdev = NULL;
2018
2019         if (q->mq_ops == &scsi_mq_ops_no_commit ||
2020             q->mq_ops == &scsi_mq_ops)
2021                 sdev = q->queuedata;
2022         if (!sdev || !get_device(&sdev->sdev_gendev))
2023                 sdev = NULL;
2024
2025         return sdev;
2026 }
2027 /*
2028  * pktcdvd should have been integrated into the SCSI layers, but for historical
2029  * reasons like the old IDE driver it isn't.  This export allows it to safely
2030  * probe if a given device is a SCSI one and only attach to that.
2031  */
2032 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2033 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2034 #endif
2035
2036 /**
2037  * scsi_block_requests - Utility function used by low-level drivers to prevent
2038  * further commands from being queued to the device.
2039  * @shost:  host in question
2040  *
2041  * There is no timer nor any other means by which the requests get unblocked
2042  * other than the low-level driver calling scsi_unblock_requests().
2043  */
2044 void scsi_block_requests(struct Scsi_Host *shost)
2045 {
2046         shost->host_self_blocked = 1;
2047 }
2048 EXPORT_SYMBOL(scsi_block_requests);
2049
2050 /**
2051  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2052  * further commands to be queued to the device.
2053  * @shost:  host in question
2054  *
2055  * There is no timer nor any other means by which the requests get unblocked
2056  * other than the low-level driver calling scsi_unblock_requests(). This is done
2057  * as an API function so that changes to the internals of the scsi mid-layer
2058  * won't require wholesale changes to drivers that use this feature.
2059  */
2060 void scsi_unblock_requests(struct Scsi_Host *shost)
2061 {
2062         shost->host_self_blocked = 0;
2063         scsi_run_host_queues(shost);
2064 }
2065 EXPORT_SYMBOL(scsi_unblock_requests);
2066
2067 void scsi_exit_queue(void)
2068 {
2069         kmem_cache_destroy(scsi_sense_cache);
2070 }
2071
2072 /**
2073  *      scsi_mode_select - issue a mode select
2074  *      @sdev:  SCSI device to be queried
2075  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2076  *      @sp:    Save page bit (0 == don't save, 1 == save)
2077  *      @buffer: request buffer (may not be smaller than eight bytes)
2078  *      @len:   length of request buffer.
2079  *      @timeout: command timeout
2080  *      @retries: number of retries before failing
2081  *      @data: returns a structure abstracting the mode header data
2082  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2083  *              must be SCSI_SENSE_BUFFERSIZE big.
2084  *
2085  *      Returns zero if successful; negative error number or scsi
2086  *      status on error
2087  *
2088  */
2089 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2090                      unsigned char *buffer, int len, int timeout, int retries,
2091                      struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2092 {
2093         unsigned char cmd[10];
2094         unsigned char *real_buffer;
2095         const struct scsi_exec_args exec_args = {
2096                 .sshdr = sshdr,
2097         };
2098         int ret;
2099
2100         memset(cmd, 0, sizeof(cmd));
2101         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2102
2103         /*
2104          * Use MODE SELECT(10) if the device asked for it or if the mode page
2105          * and the mode select header cannot fit within the maximumm 255 bytes
2106          * of the MODE SELECT(6) command.
2107          */
2108         if (sdev->use_10_for_ms ||
2109             len + 4 > 255 ||
2110             data->block_descriptor_length > 255) {
2111                 if (len > 65535 - 8)
2112                         return -EINVAL;
2113                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2114                 if (!real_buffer)
2115                         return -ENOMEM;
2116                 memcpy(real_buffer + 8, buffer, len);
2117                 len += 8;
2118                 real_buffer[0] = 0;
2119                 real_buffer[1] = 0;
2120                 real_buffer[2] = data->medium_type;
2121                 real_buffer[3] = data->device_specific;
2122                 real_buffer[4] = data->longlba ? 0x01 : 0;
2123                 real_buffer[5] = 0;
2124                 put_unaligned_be16(data->block_descriptor_length,
2125                                    &real_buffer[6]);
2126
2127                 cmd[0] = MODE_SELECT_10;
2128                 put_unaligned_be16(len, &cmd[7]);
2129         } else {
2130                 if (data->longlba)
2131                         return -EINVAL;
2132
2133                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2134                 if (!real_buffer)
2135                         return -ENOMEM;
2136                 memcpy(real_buffer + 4, buffer, len);
2137                 len += 4;
2138                 real_buffer[0] = 0;
2139                 real_buffer[1] = data->medium_type;
2140                 real_buffer[2] = data->device_specific;
2141                 real_buffer[3] = data->block_descriptor_length;
2142
2143                 cmd[0] = MODE_SELECT;
2144                 cmd[4] = len;
2145         }
2146
2147         ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2148                                timeout, retries, &exec_args);
2149         kfree(real_buffer);
2150         return ret;
2151 }
2152 EXPORT_SYMBOL_GPL(scsi_mode_select);
2153
2154 /**
2155  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2156  *      @sdev:  SCSI device to be queried
2157  *      @dbd:   set to prevent mode sense from returning block descriptors
2158  *      @modepage: mode page being requested
2159  *      @subpage: sub-page of the mode page being requested
2160  *      @buffer: request buffer (may not be smaller than eight bytes)
2161  *      @len:   length of request buffer.
2162  *      @timeout: command timeout
2163  *      @retries: number of retries before failing
2164  *      @data: returns a structure abstracting the mode header data
2165  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2166  *              must be SCSI_SENSE_BUFFERSIZE big.
2167  *
2168  *      Returns zero if successful, or a negative error number on failure
2169  */
2170 int
2171 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2172                   unsigned char *buffer, int len, int timeout, int retries,
2173                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2174 {
2175         unsigned char cmd[12];
2176         int use_10_for_ms;
2177         int header_length;
2178         int result, retry_count = retries;
2179         struct scsi_sense_hdr my_sshdr;
2180         const struct scsi_exec_args exec_args = {
2181                 /* caller might not be interested in sense, but we need it */
2182                 .sshdr = sshdr ? : &my_sshdr,
2183         };
2184
2185         memset(data, 0, sizeof(*data));
2186         memset(&cmd[0], 0, 12);
2187
2188         dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2189         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2190         cmd[2] = modepage;
2191         cmd[3] = subpage;
2192
2193         sshdr = exec_args.sshdr;
2194
2195  retry:
2196         use_10_for_ms = sdev->use_10_for_ms || len > 255;
2197
2198         if (use_10_for_ms) {
2199                 if (len < 8 || len > 65535)
2200                         return -EINVAL;
2201
2202                 cmd[0] = MODE_SENSE_10;
2203                 put_unaligned_be16(len, &cmd[7]);
2204                 header_length = 8;
2205         } else {
2206                 if (len < 4)
2207                         return -EINVAL;
2208
2209                 cmd[0] = MODE_SENSE;
2210                 cmd[4] = len;
2211                 header_length = 4;
2212         }
2213
2214         memset(buffer, 0, len);
2215
2216         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2217                                   timeout, retries, &exec_args);
2218         if (result < 0)
2219                 return result;
2220
2221         /* This code looks awful: what it's doing is making sure an
2222          * ILLEGAL REQUEST sense return identifies the actual command
2223          * byte as the problem.  MODE_SENSE commands can return
2224          * ILLEGAL REQUEST if the code page isn't supported */
2225
2226         if (!scsi_status_is_good(result)) {
2227                 if (scsi_sense_valid(sshdr)) {
2228                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2229                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2230                                 /*
2231                                  * Invalid command operation code: retry using
2232                                  * MODE SENSE(6) if this was a MODE SENSE(10)
2233                                  * request, except if the request mode page is
2234                                  * too large for MODE SENSE single byte
2235                                  * allocation length field.
2236                                  */
2237                                 if (use_10_for_ms) {
2238                                         if (len > 255)
2239                                                 return -EIO;
2240                                         sdev->use_10_for_ms = 0;
2241                                         goto retry;
2242                                 }
2243                         }
2244                         if (scsi_status_is_check_condition(result) &&
2245                             sshdr->sense_key == UNIT_ATTENTION &&
2246                             retry_count) {
2247                                 retry_count--;
2248                                 goto retry;
2249                         }
2250                 }
2251                 return -EIO;
2252         }
2253         if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2254                      (modepage == 6 || modepage == 8))) {
2255                 /* Initio breakage? */
2256                 header_length = 0;
2257                 data->length = 13;
2258                 data->medium_type = 0;
2259                 data->device_specific = 0;
2260                 data->longlba = 0;
2261                 data->block_descriptor_length = 0;
2262         } else if (use_10_for_ms) {
2263                 data->length = get_unaligned_be16(&buffer[0]) + 2;
2264                 data->medium_type = buffer[2];
2265                 data->device_specific = buffer[3];
2266                 data->longlba = buffer[4] & 0x01;
2267                 data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2268         } else {
2269                 data->length = buffer[0] + 1;
2270                 data->medium_type = buffer[1];
2271                 data->device_specific = buffer[2];
2272                 data->block_descriptor_length = buffer[3];
2273         }
2274         data->header_length = header_length;
2275
2276         return 0;
2277 }
2278 EXPORT_SYMBOL(scsi_mode_sense);
2279
2280 /**
2281  *      scsi_test_unit_ready - test if unit is ready
2282  *      @sdev:  scsi device to change the state of.
2283  *      @timeout: command timeout
2284  *      @retries: number of retries before failing
2285  *      @sshdr: outpout pointer for decoded sense information.
2286  *
2287  *      Returns zero if unsuccessful or an error if TUR failed.  For
2288  *      removable media, UNIT_ATTENTION sets ->changed flag.
2289  **/
2290 int
2291 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2292                      struct scsi_sense_hdr *sshdr)
2293 {
2294         char cmd[] = {
2295                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2296         };
2297         const struct scsi_exec_args exec_args = {
2298                 .sshdr = sshdr,
2299         };
2300         int result;
2301
2302         /* try to eat the UNIT_ATTENTION if there are enough retries */
2303         do {
2304                 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2305                                           timeout, 1, &exec_args);
2306                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2307                     sshdr->sense_key == UNIT_ATTENTION)
2308                         sdev->changed = 1;
2309         } while (scsi_sense_valid(sshdr) &&
2310                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2311
2312         return result;
2313 }
2314 EXPORT_SYMBOL(scsi_test_unit_ready);
2315
2316 /**
2317  *      scsi_device_set_state - Take the given device through the device state model.
2318  *      @sdev:  scsi device to change the state of.
2319  *      @state: state to change to.
2320  *
2321  *      Returns zero if successful or an error if the requested
2322  *      transition is illegal.
2323  */
2324 int
2325 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2326 {
2327         enum scsi_device_state oldstate = sdev->sdev_state;
2328
2329         if (state == oldstate)
2330                 return 0;
2331
2332         switch (state) {
2333         case SDEV_CREATED:
2334                 switch (oldstate) {
2335                 case SDEV_CREATED_BLOCK:
2336                         break;
2337                 default:
2338                         goto illegal;
2339                 }
2340                 break;
2341
2342         case SDEV_RUNNING:
2343                 switch (oldstate) {
2344                 case SDEV_CREATED:
2345                 case SDEV_OFFLINE:
2346                 case SDEV_TRANSPORT_OFFLINE:
2347                 case SDEV_QUIESCE:
2348                 case SDEV_BLOCK:
2349                         break;
2350                 default:
2351                         goto illegal;
2352                 }
2353                 break;
2354
2355         case SDEV_QUIESCE:
2356                 switch (oldstate) {
2357                 case SDEV_RUNNING:
2358                 case SDEV_OFFLINE:
2359                 case SDEV_TRANSPORT_OFFLINE:
2360                         break;
2361                 default:
2362                         goto illegal;
2363                 }
2364                 break;
2365
2366         case SDEV_OFFLINE:
2367         case SDEV_TRANSPORT_OFFLINE:
2368                 switch (oldstate) {
2369                 case SDEV_CREATED:
2370                 case SDEV_RUNNING:
2371                 case SDEV_QUIESCE:
2372                 case SDEV_BLOCK:
2373                         break;
2374                 default:
2375                         goto illegal;
2376                 }
2377                 break;
2378
2379         case SDEV_BLOCK:
2380                 switch (oldstate) {
2381                 case SDEV_RUNNING:
2382                 case SDEV_CREATED_BLOCK:
2383                 case SDEV_QUIESCE:
2384                 case SDEV_OFFLINE:
2385                         break;
2386                 default:
2387                         goto illegal;
2388                 }
2389                 break;
2390
2391         case SDEV_CREATED_BLOCK:
2392                 switch (oldstate) {
2393                 case SDEV_CREATED:
2394                         break;
2395                 default:
2396                         goto illegal;
2397                 }
2398                 break;
2399
2400         case SDEV_CANCEL:
2401                 switch (oldstate) {
2402                 case SDEV_CREATED:
2403                 case SDEV_RUNNING:
2404                 case SDEV_QUIESCE:
2405                 case SDEV_OFFLINE:
2406                 case SDEV_TRANSPORT_OFFLINE:
2407                         break;
2408                 default:
2409                         goto illegal;
2410                 }
2411                 break;
2412
2413         case SDEV_DEL:
2414                 switch (oldstate) {
2415                 case SDEV_CREATED:
2416                 case SDEV_RUNNING:
2417                 case SDEV_OFFLINE:
2418                 case SDEV_TRANSPORT_OFFLINE:
2419                 case SDEV_CANCEL:
2420                 case SDEV_BLOCK:
2421                 case SDEV_CREATED_BLOCK:
2422                         break;
2423                 default:
2424                         goto illegal;
2425                 }
2426                 break;
2427
2428         }
2429         sdev->offline_already = false;
2430         sdev->sdev_state = state;
2431         return 0;
2432
2433  illegal:
2434         SCSI_LOG_ERROR_RECOVERY(1,
2435                                 sdev_printk(KERN_ERR, sdev,
2436                                             "Illegal state transition %s->%s",
2437                                             scsi_device_state_name(oldstate),
2438                                             scsi_device_state_name(state))
2439                                 );
2440         return -EINVAL;
2441 }
2442 EXPORT_SYMBOL(scsi_device_set_state);
2443
2444 /**
2445  *      scsi_evt_emit - emit a single SCSI device uevent
2446  *      @sdev: associated SCSI device
2447  *      @evt: event to emit
2448  *
2449  *      Send a single uevent (scsi_event) to the associated scsi_device.
2450  */
2451 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2452 {
2453         int idx = 0;
2454         char *envp[3];
2455
2456         switch (evt->evt_type) {
2457         case SDEV_EVT_MEDIA_CHANGE:
2458                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2459                 break;
2460         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2461                 scsi_rescan_device(&sdev->sdev_gendev);
2462                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2463                 break;
2464         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2465                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2466                 break;
2467         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2468                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2469                 break;
2470         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2471                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2472                 break;
2473         case SDEV_EVT_LUN_CHANGE_REPORTED:
2474                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2475                 break;
2476         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2477                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2478                 break;
2479         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2480                 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2481                 break;
2482         default:
2483                 /* do nothing */
2484                 break;
2485         }
2486
2487         envp[idx++] = NULL;
2488
2489         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2490 }
2491
2492 /**
2493  *      scsi_evt_thread - send a uevent for each scsi event
2494  *      @work: work struct for scsi_device
2495  *
2496  *      Dispatch queued events to their associated scsi_device kobjects
2497  *      as uevents.
2498  */
2499 void scsi_evt_thread(struct work_struct *work)
2500 {
2501         struct scsi_device *sdev;
2502         enum scsi_device_event evt_type;
2503         LIST_HEAD(event_list);
2504
2505         sdev = container_of(work, struct scsi_device, event_work);
2506
2507         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2508                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2509                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2510
2511         while (1) {
2512                 struct scsi_event *evt;
2513                 struct list_head *this, *tmp;
2514                 unsigned long flags;
2515
2516                 spin_lock_irqsave(&sdev->list_lock, flags);
2517                 list_splice_init(&sdev->event_list, &event_list);
2518                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2519
2520                 if (list_empty(&event_list))
2521                         break;
2522
2523                 list_for_each_safe(this, tmp, &event_list) {
2524                         evt = list_entry(this, struct scsi_event, node);
2525                         list_del(&evt->node);
2526                         scsi_evt_emit(sdev, evt);
2527                         kfree(evt);
2528                 }
2529         }
2530 }
2531
2532 /**
2533  *      sdev_evt_send - send asserted event to uevent thread
2534  *      @sdev: scsi_device event occurred on
2535  *      @evt: event to send
2536  *
2537  *      Assert scsi device event asynchronously.
2538  */
2539 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2540 {
2541         unsigned long flags;
2542
2543 #if 0
2544         /* FIXME: currently this check eliminates all media change events
2545          * for polled devices.  Need to update to discriminate between AN
2546          * and polled events */
2547         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2548                 kfree(evt);
2549                 return;
2550         }
2551 #endif
2552
2553         spin_lock_irqsave(&sdev->list_lock, flags);
2554         list_add_tail(&evt->node, &sdev->event_list);
2555         schedule_work(&sdev->event_work);
2556         spin_unlock_irqrestore(&sdev->list_lock, flags);
2557 }
2558 EXPORT_SYMBOL_GPL(sdev_evt_send);
2559
2560 /**
2561  *      sdev_evt_alloc - allocate a new scsi event
2562  *      @evt_type: type of event to allocate
2563  *      @gfpflags: GFP flags for allocation
2564  *
2565  *      Allocates and returns a new scsi_event.
2566  */
2567 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2568                                   gfp_t gfpflags)
2569 {
2570         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2571         if (!evt)
2572                 return NULL;
2573
2574         evt->evt_type = evt_type;
2575         INIT_LIST_HEAD(&evt->node);
2576
2577         /* evt_type-specific initialization, if any */
2578         switch (evt_type) {
2579         case SDEV_EVT_MEDIA_CHANGE:
2580         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2581         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2582         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2583         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2584         case SDEV_EVT_LUN_CHANGE_REPORTED:
2585         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2586         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2587         default:
2588                 /* do nothing */
2589                 break;
2590         }
2591
2592         return evt;
2593 }
2594 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2595
2596 /**
2597  *      sdev_evt_send_simple - send asserted event to uevent thread
2598  *      @sdev: scsi_device event occurred on
2599  *      @evt_type: type of event to send
2600  *      @gfpflags: GFP flags for allocation
2601  *
2602  *      Assert scsi device event asynchronously, given an event type.
2603  */
2604 void sdev_evt_send_simple(struct scsi_device *sdev,
2605                           enum scsi_device_event evt_type, gfp_t gfpflags)
2606 {
2607         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2608         if (!evt) {
2609                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2610                             evt_type);
2611                 return;
2612         }
2613
2614         sdev_evt_send(sdev, evt);
2615 }
2616 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2617
2618 /**
2619  *      scsi_device_quiesce - Block all commands except power management.
2620  *      @sdev:  scsi device to quiesce.
2621  *
2622  *      This works by trying to transition to the SDEV_QUIESCE state
2623  *      (which must be a legal transition).  When the device is in this
2624  *      state, only power management requests will be accepted, all others will
2625  *      be deferred.
2626  *
2627  *      Must be called with user context, may sleep.
2628  *
2629  *      Returns zero if unsuccessful or an error if not.
2630  */
2631 int
2632 scsi_device_quiesce(struct scsi_device *sdev)
2633 {
2634         struct request_queue *q = sdev->request_queue;
2635         int err;
2636
2637         /*
2638          * It is allowed to call scsi_device_quiesce() multiple times from
2639          * the same context but concurrent scsi_device_quiesce() calls are
2640          * not allowed.
2641          */
2642         WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2643
2644         if (sdev->quiesced_by == current)
2645                 return 0;
2646
2647         blk_set_pm_only(q);
2648
2649         blk_mq_freeze_queue(q);
2650         /*
2651          * Ensure that the effect of blk_set_pm_only() will be visible
2652          * for percpu_ref_tryget() callers that occur after the queue
2653          * unfreeze even if the queue was already frozen before this function
2654          * was called. See also https://lwn.net/Articles/573497/.
2655          */
2656         synchronize_rcu();
2657         blk_mq_unfreeze_queue(q);
2658
2659         mutex_lock(&sdev->state_mutex);
2660         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2661         if (err == 0)
2662                 sdev->quiesced_by = current;
2663         else
2664                 blk_clear_pm_only(q);
2665         mutex_unlock(&sdev->state_mutex);
2666
2667         return err;
2668 }
2669 EXPORT_SYMBOL(scsi_device_quiesce);
2670
2671 /**
2672  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2673  *      @sdev:  scsi device to resume.
2674  *
2675  *      Moves the device from quiesced back to running and restarts the
2676  *      queues.
2677  *
2678  *      Must be called with user context, may sleep.
2679  */
2680 void scsi_device_resume(struct scsi_device *sdev)
2681 {
2682         /* check if the device state was mutated prior to resume, and if
2683          * so assume the state is being managed elsewhere (for example
2684          * device deleted during suspend)
2685          */
2686         mutex_lock(&sdev->state_mutex);
2687         if (sdev->sdev_state == SDEV_QUIESCE)
2688                 scsi_device_set_state(sdev, SDEV_RUNNING);
2689         if (sdev->quiesced_by) {
2690                 sdev->quiesced_by = NULL;
2691                 blk_clear_pm_only(sdev->request_queue);
2692         }
2693         mutex_unlock(&sdev->state_mutex);
2694 }
2695 EXPORT_SYMBOL(scsi_device_resume);
2696
2697 static void
2698 device_quiesce_fn(struct scsi_device *sdev, void *data)
2699 {
2700         scsi_device_quiesce(sdev);
2701 }
2702
2703 void
2704 scsi_target_quiesce(struct scsi_target *starget)
2705 {
2706         starget_for_each_device(starget, NULL, device_quiesce_fn);
2707 }
2708 EXPORT_SYMBOL(scsi_target_quiesce);
2709
2710 static void
2711 device_resume_fn(struct scsi_device *sdev, void *data)
2712 {
2713         scsi_device_resume(sdev);
2714 }
2715
2716 void
2717 scsi_target_resume(struct scsi_target *starget)
2718 {
2719         starget_for_each_device(starget, NULL, device_resume_fn);
2720 }
2721 EXPORT_SYMBOL(scsi_target_resume);
2722
2723 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2724 {
2725         if (scsi_device_set_state(sdev, SDEV_BLOCK))
2726                 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2727
2728         return 0;
2729 }
2730
2731 void scsi_start_queue(struct scsi_device *sdev)
2732 {
2733         if (cmpxchg(&sdev->queue_stopped, 1, 0))
2734                 blk_mq_unquiesce_queue(sdev->request_queue);
2735 }
2736
2737 static void scsi_stop_queue(struct scsi_device *sdev)
2738 {
2739         /*
2740          * The atomic variable of ->queue_stopped covers that
2741          * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2742          *
2743          * The caller needs to wait until quiesce is done.
2744          */
2745         if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2746                 blk_mq_quiesce_queue_nowait(sdev->request_queue);
2747 }
2748
2749 /**
2750  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2751  * @sdev: device to block
2752  *
2753  * Pause SCSI command processing on the specified device. Does not sleep.
2754  *
2755  * Returns zero if successful or a negative error code upon failure.
2756  *
2757  * Notes:
2758  * This routine transitions the device to the SDEV_BLOCK state (which must be
2759  * a legal transition). When the device is in this state, command processing
2760  * is paused until the device leaves the SDEV_BLOCK state. See also
2761  * scsi_internal_device_unblock_nowait().
2762  */
2763 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2764 {
2765         int ret = __scsi_internal_device_block_nowait(sdev);
2766
2767         /*
2768          * The device has transitioned to SDEV_BLOCK.  Stop the
2769          * block layer from calling the midlayer with this device's
2770          * request queue.
2771          */
2772         if (!ret)
2773                 scsi_stop_queue(sdev);
2774         return ret;
2775 }
2776 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2777
2778 /**
2779  * scsi_device_block - try to transition to the SDEV_BLOCK state
2780  * @sdev: device to block
2781  * @data: dummy argument, ignored
2782  *
2783  * Pause SCSI command processing on the specified device. Callers must wait
2784  * until all ongoing scsi_queue_rq() calls have finished after this function
2785  * returns.
2786  *
2787  * Note:
2788  * This routine transitions the device to the SDEV_BLOCK state (which must be
2789  * a legal transition). When the device is in this state, command processing
2790  * is paused until the device leaves the SDEV_BLOCK state. See also
2791  * scsi_internal_device_unblock().
2792  */
2793 static void scsi_device_block(struct scsi_device *sdev, void *data)
2794 {
2795         int err;
2796         enum scsi_device_state state;
2797
2798         mutex_lock(&sdev->state_mutex);
2799         err = __scsi_internal_device_block_nowait(sdev);
2800         state = sdev->sdev_state;
2801         if (err == 0)
2802                 /*
2803                  * scsi_stop_queue() must be called with the state_mutex
2804                  * held. Otherwise a simultaneous scsi_start_queue() call
2805                  * might unquiesce the queue before we quiesce it.
2806                  */
2807                 scsi_stop_queue(sdev);
2808
2809         mutex_unlock(&sdev->state_mutex);
2810
2811         WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2812                   __func__, dev_name(&sdev->sdev_gendev), state);
2813 }
2814
2815 /**
2816  * scsi_internal_device_unblock_nowait - resume a device after a block request
2817  * @sdev:       device to resume
2818  * @new_state:  state to set the device to after unblocking
2819  *
2820  * Restart the device queue for a previously suspended SCSI device. Does not
2821  * sleep.
2822  *
2823  * Returns zero if successful or a negative error code upon failure.
2824  *
2825  * Notes:
2826  * This routine transitions the device to the SDEV_RUNNING state or to one of
2827  * the offline states (which must be a legal transition) allowing the midlayer
2828  * to goose the queue for this device.
2829  */
2830 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2831                                         enum scsi_device_state new_state)
2832 {
2833         switch (new_state) {
2834         case SDEV_RUNNING:
2835         case SDEV_TRANSPORT_OFFLINE:
2836                 break;
2837         default:
2838                 return -EINVAL;
2839         }
2840
2841         /*
2842          * Try to transition the scsi device to SDEV_RUNNING or one of the
2843          * offlined states and goose the device queue if successful.
2844          */
2845         switch (sdev->sdev_state) {
2846         case SDEV_BLOCK:
2847         case SDEV_TRANSPORT_OFFLINE:
2848                 sdev->sdev_state = new_state;
2849                 break;
2850         case SDEV_CREATED_BLOCK:
2851                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2852                     new_state == SDEV_OFFLINE)
2853                         sdev->sdev_state = new_state;
2854                 else
2855                         sdev->sdev_state = SDEV_CREATED;
2856                 break;
2857         case SDEV_CANCEL:
2858         case SDEV_OFFLINE:
2859                 break;
2860         default:
2861                 return -EINVAL;
2862         }
2863         scsi_start_queue(sdev);
2864
2865         return 0;
2866 }
2867 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2868
2869 /**
2870  * scsi_internal_device_unblock - resume a device after a block request
2871  * @sdev:       device to resume
2872  * @new_state:  state to set the device to after unblocking
2873  *
2874  * Restart the device queue for a previously suspended SCSI device. May sleep.
2875  *
2876  * Returns zero if successful or a negative error code upon failure.
2877  *
2878  * Notes:
2879  * This routine transitions the device to the SDEV_RUNNING state or to one of
2880  * the offline states (which must be a legal transition) allowing the midlayer
2881  * to goose the queue for this device.
2882  */
2883 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2884                                         enum scsi_device_state new_state)
2885 {
2886         int ret;
2887
2888         mutex_lock(&sdev->state_mutex);
2889         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2890         mutex_unlock(&sdev->state_mutex);
2891
2892         return ret;
2893 }
2894
2895 static int
2896 target_block(struct device *dev, void *data)
2897 {
2898         if (scsi_is_target_device(dev))
2899                 starget_for_each_device(to_scsi_target(dev), NULL,
2900                                         scsi_device_block);
2901         return 0;
2902 }
2903
2904 /**
2905  * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
2906  * @dev: a parent device of one or more scsi_target devices
2907  * @shost: the Scsi_Host to which this device belongs
2908  *
2909  * Iterate over all children of @dev, which should be scsi_target devices,
2910  * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
2911  * ongoing scsi_queue_rq() calls to finish. May sleep.
2912  *
2913  * Note:
2914  * @dev must not itself be a scsi_target device.
2915  */
2916 void
2917 scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
2918 {
2919         WARN_ON_ONCE(scsi_is_target_device(dev));
2920         device_for_each_child(dev, NULL, target_block);
2921         blk_mq_wait_quiesce_done(&shost->tag_set);
2922 }
2923 EXPORT_SYMBOL_GPL(scsi_block_targets);
2924
2925 static void
2926 device_unblock(struct scsi_device *sdev, void *data)
2927 {
2928         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2929 }
2930
2931 static int
2932 target_unblock(struct device *dev, void *data)
2933 {
2934         if (scsi_is_target_device(dev))
2935                 starget_for_each_device(to_scsi_target(dev), data,
2936                                         device_unblock);
2937         return 0;
2938 }
2939
2940 void
2941 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2942 {
2943         if (scsi_is_target_device(dev))
2944                 starget_for_each_device(to_scsi_target(dev), &new_state,
2945                                         device_unblock);
2946         else
2947                 device_for_each_child(dev, &new_state, target_unblock);
2948 }
2949 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2950
2951 /**
2952  * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
2953  * @shost: device to block
2954  *
2955  * Pause SCSI command processing for all logical units associated with the SCSI
2956  * host and wait until pending scsi_queue_rq() calls have finished.
2957  *
2958  * Returns zero if successful or a negative error code upon failure.
2959  */
2960 int
2961 scsi_host_block(struct Scsi_Host *shost)
2962 {
2963         struct scsi_device *sdev;
2964         int ret;
2965
2966         /*
2967          * Call scsi_internal_device_block_nowait so we can avoid
2968          * calling synchronize_rcu() for each LUN.
2969          */
2970         shost_for_each_device(sdev, shost) {
2971                 mutex_lock(&sdev->state_mutex);
2972                 ret = scsi_internal_device_block_nowait(sdev);
2973                 mutex_unlock(&sdev->state_mutex);
2974                 if (ret) {
2975                         scsi_device_put(sdev);
2976                         return ret;
2977                 }
2978         }
2979
2980         /* Wait for ongoing scsi_queue_rq() calls to finish. */
2981         blk_mq_wait_quiesce_done(&shost->tag_set);
2982
2983         return 0;
2984 }
2985 EXPORT_SYMBOL_GPL(scsi_host_block);
2986
2987 int
2988 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2989 {
2990         struct scsi_device *sdev;
2991         int ret = 0;
2992
2993         shost_for_each_device(sdev, shost) {
2994                 ret = scsi_internal_device_unblock(sdev, new_state);
2995                 if (ret) {
2996                         scsi_device_put(sdev);
2997                         break;
2998                 }
2999         }
3000         return ret;
3001 }
3002 EXPORT_SYMBOL_GPL(scsi_host_unblock);
3003
3004 /**
3005  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3006  * @sgl:        scatter-gather list
3007  * @sg_count:   number of segments in sg
3008  * @offset:     offset in bytes into sg, on return offset into the mapped area
3009  * @len:        bytes to map, on return number of bytes mapped
3010  *
3011  * Returns virtual address of the start of the mapped page
3012  */
3013 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3014                           size_t *offset, size_t *len)
3015 {
3016         int i;
3017         size_t sg_len = 0, len_complete = 0;
3018         struct scatterlist *sg;
3019         struct page *page;
3020
3021         WARN_ON(!irqs_disabled());
3022
3023         for_each_sg(sgl, sg, sg_count, i) {
3024                 len_complete = sg_len; /* Complete sg-entries */
3025                 sg_len += sg->length;
3026                 if (sg_len > *offset)
3027                         break;
3028         }
3029
3030         if (unlikely(i == sg_count)) {
3031                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3032                         "elements %d\n",
3033                        __func__, sg_len, *offset, sg_count);
3034                 WARN_ON(1);
3035                 return NULL;
3036         }
3037
3038         /* Offset starting from the beginning of first page in this sg-entry */
3039         *offset = *offset - len_complete + sg->offset;
3040
3041         /* Assumption: contiguous pages can be accessed as "page + i" */
3042         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3043         *offset &= ~PAGE_MASK;
3044
3045         /* Bytes in this sg-entry from *offset to the end of the page */
3046         sg_len = PAGE_SIZE - *offset;
3047         if (*len > sg_len)
3048                 *len = sg_len;
3049
3050         return kmap_atomic(page);
3051 }
3052 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3053
3054 /**
3055  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3056  * @virt:       virtual address to be unmapped
3057  */
3058 void scsi_kunmap_atomic_sg(void *virt)
3059 {
3060         kunmap_atomic(virt);
3061 }
3062 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3063
3064 void sdev_disable_disk_events(struct scsi_device *sdev)
3065 {
3066         atomic_inc(&sdev->disk_events_disable_depth);
3067 }
3068 EXPORT_SYMBOL(sdev_disable_disk_events);
3069
3070 void sdev_enable_disk_events(struct scsi_device *sdev)
3071 {
3072         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3073                 return;
3074         atomic_dec(&sdev->disk_events_disable_depth);
3075 }
3076 EXPORT_SYMBOL(sdev_enable_disk_events);
3077
3078 static unsigned char designator_prio(const unsigned char *d)
3079 {
3080         if (d[1] & 0x30)
3081                 /* not associated with LUN */
3082                 return 0;
3083
3084         if (d[3] == 0)
3085                 /* invalid length */
3086                 return 0;
3087
3088         /*
3089          * Order of preference for lun descriptor:
3090          * - SCSI name string
3091          * - NAA IEEE Registered Extended
3092          * - EUI-64 based 16-byte
3093          * - EUI-64 based 12-byte
3094          * - NAA IEEE Registered
3095          * - NAA IEEE Extended
3096          * - EUI-64 based 8-byte
3097          * - SCSI name string (truncated)
3098          * - T10 Vendor ID
3099          * as longer descriptors reduce the likelyhood
3100          * of identification clashes.
3101          */
3102
3103         switch (d[1] & 0xf) {
3104         case 8:
3105                 /* SCSI name string, variable-length UTF-8 */
3106                 return 9;
3107         case 3:
3108                 switch (d[4] >> 4) {
3109                 case 6:
3110                         /* NAA registered extended */
3111                         return 8;
3112                 case 5:
3113                         /* NAA registered */
3114                         return 5;
3115                 case 4:
3116                         /* NAA extended */
3117                         return 4;
3118                 case 3:
3119                         /* NAA locally assigned */
3120                         return 1;
3121                 default:
3122                         break;
3123                 }
3124                 break;
3125         case 2:
3126                 switch (d[3]) {
3127                 case 16:
3128                         /* EUI64-based, 16 byte */
3129                         return 7;
3130                 case 12:
3131                         /* EUI64-based, 12 byte */
3132                         return 6;
3133                 case 8:
3134                         /* EUI64-based, 8 byte */
3135                         return 3;
3136                 default:
3137                         break;
3138                 }
3139                 break;
3140         case 1:
3141                 /* T10 vendor ID */
3142                 return 1;
3143         default:
3144                 break;
3145         }
3146
3147         return 0;
3148 }
3149
3150 /**
3151  * scsi_vpd_lun_id - return a unique device identification
3152  * @sdev: SCSI device
3153  * @id:   buffer for the identification
3154  * @id_len:  length of the buffer
3155  *
3156  * Copies a unique device identification into @id based
3157  * on the information in the VPD page 0x83 of the device.
3158  * The string will be formatted as a SCSI name string.
3159  *
3160  * Returns the length of the identification or error on failure.
3161  * If the identifier is longer than the supplied buffer the actual
3162  * identifier length is returned and the buffer is not zero-padded.
3163  */
3164 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3165 {
3166         u8 cur_id_prio = 0;
3167         u8 cur_id_size = 0;
3168         const unsigned char *d, *cur_id_str;
3169         const struct scsi_vpd *vpd_pg83;
3170         int id_size = -EINVAL;
3171
3172         rcu_read_lock();
3173         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3174         if (!vpd_pg83) {
3175                 rcu_read_unlock();
3176                 return -ENXIO;
3177         }
3178
3179         /* The id string must be at least 20 bytes + terminating NULL byte */
3180         if (id_len < 21) {
3181                 rcu_read_unlock();
3182                 return -EINVAL;
3183         }
3184
3185         memset(id, 0, id_len);
3186         for (d = vpd_pg83->data + 4;
3187              d < vpd_pg83->data + vpd_pg83->len;
3188              d += d[3] + 4) {
3189                 u8 prio = designator_prio(d);
3190
3191                 if (prio == 0 || cur_id_prio > prio)
3192                         continue;
3193
3194                 switch (d[1] & 0xf) {
3195                 case 0x1:
3196                         /* T10 Vendor ID */
3197                         if (cur_id_size > d[3])
3198                                 break;
3199                         cur_id_prio = prio;
3200                         cur_id_size = d[3];
3201                         if (cur_id_size + 4 > id_len)
3202                                 cur_id_size = id_len - 4;
3203                         cur_id_str = d + 4;
3204                         id_size = snprintf(id, id_len, "t10.%*pE",
3205                                            cur_id_size, cur_id_str);
3206                         break;
3207                 case 0x2:
3208                         /* EUI-64 */
3209                         cur_id_prio = prio;
3210                         cur_id_size = d[3];
3211                         cur_id_str = d + 4;
3212                         switch (cur_id_size) {
3213                         case 8:
3214                                 id_size = snprintf(id, id_len,
3215                                                    "eui.%8phN",
3216                                                    cur_id_str);
3217                                 break;
3218                         case 12:
3219                                 id_size = snprintf(id, id_len,
3220                                                    "eui.%12phN",
3221                                                    cur_id_str);
3222                                 break;
3223                         case 16:
3224                                 id_size = snprintf(id, id_len,
3225                                                    "eui.%16phN",
3226                                                    cur_id_str);
3227                                 break;
3228                         default:
3229                                 break;
3230                         }
3231                         break;
3232                 case 0x3:
3233                         /* NAA */
3234                         cur_id_prio = prio;
3235                         cur_id_size = d[3];
3236                         cur_id_str = d + 4;
3237                         switch (cur_id_size) {
3238                         case 8:
3239                                 id_size = snprintf(id, id_len,
3240                                                    "naa.%8phN",
3241                                                    cur_id_str);
3242                                 break;
3243                         case 16:
3244                                 id_size = snprintf(id, id_len,
3245                                                    "naa.%16phN",
3246                                                    cur_id_str);
3247                                 break;
3248                         default:
3249                                 break;
3250                         }
3251                         break;
3252                 case 0x8:
3253                         /* SCSI name string */
3254                         if (cur_id_size > d[3])
3255                                 break;
3256                         /* Prefer others for truncated descriptor */
3257                         if (d[3] > id_len) {
3258                                 prio = 2;
3259                                 if (cur_id_prio > prio)
3260                                         break;
3261                         }
3262                         cur_id_prio = prio;
3263                         cur_id_size = id_size = d[3];
3264                         cur_id_str = d + 4;
3265                         if (cur_id_size >= id_len)
3266                                 cur_id_size = id_len - 1;
3267                         memcpy(id, cur_id_str, cur_id_size);
3268                         break;
3269                 default:
3270                         break;
3271                 }
3272         }
3273         rcu_read_unlock();
3274
3275         return id_size;
3276 }
3277 EXPORT_SYMBOL(scsi_vpd_lun_id);
3278
3279 /*
3280  * scsi_vpd_tpg_id - return a target port group identifier
3281  * @sdev: SCSI device
3282  *
3283  * Returns the Target Port Group identifier from the information
3284  * froom VPD page 0x83 of the device.
3285  *
3286  * Returns the identifier or error on failure.
3287  */
3288 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3289 {
3290         const unsigned char *d;
3291         const struct scsi_vpd *vpd_pg83;
3292         int group_id = -EAGAIN, rel_port = -1;
3293
3294         rcu_read_lock();
3295         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3296         if (!vpd_pg83) {
3297                 rcu_read_unlock();
3298                 return -ENXIO;
3299         }
3300
3301         d = vpd_pg83->data + 4;
3302         while (d < vpd_pg83->data + vpd_pg83->len) {
3303                 switch (d[1] & 0xf) {
3304                 case 0x4:
3305                         /* Relative target port */
3306                         rel_port = get_unaligned_be16(&d[6]);
3307                         break;
3308                 case 0x5:
3309                         /* Target port group */
3310                         group_id = get_unaligned_be16(&d[6]);
3311                         break;
3312                 default:
3313                         break;
3314                 }
3315                 d += d[3] + 4;
3316         }
3317         rcu_read_unlock();
3318
3319         if (group_id >= 0 && rel_id && rel_port != -1)
3320                 *rel_id = rel_port;
3321
3322         return group_id;
3323 }
3324 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3325
3326 /**
3327  * scsi_build_sense - build sense data for a command
3328  * @scmd:       scsi command for which the sense should be formatted
3329  * @desc:       Sense format (non-zero == descriptor format,
3330  *              0 == fixed format)
3331  * @key:        Sense key
3332  * @asc:        Additional sense code
3333  * @ascq:       Additional sense code qualifier
3334  *
3335  **/
3336 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3337 {
3338         scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3339         scmd->result = SAM_STAT_CHECK_CONDITION;
3340 }
3341 EXPORT_SYMBOL_GPL(scsi_build_sense);