scsi: core: Ensure that the SCSI error handler gets woken up
[platform/kernel/linux-exynos.git] / drivers / scsi / scsi_lib.c
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35
36 #include <trace/events/scsi.h>
37
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
51 {
52         return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53 }
54
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56                                    unsigned char *sense_buffer)
57 {
58         kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59                         sense_buffer);
60 }
61
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63         gfp_t gfp_mask, int numa_node)
64 {
65         return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66                                      gfp_mask, numa_node);
67 }
68
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
70 {
71         struct kmem_cache *cache;
72         int ret = 0;
73
74         cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75         if (cache)
76                 return 0;
77
78         mutex_lock(&scsi_sense_cache_mutex);
79         if (shost->unchecked_isa_dma) {
80                 scsi_sense_isadma_cache =
81                         kmem_cache_create("scsi_sense_cache(DMA)",
82                         SCSI_SENSE_BUFFERSIZE, 0,
83                         SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84                 if (!scsi_sense_isadma_cache)
85                         ret = -ENOMEM;
86         } else {
87                 scsi_sense_cache =
88                         kmem_cache_create("scsi_sense_cache",
89                         SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
90                 if (!scsi_sense_cache)
91                         ret = -ENOMEM;
92         }
93
94         mutex_unlock(&scsi_sense_cache_mutex);
95         return ret;
96 }
97
98 /*
99  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
100  * not change behaviour from the previous unplug mechanism, experimentation
101  * may prove this needs changing.
102  */
103 #define SCSI_QUEUE_DELAY        3
104
105 static void
106 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
107 {
108         struct Scsi_Host *host = cmd->device->host;
109         struct scsi_device *device = cmd->device;
110         struct scsi_target *starget = scsi_target(device);
111
112         /*
113          * Set the appropriate busy bit for the device/host.
114          *
115          * If the host/device isn't busy, assume that something actually
116          * completed, and that we should be able to queue a command now.
117          *
118          * Note that the prior mid-layer assumption that any host could
119          * always queue at least one command is now broken.  The mid-layer
120          * will implement a user specifiable stall (see
121          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
122          * if a command is requeued with no other commands outstanding
123          * either for the device or for the host.
124          */
125         switch (reason) {
126         case SCSI_MLQUEUE_HOST_BUSY:
127                 atomic_set(&host->host_blocked, host->max_host_blocked);
128                 break;
129         case SCSI_MLQUEUE_DEVICE_BUSY:
130         case SCSI_MLQUEUE_EH_RETRY:
131                 atomic_set(&device->device_blocked,
132                            device->max_device_blocked);
133                 break;
134         case SCSI_MLQUEUE_TARGET_BUSY:
135                 atomic_set(&starget->target_blocked,
136                            starget->max_target_blocked);
137                 break;
138         }
139 }
140
141 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
142 {
143         struct scsi_device *sdev = cmd->device;
144
145         if (cmd->request->rq_flags & RQF_DONTPREP) {
146                 cmd->request->rq_flags &= ~RQF_DONTPREP;
147                 scsi_mq_uninit_cmd(cmd);
148         } else {
149                 WARN_ON_ONCE(true);
150         }
151         blk_mq_requeue_request(cmd->request, true);
152         put_device(&sdev->sdev_gendev);
153 }
154
155 /**
156  * __scsi_queue_insert - private queue insertion
157  * @cmd: The SCSI command being requeued
158  * @reason:  The reason for the requeue
159  * @unbusy: Whether the queue should be unbusied
160  *
161  * This is a private queue insertion.  The public interface
162  * scsi_queue_insert() always assumes the queue should be unbusied
163  * because it's always called before the completion.  This function is
164  * for a requeue after completion, which should only occur in this
165  * file.
166  */
167 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
168 {
169         struct scsi_device *device = cmd->device;
170         struct request_queue *q = device->request_queue;
171         unsigned long flags;
172
173         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
174                 "Inserting command %p into mlqueue\n", cmd));
175
176         scsi_set_blocked(cmd, reason);
177
178         /*
179          * Decrement the counters, since these commands are no longer
180          * active on the host/device.
181          */
182         if (unbusy)
183                 scsi_device_unbusy(device);
184
185         /*
186          * Requeue this command.  It will go before all other commands
187          * that are already in the queue. Schedule requeue work under
188          * lock such that the kblockd_schedule_work() call happens
189          * before blk_cleanup_queue() finishes.
190          */
191         cmd->result = 0;
192         if (q->mq_ops) {
193                 scsi_mq_requeue_cmd(cmd);
194                 return;
195         }
196         spin_lock_irqsave(q->queue_lock, flags);
197         blk_requeue_request(q, cmd->request);
198         kblockd_schedule_work(&device->requeue_work);
199         spin_unlock_irqrestore(q->queue_lock, flags);
200 }
201
202 /*
203  * Function:    scsi_queue_insert()
204  *
205  * Purpose:     Insert a command in the midlevel queue.
206  *
207  * Arguments:   cmd    - command that we are adding to queue.
208  *              reason - why we are inserting command to queue.
209  *
210  * Lock status: Assumed that lock is not held upon entry.
211  *
212  * Returns:     Nothing.
213  *
214  * Notes:       We do this for one of two cases.  Either the host is busy
215  *              and it cannot accept any more commands for the time being,
216  *              or the device returned QUEUE_FULL and can accept no more
217  *              commands.
218  * Notes:       This could be called either from an interrupt context or a
219  *              normal process context.
220  */
221 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
222 {
223         __scsi_queue_insert(cmd, reason, 1);
224 }
225
226
227 /**
228  * scsi_execute - insert request and wait for the result
229  * @sdev:       scsi device
230  * @cmd:        scsi command
231  * @data_direction: data direction
232  * @buffer:     data buffer
233  * @bufflen:    len of buffer
234  * @sense:      optional sense buffer
235  * @sshdr:      optional decoded sense header
236  * @timeout:    request timeout in seconds
237  * @retries:    number of times to retry request
238  * @flags:      flags for ->cmd_flags
239  * @rq_flags:   flags for ->rq_flags
240  * @resid:      optional residual length
241  *
242  * Returns the scsi_cmnd result field if a command was executed, or a negative
243  * Linux error code if we didn't get that far.
244  */
245 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
246                  int data_direction, void *buffer, unsigned bufflen,
247                  unsigned char *sense, struct scsi_sense_hdr *sshdr,
248                  int timeout, int retries, u64 flags, req_flags_t rq_flags,
249                  int *resid)
250 {
251         struct request *req;
252         struct scsi_request *rq;
253         int ret = DRIVER_ERROR << 24;
254
255         req = blk_get_request(sdev->request_queue,
256                         data_direction == DMA_TO_DEVICE ?
257                         REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM);
258         if (IS_ERR(req))
259                 return ret;
260         rq = scsi_req(req);
261
262         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
263                                         buffer, bufflen, __GFP_RECLAIM))
264                 goto out;
265
266         rq->cmd_len = COMMAND_SIZE(cmd[0]);
267         memcpy(rq->cmd, cmd, rq->cmd_len);
268         rq->retries = retries;
269         req->timeout = timeout;
270         req->cmd_flags |= flags;
271         req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT;
272
273         /*
274          * head injection *required* here otherwise quiesce won't work
275          */
276         blk_execute_rq(req->q, NULL, req, 1);
277
278         /*
279          * Some devices (USB mass-storage in particular) may transfer
280          * garbage data together with a residue indicating that the data
281          * is invalid.  Prevent the garbage from being misinterpreted
282          * and prevent security leaks by zeroing out the excess data.
283          */
284         if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
285                 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
286
287         if (resid)
288                 *resid = rq->resid_len;
289         if (sense && rq->sense_len)
290                 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
291         if (sshdr)
292                 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
293         ret = rq->result;
294  out:
295         blk_put_request(req);
296
297         return ret;
298 }
299 EXPORT_SYMBOL(scsi_execute);
300
301 /*
302  * Function:    scsi_init_cmd_errh()
303  *
304  * Purpose:     Initialize cmd fields related to error handling.
305  *
306  * Arguments:   cmd     - command that is ready to be queued.
307  *
308  * Notes:       This function has the job of initializing a number of
309  *              fields related to error handling.   Typically this will
310  *              be called once for each command, as required.
311  */
312 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
313 {
314         cmd->serial_number = 0;
315         scsi_set_resid(cmd, 0);
316         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
317         if (cmd->cmd_len == 0)
318                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
319 }
320
321 /*
322  * Decrement the host_busy counter and wake up the error handler if necessary.
323  * Avoid as follows that the error handler is not woken up if shost->host_busy
324  * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
325  * with an RCU read lock in this function to ensure that this function in its
326  * entirety either finishes before scsi_eh_scmd_add() increases the
327  * host_failed counter or that it notices the shost state change made by
328  * scsi_eh_scmd_add().
329  */
330 static void scsi_dec_host_busy(struct Scsi_Host *shost)
331 {
332         unsigned long flags;
333
334         rcu_read_lock();
335         atomic_dec(&shost->host_busy);
336         if (unlikely(scsi_host_in_recovery(shost))) {
337                 spin_lock_irqsave(shost->host_lock, flags);
338                 if (shost->host_failed || shost->host_eh_scheduled)
339                         scsi_eh_wakeup(shost);
340                 spin_unlock_irqrestore(shost->host_lock, flags);
341         }
342         rcu_read_unlock();
343 }
344
345 void scsi_device_unbusy(struct scsi_device *sdev)
346 {
347         struct Scsi_Host *shost = sdev->host;
348         struct scsi_target *starget = scsi_target(sdev);
349
350         scsi_dec_host_busy(shost);
351
352         if (starget->can_queue > 0)
353                 atomic_dec(&starget->target_busy);
354
355         atomic_dec(&sdev->device_busy);
356 }
357
358 static void scsi_kick_queue(struct request_queue *q)
359 {
360         if (q->mq_ops)
361                 blk_mq_start_hw_queues(q);
362         else
363                 blk_run_queue(q);
364 }
365
366 /*
367  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
368  * and call blk_run_queue for all the scsi_devices on the target -
369  * including current_sdev first.
370  *
371  * Called with *no* scsi locks held.
372  */
373 static void scsi_single_lun_run(struct scsi_device *current_sdev)
374 {
375         struct Scsi_Host *shost = current_sdev->host;
376         struct scsi_device *sdev, *tmp;
377         struct scsi_target *starget = scsi_target(current_sdev);
378         unsigned long flags;
379
380         spin_lock_irqsave(shost->host_lock, flags);
381         starget->starget_sdev_user = NULL;
382         spin_unlock_irqrestore(shost->host_lock, flags);
383
384         /*
385          * Call blk_run_queue for all LUNs on the target, starting with
386          * current_sdev. We race with others (to set starget_sdev_user),
387          * but in most cases, we will be first. Ideally, each LU on the
388          * target would get some limited time or requests on the target.
389          */
390         scsi_kick_queue(current_sdev->request_queue);
391
392         spin_lock_irqsave(shost->host_lock, flags);
393         if (starget->starget_sdev_user)
394                 goto out;
395         list_for_each_entry_safe(sdev, tmp, &starget->devices,
396                         same_target_siblings) {
397                 if (sdev == current_sdev)
398                         continue;
399                 if (scsi_device_get(sdev))
400                         continue;
401
402                 spin_unlock_irqrestore(shost->host_lock, flags);
403                 scsi_kick_queue(sdev->request_queue);
404                 spin_lock_irqsave(shost->host_lock, flags);
405         
406                 scsi_device_put(sdev);
407         }
408  out:
409         spin_unlock_irqrestore(shost->host_lock, flags);
410 }
411
412 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
413 {
414         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
415                 return true;
416         if (atomic_read(&sdev->device_blocked) > 0)
417                 return true;
418         return false;
419 }
420
421 static inline bool scsi_target_is_busy(struct scsi_target *starget)
422 {
423         if (starget->can_queue > 0) {
424                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
425                         return true;
426                 if (atomic_read(&starget->target_blocked) > 0)
427                         return true;
428         }
429         return false;
430 }
431
432 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
433 {
434         if (shost->can_queue > 0 &&
435             atomic_read(&shost->host_busy) >= shost->can_queue)
436                 return true;
437         if (atomic_read(&shost->host_blocked) > 0)
438                 return true;
439         if (shost->host_self_blocked)
440                 return true;
441         return false;
442 }
443
444 static void scsi_starved_list_run(struct Scsi_Host *shost)
445 {
446         LIST_HEAD(starved_list);
447         struct scsi_device *sdev;
448         unsigned long flags;
449
450         spin_lock_irqsave(shost->host_lock, flags);
451         list_splice_init(&shost->starved_list, &starved_list);
452
453         while (!list_empty(&starved_list)) {
454                 struct request_queue *slq;
455
456                 /*
457                  * As long as shost is accepting commands and we have
458                  * starved queues, call blk_run_queue. scsi_request_fn
459                  * drops the queue_lock and can add us back to the
460                  * starved_list.
461                  *
462                  * host_lock protects the starved_list and starved_entry.
463                  * scsi_request_fn must get the host_lock before checking
464                  * or modifying starved_list or starved_entry.
465                  */
466                 if (scsi_host_is_busy(shost))
467                         break;
468
469                 sdev = list_entry(starved_list.next,
470                                   struct scsi_device, starved_entry);
471                 list_del_init(&sdev->starved_entry);
472                 if (scsi_target_is_busy(scsi_target(sdev))) {
473                         list_move_tail(&sdev->starved_entry,
474                                        &shost->starved_list);
475                         continue;
476                 }
477
478                 /*
479                  * Once we drop the host lock, a racing scsi_remove_device()
480                  * call may remove the sdev from the starved list and destroy
481                  * it and the queue.  Mitigate by taking a reference to the
482                  * queue and never touching the sdev again after we drop the
483                  * host lock.  Note: if __scsi_remove_device() invokes
484                  * blk_cleanup_queue() before the queue is run from this
485                  * function then blk_run_queue() will return immediately since
486                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
487                  */
488                 slq = sdev->request_queue;
489                 if (!blk_get_queue(slq))
490                         continue;
491                 spin_unlock_irqrestore(shost->host_lock, flags);
492
493                 scsi_kick_queue(slq);
494                 blk_put_queue(slq);
495
496                 spin_lock_irqsave(shost->host_lock, flags);
497         }
498         /* put any unprocessed entries back */
499         list_splice(&starved_list, &shost->starved_list);
500         spin_unlock_irqrestore(shost->host_lock, flags);
501 }
502
503 /*
504  * Function:   scsi_run_queue()
505  *
506  * Purpose:    Select a proper request queue to serve next
507  *
508  * Arguments:  q       - last request's queue
509  *
510  * Returns:     Nothing
511  *
512  * Notes:      The previous command was completely finished, start
513  *             a new one if possible.
514  */
515 static void scsi_run_queue(struct request_queue *q)
516 {
517         struct scsi_device *sdev = q->queuedata;
518
519         if (scsi_target(sdev)->single_lun)
520                 scsi_single_lun_run(sdev);
521         if (!list_empty(&sdev->host->starved_list))
522                 scsi_starved_list_run(sdev->host);
523
524         if (q->mq_ops)
525                 blk_mq_run_hw_queues(q, false);
526         else
527                 blk_run_queue(q);
528 }
529
530 void scsi_requeue_run_queue(struct work_struct *work)
531 {
532         struct scsi_device *sdev;
533         struct request_queue *q;
534
535         sdev = container_of(work, struct scsi_device, requeue_work);
536         q = sdev->request_queue;
537         scsi_run_queue(q);
538 }
539
540 /*
541  * Function:    scsi_requeue_command()
542  *
543  * Purpose:     Handle post-processing of completed commands.
544  *
545  * Arguments:   q       - queue to operate on
546  *              cmd     - command that may need to be requeued.
547  *
548  * Returns:     Nothing
549  *
550  * Notes:       After command completion, there may be blocks left
551  *              over which weren't finished by the previous command
552  *              this can be for a number of reasons - the main one is
553  *              I/O errors in the middle of the request, in which case
554  *              we need to request the blocks that come after the bad
555  *              sector.
556  * Notes:       Upon return, cmd is a stale pointer.
557  */
558 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
559 {
560         struct scsi_device *sdev = cmd->device;
561         struct request *req = cmd->request;
562         unsigned long flags;
563
564         spin_lock_irqsave(q->queue_lock, flags);
565         blk_unprep_request(req);
566         req->special = NULL;
567         scsi_put_command(cmd);
568         blk_requeue_request(q, req);
569         spin_unlock_irqrestore(q->queue_lock, flags);
570
571         scsi_run_queue(q);
572
573         put_device(&sdev->sdev_gendev);
574 }
575
576 void scsi_run_host_queues(struct Scsi_Host *shost)
577 {
578         struct scsi_device *sdev;
579
580         shost_for_each_device(sdev, shost)
581                 scsi_run_queue(sdev->request_queue);
582 }
583
584 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
585 {
586         if (!blk_rq_is_passthrough(cmd->request)) {
587                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
588
589                 if (drv->uninit_command)
590                         drv->uninit_command(cmd);
591         }
592 }
593
594 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
595 {
596         struct scsi_data_buffer *sdb;
597
598         if (cmd->sdb.table.nents)
599                 sg_free_table_chained(&cmd->sdb.table, true);
600         if (cmd->request->next_rq) {
601                 sdb = cmd->request->next_rq->special;
602                 if (sdb)
603                         sg_free_table_chained(&sdb->table, true);
604         }
605         if (scsi_prot_sg_count(cmd))
606                 sg_free_table_chained(&cmd->prot_sdb->table, true);
607 }
608
609 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
610 {
611         scsi_mq_free_sgtables(cmd);
612         scsi_uninit_cmd(cmd);
613         scsi_del_cmd_from_list(cmd);
614 }
615
616 /*
617  * Function:    scsi_release_buffers()
618  *
619  * Purpose:     Free resources allocate for a scsi_command.
620  *
621  * Arguments:   cmd     - command that we are bailing.
622  *
623  * Lock status: Assumed that no lock is held upon entry.
624  *
625  * Returns:     Nothing
626  *
627  * Notes:       In the event that an upper level driver rejects a
628  *              command, we must release resources allocated during
629  *              the __init_io() function.  Primarily this would involve
630  *              the scatter-gather table.
631  */
632 static void scsi_release_buffers(struct scsi_cmnd *cmd)
633 {
634         if (cmd->sdb.table.nents)
635                 sg_free_table_chained(&cmd->sdb.table, false);
636
637         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
638
639         if (scsi_prot_sg_count(cmd))
640                 sg_free_table_chained(&cmd->prot_sdb->table, false);
641 }
642
643 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
644 {
645         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
646
647         sg_free_table_chained(&bidi_sdb->table, false);
648         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
649         cmd->request->next_rq->special = NULL;
650 }
651
652 static bool scsi_end_request(struct request *req, blk_status_t error,
653                 unsigned int bytes, unsigned int bidi_bytes)
654 {
655         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
656         struct scsi_device *sdev = cmd->device;
657         struct request_queue *q = sdev->request_queue;
658
659         if (blk_update_request(req, error, bytes))
660                 return true;
661
662         /* Bidi request must be completed as a whole */
663         if (unlikely(bidi_bytes) &&
664             blk_update_request(req->next_rq, error, bidi_bytes))
665                 return true;
666
667         if (blk_queue_add_random(q))
668                 add_disk_randomness(req->rq_disk);
669
670         if (!blk_rq_is_scsi(req)) {
671                 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
672                 cmd->flags &= ~SCMD_INITIALIZED;
673         }
674
675         if (req->mq_ctx) {
676                 /*
677                  * In the MQ case the command gets freed by __blk_mq_end_request,
678                  * so we have to do all cleanup that depends on it earlier.
679                  *
680                  * We also can't kick the queues from irq context, so we
681                  * will have to defer it to a workqueue.
682                  */
683                 scsi_mq_uninit_cmd(cmd);
684
685                 __blk_mq_end_request(req, error);
686
687                 if (scsi_target(sdev)->single_lun ||
688                     !list_empty(&sdev->host->starved_list))
689                         kblockd_schedule_work(&sdev->requeue_work);
690                 else
691                         blk_mq_run_hw_queues(q, true);
692         } else {
693                 unsigned long flags;
694
695                 if (bidi_bytes)
696                         scsi_release_bidi_buffers(cmd);
697                 scsi_release_buffers(cmd);
698                 scsi_put_command(cmd);
699
700                 spin_lock_irqsave(q->queue_lock, flags);
701                 blk_finish_request(req, error);
702                 spin_unlock_irqrestore(q->queue_lock, flags);
703
704                 scsi_run_queue(q);
705         }
706
707         put_device(&sdev->sdev_gendev);
708         return false;
709 }
710
711 /**
712  * __scsi_error_from_host_byte - translate SCSI error code into errno
713  * @cmd:        SCSI command (unused)
714  * @result:     scsi error code
715  *
716  * Translate SCSI error code into block errors.
717  */
718 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd,
719                 int result)
720 {
721         switch (host_byte(result)) {
722         case DID_TRANSPORT_FAILFAST:
723                 return BLK_STS_TRANSPORT;
724         case DID_TARGET_FAILURE:
725                 set_host_byte(cmd, DID_OK);
726                 return BLK_STS_TARGET;
727         case DID_NEXUS_FAILURE:
728                 return BLK_STS_NEXUS;
729         case DID_ALLOC_FAILURE:
730                 set_host_byte(cmd, DID_OK);
731                 return BLK_STS_NOSPC;
732         case DID_MEDIUM_ERROR:
733                 set_host_byte(cmd, DID_OK);
734                 return BLK_STS_MEDIUM;
735         default:
736                 return BLK_STS_IOERR;
737         }
738 }
739
740 /*
741  * Function:    scsi_io_completion()
742  *
743  * Purpose:     Completion processing for block device I/O requests.
744  *
745  * Arguments:   cmd   - command that is finished.
746  *
747  * Lock status: Assumed that no lock is held upon entry.
748  *
749  * Returns:     Nothing
750  *
751  * Notes:       We will finish off the specified number of sectors.  If we
752  *              are done, the command block will be released and the queue
753  *              function will be goosed.  If we are not done then we have to
754  *              figure out what to do next:
755  *
756  *              a) We can call scsi_requeue_command().  The request
757  *                 will be unprepared and put back on the queue.  Then
758  *                 a new command will be created for it.  This should
759  *                 be used if we made forward progress, or if we want
760  *                 to switch from READ(10) to READ(6) for example.
761  *
762  *              b) We can call __scsi_queue_insert().  The request will
763  *                 be put back on the queue and retried using the same
764  *                 command as before, possibly after a delay.
765  *
766  *              c) We can call scsi_end_request() with -EIO to fail
767  *                 the remainder of the request.
768  */
769 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
770 {
771         int result = cmd->result;
772         struct request_queue *q = cmd->device->request_queue;
773         struct request *req = cmd->request;
774         blk_status_t error = BLK_STS_OK;
775         struct scsi_sense_hdr sshdr;
776         bool sense_valid = false;
777         int sense_deferred = 0, level = 0;
778         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
779               ACTION_DELAYED_RETRY} action;
780         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
781
782         if (result) {
783                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
784                 if (sense_valid)
785                         sense_deferred = scsi_sense_is_deferred(&sshdr);
786         }
787
788         if (blk_rq_is_passthrough(req)) {
789                 if (result) {
790                         if (sense_valid) {
791                                 /*
792                                  * SG_IO wants current and deferred errors
793                                  */
794                                 scsi_req(req)->sense_len =
795                                         min(8 + cmd->sense_buffer[7],
796                                             SCSI_SENSE_BUFFERSIZE);
797                         }
798                         if (!sense_deferred)
799                                 error = __scsi_error_from_host_byte(cmd, result);
800                 }
801                 /*
802                  * __scsi_error_from_host_byte may have reset the host_byte
803                  */
804                 scsi_req(req)->result = cmd->result;
805                 scsi_req(req)->resid_len = scsi_get_resid(cmd);
806
807                 if (scsi_bidi_cmnd(cmd)) {
808                         /*
809                          * Bidi commands Must be complete as a whole,
810                          * both sides at once.
811                          */
812                         scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
813                         if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
814                                         blk_rq_bytes(req->next_rq)))
815                                 BUG();
816                         return;
817                 }
818         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
819                 /*
820                  * Flush commands do not transfers any data, and thus cannot use
821                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
822                  * This sets the error explicitly for the problem case.
823                  */
824                 error = __scsi_error_from_host_byte(cmd, result);
825         }
826
827         /* no bidi support for !blk_rq_is_passthrough yet */
828         BUG_ON(blk_bidi_rq(req));
829
830         /*
831          * Next deal with any sectors which we were able to correctly
832          * handle.
833          */
834         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
835                 "%u sectors total, %d bytes done.\n",
836                 blk_rq_sectors(req), good_bytes));
837
838         /*
839          * Recovered errors need reporting, but they're always treated as
840          * success, so fiddle the result code here.  For passthrough requests
841          * we already took a copy of the original into sreq->result which
842          * is what gets returned to the user
843          */
844         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
845                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
846                  * print since caller wants ATA registers. Only occurs on
847                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
848                  */
849                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
850                         ;
851                 else if (!(req->rq_flags & RQF_QUIET))
852                         scsi_print_sense(cmd);
853                 result = 0;
854                 /* for passthrough error may be set */
855                 error = BLK_STS_OK;
856         }
857
858         /*
859          * special case: failed zero length commands always need to
860          * drop down into the retry code. Otherwise, if we finished
861          * all bytes in the request we are done now.
862          */
863         if (!(blk_rq_bytes(req) == 0 && error) &&
864             !scsi_end_request(req, error, good_bytes, 0))
865                 return;
866
867         /*
868          * Kill remainder if no retrys.
869          */
870         if (error && scsi_noretry_cmd(cmd)) {
871                 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
872                         BUG();
873                 return;
874         }
875
876         /*
877          * If there had been no error, but we have leftover bytes in the
878          * requeues just queue the command up again.
879          */
880         if (result == 0)
881                 goto requeue;
882
883         error = __scsi_error_from_host_byte(cmd, result);
884
885         if (host_byte(result) == DID_RESET) {
886                 /* Third party bus reset or reset for error recovery
887                  * reasons.  Just retry the command and see what
888                  * happens.
889                  */
890                 action = ACTION_RETRY;
891         } else if (sense_valid && !sense_deferred) {
892                 switch (sshdr.sense_key) {
893                 case UNIT_ATTENTION:
894                         if (cmd->device->removable) {
895                                 /* Detected disc change.  Set a bit
896                                  * and quietly refuse further access.
897                                  */
898                                 cmd->device->changed = 1;
899                                 action = ACTION_FAIL;
900                         } else {
901                                 /* Must have been a power glitch, or a
902                                  * bus reset.  Could not have been a
903                                  * media change, so we just retry the
904                                  * command and see what happens.
905                                  */
906                                 action = ACTION_RETRY;
907                         }
908                         break;
909                 case ILLEGAL_REQUEST:
910                         /* If we had an ILLEGAL REQUEST returned, then
911                          * we may have performed an unsupported
912                          * command.  The only thing this should be
913                          * would be a ten byte read where only a six
914                          * byte read was supported.  Also, on a system
915                          * where READ CAPACITY failed, we may have
916                          * read past the end of the disk.
917                          */
918                         if ((cmd->device->use_10_for_rw &&
919                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
920                             (cmd->cmnd[0] == READ_10 ||
921                              cmd->cmnd[0] == WRITE_10)) {
922                                 /* This will issue a new 6-byte command. */
923                                 cmd->device->use_10_for_rw = 0;
924                                 action = ACTION_REPREP;
925                         } else if (sshdr.asc == 0x10) /* DIX */ {
926                                 action = ACTION_FAIL;
927                                 error = BLK_STS_PROTECTION;
928                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
929                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
930                                 action = ACTION_FAIL;
931                                 error = BLK_STS_TARGET;
932                         } else
933                                 action = ACTION_FAIL;
934                         break;
935                 case ABORTED_COMMAND:
936                         action = ACTION_FAIL;
937                         if (sshdr.asc == 0x10) /* DIF */
938                                 error = BLK_STS_PROTECTION;
939                         break;
940                 case NOT_READY:
941                         /* If the device is in the process of becoming
942                          * ready, or has a temporary blockage, retry.
943                          */
944                         if (sshdr.asc == 0x04) {
945                                 switch (sshdr.ascq) {
946                                 case 0x01: /* becoming ready */
947                                 case 0x04: /* format in progress */
948                                 case 0x05: /* rebuild in progress */
949                                 case 0x06: /* recalculation in progress */
950                                 case 0x07: /* operation in progress */
951                                 case 0x08: /* Long write in progress */
952                                 case 0x09: /* self test in progress */
953                                 case 0x14: /* space allocation in progress */
954                                         action = ACTION_DELAYED_RETRY;
955                                         break;
956                                 default:
957                                         action = ACTION_FAIL;
958                                         break;
959                                 }
960                         } else
961                                 action = ACTION_FAIL;
962                         break;
963                 case VOLUME_OVERFLOW:
964                         /* See SSC3rXX or current. */
965                         action = ACTION_FAIL;
966                         break;
967                 default:
968                         action = ACTION_FAIL;
969                         break;
970                 }
971         } else
972                 action = ACTION_FAIL;
973
974         if (action != ACTION_FAIL &&
975             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
976                 action = ACTION_FAIL;
977
978         switch (action) {
979         case ACTION_FAIL:
980                 /* Give up and fail the remainder of the request */
981                 if (!(req->rq_flags & RQF_QUIET)) {
982                         static DEFINE_RATELIMIT_STATE(_rs,
983                                         DEFAULT_RATELIMIT_INTERVAL,
984                                         DEFAULT_RATELIMIT_BURST);
985
986                         if (unlikely(scsi_logging_level))
987                                 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
988                                                        SCSI_LOG_MLCOMPLETE_BITS);
989
990                         /*
991                          * if logging is enabled the failure will be printed
992                          * in scsi_log_completion(), so avoid duplicate messages
993                          */
994                         if (!level && __ratelimit(&_rs)) {
995                                 scsi_print_result(cmd, NULL, FAILED);
996                                 if (driver_byte(result) & DRIVER_SENSE)
997                                         scsi_print_sense(cmd);
998                                 scsi_print_command(cmd);
999                         }
1000                 }
1001                 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1002                         return;
1003                 /*FALLTHRU*/
1004         case ACTION_REPREP:
1005         requeue:
1006                 /* Unprep the request and put it back at the head of the queue.
1007                  * A new command will be prepared and issued.
1008                  */
1009                 if (q->mq_ops) {
1010                         scsi_mq_requeue_cmd(cmd);
1011                 } else {
1012                         scsi_release_buffers(cmd);
1013                         scsi_requeue_command(q, cmd);
1014                 }
1015                 break;
1016         case ACTION_RETRY:
1017                 /* Retry the same command immediately */
1018                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1019                 break;
1020         case ACTION_DELAYED_RETRY:
1021                 /* Retry the same command after a delay */
1022                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1023                 break;
1024         }
1025 }
1026
1027 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1028 {
1029         int count;
1030
1031         /*
1032          * If sg table allocation fails, requeue request later.
1033          */
1034         if (unlikely(sg_alloc_table_chained(&sdb->table,
1035                         blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1036                 return BLKPREP_DEFER;
1037
1038         /* 
1039          * Next, walk the list, and fill in the addresses and sizes of
1040          * each segment.
1041          */
1042         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1043         BUG_ON(count > sdb->table.nents);
1044         sdb->table.nents = count;
1045         sdb->length = blk_rq_payload_bytes(req);
1046         return BLKPREP_OK;
1047 }
1048
1049 /*
1050  * Function:    scsi_init_io()
1051  *
1052  * Purpose:     SCSI I/O initialize function.
1053  *
1054  * Arguments:   cmd   - Command descriptor we wish to initialize
1055  *
1056  * Returns:     0 on success
1057  *              BLKPREP_DEFER if the failure is retryable
1058  *              BLKPREP_KILL if the failure is fatal
1059  */
1060 int scsi_init_io(struct scsi_cmnd *cmd)
1061 {
1062         struct scsi_device *sdev = cmd->device;
1063         struct request *rq = cmd->request;
1064         bool is_mq = (rq->mq_ctx != NULL);
1065         int error = BLKPREP_KILL;
1066
1067         if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1068                 goto err_exit;
1069
1070         error = scsi_init_sgtable(rq, &cmd->sdb);
1071         if (error)
1072                 goto err_exit;
1073
1074         if (blk_bidi_rq(rq)) {
1075                 if (!rq->q->mq_ops) {
1076                         struct scsi_data_buffer *bidi_sdb =
1077                                 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1078                         if (!bidi_sdb) {
1079                                 error = BLKPREP_DEFER;
1080                                 goto err_exit;
1081                         }
1082
1083                         rq->next_rq->special = bidi_sdb;
1084                 }
1085
1086                 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1087                 if (error)
1088                         goto err_exit;
1089         }
1090
1091         if (blk_integrity_rq(rq)) {
1092                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1093                 int ivecs, count;
1094
1095                 if (prot_sdb == NULL) {
1096                         /*
1097                          * This can happen if someone (e.g. multipath)
1098                          * queues a command to a device on an adapter
1099                          * that does not support DIX.
1100                          */
1101                         WARN_ON_ONCE(1);
1102                         error = BLKPREP_KILL;
1103                         goto err_exit;
1104                 }
1105
1106                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1107
1108                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1109                                 prot_sdb->table.sgl)) {
1110                         error = BLKPREP_DEFER;
1111                         goto err_exit;
1112                 }
1113
1114                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1115                                                 prot_sdb->table.sgl);
1116                 BUG_ON(unlikely(count > ivecs));
1117                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1118
1119                 cmd->prot_sdb = prot_sdb;
1120                 cmd->prot_sdb->table.nents = count;
1121         }
1122
1123         return BLKPREP_OK;
1124 err_exit:
1125         if (is_mq) {
1126                 scsi_mq_free_sgtables(cmd);
1127         } else {
1128                 scsi_release_buffers(cmd);
1129                 cmd->request->special = NULL;
1130                 scsi_put_command(cmd);
1131                 put_device(&sdev->sdev_gendev);
1132         }
1133         return error;
1134 }
1135 EXPORT_SYMBOL(scsi_init_io);
1136
1137 /**
1138  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1139  * @rq: Request associated with the SCSI command to be initialized.
1140  *
1141  * This function initializes the members of struct scsi_cmnd that must be
1142  * initialized before request processing starts and that won't be
1143  * reinitialized if a SCSI command is requeued.
1144  *
1145  * Called from inside blk_get_request() for pass-through requests and from
1146  * inside scsi_init_command() for filesystem requests.
1147  */
1148 void scsi_initialize_rq(struct request *rq)
1149 {
1150         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1151
1152         scsi_req_init(&cmd->req);
1153         cmd->jiffies_at_alloc = jiffies;
1154         cmd->retries = 0;
1155 }
1156 EXPORT_SYMBOL(scsi_initialize_rq);
1157
1158 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1159 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1160 {
1161         struct scsi_device *sdev = cmd->device;
1162         struct Scsi_Host *shost = sdev->host;
1163         unsigned long flags;
1164
1165         if (shost->use_cmd_list) {
1166                 spin_lock_irqsave(&sdev->list_lock, flags);
1167                 list_add_tail(&cmd->list, &sdev->cmd_list);
1168                 spin_unlock_irqrestore(&sdev->list_lock, flags);
1169         }
1170 }
1171
1172 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1173 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1174 {
1175         struct scsi_device *sdev = cmd->device;
1176         struct Scsi_Host *shost = sdev->host;
1177         unsigned long flags;
1178
1179         if (shost->use_cmd_list) {
1180                 spin_lock_irqsave(&sdev->list_lock, flags);
1181                 BUG_ON(list_empty(&cmd->list));
1182                 list_del_init(&cmd->list);
1183                 spin_unlock_irqrestore(&sdev->list_lock, flags);
1184         }
1185 }
1186
1187 /* Called after a request has been started. */
1188 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1189 {
1190         void *buf = cmd->sense_buffer;
1191         void *prot = cmd->prot_sdb;
1192         struct request *rq = blk_mq_rq_from_pdu(cmd);
1193         unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1194         unsigned long jiffies_at_alloc;
1195         int retries;
1196
1197         if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1198                 flags |= SCMD_INITIALIZED;
1199                 scsi_initialize_rq(rq);
1200         }
1201
1202         jiffies_at_alloc = cmd->jiffies_at_alloc;
1203         retries = cmd->retries;
1204         /* zero out the cmd, except for the embedded scsi_request */
1205         memset((char *)cmd + sizeof(cmd->req), 0,
1206                 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1207
1208         cmd->device = dev;
1209         cmd->sense_buffer = buf;
1210         cmd->prot_sdb = prot;
1211         cmd->flags = flags;
1212         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1213         cmd->jiffies_at_alloc = jiffies_at_alloc;
1214         cmd->retries = retries;
1215
1216         scsi_add_cmd_to_list(cmd);
1217 }
1218
1219 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1220 {
1221         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1222
1223         /*
1224          * Passthrough requests may transfer data, in which case they must
1225          * a bio attached to them.  Or they might contain a SCSI command
1226          * that does not transfer data, in which case they may optionally
1227          * submit a request without an attached bio.
1228          */
1229         if (req->bio) {
1230                 int ret = scsi_init_io(cmd);
1231                 if (unlikely(ret))
1232                         return ret;
1233         } else {
1234                 BUG_ON(blk_rq_bytes(req));
1235
1236                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1237         }
1238
1239         cmd->cmd_len = scsi_req(req)->cmd_len;
1240         cmd->cmnd = scsi_req(req)->cmd;
1241         cmd->transfersize = blk_rq_bytes(req);
1242         cmd->allowed = scsi_req(req)->retries;
1243         return BLKPREP_OK;
1244 }
1245
1246 /*
1247  * Setup a normal block command.  These are simple request from filesystems
1248  * that still need to be translated to SCSI CDBs from the ULD.
1249  */
1250 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1251 {
1252         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1253
1254         if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1255                 int ret = sdev->handler->prep_fn(sdev, req);
1256                 if (ret != BLKPREP_OK)
1257                         return ret;
1258         }
1259
1260         cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1261         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1262         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1263 }
1264
1265 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1266 {
1267         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1268
1269         if (!blk_rq_bytes(req))
1270                 cmd->sc_data_direction = DMA_NONE;
1271         else if (rq_data_dir(req) == WRITE)
1272                 cmd->sc_data_direction = DMA_TO_DEVICE;
1273         else
1274                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1275
1276         if (blk_rq_is_scsi(req))
1277                 return scsi_setup_scsi_cmnd(sdev, req);
1278         else
1279                 return scsi_setup_fs_cmnd(sdev, req);
1280 }
1281
1282 static int
1283 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1284 {
1285         int ret = BLKPREP_OK;
1286
1287         /*
1288          * If the device is not in running state we will reject some
1289          * or all commands.
1290          */
1291         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1292                 switch (sdev->sdev_state) {
1293                 case SDEV_OFFLINE:
1294                 case SDEV_TRANSPORT_OFFLINE:
1295                         /*
1296                          * If the device is offline we refuse to process any
1297                          * commands.  The device must be brought online
1298                          * before trying any recovery commands.
1299                          */
1300                         sdev_printk(KERN_ERR, sdev,
1301                                     "rejecting I/O to offline device\n");
1302                         ret = BLKPREP_KILL;
1303                         break;
1304                 case SDEV_DEL:
1305                         /*
1306                          * If the device is fully deleted, we refuse to
1307                          * process any commands as well.
1308                          */
1309                         sdev_printk(KERN_ERR, sdev,
1310                                     "rejecting I/O to dead device\n");
1311                         ret = BLKPREP_KILL;
1312                         break;
1313                 case SDEV_BLOCK:
1314                 case SDEV_CREATED_BLOCK:
1315                         ret = BLKPREP_DEFER;
1316                         break;
1317                 case SDEV_QUIESCE:
1318                         /*
1319                          * If the devices is blocked we defer normal commands.
1320                          */
1321                         if (!(req->rq_flags & RQF_PREEMPT))
1322                                 ret = BLKPREP_DEFER;
1323                         break;
1324                 default:
1325                         /*
1326                          * For any other not fully online state we only allow
1327                          * special commands.  In particular any user initiated
1328                          * command is not allowed.
1329                          */
1330                         if (!(req->rq_flags & RQF_PREEMPT))
1331                                 ret = BLKPREP_KILL;
1332                         break;
1333                 }
1334         }
1335         return ret;
1336 }
1337
1338 static int
1339 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1340 {
1341         struct scsi_device *sdev = q->queuedata;
1342
1343         switch (ret) {
1344         case BLKPREP_KILL:
1345         case BLKPREP_INVALID:
1346                 scsi_req(req)->result = DID_NO_CONNECT << 16;
1347                 /* release the command and kill it */
1348                 if (req->special) {
1349                         struct scsi_cmnd *cmd = req->special;
1350                         scsi_release_buffers(cmd);
1351                         scsi_put_command(cmd);
1352                         put_device(&sdev->sdev_gendev);
1353                         req->special = NULL;
1354                 }
1355                 break;
1356         case BLKPREP_DEFER:
1357                 /*
1358                  * If we defer, the blk_peek_request() returns NULL, but the
1359                  * queue must be restarted, so we schedule a callback to happen
1360                  * shortly.
1361                  */
1362                 if (atomic_read(&sdev->device_busy) == 0)
1363                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1364                 break;
1365         default:
1366                 req->rq_flags |= RQF_DONTPREP;
1367         }
1368
1369         return ret;
1370 }
1371
1372 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1373 {
1374         struct scsi_device *sdev = q->queuedata;
1375         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1376         int ret;
1377
1378         ret = scsi_prep_state_check(sdev, req);
1379         if (ret != BLKPREP_OK)
1380                 goto out;
1381
1382         if (!req->special) {
1383                 /* Bail if we can't get a reference to the device */
1384                 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1385                         ret = BLKPREP_DEFER;
1386                         goto out;
1387                 }
1388
1389                 scsi_init_command(sdev, cmd);
1390                 req->special = cmd;
1391         }
1392
1393         cmd->tag = req->tag;
1394         cmd->request = req;
1395         cmd->prot_op = SCSI_PROT_NORMAL;
1396
1397         ret = scsi_setup_cmnd(sdev, req);
1398 out:
1399         return scsi_prep_return(q, req, ret);
1400 }
1401
1402 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1403 {
1404         scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1405 }
1406
1407 /*
1408  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1409  * return 0.
1410  *
1411  * Called with the queue_lock held.
1412  */
1413 static inline int scsi_dev_queue_ready(struct request_queue *q,
1414                                   struct scsi_device *sdev)
1415 {
1416         unsigned int busy;
1417
1418         busy = atomic_inc_return(&sdev->device_busy) - 1;
1419         if (atomic_read(&sdev->device_blocked)) {
1420                 if (busy)
1421                         goto out_dec;
1422
1423                 /*
1424                  * unblock after device_blocked iterates to zero
1425                  */
1426                 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1427                         /*
1428                          * For the MQ case we take care of this in the caller.
1429                          */
1430                         if (!q->mq_ops)
1431                                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1432                         goto out_dec;
1433                 }
1434                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1435                                    "unblocking device at zero depth\n"));
1436         }
1437
1438         if (busy >= sdev->queue_depth)
1439                 goto out_dec;
1440
1441         return 1;
1442 out_dec:
1443         atomic_dec(&sdev->device_busy);
1444         return 0;
1445 }
1446
1447 /*
1448  * scsi_target_queue_ready: checks if there we can send commands to target
1449  * @sdev: scsi device on starget to check.
1450  */
1451 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1452                                            struct scsi_device *sdev)
1453 {
1454         struct scsi_target *starget = scsi_target(sdev);
1455         unsigned int busy;
1456
1457         if (starget->single_lun) {
1458                 spin_lock_irq(shost->host_lock);
1459                 if (starget->starget_sdev_user &&
1460                     starget->starget_sdev_user != sdev) {
1461                         spin_unlock_irq(shost->host_lock);
1462                         return 0;
1463                 }
1464                 starget->starget_sdev_user = sdev;
1465                 spin_unlock_irq(shost->host_lock);
1466         }
1467
1468         if (starget->can_queue <= 0)
1469                 return 1;
1470
1471         busy = atomic_inc_return(&starget->target_busy) - 1;
1472         if (atomic_read(&starget->target_blocked) > 0) {
1473                 if (busy)
1474                         goto starved;
1475
1476                 /*
1477                  * unblock after target_blocked iterates to zero
1478                  */
1479                 if (atomic_dec_return(&starget->target_blocked) > 0)
1480                         goto out_dec;
1481
1482                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1483                                  "unblocking target at zero depth\n"));
1484         }
1485
1486         if (busy >= starget->can_queue)
1487                 goto starved;
1488
1489         return 1;
1490
1491 starved:
1492         spin_lock_irq(shost->host_lock);
1493         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1494         spin_unlock_irq(shost->host_lock);
1495 out_dec:
1496         if (starget->can_queue > 0)
1497                 atomic_dec(&starget->target_busy);
1498         return 0;
1499 }
1500
1501 /*
1502  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1503  * return 0. We must end up running the queue again whenever 0 is
1504  * returned, else IO can hang.
1505  */
1506 static inline int scsi_host_queue_ready(struct request_queue *q,
1507                                    struct Scsi_Host *shost,
1508                                    struct scsi_device *sdev)
1509 {
1510         unsigned int busy;
1511
1512         if (scsi_host_in_recovery(shost))
1513                 return 0;
1514
1515         busy = atomic_inc_return(&shost->host_busy) - 1;
1516         if (atomic_read(&shost->host_blocked) > 0) {
1517                 if (busy)
1518                         goto starved;
1519
1520                 /*
1521                  * unblock after host_blocked iterates to zero
1522                  */
1523                 if (atomic_dec_return(&shost->host_blocked) > 0)
1524                         goto out_dec;
1525
1526                 SCSI_LOG_MLQUEUE(3,
1527                         shost_printk(KERN_INFO, shost,
1528                                      "unblocking host at zero depth\n"));
1529         }
1530
1531         if (shost->can_queue > 0 && busy >= shost->can_queue)
1532                 goto starved;
1533         if (shost->host_self_blocked)
1534                 goto starved;
1535
1536         /* We're OK to process the command, so we can't be starved */
1537         if (!list_empty(&sdev->starved_entry)) {
1538                 spin_lock_irq(shost->host_lock);
1539                 if (!list_empty(&sdev->starved_entry))
1540                         list_del_init(&sdev->starved_entry);
1541                 spin_unlock_irq(shost->host_lock);
1542         }
1543
1544         return 1;
1545
1546 starved:
1547         spin_lock_irq(shost->host_lock);
1548         if (list_empty(&sdev->starved_entry))
1549                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1550         spin_unlock_irq(shost->host_lock);
1551 out_dec:
1552         scsi_dec_host_busy(shost);
1553         return 0;
1554 }
1555
1556 /*
1557  * Busy state exporting function for request stacking drivers.
1558  *
1559  * For efficiency, no lock is taken to check the busy state of
1560  * shost/starget/sdev, since the returned value is not guaranteed and
1561  * may be changed after request stacking drivers call the function,
1562  * regardless of taking lock or not.
1563  *
1564  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1565  * needs to return 'not busy'. Otherwise, request stacking drivers
1566  * may hold requests forever.
1567  */
1568 static int scsi_lld_busy(struct request_queue *q)
1569 {
1570         struct scsi_device *sdev = q->queuedata;
1571         struct Scsi_Host *shost;
1572
1573         if (blk_queue_dying(q))
1574                 return 0;
1575
1576         shost = sdev->host;
1577
1578         /*
1579          * Ignore host/starget busy state.
1580          * Since block layer does not have a concept of fairness across
1581          * multiple queues, congestion of host/starget needs to be handled
1582          * in SCSI layer.
1583          */
1584         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1585                 return 1;
1586
1587         return 0;
1588 }
1589
1590 /*
1591  * Kill a request for a dead device
1592  */
1593 static void scsi_kill_request(struct request *req, struct request_queue *q)
1594 {
1595         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1596         struct scsi_device *sdev;
1597         struct scsi_target *starget;
1598         struct Scsi_Host *shost;
1599
1600         blk_start_request(req);
1601
1602         scmd_printk(KERN_INFO, cmd, "killing request\n");
1603
1604         sdev = cmd->device;
1605         starget = scsi_target(sdev);
1606         shost = sdev->host;
1607         scsi_init_cmd_errh(cmd);
1608         cmd->result = DID_NO_CONNECT << 16;
1609         atomic_inc(&cmd->device->iorequest_cnt);
1610
1611         /*
1612          * SCSI request completion path will do scsi_device_unbusy(),
1613          * bump busy counts.  To bump the counters, we need to dance
1614          * with the locks as normal issue path does.
1615          */
1616         atomic_inc(&sdev->device_busy);
1617         atomic_inc(&shost->host_busy);
1618         if (starget->can_queue > 0)
1619                 atomic_inc(&starget->target_busy);
1620
1621         blk_complete_request(req);
1622 }
1623
1624 static void scsi_softirq_done(struct request *rq)
1625 {
1626         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1627         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1628         int disposition;
1629
1630         INIT_LIST_HEAD(&cmd->eh_entry);
1631
1632         atomic_inc(&cmd->device->iodone_cnt);
1633         if (cmd->result)
1634                 atomic_inc(&cmd->device->ioerr_cnt);
1635
1636         disposition = scsi_decide_disposition(cmd);
1637         if (disposition != SUCCESS &&
1638             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1639                 sdev_printk(KERN_ERR, cmd->device,
1640                             "timing out command, waited %lus\n",
1641                             wait_for/HZ);
1642                 disposition = SUCCESS;
1643         }
1644
1645         scsi_log_completion(cmd, disposition);
1646
1647         switch (disposition) {
1648                 case SUCCESS:
1649                         scsi_finish_command(cmd);
1650                         break;
1651                 case NEEDS_RETRY:
1652                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1653                         break;
1654                 case ADD_TO_MLQUEUE:
1655                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1656                         break;
1657                 default:
1658                         scsi_eh_scmd_add(cmd);
1659                         break;
1660         }
1661 }
1662
1663 /**
1664  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1665  * @cmd: command block we are dispatching.
1666  *
1667  * Return: nonzero return request was rejected and device's queue needs to be
1668  * plugged.
1669  */
1670 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1671 {
1672         struct Scsi_Host *host = cmd->device->host;
1673         int rtn = 0;
1674
1675         atomic_inc(&cmd->device->iorequest_cnt);
1676
1677         /* check if the device is still usable */
1678         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1679                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1680                  * returns an immediate error upwards, and signals
1681                  * that the device is no longer present */
1682                 cmd->result = DID_NO_CONNECT << 16;
1683                 goto done;
1684         }
1685
1686         /* Check to see if the scsi lld made this device blocked. */
1687         if (unlikely(scsi_device_blocked(cmd->device))) {
1688                 /*
1689                  * in blocked state, the command is just put back on
1690                  * the device queue.  The suspend state has already
1691                  * blocked the queue so future requests should not
1692                  * occur until the device transitions out of the
1693                  * suspend state.
1694                  */
1695                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1696                         "queuecommand : device blocked\n"));
1697                 return SCSI_MLQUEUE_DEVICE_BUSY;
1698         }
1699
1700         /* Store the LUN value in cmnd, if needed. */
1701         if (cmd->device->lun_in_cdb)
1702                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1703                                (cmd->device->lun << 5 & 0xe0);
1704
1705         scsi_log_send(cmd);
1706
1707         /*
1708          * Before we queue this command, check if the command
1709          * length exceeds what the host adapter can handle.
1710          */
1711         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1712                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1713                                "queuecommand : command too long. "
1714                                "cdb_size=%d host->max_cmd_len=%d\n",
1715                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1716                 cmd->result = (DID_ABORT << 16);
1717                 goto done;
1718         }
1719
1720         if (unlikely(host->shost_state == SHOST_DEL)) {
1721                 cmd->result = (DID_NO_CONNECT << 16);
1722                 goto done;
1723
1724         }
1725
1726         trace_scsi_dispatch_cmd_start(cmd);
1727         rtn = host->hostt->queuecommand(host, cmd);
1728         if (rtn) {
1729                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1730                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1731                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1732                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1733
1734                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1735                         "queuecommand : request rejected\n"));
1736         }
1737
1738         return rtn;
1739  done:
1740         cmd->scsi_done(cmd);
1741         return 0;
1742 }
1743
1744 /**
1745  * scsi_done - Invoke completion on finished SCSI command.
1746  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1747  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1748  *
1749  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1750  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1751  * calls blk_complete_request() for further processing.
1752  *
1753  * This function is interrupt context safe.
1754  */
1755 static void scsi_done(struct scsi_cmnd *cmd)
1756 {
1757         trace_scsi_dispatch_cmd_done(cmd);
1758         blk_complete_request(cmd->request);
1759 }
1760
1761 /*
1762  * Function:    scsi_request_fn()
1763  *
1764  * Purpose:     Main strategy routine for SCSI.
1765  *
1766  * Arguments:   q       - Pointer to actual queue.
1767  *
1768  * Returns:     Nothing
1769  *
1770  * Lock status: IO request lock assumed to be held when called.
1771  */
1772 static void scsi_request_fn(struct request_queue *q)
1773         __releases(q->queue_lock)
1774         __acquires(q->queue_lock)
1775 {
1776         struct scsi_device *sdev = q->queuedata;
1777         struct Scsi_Host *shost;
1778         struct scsi_cmnd *cmd;
1779         struct request *req;
1780
1781         /*
1782          * To start with, we keep looping until the queue is empty, or until
1783          * the host is no longer able to accept any more requests.
1784          */
1785         shost = sdev->host;
1786         for (;;) {
1787                 int rtn;
1788                 /*
1789                  * get next queueable request.  We do this early to make sure
1790                  * that the request is fully prepared even if we cannot
1791                  * accept it.
1792                  */
1793                 req = blk_peek_request(q);
1794                 if (!req)
1795                         break;
1796
1797                 if (unlikely(!scsi_device_online(sdev))) {
1798                         sdev_printk(KERN_ERR, sdev,
1799                                     "rejecting I/O to offline device\n");
1800                         scsi_kill_request(req, q);
1801                         continue;
1802                 }
1803
1804                 if (!scsi_dev_queue_ready(q, sdev))
1805                         break;
1806
1807                 /*
1808                  * Remove the request from the request list.
1809                  */
1810                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1811                         blk_start_request(req);
1812
1813                 spin_unlock_irq(q->queue_lock);
1814                 cmd = blk_mq_rq_to_pdu(req);
1815                 if (cmd != req->special) {
1816                         printk(KERN_CRIT "impossible request in %s.\n"
1817                                          "please mail a stack trace to "
1818                                          "linux-scsi@vger.kernel.org\n",
1819                                          __func__);
1820                         blk_dump_rq_flags(req, "foo");
1821                         BUG();
1822                 }
1823
1824                 /*
1825                  * We hit this when the driver is using a host wide
1826                  * tag map. For device level tag maps the queue_depth check
1827                  * in the device ready fn would prevent us from trying
1828                  * to allocate a tag. Since the map is a shared host resource
1829                  * we add the dev to the starved list so it eventually gets
1830                  * a run when a tag is freed.
1831                  */
1832                 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1833                         spin_lock_irq(shost->host_lock);
1834                         if (list_empty(&sdev->starved_entry))
1835                                 list_add_tail(&sdev->starved_entry,
1836                                               &shost->starved_list);
1837                         spin_unlock_irq(shost->host_lock);
1838                         goto not_ready;
1839                 }
1840
1841                 if (!scsi_target_queue_ready(shost, sdev))
1842                         goto not_ready;
1843
1844                 if (!scsi_host_queue_ready(q, shost, sdev))
1845                         goto host_not_ready;
1846         
1847                 if (sdev->simple_tags)
1848                         cmd->flags |= SCMD_TAGGED;
1849                 else
1850                         cmd->flags &= ~SCMD_TAGGED;
1851
1852                 /*
1853                  * Finally, initialize any error handling parameters, and set up
1854                  * the timers for timeouts.
1855                  */
1856                 scsi_init_cmd_errh(cmd);
1857
1858                 /*
1859                  * Dispatch the command to the low-level driver.
1860                  */
1861                 cmd->scsi_done = scsi_done;
1862                 rtn = scsi_dispatch_cmd(cmd);
1863                 if (rtn) {
1864                         scsi_queue_insert(cmd, rtn);
1865                         spin_lock_irq(q->queue_lock);
1866                         goto out_delay;
1867                 }
1868                 spin_lock_irq(q->queue_lock);
1869         }
1870
1871         return;
1872
1873  host_not_ready:
1874         if (scsi_target(sdev)->can_queue > 0)
1875                 atomic_dec(&scsi_target(sdev)->target_busy);
1876  not_ready:
1877         /*
1878          * lock q, handle tag, requeue req, and decrement device_busy. We
1879          * must return with queue_lock held.
1880          *
1881          * Decrementing device_busy without checking it is OK, as all such
1882          * cases (host limits or settings) should run the queue at some
1883          * later time.
1884          */
1885         spin_lock_irq(q->queue_lock);
1886         blk_requeue_request(q, req);
1887         atomic_dec(&sdev->device_busy);
1888 out_delay:
1889         if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1890                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1891 }
1892
1893 static inline blk_status_t prep_to_mq(int ret)
1894 {
1895         switch (ret) {
1896         case BLKPREP_OK:
1897                 return BLK_STS_OK;
1898         case BLKPREP_DEFER:
1899                 return BLK_STS_RESOURCE;
1900         default:
1901                 return BLK_STS_IOERR;
1902         }
1903 }
1904
1905 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1906 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1907 {
1908         return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1909                 sizeof(struct scatterlist);
1910 }
1911
1912 static int scsi_mq_prep_fn(struct request *req)
1913 {
1914         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1915         struct scsi_device *sdev = req->q->queuedata;
1916         struct Scsi_Host *shost = sdev->host;
1917         struct scatterlist *sg;
1918
1919         scsi_init_command(sdev, cmd);
1920
1921         req->special = cmd;
1922
1923         cmd->request = req;
1924
1925         cmd->tag = req->tag;
1926         cmd->prot_op = SCSI_PROT_NORMAL;
1927
1928         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1929         cmd->sdb.table.sgl = sg;
1930
1931         if (scsi_host_get_prot(shost)) {
1932                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1933
1934                 cmd->prot_sdb->table.sgl =
1935                         (struct scatterlist *)(cmd->prot_sdb + 1);
1936         }
1937
1938         if (blk_bidi_rq(req)) {
1939                 struct request *next_rq = req->next_rq;
1940                 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1941
1942                 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1943                 bidi_sdb->table.sgl =
1944                         (struct scatterlist *)(bidi_sdb + 1);
1945
1946                 next_rq->special = bidi_sdb;
1947         }
1948
1949         blk_mq_start_request(req);
1950
1951         return scsi_setup_cmnd(sdev, req);
1952 }
1953
1954 static void scsi_mq_done(struct scsi_cmnd *cmd)
1955 {
1956         trace_scsi_dispatch_cmd_done(cmd);
1957         blk_mq_complete_request(cmd->request);
1958 }
1959
1960 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1961                          const struct blk_mq_queue_data *bd)
1962 {
1963         struct request *req = bd->rq;
1964         struct request_queue *q = req->q;
1965         struct scsi_device *sdev = q->queuedata;
1966         struct Scsi_Host *shost = sdev->host;
1967         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1968         blk_status_t ret;
1969         int reason;
1970
1971         ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1972         if (ret != BLK_STS_OK)
1973                 goto out;
1974
1975         ret = BLK_STS_RESOURCE;
1976         if (!get_device(&sdev->sdev_gendev))
1977                 goto out;
1978
1979         if (!scsi_dev_queue_ready(q, sdev))
1980                 goto out_put_device;
1981         if (!scsi_target_queue_ready(shost, sdev))
1982                 goto out_dec_device_busy;
1983         if (!scsi_host_queue_ready(q, shost, sdev))
1984                 goto out_dec_target_busy;
1985
1986         if (!(req->rq_flags & RQF_DONTPREP)) {
1987                 ret = prep_to_mq(scsi_mq_prep_fn(req));
1988                 if (ret != BLK_STS_OK)
1989                         goto out_dec_host_busy;
1990                 req->rq_flags |= RQF_DONTPREP;
1991         } else {
1992                 blk_mq_start_request(req);
1993         }
1994
1995         if (sdev->simple_tags)
1996                 cmd->flags |= SCMD_TAGGED;
1997         else
1998                 cmd->flags &= ~SCMD_TAGGED;
1999
2000         scsi_init_cmd_errh(cmd);
2001         cmd->scsi_done = scsi_mq_done;
2002
2003         reason = scsi_dispatch_cmd(cmd);
2004         if (reason) {
2005                 scsi_set_blocked(cmd, reason);
2006                 ret = BLK_STS_RESOURCE;
2007                 goto out_dec_host_busy;
2008         }
2009
2010         return BLK_STS_OK;
2011
2012 out_dec_host_busy:
2013         scsi_dec_host_busy(shost);
2014 out_dec_target_busy:
2015         if (scsi_target(sdev)->can_queue > 0)
2016                 atomic_dec(&scsi_target(sdev)->target_busy);
2017 out_dec_device_busy:
2018         atomic_dec(&sdev->device_busy);
2019 out_put_device:
2020         put_device(&sdev->sdev_gendev);
2021 out:
2022         switch (ret) {
2023         case BLK_STS_OK:
2024                 break;
2025         case BLK_STS_RESOURCE:
2026                 if (atomic_read(&sdev->device_busy) == 0 &&
2027                     !scsi_device_blocked(sdev))
2028                         blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2029                 break;
2030         default:
2031                 /*
2032                  * Make sure to release all allocated ressources when
2033                  * we hit an error, as we will never see this command
2034                  * again.
2035                  */
2036                 if (req->rq_flags & RQF_DONTPREP)
2037                         scsi_mq_uninit_cmd(cmd);
2038                 break;
2039         }
2040         return ret;
2041 }
2042
2043 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2044                 bool reserved)
2045 {
2046         if (reserved)
2047                 return BLK_EH_RESET_TIMER;
2048         return scsi_times_out(req);
2049 }
2050
2051 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2052                                 unsigned int hctx_idx, unsigned int numa_node)
2053 {
2054         struct Scsi_Host *shost = set->driver_data;
2055         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2056         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2057         struct scatterlist *sg;
2058
2059         if (unchecked_isa_dma)
2060                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2061         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2062                                                     GFP_KERNEL, numa_node);
2063         if (!cmd->sense_buffer)
2064                 return -ENOMEM;
2065         cmd->req.sense = cmd->sense_buffer;
2066
2067         if (scsi_host_get_prot(shost)) {
2068                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2069                         shost->hostt->cmd_size;
2070                 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2071         }
2072
2073         return 0;
2074 }
2075
2076 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2077                                  unsigned int hctx_idx)
2078 {
2079         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2080
2081         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2082                                cmd->sense_buffer);
2083 }
2084
2085 static int scsi_map_queues(struct blk_mq_tag_set *set)
2086 {
2087         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2088
2089         if (shost->hostt->map_queues)
2090                 return shost->hostt->map_queues(shost);
2091         return blk_mq_map_queues(set);
2092 }
2093
2094 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2095 {
2096         struct device *host_dev;
2097         u64 bounce_limit = 0xffffffff;
2098
2099         if (shost->unchecked_isa_dma)
2100                 return BLK_BOUNCE_ISA;
2101         /*
2102          * Platforms with virtual-DMA translation
2103          * hardware have no practical limit.
2104          */
2105         if (!PCI_DMA_BUS_IS_PHYS)
2106                 return BLK_BOUNCE_ANY;
2107
2108         host_dev = scsi_get_device(shost);
2109         if (host_dev && host_dev->dma_mask)
2110                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2111
2112         return bounce_limit;
2113 }
2114
2115 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2116 {
2117         struct device *dev = shost->dma_dev;
2118
2119         queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2120
2121         /*
2122          * this limit is imposed by hardware restrictions
2123          */
2124         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2125                                         SG_MAX_SEGMENTS));
2126
2127         if (scsi_host_prot_dma(shost)) {
2128                 shost->sg_prot_tablesize =
2129                         min_not_zero(shost->sg_prot_tablesize,
2130                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2131                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2132                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2133         }
2134
2135         blk_queue_max_hw_sectors(q, shost->max_sectors);
2136         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2137         blk_queue_segment_boundary(q, shost->dma_boundary);
2138         dma_set_seg_boundary(dev, shost->dma_boundary);
2139
2140         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2141
2142         if (!shost->use_clustering)
2143                 q->limits.cluster = 0;
2144
2145         /*
2146          * Set a reasonable default alignment:  The larger of 32-byte (dword),
2147          * which is a common minimum for HBAs, and the minimum DMA alignment,
2148          * which is set by the platform.
2149          *
2150          * Devices that require a bigger alignment can increase it later.
2151          */
2152         blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2153 }
2154 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2155
2156 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2157                             gfp_t gfp)
2158 {
2159         struct Scsi_Host *shost = q->rq_alloc_data;
2160         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2161         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2162
2163         memset(cmd, 0, sizeof(*cmd));
2164
2165         if (unchecked_isa_dma)
2166                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2167         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2168                                                     NUMA_NO_NODE);
2169         if (!cmd->sense_buffer)
2170                 goto fail;
2171         cmd->req.sense = cmd->sense_buffer;
2172
2173         if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2174                 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2175                 if (!cmd->prot_sdb)
2176                         goto fail_free_sense;
2177         }
2178
2179         return 0;
2180
2181 fail_free_sense:
2182         scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2183 fail:
2184         return -ENOMEM;
2185 }
2186
2187 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2188 {
2189         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2190
2191         if (cmd->prot_sdb)
2192                 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2193         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2194                                cmd->sense_buffer);
2195 }
2196
2197 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2198 {
2199         struct Scsi_Host *shost = sdev->host;
2200         struct request_queue *q;
2201
2202         q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2203         if (!q)
2204                 return NULL;
2205         q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2206         q->rq_alloc_data = shost;
2207         q->request_fn = scsi_request_fn;
2208         q->init_rq_fn = scsi_old_init_rq;
2209         q->exit_rq_fn = scsi_old_exit_rq;
2210         q->initialize_rq_fn = scsi_initialize_rq;
2211
2212         if (blk_init_allocated_queue(q) < 0) {
2213                 blk_cleanup_queue(q);
2214                 return NULL;
2215         }
2216
2217         __scsi_init_queue(shost, q);
2218         blk_queue_prep_rq(q, scsi_prep_fn);
2219         blk_queue_unprep_rq(q, scsi_unprep_fn);
2220         blk_queue_softirq_done(q, scsi_softirq_done);
2221         blk_queue_rq_timed_out(q, scsi_times_out);
2222         blk_queue_lld_busy(q, scsi_lld_busy);
2223         return q;
2224 }
2225
2226 static const struct blk_mq_ops scsi_mq_ops = {
2227         .queue_rq       = scsi_queue_rq,
2228         .complete       = scsi_softirq_done,
2229         .timeout        = scsi_timeout,
2230 #ifdef CONFIG_BLK_DEBUG_FS
2231         .show_rq        = scsi_show_rq,
2232 #endif
2233         .init_request   = scsi_mq_init_request,
2234         .exit_request   = scsi_mq_exit_request,
2235         .initialize_rq_fn = scsi_initialize_rq,
2236         .map_queues     = scsi_map_queues,
2237 };
2238
2239 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2240 {
2241         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2242         if (IS_ERR(sdev->request_queue))
2243                 return NULL;
2244
2245         sdev->request_queue->queuedata = sdev;
2246         __scsi_init_queue(sdev->host, sdev->request_queue);
2247         return sdev->request_queue;
2248 }
2249
2250 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2251 {
2252         unsigned int cmd_size, sgl_size;
2253
2254         sgl_size = scsi_mq_sgl_size(shost);
2255         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2256         if (scsi_host_get_prot(shost))
2257                 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2258
2259         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2260         shost->tag_set.ops = &scsi_mq_ops;
2261         shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2262         shost->tag_set.queue_depth = shost->can_queue;
2263         shost->tag_set.cmd_size = cmd_size;
2264         shost->tag_set.numa_node = NUMA_NO_NODE;
2265         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2266         shost->tag_set.flags |=
2267                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2268         shost->tag_set.driver_data = shost;
2269
2270         return blk_mq_alloc_tag_set(&shost->tag_set);
2271 }
2272
2273 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2274 {
2275         blk_mq_free_tag_set(&shost->tag_set);
2276 }
2277
2278 /**
2279  * scsi_device_from_queue - return sdev associated with a request_queue
2280  * @q: The request queue to return the sdev from
2281  *
2282  * Return the sdev associated with a request queue or NULL if the
2283  * request_queue does not reference a SCSI device.
2284  */
2285 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2286 {
2287         struct scsi_device *sdev = NULL;
2288
2289         if (q->mq_ops) {
2290                 if (q->mq_ops == &scsi_mq_ops)
2291                         sdev = q->queuedata;
2292         } else if (q->request_fn == scsi_request_fn)
2293                 sdev = q->queuedata;
2294         if (!sdev || !get_device(&sdev->sdev_gendev))
2295                 sdev = NULL;
2296
2297         return sdev;
2298 }
2299 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2300
2301 /*
2302  * Function:    scsi_block_requests()
2303  *
2304  * Purpose:     Utility function used by low-level drivers to prevent further
2305  *              commands from being queued to the device.
2306  *
2307  * Arguments:   shost       - Host in question
2308  *
2309  * Returns:     Nothing
2310  *
2311  * Lock status: No locks are assumed held.
2312  *
2313  * Notes:       There is no timer nor any other means by which the requests
2314  *              get unblocked other than the low-level driver calling
2315  *              scsi_unblock_requests().
2316  */
2317 void scsi_block_requests(struct Scsi_Host *shost)
2318 {
2319         shost->host_self_blocked = 1;
2320 }
2321 EXPORT_SYMBOL(scsi_block_requests);
2322
2323 /*
2324  * Function:    scsi_unblock_requests()
2325  *
2326  * Purpose:     Utility function used by low-level drivers to allow further
2327  *              commands from being queued to the device.
2328  *
2329  * Arguments:   shost       - Host in question
2330  *
2331  * Returns:     Nothing
2332  *
2333  * Lock status: No locks are assumed held.
2334  *
2335  * Notes:       There is no timer nor any other means by which the requests
2336  *              get unblocked other than the low-level driver calling
2337  *              scsi_unblock_requests().
2338  *
2339  *              This is done as an API function so that changes to the
2340  *              internals of the scsi mid-layer won't require wholesale
2341  *              changes to drivers that use this feature.
2342  */
2343 void scsi_unblock_requests(struct Scsi_Host *shost)
2344 {
2345         shost->host_self_blocked = 0;
2346         scsi_run_host_queues(shost);
2347 }
2348 EXPORT_SYMBOL(scsi_unblock_requests);
2349
2350 int __init scsi_init_queue(void)
2351 {
2352         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2353                                            sizeof(struct scsi_data_buffer),
2354                                            0, 0, NULL);
2355         if (!scsi_sdb_cache) {
2356                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2357                 return -ENOMEM;
2358         }
2359
2360         return 0;
2361 }
2362
2363 void scsi_exit_queue(void)
2364 {
2365         kmem_cache_destroy(scsi_sense_cache);
2366         kmem_cache_destroy(scsi_sense_isadma_cache);
2367         kmem_cache_destroy(scsi_sdb_cache);
2368 }
2369
2370 /**
2371  *      scsi_mode_select - issue a mode select
2372  *      @sdev:  SCSI device to be queried
2373  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2374  *      @sp:    Save page bit (0 == don't save, 1 == save)
2375  *      @modepage: mode page being requested
2376  *      @buffer: request buffer (may not be smaller than eight bytes)
2377  *      @len:   length of request buffer.
2378  *      @timeout: command timeout
2379  *      @retries: number of retries before failing
2380  *      @data: returns a structure abstracting the mode header data
2381  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2382  *              must be SCSI_SENSE_BUFFERSIZE big.
2383  *
2384  *      Returns zero if successful; negative error number or scsi
2385  *      status on error
2386  *
2387  */
2388 int
2389 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2390                  unsigned char *buffer, int len, int timeout, int retries,
2391                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2392 {
2393         unsigned char cmd[10];
2394         unsigned char *real_buffer;
2395         int ret;
2396
2397         memset(cmd, 0, sizeof(cmd));
2398         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2399
2400         if (sdev->use_10_for_ms) {
2401                 if (len > 65535)
2402                         return -EINVAL;
2403                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2404                 if (!real_buffer)
2405                         return -ENOMEM;
2406                 memcpy(real_buffer + 8, buffer, len);
2407                 len += 8;
2408                 real_buffer[0] = 0;
2409                 real_buffer[1] = 0;
2410                 real_buffer[2] = data->medium_type;
2411                 real_buffer[3] = data->device_specific;
2412                 real_buffer[4] = data->longlba ? 0x01 : 0;
2413                 real_buffer[5] = 0;
2414                 real_buffer[6] = data->block_descriptor_length >> 8;
2415                 real_buffer[7] = data->block_descriptor_length;
2416
2417                 cmd[0] = MODE_SELECT_10;
2418                 cmd[7] = len >> 8;
2419                 cmd[8] = len;
2420         } else {
2421                 if (len > 255 || data->block_descriptor_length > 255 ||
2422                     data->longlba)
2423                         return -EINVAL;
2424
2425                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2426                 if (!real_buffer)
2427                         return -ENOMEM;
2428                 memcpy(real_buffer + 4, buffer, len);
2429                 len += 4;
2430                 real_buffer[0] = 0;
2431                 real_buffer[1] = data->medium_type;
2432                 real_buffer[2] = data->device_specific;
2433                 real_buffer[3] = data->block_descriptor_length;
2434                 
2435
2436                 cmd[0] = MODE_SELECT;
2437                 cmd[4] = len;
2438         }
2439
2440         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2441                                sshdr, timeout, retries, NULL);
2442         kfree(real_buffer);
2443         return ret;
2444 }
2445 EXPORT_SYMBOL_GPL(scsi_mode_select);
2446
2447 /**
2448  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2449  *      @sdev:  SCSI device to be queried
2450  *      @dbd:   set if mode sense will allow block descriptors to be returned
2451  *      @modepage: mode page being requested
2452  *      @buffer: request buffer (may not be smaller than eight bytes)
2453  *      @len:   length of request buffer.
2454  *      @timeout: command timeout
2455  *      @retries: number of retries before failing
2456  *      @data: returns a structure abstracting the mode header data
2457  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2458  *              must be SCSI_SENSE_BUFFERSIZE big.
2459  *
2460  *      Returns zero if unsuccessful, or the header offset (either 4
2461  *      or 8 depending on whether a six or ten byte command was
2462  *      issued) if successful.
2463  */
2464 int
2465 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2466                   unsigned char *buffer, int len, int timeout, int retries,
2467                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2468 {
2469         unsigned char cmd[12];
2470         int use_10_for_ms;
2471         int header_length;
2472         int result, retry_count = retries;
2473         struct scsi_sense_hdr my_sshdr;
2474
2475         memset(data, 0, sizeof(*data));
2476         memset(&cmd[0], 0, 12);
2477         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2478         cmd[2] = modepage;
2479
2480         /* caller might not be interested in sense, but we need it */
2481         if (!sshdr)
2482                 sshdr = &my_sshdr;
2483
2484  retry:
2485         use_10_for_ms = sdev->use_10_for_ms;
2486
2487         if (use_10_for_ms) {
2488                 if (len < 8)
2489                         len = 8;
2490
2491                 cmd[0] = MODE_SENSE_10;
2492                 cmd[8] = len;
2493                 header_length = 8;
2494         } else {
2495                 if (len < 4)
2496                         len = 4;
2497
2498                 cmd[0] = MODE_SENSE;
2499                 cmd[4] = len;
2500                 header_length = 4;
2501         }
2502
2503         memset(buffer, 0, len);
2504
2505         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2506                                   sshdr, timeout, retries, NULL);
2507
2508         /* This code looks awful: what it's doing is making sure an
2509          * ILLEGAL REQUEST sense return identifies the actual command
2510          * byte as the problem.  MODE_SENSE commands can return
2511          * ILLEGAL REQUEST if the code page isn't supported */
2512
2513         if (use_10_for_ms && !scsi_status_is_good(result) &&
2514             (driver_byte(result) & DRIVER_SENSE)) {
2515                 if (scsi_sense_valid(sshdr)) {
2516                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2517                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2518                                 /* 
2519                                  * Invalid command operation code
2520                                  */
2521                                 sdev->use_10_for_ms = 0;
2522                                 goto retry;
2523                         }
2524                 }
2525         }
2526
2527         if(scsi_status_is_good(result)) {
2528                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2529                              (modepage == 6 || modepage == 8))) {
2530                         /* Initio breakage? */
2531                         header_length = 0;
2532                         data->length = 13;
2533                         data->medium_type = 0;
2534                         data->device_specific = 0;
2535                         data->longlba = 0;
2536                         data->block_descriptor_length = 0;
2537                 } else if(use_10_for_ms) {
2538                         data->length = buffer[0]*256 + buffer[1] + 2;
2539                         data->medium_type = buffer[2];
2540                         data->device_specific = buffer[3];
2541                         data->longlba = buffer[4] & 0x01;
2542                         data->block_descriptor_length = buffer[6]*256
2543                                 + buffer[7];
2544                 } else {
2545                         data->length = buffer[0] + 1;
2546                         data->medium_type = buffer[1];
2547                         data->device_specific = buffer[2];
2548                         data->block_descriptor_length = buffer[3];
2549                 }
2550                 data->header_length = header_length;
2551         } else if ((status_byte(result) == CHECK_CONDITION) &&
2552                    scsi_sense_valid(sshdr) &&
2553                    sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2554                 retry_count--;
2555                 goto retry;
2556         }
2557
2558         return result;
2559 }
2560 EXPORT_SYMBOL(scsi_mode_sense);
2561
2562 /**
2563  *      scsi_test_unit_ready - test if unit is ready
2564  *      @sdev:  scsi device to change the state of.
2565  *      @timeout: command timeout
2566  *      @retries: number of retries before failing
2567  *      @sshdr: outpout pointer for decoded sense information.
2568  *
2569  *      Returns zero if unsuccessful or an error if TUR failed.  For
2570  *      removable media, UNIT_ATTENTION sets ->changed flag.
2571  **/
2572 int
2573 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2574                      struct scsi_sense_hdr *sshdr)
2575 {
2576         char cmd[] = {
2577                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2578         };
2579         int result;
2580
2581         /* try to eat the UNIT_ATTENTION if there are enough retries */
2582         do {
2583                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2584                                           timeout, retries, NULL);
2585                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2586                     sshdr->sense_key == UNIT_ATTENTION)
2587                         sdev->changed = 1;
2588         } while (scsi_sense_valid(sshdr) &&
2589                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2590
2591         return result;
2592 }
2593 EXPORT_SYMBOL(scsi_test_unit_ready);
2594
2595 /**
2596  *      scsi_device_set_state - Take the given device through the device state model.
2597  *      @sdev:  scsi device to change the state of.
2598  *      @state: state to change to.
2599  *
2600  *      Returns zero if successful or an error if the requested
2601  *      transition is illegal.
2602  */
2603 int
2604 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2605 {
2606         enum scsi_device_state oldstate = sdev->sdev_state;
2607
2608         if (state == oldstate)
2609                 return 0;
2610
2611         switch (state) {
2612         case SDEV_CREATED:
2613                 switch (oldstate) {
2614                 case SDEV_CREATED_BLOCK:
2615                         break;
2616                 default:
2617                         goto illegal;
2618                 }
2619                 break;
2620                         
2621         case SDEV_RUNNING:
2622                 switch (oldstate) {
2623                 case SDEV_CREATED:
2624                 case SDEV_OFFLINE:
2625                 case SDEV_TRANSPORT_OFFLINE:
2626                 case SDEV_QUIESCE:
2627                 case SDEV_BLOCK:
2628                         break;
2629                 default:
2630                         goto illegal;
2631                 }
2632                 break;
2633
2634         case SDEV_QUIESCE:
2635                 switch (oldstate) {
2636                 case SDEV_RUNNING:
2637                 case SDEV_OFFLINE:
2638                 case SDEV_TRANSPORT_OFFLINE:
2639                         break;
2640                 default:
2641                         goto illegal;
2642                 }
2643                 break;
2644
2645         case SDEV_OFFLINE:
2646         case SDEV_TRANSPORT_OFFLINE:
2647                 switch (oldstate) {
2648                 case SDEV_CREATED:
2649                 case SDEV_RUNNING:
2650                 case SDEV_QUIESCE:
2651                 case SDEV_BLOCK:
2652                         break;
2653                 default:
2654                         goto illegal;
2655                 }
2656                 break;
2657
2658         case SDEV_BLOCK:
2659                 switch (oldstate) {
2660                 case SDEV_RUNNING:
2661                 case SDEV_CREATED_BLOCK:
2662                         break;
2663                 default:
2664                         goto illegal;
2665                 }
2666                 break;
2667
2668         case SDEV_CREATED_BLOCK:
2669                 switch (oldstate) {
2670                 case SDEV_CREATED:
2671                         break;
2672                 default:
2673                         goto illegal;
2674                 }
2675                 break;
2676
2677         case SDEV_CANCEL:
2678                 switch (oldstate) {
2679                 case SDEV_CREATED:
2680                 case SDEV_RUNNING:
2681                 case SDEV_QUIESCE:
2682                 case SDEV_OFFLINE:
2683                 case SDEV_TRANSPORT_OFFLINE:
2684                         break;
2685                 default:
2686                         goto illegal;
2687                 }
2688                 break;
2689
2690         case SDEV_DEL:
2691                 switch (oldstate) {
2692                 case SDEV_CREATED:
2693                 case SDEV_RUNNING:
2694                 case SDEV_OFFLINE:
2695                 case SDEV_TRANSPORT_OFFLINE:
2696                 case SDEV_CANCEL:
2697                 case SDEV_BLOCK:
2698                 case SDEV_CREATED_BLOCK:
2699                         break;
2700                 default:
2701                         goto illegal;
2702                 }
2703                 break;
2704
2705         }
2706         sdev->sdev_state = state;
2707         return 0;
2708
2709  illegal:
2710         SCSI_LOG_ERROR_RECOVERY(1,
2711                                 sdev_printk(KERN_ERR, sdev,
2712                                             "Illegal state transition %s->%s",
2713                                             scsi_device_state_name(oldstate),
2714                                             scsi_device_state_name(state))
2715                                 );
2716         return -EINVAL;
2717 }
2718 EXPORT_SYMBOL(scsi_device_set_state);
2719
2720 /**
2721  *      sdev_evt_emit - emit a single SCSI device uevent
2722  *      @sdev: associated SCSI device
2723  *      @evt: event to emit
2724  *
2725  *      Send a single uevent (scsi_event) to the associated scsi_device.
2726  */
2727 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2728 {
2729         int idx = 0;
2730         char *envp[3];
2731
2732         switch (evt->evt_type) {
2733         case SDEV_EVT_MEDIA_CHANGE:
2734                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2735                 break;
2736         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2737                 scsi_rescan_device(&sdev->sdev_gendev);
2738                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2739                 break;
2740         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2741                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2742                 break;
2743         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2744                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2745                 break;
2746         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2747                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2748                 break;
2749         case SDEV_EVT_LUN_CHANGE_REPORTED:
2750                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2751                 break;
2752         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2753                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2754                 break;
2755         default:
2756                 /* do nothing */
2757                 break;
2758         }
2759
2760         envp[idx++] = NULL;
2761
2762         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2763 }
2764
2765 /**
2766  *      sdev_evt_thread - send a uevent for each scsi event
2767  *      @work: work struct for scsi_device
2768  *
2769  *      Dispatch queued events to their associated scsi_device kobjects
2770  *      as uevents.
2771  */
2772 void scsi_evt_thread(struct work_struct *work)
2773 {
2774         struct scsi_device *sdev;
2775         enum scsi_device_event evt_type;
2776         LIST_HEAD(event_list);
2777
2778         sdev = container_of(work, struct scsi_device, event_work);
2779
2780         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2781                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2782                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2783
2784         while (1) {
2785                 struct scsi_event *evt;
2786                 struct list_head *this, *tmp;
2787                 unsigned long flags;
2788
2789                 spin_lock_irqsave(&sdev->list_lock, flags);
2790                 list_splice_init(&sdev->event_list, &event_list);
2791                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2792
2793                 if (list_empty(&event_list))
2794                         break;
2795
2796                 list_for_each_safe(this, tmp, &event_list) {
2797                         evt = list_entry(this, struct scsi_event, node);
2798                         list_del(&evt->node);
2799                         scsi_evt_emit(sdev, evt);
2800                         kfree(evt);
2801                 }
2802         }
2803 }
2804
2805 /**
2806  *      sdev_evt_send - send asserted event to uevent thread
2807  *      @sdev: scsi_device event occurred on
2808  *      @evt: event to send
2809  *
2810  *      Assert scsi device event asynchronously.
2811  */
2812 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2813 {
2814         unsigned long flags;
2815
2816 #if 0
2817         /* FIXME: currently this check eliminates all media change events
2818          * for polled devices.  Need to update to discriminate between AN
2819          * and polled events */
2820         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2821                 kfree(evt);
2822                 return;
2823         }
2824 #endif
2825
2826         spin_lock_irqsave(&sdev->list_lock, flags);
2827         list_add_tail(&evt->node, &sdev->event_list);
2828         schedule_work(&sdev->event_work);
2829         spin_unlock_irqrestore(&sdev->list_lock, flags);
2830 }
2831 EXPORT_SYMBOL_GPL(sdev_evt_send);
2832
2833 /**
2834  *      sdev_evt_alloc - allocate a new scsi event
2835  *      @evt_type: type of event to allocate
2836  *      @gfpflags: GFP flags for allocation
2837  *
2838  *      Allocates and returns a new scsi_event.
2839  */
2840 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2841                                   gfp_t gfpflags)
2842 {
2843         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2844         if (!evt)
2845                 return NULL;
2846
2847         evt->evt_type = evt_type;
2848         INIT_LIST_HEAD(&evt->node);
2849
2850         /* evt_type-specific initialization, if any */
2851         switch (evt_type) {
2852         case SDEV_EVT_MEDIA_CHANGE:
2853         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2854         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2855         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2856         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2857         case SDEV_EVT_LUN_CHANGE_REPORTED:
2858         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2859         default:
2860                 /* do nothing */
2861                 break;
2862         }
2863
2864         return evt;
2865 }
2866 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2867
2868 /**
2869  *      sdev_evt_send_simple - send asserted event to uevent thread
2870  *      @sdev: scsi_device event occurred on
2871  *      @evt_type: type of event to send
2872  *      @gfpflags: GFP flags for allocation
2873  *
2874  *      Assert scsi device event asynchronously, given an event type.
2875  */
2876 void sdev_evt_send_simple(struct scsi_device *sdev,
2877                           enum scsi_device_event evt_type, gfp_t gfpflags)
2878 {
2879         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2880         if (!evt) {
2881                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2882                             evt_type);
2883                 return;
2884         }
2885
2886         sdev_evt_send(sdev, evt);
2887 }
2888 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2889
2890 /**
2891  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2892  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2893  */
2894 static int scsi_request_fn_active(struct scsi_device *sdev)
2895 {
2896         struct request_queue *q = sdev->request_queue;
2897         int request_fn_active;
2898
2899         WARN_ON_ONCE(sdev->host->use_blk_mq);
2900
2901         spin_lock_irq(q->queue_lock);
2902         request_fn_active = q->request_fn_active;
2903         spin_unlock_irq(q->queue_lock);
2904
2905         return request_fn_active;
2906 }
2907
2908 /**
2909  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2910  * @sdev: SCSI device pointer.
2911  *
2912  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2913  * invoked from scsi_request_fn() have finished.
2914  */
2915 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2916 {
2917         WARN_ON_ONCE(sdev->host->use_blk_mq);
2918
2919         while (scsi_request_fn_active(sdev))
2920                 msleep(20);
2921 }
2922
2923 /**
2924  *      scsi_device_quiesce - Block user issued commands.
2925  *      @sdev:  scsi device to quiesce.
2926  *
2927  *      This works by trying to transition to the SDEV_QUIESCE state
2928  *      (which must be a legal transition).  When the device is in this
2929  *      state, only special requests will be accepted, all others will
2930  *      be deferred.  Since special requests may also be requeued requests,
2931  *      a successful return doesn't guarantee the device will be 
2932  *      totally quiescent.
2933  *
2934  *      Must be called with user context, may sleep.
2935  *
2936  *      Returns zero if unsuccessful or an error if not.
2937  */
2938 int
2939 scsi_device_quiesce(struct scsi_device *sdev)
2940 {
2941         int err;
2942
2943         mutex_lock(&sdev->state_mutex);
2944         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2945         mutex_unlock(&sdev->state_mutex);
2946
2947         if (err)
2948                 return err;
2949
2950         scsi_run_queue(sdev->request_queue);
2951         while (atomic_read(&sdev->device_busy)) {
2952                 msleep_interruptible(200);
2953                 scsi_run_queue(sdev->request_queue);
2954         }
2955         return 0;
2956 }
2957 EXPORT_SYMBOL(scsi_device_quiesce);
2958
2959 /**
2960  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2961  *      @sdev:  scsi device to resume.
2962  *
2963  *      Moves the device from quiesced back to running and restarts the
2964  *      queues.
2965  *
2966  *      Must be called with user context, may sleep.
2967  */
2968 void scsi_device_resume(struct scsi_device *sdev)
2969 {
2970         /* check if the device state was mutated prior to resume, and if
2971          * so assume the state is being managed elsewhere (for example
2972          * device deleted during suspend)
2973          */
2974         mutex_lock(&sdev->state_mutex);
2975         if (sdev->sdev_state == SDEV_QUIESCE &&
2976             scsi_device_set_state(sdev, SDEV_RUNNING) == 0)
2977                 scsi_run_queue(sdev->request_queue);
2978         mutex_unlock(&sdev->state_mutex);
2979 }
2980 EXPORT_SYMBOL(scsi_device_resume);
2981
2982 static void
2983 device_quiesce_fn(struct scsi_device *sdev, void *data)
2984 {
2985         scsi_device_quiesce(sdev);
2986 }
2987
2988 void
2989 scsi_target_quiesce(struct scsi_target *starget)
2990 {
2991         starget_for_each_device(starget, NULL, device_quiesce_fn);
2992 }
2993 EXPORT_SYMBOL(scsi_target_quiesce);
2994
2995 static void
2996 device_resume_fn(struct scsi_device *sdev, void *data)
2997 {
2998         scsi_device_resume(sdev);
2999 }
3000
3001 void
3002 scsi_target_resume(struct scsi_target *starget)
3003 {
3004         starget_for_each_device(starget, NULL, device_resume_fn);
3005 }
3006 EXPORT_SYMBOL(scsi_target_resume);
3007
3008 /**
3009  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3010  * @sdev: device to block
3011  *
3012  * Pause SCSI command processing on the specified device. Does not sleep.
3013  *
3014  * Returns zero if successful or a negative error code upon failure.
3015  *
3016  * Notes:
3017  * This routine transitions the device to the SDEV_BLOCK state (which must be
3018  * a legal transition). When the device is in this state, command processing
3019  * is paused until the device leaves the SDEV_BLOCK state. See also
3020  * scsi_internal_device_unblock_nowait().
3021  */
3022 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3023 {
3024         struct request_queue *q = sdev->request_queue;
3025         unsigned long flags;
3026         int err = 0;
3027
3028         err = scsi_device_set_state(sdev, SDEV_BLOCK);
3029         if (err) {
3030                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3031
3032                 if (err)
3033                         return err;
3034         }
3035
3036         /* 
3037          * The device has transitioned to SDEV_BLOCK.  Stop the
3038          * block layer from calling the midlayer with this device's
3039          * request queue. 
3040          */
3041         if (q->mq_ops) {
3042                 blk_mq_quiesce_queue_nowait(q);
3043         } else {
3044                 spin_lock_irqsave(q->queue_lock, flags);
3045                 blk_stop_queue(q);
3046                 spin_unlock_irqrestore(q->queue_lock, flags);
3047         }
3048
3049         return 0;
3050 }
3051 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3052
3053 /**
3054  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3055  * @sdev: device to block
3056  *
3057  * Pause SCSI command processing on the specified device and wait until all
3058  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3059  *
3060  * Returns zero if successful or a negative error code upon failure.
3061  *
3062  * Note:
3063  * This routine transitions the device to the SDEV_BLOCK state (which must be
3064  * a legal transition). When the device is in this state, command processing
3065  * is paused until the device leaves the SDEV_BLOCK state. See also
3066  * scsi_internal_device_unblock().
3067  *
3068  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3069  * scsi_internal_device_block() has blocked a SCSI device and also
3070  * remove the rport mutex lock and unlock calls from srp_queuecommand().
3071  */
3072 static int scsi_internal_device_block(struct scsi_device *sdev)
3073 {
3074         struct request_queue *q = sdev->request_queue;
3075         int err;
3076
3077         mutex_lock(&sdev->state_mutex);
3078         err = scsi_internal_device_block_nowait(sdev);
3079         if (err == 0) {
3080                 if (q->mq_ops)
3081                         blk_mq_quiesce_queue(q);
3082                 else
3083                         scsi_wait_for_queuecommand(sdev);
3084         }
3085         mutex_unlock(&sdev->state_mutex);
3086
3087         return err;
3088 }
3089  
3090 void scsi_start_queue(struct scsi_device *sdev)
3091 {
3092         struct request_queue *q = sdev->request_queue;
3093         unsigned long flags;
3094
3095         if (q->mq_ops) {
3096                 blk_mq_unquiesce_queue(q);
3097         } else {
3098                 spin_lock_irqsave(q->queue_lock, flags);
3099                 blk_start_queue(q);
3100                 spin_unlock_irqrestore(q->queue_lock, flags);
3101         }
3102 }
3103
3104 /**
3105  * scsi_internal_device_unblock_nowait - resume a device after a block request
3106  * @sdev:       device to resume
3107  * @new_state:  state to set the device to after unblocking
3108  *
3109  * Restart the device queue for a previously suspended SCSI device. Does not
3110  * sleep.
3111  *
3112  * Returns zero if successful or a negative error code upon failure.
3113  *
3114  * Notes:
3115  * This routine transitions the device to the SDEV_RUNNING state or to one of
3116  * the offline states (which must be a legal transition) allowing the midlayer
3117  * to goose the queue for this device.
3118  */
3119 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3120                                         enum scsi_device_state new_state)
3121 {
3122         /*
3123          * Try to transition the scsi device to SDEV_RUNNING or one of the
3124          * offlined states and goose the device queue if successful.
3125          */
3126         switch (sdev->sdev_state) {
3127         case SDEV_BLOCK:
3128         case SDEV_TRANSPORT_OFFLINE:
3129                 sdev->sdev_state = new_state;
3130                 break;
3131         case SDEV_CREATED_BLOCK:
3132                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3133                     new_state == SDEV_OFFLINE)
3134                         sdev->sdev_state = new_state;
3135                 else
3136                         sdev->sdev_state = SDEV_CREATED;
3137                 break;
3138         case SDEV_CANCEL:
3139         case SDEV_OFFLINE:
3140                 break;
3141         default:
3142                 return -EINVAL;
3143         }
3144         scsi_start_queue(sdev);
3145
3146         return 0;
3147 }
3148 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3149
3150 /**
3151  * scsi_internal_device_unblock - resume a device after a block request
3152  * @sdev:       device to resume
3153  * @new_state:  state to set the device to after unblocking
3154  *
3155  * Restart the device queue for a previously suspended SCSI device. May sleep.
3156  *
3157  * Returns zero if successful or a negative error code upon failure.
3158  *
3159  * Notes:
3160  * This routine transitions the device to the SDEV_RUNNING state or to one of
3161  * the offline states (which must be a legal transition) allowing the midlayer
3162  * to goose the queue for this device.
3163  */
3164 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3165                                         enum scsi_device_state new_state)
3166 {
3167         int ret;
3168
3169         mutex_lock(&sdev->state_mutex);
3170         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3171         mutex_unlock(&sdev->state_mutex);
3172
3173         return ret;
3174 }
3175
3176 static void
3177 device_block(struct scsi_device *sdev, void *data)
3178 {
3179         scsi_internal_device_block(sdev);
3180 }
3181
3182 static int
3183 target_block(struct device *dev, void *data)
3184 {
3185         if (scsi_is_target_device(dev))
3186                 starget_for_each_device(to_scsi_target(dev), NULL,
3187                                         device_block);
3188         return 0;
3189 }
3190
3191 void
3192 scsi_target_block(struct device *dev)
3193 {
3194         if (scsi_is_target_device(dev))
3195                 starget_for_each_device(to_scsi_target(dev), NULL,
3196                                         device_block);
3197         else
3198                 device_for_each_child(dev, NULL, target_block);
3199 }
3200 EXPORT_SYMBOL_GPL(scsi_target_block);
3201
3202 static void
3203 device_unblock(struct scsi_device *sdev, void *data)
3204 {
3205         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3206 }
3207
3208 static int
3209 target_unblock(struct device *dev, void *data)
3210 {
3211         if (scsi_is_target_device(dev))
3212                 starget_for_each_device(to_scsi_target(dev), data,
3213                                         device_unblock);
3214         return 0;
3215 }
3216
3217 void
3218 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3219 {
3220         if (scsi_is_target_device(dev))
3221                 starget_for_each_device(to_scsi_target(dev), &new_state,
3222                                         device_unblock);
3223         else
3224                 device_for_each_child(dev, &new_state, target_unblock);
3225 }
3226 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3227
3228 /**
3229  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3230  * @sgl:        scatter-gather list
3231  * @sg_count:   number of segments in sg
3232  * @offset:     offset in bytes into sg, on return offset into the mapped area
3233  * @len:        bytes to map, on return number of bytes mapped
3234  *
3235  * Returns virtual address of the start of the mapped page
3236  */
3237 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3238                           size_t *offset, size_t *len)
3239 {
3240         int i;
3241         size_t sg_len = 0, len_complete = 0;
3242         struct scatterlist *sg;
3243         struct page *page;
3244
3245         WARN_ON(!irqs_disabled());
3246
3247         for_each_sg(sgl, sg, sg_count, i) {
3248                 len_complete = sg_len; /* Complete sg-entries */
3249                 sg_len += sg->length;
3250                 if (sg_len > *offset)
3251                         break;
3252         }
3253
3254         if (unlikely(i == sg_count)) {
3255                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3256                         "elements %d\n",
3257                        __func__, sg_len, *offset, sg_count);
3258                 WARN_ON(1);
3259                 return NULL;
3260         }
3261
3262         /* Offset starting from the beginning of first page in this sg-entry */
3263         *offset = *offset - len_complete + sg->offset;
3264
3265         /* Assumption: contiguous pages can be accessed as "page + i" */
3266         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3267         *offset &= ~PAGE_MASK;
3268
3269         /* Bytes in this sg-entry from *offset to the end of the page */
3270         sg_len = PAGE_SIZE - *offset;
3271         if (*len > sg_len)
3272                 *len = sg_len;
3273
3274         return kmap_atomic(page);
3275 }
3276 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3277
3278 /**
3279  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3280  * @virt:       virtual address to be unmapped
3281  */
3282 void scsi_kunmap_atomic_sg(void *virt)
3283 {
3284         kunmap_atomic(virt);
3285 }
3286 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3287
3288 void sdev_disable_disk_events(struct scsi_device *sdev)
3289 {
3290         atomic_inc(&sdev->disk_events_disable_depth);
3291 }
3292 EXPORT_SYMBOL(sdev_disable_disk_events);
3293
3294 void sdev_enable_disk_events(struct scsi_device *sdev)
3295 {
3296         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3297                 return;
3298         atomic_dec(&sdev->disk_events_disable_depth);
3299 }
3300 EXPORT_SYMBOL(sdev_enable_disk_events);
3301
3302 /**
3303  * scsi_vpd_lun_id - return a unique device identification
3304  * @sdev: SCSI device
3305  * @id:   buffer for the identification
3306  * @id_len:  length of the buffer
3307  *
3308  * Copies a unique device identification into @id based
3309  * on the information in the VPD page 0x83 of the device.
3310  * The string will be formatted as a SCSI name string.
3311  *
3312  * Returns the length of the identification or error on failure.
3313  * If the identifier is longer than the supplied buffer the actual
3314  * identifier length is returned and the buffer is not zero-padded.
3315  */
3316 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3317 {
3318         u8 cur_id_type = 0xff;
3319         u8 cur_id_size = 0;
3320         const unsigned char *d, *cur_id_str;
3321         const struct scsi_vpd *vpd_pg83;
3322         int id_size = -EINVAL;
3323
3324         rcu_read_lock();
3325         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3326         if (!vpd_pg83) {
3327                 rcu_read_unlock();
3328                 return -ENXIO;
3329         }
3330
3331         /*
3332          * Look for the correct descriptor.
3333          * Order of preference for lun descriptor:
3334          * - SCSI name string
3335          * - NAA IEEE Registered Extended
3336          * - EUI-64 based 16-byte
3337          * - EUI-64 based 12-byte
3338          * - NAA IEEE Registered
3339          * - NAA IEEE Extended
3340          * - T10 Vendor ID
3341          * as longer descriptors reduce the likelyhood
3342          * of identification clashes.
3343          */
3344
3345         /* The id string must be at least 20 bytes + terminating NULL byte */
3346         if (id_len < 21) {
3347                 rcu_read_unlock();
3348                 return -EINVAL;
3349         }
3350
3351         memset(id, 0, id_len);
3352         d = vpd_pg83->data + 4;
3353         while (d < vpd_pg83->data + vpd_pg83->len) {
3354                 /* Skip designators not referring to the LUN */
3355                 if ((d[1] & 0x30) != 0x00)
3356                         goto next_desig;
3357
3358                 switch (d[1] & 0xf) {
3359                 case 0x1:
3360                         /* T10 Vendor ID */
3361                         if (cur_id_size > d[3])
3362                                 break;
3363                         /* Prefer anything */
3364                         if (cur_id_type > 0x01 && cur_id_type != 0xff)
3365                                 break;
3366                         cur_id_size = d[3];
3367                         if (cur_id_size + 4 > id_len)
3368                                 cur_id_size = id_len - 4;
3369                         cur_id_str = d + 4;
3370                         cur_id_type = d[1] & 0xf;
3371                         id_size = snprintf(id, id_len, "t10.%*pE",
3372                                            cur_id_size, cur_id_str);
3373                         break;
3374                 case 0x2:
3375                         /* EUI-64 */
3376                         if (cur_id_size > d[3])
3377                                 break;
3378                         /* Prefer NAA IEEE Registered Extended */
3379                         if (cur_id_type == 0x3 &&
3380                             cur_id_size == d[3])
3381                                 break;
3382                         cur_id_size = d[3];
3383                         cur_id_str = d + 4;
3384                         cur_id_type = d[1] & 0xf;
3385                         switch (cur_id_size) {
3386                         case 8:
3387                                 id_size = snprintf(id, id_len,
3388                                                    "eui.%8phN",
3389                                                    cur_id_str);
3390                                 break;
3391                         case 12:
3392                                 id_size = snprintf(id, id_len,
3393                                                    "eui.%12phN",
3394                                                    cur_id_str);
3395                                 break;
3396                         case 16:
3397                                 id_size = snprintf(id, id_len,
3398                                                    "eui.%16phN",
3399                                                    cur_id_str);
3400                                 break;
3401                         default:
3402                                 cur_id_size = 0;
3403                                 break;
3404                         }
3405                         break;
3406                 case 0x3:
3407                         /* NAA */
3408                         if (cur_id_size > d[3])
3409                                 break;
3410                         cur_id_size = d[3];
3411                         cur_id_str = d + 4;
3412                         cur_id_type = d[1] & 0xf;
3413                         switch (cur_id_size) {
3414                         case 8:
3415                                 id_size = snprintf(id, id_len,
3416                                                    "naa.%8phN",
3417                                                    cur_id_str);
3418                                 break;
3419                         case 16:
3420                                 id_size = snprintf(id, id_len,
3421                                                    "naa.%16phN",
3422                                                    cur_id_str);
3423                                 break;
3424                         default:
3425                                 cur_id_size = 0;
3426                                 break;
3427                         }
3428                         break;
3429                 case 0x8:
3430                         /* SCSI name string */
3431                         if (cur_id_size + 4 > d[3])
3432                                 break;
3433                         /* Prefer others for truncated descriptor */
3434                         if (cur_id_size && d[3] > id_len)
3435                                 break;
3436                         cur_id_size = id_size = d[3];
3437                         cur_id_str = d + 4;
3438                         cur_id_type = d[1] & 0xf;
3439                         if (cur_id_size >= id_len)
3440                                 cur_id_size = id_len - 1;
3441                         memcpy(id, cur_id_str, cur_id_size);
3442                         /* Decrease priority for truncated descriptor */
3443                         if (cur_id_size != id_size)
3444                                 cur_id_size = 6;
3445                         break;
3446                 default:
3447                         break;
3448                 }
3449 next_desig:
3450                 d += d[3] + 4;
3451         }
3452         rcu_read_unlock();
3453
3454         return id_size;
3455 }
3456 EXPORT_SYMBOL(scsi_vpd_lun_id);
3457
3458 /*
3459  * scsi_vpd_tpg_id - return a target port group identifier
3460  * @sdev: SCSI device
3461  *
3462  * Returns the Target Port Group identifier from the information
3463  * froom VPD page 0x83 of the device.
3464  *
3465  * Returns the identifier or error on failure.
3466  */
3467 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3468 {
3469         const unsigned char *d;
3470         const struct scsi_vpd *vpd_pg83;
3471         int group_id = -EAGAIN, rel_port = -1;
3472
3473         rcu_read_lock();
3474         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3475         if (!vpd_pg83) {
3476                 rcu_read_unlock();
3477                 return -ENXIO;
3478         }
3479
3480         d = vpd_pg83->data + 4;
3481         while (d < vpd_pg83->data + vpd_pg83->len) {
3482                 switch (d[1] & 0xf) {
3483                 case 0x4:
3484                         /* Relative target port */
3485                         rel_port = get_unaligned_be16(&d[6]);
3486                         break;
3487                 case 0x5:
3488                         /* Target port group */
3489                         group_id = get_unaligned_be16(&d[6]);
3490                         break;
3491                 default:
3492                         break;
3493                 }
3494                 d += d[3] + 4;
3495         }
3496         rcu_read_unlock();
3497
3498         if (group_id >= 0 && rel_id && rel_port != -1)
3499                 *rel_id = rel_port;
3500
3501         return group_id;
3502 }
3503 EXPORT_SYMBOL(scsi_vpd_tpg_id);