scsi: core: Move scsi_host_busy() out of host lock if it is for per-command
[platform/kernel/linux-starfive.git] / drivers / scsi / scsi_lib.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37
38 #include <trace/events/scsi.h>
39
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63         int ret = 0;
64
65         mutex_lock(&scsi_sense_cache_mutex);
66         if (!scsi_sense_cache) {
67                 scsi_sense_cache =
68                         kmem_cache_create_usercopy("scsi_sense_cache",
69                                 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70                                 0, SCSI_SENSE_BUFFERSIZE, NULL);
71                 if (!scsi_sense_cache)
72                         ret = -ENOMEM;
73         }
74         mutex_unlock(&scsi_sense_cache_mutex);
75         return ret;
76 }
77
78 static void
79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81         struct Scsi_Host *host = cmd->device->host;
82         struct scsi_device *device = cmd->device;
83         struct scsi_target *starget = scsi_target(device);
84
85         /*
86          * Set the appropriate busy bit for the device/host.
87          *
88          * If the host/device isn't busy, assume that something actually
89          * completed, and that we should be able to queue a command now.
90          *
91          * Note that the prior mid-layer assumption that any host could
92          * always queue at least one command is now broken.  The mid-layer
93          * will implement a user specifiable stall (see
94          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95          * if a command is requeued with no other commands outstanding
96          * either for the device or for the host.
97          */
98         switch (reason) {
99         case SCSI_MLQUEUE_HOST_BUSY:
100                 atomic_set(&host->host_blocked, host->max_host_blocked);
101                 break;
102         case SCSI_MLQUEUE_DEVICE_BUSY:
103         case SCSI_MLQUEUE_EH_RETRY:
104                 atomic_set(&device->device_blocked,
105                            device->max_device_blocked);
106                 break;
107         case SCSI_MLQUEUE_TARGET_BUSY:
108                 atomic_set(&starget->target_blocked,
109                            starget->max_target_blocked);
110                 break;
111         }
112 }
113
114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116         struct request *rq = scsi_cmd_to_rq(cmd);
117
118         if (rq->rq_flags & RQF_DONTPREP) {
119                 rq->rq_flags &= ~RQF_DONTPREP;
120                 scsi_mq_uninit_cmd(cmd);
121         } else {
122                 WARN_ON_ONCE(true);
123         }
124
125         blk_mq_requeue_request(rq, false);
126         if (!scsi_host_in_recovery(cmd->device->host))
127                 blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 }
129
130 /**
131  * __scsi_queue_insert - private queue insertion
132  * @cmd: The SCSI command being requeued
133  * @reason:  The reason for the requeue
134  * @unbusy: Whether the queue should be unbusied
135  *
136  * This is a private queue insertion.  The public interface
137  * scsi_queue_insert() always assumes the queue should be unbusied
138  * because it's always called before the completion.  This function is
139  * for a requeue after completion, which should only occur in this
140  * file.
141  */
142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
143 {
144         struct scsi_device *device = cmd->device;
145
146         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147                 "Inserting command %p into mlqueue\n", cmd));
148
149         scsi_set_blocked(cmd, reason);
150
151         /*
152          * Decrement the counters, since these commands are no longer
153          * active on the host/device.
154          */
155         if (unbusy)
156                 scsi_device_unbusy(device, cmd);
157
158         /*
159          * Requeue this command.  It will go before all other commands
160          * that are already in the queue. Schedule requeue work under
161          * lock such that the kblockd_schedule_work() call happens
162          * before blk_mq_destroy_queue() finishes.
163          */
164         cmd->result = 0;
165
166         blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
167                                !scsi_host_in_recovery(cmd->device->host));
168 }
169
170 /**
171  * scsi_queue_insert - Reinsert a command in the queue.
172  * @cmd:    command that we are adding to queue.
173  * @reason: why we are inserting command to queue.
174  *
175  * We do this for one of two cases. Either the host is busy and it cannot accept
176  * any more commands for the time being, or the device returned QUEUE_FULL and
177  * can accept no more commands.
178  *
179  * Context: This could be called either from an interrupt context or a normal
180  * process context.
181  */
182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183 {
184         __scsi_queue_insert(cmd, reason, true);
185 }
186
187 /**
188  * scsi_execute_cmd - insert request and wait for the result
189  * @sdev:       scsi_device
190  * @cmd:        scsi command
191  * @opf:        block layer request cmd_flags
192  * @buffer:     data buffer
193  * @bufflen:    len of buffer
194  * @timeout:    request timeout in HZ
195  * @retries:    number of times to retry request
196  * @args:       Optional args. See struct definition for field descriptions
197  *
198  * Returns the scsi_cmnd result field if a command was executed, or a negative
199  * Linux error code if we didn't get that far.
200  */
201 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
202                      blk_opf_t opf, void *buffer, unsigned int bufflen,
203                      int timeout, int retries,
204                      const struct scsi_exec_args *args)
205 {
206         static const struct scsi_exec_args default_args;
207         struct request *req;
208         struct scsi_cmnd *scmd;
209         int ret;
210
211         if (!args)
212                 args = &default_args;
213         else if (WARN_ON_ONCE(args->sense &&
214                               args->sense_len != SCSI_SENSE_BUFFERSIZE))
215                 return -EINVAL;
216
217         req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
218         if (IS_ERR(req))
219                 return PTR_ERR(req);
220
221         if (bufflen) {
222                 ret = blk_rq_map_kern(sdev->request_queue, req,
223                                       buffer, bufflen, GFP_NOIO);
224                 if (ret)
225                         goto out;
226         }
227         scmd = blk_mq_rq_to_pdu(req);
228         scmd->cmd_len = COMMAND_SIZE(cmd[0]);
229         memcpy(scmd->cmnd, cmd, scmd->cmd_len);
230         scmd->allowed = retries;
231         scmd->flags |= args->scmd_flags;
232         req->timeout = timeout;
233         req->rq_flags |= RQF_QUIET;
234
235         /*
236          * head injection *required* here otherwise quiesce won't work
237          */
238         blk_execute_rq(req, true);
239
240         /*
241          * Some devices (USB mass-storage in particular) may transfer
242          * garbage data together with a residue indicating that the data
243          * is invalid.  Prevent the garbage from being misinterpreted
244          * and prevent security leaks by zeroing out the excess data.
245          */
246         if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
247                 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
248
249         if (args->resid)
250                 *args->resid = scmd->resid_len;
251         if (args->sense)
252                 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
253         if (args->sshdr)
254                 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
255                                      args->sshdr);
256
257         ret = scmd->result;
258  out:
259         blk_mq_free_request(req);
260
261         return ret;
262 }
263 EXPORT_SYMBOL(scsi_execute_cmd);
264
265 /*
266  * Wake up the error handler if necessary. Avoid as follows that the error
267  * handler is not woken up if host in-flight requests number ==
268  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
269  * with an RCU read lock in this function to ensure that this function in
270  * its entirety either finishes before scsi_eh_scmd_add() increases the
271  * host_failed counter or that it notices the shost state change made by
272  * scsi_eh_scmd_add().
273  */
274 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
275 {
276         unsigned long flags;
277
278         rcu_read_lock();
279         __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
280         if (unlikely(scsi_host_in_recovery(shost))) {
281                 unsigned int busy = scsi_host_busy(shost);
282
283                 spin_lock_irqsave(shost->host_lock, flags);
284                 if (shost->host_failed || shost->host_eh_scheduled)
285                         scsi_eh_wakeup(shost, busy);
286                 spin_unlock_irqrestore(shost->host_lock, flags);
287         }
288         rcu_read_unlock();
289 }
290
291 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
292 {
293         struct Scsi_Host *shost = sdev->host;
294         struct scsi_target *starget = scsi_target(sdev);
295
296         scsi_dec_host_busy(shost, cmd);
297
298         if (starget->can_queue > 0)
299                 atomic_dec(&starget->target_busy);
300
301         sbitmap_put(&sdev->budget_map, cmd->budget_token);
302         cmd->budget_token = -1;
303 }
304
305 /*
306  * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
307  * interrupts disabled.
308  */
309 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
310 {
311         struct scsi_device *current_sdev = data;
312
313         if (sdev != current_sdev)
314                 blk_mq_run_hw_queues(sdev->request_queue, true);
315 }
316
317 /*
318  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
319  * and call blk_run_queue for all the scsi_devices on the target -
320  * including current_sdev first.
321  *
322  * Called with *no* scsi locks held.
323  */
324 static void scsi_single_lun_run(struct scsi_device *current_sdev)
325 {
326         struct Scsi_Host *shost = current_sdev->host;
327         struct scsi_target *starget = scsi_target(current_sdev);
328         unsigned long flags;
329
330         spin_lock_irqsave(shost->host_lock, flags);
331         starget->starget_sdev_user = NULL;
332         spin_unlock_irqrestore(shost->host_lock, flags);
333
334         /*
335          * Call blk_run_queue for all LUNs on the target, starting with
336          * current_sdev. We race with others (to set starget_sdev_user),
337          * but in most cases, we will be first. Ideally, each LU on the
338          * target would get some limited time or requests on the target.
339          */
340         blk_mq_run_hw_queues(current_sdev->request_queue,
341                              shost->queuecommand_may_block);
342
343         spin_lock_irqsave(shost->host_lock, flags);
344         if (!starget->starget_sdev_user)
345                 __starget_for_each_device(starget, current_sdev,
346                                           scsi_kick_sdev_queue);
347         spin_unlock_irqrestore(shost->host_lock, flags);
348 }
349
350 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
351 {
352         if (scsi_device_busy(sdev) >= sdev->queue_depth)
353                 return true;
354         if (atomic_read(&sdev->device_blocked) > 0)
355                 return true;
356         return false;
357 }
358
359 static inline bool scsi_target_is_busy(struct scsi_target *starget)
360 {
361         if (starget->can_queue > 0) {
362                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
363                         return true;
364                 if (atomic_read(&starget->target_blocked) > 0)
365                         return true;
366         }
367         return false;
368 }
369
370 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
371 {
372         if (atomic_read(&shost->host_blocked) > 0)
373                 return true;
374         if (shost->host_self_blocked)
375                 return true;
376         return false;
377 }
378
379 static void scsi_starved_list_run(struct Scsi_Host *shost)
380 {
381         LIST_HEAD(starved_list);
382         struct scsi_device *sdev;
383         unsigned long flags;
384
385         spin_lock_irqsave(shost->host_lock, flags);
386         list_splice_init(&shost->starved_list, &starved_list);
387
388         while (!list_empty(&starved_list)) {
389                 struct request_queue *slq;
390
391                 /*
392                  * As long as shost is accepting commands and we have
393                  * starved queues, call blk_run_queue. scsi_request_fn
394                  * drops the queue_lock and can add us back to the
395                  * starved_list.
396                  *
397                  * host_lock protects the starved_list and starved_entry.
398                  * scsi_request_fn must get the host_lock before checking
399                  * or modifying starved_list or starved_entry.
400                  */
401                 if (scsi_host_is_busy(shost))
402                         break;
403
404                 sdev = list_entry(starved_list.next,
405                                   struct scsi_device, starved_entry);
406                 list_del_init(&sdev->starved_entry);
407                 if (scsi_target_is_busy(scsi_target(sdev))) {
408                         list_move_tail(&sdev->starved_entry,
409                                        &shost->starved_list);
410                         continue;
411                 }
412
413                 /*
414                  * Once we drop the host lock, a racing scsi_remove_device()
415                  * call may remove the sdev from the starved list and destroy
416                  * it and the queue.  Mitigate by taking a reference to the
417                  * queue and never touching the sdev again after we drop the
418                  * host lock.  Note: if __scsi_remove_device() invokes
419                  * blk_mq_destroy_queue() before the queue is run from this
420                  * function then blk_run_queue() will return immediately since
421                  * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
422                  */
423                 slq = sdev->request_queue;
424                 if (!blk_get_queue(slq))
425                         continue;
426                 spin_unlock_irqrestore(shost->host_lock, flags);
427
428                 blk_mq_run_hw_queues(slq, false);
429                 blk_put_queue(slq);
430
431                 spin_lock_irqsave(shost->host_lock, flags);
432         }
433         /* put any unprocessed entries back */
434         list_splice(&starved_list, &shost->starved_list);
435         spin_unlock_irqrestore(shost->host_lock, flags);
436 }
437
438 /**
439  * scsi_run_queue - Select a proper request queue to serve next.
440  * @q:  last request's queue
441  *
442  * The previous command was completely finished, start a new one if possible.
443  */
444 static void scsi_run_queue(struct request_queue *q)
445 {
446         struct scsi_device *sdev = q->queuedata;
447
448         if (scsi_target(sdev)->single_lun)
449                 scsi_single_lun_run(sdev);
450         if (!list_empty(&sdev->host->starved_list))
451                 scsi_starved_list_run(sdev->host);
452
453         /* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
454         blk_mq_kick_requeue_list(q);
455 }
456
457 void scsi_requeue_run_queue(struct work_struct *work)
458 {
459         struct scsi_device *sdev;
460         struct request_queue *q;
461
462         sdev = container_of(work, struct scsi_device, requeue_work);
463         q = sdev->request_queue;
464         scsi_run_queue(q);
465 }
466
467 void scsi_run_host_queues(struct Scsi_Host *shost)
468 {
469         struct scsi_device *sdev;
470
471         shost_for_each_device(sdev, shost)
472                 scsi_run_queue(sdev->request_queue);
473 }
474
475 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
476 {
477         if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
478                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
479
480                 if (drv->uninit_command)
481                         drv->uninit_command(cmd);
482         }
483 }
484
485 void scsi_free_sgtables(struct scsi_cmnd *cmd)
486 {
487         if (cmd->sdb.table.nents)
488                 sg_free_table_chained(&cmd->sdb.table,
489                                 SCSI_INLINE_SG_CNT);
490         if (scsi_prot_sg_count(cmd))
491                 sg_free_table_chained(&cmd->prot_sdb->table,
492                                 SCSI_INLINE_PROT_SG_CNT);
493 }
494 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
495
496 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
497 {
498         scsi_free_sgtables(cmd);
499         scsi_uninit_cmd(cmd);
500 }
501
502 static void scsi_run_queue_async(struct scsi_device *sdev)
503 {
504         if (scsi_host_in_recovery(sdev->host))
505                 return;
506
507         if (scsi_target(sdev)->single_lun ||
508             !list_empty(&sdev->host->starved_list)) {
509                 kblockd_schedule_work(&sdev->requeue_work);
510         } else {
511                 /*
512                  * smp_mb() present in sbitmap_queue_clear() or implied in
513                  * .end_io is for ordering writing .device_busy in
514                  * scsi_device_unbusy() and reading sdev->restarts.
515                  */
516                 int old = atomic_read(&sdev->restarts);
517
518                 /*
519                  * ->restarts has to be kept as non-zero if new budget
520                  *  contention occurs.
521                  *
522                  *  No need to run queue when either another re-run
523                  *  queue wins in updating ->restarts or a new budget
524                  *  contention occurs.
525                  */
526                 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
527                         blk_mq_run_hw_queues(sdev->request_queue, true);
528         }
529 }
530
531 /* Returns false when no more bytes to process, true if there are more */
532 static bool scsi_end_request(struct request *req, blk_status_t error,
533                 unsigned int bytes)
534 {
535         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
536         struct scsi_device *sdev = cmd->device;
537         struct request_queue *q = sdev->request_queue;
538
539         if (blk_update_request(req, error, bytes))
540                 return true;
541
542         // XXX:
543         if (blk_queue_add_random(q))
544                 add_disk_randomness(req->q->disk);
545
546         if (!blk_rq_is_passthrough(req)) {
547                 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
548                 cmd->flags &= ~SCMD_INITIALIZED;
549         }
550
551         /*
552          * Calling rcu_barrier() is not necessary here because the
553          * SCSI error handler guarantees that the function called by
554          * call_rcu() has been called before scsi_end_request() is
555          * called.
556          */
557         destroy_rcu_head(&cmd->rcu);
558
559         /*
560          * In the MQ case the command gets freed by __blk_mq_end_request,
561          * so we have to do all cleanup that depends on it earlier.
562          *
563          * We also can't kick the queues from irq context, so we
564          * will have to defer it to a workqueue.
565          */
566         scsi_mq_uninit_cmd(cmd);
567
568         /*
569          * queue is still alive, so grab the ref for preventing it
570          * from being cleaned up during running queue.
571          */
572         percpu_ref_get(&q->q_usage_counter);
573
574         __blk_mq_end_request(req, error);
575
576         scsi_run_queue_async(sdev);
577
578         percpu_ref_put(&q->q_usage_counter);
579         return false;
580 }
581
582 /**
583  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
584  * @result:     scsi error code
585  *
586  * Translate a SCSI result code into a blk_status_t value.
587  */
588 static blk_status_t scsi_result_to_blk_status(int result)
589 {
590         /*
591          * Check the scsi-ml byte first in case we converted a host or status
592          * byte.
593          */
594         switch (scsi_ml_byte(result)) {
595         case SCSIML_STAT_OK:
596                 break;
597         case SCSIML_STAT_RESV_CONFLICT:
598                 return BLK_STS_RESV_CONFLICT;
599         case SCSIML_STAT_NOSPC:
600                 return BLK_STS_NOSPC;
601         case SCSIML_STAT_MED_ERROR:
602                 return BLK_STS_MEDIUM;
603         case SCSIML_STAT_TGT_FAILURE:
604                 return BLK_STS_TARGET;
605         case SCSIML_STAT_DL_TIMEOUT:
606                 return BLK_STS_DURATION_LIMIT;
607         }
608
609         switch (host_byte(result)) {
610         case DID_OK:
611                 if (scsi_status_is_good(result))
612                         return BLK_STS_OK;
613                 return BLK_STS_IOERR;
614         case DID_TRANSPORT_FAILFAST:
615         case DID_TRANSPORT_MARGINAL:
616                 return BLK_STS_TRANSPORT;
617         default:
618                 return BLK_STS_IOERR;
619         }
620 }
621
622 /**
623  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
624  * @rq: request to examine
625  *
626  * Description:
627  *     A request could be merge of IOs which require different failure
628  *     handling.  This function determines the number of bytes which
629  *     can be failed from the beginning of the request without
630  *     crossing into area which need to be retried further.
631  *
632  * Return:
633  *     The number of bytes to fail.
634  */
635 static unsigned int scsi_rq_err_bytes(const struct request *rq)
636 {
637         blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
638         unsigned int bytes = 0;
639         struct bio *bio;
640
641         if (!(rq->rq_flags & RQF_MIXED_MERGE))
642                 return blk_rq_bytes(rq);
643
644         /*
645          * Currently the only 'mixing' which can happen is between
646          * different fastfail types.  We can safely fail portions
647          * which have all the failfast bits that the first one has -
648          * the ones which are at least as eager to fail as the first
649          * one.
650          */
651         for (bio = rq->bio; bio; bio = bio->bi_next) {
652                 if ((bio->bi_opf & ff) != ff)
653                         break;
654                 bytes += bio->bi_iter.bi_size;
655         }
656
657         /* this could lead to infinite loop */
658         BUG_ON(blk_rq_bytes(rq) && !bytes);
659         return bytes;
660 }
661
662 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
663 {
664         struct request *req = scsi_cmd_to_rq(cmd);
665         unsigned long wait_for;
666
667         if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
668                 return false;
669
670         wait_for = (cmd->allowed + 1) * req->timeout;
671         if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
672                 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
673                             wait_for/HZ);
674                 return true;
675         }
676         return false;
677 }
678
679 /*
680  * When ALUA transition state is returned, reprep the cmd to
681  * use the ALUA handler's transition timeout. Delay the reprep
682  * 1 sec to avoid aggressive retries of the target in that
683  * state.
684  */
685 #define ALUA_TRANSITION_REPREP_DELAY    1000
686
687 /* Helper for scsi_io_completion() when special action required. */
688 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
689 {
690         struct request *req = scsi_cmd_to_rq(cmd);
691         int level = 0;
692         enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
693               ACTION_RETRY, ACTION_DELAYED_RETRY} action;
694         struct scsi_sense_hdr sshdr;
695         bool sense_valid;
696         bool sense_current = true;      /* false implies "deferred sense" */
697         blk_status_t blk_stat;
698
699         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
700         if (sense_valid)
701                 sense_current = !scsi_sense_is_deferred(&sshdr);
702
703         blk_stat = scsi_result_to_blk_status(result);
704
705         if (host_byte(result) == DID_RESET) {
706                 /* Third party bus reset or reset for error recovery
707                  * reasons.  Just retry the command and see what
708                  * happens.
709                  */
710                 action = ACTION_RETRY;
711         } else if (sense_valid && sense_current) {
712                 switch (sshdr.sense_key) {
713                 case UNIT_ATTENTION:
714                         if (cmd->device->removable) {
715                                 /* Detected disc change.  Set a bit
716                                  * and quietly refuse further access.
717                                  */
718                                 cmd->device->changed = 1;
719                                 action = ACTION_FAIL;
720                         } else {
721                                 /* Must have been a power glitch, or a
722                                  * bus reset.  Could not have been a
723                                  * media change, so we just retry the
724                                  * command and see what happens.
725                                  */
726                                 action = ACTION_RETRY;
727                         }
728                         break;
729                 case ILLEGAL_REQUEST:
730                         /* If we had an ILLEGAL REQUEST returned, then
731                          * we may have performed an unsupported
732                          * command.  The only thing this should be
733                          * would be a ten byte read where only a six
734                          * byte read was supported.  Also, on a system
735                          * where READ CAPACITY failed, we may have
736                          * read past the end of the disk.
737                          */
738                         if ((cmd->device->use_10_for_rw &&
739                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
740                             (cmd->cmnd[0] == READ_10 ||
741                              cmd->cmnd[0] == WRITE_10)) {
742                                 /* This will issue a new 6-byte command. */
743                                 cmd->device->use_10_for_rw = 0;
744                                 action = ACTION_REPREP;
745                         } else if (sshdr.asc == 0x10) /* DIX */ {
746                                 action = ACTION_FAIL;
747                                 blk_stat = BLK_STS_PROTECTION;
748                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
749                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
750                                 action = ACTION_FAIL;
751                                 blk_stat = BLK_STS_TARGET;
752                         } else
753                                 action = ACTION_FAIL;
754                         break;
755                 case ABORTED_COMMAND:
756                         action = ACTION_FAIL;
757                         if (sshdr.asc == 0x10) /* DIF */
758                                 blk_stat = BLK_STS_PROTECTION;
759                         break;
760                 case NOT_READY:
761                         /* If the device is in the process of becoming
762                          * ready, or has a temporary blockage, retry.
763                          */
764                         if (sshdr.asc == 0x04) {
765                                 switch (sshdr.ascq) {
766                                 case 0x01: /* becoming ready */
767                                 case 0x04: /* format in progress */
768                                 case 0x05: /* rebuild in progress */
769                                 case 0x06: /* recalculation in progress */
770                                 case 0x07: /* operation in progress */
771                                 case 0x08: /* Long write in progress */
772                                 case 0x09: /* self test in progress */
773                                 case 0x11: /* notify (enable spinup) required */
774                                 case 0x14: /* space allocation in progress */
775                                 case 0x1a: /* start stop unit in progress */
776                                 case 0x1b: /* sanitize in progress */
777                                 case 0x1d: /* configuration in progress */
778                                 case 0x24: /* depopulation in progress */
779                                         action = ACTION_DELAYED_RETRY;
780                                         break;
781                                 case 0x0a: /* ALUA state transition */
782                                         action = ACTION_DELAYED_REPREP;
783                                         break;
784                                 default:
785                                         action = ACTION_FAIL;
786                                         break;
787                                 }
788                         } else
789                                 action = ACTION_FAIL;
790                         break;
791                 case VOLUME_OVERFLOW:
792                         /* See SSC3rXX or current. */
793                         action = ACTION_FAIL;
794                         break;
795                 case DATA_PROTECT:
796                         action = ACTION_FAIL;
797                         if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
798                             (sshdr.asc == 0x55 &&
799                              (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
800                                 /* Insufficient zone resources */
801                                 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
802                         }
803                         break;
804                 case COMPLETED:
805                         fallthrough;
806                 default:
807                         action = ACTION_FAIL;
808                         break;
809                 }
810         } else
811                 action = ACTION_FAIL;
812
813         if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
814                 action = ACTION_FAIL;
815
816         switch (action) {
817         case ACTION_FAIL:
818                 /* Give up and fail the remainder of the request */
819                 if (!(req->rq_flags & RQF_QUIET)) {
820                         static DEFINE_RATELIMIT_STATE(_rs,
821                                         DEFAULT_RATELIMIT_INTERVAL,
822                                         DEFAULT_RATELIMIT_BURST);
823
824                         if (unlikely(scsi_logging_level))
825                                 level =
826                                      SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
827                                                     SCSI_LOG_MLCOMPLETE_BITS);
828
829                         /*
830                          * if logging is enabled the failure will be printed
831                          * in scsi_log_completion(), so avoid duplicate messages
832                          */
833                         if (!level && __ratelimit(&_rs)) {
834                                 scsi_print_result(cmd, NULL, FAILED);
835                                 if (sense_valid)
836                                         scsi_print_sense(cmd);
837                                 scsi_print_command(cmd);
838                         }
839                 }
840                 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
841                         return;
842                 fallthrough;
843         case ACTION_REPREP:
844                 scsi_mq_requeue_cmd(cmd, 0);
845                 break;
846         case ACTION_DELAYED_REPREP:
847                 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
848                 break;
849         case ACTION_RETRY:
850                 /* Retry the same command immediately */
851                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
852                 break;
853         case ACTION_DELAYED_RETRY:
854                 /* Retry the same command after a delay */
855                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
856                 break;
857         }
858 }
859
860 /*
861  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
862  * new result that may suppress further error checking. Also modifies
863  * *blk_statp in some cases.
864  */
865 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
866                                         blk_status_t *blk_statp)
867 {
868         bool sense_valid;
869         bool sense_current = true;      /* false implies "deferred sense" */
870         struct request *req = scsi_cmd_to_rq(cmd);
871         struct scsi_sense_hdr sshdr;
872
873         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
874         if (sense_valid)
875                 sense_current = !scsi_sense_is_deferred(&sshdr);
876
877         if (blk_rq_is_passthrough(req)) {
878                 if (sense_valid) {
879                         /*
880                          * SG_IO wants current and deferred errors
881                          */
882                         cmd->sense_len = min(8 + cmd->sense_buffer[7],
883                                              SCSI_SENSE_BUFFERSIZE);
884                 }
885                 if (sense_current)
886                         *blk_statp = scsi_result_to_blk_status(result);
887         } else if (blk_rq_bytes(req) == 0 && sense_current) {
888                 /*
889                  * Flush commands do not transfers any data, and thus cannot use
890                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
891                  * This sets *blk_statp explicitly for the problem case.
892                  */
893                 *blk_statp = scsi_result_to_blk_status(result);
894         }
895         /*
896          * Recovered errors need reporting, but they're always treated as
897          * success, so fiddle the result code here.  For passthrough requests
898          * we already took a copy of the original into sreq->result which
899          * is what gets returned to the user
900          */
901         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
902                 bool do_print = true;
903                 /*
904                  * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
905                  * skip print since caller wants ATA registers. Only occurs
906                  * on SCSI ATA PASS_THROUGH commands when CK_COND=1
907                  */
908                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
909                         do_print = false;
910                 else if (req->rq_flags & RQF_QUIET)
911                         do_print = false;
912                 if (do_print)
913                         scsi_print_sense(cmd);
914                 result = 0;
915                 /* for passthrough, *blk_statp may be set */
916                 *blk_statp = BLK_STS_OK;
917         }
918         /*
919          * Another corner case: the SCSI status byte is non-zero but 'good'.
920          * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
921          * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
922          * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
923          * intermediate statuses (both obsolete in SAM-4) as good.
924          */
925         if ((result & 0xff) && scsi_status_is_good(result)) {
926                 result = 0;
927                 *blk_statp = BLK_STS_OK;
928         }
929         return result;
930 }
931
932 /**
933  * scsi_io_completion - Completion processing for SCSI commands.
934  * @cmd:        command that is finished.
935  * @good_bytes: number of processed bytes.
936  *
937  * We will finish off the specified number of sectors. If we are done, the
938  * command block will be released and the queue function will be goosed. If we
939  * are not done then we have to figure out what to do next:
940  *
941  *   a) We can call scsi_mq_requeue_cmd().  The request will be
942  *      unprepared and put back on the queue.  Then a new command will
943  *      be created for it.  This should be used if we made forward
944  *      progress, or if we want to switch from READ(10) to READ(6) for
945  *      example.
946  *
947  *   b) We can call scsi_io_completion_action().  The request will be
948  *      put back on the queue and retried using the same command as
949  *      before, possibly after a delay.
950  *
951  *   c) We can call scsi_end_request() with blk_stat other than
952  *      BLK_STS_OK, to fail the remainder of the request.
953  */
954 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
955 {
956         int result = cmd->result;
957         struct request *req = scsi_cmd_to_rq(cmd);
958         blk_status_t blk_stat = BLK_STS_OK;
959
960         if (unlikely(result))   /* a nz result may or may not be an error */
961                 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
962
963         /*
964          * Next deal with any sectors which we were able to correctly
965          * handle.
966          */
967         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
968                 "%u sectors total, %d bytes done.\n",
969                 blk_rq_sectors(req), good_bytes));
970
971         /*
972          * Failed, zero length commands always need to drop down
973          * to retry code. Fast path should return in this block.
974          */
975         if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
976                 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
977                         return; /* no bytes remaining */
978         }
979
980         /* Kill remainder if no retries. */
981         if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
982                 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
983                         WARN_ONCE(true,
984                             "Bytes remaining after failed, no-retry command");
985                 return;
986         }
987
988         /*
989          * If there had been no error, but we have leftover bytes in the
990          * request just queue the command up again.
991          */
992         if (likely(result == 0))
993                 scsi_mq_requeue_cmd(cmd, 0);
994         else
995                 scsi_io_completion_action(cmd, result);
996 }
997
998 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
999                 struct request *rq)
1000 {
1001         return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1002                !op_is_write(req_op(rq)) &&
1003                sdev->host->hostt->dma_need_drain(rq);
1004 }
1005
1006 /**
1007  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1008  * @cmd: SCSI command data structure to initialize.
1009  *
1010  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1011  * for @cmd.
1012  *
1013  * Returns:
1014  * * BLK_STS_OK       - on success
1015  * * BLK_STS_RESOURCE - if the failure is retryable
1016  * * BLK_STS_IOERR    - if the failure is fatal
1017  */
1018 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1019 {
1020         struct scsi_device *sdev = cmd->device;
1021         struct request *rq = scsi_cmd_to_rq(cmd);
1022         unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1023         struct scatterlist *last_sg = NULL;
1024         blk_status_t ret;
1025         bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1026         int count;
1027
1028         if (WARN_ON_ONCE(!nr_segs))
1029                 return BLK_STS_IOERR;
1030
1031         /*
1032          * Make sure there is space for the drain.  The driver must adjust
1033          * max_hw_segments to be prepared for this.
1034          */
1035         if (need_drain)
1036                 nr_segs++;
1037
1038         /*
1039          * If sg table allocation fails, requeue request later.
1040          */
1041         if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1042                         cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1043                 return BLK_STS_RESOURCE;
1044
1045         /*
1046          * Next, walk the list, and fill in the addresses and sizes of
1047          * each segment.
1048          */
1049         count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1050
1051         if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1052                 unsigned int pad_len =
1053                         (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1054
1055                 last_sg->length += pad_len;
1056                 cmd->extra_len += pad_len;
1057         }
1058
1059         if (need_drain) {
1060                 sg_unmark_end(last_sg);
1061                 last_sg = sg_next(last_sg);
1062                 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1063                 sg_mark_end(last_sg);
1064
1065                 cmd->extra_len += sdev->dma_drain_len;
1066                 count++;
1067         }
1068
1069         BUG_ON(count > cmd->sdb.table.nents);
1070         cmd->sdb.table.nents = count;
1071         cmd->sdb.length = blk_rq_payload_bytes(rq);
1072
1073         if (blk_integrity_rq(rq)) {
1074                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1075                 int ivecs;
1076
1077                 if (WARN_ON_ONCE(!prot_sdb)) {
1078                         /*
1079                          * This can happen if someone (e.g. multipath)
1080                          * queues a command to a device on an adapter
1081                          * that does not support DIX.
1082                          */
1083                         ret = BLK_STS_IOERR;
1084                         goto out_free_sgtables;
1085                 }
1086
1087                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1088
1089                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1090                                 prot_sdb->table.sgl,
1091                                 SCSI_INLINE_PROT_SG_CNT)) {
1092                         ret = BLK_STS_RESOURCE;
1093                         goto out_free_sgtables;
1094                 }
1095
1096                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1097                                                 prot_sdb->table.sgl);
1098                 BUG_ON(count > ivecs);
1099                 BUG_ON(count > queue_max_integrity_segments(rq->q));
1100
1101                 cmd->prot_sdb = prot_sdb;
1102                 cmd->prot_sdb->table.nents = count;
1103         }
1104
1105         return BLK_STS_OK;
1106 out_free_sgtables:
1107         scsi_free_sgtables(cmd);
1108         return ret;
1109 }
1110 EXPORT_SYMBOL(scsi_alloc_sgtables);
1111
1112 /**
1113  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1114  * @rq: Request associated with the SCSI command to be initialized.
1115  *
1116  * This function initializes the members of struct scsi_cmnd that must be
1117  * initialized before request processing starts and that won't be
1118  * reinitialized if a SCSI command is requeued.
1119  */
1120 static void scsi_initialize_rq(struct request *rq)
1121 {
1122         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1123
1124         memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1125         cmd->cmd_len = MAX_COMMAND_SIZE;
1126         cmd->sense_len = 0;
1127         init_rcu_head(&cmd->rcu);
1128         cmd->jiffies_at_alloc = jiffies;
1129         cmd->retries = 0;
1130 }
1131
1132 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1133                                    blk_mq_req_flags_t flags)
1134 {
1135         struct request *rq;
1136
1137         rq = blk_mq_alloc_request(q, opf, flags);
1138         if (!IS_ERR(rq))
1139                 scsi_initialize_rq(rq);
1140         return rq;
1141 }
1142 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1143
1144 /*
1145  * Only called when the request isn't completed by SCSI, and not freed by
1146  * SCSI
1147  */
1148 static void scsi_cleanup_rq(struct request *rq)
1149 {
1150         if (rq->rq_flags & RQF_DONTPREP) {
1151                 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1152                 rq->rq_flags &= ~RQF_DONTPREP;
1153         }
1154 }
1155
1156 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1157 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1158 {
1159         struct request *rq = scsi_cmd_to_rq(cmd);
1160
1161         if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1162                 cmd->flags |= SCMD_INITIALIZED;
1163                 scsi_initialize_rq(rq);
1164         }
1165
1166         cmd->device = dev;
1167         INIT_LIST_HEAD(&cmd->eh_entry);
1168         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1169 }
1170
1171 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1172                 struct request *req)
1173 {
1174         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1175
1176         /*
1177          * Passthrough requests may transfer data, in which case they must
1178          * a bio attached to them.  Or they might contain a SCSI command
1179          * that does not transfer data, in which case they may optionally
1180          * submit a request without an attached bio.
1181          */
1182         if (req->bio) {
1183                 blk_status_t ret = scsi_alloc_sgtables(cmd);
1184                 if (unlikely(ret != BLK_STS_OK))
1185                         return ret;
1186         } else {
1187                 BUG_ON(blk_rq_bytes(req));
1188
1189                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1190         }
1191
1192         cmd->transfersize = blk_rq_bytes(req);
1193         return BLK_STS_OK;
1194 }
1195
1196 static blk_status_t
1197 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1198 {
1199         switch (sdev->sdev_state) {
1200         case SDEV_CREATED:
1201                 return BLK_STS_OK;
1202         case SDEV_OFFLINE:
1203         case SDEV_TRANSPORT_OFFLINE:
1204                 /*
1205                  * If the device is offline we refuse to process any
1206                  * commands.  The device must be brought online
1207                  * before trying any recovery commands.
1208                  */
1209                 if (!sdev->offline_already) {
1210                         sdev->offline_already = true;
1211                         sdev_printk(KERN_ERR, sdev,
1212                                     "rejecting I/O to offline device\n");
1213                 }
1214                 return BLK_STS_IOERR;
1215         case SDEV_DEL:
1216                 /*
1217                  * If the device is fully deleted, we refuse to
1218                  * process any commands as well.
1219                  */
1220                 sdev_printk(KERN_ERR, sdev,
1221                             "rejecting I/O to dead device\n");
1222                 return BLK_STS_IOERR;
1223         case SDEV_BLOCK:
1224         case SDEV_CREATED_BLOCK:
1225                 return BLK_STS_RESOURCE;
1226         case SDEV_QUIESCE:
1227                 /*
1228                  * If the device is blocked we only accept power management
1229                  * commands.
1230                  */
1231                 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1232                         return BLK_STS_RESOURCE;
1233                 return BLK_STS_OK;
1234         default:
1235                 /*
1236                  * For any other not fully online state we only allow
1237                  * power management commands.
1238                  */
1239                 if (req && !(req->rq_flags & RQF_PM))
1240                         return BLK_STS_OFFLINE;
1241                 return BLK_STS_OK;
1242         }
1243 }
1244
1245 /*
1246  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1247  * and return the token else return -1.
1248  */
1249 static inline int scsi_dev_queue_ready(struct request_queue *q,
1250                                   struct scsi_device *sdev)
1251 {
1252         int token;
1253
1254         token = sbitmap_get(&sdev->budget_map);
1255         if (atomic_read(&sdev->device_blocked)) {
1256                 if (token < 0)
1257                         goto out;
1258
1259                 if (scsi_device_busy(sdev) > 1)
1260                         goto out_dec;
1261
1262                 /*
1263                  * unblock after device_blocked iterates to zero
1264                  */
1265                 if (atomic_dec_return(&sdev->device_blocked) > 0)
1266                         goto out_dec;
1267                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1268                                    "unblocking device at zero depth\n"));
1269         }
1270
1271         return token;
1272 out_dec:
1273         if (token >= 0)
1274                 sbitmap_put(&sdev->budget_map, token);
1275 out:
1276         return -1;
1277 }
1278
1279 /*
1280  * scsi_target_queue_ready: checks if there we can send commands to target
1281  * @sdev: scsi device on starget to check.
1282  */
1283 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1284                                            struct scsi_device *sdev)
1285 {
1286         struct scsi_target *starget = scsi_target(sdev);
1287         unsigned int busy;
1288
1289         if (starget->single_lun) {
1290                 spin_lock_irq(shost->host_lock);
1291                 if (starget->starget_sdev_user &&
1292                     starget->starget_sdev_user != sdev) {
1293                         spin_unlock_irq(shost->host_lock);
1294                         return 0;
1295                 }
1296                 starget->starget_sdev_user = sdev;
1297                 spin_unlock_irq(shost->host_lock);
1298         }
1299
1300         if (starget->can_queue <= 0)
1301                 return 1;
1302
1303         busy = atomic_inc_return(&starget->target_busy) - 1;
1304         if (atomic_read(&starget->target_blocked) > 0) {
1305                 if (busy)
1306                         goto starved;
1307
1308                 /*
1309                  * unblock after target_blocked iterates to zero
1310                  */
1311                 if (atomic_dec_return(&starget->target_blocked) > 0)
1312                         goto out_dec;
1313
1314                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1315                                  "unblocking target at zero depth\n"));
1316         }
1317
1318         if (busy >= starget->can_queue)
1319                 goto starved;
1320
1321         return 1;
1322
1323 starved:
1324         spin_lock_irq(shost->host_lock);
1325         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1326         spin_unlock_irq(shost->host_lock);
1327 out_dec:
1328         if (starget->can_queue > 0)
1329                 atomic_dec(&starget->target_busy);
1330         return 0;
1331 }
1332
1333 /*
1334  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1335  * return 0. We must end up running the queue again whenever 0 is
1336  * returned, else IO can hang.
1337  */
1338 static inline int scsi_host_queue_ready(struct request_queue *q,
1339                                    struct Scsi_Host *shost,
1340                                    struct scsi_device *sdev,
1341                                    struct scsi_cmnd *cmd)
1342 {
1343         if (atomic_read(&shost->host_blocked) > 0) {
1344                 if (scsi_host_busy(shost) > 0)
1345                         goto starved;
1346
1347                 /*
1348                  * unblock after host_blocked iterates to zero
1349                  */
1350                 if (atomic_dec_return(&shost->host_blocked) > 0)
1351                         goto out_dec;
1352
1353                 SCSI_LOG_MLQUEUE(3,
1354                         shost_printk(KERN_INFO, shost,
1355                                      "unblocking host at zero depth\n"));
1356         }
1357
1358         if (shost->host_self_blocked)
1359                 goto starved;
1360
1361         /* We're OK to process the command, so we can't be starved */
1362         if (!list_empty(&sdev->starved_entry)) {
1363                 spin_lock_irq(shost->host_lock);
1364                 if (!list_empty(&sdev->starved_entry))
1365                         list_del_init(&sdev->starved_entry);
1366                 spin_unlock_irq(shost->host_lock);
1367         }
1368
1369         __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1370
1371         return 1;
1372
1373 starved:
1374         spin_lock_irq(shost->host_lock);
1375         if (list_empty(&sdev->starved_entry))
1376                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1377         spin_unlock_irq(shost->host_lock);
1378 out_dec:
1379         scsi_dec_host_busy(shost, cmd);
1380         return 0;
1381 }
1382
1383 /*
1384  * Busy state exporting function for request stacking drivers.
1385  *
1386  * For efficiency, no lock is taken to check the busy state of
1387  * shost/starget/sdev, since the returned value is not guaranteed and
1388  * may be changed after request stacking drivers call the function,
1389  * regardless of taking lock or not.
1390  *
1391  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1392  * needs to return 'not busy'. Otherwise, request stacking drivers
1393  * may hold requests forever.
1394  */
1395 static bool scsi_mq_lld_busy(struct request_queue *q)
1396 {
1397         struct scsi_device *sdev = q->queuedata;
1398         struct Scsi_Host *shost;
1399
1400         if (blk_queue_dying(q))
1401                 return false;
1402
1403         shost = sdev->host;
1404
1405         /*
1406          * Ignore host/starget busy state.
1407          * Since block layer does not have a concept of fairness across
1408          * multiple queues, congestion of host/starget needs to be handled
1409          * in SCSI layer.
1410          */
1411         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1412                 return true;
1413
1414         return false;
1415 }
1416
1417 /*
1418  * Block layer request completion callback. May be called from interrupt
1419  * context.
1420  */
1421 static void scsi_complete(struct request *rq)
1422 {
1423         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1424         enum scsi_disposition disposition;
1425
1426         INIT_LIST_HEAD(&cmd->eh_entry);
1427
1428         atomic_inc(&cmd->device->iodone_cnt);
1429         if (cmd->result)
1430                 atomic_inc(&cmd->device->ioerr_cnt);
1431
1432         disposition = scsi_decide_disposition(cmd);
1433         if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1434                 disposition = SUCCESS;
1435
1436         scsi_log_completion(cmd, disposition);
1437
1438         switch (disposition) {
1439         case SUCCESS:
1440                 scsi_finish_command(cmd);
1441                 break;
1442         case NEEDS_RETRY:
1443                 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1444                 break;
1445         case ADD_TO_MLQUEUE:
1446                 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1447                 break;
1448         default:
1449                 scsi_eh_scmd_add(cmd);
1450                 break;
1451         }
1452 }
1453
1454 /**
1455  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1456  * @cmd: command block we are dispatching.
1457  *
1458  * Return: nonzero return request was rejected and device's queue needs to be
1459  * plugged.
1460  */
1461 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1462 {
1463         struct Scsi_Host *host = cmd->device->host;
1464         int rtn = 0;
1465
1466         atomic_inc(&cmd->device->iorequest_cnt);
1467
1468         /* check if the device is still usable */
1469         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1470                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1471                  * returns an immediate error upwards, and signals
1472                  * that the device is no longer present */
1473                 cmd->result = DID_NO_CONNECT << 16;
1474                 goto done;
1475         }
1476
1477         /* Check to see if the scsi lld made this device blocked. */
1478         if (unlikely(scsi_device_blocked(cmd->device))) {
1479                 /*
1480                  * in blocked state, the command is just put back on
1481                  * the device queue.  The suspend state has already
1482                  * blocked the queue so future requests should not
1483                  * occur until the device transitions out of the
1484                  * suspend state.
1485                  */
1486                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1487                         "queuecommand : device blocked\n"));
1488                 atomic_dec(&cmd->device->iorequest_cnt);
1489                 return SCSI_MLQUEUE_DEVICE_BUSY;
1490         }
1491
1492         /* Store the LUN value in cmnd, if needed. */
1493         if (cmd->device->lun_in_cdb)
1494                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1495                                (cmd->device->lun << 5 & 0xe0);
1496
1497         scsi_log_send(cmd);
1498
1499         /*
1500          * Before we queue this command, check if the command
1501          * length exceeds what the host adapter can handle.
1502          */
1503         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1504                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1505                                "queuecommand : command too long. "
1506                                "cdb_size=%d host->max_cmd_len=%d\n",
1507                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1508                 cmd->result = (DID_ABORT << 16);
1509                 goto done;
1510         }
1511
1512         if (unlikely(host->shost_state == SHOST_DEL)) {
1513                 cmd->result = (DID_NO_CONNECT << 16);
1514                 goto done;
1515
1516         }
1517
1518         trace_scsi_dispatch_cmd_start(cmd);
1519         rtn = host->hostt->queuecommand(host, cmd);
1520         if (rtn) {
1521                 atomic_dec(&cmd->device->iorequest_cnt);
1522                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1523                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1524                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1525                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1526
1527                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1528                         "queuecommand : request rejected\n"));
1529         }
1530
1531         return rtn;
1532  done:
1533         scsi_done(cmd);
1534         return 0;
1535 }
1536
1537 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1538 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1539 {
1540         return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1541                 sizeof(struct scatterlist);
1542 }
1543
1544 static blk_status_t scsi_prepare_cmd(struct request *req)
1545 {
1546         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1547         struct scsi_device *sdev = req->q->queuedata;
1548         struct Scsi_Host *shost = sdev->host;
1549         bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1550         struct scatterlist *sg;
1551
1552         scsi_init_command(sdev, cmd);
1553
1554         cmd->eh_eflags = 0;
1555         cmd->prot_type = 0;
1556         cmd->prot_flags = 0;
1557         cmd->submitter = 0;
1558         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1559         cmd->underflow = 0;
1560         cmd->transfersize = 0;
1561         cmd->host_scribble = NULL;
1562         cmd->result = 0;
1563         cmd->extra_len = 0;
1564         cmd->state = 0;
1565         if (in_flight)
1566                 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1567
1568         /*
1569          * Only clear the driver-private command data if the LLD does not supply
1570          * a function to initialize that data.
1571          */
1572         if (!shost->hostt->init_cmd_priv)
1573                 memset(cmd + 1, 0, shost->hostt->cmd_size);
1574
1575         cmd->prot_op = SCSI_PROT_NORMAL;
1576         if (blk_rq_bytes(req))
1577                 cmd->sc_data_direction = rq_dma_dir(req);
1578         else
1579                 cmd->sc_data_direction = DMA_NONE;
1580
1581         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1582         cmd->sdb.table.sgl = sg;
1583
1584         if (scsi_host_get_prot(shost)) {
1585                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1586
1587                 cmd->prot_sdb->table.sgl =
1588                         (struct scatterlist *)(cmd->prot_sdb + 1);
1589         }
1590
1591         /*
1592          * Special handling for passthrough commands, which don't go to the ULP
1593          * at all:
1594          */
1595         if (blk_rq_is_passthrough(req))
1596                 return scsi_setup_scsi_cmnd(sdev, req);
1597
1598         if (sdev->handler && sdev->handler->prep_fn) {
1599                 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1600
1601                 if (ret != BLK_STS_OK)
1602                         return ret;
1603         }
1604
1605         /* Usually overridden by the ULP */
1606         cmd->allowed = 0;
1607         memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1608         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1609 }
1610
1611 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1612 {
1613         struct request *req = scsi_cmd_to_rq(cmd);
1614
1615         switch (cmd->submitter) {
1616         case SUBMITTED_BY_BLOCK_LAYER:
1617                 break;
1618         case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1619                 return scsi_eh_done(cmd);
1620         case SUBMITTED_BY_SCSI_RESET_IOCTL:
1621                 return;
1622         }
1623
1624         if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1625                 return;
1626         if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1627                 return;
1628         trace_scsi_dispatch_cmd_done(cmd);
1629
1630         if (complete_directly)
1631                 blk_mq_complete_request_direct(req, scsi_complete);
1632         else
1633                 blk_mq_complete_request(req);
1634 }
1635
1636 void scsi_done(struct scsi_cmnd *cmd)
1637 {
1638         scsi_done_internal(cmd, false);
1639 }
1640 EXPORT_SYMBOL(scsi_done);
1641
1642 void scsi_done_direct(struct scsi_cmnd *cmd)
1643 {
1644         scsi_done_internal(cmd, true);
1645 }
1646 EXPORT_SYMBOL(scsi_done_direct);
1647
1648 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1649 {
1650         struct scsi_device *sdev = q->queuedata;
1651
1652         sbitmap_put(&sdev->budget_map, budget_token);
1653 }
1654
1655 /*
1656  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1657  * not change behaviour from the previous unplug mechanism, experimentation
1658  * may prove this needs changing.
1659  */
1660 #define SCSI_QUEUE_DELAY 3
1661
1662 static int scsi_mq_get_budget(struct request_queue *q)
1663 {
1664         struct scsi_device *sdev = q->queuedata;
1665         int token = scsi_dev_queue_ready(q, sdev);
1666
1667         if (token >= 0)
1668                 return token;
1669
1670         atomic_inc(&sdev->restarts);
1671
1672         /*
1673          * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1674          * .restarts must be incremented before .device_busy is read because the
1675          * code in scsi_run_queue_async() depends on the order of these operations.
1676          */
1677         smp_mb__after_atomic();
1678
1679         /*
1680          * If all in-flight requests originated from this LUN are completed
1681          * before reading .device_busy, sdev->device_busy will be observed as
1682          * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1683          * soon. Otherwise, completion of one of these requests will observe
1684          * the .restarts flag, and the request queue will be run for handling
1685          * this request, see scsi_end_request().
1686          */
1687         if (unlikely(scsi_device_busy(sdev) == 0 &&
1688                                 !scsi_device_blocked(sdev)))
1689                 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1690         return -1;
1691 }
1692
1693 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1694 {
1695         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1696
1697         cmd->budget_token = token;
1698 }
1699
1700 static int scsi_mq_get_rq_budget_token(struct request *req)
1701 {
1702         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1703
1704         return cmd->budget_token;
1705 }
1706
1707 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1708                          const struct blk_mq_queue_data *bd)
1709 {
1710         struct request *req = bd->rq;
1711         struct request_queue *q = req->q;
1712         struct scsi_device *sdev = q->queuedata;
1713         struct Scsi_Host *shost = sdev->host;
1714         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1715         blk_status_t ret;
1716         int reason;
1717
1718         WARN_ON_ONCE(cmd->budget_token < 0);
1719
1720         /*
1721          * If the device is not in running state we will reject some or all
1722          * commands.
1723          */
1724         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1725                 ret = scsi_device_state_check(sdev, req);
1726                 if (ret != BLK_STS_OK)
1727                         goto out_put_budget;
1728         }
1729
1730         ret = BLK_STS_RESOURCE;
1731         if (!scsi_target_queue_ready(shost, sdev))
1732                 goto out_put_budget;
1733         if (unlikely(scsi_host_in_recovery(shost))) {
1734                 if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1735                         ret = BLK_STS_OFFLINE;
1736                 goto out_dec_target_busy;
1737         }
1738         if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1739                 goto out_dec_target_busy;
1740
1741         if (!(req->rq_flags & RQF_DONTPREP)) {
1742                 ret = scsi_prepare_cmd(req);
1743                 if (ret != BLK_STS_OK)
1744                         goto out_dec_host_busy;
1745                 req->rq_flags |= RQF_DONTPREP;
1746         } else {
1747                 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1748         }
1749
1750         cmd->flags &= SCMD_PRESERVED_FLAGS;
1751         if (sdev->simple_tags)
1752                 cmd->flags |= SCMD_TAGGED;
1753         if (bd->last)
1754                 cmd->flags |= SCMD_LAST;
1755
1756         scsi_set_resid(cmd, 0);
1757         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1758         cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1759
1760         blk_mq_start_request(req);
1761         reason = scsi_dispatch_cmd(cmd);
1762         if (reason) {
1763                 scsi_set_blocked(cmd, reason);
1764                 ret = BLK_STS_RESOURCE;
1765                 goto out_dec_host_busy;
1766         }
1767
1768         return BLK_STS_OK;
1769
1770 out_dec_host_busy:
1771         scsi_dec_host_busy(shost, cmd);
1772 out_dec_target_busy:
1773         if (scsi_target(sdev)->can_queue > 0)
1774                 atomic_dec(&scsi_target(sdev)->target_busy);
1775 out_put_budget:
1776         scsi_mq_put_budget(q, cmd->budget_token);
1777         cmd->budget_token = -1;
1778         switch (ret) {
1779         case BLK_STS_OK:
1780                 break;
1781         case BLK_STS_RESOURCE:
1782         case BLK_STS_ZONE_RESOURCE:
1783                 if (scsi_device_blocked(sdev))
1784                         ret = BLK_STS_DEV_RESOURCE;
1785                 break;
1786         case BLK_STS_AGAIN:
1787                 cmd->result = DID_BUS_BUSY << 16;
1788                 if (req->rq_flags & RQF_DONTPREP)
1789                         scsi_mq_uninit_cmd(cmd);
1790                 break;
1791         default:
1792                 if (unlikely(!scsi_device_online(sdev)))
1793                         cmd->result = DID_NO_CONNECT << 16;
1794                 else
1795                         cmd->result = DID_ERROR << 16;
1796                 /*
1797                  * Make sure to release all allocated resources when
1798                  * we hit an error, as we will never see this command
1799                  * again.
1800                  */
1801                 if (req->rq_flags & RQF_DONTPREP)
1802                         scsi_mq_uninit_cmd(cmd);
1803                 scsi_run_queue_async(sdev);
1804                 break;
1805         }
1806         return ret;
1807 }
1808
1809 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1810                                 unsigned int hctx_idx, unsigned int numa_node)
1811 {
1812         struct Scsi_Host *shost = set->driver_data;
1813         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1814         struct scatterlist *sg;
1815         int ret = 0;
1816
1817         cmd->sense_buffer =
1818                 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1819         if (!cmd->sense_buffer)
1820                 return -ENOMEM;
1821
1822         if (scsi_host_get_prot(shost)) {
1823                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1824                         shost->hostt->cmd_size;
1825                 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1826         }
1827
1828         if (shost->hostt->init_cmd_priv) {
1829                 ret = shost->hostt->init_cmd_priv(shost, cmd);
1830                 if (ret < 0)
1831                         kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1832         }
1833
1834         return ret;
1835 }
1836
1837 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1838                                  unsigned int hctx_idx)
1839 {
1840         struct Scsi_Host *shost = set->driver_data;
1841         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1842
1843         if (shost->hostt->exit_cmd_priv)
1844                 shost->hostt->exit_cmd_priv(shost, cmd);
1845         kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1846 }
1847
1848
1849 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1850 {
1851         struct Scsi_Host *shost = hctx->driver_data;
1852
1853         if (shost->hostt->mq_poll)
1854                 return shost->hostt->mq_poll(shost, hctx->queue_num);
1855
1856         return 0;
1857 }
1858
1859 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1860                           unsigned int hctx_idx)
1861 {
1862         struct Scsi_Host *shost = data;
1863
1864         hctx->driver_data = shost;
1865         return 0;
1866 }
1867
1868 static void scsi_map_queues(struct blk_mq_tag_set *set)
1869 {
1870         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1871
1872         if (shost->hostt->map_queues)
1873                 return shost->hostt->map_queues(shost);
1874         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1875 }
1876
1877 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1878 {
1879         struct device *dev = shost->dma_dev;
1880
1881         /*
1882          * this limit is imposed by hardware restrictions
1883          */
1884         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1885                                         SG_MAX_SEGMENTS));
1886
1887         if (scsi_host_prot_dma(shost)) {
1888                 shost->sg_prot_tablesize =
1889                         min_not_zero(shost->sg_prot_tablesize,
1890                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1891                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1892                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1893         }
1894
1895         blk_queue_max_hw_sectors(q, shost->max_sectors);
1896         blk_queue_segment_boundary(q, shost->dma_boundary);
1897         dma_set_seg_boundary(dev, shost->dma_boundary);
1898
1899         blk_queue_max_segment_size(q, shost->max_segment_size);
1900         blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1901         dma_set_max_seg_size(dev, queue_max_segment_size(q));
1902
1903         /*
1904          * Set a reasonable default alignment:  The larger of 32-byte (dword),
1905          * which is a common minimum for HBAs, and the minimum DMA alignment,
1906          * which is set by the platform.
1907          *
1908          * Devices that require a bigger alignment can increase it later.
1909          */
1910         blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1911 }
1912 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1913
1914 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1915         .get_budget     = scsi_mq_get_budget,
1916         .put_budget     = scsi_mq_put_budget,
1917         .queue_rq       = scsi_queue_rq,
1918         .complete       = scsi_complete,
1919         .timeout        = scsi_timeout,
1920 #ifdef CONFIG_BLK_DEBUG_FS
1921         .show_rq        = scsi_show_rq,
1922 #endif
1923         .init_request   = scsi_mq_init_request,
1924         .exit_request   = scsi_mq_exit_request,
1925         .cleanup_rq     = scsi_cleanup_rq,
1926         .busy           = scsi_mq_lld_busy,
1927         .map_queues     = scsi_map_queues,
1928         .init_hctx      = scsi_init_hctx,
1929         .poll           = scsi_mq_poll,
1930         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1931         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1932 };
1933
1934
1935 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1936 {
1937         struct Scsi_Host *shost = hctx->driver_data;
1938
1939         shost->hostt->commit_rqs(shost, hctx->queue_num);
1940 }
1941
1942 static const struct blk_mq_ops scsi_mq_ops = {
1943         .get_budget     = scsi_mq_get_budget,
1944         .put_budget     = scsi_mq_put_budget,
1945         .queue_rq       = scsi_queue_rq,
1946         .commit_rqs     = scsi_commit_rqs,
1947         .complete       = scsi_complete,
1948         .timeout        = scsi_timeout,
1949 #ifdef CONFIG_BLK_DEBUG_FS
1950         .show_rq        = scsi_show_rq,
1951 #endif
1952         .init_request   = scsi_mq_init_request,
1953         .exit_request   = scsi_mq_exit_request,
1954         .cleanup_rq     = scsi_cleanup_rq,
1955         .busy           = scsi_mq_lld_busy,
1956         .map_queues     = scsi_map_queues,
1957         .init_hctx      = scsi_init_hctx,
1958         .poll           = scsi_mq_poll,
1959         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1960         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1961 };
1962
1963 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1964 {
1965         unsigned int cmd_size, sgl_size;
1966         struct blk_mq_tag_set *tag_set = &shost->tag_set;
1967
1968         sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1969                                 scsi_mq_inline_sgl_size(shost));
1970         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1971         if (scsi_host_get_prot(shost))
1972                 cmd_size += sizeof(struct scsi_data_buffer) +
1973                         sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1974
1975         memset(tag_set, 0, sizeof(*tag_set));
1976         if (shost->hostt->commit_rqs)
1977                 tag_set->ops = &scsi_mq_ops;
1978         else
1979                 tag_set->ops = &scsi_mq_ops_no_commit;
1980         tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1981         tag_set->nr_maps = shost->nr_maps ? : 1;
1982         tag_set->queue_depth = shost->can_queue;
1983         tag_set->cmd_size = cmd_size;
1984         tag_set->numa_node = dev_to_node(shost->dma_dev);
1985         tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1986         tag_set->flags |=
1987                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1988         if (shost->queuecommand_may_block)
1989                 tag_set->flags |= BLK_MQ_F_BLOCKING;
1990         tag_set->driver_data = shost;
1991         if (shost->host_tagset)
1992                 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1993
1994         return blk_mq_alloc_tag_set(tag_set);
1995 }
1996
1997 void scsi_mq_free_tags(struct kref *kref)
1998 {
1999         struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2000                                                tagset_refcnt);
2001
2002         blk_mq_free_tag_set(&shost->tag_set);
2003         complete(&shost->tagset_freed);
2004 }
2005
2006 /**
2007  * scsi_device_from_queue - return sdev associated with a request_queue
2008  * @q: The request queue to return the sdev from
2009  *
2010  * Return the sdev associated with a request queue or NULL if the
2011  * request_queue does not reference a SCSI device.
2012  */
2013 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2014 {
2015         struct scsi_device *sdev = NULL;
2016
2017         if (q->mq_ops == &scsi_mq_ops_no_commit ||
2018             q->mq_ops == &scsi_mq_ops)
2019                 sdev = q->queuedata;
2020         if (!sdev || !get_device(&sdev->sdev_gendev))
2021                 sdev = NULL;
2022
2023         return sdev;
2024 }
2025 /*
2026  * pktcdvd should have been integrated into the SCSI layers, but for historical
2027  * reasons like the old IDE driver it isn't.  This export allows it to safely
2028  * probe if a given device is a SCSI one and only attach to that.
2029  */
2030 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2031 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2032 #endif
2033
2034 /**
2035  * scsi_block_requests - Utility function used by low-level drivers to prevent
2036  * further commands from being queued to the device.
2037  * @shost:  host in question
2038  *
2039  * There is no timer nor any other means by which the requests get unblocked
2040  * other than the low-level driver calling scsi_unblock_requests().
2041  */
2042 void scsi_block_requests(struct Scsi_Host *shost)
2043 {
2044         shost->host_self_blocked = 1;
2045 }
2046 EXPORT_SYMBOL(scsi_block_requests);
2047
2048 /**
2049  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2050  * further commands to be queued to the device.
2051  * @shost:  host in question
2052  *
2053  * There is no timer nor any other means by which the requests get unblocked
2054  * other than the low-level driver calling scsi_unblock_requests(). This is done
2055  * as an API function so that changes to the internals of the scsi mid-layer
2056  * won't require wholesale changes to drivers that use this feature.
2057  */
2058 void scsi_unblock_requests(struct Scsi_Host *shost)
2059 {
2060         shost->host_self_blocked = 0;
2061         scsi_run_host_queues(shost);
2062 }
2063 EXPORT_SYMBOL(scsi_unblock_requests);
2064
2065 void scsi_exit_queue(void)
2066 {
2067         kmem_cache_destroy(scsi_sense_cache);
2068 }
2069
2070 /**
2071  *      scsi_mode_select - issue a mode select
2072  *      @sdev:  SCSI device to be queried
2073  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2074  *      @sp:    Save page bit (0 == don't save, 1 == save)
2075  *      @buffer: request buffer (may not be smaller than eight bytes)
2076  *      @len:   length of request buffer.
2077  *      @timeout: command timeout
2078  *      @retries: number of retries before failing
2079  *      @data: returns a structure abstracting the mode header data
2080  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2081  *              must be SCSI_SENSE_BUFFERSIZE big.
2082  *
2083  *      Returns zero if successful; negative error number or scsi
2084  *      status on error
2085  *
2086  */
2087 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2088                      unsigned char *buffer, int len, int timeout, int retries,
2089                      struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2090 {
2091         unsigned char cmd[10];
2092         unsigned char *real_buffer;
2093         const struct scsi_exec_args exec_args = {
2094                 .sshdr = sshdr,
2095         };
2096         int ret;
2097
2098         memset(cmd, 0, sizeof(cmd));
2099         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2100
2101         /*
2102          * Use MODE SELECT(10) if the device asked for it or if the mode page
2103          * and the mode select header cannot fit within the maximumm 255 bytes
2104          * of the MODE SELECT(6) command.
2105          */
2106         if (sdev->use_10_for_ms ||
2107             len + 4 > 255 ||
2108             data->block_descriptor_length > 255) {
2109                 if (len > 65535 - 8)
2110                         return -EINVAL;
2111                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2112                 if (!real_buffer)
2113                         return -ENOMEM;
2114                 memcpy(real_buffer + 8, buffer, len);
2115                 len += 8;
2116                 real_buffer[0] = 0;
2117                 real_buffer[1] = 0;
2118                 real_buffer[2] = data->medium_type;
2119                 real_buffer[3] = data->device_specific;
2120                 real_buffer[4] = data->longlba ? 0x01 : 0;
2121                 real_buffer[5] = 0;
2122                 put_unaligned_be16(data->block_descriptor_length,
2123                                    &real_buffer[6]);
2124
2125                 cmd[0] = MODE_SELECT_10;
2126                 put_unaligned_be16(len, &cmd[7]);
2127         } else {
2128                 if (data->longlba)
2129                         return -EINVAL;
2130
2131                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2132                 if (!real_buffer)
2133                         return -ENOMEM;
2134                 memcpy(real_buffer + 4, buffer, len);
2135                 len += 4;
2136                 real_buffer[0] = 0;
2137                 real_buffer[1] = data->medium_type;
2138                 real_buffer[2] = data->device_specific;
2139                 real_buffer[3] = data->block_descriptor_length;
2140
2141                 cmd[0] = MODE_SELECT;
2142                 cmd[4] = len;
2143         }
2144
2145         ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2146                                timeout, retries, &exec_args);
2147         kfree(real_buffer);
2148         return ret;
2149 }
2150 EXPORT_SYMBOL_GPL(scsi_mode_select);
2151
2152 /**
2153  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2154  *      @sdev:  SCSI device to be queried
2155  *      @dbd:   set to prevent mode sense from returning block descriptors
2156  *      @modepage: mode page being requested
2157  *      @subpage: sub-page of the mode page being requested
2158  *      @buffer: request buffer (may not be smaller than eight bytes)
2159  *      @len:   length of request buffer.
2160  *      @timeout: command timeout
2161  *      @retries: number of retries before failing
2162  *      @data: returns a structure abstracting the mode header data
2163  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2164  *              must be SCSI_SENSE_BUFFERSIZE big.
2165  *
2166  *      Returns zero if successful, or a negative error number on failure
2167  */
2168 int
2169 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2170                   unsigned char *buffer, int len, int timeout, int retries,
2171                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2172 {
2173         unsigned char cmd[12];
2174         int use_10_for_ms;
2175         int header_length;
2176         int result, retry_count = retries;
2177         struct scsi_sense_hdr my_sshdr;
2178         const struct scsi_exec_args exec_args = {
2179                 /* caller might not be interested in sense, but we need it */
2180                 .sshdr = sshdr ? : &my_sshdr,
2181         };
2182
2183         memset(data, 0, sizeof(*data));
2184         memset(&cmd[0], 0, 12);
2185
2186         dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2187         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2188         cmd[2] = modepage;
2189         cmd[3] = subpage;
2190
2191         sshdr = exec_args.sshdr;
2192
2193  retry:
2194         use_10_for_ms = sdev->use_10_for_ms || len > 255;
2195
2196         if (use_10_for_ms) {
2197                 if (len < 8 || len > 65535)
2198                         return -EINVAL;
2199
2200                 cmd[0] = MODE_SENSE_10;
2201                 put_unaligned_be16(len, &cmd[7]);
2202                 header_length = 8;
2203         } else {
2204                 if (len < 4)
2205                         return -EINVAL;
2206
2207                 cmd[0] = MODE_SENSE;
2208                 cmd[4] = len;
2209                 header_length = 4;
2210         }
2211
2212         memset(buffer, 0, len);
2213
2214         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2215                                   timeout, retries, &exec_args);
2216         if (result < 0)
2217                 return result;
2218
2219         /* This code looks awful: what it's doing is making sure an
2220          * ILLEGAL REQUEST sense return identifies the actual command
2221          * byte as the problem.  MODE_SENSE commands can return
2222          * ILLEGAL REQUEST if the code page isn't supported */
2223
2224         if (!scsi_status_is_good(result)) {
2225                 if (scsi_sense_valid(sshdr)) {
2226                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2227                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2228                                 /*
2229                                  * Invalid command operation code: retry using
2230                                  * MODE SENSE(6) if this was a MODE SENSE(10)
2231                                  * request, except if the request mode page is
2232                                  * too large for MODE SENSE single byte
2233                                  * allocation length field.
2234                                  */
2235                                 if (use_10_for_ms) {
2236                                         if (len > 255)
2237                                                 return -EIO;
2238                                         sdev->use_10_for_ms = 0;
2239                                         goto retry;
2240                                 }
2241                         }
2242                         if (scsi_status_is_check_condition(result) &&
2243                             sshdr->sense_key == UNIT_ATTENTION &&
2244                             retry_count) {
2245                                 retry_count--;
2246                                 goto retry;
2247                         }
2248                 }
2249                 return -EIO;
2250         }
2251         if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2252                      (modepage == 6 || modepage == 8))) {
2253                 /* Initio breakage? */
2254                 header_length = 0;
2255                 data->length = 13;
2256                 data->medium_type = 0;
2257                 data->device_specific = 0;
2258                 data->longlba = 0;
2259                 data->block_descriptor_length = 0;
2260         } else if (use_10_for_ms) {
2261                 data->length = get_unaligned_be16(&buffer[0]) + 2;
2262                 data->medium_type = buffer[2];
2263                 data->device_specific = buffer[3];
2264                 data->longlba = buffer[4] & 0x01;
2265                 data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2266         } else {
2267                 data->length = buffer[0] + 1;
2268                 data->medium_type = buffer[1];
2269                 data->device_specific = buffer[2];
2270                 data->block_descriptor_length = buffer[3];
2271         }
2272         data->header_length = header_length;
2273
2274         return 0;
2275 }
2276 EXPORT_SYMBOL(scsi_mode_sense);
2277
2278 /**
2279  *      scsi_test_unit_ready - test if unit is ready
2280  *      @sdev:  scsi device to change the state of.
2281  *      @timeout: command timeout
2282  *      @retries: number of retries before failing
2283  *      @sshdr: outpout pointer for decoded sense information.
2284  *
2285  *      Returns zero if unsuccessful or an error if TUR failed.  For
2286  *      removable media, UNIT_ATTENTION sets ->changed flag.
2287  **/
2288 int
2289 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2290                      struct scsi_sense_hdr *sshdr)
2291 {
2292         char cmd[] = {
2293                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2294         };
2295         const struct scsi_exec_args exec_args = {
2296                 .sshdr = sshdr,
2297         };
2298         int result;
2299
2300         /* try to eat the UNIT_ATTENTION if there are enough retries */
2301         do {
2302                 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2303                                           timeout, 1, &exec_args);
2304                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2305                     sshdr->sense_key == UNIT_ATTENTION)
2306                         sdev->changed = 1;
2307         } while (scsi_sense_valid(sshdr) &&
2308                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2309
2310         return result;
2311 }
2312 EXPORT_SYMBOL(scsi_test_unit_ready);
2313
2314 /**
2315  *      scsi_device_set_state - Take the given device through the device state model.
2316  *      @sdev:  scsi device to change the state of.
2317  *      @state: state to change to.
2318  *
2319  *      Returns zero if successful or an error if the requested
2320  *      transition is illegal.
2321  */
2322 int
2323 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2324 {
2325         enum scsi_device_state oldstate = sdev->sdev_state;
2326
2327         if (state == oldstate)
2328                 return 0;
2329
2330         switch (state) {
2331         case SDEV_CREATED:
2332                 switch (oldstate) {
2333                 case SDEV_CREATED_BLOCK:
2334                         break;
2335                 default:
2336                         goto illegal;
2337                 }
2338                 break;
2339
2340         case SDEV_RUNNING:
2341                 switch (oldstate) {
2342                 case SDEV_CREATED:
2343                 case SDEV_OFFLINE:
2344                 case SDEV_TRANSPORT_OFFLINE:
2345                 case SDEV_QUIESCE:
2346                 case SDEV_BLOCK:
2347                         break;
2348                 default:
2349                         goto illegal;
2350                 }
2351                 break;
2352
2353         case SDEV_QUIESCE:
2354                 switch (oldstate) {
2355                 case SDEV_RUNNING:
2356                 case SDEV_OFFLINE:
2357                 case SDEV_TRANSPORT_OFFLINE:
2358                         break;
2359                 default:
2360                         goto illegal;
2361                 }
2362                 break;
2363
2364         case SDEV_OFFLINE:
2365         case SDEV_TRANSPORT_OFFLINE:
2366                 switch (oldstate) {
2367                 case SDEV_CREATED:
2368                 case SDEV_RUNNING:
2369                 case SDEV_QUIESCE:
2370                 case SDEV_BLOCK:
2371                         break;
2372                 default:
2373                         goto illegal;
2374                 }
2375                 break;
2376
2377         case SDEV_BLOCK:
2378                 switch (oldstate) {
2379                 case SDEV_RUNNING:
2380                 case SDEV_CREATED_BLOCK:
2381                 case SDEV_QUIESCE:
2382                 case SDEV_OFFLINE:
2383                         break;
2384                 default:
2385                         goto illegal;
2386                 }
2387                 break;
2388
2389         case SDEV_CREATED_BLOCK:
2390                 switch (oldstate) {
2391                 case SDEV_CREATED:
2392                         break;
2393                 default:
2394                         goto illegal;
2395                 }
2396                 break;
2397
2398         case SDEV_CANCEL:
2399                 switch (oldstate) {
2400                 case SDEV_CREATED:
2401                 case SDEV_RUNNING:
2402                 case SDEV_QUIESCE:
2403                 case SDEV_OFFLINE:
2404                 case SDEV_TRANSPORT_OFFLINE:
2405                         break;
2406                 default:
2407                         goto illegal;
2408                 }
2409                 break;
2410
2411         case SDEV_DEL:
2412                 switch (oldstate) {
2413                 case SDEV_CREATED:
2414                 case SDEV_RUNNING:
2415                 case SDEV_OFFLINE:
2416                 case SDEV_TRANSPORT_OFFLINE:
2417                 case SDEV_CANCEL:
2418                 case SDEV_BLOCK:
2419                 case SDEV_CREATED_BLOCK:
2420                         break;
2421                 default:
2422                         goto illegal;
2423                 }
2424                 break;
2425
2426         }
2427         sdev->offline_already = false;
2428         sdev->sdev_state = state;
2429         return 0;
2430
2431  illegal:
2432         SCSI_LOG_ERROR_RECOVERY(1,
2433                                 sdev_printk(KERN_ERR, sdev,
2434                                             "Illegal state transition %s->%s",
2435                                             scsi_device_state_name(oldstate),
2436                                             scsi_device_state_name(state))
2437                                 );
2438         return -EINVAL;
2439 }
2440 EXPORT_SYMBOL(scsi_device_set_state);
2441
2442 /**
2443  *      scsi_evt_emit - emit a single SCSI device uevent
2444  *      @sdev: associated SCSI device
2445  *      @evt: event to emit
2446  *
2447  *      Send a single uevent (scsi_event) to the associated scsi_device.
2448  */
2449 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2450 {
2451         int idx = 0;
2452         char *envp[3];
2453
2454         switch (evt->evt_type) {
2455         case SDEV_EVT_MEDIA_CHANGE:
2456                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2457                 break;
2458         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2459                 scsi_rescan_device(sdev);
2460                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2461                 break;
2462         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2463                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2464                 break;
2465         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2466                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2467                 break;
2468         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2469                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2470                 break;
2471         case SDEV_EVT_LUN_CHANGE_REPORTED:
2472                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2473                 break;
2474         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2475                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2476                 break;
2477         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2478                 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2479                 break;
2480         default:
2481                 /* do nothing */
2482                 break;
2483         }
2484
2485         envp[idx++] = NULL;
2486
2487         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2488 }
2489
2490 /**
2491  *      scsi_evt_thread - send a uevent for each scsi event
2492  *      @work: work struct for scsi_device
2493  *
2494  *      Dispatch queued events to their associated scsi_device kobjects
2495  *      as uevents.
2496  */
2497 void scsi_evt_thread(struct work_struct *work)
2498 {
2499         struct scsi_device *sdev;
2500         enum scsi_device_event evt_type;
2501         LIST_HEAD(event_list);
2502
2503         sdev = container_of(work, struct scsi_device, event_work);
2504
2505         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2506                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2507                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2508
2509         while (1) {
2510                 struct scsi_event *evt;
2511                 struct list_head *this, *tmp;
2512                 unsigned long flags;
2513
2514                 spin_lock_irqsave(&sdev->list_lock, flags);
2515                 list_splice_init(&sdev->event_list, &event_list);
2516                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2517
2518                 if (list_empty(&event_list))
2519                         break;
2520
2521                 list_for_each_safe(this, tmp, &event_list) {
2522                         evt = list_entry(this, struct scsi_event, node);
2523                         list_del(&evt->node);
2524                         scsi_evt_emit(sdev, evt);
2525                         kfree(evt);
2526                 }
2527         }
2528 }
2529
2530 /**
2531  *      sdev_evt_send - send asserted event to uevent thread
2532  *      @sdev: scsi_device event occurred on
2533  *      @evt: event to send
2534  *
2535  *      Assert scsi device event asynchronously.
2536  */
2537 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2538 {
2539         unsigned long flags;
2540
2541 #if 0
2542         /* FIXME: currently this check eliminates all media change events
2543          * for polled devices.  Need to update to discriminate between AN
2544          * and polled events */
2545         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2546                 kfree(evt);
2547                 return;
2548         }
2549 #endif
2550
2551         spin_lock_irqsave(&sdev->list_lock, flags);
2552         list_add_tail(&evt->node, &sdev->event_list);
2553         schedule_work(&sdev->event_work);
2554         spin_unlock_irqrestore(&sdev->list_lock, flags);
2555 }
2556 EXPORT_SYMBOL_GPL(sdev_evt_send);
2557
2558 /**
2559  *      sdev_evt_alloc - allocate a new scsi event
2560  *      @evt_type: type of event to allocate
2561  *      @gfpflags: GFP flags for allocation
2562  *
2563  *      Allocates and returns a new scsi_event.
2564  */
2565 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2566                                   gfp_t gfpflags)
2567 {
2568         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2569         if (!evt)
2570                 return NULL;
2571
2572         evt->evt_type = evt_type;
2573         INIT_LIST_HEAD(&evt->node);
2574
2575         /* evt_type-specific initialization, if any */
2576         switch (evt_type) {
2577         case SDEV_EVT_MEDIA_CHANGE:
2578         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2579         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2580         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2581         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2582         case SDEV_EVT_LUN_CHANGE_REPORTED:
2583         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2584         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2585         default:
2586                 /* do nothing */
2587                 break;
2588         }
2589
2590         return evt;
2591 }
2592 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2593
2594 /**
2595  *      sdev_evt_send_simple - send asserted event to uevent thread
2596  *      @sdev: scsi_device event occurred on
2597  *      @evt_type: type of event to send
2598  *      @gfpflags: GFP flags for allocation
2599  *
2600  *      Assert scsi device event asynchronously, given an event type.
2601  */
2602 void sdev_evt_send_simple(struct scsi_device *sdev,
2603                           enum scsi_device_event evt_type, gfp_t gfpflags)
2604 {
2605         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2606         if (!evt) {
2607                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2608                             evt_type);
2609                 return;
2610         }
2611
2612         sdev_evt_send(sdev, evt);
2613 }
2614 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2615
2616 /**
2617  *      scsi_device_quiesce - Block all commands except power management.
2618  *      @sdev:  scsi device to quiesce.
2619  *
2620  *      This works by trying to transition to the SDEV_QUIESCE state
2621  *      (which must be a legal transition).  When the device is in this
2622  *      state, only power management requests will be accepted, all others will
2623  *      be deferred.
2624  *
2625  *      Must be called with user context, may sleep.
2626  *
2627  *      Returns zero if unsuccessful or an error if not.
2628  */
2629 int
2630 scsi_device_quiesce(struct scsi_device *sdev)
2631 {
2632         struct request_queue *q = sdev->request_queue;
2633         int err;
2634
2635         /*
2636          * It is allowed to call scsi_device_quiesce() multiple times from
2637          * the same context but concurrent scsi_device_quiesce() calls are
2638          * not allowed.
2639          */
2640         WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2641
2642         if (sdev->quiesced_by == current)
2643                 return 0;
2644
2645         blk_set_pm_only(q);
2646
2647         blk_mq_freeze_queue(q);
2648         /*
2649          * Ensure that the effect of blk_set_pm_only() will be visible
2650          * for percpu_ref_tryget() callers that occur after the queue
2651          * unfreeze even if the queue was already frozen before this function
2652          * was called. See also https://lwn.net/Articles/573497/.
2653          */
2654         synchronize_rcu();
2655         blk_mq_unfreeze_queue(q);
2656
2657         mutex_lock(&sdev->state_mutex);
2658         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2659         if (err == 0)
2660                 sdev->quiesced_by = current;
2661         else
2662                 blk_clear_pm_only(q);
2663         mutex_unlock(&sdev->state_mutex);
2664
2665         return err;
2666 }
2667 EXPORT_SYMBOL(scsi_device_quiesce);
2668
2669 /**
2670  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2671  *      @sdev:  scsi device to resume.
2672  *
2673  *      Moves the device from quiesced back to running and restarts the
2674  *      queues.
2675  *
2676  *      Must be called with user context, may sleep.
2677  */
2678 void scsi_device_resume(struct scsi_device *sdev)
2679 {
2680         /* check if the device state was mutated prior to resume, and if
2681          * so assume the state is being managed elsewhere (for example
2682          * device deleted during suspend)
2683          */
2684         mutex_lock(&sdev->state_mutex);
2685         if (sdev->sdev_state == SDEV_QUIESCE)
2686                 scsi_device_set_state(sdev, SDEV_RUNNING);
2687         if (sdev->quiesced_by) {
2688                 sdev->quiesced_by = NULL;
2689                 blk_clear_pm_only(sdev->request_queue);
2690         }
2691         mutex_unlock(&sdev->state_mutex);
2692 }
2693 EXPORT_SYMBOL(scsi_device_resume);
2694
2695 static void
2696 device_quiesce_fn(struct scsi_device *sdev, void *data)
2697 {
2698         scsi_device_quiesce(sdev);
2699 }
2700
2701 void
2702 scsi_target_quiesce(struct scsi_target *starget)
2703 {
2704         starget_for_each_device(starget, NULL, device_quiesce_fn);
2705 }
2706 EXPORT_SYMBOL(scsi_target_quiesce);
2707
2708 static void
2709 device_resume_fn(struct scsi_device *sdev, void *data)
2710 {
2711         scsi_device_resume(sdev);
2712 }
2713
2714 void
2715 scsi_target_resume(struct scsi_target *starget)
2716 {
2717         starget_for_each_device(starget, NULL, device_resume_fn);
2718 }
2719 EXPORT_SYMBOL(scsi_target_resume);
2720
2721 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2722 {
2723         if (scsi_device_set_state(sdev, SDEV_BLOCK))
2724                 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2725
2726         return 0;
2727 }
2728
2729 void scsi_start_queue(struct scsi_device *sdev)
2730 {
2731         if (cmpxchg(&sdev->queue_stopped, 1, 0))
2732                 blk_mq_unquiesce_queue(sdev->request_queue);
2733 }
2734
2735 static void scsi_stop_queue(struct scsi_device *sdev)
2736 {
2737         /*
2738          * The atomic variable of ->queue_stopped covers that
2739          * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2740          *
2741          * The caller needs to wait until quiesce is done.
2742          */
2743         if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2744                 blk_mq_quiesce_queue_nowait(sdev->request_queue);
2745 }
2746
2747 /**
2748  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2749  * @sdev: device to block
2750  *
2751  * Pause SCSI command processing on the specified device. Does not sleep.
2752  *
2753  * Returns zero if successful or a negative error code upon failure.
2754  *
2755  * Notes:
2756  * This routine transitions the device to the SDEV_BLOCK state (which must be
2757  * a legal transition). When the device is in this state, command processing
2758  * is paused until the device leaves the SDEV_BLOCK state. See also
2759  * scsi_internal_device_unblock_nowait().
2760  */
2761 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2762 {
2763         int ret = __scsi_internal_device_block_nowait(sdev);
2764
2765         /*
2766          * The device has transitioned to SDEV_BLOCK.  Stop the
2767          * block layer from calling the midlayer with this device's
2768          * request queue.
2769          */
2770         if (!ret)
2771                 scsi_stop_queue(sdev);
2772         return ret;
2773 }
2774 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2775
2776 /**
2777  * scsi_device_block - try to transition to the SDEV_BLOCK state
2778  * @sdev: device to block
2779  * @data: dummy argument, ignored
2780  *
2781  * Pause SCSI command processing on the specified device. Callers must wait
2782  * until all ongoing scsi_queue_rq() calls have finished after this function
2783  * returns.
2784  *
2785  * Note:
2786  * This routine transitions the device to the SDEV_BLOCK state (which must be
2787  * a legal transition). When the device is in this state, command processing
2788  * is paused until the device leaves the SDEV_BLOCK state. See also
2789  * scsi_internal_device_unblock().
2790  */
2791 static void scsi_device_block(struct scsi_device *sdev, void *data)
2792 {
2793         int err;
2794         enum scsi_device_state state;
2795
2796         mutex_lock(&sdev->state_mutex);
2797         err = __scsi_internal_device_block_nowait(sdev);
2798         state = sdev->sdev_state;
2799         if (err == 0)
2800                 /*
2801                  * scsi_stop_queue() must be called with the state_mutex
2802                  * held. Otherwise a simultaneous scsi_start_queue() call
2803                  * might unquiesce the queue before we quiesce it.
2804                  */
2805                 scsi_stop_queue(sdev);
2806
2807         mutex_unlock(&sdev->state_mutex);
2808
2809         WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2810                   __func__, dev_name(&sdev->sdev_gendev), state);
2811 }
2812
2813 /**
2814  * scsi_internal_device_unblock_nowait - resume a device after a block request
2815  * @sdev:       device to resume
2816  * @new_state:  state to set the device to after unblocking
2817  *
2818  * Restart the device queue for a previously suspended SCSI device. Does not
2819  * sleep.
2820  *
2821  * Returns zero if successful or a negative error code upon failure.
2822  *
2823  * Notes:
2824  * This routine transitions the device to the SDEV_RUNNING state or to one of
2825  * the offline states (which must be a legal transition) allowing the midlayer
2826  * to goose the queue for this device.
2827  */
2828 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2829                                         enum scsi_device_state new_state)
2830 {
2831         switch (new_state) {
2832         case SDEV_RUNNING:
2833         case SDEV_TRANSPORT_OFFLINE:
2834                 break;
2835         default:
2836                 return -EINVAL;
2837         }
2838
2839         /*
2840          * Try to transition the scsi device to SDEV_RUNNING or one of the
2841          * offlined states and goose the device queue if successful.
2842          */
2843         switch (sdev->sdev_state) {
2844         case SDEV_BLOCK:
2845         case SDEV_TRANSPORT_OFFLINE:
2846                 sdev->sdev_state = new_state;
2847                 break;
2848         case SDEV_CREATED_BLOCK:
2849                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2850                     new_state == SDEV_OFFLINE)
2851                         sdev->sdev_state = new_state;
2852                 else
2853                         sdev->sdev_state = SDEV_CREATED;
2854                 break;
2855         case SDEV_CANCEL:
2856         case SDEV_OFFLINE:
2857                 break;
2858         default:
2859                 return -EINVAL;
2860         }
2861         scsi_start_queue(sdev);
2862
2863         return 0;
2864 }
2865 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2866
2867 /**
2868  * scsi_internal_device_unblock - resume a device after a block request
2869  * @sdev:       device to resume
2870  * @new_state:  state to set the device to after unblocking
2871  *
2872  * Restart the device queue for a previously suspended SCSI device. May sleep.
2873  *
2874  * Returns zero if successful or a negative error code upon failure.
2875  *
2876  * Notes:
2877  * This routine transitions the device to the SDEV_RUNNING state or to one of
2878  * the offline states (which must be a legal transition) allowing the midlayer
2879  * to goose the queue for this device.
2880  */
2881 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2882                                         enum scsi_device_state new_state)
2883 {
2884         int ret;
2885
2886         mutex_lock(&sdev->state_mutex);
2887         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2888         mutex_unlock(&sdev->state_mutex);
2889
2890         return ret;
2891 }
2892
2893 static int
2894 target_block(struct device *dev, void *data)
2895 {
2896         if (scsi_is_target_device(dev))
2897                 starget_for_each_device(to_scsi_target(dev), NULL,
2898                                         scsi_device_block);
2899         return 0;
2900 }
2901
2902 /**
2903  * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
2904  * @dev: a parent device of one or more scsi_target devices
2905  * @shost: the Scsi_Host to which this device belongs
2906  *
2907  * Iterate over all children of @dev, which should be scsi_target devices,
2908  * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
2909  * ongoing scsi_queue_rq() calls to finish. May sleep.
2910  *
2911  * Note:
2912  * @dev must not itself be a scsi_target device.
2913  */
2914 void
2915 scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
2916 {
2917         WARN_ON_ONCE(scsi_is_target_device(dev));
2918         device_for_each_child(dev, NULL, target_block);
2919         blk_mq_wait_quiesce_done(&shost->tag_set);
2920 }
2921 EXPORT_SYMBOL_GPL(scsi_block_targets);
2922
2923 static void
2924 device_unblock(struct scsi_device *sdev, void *data)
2925 {
2926         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2927 }
2928
2929 static int
2930 target_unblock(struct device *dev, void *data)
2931 {
2932         if (scsi_is_target_device(dev))
2933                 starget_for_each_device(to_scsi_target(dev), data,
2934                                         device_unblock);
2935         return 0;
2936 }
2937
2938 void
2939 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2940 {
2941         if (scsi_is_target_device(dev))
2942                 starget_for_each_device(to_scsi_target(dev), &new_state,
2943                                         device_unblock);
2944         else
2945                 device_for_each_child(dev, &new_state, target_unblock);
2946 }
2947 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2948
2949 /**
2950  * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
2951  * @shost: device to block
2952  *
2953  * Pause SCSI command processing for all logical units associated with the SCSI
2954  * host and wait until pending scsi_queue_rq() calls have finished.
2955  *
2956  * Returns zero if successful or a negative error code upon failure.
2957  */
2958 int
2959 scsi_host_block(struct Scsi_Host *shost)
2960 {
2961         struct scsi_device *sdev;
2962         int ret;
2963
2964         /*
2965          * Call scsi_internal_device_block_nowait so we can avoid
2966          * calling synchronize_rcu() for each LUN.
2967          */
2968         shost_for_each_device(sdev, shost) {
2969                 mutex_lock(&sdev->state_mutex);
2970                 ret = scsi_internal_device_block_nowait(sdev);
2971                 mutex_unlock(&sdev->state_mutex);
2972                 if (ret) {
2973                         scsi_device_put(sdev);
2974                         return ret;
2975                 }
2976         }
2977
2978         /* Wait for ongoing scsi_queue_rq() calls to finish. */
2979         blk_mq_wait_quiesce_done(&shost->tag_set);
2980
2981         return 0;
2982 }
2983 EXPORT_SYMBOL_GPL(scsi_host_block);
2984
2985 int
2986 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2987 {
2988         struct scsi_device *sdev;
2989         int ret = 0;
2990
2991         shost_for_each_device(sdev, shost) {
2992                 ret = scsi_internal_device_unblock(sdev, new_state);
2993                 if (ret) {
2994                         scsi_device_put(sdev);
2995                         break;
2996                 }
2997         }
2998         return ret;
2999 }
3000 EXPORT_SYMBOL_GPL(scsi_host_unblock);
3001
3002 /**
3003  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3004  * @sgl:        scatter-gather list
3005  * @sg_count:   number of segments in sg
3006  * @offset:     offset in bytes into sg, on return offset into the mapped area
3007  * @len:        bytes to map, on return number of bytes mapped
3008  *
3009  * Returns virtual address of the start of the mapped page
3010  */
3011 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3012                           size_t *offset, size_t *len)
3013 {
3014         int i;
3015         size_t sg_len = 0, len_complete = 0;
3016         struct scatterlist *sg;
3017         struct page *page;
3018
3019         WARN_ON(!irqs_disabled());
3020
3021         for_each_sg(sgl, sg, sg_count, i) {
3022                 len_complete = sg_len; /* Complete sg-entries */
3023                 sg_len += sg->length;
3024                 if (sg_len > *offset)
3025                         break;
3026         }
3027
3028         if (unlikely(i == sg_count)) {
3029                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3030                         "elements %d\n",
3031                        __func__, sg_len, *offset, sg_count);
3032                 WARN_ON(1);
3033                 return NULL;
3034         }
3035
3036         /* Offset starting from the beginning of first page in this sg-entry */
3037         *offset = *offset - len_complete + sg->offset;
3038
3039         /* Assumption: contiguous pages can be accessed as "page + i" */
3040         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3041         *offset &= ~PAGE_MASK;
3042
3043         /* Bytes in this sg-entry from *offset to the end of the page */
3044         sg_len = PAGE_SIZE - *offset;
3045         if (*len > sg_len)
3046                 *len = sg_len;
3047
3048         return kmap_atomic(page);
3049 }
3050 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3051
3052 /**
3053  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3054  * @virt:       virtual address to be unmapped
3055  */
3056 void scsi_kunmap_atomic_sg(void *virt)
3057 {
3058         kunmap_atomic(virt);
3059 }
3060 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3061
3062 void sdev_disable_disk_events(struct scsi_device *sdev)
3063 {
3064         atomic_inc(&sdev->disk_events_disable_depth);
3065 }
3066 EXPORT_SYMBOL(sdev_disable_disk_events);
3067
3068 void sdev_enable_disk_events(struct scsi_device *sdev)
3069 {
3070         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3071                 return;
3072         atomic_dec(&sdev->disk_events_disable_depth);
3073 }
3074 EXPORT_SYMBOL(sdev_enable_disk_events);
3075
3076 static unsigned char designator_prio(const unsigned char *d)
3077 {
3078         if (d[1] & 0x30)
3079                 /* not associated with LUN */
3080                 return 0;
3081
3082         if (d[3] == 0)
3083                 /* invalid length */
3084                 return 0;
3085
3086         /*
3087          * Order of preference for lun descriptor:
3088          * - SCSI name string
3089          * - NAA IEEE Registered Extended
3090          * - EUI-64 based 16-byte
3091          * - EUI-64 based 12-byte
3092          * - NAA IEEE Registered
3093          * - NAA IEEE Extended
3094          * - EUI-64 based 8-byte
3095          * - SCSI name string (truncated)
3096          * - T10 Vendor ID
3097          * as longer descriptors reduce the likelyhood
3098          * of identification clashes.
3099          */
3100
3101         switch (d[1] & 0xf) {
3102         case 8:
3103                 /* SCSI name string, variable-length UTF-8 */
3104                 return 9;
3105         case 3:
3106                 switch (d[4] >> 4) {
3107                 case 6:
3108                         /* NAA registered extended */
3109                         return 8;
3110                 case 5:
3111                         /* NAA registered */
3112                         return 5;
3113                 case 4:
3114                         /* NAA extended */
3115                         return 4;
3116                 case 3:
3117                         /* NAA locally assigned */
3118                         return 1;
3119                 default:
3120                         break;
3121                 }
3122                 break;
3123         case 2:
3124                 switch (d[3]) {
3125                 case 16:
3126                         /* EUI64-based, 16 byte */
3127                         return 7;
3128                 case 12:
3129                         /* EUI64-based, 12 byte */
3130                         return 6;
3131                 case 8:
3132                         /* EUI64-based, 8 byte */
3133                         return 3;
3134                 default:
3135                         break;
3136                 }
3137                 break;
3138         case 1:
3139                 /* T10 vendor ID */
3140                 return 1;
3141         default:
3142                 break;
3143         }
3144
3145         return 0;
3146 }
3147
3148 /**
3149  * scsi_vpd_lun_id - return a unique device identification
3150  * @sdev: SCSI device
3151  * @id:   buffer for the identification
3152  * @id_len:  length of the buffer
3153  *
3154  * Copies a unique device identification into @id based
3155  * on the information in the VPD page 0x83 of the device.
3156  * The string will be formatted as a SCSI name string.
3157  *
3158  * Returns the length of the identification or error on failure.
3159  * If the identifier is longer than the supplied buffer the actual
3160  * identifier length is returned and the buffer is not zero-padded.
3161  */
3162 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3163 {
3164         u8 cur_id_prio = 0;
3165         u8 cur_id_size = 0;
3166         const unsigned char *d, *cur_id_str;
3167         const struct scsi_vpd *vpd_pg83;
3168         int id_size = -EINVAL;
3169
3170         rcu_read_lock();
3171         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3172         if (!vpd_pg83) {
3173                 rcu_read_unlock();
3174                 return -ENXIO;
3175         }
3176
3177         /* The id string must be at least 20 bytes + terminating NULL byte */
3178         if (id_len < 21) {
3179                 rcu_read_unlock();
3180                 return -EINVAL;
3181         }
3182
3183         memset(id, 0, id_len);
3184         for (d = vpd_pg83->data + 4;
3185              d < vpd_pg83->data + vpd_pg83->len;
3186              d += d[3] + 4) {
3187                 u8 prio = designator_prio(d);
3188
3189                 if (prio == 0 || cur_id_prio > prio)
3190                         continue;
3191
3192                 switch (d[1] & 0xf) {
3193                 case 0x1:
3194                         /* T10 Vendor ID */
3195                         if (cur_id_size > d[3])
3196                                 break;
3197                         cur_id_prio = prio;
3198                         cur_id_size = d[3];
3199                         if (cur_id_size + 4 > id_len)
3200                                 cur_id_size = id_len - 4;
3201                         cur_id_str = d + 4;
3202                         id_size = snprintf(id, id_len, "t10.%*pE",
3203                                            cur_id_size, cur_id_str);
3204                         break;
3205                 case 0x2:
3206                         /* EUI-64 */
3207                         cur_id_prio = prio;
3208                         cur_id_size = d[3];
3209                         cur_id_str = d + 4;
3210                         switch (cur_id_size) {
3211                         case 8:
3212                                 id_size = snprintf(id, id_len,
3213                                                    "eui.%8phN",
3214                                                    cur_id_str);
3215                                 break;
3216                         case 12:
3217                                 id_size = snprintf(id, id_len,
3218                                                    "eui.%12phN",
3219                                                    cur_id_str);
3220                                 break;
3221                         case 16:
3222                                 id_size = snprintf(id, id_len,
3223                                                    "eui.%16phN",
3224                                                    cur_id_str);
3225                                 break;
3226                         default:
3227                                 break;
3228                         }
3229                         break;
3230                 case 0x3:
3231                         /* NAA */
3232                         cur_id_prio = prio;
3233                         cur_id_size = d[3];
3234                         cur_id_str = d + 4;
3235                         switch (cur_id_size) {
3236                         case 8:
3237                                 id_size = snprintf(id, id_len,
3238                                                    "naa.%8phN",
3239                                                    cur_id_str);
3240                                 break;
3241                         case 16:
3242                                 id_size = snprintf(id, id_len,
3243                                                    "naa.%16phN",
3244                                                    cur_id_str);
3245                                 break;
3246                         default:
3247                                 break;
3248                         }
3249                         break;
3250                 case 0x8:
3251                         /* SCSI name string */
3252                         if (cur_id_size > d[3])
3253                                 break;
3254                         /* Prefer others for truncated descriptor */
3255                         if (d[3] > id_len) {
3256                                 prio = 2;
3257                                 if (cur_id_prio > prio)
3258                                         break;
3259                         }
3260                         cur_id_prio = prio;
3261                         cur_id_size = id_size = d[3];
3262                         cur_id_str = d + 4;
3263                         if (cur_id_size >= id_len)
3264                                 cur_id_size = id_len - 1;
3265                         memcpy(id, cur_id_str, cur_id_size);
3266                         break;
3267                 default:
3268                         break;
3269                 }
3270         }
3271         rcu_read_unlock();
3272
3273         return id_size;
3274 }
3275 EXPORT_SYMBOL(scsi_vpd_lun_id);
3276
3277 /*
3278  * scsi_vpd_tpg_id - return a target port group identifier
3279  * @sdev: SCSI device
3280  *
3281  * Returns the Target Port Group identifier from the information
3282  * froom VPD page 0x83 of the device.
3283  *
3284  * Returns the identifier or error on failure.
3285  */
3286 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3287 {
3288         const unsigned char *d;
3289         const struct scsi_vpd *vpd_pg83;
3290         int group_id = -EAGAIN, rel_port = -1;
3291
3292         rcu_read_lock();
3293         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3294         if (!vpd_pg83) {
3295                 rcu_read_unlock();
3296                 return -ENXIO;
3297         }
3298
3299         d = vpd_pg83->data + 4;
3300         while (d < vpd_pg83->data + vpd_pg83->len) {
3301                 switch (d[1] & 0xf) {
3302                 case 0x4:
3303                         /* Relative target port */
3304                         rel_port = get_unaligned_be16(&d[6]);
3305                         break;
3306                 case 0x5:
3307                         /* Target port group */
3308                         group_id = get_unaligned_be16(&d[6]);
3309                         break;
3310                 default:
3311                         break;
3312                 }
3313                 d += d[3] + 4;
3314         }
3315         rcu_read_unlock();
3316
3317         if (group_id >= 0 && rel_id && rel_port != -1)
3318                 *rel_id = rel_port;
3319
3320         return group_id;
3321 }
3322 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3323
3324 /**
3325  * scsi_build_sense - build sense data for a command
3326  * @scmd:       scsi command for which the sense should be formatted
3327  * @desc:       Sense format (non-zero == descriptor format,
3328  *              0 == fixed format)
3329  * @key:        Sense key
3330  * @asc:        Additional sense code
3331  * @ascq:       Additional sense code qualifier
3332  *
3333  **/
3334 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3335 {
3336         scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3337         scmd->result = SAM_STAT_CHECK_CONDITION;
3338 }
3339 EXPORT_SYMBOL_GPL(scsi_build_sense);