Merge tag 'scsi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb...
[platform/kernel/linux-rpi.git] / drivers / scsi / scsi_lib.c
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35
36 #include <trace/events/scsi.h>
37
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
51 {
52         return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53 }
54
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56                                    unsigned char *sense_buffer)
57 {
58         kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59                         sense_buffer);
60 }
61
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63         gfp_t gfp_mask, int numa_node)
64 {
65         return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66                                      gfp_mask, numa_node);
67 }
68
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
70 {
71         struct kmem_cache *cache;
72         int ret = 0;
73
74         cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75         if (cache)
76                 return 0;
77
78         mutex_lock(&scsi_sense_cache_mutex);
79         if (shost->unchecked_isa_dma) {
80                 scsi_sense_isadma_cache =
81                         kmem_cache_create("scsi_sense_cache(DMA)",
82                                 SCSI_SENSE_BUFFERSIZE, 0,
83                                 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84                 if (!scsi_sense_isadma_cache)
85                         ret = -ENOMEM;
86         } else {
87                 scsi_sense_cache =
88                         kmem_cache_create_usercopy("scsi_sense_cache",
89                                 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
90                                 0, SCSI_SENSE_BUFFERSIZE, NULL);
91                 if (!scsi_sense_cache)
92                         ret = -ENOMEM;
93         }
94
95         mutex_unlock(&scsi_sense_cache_mutex);
96         return ret;
97 }
98
99 /*
100  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
101  * not change behaviour from the previous unplug mechanism, experimentation
102  * may prove this needs changing.
103  */
104 #define SCSI_QUEUE_DELAY        3
105
106 static void
107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
108 {
109         struct Scsi_Host *host = cmd->device->host;
110         struct scsi_device *device = cmd->device;
111         struct scsi_target *starget = scsi_target(device);
112
113         /*
114          * Set the appropriate busy bit for the device/host.
115          *
116          * If the host/device isn't busy, assume that something actually
117          * completed, and that we should be able to queue a command now.
118          *
119          * Note that the prior mid-layer assumption that any host could
120          * always queue at least one command is now broken.  The mid-layer
121          * will implement a user specifiable stall (see
122          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
123          * if a command is requeued with no other commands outstanding
124          * either for the device or for the host.
125          */
126         switch (reason) {
127         case SCSI_MLQUEUE_HOST_BUSY:
128                 atomic_set(&host->host_blocked, host->max_host_blocked);
129                 break;
130         case SCSI_MLQUEUE_DEVICE_BUSY:
131         case SCSI_MLQUEUE_EH_RETRY:
132                 atomic_set(&device->device_blocked,
133                            device->max_device_blocked);
134                 break;
135         case SCSI_MLQUEUE_TARGET_BUSY:
136                 atomic_set(&starget->target_blocked,
137                            starget->max_target_blocked);
138                 break;
139         }
140 }
141
142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
143 {
144         struct scsi_device *sdev = cmd->device;
145
146         if (cmd->request->rq_flags & RQF_DONTPREP) {
147                 cmd->request->rq_flags &= ~RQF_DONTPREP;
148                 scsi_mq_uninit_cmd(cmd);
149         } else {
150                 WARN_ON_ONCE(true);
151         }
152         blk_mq_requeue_request(cmd->request, true);
153         put_device(&sdev->sdev_gendev);
154 }
155
156 /**
157  * __scsi_queue_insert - private queue insertion
158  * @cmd: The SCSI command being requeued
159  * @reason:  The reason for the requeue
160  * @unbusy: Whether the queue should be unbusied
161  *
162  * This is a private queue insertion.  The public interface
163  * scsi_queue_insert() always assumes the queue should be unbusied
164  * because it's always called before the completion.  This function is
165  * for a requeue after completion, which should only occur in this
166  * file.
167  */
168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
169 {
170         struct scsi_device *device = cmd->device;
171         struct request_queue *q = device->request_queue;
172         unsigned long flags;
173
174         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
175                 "Inserting command %p into mlqueue\n", cmd));
176
177         scsi_set_blocked(cmd, reason);
178
179         /*
180          * Decrement the counters, since these commands are no longer
181          * active on the host/device.
182          */
183         if (unbusy)
184                 scsi_device_unbusy(device);
185
186         /*
187          * Requeue this command.  It will go before all other commands
188          * that are already in the queue. Schedule requeue work under
189          * lock such that the kblockd_schedule_work() call happens
190          * before blk_cleanup_queue() finishes.
191          */
192         cmd->result = 0;
193         if (q->mq_ops) {
194                 /*
195                  * Before a SCSI command is dispatched,
196                  * get_device(&sdev->sdev_gendev) is called and the host,
197                  * target and device busy counters are increased. Since
198                  * requeuing a request causes these actions to be repeated and
199                  * since scsi_device_unbusy() has already been called,
200                  * put_device(&device->sdev_gendev) must still be called. Call
201                  * put_device() after blk_mq_requeue_request() to avoid that
202                  * removal of the SCSI device can start before requeueing has
203                  * happened.
204                  */
205                 blk_mq_requeue_request(cmd->request, true);
206                 put_device(&device->sdev_gendev);
207                 return;
208         }
209         spin_lock_irqsave(q->queue_lock, flags);
210         blk_requeue_request(q, cmd->request);
211         kblockd_schedule_work(&device->requeue_work);
212         spin_unlock_irqrestore(q->queue_lock, flags);
213 }
214
215 /*
216  * Function:    scsi_queue_insert()
217  *
218  * Purpose:     Insert a command in the midlevel queue.
219  *
220  * Arguments:   cmd    - command that we are adding to queue.
221  *              reason - why we are inserting command to queue.
222  *
223  * Lock status: Assumed that lock is not held upon entry.
224  *
225  * Returns:     Nothing.
226  *
227  * Notes:       We do this for one of two cases.  Either the host is busy
228  *              and it cannot accept any more commands for the time being,
229  *              or the device returned QUEUE_FULL and can accept no more
230  *              commands.
231  * Notes:       This could be called either from an interrupt context or a
232  *              normal process context.
233  */
234 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
235 {
236         __scsi_queue_insert(cmd, reason, true);
237 }
238
239
240 /**
241  * scsi_execute - insert request and wait for the result
242  * @sdev:       scsi device
243  * @cmd:        scsi command
244  * @data_direction: data direction
245  * @buffer:     data buffer
246  * @bufflen:    len of buffer
247  * @sense:      optional sense buffer
248  * @sshdr:      optional decoded sense header
249  * @timeout:    request timeout in seconds
250  * @retries:    number of times to retry request
251  * @flags:      flags for ->cmd_flags
252  * @rq_flags:   flags for ->rq_flags
253  * @resid:      optional residual length
254  *
255  * Returns the scsi_cmnd result field if a command was executed, or a negative
256  * Linux error code if we didn't get that far.
257  */
258 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
259                  int data_direction, void *buffer, unsigned bufflen,
260                  unsigned char *sense, struct scsi_sense_hdr *sshdr,
261                  int timeout, int retries, u64 flags, req_flags_t rq_flags,
262                  int *resid)
263 {
264         struct request *req;
265         struct scsi_request *rq;
266         int ret = DRIVER_ERROR << 24;
267
268         req = blk_get_request_flags(sdev->request_queue,
269                         data_direction == DMA_TO_DEVICE ?
270                         REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
271         if (IS_ERR(req))
272                 return ret;
273         rq = scsi_req(req);
274
275         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
276                                         buffer, bufflen, __GFP_RECLAIM))
277                 goto out;
278
279         rq->cmd_len = COMMAND_SIZE(cmd[0]);
280         memcpy(rq->cmd, cmd, rq->cmd_len);
281         rq->retries = retries;
282         req->timeout = timeout;
283         req->cmd_flags |= flags;
284         req->rq_flags |= rq_flags | RQF_QUIET;
285
286         /*
287          * head injection *required* here otherwise quiesce won't work
288          */
289         blk_execute_rq(req->q, NULL, req, 1);
290
291         /*
292          * Some devices (USB mass-storage in particular) may transfer
293          * garbage data together with a residue indicating that the data
294          * is invalid.  Prevent the garbage from being misinterpreted
295          * and prevent security leaks by zeroing out the excess data.
296          */
297         if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
298                 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
299
300         if (resid)
301                 *resid = rq->resid_len;
302         if (sense && rq->sense_len)
303                 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
304         if (sshdr)
305                 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
306         ret = rq->result;
307  out:
308         blk_put_request(req);
309
310         return ret;
311 }
312 EXPORT_SYMBOL(scsi_execute);
313
314 /*
315  * Function:    scsi_init_cmd_errh()
316  *
317  * Purpose:     Initialize cmd fields related to error handling.
318  *
319  * Arguments:   cmd     - command that is ready to be queued.
320  *
321  * Notes:       This function has the job of initializing a number of
322  *              fields related to error handling.   Typically this will
323  *              be called once for each command, as required.
324  */
325 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
326 {
327         cmd->serial_number = 0;
328         scsi_set_resid(cmd, 0);
329         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
330         if (cmd->cmd_len == 0)
331                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
332 }
333
334 /*
335  * Decrement the host_busy counter and wake up the error handler if necessary.
336  * Avoid as follows that the error handler is not woken up if shost->host_busy
337  * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
338  * with an RCU read lock in this function to ensure that this function in its
339  * entirety either finishes before scsi_eh_scmd_add() increases the
340  * host_failed counter or that it notices the shost state change made by
341  * scsi_eh_scmd_add().
342  */
343 static void scsi_dec_host_busy(struct Scsi_Host *shost)
344 {
345         unsigned long flags;
346
347         rcu_read_lock();
348         atomic_dec(&shost->host_busy);
349         if (unlikely(scsi_host_in_recovery(shost))) {
350                 spin_lock_irqsave(shost->host_lock, flags);
351                 if (shost->host_failed || shost->host_eh_scheduled)
352                         scsi_eh_wakeup(shost);
353                 spin_unlock_irqrestore(shost->host_lock, flags);
354         }
355         rcu_read_unlock();
356 }
357
358 void scsi_device_unbusy(struct scsi_device *sdev)
359 {
360         struct Scsi_Host *shost = sdev->host;
361         struct scsi_target *starget = scsi_target(sdev);
362
363         scsi_dec_host_busy(shost);
364
365         if (starget->can_queue > 0)
366                 atomic_dec(&starget->target_busy);
367
368         atomic_dec(&sdev->device_busy);
369 }
370
371 static void scsi_kick_queue(struct request_queue *q)
372 {
373         if (q->mq_ops)
374                 blk_mq_start_hw_queues(q);
375         else
376                 blk_run_queue(q);
377 }
378
379 /*
380  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
381  * and call blk_run_queue for all the scsi_devices on the target -
382  * including current_sdev first.
383  *
384  * Called with *no* scsi locks held.
385  */
386 static void scsi_single_lun_run(struct scsi_device *current_sdev)
387 {
388         struct Scsi_Host *shost = current_sdev->host;
389         struct scsi_device *sdev, *tmp;
390         struct scsi_target *starget = scsi_target(current_sdev);
391         unsigned long flags;
392
393         spin_lock_irqsave(shost->host_lock, flags);
394         starget->starget_sdev_user = NULL;
395         spin_unlock_irqrestore(shost->host_lock, flags);
396
397         /*
398          * Call blk_run_queue for all LUNs on the target, starting with
399          * current_sdev. We race with others (to set starget_sdev_user),
400          * but in most cases, we will be first. Ideally, each LU on the
401          * target would get some limited time or requests on the target.
402          */
403         scsi_kick_queue(current_sdev->request_queue);
404
405         spin_lock_irqsave(shost->host_lock, flags);
406         if (starget->starget_sdev_user)
407                 goto out;
408         list_for_each_entry_safe(sdev, tmp, &starget->devices,
409                         same_target_siblings) {
410                 if (sdev == current_sdev)
411                         continue;
412                 if (scsi_device_get(sdev))
413                         continue;
414
415                 spin_unlock_irqrestore(shost->host_lock, flags);
416                 scsi_kick_queue(sdev->request_queue);
417                 spin_lock_irqsave(shost->host_lock, flags);
418         
419                 scsi_device_put(sdev);
420         }
421  out:
422         spin_unlock_irqrestore(shost->host_lock, flags);
423 }
424
425 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
426 {
427         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
428                 return true;
429         if (atomic_read(&sdev->device_blocked) > 0)
430                 return true;
431         return false;
432 }
433
434 static inline bool scsi_target_is_busy(struct scsi_target *starget)
435 {
436         if (starget->can_queue > 0) {
437                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
438                         return true;
439                 if (atomic_read(&starget->target_blocked) > 0)
440                         return true;
441         }
442         return false;
443 }
444
445 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
446 {
447         if (shost->can_queue > 0 &&
448             atomic_read(&shost->host_busy) >= shost->can_queue)
449                 return true;
450         if (atomic_read(&shost->host_blocked) > 0)
451                 return true;
452         if (shost->host_self_blocked)
453                 return true;
454         return false;
455 }
456
457 static void scsi_starved_list_run(struct Scsi_Host *shost)
458 {
459         LIST_HEAD(starved_list);
460         struct scsi_device *sdev;
461         unsigned long flags;
462
463         spin_lock_irqsave(shost->host_lock, flags);
464         list_splice_init(&shost->starved_list, &starved_list);
465
466         while (!list_empty(&starved_list)) {
467                 struct request_queue *slq;
468
469                 /*
470                  * As long as shost is accepting commands and we have
471                  * starved queues, call blk_run_queue. scsi_request_fn
472                  * drops the queue_lock and can add us back to the
473                  * starved_list.
474                  *
475                  * host_lock protects the starved_list and starved_entry.
476                  * scsi_request_fn must get the host_lock before checking
477                  * or modifying starved_list or starved_entry.
478                  */
479                 if (scsi_host_is_busy(shost))
480                         break;
481
482                 sdev = list_entry(starved_list.next,
483                                   struct scsi_device, starved_entry);
484                 list_del_init(&sdev->starved_entry);
485                 if (scsi_target_is_busy(scsi_target(sdev))) {
486                         list_move_tail(&sdev->starved_entry,
487                                        &shost->starved_list);
488                         continue;
489                 }
490
491                 /*
492                  * Once we drop the host lock, a racing scsi_remove_device()
493                  * call may remove the sdev from the starved list and destroy
494                  * it and the queue.  Mitigate by taking a reference to the
495                  * queue and never touching the sdev again after we drop the
496                  * host lock.  Note: if __scsi_remove_device() invokes
497                  * blk_cleanup_queue() before the queue is run from this
498                  * function then blk_run_queue() will return immediately since
499                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
500                  */
501                 slq = sdev->request_queue;
502                 if (!blk_get_queue(slq))
503                         continue;
504                 spin_unlock_irqrestore(shost->host_lock, flags);
505
506                 scsi_kick_queue(slq);
507                 blk_put_queue(slq);
508
509                 spin_lock_irqsave(shost->host_lock, flags);
510         }
511         /* put any unprocessed entries back */
512         list_splice(&starved_list, &shost->starved_list);
513         spin_unlock_irqrestore(shost->host_lock, flags);
514 }
515
516 /*
517  * Function:   scsi_run_queue()
518  *
519  * Purpose:    Select a proper request queue to serve next
520  *
521  * Arguments:  q       - last request's queue
522  *
523  * Returns:     Nothing
524  *
525  * Notes:      The previous command was completely finished, start
526  *             a new one if possible.
527  */
528 static void scsi_run_queue(struct request_queue *q)
529 {
530         struct scsi_device *sdev = q->queuedata;
531
532         if (scsi_target(sdev)->single_lun)
533                 scsi_single_lun_run(sdev);
534         if (!list_empty(&sdev->host->starved_list))
535                 scsi_starved_list_run(sdev->host);
536
537         if (q->mq_ops)
538                 blk_mq_run_hw_queues(q, false);
539         else
540                 blk_run_queue(q);
541 }
542
543 void scsi_requeue_run_queue(struct work_struct *work)
544 {
545         struct scsi_device *sdev;
546         struct request_queue *q;
547
548         sdev = container_of(work, struct scsi_device, requeue_work);
549         q = sdev->request_queue;
550         scsi_run_queue(q);
551 }
552
553 /*
554  * Function:    scsi_requeue_command()
555  *
556  * Purpose:     Handle post-processing of completed commands.
557  *
558  * Arguments:   q       - queue to operate on
559  *              cmd     - command that may need to be requeued.
560  *
561  * Returns:     Nothing
562  *
563  * Notes:       After command completion, there may be blocks left
564  *              over which weren't finished by the previous command
565  *              this can be for a number of reasons - the main one is
566  *              I/O errors in the middle of the request, in which case
567  *              we need to request the blocks that come after the bad
568  *              sector.
569  * Notes:       Upon return, cmd is a stale pointer.
570  */
571 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
572 {
573         struct scsi_device *sdev = cmd->device;
574         struct request *req = cmd->request;
575         unsigned long flags;
576
577         spin_lock_irqsave(q->queue_lock, flags);
578         blk_unprep_request(req);
579         req->special = NULL;
580         scsi_put_command(cmd);
581         blk_requeue_request(q, req);
582         spin_unlock_irqrestore(q->queue_lock, flags);
583
584         scsi_run_queue(q);
585
586         put_device(&sdev->sdev_gendev);
587 }
588
589 void scsi_run_host_queues(struct Scsi_Host *shost)
590 {
591         struct scsi_device *sdev;
592
593         shost_for_each_device(sdev, shost)
594                 scsi_run_queue(sdev->request_queue);
595 }
596
597 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
598 {
599         if (!blk_rq_is_passthrough(cmd->request)) {
600                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
601
602                 if (drv->uninit_command)
603                         drv->uninit_command(cmd);
604         }
605 }
606
607 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
608 {
609         struct scsi_data_buffer *sdb;
610
611         if (cmd->sdb.table.nents)
612                 sg_free_table_chained(&cmd->sdb.table, true);
613         if (cmd->request->next_rq) {
614                 sdb = cmd->request->next_rq->special;
615                 if (sdb)
616                         sg_free_table_chained(&sdb->table, true);
617         }
618         if (scsi_prot_sg_count(cmd))
619                 sg_free_table_chained(&cmd->prot_sdb->table, true);
620 }
621
622 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
623 {
624         scsi_mq_free_sgtables(cmd);
625         scsi_uninit_cmd(cmd);
626         scsi_del_cmd_from_list(cmd);
627 }
628
629 /*
630  * Function:    scsi_release_buffers()
631  *
632  * Purpose:     Free resources allocate for a scsi_command.
633  *
634  * Arguments:   cmd     - command that we are bailing.
635  *
636  * Lock status: Assumed that no lock is held upon entry.
637  *
638  * Returns:     Nothing
639  *
640  * Notes:       In the event that an upper level driver rejects a
641  *              command, we must release resources allocated during
642  *              the __init_io() function.  Primarily this would involve
643  *              the scatter-gather table.
644  */
645 static void scsi_release_buffers(struct scsi_cmnd *cmd)
646 {
647         if (cmd->sdb.table.nents)
648                 sg_free_table_chained(&cmd->sdb.table, false);
649
650         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
651
652         if (scsi_prot_sg_count(cmd))
653                 sg_free_table_chained(&cmd->prot_sdb->table, false);
654 }
655
656 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
657 {
658         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
659
660         sg_free_table_chained(&bidi_sdb->table, false);
661         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
662         cmd->request->next_rq->special = NULL;
663 }
664
665 static bool scsi_end_request(struct request *req, blk_status_t error,
666                 unsigned int bytes, unsigned int bidi_bytes)
667 {
668         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
669         struct scsi_device *sdev = cmd->device;
670         struct request_queue *q = sdev->request_queue;
671
672         if (blk_update_request(req, error, bytes))
673                 return true;
674
675         /* Bidi request must be completed as a whole */
676         if (unlikely(bidi_bytes) &&
677             blk_update_request(req->next_rq, error, bidi_bytes))
678                 return true;
679
680         if (blk_queue_add_random(q))
681                 add_disk_randomness(req->rq_disk);
682
683         if (!blk_rq_is_scsi(req)) {
684                 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
685                 cmd->flags &= ~SCMD_INITIALIZED;
686                 destroy_rcu_head(&cmd->rcu);
687         }
688
689         if (req->mq_ctx) {
690                 /*
691                  * In the MQ case the command gets freed by __blk_mq_end_request,
692                  * so we have to do all cleanup that depends on it earlier.
693                  *
694                  * We also can't kick the queues from irq context, so we
695                  * will have to defer it to a workqueue.
696                  */
697                 scsi_mq_uninit_cmd(cmd);
698
699                 __blk_mq_end_request(req, error);
700
701                 if (scsi_target(sdev)->single_lun ||
702                     !list_empty(&sdev->host->starved_list))
703                         kblockd_schedule_work(&sdev->requeue_work);
704                 else
705                         blk_mq_run_hw_queues(q, true);
706         } else {
707                 unsigned long flags;
708
709                 if (bidi_bytes)
710                         scsi_release_bidi_buffers(cmd);
711                 scsi_release_buffers(cmd);
712                 scsi_put_command(cmd);
713
714                 spin_lock_irqsave(q->queue_lock, flags);
715                 blk_finish_request(req, error);
716                 spin_unlock_irqrestore(q->queue_lock, flags);
717
718                 scsi_run_queue(q);
719         }
720
721         put_device(&sdev->sdev_gendev);
722         return false;
723 }
724
725 /**
726  * __scsi_error_from_host_byte - translate SCSI error code into errno
727  * @cmd:        SCSI command (unused)
728  * @result:     scsi error code
729  *
730  * Translate SCSI error code into block errors.
731  */
732 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd,
733                 int result)
734 {
735         switch (host_byte(result)) {
736         case DID_OK:
737                 return BLK_STS_OK;
738         case DID_TRANSPORT_FAILFAST:
739                 return BLK_STS_TRANSPORT;
740         case DID_TARGET_FAILURE:
741                 set_host_byte(cmd, DID_OK);
742                 return BLK_STS_TARGET;
743         case DID_NEXUS_FAILURE:
744                 return BLK_STS_NEXUS;
745         case DID_ALLOC_FAILURE:
746                 set_host_byte(cmd, DID_OK);
747                 return BLK_STS_NOSPC;
748         case DID_MEDIUM_ERROR:
749                 set_host_byte(cmd, DID_OK);
750                 return BLK_STS_MEDIUM;
751         default:
752                 return BLK_STS_IOERR;
753         }
754 }
755
756 /*
757  * Function:    scsi_io_completion()
758  *
759  * Purpose:     Completion processing for block device I/O requests.
760  *
761  * Arguments:   cmd   - command that is finished.
762  *
763  * Lock status: Assumed that no lock is held upon entry.
764  *
765  * Returns:     Nothing
766  *
767  * Notes:       We will finish off the specified number of sectors.  If we
768  *              are done, the command block will be released and the queue
769  *              function will be goosed.  If we are not done then we have to
770  *              figure out what to do next:
771  *
772  *              a) We can call scsi_requeue_command().  The request
773  *                 will be unprepared and put back on the queue.  Then
774  *                 a new command will be created for it.  This should
775  *                 be used if we made forward progress, or if we want
776  *                 to switch from READ(10) to READ(6) for example.
777  *
778  *              b) We can call __scsi_queue_insert().  The request will
779  *                 be put back on the queue and retried using the same
780  *                 command as before, possibly after a delay.
781  *
782  *              c) We can call scsi_end_request() with -EIO to fail
783  *                 the remainder of the request.
784  */
785 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
786 {
787         int result = cmd->result;
788         struct request_queue *q = cmd->device->request_queue;
789         struct request *req = cmd->request;
790         blk_status_t error = BLK_STS_OK;
791         struct scsi_sense_hdr sshdr;
792         bool sense_valid = false;
793         int sense_deferred = 0, level = 0;
794         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
795               ACTION_DELAYED_RETRY} action;
796         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
797
798         if (result) {
799                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
800                 if (sense_valid)
801                         sense_deferred = scsi_sense_is_deferred(&sshdr);
802         }
803
804         if (blk_rq_is_passthrough(req)) {
805                 if (result) {
806                         if (sense_valid) {
807                                 /*
808                                  * SG_IO wants current and deferred errors
809                                  */
810                                 scsi_req(req)->sense_len =
811                                         min(8 + cmd->sense_buffer[7],
812                                             SCSI_SENSE_BUFFERSIZE);
813                         }
814                         if (!sense_deferred)
815                                 error = __scsi_error_from_host_byte(cmd, result);
816                 }
817                 /*
818                  * __scsi_error_from_host_byte may have reset the host_byte
819                  */
820                 scsi_req(req)->result = cmd->result;
821                 scsi_req(req)->resid_len = scsi_get_resid(cmd);
822
823                 if (scsi_bidi_cmnd(cmd)) {
824                         /*
825                          * Bidi commands Must be complete as a whole,
826                          * both sides at once.
827                          */
828                         scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
829                         if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
830                                         blk_rq_bytes(req->next_rq)))
831                                 BUG();
832                         return;
833                 }
834         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
835                 /*
836                  * Flush commands do not transfers any data, and thus cannot use
837                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
838                  * This sets the error explicitly for the problem case.
839                  */
840                 error = __scsi_error_from_host_byte(cmd, result);
841         }
842
843         /* no bidi support for !blk_rq_is_passthrough yet */
844         BUG_ON(blk_bidi_rq(req));
845
846         /*
847          * Next deal with any sectors which we were able to correctly
848          * handle.
849          */
850         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
851                 "%u sectors total, %d bytes done.\n",
852                 blk_rq_sectors(req), good_bytes));
853
854         /*
855          * Recovered errors need reporting, but they're always treated as
856          * success, so fiddle the result code here.  For passthrough requests
857          * we already took a copy of the original into sreq->result which
858          * is what gets returned to the user
859          */
860         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
861                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
862                  * print since caller wants ATA registers. Only occurs on
863                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
864                  */
865                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
866                         ;
867                 else if (!(req->rq_flags & RQF_QUIET))
868                         scsi_print_sense(cmd);
869                 result = 0;
870                 /* for passthrough error may be set */
871                 error = BLK_STS_OK;
872         }
873         /*
874          * Another corner case: the SCSI status byte is non-zero but 'good'.
875          * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
876          * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
877          * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
878          * intermediate statuses (both obsolete in SAM-4) as good.
879          */
880         if (status_byte(result) && scsi_status_is_good(result)) {
881                 result = 0;
882                 error = BLK_STS_OK;
883         }
884
885         /*
886          * special case: failed zero length commands always need to
887          * drop down into the retry code. Otherwise, if we finished
888          * all bytes in the request we are done now.
889          */
890         if (!(blk_rq_bytes(req) == 0 && error) &&
891             !scsi_end_request(req, error, good_bytes, 0))
892                 return;
893
894         /*
895          * Kill remainder if no retrys.
896          */
897         if (error && scsi_noretry_cmd(cmd)) {
898                 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
899                         BUG();
900                 return;
901         }
902
903         /*
904          * If there had been no error, but we have leftover bytes in the
905          * requeues just queue the command up again.
906          */
907         if (result == 0)
908                 goto requeue;
909
910         error = __scsi_error_from_host_byte(cmd, result);
911
912         if (host_byte(result) == DID_RESET) {
913                 /* Third party bus reset or reset for error recovery
914                  * reasons.  Just retry the command and see what
915                  * happens.
916                  */
917                 action = ACTION_RETRY;
918         } else if (sense_valid && !sense_deferred) {
919                 switch (sshdr.sense_key) {
920                 case UNIT_ATTENTION:
921                         if (cmd->device->removable) {
922                                 /* Detected disc change.  Set a bit
923                                  * and quietly refuse further access.
924                                  */
925                                 cmd->device->changed = 1;
926                                 action = ACTION_FAIL;
927                         } else {
928                                 /* Must have been a power glitch, or a
929                                  * bus reset.  Could not have been a
930                                  * media change, so we just retry the
931                                  * command and see what happens.
932                                  */
933                                 action = ACTION_RETRY;
934                         }
935                         break;
936                 case ILLEGAL_REQUEST:
937                         /* If we had an ILLEGAL REQUEST returned, then
938                          * we may have performed an unsupported
939                          * command.  The only thing this should be
940                          * would be a ten byte read where only a six
941                          * byte read was supported.  Also, on a system
942                          * where READ CAPACITY failed, we may have
943                          * read past the end of the disk.
944                          */
945                         if ((cmd->device->use_10_for_rw &&
946                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
947                             (cmd->cmnd[0] == READ_10 ||
948                              cmd->cmnd[0] == WRITE_10)) {
949                                 /* This will issue a new 6-byte command. */
950                                 cmd->device->use_10_for_rw = 0;
951                                 action = ACTION_REPREP;
952                         } else if (sshdr.asc == 0x10) /* DIX */ {
953                                 action = ACTION_FAIL;
954                                 error = BLK_STS_PROTECTION;
955                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
956                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
957                                 action = ACTION_FAIL;
958                                 error = BLK_STS_TARGET;
959                         } else
960                                 action = ACTION_FAIL;
961                         break;
962                 case ABORTED_COMMAND:
963                         action = ACTION_FAIL;
964                         if (sshdr.asc == 0x10) /* DIF */
965                                 error = BLK_STS_PROTECTION;
966                         break;
967                 case NOT_READY:
968                         /* If the device is in the process of becoming
969                          * ready, or has a temporary blockage, retry.
970                          */
971                         if (sshdr.asc == 0x04) {
972                                 switch (sshdr.ascq) {
973                                 case 0x01: /* becoming ready */
974                                 case 0x04: /* format in progress */
975                                 case 0x05: /* rebuild in progress */
976                                 case 0x06: /* recalculation in progress */
977                                 case 0x07: /* operation in progress */
978                                 case 0x08: /* Long write in progress */
979                                 case 0x09: /* self test in progress */
980                                 case 0x14: /* space allocation in progress */
981                                         action = ACTION_DELAYED_RETRY;
982                                         break;
983                                 default:
984                                         action = ACTION_FAIL;
985                                         break;
986                                 }
987                         } else
988                                 action = ACTION_FAIL;
989                         break;
990                 case VOLUME_OVERFLOW:
991                         /* See SSC3rXX or current. */
992                         action = ACTION_FAIL;
993                         break;
994                 default:
995                         action = ACTION_FAIL;
996                         break;
997                 }
998         } else
999                 action = ACTION_FAIL;
1000
1001         if (action != ACTION_FAIL &&
1002             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1003                 action = ACTION_FAIL;
1004
1005         switch (action) {
1006         case ACTION_FAIL:
1007                 /* Give up and fail the remainder of the request */
1008                 if (!(req->rq_flags & RQF_QUIET)) {
1009                         static DEFINE_RATELIMIT_STATE(_rs,
1010                                         DEFAULT_RATELIMIT_INTERVAL,
1011                                         DEFAULT_RATELIMIT_BURST);
1012
1013                         if (unlikely(scsi_logging_level))
1014                                 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1015                                                        SCSI_LOG_MLCOMPLETE_BITS);
1016
1017                         /*
1018                          * if logging is enabled the failure will be printed
1019                          * in scsi_log_completion(), so avoid duplicate messages
1020                          */
1021                         if (!level && __ratelimit(&_rs)) {
1022                                 scsi_print_result(cmd, NULL, FAILED);
1023                                 if (driver_byte(result) & DRIVER_SENSE)
1024                                         scsi_print_sense(cmd);
1025                                 scsi_print_command(cmd);
1026                         }
1027                 }
1028                 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1029                         return;
1030                 /*FALLTHRU*/
1031         case ACTION_REPREP:
1032         requeue:
1033                 /* Unprep the request and put it back at the head of the queue.
1034                  * A new command will be prepared and issued.
1035                  */
1036                 if (q->mq_ops) {
1037                         scsi_mq_requeue_cmd(cmd);
1038                 } else {
1039                         scsi_release_buffers(cmd);
1040                         scsi_requeue_command(q, cmd);
1041                 }
1042                 break;
1043         case ACTION_RETRY:
1044                 /* Retry the same command immediately */
1045                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
1046                 break;
1047         case ACTION_DELAYED_RETRY:
1048                 /* Retry the same command after a delay */
1049                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
1050                 break;
1051         }
1052 }
1053
1054 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1055 {
1056         int count;
1057
1058         /*
1059          * If sg table allocation fails, requeue request later.
1060          */
1061         if (unlikely(sg_alloc_table_chained(&sdb->table,
1062                         blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1063                 return BLKPREP_DEFER;
1064
1065         /* 
1066          * Next, walk the list, and fill in the addresses and sizes of
1067          * each segment.
1068          */
1069         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1070         BUG_ON(count > sdb->table.nents);
1071         sdb->table.nents = count;
1072         sdb->length = blk_rq_payload_bytes(req);
1073         return BLKPREP_OK;
1074 }
1075
1076 /*
1077  * Function:    scsi_init_io()
1078  *
1079  * Purpose:     SCSI I/O initialize function.
1080  *
1081  * Arguments:   cmd   - Command descriptor we wish to initialize
1082  *
1083  * Returns:     0 on success
1084  *              BLKPREP_DEFER if the failure is retryable
1085  *              BLKPREP_KILL if the failure is fatal
1086  */
1087 int scsi_init_io(struct scsi_cmnd *cmd)
1088 {
1089         struct scsi_device *sdev = cmd->device;
1090         struct request *rq = cmd->request;
1091         bool is_mq = (rq->mq_ctx != NULL);
1092         int error = BLKPREP_KILL;
1093
1094         if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1095                 goto err_exit;
1096
1097         error = scsi_init_sgtable(rq, &cmd->sdb);
1098         if (error)
1099                 goto err_exit;
1100
1101         if (blk_bidi_rq(rq)) {
1102                 if (!rq->q->mq_ops) {
1103                         struct scsi_data_buffer *bidi_sdb =
1104                                 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1105                         if (!bidi_sdb) {
1106                                 error = BLKPREP_DEFER;
1107                                 goto err_exit;
1108                         }
1109
1110                         rq->next_rq->special = bidi_sdb;
1111                 }
1112
1113                 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1114                 if (error)
1115                         goto err_exit;
1116         }
1117
1118         if (blk_integrity_rq(rq)) {
1119                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1120                 int ivecs, count;
1121
1122                 if (prot_sdb == NULL) {
1123                         /*
1124                          * This can happen if someone (e.g. multipath)
1125                          * queues a command to a device on an adapter
1126                          * that does not support DIX.
1127                          */
1128                         WARN_ON_ONCE(1);
1129                         error = BLKPREP_KILL;
1130                         goto err_exit;
1131                 }
1132
1133                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1134
1135                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1136                                 prot_sdb->table.sgl)) {
1137                         error = BLKPREP_DEFER;
1138                         goto err_exit;
1139                 }
1140
1141                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1142                                                 prot_sdb->table.sgl);
1143                 BUG_ON(unlikely(count > ivecs));
1144                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1145
1146                 cmd->prot_sdb = prot_sdb;
1147                 cmd->prot_sdb->table.nents = count;
1148         }
1149
1150         return BLKPREP_OK;
1151 err_exit:
1152         if (is_mq) {
1153                 scsi_mq_free_sgtables(cmd);
1154         } else {
1155                 scsi_release_buffers(cmd);
1156                 cmd->request->special = NULL;
1157                 scsi_put_command(cmd);
1158                 put_device(&sdev->sdev_gendev);
1159         }
1160         return error;
1161 }
1162 EXPORT_SYMBOL(scsi_init_io);
1163
1164 /**
1165  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1166  * @rq: Request associated with the SCSI command to be initialized.
1167  *
1168  * This function initializes the members of struct scsi_cmnd that must be
1169  * initialized before request processing starts and that won't be
1170  * reinitialized if a SCSI command is requeued.
1171  *
1172  * Called from inside blk_get_request() for pass-through requests and from
1173  * inside scsi_init_command() for filesystem requests.
1174  */
1175 static void scsi_initialize_rq(struct request *rq)
1176 {
1177         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1178
1179         scsi_req_init(&cmd->req);
1180         init_rcu_head(&cmd->rcu);
1181         cmd->jiffies_at_alloc = jiffies;
1182         cmd->retries = 0;
1183 }
1184
1185 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1186 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1187 {
1188         struct scsi_device *sdev = cmd->device;
1189         struct Scsi_Host *shost = sdev->host;
1190         unsigned long flags;
1191
1192         if (shost->use_cmd_list) {
1193                 spin_lock_irqsave(&sdev->list_lock, flags);
1194                 list_add_tail(&cmd->list, &sdev->cmd_list);
1195                 spin_unlock_irqrestore(&sdev->list_lock, flags);
1196         }
1197 }
1198
1199 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1200 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1201 {
1202         struct scsi_device *sdev = cmd->device;
1203         struct Scsi_Host *shost = sdev->host;
1204         unsigned long flags;
1205
1206         if (shost->use_cmd_list) {
1207                 spin_lock_irqsave(&sdev->list_lock, flags);
1208                 BUG_ON(list_empty(&cmd->list));
1209                 list_del_init(&cmd->list);
1210                 spin_unlock_irqrestore(&sdev->list_lock, flags);
1211         }
1212 }
1213
1214 /* Called after a request has been started. */
1215 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1216 {
1217         void *buf = cmd->sense_buffer;
1218         void *prot = cmd->prot_sdb;
1219         struct request *rq = blk_mq_rq_from_pdu(cmd);
1220         unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1221         unsigned long jiffies_at_alloc;
1222         int retries;
1223
1224         if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1225                 flags |= SCMD_INITIALIZED;
1226                 scsi_initialize_rq(rq);
1227         }
1228
1229         jiffies_at_alloc = cmd->jiffies_at_alloc;
1230         retries = cmd->retries;
1231         /* zero out the cmd, except for the embedded scsi_request */
1232         memset((char *)cmd + sizeof(cmd->req), 0,
1233                 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1234
1235         cmd->device = dev;
1236         cmd->sense_buffer = buf;
1237         cmd->prot_sdb = prot;
1238         cmd->flags = flags;
1239         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1240         cmd->jiffies_at_alloc = jiffies_at_alloc;
1241         cmd->retries = retries;
1242
1243         scsi_add_cmd_to_list(cmd);
1244 }
1245
1246 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1247 {
1248         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1249
1250         /*
1251          * Passthrough requests may transfer data, in which case they must
1252          * a bio attached to them.  Or they might contain a SCSI command
1253          * that does not transfer data, in which case they may optionally
1254          * submit a request without an attached bio.
1255          */
1256         if (req->bio) {
1257                 int ret = scsi_init_io(cmd);
1258                 if (unlikely(ret))
1259                         return ret;
1260         } else {
1261                 BUG_ON(blk_rq_bytes(req));
1262
1263                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1264         }
1265
1266         cmd->cmd_len = scsi_req(req)->cmd_len;
1267         cmd->cmnd = scsi_req(req)->cmd;
1268         cmd->transfersize = blk_rq_bytes(req);
1269         cmd->allowed = scsi_req(req)->retries;
1270         return BLKPREP_OK;
1271 }
1272
1273 /*
1274  * Setup a normal block command.  These are simple request from filesystems
1275  * that still need to be translated to SCSI CDBs from the ULD.
1276  */
1277 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1278 {
1279         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1280
1281         if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1282                 int ret = sdev->handler->prep_fn(sdev, req);
1283                 if (ret != BLKPREP_OK)
1284                         return ret;
1285         }
1286
1287         cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1288         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1289         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1290 }
1291
1292 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1293 {
1294         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1295
1296         if (!blk_rq_bytes(req))
1297                 cmd->sc_data_direction = DMA_NONE;
1298         else if (rq_data_dir(req) == WRITE)
1299                 cmd->sc_data_direction = DMA_TO_DEVICE;
1300         else
1301                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1302
1303         if (blk_rq_is_scsi(req))
1304                 return scsi_setup_scsi_cmnd(sdev, req);
1305         else
1306                 return scsi_setup_fs_cmnd(sdev, req);
1307 }
1308
1309 static int
1310 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1311 {
1312         int ret = BLKPREP_OK;
1313
1314         /*
1315          * If the device is not in running state we will reject some
1316          * or all commands.
1317          */
1318         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1319                 switch (sdev->sdev_state) {
1320                 case SDEV_OFFLINE:
1321                 case SDEV_TRANSPORT_OFFLINE:
1322                         /*
1323                          * If the device is offline we refuse to process any
1324                          * commands.  The device must be brought online
1325                          * before trying any recovery commands.
1326                          */
1327                         sdev_printk(KERN_ERR, sdev,
1328                                     "rejecting I/O to offline device\n");
1329                         ret = BLKPREP_KILL;
1330                         break;
1331                 case SDEV_DEL:
1332                         /*
1333                          * If the device is fully deleted, we refuse to
1334                          * process any commands as well.
1335                          */
1336                         sdev_printk(KERN_ERR, sdev,
1337                                     "rejecting I/O to dead device\n");
1338                         ret = BLKPREP_KILL;
1339                         break;
1340                 case SDEV_BLOCK:
1341                 case SDEV_CREATED_BLOCK:
1342                         ret = BLKPREP_DEFER;
1343                         break;
1344                 case SDEV_QUIESCE:
1345                         /*
1346                          * If the devices is blocked we defer normal commands.
1347                          */
1348                         if (req && !(req->rq_flags & RQF_PREEMPT))
1349                                 ret = BLKPREP_DEFER;
1350                         break;
1351                 default:
1352                         /*
1353                          * For any other not fully online state we only allow
1354                          * special commands.  In particular any user initiated
1355                          * command is not allowed.
1356                          */
1357                         if (req && !(req->rq_flags & RQF_PREEMPT))
1358                                 ret = BLKPREP_KILL;
1359                         break;
1360                 }
1361         }
1362         return ret;
1363 }
1364
1365 static int
1366 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1367 {
1368         struct scsi_device *sdev = q->queuedata;
1369
1370         switch (ret) {
1371         case BLKPREP_KILL:
1372         case BLKPREP_INVALID:
1373                 scsi_req(req)->result = DID_NO_CONNECT << 16;
1374                 /* release the command and kill it */
1375                 if (req->special) {
1376                         struct scsi_cmnd *cmd = req->special;
1377                         scsi_release_buffers(cmd);
1378                         scsi_put_command(cmd);
1379                         put_device(&sdev->sdev_gendev);
1380                         req->special = NULL;
1381                 }
1382                 break;
1383         case BLKPREP_DEFER:
1384                 /*
1385                  * If we defer, the blk_peek_request() returns NULL, but the
1386                  * queue must be restarted, so we schedule a callback to happen
1387                  * shortly.
1388                  */
1389                 if (atomic_read(&sdev->device_busy) == 0)
1390                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1391                 break;
1392         default:
1393                 req->rq_flags |= RQF_DONTPREP;
1394         }
1395
1396         return ret;
1397 }
1398
1399 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1400 {
1401         struct scsi_device *sdev = q->queuedata;
1402         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1403         int ret;
1404
1405         ret = scsi_prep_state_check(sdev, req);
1406         if (ret != BLKPREP_OK)
1407                 goto out;
1408
1409         if (!req->special) {
1410                 /* Bail if we can't get a reference to the device */
1411                 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1412                         ret = BLKPREP_DEFER;
1413                         goto out;
1414                 }
1415
1416                 scsi_init_command(sdev, cmd);
1417                 req->special = cmd;
1418         }
1419
1420         cmd->tag = req->tag;
1421         cmd->request = req;
1422         cmd->prot_op = SCSI_PROT_NORMAL;
1423
1424         ret = scsi_setup_cmnd(sdev, req);
1425 out:
1426         return scsi_prep_return(q, req, ret);
1427 }
1428
1429 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1430 {
1431         scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1432 }
1433
1434 /*
1435  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1436  * return 0.
1437  *
1438  * Called with the queue_lock held.
1439  */
1440 static inline int scsi_dev_queue_ready(struct request_queue *q,
1441                                   struct scsi_device *sdev)
1442 {
1443         unsigned int busy;
1444
1445         busy = atomic_inc_return(&sdev->device_busy) - 1;
1446         if (atomic_read(&sdev->device_blocked)) {
1447                 if (busy)
1448                         goto out_dec;
1449
1450                 /*
1451                  * unblock after device_blocked iterates to zero
1452                  */
1453                 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1454                         /*
1455                          * For the MQ case we take care of this in the caller.
1456                          */
1457                         if (!q->mq_ops)
1458                                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1459                         goto out_dec;
1460                 }
1461                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1462                                    "unblocking device at zero depth\n"));
1463         }
1464
1465         if (busy >= sdev->queue_depth)
1466                 goto out_dec;
1467
1468         return 1;
1469 out_dec:
1470         atomic_dec(&sdev->device_busy);
1471         return 0;
1472 }
1473
1474 /*
1475  * scsi_target_queue_ready: checks if there we can send commands to target
1476  * @sdev: scsi device on starget to check.
1477  */
1478 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1479                                            struct scsi_device *sdev)
1480 {
1481         struct scsi_target *starget = scsi_target(sdev);
1482         unsigned int busy;
1483
1484         if (starget->single_lun) {
1485                 spin_lock_irq(shost->host_lock);
1486                 if (starget->starget_sdev_user &&
1487                     starget->starget_sdev_user != sdev) {
1488                         spin_unlock_irq(shost->host_lock);
1489                         return 0;
1490                 }
1491                 starget->starget_sdev_user = sdev;
1492                 spin_unlock_irq(shost->host_lock);
1493         }
1494
1495         if (starget->can_queue <= 0)
1496                 return 1;
1497
1498         busy = atomic_inc_return(&starget->target_busy) - 1;
1499         if (atomic_read(&starget->target_blocked) > 0) {
1500                 if (busy)
1501                         goto starved;
1502
1503                 /*
1504                  * unblock after target_blocked iterates to zero
1505                  */
1506                 if (atomic_dec_return(&starget->target_blocked) > 0)
1507                         goto out_dec;
1508
1509                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1510                                  "unblocking target at zero depth\n"));
1511         }
1512
1513         if (busy >= starget->can_queue)
1514                 goto starved;
1515
1516         return 1;
1517
1518 starved:
1519         spin_lock_irq(shost->host_lock);
1520         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1521         spin_unlock_irq(shost->host_lock);
1522 out_dec:
1523         if (starget->can_queue > 0)
1524                 atomic_dec(&starget->target_busy);
1525         return 0;
1526 }
1527
1528 /*
1529  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1530  * return 0. We must end up running the queue again whenever 0 is
1531  * returned, else IO can hang.
1532  */
1533 static inline int scsi_host_queue_ready(struct request_queue *q,
1534                                    struct Scsi_Host *shost,
1535                                    struct scsi_device *sdev)
1536 {
1537         unsigned int busy;
1538
1539         if (scsi_host_in_recovery(shost))
1540                 return 0;
1541
1542         busy = atomic_inc_return(&shost->host_busy) - 1;
1543         if (atomic_read(&shost->host_blocked) > 0) {
1544                 if (busy)
1545                         goto starved;
1546
1547                 /*
1548                  * unblock after host_blocked iterates to zero
1549                  */
1550                 if (atomic_dec_return(&shost->host_blocked) > 0)
1551                         goto out_dec;
1552
1553                 SCSI_LOG_MLQUEUE(3,
1554                         shost_printk(KERN_INFO, shost,
1555                                      "unblocking host at zero depth\n"));
1556         }
1557
1558         if (shost->can_queue > 0 && busy >= shost->can_queue)
1559                 goto starved;
1560         if (shost->host_self_blocked)
1561                 goto starved;
1562
1563         /* We're OK to process the command, so we can't be starved */
1564         if (!list_empty(&sdev->starved_entry)) {
1565                 spin_lock_irq(shost->host_lock);
1566                 if (!list_empty(&sdev->starved_entry))
1567                         list_del_init(&sdev->starved_entry);
1568                 spin_unlock_irq(shost->host_lock);
1569         }
1570
1571         return 1;
1572
1573 starved:
1574         spin_lock_irq(shost->host_lock);
1575         if (list_empty(&sdev->starved_entry))
1576                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1577         spin_unlock_irq(shost->host_lock);
1578 out_dec:
1579         scsi_dec_host_busy(shost);
1580         return 0;
1581 }
1582
1583 /*
1584  * Busy state exporting function for request stacking drivers.
1585  *
1586  * For efficiency, no lock is taken to check the busy state of
1587  * shost/starget/sdev, since the returned value is not guaranteed and
1588  * may be changed after request stacking drivers call the function,
1589  * regardless of taking lock or not.
1590  *
1591  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1592  * needs to return 'not busy'. Otherwise, request stacking drivers
1593  * may hold requests forever.
1594  */
1595 static int scsi_lld_busy(struct request_queue *q)
1596 {
1597         struct scsi_device *sdev = q->queuedata;
1598         struct Scsi_Host *shost;
1599
1600         if (blk_queue_dying(q))
1601                 return 0;
1602
1603         shost = sdev->host;
1604
1605         /*
1606          * Ignore host/starget busy state.
1607          * Since block layer does not have a concept of fairness across
1608          * multiple queues, congestion of host/starget needs to be handled
1609          * in SCSI layer.
1610          */
1611         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1612                 return 1;
1613
1614         return 0;
1615 }
1616
1617 /*
1618  * Kill a request for a dead device
1619  */
1620 static void scsi_kill_request(struct request *req, struct request_queue *q)
1621 {
1622         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1623         struct scsi_device *sdev;
1624         struct scsi_target *starget;
1625         struct Scsi_Host *shost;
1626
1627         blk_start_request(req);
1628
1629         scmd_printk(KERN_INFO, cmd, "killing request\n");
1630
1631         sdev = cmd->device;
1632         starget = scsi_target(sdev);
1633         shost = sdev->host;
1634         scsi_init_cmd_errh(cmd);
1635         cmd->result = DID_NO_CONNECT << 16;
1636         atomic_inc(&cmd->device->iorequest_cnt);
1637
1638         /*
1639          * SCSI request completion path will do scsi_device_unbusy(),
1640          * bump busy counts.  To bump the counters, we need to dance
1641          * with the locks as normal issue path does.
1642          */
1643         atomic_inc(&sdev->device_busy);
1644         atomic_inc(&shost->host_busy);
1645         if (starget->can_queue > 0)
1646                 atomic_inc(&starget->target_busy);
1647
1648         blk_complete_request(req);
1649 }
1650
1651 static void scsi_softirq_done(struct request *rq)
1652 {
1653         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1654         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1655         int disposition;
1656
1657         INIT_LIST_HEAD(&cmd->eh_entry);
1658
1659         atomic_inc(&cmd->device->iodone_cnt);
1660         if (cmd->result)
1661                 atomic_inc(&cmd->device->ioerr_cnt);
1662
1663         disposition = scsi_decide_disposition(cmd);
1664         if (disposition != SUCCESS &&
1665             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1666                 sdev_printk(KERN_ERR, cmd->device,
1667                             "timing out command, waited %lus\n",
1668                             wait_for/HZ);
1669                 disposition = SUCCESS;
1670         }
1671
1672         scsi_log_completion(cmd, disposition);
1673
1674         switch (disposition) {
1675                 case SUCCESS:
1676                         scsi_finish_command(cmd);
1677                         break;
1678                 case NEEDS_RETRY:
1679                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1680                         break;
1681                 case ADD_TO_MLQUEUE:
1682                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1683                         break;
1684                 default:
1685                         scsi_eh_scmd_add(cmd);
1686                         break;
1687         }
1688 }
1689
1690 /**
1691  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1692  * @cmd: command block we are dispatching.
1693  *
1694  * Return: nonzero return request was rejected and device's queue needs to be
1695  * plugged.
1696  */
1697 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1698 {
1699         struct Scsi_Host *host = cmd->device->host;
1700         int rtn = 0;
1701
1702         atomic_inc(&cmd->device->iorequest_cnt);
1703
1704         /* check if the device is still usable */
1705         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1706                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1707                  * returns an immediate error upwards, and signals
1708                  * that the device is no longer present */
1709                 cmd->result = DID_NO_CONNECT << 16;
1710                 goto done;
1711         }
1712
1713         /* Check to see if the scsi lld made this device blocked. */
1714         if (unlikely(scsi_device_blocked(cmd->device))) {
1715                 /*
1716                  * in blocked state, the command is just put back on
1717                  * the device queue.  The suspend state has already
1718                  * blocked the queue so future requests should not
1719                  * occur until the device transitions out of the
1720                  * suspend state.
1721                  */
1722                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1723                         "queuecommand : device blocked\n"));
1724                 return SCSI_MLQUEUE_DEVICE_BUSY;
1725         }
1726
1727         /* Store the LUN value in cmnd, if needed. */
1728         if (cmd->device->lun_in_cdb)
1729                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1730                                (cmd->device->lun << 5 & 0xe0);
1731
1732         scsi_log_send(cmd);
1733
1734         /*
1735          * Before we queue this command, check if the command
1736          * length exceeds what the host adapter can handle.
1737          */
1738         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1739                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1740                                "queuecommand : command too long. "
1741                                "cdb_size=%d host->max_cmd_len=%d\n",
1742                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1743                 cmd->result = (DID_ABORT << 16);
1744                 goto done;
1745         }
1746
1747         if (unlikely(host->shost_state == SHOST_DEL)) {
1748                 cmd->result = (DID_NO_CONNECT << 16);
1749                 goto done;
1750
1751         }
1752
1753         trace_scsi_dispatch_cmd_start(cmd);
1754         rtn = host->hostt->queuecommand(host, cmd);
1755         if (rtn) {
1756                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1757                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1758                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1759                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1760
1761                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1762                         "queuecommand : request rejected\n"));
1763         }
1764
1765         return rtn;
1766  done:
1767         cmd->scsi_done(cmd);
1768         return 0;
1769 }
1770
1771 /**
1772  * scsi_done - Invoke completion on finished SCSI command.
1773  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1774  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1775  *
1776  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1777  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1778  * calls blk_complete_request() for further processing.
1779  *
1780  * This function is interrupt context safe.
1781  */
1782 static void scsi_done(struct scsi_cmnd *cmd)
1783 {
1784         trace_scsi_dispatch_cmd_done(cmd);
1785         blk_complete_request(cmd->request);
1786 }
1787
1788 /*
1789  * Function:    scsi_request_fn()
1790  *
1791  * Purpose:     Main strategy routine for SCSI.
1792  *
1793  * Arguments:   q       - Pointer to actual queue.
1794  *
1795  * Returns:     Nothing
1796  *
1797  * Lock status: request queue lock assumed to be held when called.
1798  *
1799  * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1800  * protection for ZBC disks.
1801  */
1802 static void scsi_request_fn(struct request_queue *q)
1803         __releases(q->queue_lock)
1804         __acquires(q->queue_lock)
1805 {
1806         struct scsi_device *sdev = q->queuedata;
1807         struct Scsi_Host *shost;
1808         struct scsi_cmnd *cmd;
1809         struct request *req;
1810
1811         /*
1812          * To start with, we keep looping until the queue is empty, or until
1813          * the host is no longer able to accept any more requests.
1814          */
1815         shost = sdev->host;
1816         for (;;) {
1817                 int rtn;
1818                 /*
1819                  * get next queueable request.  We do this early to make sure
1820                  * that the request is fully prepared even if we cannot
1821                  * accept it.
1822                  */
1823                 req = blk_peek_request(q);
1824                 if (!req)
1825                         break;
1826
1827                 if (unlikely(!scsi_device_online(sdev))) {
1828                         sdev_printk(KERN_ERR, sdev,
1829                                     "rejecting I/O to offline device\n");
1830                         scsi_kill_request(req, q);
1831                         continue;
1832                 }
1833
1834                 if (!scsi_dev_queue_ready(q, sdev))
1835                         break;
1836
1837                 /*
1838                  * Remove the request from the request list.
1839                  */
1840                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1841                         blk_start_request(req);
1842
1843                 spin_unlock_irq(q->queue_lock);
1844                 cmd = blk_mq_rq_to_pdu(req);
1845                 if (cmd != req->special) {
1846                         printk(KERN_CRIT "impossible request in %s.\n"
1847                                          "please mail a stack trace to "
1848                                          "linux-scsi@vger.kernel.org\n",
1849                                          __func__);
1850                         blk_dump_rq_flags(req, "foo");
1851                         BUG();
1852                 }
1853
1854                 /*
1855                  * We hit this when the driver is using a host wide
1856                  * tag map. For device level tag maps the queue_depth check
1857                  * in the device ready fn would prevent us from trying
1858                  * to allocate a tag. Since the map is a shared host resource
1859                  * we add the dev to the starved list so it eventually gets
1860                  * a run when a tag is freed.
1861                  */
1862                 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1863                         spin_lock_irq(shost->host_lock);
1864                         if (list_empty(&sdev->starved_entry))
1865                                 list_add_tail(&sdev->starved_entry,
1866                                               &shost->starved_list);
1867                         spin_unlock_irq(shost->host_lock);
1868                         goto not_ready;
1869                 }
1870
1871                 if (!scsi_target_queue_ready(shost, sdev))
1872                         goto not_ready;
1873
1874                 if (!scsi_host_queue_ready(q, shost, sdev))
1875                         goto host_not_ready;
1876         
1877                 if (sdev->simple_tags)
1878                         cmd->flags |= SCMD_TAGGED;
1879                 else
1880                         cmd->flags &= ~SCMD_TAGGED;
1881
1882                 /*
1883                  * Finally, initialize any error handling parameters, and set up
1884                  * the timers for timeouts.
1885                  */
1886                 scsi_init_cmd_errh(cmd);
1887
1888                 /*
1889                  * Dispatch the command to the low-level driver.
1890                  */
1891                 cmd->scsi_done = scsi_done;
1892                 rtn = scsi_dispatch_cmd(cmd);
1893                 if (rtn) {
1894                         scsi_queue_insert(cmd, rtn);
1895                         spin_lock_irq(q->queue_lock);
1896                         goto out_delay;
1897                 }
1898                 spin_lock_irq(q->queue_lock);
1899         }
1900
1901         return;
1902
1903  host_not_ready:
1904         if (scsi_target(sdev)->can_queue > 0)
1905                 atomic_dec(&scsi_target(sdev)->target_busy);
1906  not_ready:
1907         /*
1908          * lock q, handle tag, requeue req, and decrement device_busy. We
1909          * must return with queue_lock held.
1910          *
1911          * Decrementing device_busy without checking it is OK, as all such
1912          * cases (host limits or settings) should run the queue at some
1913          * later time.
1914          */
1915         spin_lock_irq(q->queue_lock);
1916         blk_requeue_request(q, req);
1917         atomic_dec(&sdev->device_busy);
1918 out_delay:
1919         if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1920                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1921 }
1922
1923 static inline blk_status_t prep_to_mq(int ret)
1924 {
1925         switch (ret) {
1926         case BLKPREP_OK:
1927                 return BLK_STS_OK;
1928         case BLKPREP_DEFER:
1929                 return BLK_STS_RESOURCE;
1930         default:
1931                 return BLK_STS_IOERR;
1932         }
1933 }
1934
1935 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1936 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1937 {
1938         return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1939                 sizeof(struct scatterlist);
1940 }
1941
1942 static int scsi_mq_prep_fn(struct request *req)
1943 {
1944         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1945         struct scsi_device *sdev = req->q->queuedata;
1946         struct Scsi_Host *shost = sdev->host;
1947         struct scatterlist *sg;
1948
1949         scsi_init_command(sdev, cmd);
1950
1951         req->special = cmd;
1952
1953         cmd->request = req;
1954
1955         cmd->tag = req->tag;
1956         cmd->prot_op = SCSI_PROT_NORMAL;
1957
1958         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1959         cmd->sdb.table.sgl = sg;
1960
1961         if (scsi_host_get_prot(shost)) {
1962                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1963
1964                 cmd->prot_sdb->table.sgl =
1965                         (struct scatterlist *)(cmd->prot_sdb + 1);
1966         }
1967
1968         if (blk_bidi_rq(req)) {
1969                 struct request *next_rq = req->next_rq;
1970                 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1971
1972                 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1973                 bidi_sdb->table.sgl =
1974                         (struct scatterlist *)(bidi_sdb + 1);
1975
1976                 next_rq->special = bidi_sdb;
1977         }
1978
1979         blk_mq_start_request(req);
1980
1981         return scsi_setup_cmnd(sdev, req);
1982 }
1983
1984 static void scsi_mq_done(struct scsi_cmnd *cmd)
1985 {
1986         trace_scsi_dispatch_cmd_done(cmd);
1987         blk_mq_complete_request(cmd->request);
1988 }
1989
1990 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1991 {
1992         struct request_queue *q = hctx->queue;
1993         struct scsi_device *sdev = q->queuedata;
1994
1995         atomic_dec(&sdev->device_busy);
1996         put_device(&sdev->sdev_gendev);
1997 }
1998
1999 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
2000 {
2001         struct request_queue *q = hctx->queue;
2002         struct scsi_device *sdev = q->queuedata;
2003
2004         if (!get_device(&sdev->sdev_gendev))
2005                 goto out;
2006         if (!scsi_dev_queue_ready(q, sdev))
2007                 goto out_put_device;
2008
2009         return true;
2010
2011 out_put_device:
2012         put_device(&sdev->sdev_gendev);
2013 out:
2014         if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
2015                 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2016         return false;
2017 }
2018
2019 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
2020                          const struct blk_mq_queue_data *bd)
2021 {
2022         struct request *req = bd->rq;
2023         struct request_queue *q = req->q;
2024         struct scsi_device *sdev = q->queuedata;
2025         struct Scsi_Host *shost = sdev->host;
2026         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2027         blk_status_t ret;
2028         int reason;
2029
2030         ret = prep_to_mq(scsi_prep_state_check(sdev, req));
2031         if (ret != BLK_STS_OK)
2032                 goto out_put_budget;
2033
2034         ret = BLK_STS_RESOURCE;
2035         if (!scsi_target_queue_ready(shost, sdev))
2036                 goto out_put_budget;
2037         if (!scsi_host_queue_ready(q, shost, sdev))
2038                 goto out_dec_target_busy;
2039
2040         if (!(req->rq_flags & RQF_DONTPREP)) {
2041                 ret = prep_to_mq(scsi_mq_prep_fn(req));
2042                 if (ret != BLK_STS_OK)
2043                         goto out_dec_host_busy;
2044                 req->rq_flags |= RQF_DONTPREP;
2045         } else {
2046                 blk_mq_start_request(req);
2047         }
2048
2049         if (sdev->simple_tags)
2050                 cmd->flags |= SCMD_TAGGED;
2051         else
2052                 cmd->flags &= ~SCMD_TAGGED;
2053
2054         scsi_init_cmd_errh(cmd);
2055         cmd->scsi_done = scsi_mq_done;
2056
2057         reason = scsi_dispatch_cmd(cmd);
2058         if (reason) {
2059                 scsi_set_blocked(cmd, reason);
2060                 ret = BLK_STS_RESOURCE;
2061                 goto out_dec_host_busy;
2062         }
2063
2064         return BLK_STS_OK;
2065
2066 out_dec_host_busy:
2067         scsi_dec_host_busy(shost);
2068 out_dec_target_busy:
2069         if (scsi_target(sdev)->can_queue > 0)
2070                 atomic_dec(&scsi_target(sdev)->target_busy);
2071 out_put_budget:
2072         scsi_mq_put_budget(hctx);
2073         switch (ret) {
2074         case BLK_STS_OK:
2075                 break;
2076         case BLK_STS_RESOURCE:
2077                 if (atomic_read(&sdev->device_busy) ||
2078                     scsi_device_blocked(sdev))
2079                         ret = BLK_STS_DEV_RESOURCE;
2080                 break;
2081         default:
2082                 /*
2083                  * Make sure to release all allocated ressources when
2084                  * we hit an error, as we will never see this command
2085                  * again.
2086                  */
2087                 if (req->rq_flags & RQF_DONTPREP)
2088                         scsi_mq_uninit_cmd(cmd);
2089                 break;
2090         }
2091         return ret;
2092 }
2093
2094 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2095                 bool reserved)
2096 {
2097         if (reserved)
2098                 return BLK_EH_RESET_TIMER;
2099         return scsi_times_out(req);
2100 }
2101
2102 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2103                                 unsigned int hctx_idx, unsigned int numa_node)
2104 {
2105         struct Scsi_Host *shost = set->driver_data;
2106         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2107         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2108         struct scatterlist *sg;
2109
2110         if (unchecked_isa_dma)
2111                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2112         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2113                                                     GFP_KERNEL, numa_node);
2114         if (!cmd->sense_buffer)
2115                 return -ENOMEM;
2116         cmd->req.sense = cmd->sense_buffer;
2117
2118         if (scsi_host_get_prot(shost)) {
2119                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2120                         shost->hostt->cmd_size;
2121                 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2122         }
2123
2124         return 0;
2125 }
2126
2127 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2128                                  unsigned int hctx_idx)
2129 {
2130         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2131
2132         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2133                                cmd->sense_buffer);
2134 }
2135
2136 static int scsi_map_queues(struct blk_mq_tag_set *set)
2137 {
2138         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2139
2140         if (shost->hostt->map_queues)
2141                 return shost->hostt->map_queues(shost);
2142         return blk_mq_map_queues(set);
2143 }
2144
2145 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2146 {
2147         struct device *host_dev;
2148         u64 bounce_limit = 0xffffffff;
2149
2150         if (shost->unchecked_isa_dma)
2151                 return BLK_BOUNCE_ISA;
2152         /*
2153          * Platforms with virtual-DMA translation
2154          * hardware have no practical limit.
2155          */
2156         if (!PCI_DMA_BUS_IS_PHYS)
2157                 return BLK_BOUNCE_ANY;
2158
2159         host_dev = scsi_get_device(shost);
2160         if (host_dev && host_dev->dma_mask)
2161                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2162
2163         return bounce_limit;
2164 }
2165
2166 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2167 {
2168         struct device *dev = shost->dma_dev;
2169
2170         /*
2171          * this limit is imposed by hardware restrictions
2172          */
2173         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2174                                         SG_MAX_SEGMENTS));
2175
2176         if (scsi_host_prot_dma(shost)) {
2177                 shost->sg_prot_tablesize =
2178                         min_not_zero(shost->sg_prot_tablesize,
2179                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2180                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2181                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2182         }
2183
2184         blk_queue_max_hw_sectors(q, shost->max_sectors);
2185         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2186         blk_queue_segment_boundary(q, shost->dma_boundary);
2187         dma_set_seg_boundary(dev, shost->dma_boundary);
2188
2189         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2190
2191         if (!shost->use_clustering)
2192                 q->limits.cluster = 0;
2193
2194         /*
2195          * Set a reasonable default alignment:  The larger of 32-byte (dword),
2196          * which is a common minimum for HBAs, and the minimum DMA alignment,
2197          * which is set by the platform.
2198          *
2199          * Devices that require a bigger alignment can increase it later.
2200          */
2201         blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2202 }
2203 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2204
2205 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2206                             gfp_t gfp)
2207 {
2208         struct Scsi_Host *shost = q->rq_alloc_data;
2209         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2210         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2211
2212         memset(cmd, 0, sizeof(*cmd));
2213
2214         if (unchecked_isa_dma)
2215                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2216         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2217                                                     NUMA_NO_NODE);
2218         if (!cmd->sense_buffer)
2219                 goto fail;
2220         cmd->req.sense = cmd->sense_buffer;
2221
2222         if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2223                 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2224                 if (!cmd->prot_sdb)
2225                         goto fail_free_sense;
2226         }
2227
2228         return 0;
2229
2230 fail_free_sense:
2231         scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2232 fail:
2233         return -ENOMEM;
2234 }
2235
2236 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2237 {
2238         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2239
2240         if (cmd->prot_sdb)
2241                 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2242         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2243                                cmd->sense_buffer);
2244 }
2245
2246 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2247 {
2248         struct Scsi_Host *shost = sdev->host;
2249         struct request_queue *q;
2250
2251         q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL);
2252         if (!q)
2253                 return NULL;
2254         q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2255         q->rq_alloc_data = shost;
2256         q->request_fn = scsi_request_fn;
2257         q->init_rq_fn = scsi_old_init_rq;
2258         q->exit_rq_fn = scsi_old_exit_rq;
2259         q->initialize_rq_fn = scsi_initialize_rq;
2260
2261         if (blk_init_allocated_queue(q) < 0) {
2262                 blk_cleanup_queue(q);
2263                 return NULL;
2264         }
2265
2266         __scsi_init_queue(shost, q);
2267         blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2268         blk_queue_prep_rq(q, scsi_prep_fn);
2269         blk_queue_unprep_rq(q, scsi_unprep_fn);
2270         blk_queue_softirq_done(q, scsi_softirq_done);
2271         blk_queue_rq_timed_out(q, scsi_times_out);
2272         blk_queue_lld_busy(q, scsi_lld_busy);
2273         return q;
2274 }
2275
2276 static const struct blk_mq_ops scsi_mq_ops = {
2277         .get_budget     = scsi_mq_get_budget,
2278         .put_budget     = scsi_mq_put_budget,
2279         .queue_rq       = scsi_queue_rq,
2280         .complete       = scsi_softirq_done,
2281         .timeout        = scsi_timeout,
2282 #ifdef CONFIG_BLK_DEBUG_FS
2283         .show_rq        = scsi_show_rq,
2284 #endif
2285         .init_request   = scsi_mq_init_request,
2286         .exit_request   = scsi_mq_exit_request,
2287         .initialize_rq_fn = scsi_initialize_rq,
2288         .map_queues     = scsi_map_queues,
2289 };
2290
2291 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2292 {
2293         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2294         if (IS_ERR(sdev->request_queue))
2295                 return NULL;
2296
2297         sdev->request_queue->queuedata = sdev;
2298         __scsi_init_queue(sdev->host, sdev->request_queue);
2299         blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
2300         return sdev->request_queue;
2301 }
2302
2303 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2304 {
2305         unsigned int cmd_size, sgl_size;
2306
2307         sgl_size = scsi_mq_sgl_size(shost);
2308         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2309         if (scsi_host_get_prot(shost))
2310                 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2311
2312         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2313         shost->tag_set.ops = &scsi_mq_ops;
2314         shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2315         shost->tag_set.queue_depth = shost->can_queue;
2316         shost->tag_set.cmd_size = cmd_size;
2317         shost->tag_set.numa_node = NUMA_NO_NODE;
2318         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2319         shost->tag_set.flags |=
2320                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2321         shost->tag_set.driver_data = shost;
2322
2323         return blk_mq_alloc_tag_set(&shost->tag_set);
2324 }
2325
2326 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2327 {
2328         blk_mq_free_tag_set(&shost->tag_set);
2329 }
2330
2331 /**
2332  * scsi_device_from_queue - return sdev associated with a request_queue
2333  * @q: The request queue to return the sdev from
2334  *
2335  * Return the sdev associated with a request queue or NULL if the
2336  * request_queue does not reference a SCSI device.
2337  */
2338 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2339 {
2340         struct scsi_device *sdev = NULL;
2341
2342         if (q->mq_ops) {
2343                 if (q->mq_ops == &scsi_mq_ops)
2344                         sdev = q->queuedata;
2345         } else if (q->request_fn == scsi_request_fn)
2346                 sdev = q->queuedata;
2347         if (!sdev || !get_device(&sdev->sdev_gendev))
2348                 sdev = NULL;
2349
2350         return sdev;
2351 }
2352 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2353
2354 /*
2355  * Function:    scsi_block_requests()
2356  *
2357  * Purpose:     Utility function used by low-level drivers to prevent further
2358  *              commands from being queued to the device.
2359  *
2360  * Arguments:   shost       - Host in question
2361  *
2362  * Returns:     Nothing
2363  *
2364  * Lock status: No locks are assumed held.
2365  *
2366  * Notes:       There is no timer nor any other means by which the requests
2367  *              get unblocked other than the low-level driver calling
2368  *              scsi_unblock_requests().
2369  */
2370 void scsi_block_requests(struct Scsi_Host *shost)
2371 {
2372         shost->host_self_blocked = 1;
2373 }
2374 EXPORT_SYMBOL(scsi_block_requests);
2375
2376 /*
2377  * Function:    scsi_unblock_requests()
2378  *
2379  * Purpose:     Utility function used by low-level drivers to allow further
2380  *              commands from being queued to the device.
2381  *
2382  * Arguments:   shost       - Host in question
2383  *
2384  * Returns:     Nothing
2385  *
2386  * Lock status: No locks are assumed held.
2387  *
2388  * Notes:       There is no timer nor any other means by which the requests
2389  *              get unblocked other than the low-level driver calling
2390  *              scsi_unblock_requests().
2391  *
2392  *              This is done as an API function so that changes to the
2393  *              internals of the scsi mid-layer won't require wholesale
2394  *              changes to drivers that use this feature.
2395  */
2396 void scsi_unblock_requests(struct Scsi_Host *shost)
2397 {
2398         shost->host_self_blocked = 0;
2399         scsi_run_host_queues(shost);
2400 }
2401 EXPORT_SYMBOL(scsi_unblock_requests);
2402
2403 int __init scsi_init_queue(void)
2404 {
2405         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2406                                            sizeof(struct scsi_data_buffer),
2407                                            0, 0, NULL);
2408         if (!scsi_sdb_cache) {
2409                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2410                 return -ENOMEM;
2411         }
2412
2413         return 0;
2414 }
2415
2416 void scsi_exit_queue(void)
2417 {
2418         kmem_cache_destroy(scsi_sense_cache);
2419         kmem_cache_destroy(scsi_sense_isadma_cache);
2420         kmem_cache_destroy(scsi_sdb_cache);
2421 }
2422
2423 /**
2424  *      scsi_mode_select - issue a mode select
2425  *      @sdev:  SCSI device to be queried
2426  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2427  *      @sp:    Save page bit (0 == don't save, 1 == save)
2428  *      @modepage: mode page being requested
2429  *      @buffer: request buffer (may not be smaller than eight bytes)
2430  *      @len:   length of request buffer.
2431  *      @timeout: command timeout
2432  *      @retries: number of retries before failing
2433  *      @data: returns a structure abstracting the mode header data
2434  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2435  *              must be SCSI_SENSE_BUFFERSIZE big.
2436  *
2437  *      Returns zero if successful; negative error number or scsi
2438  *      status on error
2439  *
2440  */
2441 int
2442 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2443                  unsigned char *buffer, int len, int timeout, int retries,
2444                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2445 {
2446         unsigned char cmd[10];
2447         unsigned char *real_buffer;
2448         int ret;
2449
2450         memset(cmd, 0, sizeof(cmd));
2451         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2452
2453         if (sdev->use_10_for_ms) {
2454                 if (len > 65535)
2455                         return -EINVAL;
2456                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2457                 if (!real_buffer)
2458                         return -ENOMEM;
2459                 memcpy(real_buffer + 8, buffer, len);
2460                 len += 8;
2461                 real_buffer[0] = 0;
2462                 real_buffer[1] = 0;
2463                 real_buffer[2] = data->medium_type;
2464                 real_buffer[3] = data->device_specific;
2465                 real_buffer[4] = data->longlba ? 0x01 : 0;
2466                 real_buffer[5] = 0;
2467                 real_buffer[6] = data->block_descriptor_length >> 8;
2468                 real_buffer[7] = data->block_descriptor_length;
2469
2470                 cmd[0] = MODE_SELECT_10;
2471                 cmd[7] = len >> 8;
2472                 cmd[8] = len;
2473         } else {
2474                 if (len > 255 || data->block_descriptor_length > 255 ||
2475                     data->longlba)
2476                         return -EINVAL;
2477
2478                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2479                 if (!real_buffer)
2480                         return -ENOMEM;
2481                 memcpy(real_buffer + 4, buffer, len);
2482                 len += 4;
2483                 real_buffer[0] = 0;
2484                 real_buffer[1] = data->medium_type;
2485                 real_buffer[2] = data->device_specific;
2486                 real_buffer[3] = data->block_descriptor_length;
2487                 
2488
2489                 cmd[0] = MODE_SELECT;
2490                 cmd[4] = len;
2491         }
2492
2493         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2494                                sshdr, timeout, retries, NULL);
2495         kfree(real_buffer);
2496         return ret;
2497 }
2498 EXPORT_SYMBOL_GPL(scsi_mode_select);
2499
2500 /**
2501  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2502  *      @sdev:  SCSI device to be queried
2503  *      @dbd:   set if mode sense will allow block descriptors to be returned
2504  *      @modepage: mode page being requested
2505  *      @buffer: request buffer (may not be smaller than eight bytes)
2506  *      @len:   length of request buffer.
2507  *      @timeout: command timeout
2508  *      @retries: number of retries before failing
2509  *      @data: returns a structure abstracting the mode header data
2510  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2511  *              must be SCSI_SENSE_BUFFERSIZE big.
2512  *
2513  *      Returns zero if unsuccessful, or the header offset (either 4
2514  *      or 8 depending on whether a six or ten byte command was
2515  *      issued) if successful.
2516  */
2517 int
2518 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2519                   unsigned char *buffer, int len, int timeout, int retries,
2520                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2521 {
2522         unsigned char cmd[12];
2523         int use_10_for_ms;
2524         int header_length;
2525         int result, retry_count = retries;
2526         struct scsi_sense_hdr my_sshdr;
2527
2528         memset(data, 0, sizeof(*data));
2529         memset(&cmd[0], 0, 12);
2530         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2531         cmd[2] = modepage;
2532
2533         /* caller might not be interested in sense, but we need it */
2534         if (!sshdr)
2535                 sshdr = &my_sshdr;
2536
2537  retry:
2538         use_10_for_ms = sdev->use_10_for_ms;
2539
2540         if (use_10_for_ms) {
2541                 if (len < 8)
2542                         len = 8;
2543
2544                 cmd[0] = MODE_SENSE_10;
2545                 cmd[8] = len;
2546                 header_length = 8;
2547         } else {
2548                 if (len < 4)
2549                         len = 4;
2550
2551                 cmd[0] = MODE_SENSE;
2552                 cmd[4] = len;
2553                 header_length = 4;
2554         }
2555
2556         memset(buffer, 0, len);
2557
2558         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2559                                   sshdr, timeout, retries, NULL);
2560
2561         /* This code looks awful: what it's doing is making sure an
2562          * ILLEGAL REQUEST sense return identifies the actual command
2563          * byte as the problem.  MODE_SENSE commands can return
2564          * ILLEGAL REQUEST if the code page isn't supported */
2565
2566         if (use_10_for_ms && !scsi_status_is_good(result) &&
2567             (driver_byte(result) & DRIVER_SENSE)) {
2568                 if (scsi_sense_valid(sshdr)) {
2569                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2570                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2571                                 /* 
2572                                  * Invalid command operation code
2573                                  */
2574                                 sdev->use_10_for_ms = 0;
2575                                 goto retry;
2576                         }
2577                 }
2578         }
2579
2580         if(scsi_status_is_good(result)) {
2581                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2582                              (modepage == 6 || modepage == 8))) {
2583                         /* Initio breakage? */
2584                         header_length = 0;
2585                         data->length = 13;
2586                         data->medium_type = 0;
2587                         data->device_specific = 0;
2588                         data->longlba = 0;
2589                         data->block_descriptor_length = 0;
2590                 } else if(use_10_for_ms) {
2591                         data->length = buffer[0]*256 + buffer[1] + 2;
2592                         data->medium_type = buffer[2];
2593                         data->device_specific = buffer[3];
2594                         data->longlba = buffer[4] & 0x01;
2595                         data->block_descriptor_length = buffer[6]*256
2596                                 + buffer[7];
2597                 } else {
2598                         data->length = buffer[0] + 1;
2599                         data->medium_type = buffer[1];
2600                         data->device_specific = buffer[2];
2601                         data->block_descriptor_length = buffer[3];
2602                 }
2603                 data->header_length = header_length;
2604         } else if ((status_byte(result) == CHECK_CONDITION) &&
2605                    scsi_sense_valid(sshdr) &&
2606                    sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2607                 retry_count--;
2608                 goto retry;
2609         }
2610
2611         return result;
2612 }
2613 EXPORT_SYMBOL(scsi_mode_sense);
2614
2615 /**
2616  *      scsi_test_unit_ready - test if unit is ready
2617  *      @sdev:  scsi device to change the state of.
2618  *      @timeout: command timeout
2619  *      @retries: number of retries before failing
2620  *      @sshdr: outpout pointer for decoded sense information.
2621  *
2622  *      Returns zero if unsuccessful or an error if TUR failed.  For
2623  *      removable media, UNIT_ATTENTION sets ->changed flag.
2624  **/
2625 int
2626 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2627                      struct scsi_sense_hdr *sshdr)
2628 {
2629         char cmd[] = {
2630                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2631         };
2632         int result;
2633
2634         /* try to eat the UNIT_ATTENTION if there are enough retries */
2635         do {
2636                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2637                                           timeout, 1, NULL);
2638                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2639                     sshdr->sense_key == UNIT_ATTENTION)
2640                         sdev->changed = 1;
2641         } while (scsi_sense_valid(sshdr) &&
2642                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2643
2644         return result;
2645 }
2646 EXPORT_SYMBOL(scsi_test_unit_ready);
2647
2648 /**
2649  *      scsi_device_set_state - Take the given device through the device state model.
2650  *      @sdev:  scsi device to change the state of.
2651  *      @state: state to change to.
2652  *
2653  *      Returns zero if successful or an error if the requested
2654  *      transition is illegal.
2655  */
2656 int
2657 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2658 {
2659         enum scsi_device_state oldstate = sdev->sdev_state;
2660
2661         if (state == oldstate)
2662                 return 0;
2663
2664         switch (state) {
2665         case SDEV_CREATED:
2666                 switch (oldstate) {
2667                 case SDEV_CREATED_BLOCK:
2668                         break;
2669                 default:
2670                         goto illegal;
2671                 }
2672                 break;
2673                         
2674         case SDEV_RUNNING:
2675                 switch (oldstate) {
2676                 case SDEV_CREATED:
2677                 case SDEV_OFFLINE:
2678                 case SDEV_TRANSPORT_OFFLINE:
2679                 case SDEV_QUIESCE:
2680                 case SDEV_BLOCK:
2681                         break;
2682                 default:
2683                         goto illegal;
2684                 }
2685                 break;
2686
2687         case SDEV_QUIESCE:
2688                 switch (oldstate) {
2689                 case SDEV_RUNNING:
2690                 case SDEV_OFFLINE:
2691                 case SDEV_TRANSPORT_OFFLINE:
2692                         break;
2693                 default:
2694                         goto illegal;
2695                 }
2696                 break;
2697
2698         case SDEV_OFFLINE:
2699         case SDEV_TRANSPORT_OFFLINE:
2700                 switch (oldstate) {
2701                 case SDEV_CREATED:
2702                 case SDEV_RUNNING:
2703                 case SDEV_QUIESCE:
2704                 case SDEV_BLOCK:
2705                         break;
2706                 default:
2707                         goto illegal;
2708                 }
2709                 break;
2710
2711         case SDEV_BLOCK:
2712                 switch (oldstate) {
2713                 case SDEV_RUNNING:
2714                 case SDEV_CREATED_BLOCK:
2715                         break;
2716                 default:
2717                         goto illegal;
2718                 }
2719                 break;
2720
2721         case SDEV_CREATED_BLOCK:
2722                 switch (oldstate) {
2723                 case SDEV_CREATED:
2724                         break;
2725                 default:
2726                         goto illegal;
2727                 }
2728                 break;
2729
2730         case SDEV_CANCEL:
2731                 switch (oldstate) {
2732                 case SDEV_CREATED:
2733                 case SDEV_RUNNING:
2734                 case SDEV_QUIESCE:
2735                 case SDEV_OFFLINE:
2736                 case SDEV_TRANSPORT_OFFLINE:
2737                         break;
2738                 default:
2739                         goto illegal;
2740                 }
2741                 break;
2742
2743         case SDEV_DEL:
2744                 switch (oldstate) {
2745                 case SDEV_CREATED:
2746                 case SDEV_RUNNING:
2747                 case SDEV_OFFLINE:
2748                 case SDEV_TRANSPORT_OFFLINE:
2749                 case SDEV_CANCEL:
2750                 case SDEV_BLOCK:
2751                 case SDEV_CREATED_BLOCK:
2752                         break;
2753                 default:
2754                         goto illegal;
2755                 }
2756                 break;
2757
2758         }
2759         sdev->sdev_state = state;
2760         return 0;
2761
2762  illegal:
2763         SCSI_LOG_ERROR_RECOVERY(1,
2764                                 sdev_printk(KERN_ERR, sdev,
2765                                             "Illegal state transition %s->%s",
2766                                             scsi_device_state_name(oldstate),
2767                                             scsi_device_state_name(state))
2768                                 );
2769         return -EINVAL;
2770 }
2771 EXPORT_SYMBOL(scsi_device_set_state);
2772
2773 /**
2774  *      sdev_evt_emit - emit a single SCSI device uevent
2775  *      @sdev: associated SCSI device
2776  *      @evt: event to emit
2777  *
2778  *      Send a single uevent (scsi_event) to the associated scsi_device.
2779  */
2780 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2781 {
2782         int idx = 0;
2783         char *envp[3];
2784
2785         switch (evt->evt_type) {
2786         case SDEV_EVT_MEDIA_CHANGE:
2787                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2788                 break;
2789         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2790                 scsi_rescan_device(&sdev->sdev_gendev);
2791                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2792                 break;
2793         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2794                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2795                 break;
2796         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2797                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2798                 break;
2799         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2800                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2801                 break;
2802         case SDEV_EVT_LUN_CHANGE_REPORTED:
2803                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2804                 break;
2805         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2806                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2807                 break;
2808         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2809                 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2810                 break;
2811         default:
2812                 /* do nothing */
2813                 break;
2814         }
2815
2816         envp[idx++] = NULL;
2817
2818         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2819 }
2820
2821 /**
2822  *      sdev_evt_thread - send a uevent for each scsi event
2823  *      @work: work struct for scsi_device
2824  *
2825  *      Dispatch queued events to their associated scsi_device kobjects
2826  *      as uevents.
2827  */
2828 void scsi_evt_thread(struct work_struct *work)
2829 {
2830         struct scsi_device *sdev;
2831         enum scsi_device_event evt_type;
2832         LIST_HEAD(event_list);
2833
2834         sdev = container_of(work, struct scsi_device, event_work);
2835
2836         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2837                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2838                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2839
2840         while (1) {
2841                 struct scsi_event *evt;
2842                 struct list_head *this, *tmp;
2843                 unsigned long flags;
2844
2845                 spin_lock_irqsave(&sdev->list_lock, flags);
2846                 list_splice_init(&sdev->event_list, &event_list);
2847                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2848
2849                 if (list_empty(&event_list))
2850                         break;
2851
2852                 list_for_each_safe(this, tmp, &event_list) {
2853                         evt = list_entry(this, struct scsi_event, node);
2854                         list_del(&evt->node);
2855                         scsi_evt_emit(sdev, evt);
2856                         kfree(evt);
2857                 }
2858         }
2859 }
2860
2861 /**
2862  *      sdev_evt_send - send asserted event to uevent thread
2863  *      @sdev: scsi_device event occurred on
2864  *      @evt: event to send
2865  *
2866  *      Assert scsi device event asynchronously.
2867  */
2868 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2869 {
2870         unsigned long flags;
2871
2872 #if 0
2873         /* FIXME: currently this check eliminates all media change events
2874          * for polled devices.  Need to update to discriminate between AN
2875          * and polled events */
2876         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2877                 kfree(evt);
2878                 return;
2879         }
2880 #endif
2881
2882         spin_lock_irqsave(&sdev->list_lock, flags);
2883         list_add_tail(&evt->node, &sdev->event_list);
2884         schedule_work(&sdev->event_work);
2885         spin_unlock_irqrestore(&sdev->list_lock, flags);
2886 }
2887 EXPORT_SYMBOL_GPL(sdev_evt_send);
2888
2889 /**
2890  *      sdev_evt_alloc - allocate a new scsi event
2891  *      @evt_type: type of event to allocate
2892  *      @gfpflags: GFP flags for allocation
2893  *
2894  *      Allocates and returns a new scsi_event.
2895  */
2896 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2897                                   gfp_t gfpflags)
2898 {
2899         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2900         if (!evt)
2901                 return NULL;
2902
2903         evt->evt_type = evt_type;
2904         INIT_LIST_HEAD(&evt->node);
2905
2906         /* evt_type-specific initialization, if any */
2907         switch (evt_type) {
2908         case SDEV_EVT_MEDIA_CHANGE:
2909         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2910         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2911         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2912         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2913         case SDEV_EVT_LUN_CHANGE_REPORTED:
2914         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2915         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2916         default:
2917                 /* do nothing */
2918                 break;
2919         }
2920
2921         return evt;
2922 }
2923 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2924
2925 /**
2926  *      sdev_evt_send_simple - send asserted event to uevent thread
2927  *      @sdev: scsi_device event occurred on
2928  *      @evt_type: type of event to send
2929  *      @gfpflags: GFP flags for allocation
2930  *
2931  *      Assert scsi device event asynchronously, given an event type.
2932  */
2933 void sdev_evt_send_simple(struct scsi_device *sdev,
2934                           enum scsi_device_event evt_type, gfp_t gfpflags)
2935 {
2936         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2937         if (!evt) {
2938                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2939                             evt_type);
2940                 return;
2941         }
2942
2943         sdev_evt_send(sdev, evt);
2944 }
2945 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2946
2947 /**
2948  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2949  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2950  */
2951 static int scsi_request_fn_active(struct scsi_device *sdev)
2952 {
2953         struct request_queue *q = sdev->request_queue;
2954         int request_fn_active;
2955
2956         WARN_ON_ONCE(sdev->host->use_blk_mq);
2957
2958         spin_lock_irq(q->queue_lock);
2959         request_fn_active = q->request_fn_active;
2960         spin_unlock_irq(q->queue_lock);
2961
2962         return request_fn_active;
2963 }
2964
2965 /**
2966  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2967  * @sdev: SCSI device pointer.
2968  *
2969  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2970  * invoked from scsi_request_fn() have finished.
2971  */
2972 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2973 {
2974         WARN_ON_ONCE(sdev->host->use_blk_mq);
2975
2976         while (scsi_request_fn_active(sdev))
2977                 msleep(20);
2978 }
2979
2980 /**
2981  *      scsi_device_quiesce - Block user issued commands.
2982  *      @sdev:  scsi device to quiesce.
2983  *
2984  *      This works by trying to transition to the SDEV_QUIESCE state
2985  *      (which must be a legal transition).  When the device is in this
2986  *      state, only special requests will be accepted, all others will
2987  *      be deferred.  Since special requests may also be requeued requests,
2988  *      a successful return doesn't guarantee the device will be 
2989  *      totally quiescent.
2990  *
2991  *      Must be called with user context, may sleep.
2992  *
2993  *      Returns zero if unsuccessful or an error if not.
2994  */
2995 int
2996 scsi_device_quiesce(struct scsi_device *sdev)
2997 {
2998         struct request_queue *q = sdev->request_queue;
2999         int err;
3000
3001         /*
3002          * It is allowed to call scsi_device_quiesce() multiple times from
3003          * the same context but concurrent scsi_device_quiesce() calls are
3004          * not allowed.
3005          */
3006         WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
3007
3008         blk_set_preempt_only(q);
3009
3010         blk_mq_freeze_queue(q);
3011         /*
3012          * Ensure that the effect of blk_set_preempt_only() will be visible
3013          * for percpu_ref_tryget() callers that occur after the queue
3014          * unfreeze even if the queue was already frozen before this function
3015          * was called. See also https://lwn.net/Articles/573497/.
3016          */
3017         synchronize_rcu();
3018         blk_mq_unfreeze_queue(q);
3019
3020         mutex_lock(&sdev->state_mutex);
3021         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
3022         if (err == 0)
3023                 sdev->quiesced_by = current;
3024         else
3025                 blk_clear_preempt_only(q);
3026         mutex_unlock(&sdev->state_mutex);
3027
3028         return err;
3029 }
3030 EXPORT_SYMBOL(scsi_device_quiesce);
3031
3032 /**
3033  *      scsi_device_resume - Restart user issued commands to a quiesced device.
3034  *      @sdev:  scsi device to resume.
3035  *
3036  *      Moves the device from quiesced back to running and restarts the
3037  *      queues.
3038  *
3039  *      Must be called with user context, may sleep.
3040  */
3041 void scsi_device_resume(struct scsi_device *sdev)
3042 {
3043         /* check if the device state was mutated prior to resume, and if
3044          * so assume the state is being managed elsewhere (for example
3045          * device deleted during suspend)
3046          */
3047         mutex_lock(&sdev->state_mutex);
3048         WARN_ON_ONCE(!sdev->quiesced_by);
3049         sdev->quiesced_by = NULL;
3050         blk_clear_preempt_only(sdev->request_queue);
3051         if (sdev->sdev_state == SDEV_QUIESCE)
3052                 scsi_device_set_state(sdev, SDEV_RUNNING);
3053         mutex_unlock(&sdev->state_mutex);
3054 }
3055 EXPORT_SYMBOL(scsi_device_resume);
3056
3057 static void
3058 device_quiesce_fn(struct scsi_device *sdev, void *data)
3059 {
3060         scsi_device_quiesce(sdev);
3061 }
3062
3063 void
3064 scsi_target_quiesce(struct scsi_target *starget)
3065 {
3066         starget_for_each_device(starget, NULL, device_quiesce_fn);
3067 }
3068 EXPORT_SYMBOL(scsi_target_quiesce);
3069
3070 static void
3071 device_resume_fn(struct scsi_device *sdev, void *data)
3072 {
3073         scsi_device_resume(sdev);
3074 }
3075
3076 void
3077 scsi_target_resume(struct scsi_target *starget)
3078 {
3079         starget_for_each_device(starget, NULL, device_resume_fn);
3080 }
3081 EXPORT_SYMBOL(scsi_target_resume);
3082
3083 /**
3084  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3085  * @sdev: device to block
3086  *
3087  * Pause SCSI command processing on the specified device. Does not sleep.
3088  *
3089  * Returns zero if successful or a negative error code upon failure.
3090  *
3091  * Notes:
3092  * This routine transitions the device to the SDEV_BLOCK state (which must be
3093  * a legal transition). When the device is in this state, command processing
3094  * is paused until the device leaves the SDEV_BLOCK state. See also
3095  * scsi_internal_device_unblock_nowait().
3096  */
3097 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3098 {
3099         struct request_queue *q = sdev->request_queue;
3100         unsigned long flags;
3101         int err = 0;
3102
3103         err = scsi_device_set_state(sdev, SDEV_BLOCK);
3104         if (err) {
3105                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3106
3107                 if (err)
3108                         return err;
3109         }
3110
3111         /* 
3112          * The device has transitioned to SDEV_BLOCK.  Stop the
3113          * block layer from calling the midlayer with this device's
3114          * request queue. 
3115          */
3116         if (q->mq_ops) {
3117                 blk_mq_quiesce_queue_nowait(q);
3118         } else {
3119                 spin_lock_irqsave(q->queue_lock, flags);
3120                 blk_stop_queue(q);
3121                 spin_unlock_irqrestore(q->queue_lock, flags);
3122         }
3123
3124         return 0;
3125 }
3126 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3127
3128 /**
3129  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3130  * @sdev: device to block
3131  *
3132  * Pause SCSI command processing on the specified device and wait until all
3133  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3134  *
3135  * Returns zero if successful or a negative error code upon failure.
3136  *
3137  * Note:
3138  * This routine transitions the device to the SDEV_BLOCK state (which must be
3139  * a legal transition). When the device is in this state, command processing
3140  * is paused until the device leaves the SDEV_BLOCK state. See also
3141  * scsi_internal_device_unblock().
3142  *
3143  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3144  * scsi_internal_device_block() has blocked a SCSI device and also
3145  * remove the rport mutex lock and unlock calls from srp_queuecommand().
3146  */
3147 static int scsi_internal_device_block(struct scsi_device *sdev)
3148 {
3149         struct request_queue *q = sdev->request_queue;
3150         int err;
3151
3152         mutex_lock(&sdev->state_mutex);
3153         err = scsi_internal_device_block_nowait(sdev);
3154         if (err == 0) {
3155                 if (q->mq_ops)
3156                         blk_mq_quiesce_queue(q);
3157                 else
3158                         scsi_wait_for_queuecommand(sdev);
3159         }
3160         mutex_unlock(&sdev->state_mutex);
3161
3162         return err;
3163 }
3164  
3165 void scsi_start_queue(struct scsi_device *sdev)
3166 {
3167         struct request_queue *q = sdev->request_queue;
3168         unsigned long flags;
3169
3170         if (q->mq_ops) {
3171                 blk_mq_unquiesce_queue(q);
3172         } else {
3173                 spin_lock_irqsave(q->queue_lock, flags);
3174                 blk_start_queue(q);
3175                 spin_unlock_irqrestore(q->queue_lock, flags);
3176         }
3177 }
3178
3179 /**
3180  * scsi_internal_device_unblock_nowait - resume a device after a block request
3181  * @sdev:       device to resume
3182  * @new_state:  state to set the device to after unblocking
3183  *
3184  * Restart the device queue for a previously suspended SCSI device. Does not
3185  * sleep.
3186  *
3187  * Returns zero if successful or a negative error code upon failure.
3188  *
3189  * Notes:
3190  * This routine transitions the device to the SDEV_RUNNING state or to one of
3191  * the offline states (which must be a legal transition) allowing the midlayer
3192  * to goose the queue for this device.
3193  */
3194 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3195                                         enum scsi_device_state new_state)
3196 {
3197         /*
3198          * Try to transition the scsi device to SDEV_RUNNING or one of the
3199          * offlined states and goose the device queue if successful.
3200          */
3201         switch (sdev->sdev_state) {
3202         case SDEV_BLOCK:
3203         case SDEV_TRANSPORT_OFFLINE:
3204                 sdev->sdev_state = new_state;
3205                 break;
3206         case SDEV_CREATED_BLOCK:
3207                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3208                     new_state == SDEV_OFFLINE)
3209                         sdev->sdev_state = new_state;
3210                 else
3211                         sdev->sdev_state = SDEV_CREATED;
3212                 break;
3213         case SDEV_CANCEL:
3214         case SDEV_OFFLINE:
3215                 break;
3216         default:
3217                 return -EINVAL;
3218         }
3219         scsi_start_queue(sdev);
3220
3221         return 0;
3222 }
3223 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3224
3225 /**
3226  * scsi_internal_device_unblock - resume a device after a block request
3227  * @sdev:       device to resume
3228  * @new_state:  state to set the device to after unblocking
3229  *
3230  * Restart the device queue for a previously suspended SCSI device. May sleep.
3231  *
3232  * Returns zero if successful or a negative error code upon failure.
3233  *
3234  * Notes:
3235  * This routine transitions the device to the SDEV_RUNNING state or to one of
3236  * the offline states (which must be a legal transition) allowing the midlayer
3237  * to goose the queue for this device.
3238  */
3239 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3240                                         enum scsi_device_state new_state)
3241 {
3242         int ret;
3243
3244         mutex_lock(&sdev->state_mutex);
3245         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3246         mutex_unlock(&sdev->state_mutex);
3247
3248         return ret;
3249 }
3250
3251 static void
3252 device_block(struct scsi_device *sdev, void *data)
3253 {
3254         scsi_internal_device_block(sdev);
3255 }
3256
3257 static int
3258 target_block(struct device *dev, void *data)
3259 {
3260         if (scsi_is_target_device(dev))
3261                 starget_for_each_device(to_scsi_target(dev), NULL,
3262                                         device_block);
3263         return 0;
3264 }
3265
3266 void
3267 scsi_target_block(struct device *dev)
3268 {
3269         if (scsi_is_target_device(dev))
3270                 starget_for_each_device(to_scsi_target(dev), NULL,
3271                                         device_block);
3272         else
3273                 device_for_each_child(dev, NULL, target_block);
3274 }
3275 EXPORT_SYMBOL_GPL(scsi_target_block);
3276
3277 static void
3278 device_unblock(struct scsi_device *sdev, void *data)
3279 {
3280         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3281 }
3282
3283 static int
3284 target_unblock(struct device *dev, void *data)
3285 {
3286         if (scsi_is_target_device(dev))
3287                 starget_for_each_device(to_scsi_target(dev), data,
3288                                         device_unblock);
3289         return 0;
3290 }
3291
3292 void
3293 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3294 {
3295         if (scsi_is_target_device(dev))
3296                 starget_for_each_device(to_scsi_target(dev), &new_state,
3297                                         device_unblock);
3298         else
3299                 device_for_each_child(dev, &new_state, target_unblock);
3300 }
3301 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3302
3303 /**
3304  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3305  * @sgl:        scatter-gather list
3306  * @sg_count:   number of segments in sg
3307  * @offset:     offset in bytes into sg, on return offset into the mapped area
3308  * @len:        bytes to map, on return number of bytes mapped
3309  *
3310  * Returns virtual address of the start of the mapped page
3311  */
3312 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3313                           size_t *offset, size_t *len)
3314 {
3315         int i;
3316         size_t sg_len = 0, len_complete = 0;
3317         struct scatterlist *sg;
3318         struct page *page;
3319
3320         WARN_ON(!irqs_disabled());
3321
3322         for_each_sg(sgl, sg, sg_count, i) {
3323                 len_complete = sg_len; /* Complete sg-entries */
3324                 sg_len += sg->length;
3325                 if (sg_len > *offset)
3326                         break;
3327         }
3328
3329         if (unlikely(i == sg_count)) {
3330                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3331                         "elements %d\n",
3332                        __func__, sg_len, *offset, sg_count);
3333                 WARN_ON(1);
3334                 return NULL;
3335         }
3336
3337         /* Offset starting from the beginning of first page in this sg-entry */
3338         *offset = *offset - len_complete + sg->offset;
3339
3340         /* Assumption: contiguous pages can be accessed as "page + i" */
3341         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3342         *offset &= ~PAGE_MASK;
3343
3344         /* Bytes in this sg-entry from *offset to the end of the page */
3345         sg_len = PAGE_SIZE - *offset;
3346         if (*len > sg_len)
3347                 *len = sg_len;
3348
3349         return kmap_atomic(page);
3350 }
3351 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3352
3353 /**
3354  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3355  * @virt:       virtual address to be unmapped
3356  */
3357 void scsi_kunmap_atomic_sg(void *virt)
3358 {
3359         kunmap_atomic(virt);
3360 }
3361 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3362
3363 void sdev_disable_disk_events(struct scsi_device *sdev)
3364 {
3365         atomic_inc(&sdev->disk_events_disable_depth);
3366 }
3367 EXPORT_SYMBOL(sdev_disable_disk_events);
3368
3369 void sdev_enable_disk_events(struct scsi_device *sdev)
3370 {
3371         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3372                 return;
3373         atomic_dec(&sdev->disk_events_disable_depth);
3374 }
3375 EXPORT_SYMBOL(sdev_enable_disk_events);
3376
3377 /**
3378  * scsi_vpd_lun_id - return a unique device identification
3379  * @sdev: SCSI device
3380  * @id:   buffer for the identification
3381  * @id_len:  length of the buffer
3382  *
3383  * Copies a unique device identification into @id based
3384  * on the information in the VPD page 0x83 of the device.
3385  * The string will be formatted as a SCSI name string.
3386  *
3387  * Returns the length of the identification or error on failure.
3388  * If the identifier is longer than the supplied buffer the actual
3389  * identifier length is returned and the buffer is not zero-padded.
3390  */
3391 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3392 {
3393         u8 cur_id_type = 0xff;
3394         u8 cur_id_size = 0;
3395         const unsigned char *d, *cur_id_str;
3396         const struct scsi_vpd *vpd_pg83;
3397         int id_size = -EINVAL;
3398
3399         rcu_read_lock();
3400         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3401         if (!vpd_pg83) {
3402                 rcu_read_unlock();
3403                 return -ENXIO;
3404         }
3405
3406         /*
3407          * Look for the correct descriptor.
3408          * Order of preference for lun descriptor:
3409          * - SCSI name string
3410          * - NAA IEEE Registered Extended
3411          * - EUI-64 based 16-byte
3412          * - EUI-64 based 12-byte
3413          * - NAA IEEE Registered
3414          * - NAA IEEE Extended
3415          * - T10 Vendor ID
3416          * as longer descriptors reduce the likelyhood
3417          * of identification clashes.
3418          */
3419
3420         /* The id string must be at least 20 bytes + terminating NULL byte */
3421         if (id_len < 21) {
3422                 rcu_read_unlock();
3423                 return -EINVAL;
3424         }
3425
3426         memset(id, 0, id_len);
3427         d = vpd_pg83->data + 4;
3428         while (d < vpd_pg83->data + vpd_pg83->len) {
3429                 /* Skip designators not referring to the LUN */
3430                 if ((d[1] & 0x30) != 0x00)
3431                         goto next_desig;
3432
3433                 switch (d[1] & 0xf) {
3434                 case 0x1:
3435                         /* T10 Vendor ID */
3436                         if (cur_id_size > d[3])
3437                                 break;
3438                         /* Prefer anything */
3439                         if (cur_id_type > 0x01 && cur_id_type != 0xff)
3440                                 break;
3441                         cur_id_size = d[3];
3442                         if (cur_id_size + 4 > id_len)
3443                                 cur_id_size = id_len - 4;
3444                         cur_id_str = d + 4;
3445                         cur_id_type = d[1] & 0xf;
3446                         id_size = snprintf(id, id_len, "t10.%*pE",
3447                                            cur_id_size, cur_id_str);
3448                         break;
3449                 case 0x2:
3450                         /* EUI-64 */
3451                         if (cur_id_size > d[3])
3452                                 break;
3453                         /* Prefer NAA IEEE Registered Extended */
3454                         if (cur_id_type == 0x3 &&
3455                             cur_id_size == d[3])
3456                                 break;
3457                         cur_id_size = d[3];
3458                         cur_id_str = d + 4;
3459                         cur_id_type = d[1] & 0xf;
3460                         switch (cur_id_size) {
3461                         case 8:
3462                                 id_size = snprintf(id, id_len,
3463                                                    "eui.%8phN",
3464                                                    cur_id_str);
3465                                 break;
3466                         case 12:
3467                                 id_size = snprintf(id, id_len,
3468                                                    "eui.%12phN",
3469                                                    cur_id_str);
3470                                 break;
3471                         case 16:
3472                                 id_size = snprintf(id, id_len,
3473                                                    "eui.%16phN",
3474                                                    cur_id_str);
3475                                 break;
3476                         default:
3477                                 cur_id_size = 0;
3478                                 break;
3479                         }
3480                         break;
3481                 case 0x3:
3482                         /* NAA */
3483                         if (cur_id_size > d[3])
3484                                 break;
3485                         cur_id_size = d[3];
3486                         cur_id_str = d + 4;
3487                         cur_id_type = d[1] & 0xf;
3488                         switch (cur_id_size) {
3489                         case 8:
3490                                 id_size = snprintf(id, id_len,
3491                                                    "naa.%8phN",
3492                                                    cur_id_str);
3493                                 break;
3494                         case 16:
3495                                 id_size = snprintf(id, id_len,
3496                                                    "naa.%16phN",
3497                                                    cur_id_str);
3498                                 break;
3499                         default:
3500                                 cur_id_size = 0;
3501                                 break;
3502                         }
3503                         break;
3504                 case 0x8:
3505                         /* SCSI name string */
3506                         if (cur_id_size + 4 > d[3])
3507                                 break;
3508                         /* Prefer others for truncated descriptor */
3509                         if (cur_id_size && d[3] > id_len)
3510                                 break;
3511                         cur_id_size = id_size = d[3];
3512                         cur_id_str = d + 4;
3513                         cur_id_type = d[1] & 0xf;
3514                         if (cur_id_size >= id_len)
3515                                 cur_id_size = id_len - 1;
3516                         memcpy(id, cur_id_str, cur_id_size);
3517                         /* Decrease priority for truncated descriptor */
3518                         if (cur_id_size != id_size)
3519                                 cur_id_size = 6;
3520                         break;
3521                 default:
3522                         break;
3523                 }
3524 next_desig:
3525                 d += d[3] + 4;
3526         }
3527         rcu_read_unlock();
3528
3529         return id_size;
3530 }
3531 EXPORT_SYMBOL(scsi_vpd_lun_id);
3532
3533 /*
3534  * scsi_vpd_tpg_id - return a target port group identifier
3535  * @sdev: SCSI device
3536  *
3537  * Returns the Target Port Group identifier from the information
3538  * froom VPD page 0x83 of the device.
3539  *
3540  * Returns the identifier or error on failure.
3541  */
3542 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3543 {
3544         const unsigned char *d;
3545         const struct scsi_vpd *vpd_pg83;
3546         int group_id = -EAGAIN, rel_port = -1;
3547
3548         rcu_read_lock();
3549         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3550         if (!vpd_pg83) {
3551                 rcu_read_unlock();
3552                 return -ENXIO;
3553         }
3554
3555         d = vpd_pg83->data + 4;
3556         while (d < vpd_pg83->data + vpd_pg83->len) {
3557                 switch (d[1] & 0xf) {
3558                 case 0x4:
3559                         /* Relative target port */
3560                         rel_port = get_unaligned_be16(&d[6]);
3561                         break;
3562                 case 0x5:
3563                         /* Target port group */
3564                         group_id = get_unaligned_be16(&d[6]);
3565                         break;
3566                 default:
3567                         break;
3568                 }
3569                 d += d[3] + 4;
3570         }
3571         rcu_read_unlock();
3572
3573         if (group_id >= 0 && rel_id && rel_port != -1)
3574                 *rel_id = rel_port;
3575
3576         return group_id;
3577 }
3578 EXPORT_SYMBOL(scsi_vpd_tpg_id);