Merge tag 'x86_cpu_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-starfive.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 #include <linux/aer.h>
64
65
66 #include "mpt3sas_base.h"
67
68 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
69
70
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72
73  /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH     30000
75 #define MAX_CHAIN_DEPTH         100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95         " max msix vectors");
96
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100         "irq poll weight (default= one fourth of HBA queue depth)");
101
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104         " enable detection of firmware fault and halt firmware - (default=0)");
105
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109         "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110         "0 - balanced: high iops mode is enabled &\n\t\t"
111         "interrupt coalescing is enabled only on high iops queues,\n\t\t"
112         "1 - iops: high iops mode is disabled &\n\t\t"
113         "interrupt coalescing is enabled on all queues,\n\t\t"
114         "2 - latency: high iops mode is disabled &\n\t\t"
115         "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116         "\t\tdefault - default perf_mode is 'balanced'"
117         );
118
119 static int poll_queues;
120 module_param(poll_queues, int, 0444);
121 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t"
122         "This parameter is effective only if host_tagset_enable=1. &\n\t\t"
123         "when poll_queues are enabled then &\n\t\t"
124         "perf_mode is set to latency mode. &\n\t\t"
125         );
126
127 enum mpt3sas_perf_mode {
128         MPT_PERF_MODE_DEFAULT   = -1,
129         MPT_PERF_MODE_BALANCED  = 0,
130         MPT_PERF_MODE_IOPS      = 1,
131         MPT_PERF_MODE_LATENCY   = 2,
132 };
133
134 static int
135 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
136                 u32 ioc_state, int timeout);
137 static int
138 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
139 static void
140 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
141
142 /**
143  * mpt3sas_base_check_cmd_timeout - Function
144  *              to check timeout and command termination due
145  *              to Host reset.
146  *
147  * @ioc:        per adapter object.
148  * @status:     Status of issued command.
149  * @mpi_request:mf request pointer.
150  * @sz:         size of buffer.
151  *
152  * Return: 1/0 Reset to be done or Not
153  */
154 u8
155 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
156                 u8 status, void *mpi_request, int sz)
157 {
158         u8 issue_reset = 0;
159
160         if (!(status & MPT3_CMD_RESET))
161                 issue_reset = 1;
162
163         ioc_err(ioc, "Command %s\n",
164                 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
165         _debug_dump_mf(mpi_request, sz);
166
167         return issue_reset;
168 }
169
170 /**
171  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
172  * @val: ?
173  * @kp: ?
174  *
175  * Return: ?
176  */
177 static int
178 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
179 {
180         int ret = param_set_int(val, kp);
181         struct MPT3SAS_ADAPTER *ioc;
182
183         if (ret)
184                 return ret;
185
186         /* global ioc spinlock to protect controller list on list operations */
187         pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
188         spin_lock(&gioc_lock);
189         list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
190                 ioc->fwfault_debug = mpt3sas_fwfault_debug;
191         spin_unlock(&gioc_lock);
192         return 0;
193 }
194 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
195         param_get_int, &mpt3sas_fwfault_debug, 0644);
196
197 /**
198  * _base_readl_aero - retry readl for max three times.
199  * @addr: MPT Fusion system interface register address
200  *
201  * Retry the readl() for max three times if it gets zero value
202  * while reading the system interface register.
203  */
204 static inline u32
205 _base_readl_aero(const volatile void __iomem *addr)
206 {
207         u32 i = 0, ret_val;
208
209         do {
210                 ret_val = readl(addr);
211                 i++;
212         } while (ret_val == 0 && i < 3);
213
214         return ret_val;
215 }
216
217 static inline u32
218 _base_readl(const volatile void __iomem *addr)
219 {
220         return readl(addr);
221 }
222
223 /**
224  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
225  *                                in BAR0 space.
226  *
227  * @ioc: per adapter object
228  * @reply: reply message frame(lower 32bit addr)
229  * @index: System request message index.
230  */
231 static void
232 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
233                 u32 index)
234 {
235         /*
236          * 256 is offset within sys register.
237          * 256 offset MPI frame starts. Max MPI frame supported is 32.
238          * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
239          */
240         u16 cmd_credit = ioc->facts.RequestCredit + 1;
241         void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
242                         MPI_FRAME_START_OFFSET +
243                         (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
244
245         writel(reply, reply_free_iomem);
246 }
247
248 /**
249  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
250  *                              to system/BAR0 region.
251  *
252  * @dst_iomem: Pointer to the destination location in BAR0 space.
253  * @src: Pointer to the Source data.
254  * @size: Size of data to be copied.
255  */
256 static void
257 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
258 {
259         int i;
260         u32 *src_virt_mem = (u32 *)src;
261
262         for (i = 0; i < size/4; i++)
263                 writel((u32)src_virt_mem[i],
264                                 (void __iomem *)dst_iomem + (i * 4));
265 }
266
267 /**
268  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
269  *
270  * @dst_iomem: Pointer to the destination location in BAR0 space.
271  * @src: Pointer to the Source data.
272  * @size: Size of data to be copied.
273  */
274 static void
275 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
276 {
277         int i;
278         u32 *src_virt_mem = (u32 *)(src);
279
280         for (i = 0; i < size/4; i++)
281                 writel((u32)src_virt_mem[i],
282                         (void __iomem *)dst_iomem + (i * 4));
283 }
284
285 /**
286  * _base_get_chain - Calculates and Returns virtual chain address
287  *                       for the provided smid in BAR0 space.
288  *
289  * @ioc: per adapter object
290  * @smid: system request message index
291  * @sge_chain_count: Scatter gather chain count.
292  *
293  * Return: the chain address.
294  */
295 static inline void __iomem*
296 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
297                 u8 sge_chain_count)
298 {
299         void __iomem *base_chain, *chain_virt;
300         u16 cmd_credit = ioc->facts.RequestCredit + 1;
301
302         base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
303                 (cmd_credit * ioc->request_sz) +
304                 REPLY_FREE_POOL_SIZE;
305         chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
306                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
307         return chain_virt;
308 }
309
310 /**
311  * _base_get_chain_phys - Calculates and Returns physical address
312  *                      in BAR0 for scatter gather chains, for
313  *                      the provided smid.
314  *
315  * @ioc: per adapter object
316  * @smid: system request message index
317  * @sge_chain_count: Scatter gather chain count.
318  *
319  * Return: Physical chain address.
320  */
321 static inline phys_addr_t
322 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
323                 u8 sge_chain_count)
324 {
325         phys_addr_t base_chain_phys, chain_phys;
326         u16 cmd_credit = ioc->facts.RequestCredit + 1;
327
328         base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
329                 (cmd_credit * ioc->request_sz) +
330                 REPLY_FREE_POOL_SIZE;
331         chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
332                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
333         return chain_phys;
334 }
335
336 /**
337  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
338  *                      buffer address for the provided smid.
339  *                      (Each smid can have 64K starts from 17024)
340  *
341  * @ioc: per adapter object
342  * @smid: system request message index
343  *
344  * Return: Pointer to buffer location in BAR0.
345  */
346
347 static void __iomem *
348 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
349 {
350         u16 cmd_credit = ioc->facts.RequestCredit + 1;
351         // Added extra 1 to reach end of chain.
352         void __iomem *chain_end = _base_get_chain(ioc,
353                         cmd_credit + 1,
354                         ioc->facts.MaxChainDepth);
355         return chain_end + (smid * 64 * 1024);
356 }
357
358 /**
359  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
360  *              Host buffer Physical address for the provided smid.
361  *              (Each smid can have 64K starts from 17024)
362  *
363  * @ioc: per adapter object
364  * @smid: system request message index
365  *
366  * Return: Pointer to buffer location in BAR0.
367  */
368 static phys_addr_t
369 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
370 {
371         u16 cmd_credit = ioc->facts.RequestCredit + 1;
372         phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
373                         cmd_credit + 1,
374                         ioc->facts.MaxChainDepth);
375         return chain_end_phys + (smid * 64 * 1024);
376 }
377
378 /**
379  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
380  *                      lookup list and Provides chain_buffer
381  *                      address for the matching dma address.
382  *                      (Each smid can have 64K starts from 17024)
383  *
384  * @ioc: per adapter object
385  * @chain_buffer_dma: Chain buffer dma address.
386  *
387  * Return: Pointer to chain buffer. Or Null on Failure.
388  */
389 static void *
390 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
391                 dma_addr_t chain_buffer_dma)
392 {
393         u16 index, j;
394         struct chain_tracker *ct;
395
396         for (index = 0; index < ioc->scsiio_depth; index++) {
397                 for (j = 0; j < ioc->chains_needed_per_io; j++) {
398                         ct = &ioc->chain_lookup[index].chains_per_smid[j];
399                         if (ct && ct->chain_buffer_dma == chain_buffer_dma)
400                                 return ct->chain_buffer;
401                 }
402         }
403         ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
404         return NULL;
405 }
406
407 /**
408  * _clone_sg_entries -  MPI EP's scsiio and config requests
409  *                      are handled here. Base function for
410  *                      double buffering, before submitting
411  *                      the requests.
412  *
413  * @ioc: per adapter object.
414  * @mpi_request: mf request pointer.
415  * @smid: system request message index.
416  */
417 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
418                 void *mpi_request, u16 smid)
419 {
420         Mpi2SGESimple32_t *sgel, *sgel_next;
421         u32  sgl_flags, sge_chain_count = 0;
422         bool is_write = false;
423         u16 i = 0;
424         void __iomem *buffer_iomem;
425         phys_addr_t buffer_iomem_phys;
426         void __iomem *buff_ptr;
427         phys_addr_t buff_ptr_phys;
428         void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
429         void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
430         phys_addr_t dst_addr_phys;
431         MPI2RequestHeader_t *request_hdr;
432         struct scsi_cmnd *scmd;
433         struct scatterlist *sg_scmd = NULL;
434         int is_scsiio_req = 0;
435
436         request_hdr = (MPI2RequestHeader_t *) mpi_request;
437
438         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
439                 Mpi25SCSIIORequest_t *scsiio_request =
440                         (Mpi25SCSIIORequest_t *)mpi_request;
441                 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
442                 is_scsiio_req = 1;
443         } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
444                 Mpi2ConfigRequest_t  *config_req =
445                         (Mpi2ConfigRequest_t *)mpi_request;
446                 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
447         } else
448                 return;
449
450         /* From smid we can get scsi_cmd, once we have sg_scmd,
451          * we just need to get sg_virt and sg_next to get virtual
452          * address associated with sgel->Address.
453          */
454
455         if (is_scsiio_req) {
456                 /* Get scsi_cmd using smid */
457                 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
458                 if (scmd == NULL) {
459                         ioc_err(ioc, "scmd is NULL\n");
460                         return;
461                 }
462
463                 /* Get sg_scmd from scmd provided */
464                 sg_scmd = scsi_sglist(scmd);
465         }
466
467         /*
468          * 0 - 255      System register
469          * 256 - 4352   MPI Frame. (This is based on maxCredit 32)
470          * 4352 - 4864  Reply_free pool (512 byte is reserved
471          *              considering maxCredit 32. Reply need extra
472          *              room, for mCPU case kept four times of
473          *              maxCredit).
474          * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
475          *              128 byte size = 12288)
476          * 17152 - x    Host buffer mapped with smid.
477          *              (Each smid can have 64K Max IO.)
478          * BAR0+Last 1K MSIX Addr and Data
479          * Total size in use 2113664 bytes of 4MB BAR0
480          */
481
482         buffer_iomem = _base_get_buffer_bar0(ioc, smid);
483         buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
484
485         buff_ptr = buffer_iomem;
486         buff_ptr_phys = buffer_iomem_phys;
487         WARN_ON(buff_ptr_phys > U32_MAX);
488
489         if (le32_to_cpu(sgel->FlagsLength) &
490                         (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
491                 is_write = true;
492
493         for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
494
495                 sgl_flags =
496                     (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
497
498                 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
499                 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
500                         /*
501                          * Helper function which on passing
502                          * chain_buffer_dma returns chain_buffer. Get
503                          * the virtual address for sgel->Address
504                          */
505                         sgel_next =
506                                 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
507                                                 le32_to_cpu(sgel->Address));
508                         if (sgel_next == NULL)
509                                 return;
510                         /*
511                          * This is coping 128 byte chain
512                          * frame (not a host buffer)
513                          */
514                         dst_chain_addr[sge_chain_count] =
515                                 _base_get_chain(ioc,
516                                         smid, sge_chain_count);
517                         src_chain_addr[sge_chain_count] =
518                                                 (void *) sgel_next;
519                         dst_addr_phys = _base_get_chain_phys(ioc,
520                                                 smid, sge_chain_count);
521                         WARN_ON(dst_addr_phys > U32_MAX);
522                         sgel->Address =
523                                 cpu_to_le32(lower_32_bits(dst_addr_phys));
524                         sgel = sgel_next;
525                         sge_chain_count++;
526                         break;
527                 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
528                         if (is_write) {
529                                 if (is_scsiio_req) {
530                                         _base_clone_to_sys_mem(buff_ptr,
531                                             sg_virt(sg_scmd),
532                                             (le32_to_cpu(sgel->FlagsLength) &
533                                             0x00ffffff));
534                                         /*
535                                          * FIXME: this relies on a a zero
536                                          * PCI mem_offset.
537                                          */
538                                         sgel->Address =
539                                             cpu_to_le32((u32)buff_ptr_phys);
540                                 } else {
541                                         _base_clone_to_sys_mem(buff_ptr,
542                                             ioc->config_vaddr,
543                                             (le32_to_cpu(sgel->FlagsLength) &
544                                             0x00ffffff));
545                                         sgel->Address =
546                                             cpu_to_le32((u32)buff_ptr_phys);
547                                 }
548                         }
549                         buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
550                             0x00ffffff);
551                         buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
552                             0x00ffffff);
553                         if ((le32_to_cpu(sgel->FlagsLength) &
554                             (MPI2_SGE_FLAGS_END_OF_BUFFER
555                                         << MPI2_SGE_FLAGS_SHIFT)))
556                                 goto eob_clone_chain;
557                         else {
558                                 /*
559                                  * Every single element in MPT will have
560                                  * associated sg_next. Better to sanity that
561                                  * sg_next is not NULL, but it will be a bug
562                                  * if it is null.
563                                  */
564                                 if (is_scsiio_req) {
565                                         sg_scmd = sg_next(sg_scmd);
566                                         if (sg_scmd)
567                                                 sgel++;
568                                         else
569                                                 goto eob_clone_chain;
570                                 }
571                         }
572                         break;
573                 }
574         }
575
576 eob_clone_chain:
577         for (i = 0; i < sge_chain_count; i++) {
578                 if (is_scsiio_req)
579                         _base_clone_to_sys_mem(dst_chain_addr[i],
580                                 src_chain_addr[i], ioc->request_sz);
581         }
582 }
583
584 /**
585  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
586  * @arg: input argument, used to derive ioc
587  *
588  * Return:
589  * 0 if controller is removed from pci subsystem.
590  * -1 for other case.
591  */
592 static int mpt3sas_remove_dead_ioc_func(void *arg)
593 {
594         struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
595         struct pci_dev *pdev;
596
597         if (!ioc)
598                 return -1;
599
600         pdev = ioc->pdev;
601         if (!pdev)
602                 return -1;
603         pci_stop_and_remove_bus_device_locked(pdev);
604         return 0;
605 }
606
607 /**
608  * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
609  * @ioc: Per Adapter Object
610  *
611  * Return: nothing.
612  */
613 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
614 {
615         Mpi26IoUnitControlRequest_t *mpi_request;
616         Mpi26IoUnitControlReply_t *mpi_reply;
617         u16 smid;
618         ktime_t current_time;
619         u64 TimeStamp = 0;
620         u8 issue_reset = 0;
621
622         mutex_lock(&ioc->scsih_cmds.mutex);
623         if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
624                 ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
625                 goto out;
626         }
627         ioc->scsih_cmds.status = MPT3_CMD_PENDING;
628         smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
629         if (!smid) {
630                 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
631                 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
632                 goto out;
633         }
634         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
635         ioc->scsih_cmds.smid = smid;
636         memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
637         mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
638         mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
639         mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
640         current_time = ktime_get_real();
641         TimeStamp = ktime_to_ms(current_time);
642         mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32);
643         mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
644         init_completion(&ioc->scsih_cmds.done);
645         ioc->put_smid_default(ioc, smid);
646         dinitprintk(ioc, ioc_info(ioc,
647             "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
648             TimeStamp));
649         wait_for_completion_timeout(&ioc->scsih_cmds.done,
650                 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
651         if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
652                 mpt3sas_check_cmd_timeout(ioc,
653                     ioc->scsih_cmds.status, mpi_request,
654                     sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
655                 goto issue_host_reset;
656         }
657         if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
658                 mpi_reply = ioc->scsih_cmds.reply;
659                 dinitprintk(ioc, ioc_info(ioc,
660                     "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
661                     le16_to_cpu(mpi_reply->IOCStatus),
662                     le32_to_cpu(mpi_reply->IOCLogInfo)));
663         }
664 issue_host_reset:
665         if (issue_reset)
666                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
667         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
668 out:
669         mutex_unlock(&ioc->scsih_cmds.mutex);
670 }
671
672 /**
673  * _base_fault_reset_work - workq handling ioc fault conditions
674  * @work: input argument, used to derive ioc
675  *
676  * Context: sleep.
677  */
678 static void
679 _base_fault_reset_work(struct work_struct *work)
680 {
681         struct MPT3SAS_ADAPTER *ioc =
682             container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
683         unsigned long    flags;
684         u32 doorbell;
685         int rc;
686         struct task_struct *p;
687
688
689         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
690         if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
691                         ioc->pci_error_recovery)
692                 goto rearm_timer;
693         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
694
695         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
696         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
697                 ioc_err(ioc, "SAS host is non-operational !!!!\n");
698
699                 /* It may be possible that EEH recovery can resolve some of
700                  * pci bus failure issues rather removing the dead ioc function
701                  * by considering controller is in a non-operational state. So
702                  * here priority is given to the EEH recovery. If it doesn't
703                  * not resolve this issue, mpt3sas driver will consider this
704                  * controller to non-operational state and remove the dead ioc
705                  * function.
706                  */
707                 if (ioc->non_operational_loop++ < 5) {
708                         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
709                                                          flags);
710                         goto rearm_timer;
711                 }
712
713                 /*
714                  * Call _scsih_flush_pending_cmds callback so that we flush all
715                  * pending commands back to OS. This call is required to avoid
716                  * deadlock at block layer. Dead IOC will fail to do diag reset,
717                  * and this call is safe since dead ioc will never return any
718                  * command back from HW.
719                  */
720                 mpt3sas_base_pause_mq_polling(ioc);
721                 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
722                 /*
723                  * Set remove_host flag early since kernel thread will
724                  * take some time to execute.
725                  */
726                 ioc->remove_host = 1;
727                 /*Remove the Dead Host */
728                 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
729                     "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
730                 if (IS_ERR(p))
731                         ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
732                                 __func__);
733                 else
734                         ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
735                                 __func__);
736                 return; /* don't rearm timer */
737         }
738
739         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
740                 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
741                     ioc->manu_pg11.CoreDumpTOSec :
742                     MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
743
744                 timeout /= (FAULT_POLLING_INTERVAL/1000);
745
746                 if (ioc->ioc_coredump_loop == 0) {
747                         mpt3sas_print_coredump_info(ioc,
748                             doorbell & MPI2_DOORBELL_DATA_MASK);
749                         /* do not accept any IOs and disable the interrupts */
750                         spin_lock_irqsave(
751                             &ioc->ioc_reset_in_progress_lock, flags);
752                         ioc->shost_recovery = 1;
753                         spin_unlock_irqrestore(
754                             &ioc->ioc_reset_in_progress_lock, flags);
755                         mpt3sas_base_mask_interrupts(ioc);
756                         mpt3sas_base_pause_mq_polling(ioc);
757                         _base_clear_outstanding_commands(ioc);
758                 }
759
760                 ioc_info(ioc, "%s: CoreDump loop %d.",
761                     __func__, ioc->ioc_coredump_loop);
762
763                 /* Wait until CoreDump completes or times out */
764                 if (ioc->ioc_coredump_loop++ < timeout) {
765                         spin_lock_irqsave(
766                             &ioc->ioc_reset_in_progress_lock, flags);
767                         goto rearm_timer;
768                 }
769         }
770
771         if (ioc->ioc_coredump_loop) {
772                 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
773                         ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
774                             __func__, ioc->ioc_coredump_loop);
775                 else
776                         ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
777                             __func__, ioc->ioc_coredump_loop);
778                 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
779         }
780         ioc->non_operational_loop = 0;
781         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
782                 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
783                 ioc_warn(ioc, "%s: hard reset: %s\n",
784                          __func__, rc == 0 ? "success" : "failed");
785                 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
786                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
787                         mpt3sas_print_fault_code(ioc, doorbell &
788                             MPI2_DOORBELL_DATA_MASK);
789                 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
790                     MPI2_IOC_STATE_COREDUMP)
791                         mpt3sas_print_coredump_info(ioc, doorbell &
792                             MPI2_DOORBELL_DATA_MASK);
793                 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
794                     MPI2_IOC_STATE_OPERATIONAL)
795                         return; /* don't rearm timer */
796         }
797         ioc->ioc_coredump_loop = 0;
798         if (ioc->time_sync_interval &&
799             ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
800                 ioc->timestamp_update_count = 0;
801                 _base_sync_drv_fw_timestamp(ioc);
802         }
803         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
804  rearm_timer:
805         if (ioc->fault_reset_work_q)
806                 queue_delayed_work(ioc->fault_reset_work_q,
807                     &ioc->fault_reset_work,
808                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
809         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
810 }
811
812 /**
813  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
814  * @ioc: per adapter object
815  *
816  * Context: sleep.
817  */
818 void
819 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
820 {
821         unsigned long    flags;
822
823         if (ioc->fault_reset_work_q)
824                 return;
825
826         ioc->timestamp_update_count = 0;
827         /* initialize fault polling */
828
829         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
830         snprintf(ioc->fault_reset_work_q_name,
831             sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
832             ioc->driver_name, ioc->id);
833         ioc->fault_reset_work_q =
834                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
835         if (!ioc->fault_reset_work_q) {
836                 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
837                 return;
838         }
839         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
840         if (ioc->fault_reset_work_q)
841                 queue_delayed_work(ioc->fault_reset_work_q,
842                     &ioc->fault_reset_work,
843                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
844         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
845 }
846
847 /**
848  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
849  * @ioc: per adapter object
850  *
851  * Context: sleep.
852  */
853 void
854 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
855 {
856         unsigned long flags;
857         struct workqueue_struct *wq;
858
859         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
860         wq = ioc->fault_reset_work_q;
861         ioc->fault_reset_work_q = NULL;
862         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
863         if (wq) {
864                 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
865                         flush_workqueue(wq);
866                 destroy_workqueue(wq);
867         }
868 }
869
870 /**
871  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
872  * @ioc: per adapter object
873  * @fault_code: fault code
874  */
875 void
876 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
877 {
878         ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
879 }
880
881 /**
882  * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
883  * @ioc: per adapter object
884  * @fault_code: fault code
885  *
886  * Return: nothing.
887  */
888 void
889 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
890 {
891         ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
892 }
893
894 /**
895  * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
896  * completes or times out
897  * @ioc: per adapter object
898  * @caller: caller function name
899  *
900  * Return: 0 for success, non-zero for failure.
901  */
902 int
903 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
904                 const char *caller)
905 {
906         u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
907                         ioc->manu_pg11.CoreDumpTOSec :
908                         MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
909
910         int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
911                                         timeout);
912
913         if (ioc_state)
914                 ioc_err(ioc,
915                     "%s: CoreDump timed out. (ioc_state=0x%x)\n",
916                     caller, ioc_state);
917         else
918                 ioc_info(ioc,
919                     "%s: CoreDump completed. (ioc_state=0x%x)\n",
920                     caller, ioc_state);
921
922         return ioc_state;
923 }
924
925 /**
926  * mpt3sas_halt_firmware - halt's mpt controller firmware
927  * @ioc: per adapter object
928  *
929  * For debugging timeout related issues.  Writing 0xCOFFEE00
930  * to the doorbell register will halt controller firmware. With
931  * the purpose to stop both driver and firmware, the enduser can
932  * obtain a ring buffer from controller UART.
933  */
934 void
935 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
936 {
937         u32 doorbell;
938
939         if (!ioc->fwfault_debug)
940                 return;
941
942         dump_stack();
943
944         doorbell = ioc->base_readl(&ioc->chip->Doorbell);
945         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
946                 mpt3sas_print_fault_code(ioc, doorbell &
947                     MPI2_DOORBELL_DATA_MASK);
948         } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
949             MPI2_IOC_STATE_COREDUMP) {
950                 mpt3sas_print_coredump_info(ioc, doorbell &
951                     MPI2_DOORBELL_DATA_MASK);
952         } else {
953                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
954                 ioc_err(ioc, "Firmware is halted due to command timeout\n");
955         }
956
957         if (ioc->fwfault_debug == 2)
958                 for (;;)
959                         ;
960         else
961                 panic("panic in %s\n", __func__);
962 }
963
964 /**
965  * _base_sas_ioc_info - verbose translation of the ioc status
966  * @ioc: per adapter object
967  * @mpi_reply: reply mf payload returned from firmware
968  * @request_hdr: request mf
969  */
970 static void
971 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
972         MPI2RequestHeader_t *request_hdr)
973 {
974         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
975             MPI2_IOCSTATUS_MASK;
976         char *desc = NULL;
977         u16 frame_sz;
978         char *func_str = NULL;
979
980         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
981         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
982             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
983             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
984                 return;
985
986         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
987                 return;
988         /*
989          * Older Firmware version doesn't support driver trigger pages.
990          * So, skip displaying 'config invalid type' type
991          * of error message.
992          */
993         if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
994                 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
995
996                 if ((rqst->ExtPageType ==
997                     MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
998                     !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
999                         return;
1000                 }
1001         }
1002
1003         switch (ioc_status) {
1004
1005 /****************************************************************************
1006 *  Common IOCStatus values for all replies
1007 ****************************************************************************/
1008
1009         case MPI2_IOCSTATUS_INVALID_FUNCTION:
1010                 desc = "invalid function";
1011                 break;
1012         case MPI2_IOCSTATUS_BUSY:
1013                 desc = "busy";
1014                 break;
1015         case MPI2_IOCSTATUS_INVALID_SGL:
1016                 desc = "invalid sgl";
1017                 break;
1018         case MPI2_IOCSTATUS_INTERNAL_ERROR:
1019                 desc = "internal error";
1020                 break;
1021         case MPI2_IOCSTATUS_INVALID_VPID:
1022                 desc = "invalid vpid";
1023                 break;
1024         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1025                 desc = "insufficient resources";
1026                 break;
1027         case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1028                 desc = "insufficient power";
1029                 break;
1030         case MPI2_IOCSTATUS_INVALID_FIELD:
1031                 desc = "invalid field";
1032                 break;
1033         case MPI2_IOCSTATUS_INVALID_STATE:
1034                 desc = "invalid state";
1035                 break;
1036         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1037                 desc = "op state not supported";
1038                 break;
1039
1040 /****************************************************************************
1041 *  Config IOCStatus values
1042 ****************************************************************************/
1043
1044         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1045                 desc = "config invalid action";
1046                 break;
1047         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1048                 desc = "config invalid type";
1049                 break;
1050         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1051                 desc = "config invalid page";
1052                 break;
1053         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1054                 desc = "config invalid data";
1055                 break;
1056         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1057                 desc = "config no defaults";
1058                 break;
1059         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1060                 desc = "config cant commit";
1061                 break;
1062
1063 /****************************************************************************
1064 *  SCSI IO Reply
1065 ****************************************************************************/
1066
1067         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1068         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1069         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1070         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1071         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1072         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1073         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1074         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1075         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1076         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1077         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1078         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1079                 break;
1080
1081 /****************************************************************************
1082 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
1083 ****************************************************************************/
1084
1085         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1086                 desc = "eedp guard error";
1087                 break;
1088         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1089                 desc = "eedp ref tag error";
1090                 break;
1091         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1092                 desc = "eedp app tag error";
1093                 break;
1094
1095 /****************************************************************************
1096 *  SCSI Target values
1097 ****************************************************************************/
1098
1099         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1100                 desc = "target invalid io index";
1101                 break;
1102         case MPI2_IOCSTATUS_TARGET_ABORTED:
1103                 desc = "target aborted";
1104                 break;
1105         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1106                 desc = "target no conn retryable";
1107                 break;
1108         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1109                 desc = "target no connection";
1110                 break;
1111         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1112                 desc = "target xfer count mismatch";
1113                 break;
1114         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1115                 desc = "target data offset error";
1116                 break;
1117         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1118                 desc = "target too much write data";
1119                 break;
1120         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1121                 desc = "target iu too short";
1122                 break;
1123         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1124                 desc = "target ack nak timeout";
1125                 break;
1126         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1127                 desc = "target nak received";
1128                 break;
1129
1130 /****************************************************************************
1131 *  Serial Attached SCSI values
1132 ****************************************************************************/
1133
1134         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1135                 desc = "smp request failed";
1136                 break;
1137         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1138                 desc = "smp data overrun";
1139                 break;
1140
1141 /****************************************************************************
1142 *  Diagnostic Buffer Post / Diagnostic Release values
1143 ****************************************************************************/
1144
1145         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1146                 desc = "diagnostic released";
1147                 break;
1148         default:
1149                 break;
1150         }
1151
1152         if (!desc)
1153                 return;
1154
1155         switch (request_hdr->Function) {
1156         case MPI2_FUNCTION_CONFIG:
1157                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1158                 func_str = "config_page";
1159                 break;
1160         case MPI2_FUNCTION_SCSI_TASK_MGMT:
1161                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1162                 func_str = "task_mgmt";
1163                 break;
1164         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1165                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1166                 func_str = "sas_iounit_ctl";
1167                 break;
1168         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1169                 frame_sz = sizeof(Mpi2SepRequest_t);
1170                 func_str = "enclosure";
1171                 break;
1172         case MPI2_FUNCTION_IOC_INIT:
1173                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
1174                 func_str = "ioc_init";
1175                 break;
1176         case MPI2_FUNCTION_PORT_ENABLE:
1177                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
1178                 func_str = "port_enable";
1179                 break;
1180         case MPI2_FUNCTION_SMP_PASSTHROUGH:
1181                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1182                 func_str = "smp_passthru";
1183                 break;
1184         case MPI2_FUNCTION_NVME_ENCAPSULATED:
1185                 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1186                     ioc->sge_size;
1187                 func_str = "nvme_encapsulated";
1188                 break;
1189         default:
1190                 frame_sz = 32;
1191                 func_str = "unknown";
1192                 break;
1193         }
1194
1195         ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1196                  desc, ioc_status, request_hdr, func_str);
1197
1198         _debug_dump_mf(request_hdr, frame_sz/4);
1199 }
1200
1201 /**
1202  * _base_display_event_data - verbose translation of firmware asyn events
1203  * @ioc: per adapter object
1204  * @mpi_reply: reply mf payload returned from firmware
1205  */
1206 static void
1207 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1208         Mpi2EventNotificationReply_t *mpi_reply)
1209 {
1210         char *desc = NULL;
1211         u16 event;
1212
1213         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1214                 return;
1215
1216         event = le16_to_cpu(mpi_reply->Event);
1217
1218         switch (event) {
1219         case MPI2_EVENT_LOG_DATA:
1220                 desc = "Log Data";
1221                 break;
1222         case MPI2_EVENT_STATE_CHANGE:
1223                 desc = "Status Change";
1224                 break;
1225         case MPI2_EVENT_HARD_RESET_RECEIVED:
1226                 desc = "Hard Reset Received";
1227                 break;
1228         case MPI2_EVENT_EVENT_CHANGE:
1229                 desc = "Event Change";
1230                 break;
1231         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1232                 desc = "Device Status Change";
1233                 break;
1234         case MPI2_EVENT_IR_OPERATION_STATUS:
1235                 if (!ioc->hide_ir_msg)
1236                         desc = "IR Operation Status";
1237                 break;
1238         case MPI2_EVENT_SAS_DISCOVERY:
1239         {
1240                 Mpi2EventDataSasDiscovery_t *event_data =
1241                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1242                 ioc_info(ioc, "Discovery: (%s)",
1243                          event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1244                          "start" : "stop");
1245                 if (event_data->DiscoveryStatus)
1246                         pr_cont(" discovery_status(0x%08x)",
1247                             le32_to_cpu(event_data->DiscoveryStatus));
1248                 pr_cont("\n");
1249                 return;
1250         }
1251         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1252                 desc = "SAS Broadcast Primitive";
1253                 break;
1254         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1255                 desc = "SAS Init Device Status Change";
1256                 break;
1257         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1258                 desc = "SAS Init Table Overflow";
1259                 break;
1260         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1261                 desc = "SAS Topology Change List";
1262                 break;
1263         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1264                 desc = "SAS Enclosure Device Status Change";
1265                 break;
1266         case MPI2_EVENT_IR_VOLUME:
1267                 if (!ioc->hide_ir_msg)
1268                         desc = "IR Volume";
1269                 break;
1270         case MPI2_EVENT_IR_PHYSICAL_DISK:
1271                 if (!ioc->hide_ir_msg)
1272                         desc = "IR Physical Disk";
1273                 break;
1274         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1275                 if (!ioc->hide_ir_msg)
1276                         desc = "IR Configuration Change List";
1277                 break;
1278         case MPI2_EVENT_LOG_ENTRY_ADDED:
1279                 if (!ioc->hide_ir_msg)
1280                         desc = "Log Entry Added";
1281                 break;
1282         case MPI2_EVENT_TEMP_THRESHOLD:
1283                 desc = "Temperature Threshold";
1284                 break;
1285         case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1286                 desc = "Cable Event";
1287                 break;
1288         case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1289                 desc = "SAS Device Discovery Error";
1290                 break;
1291         case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1292                 desc = "PCIE Device Status Change";
1293                 break;
1294         case MPI2_EVENT_PCIE_ENUMERATION:
1295         {
1296                 Mpi26EventDataPCIeEnumeration_t *event_data =
1297                         (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1298                 ioc_info(ioc, "PCIE Enumeration: (%s)",
1299                          event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1300                          "start" : "stop");
1301                 if (event_data->EnumerationStatus)
1302                         pr_cont("enumeration_status(0x%08x)",
1303                                 le32_to_cpu(event_data->EnumerationStatus));
1304                 pr_cont("\n");
1305                 return;
1306         }
1307         case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1308                 desc = "PCIE Topology Change List";
1309                 break;
1310         }
1311
1312         if (!desc)
1313                 return;
1314
1315         ioc_info(ioc, "%s\n", desc);
1316 }
1317
1318 /**
1319  * _base_sas_log_info - verbose translation of firmware log info
1320  * @ioc: per adapter object
1321  * @log_info: log info
1322  */
1323 static void
1324 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1325 {
1326         union loginfo_type {
1327                 u32     loginfo;
1328                 struct {
1329                         u32     subcode:16;
1330                         u32     code:8;
1331                         u32     originator:4;
1332                         u32     bus_type:4;
1333                 } dw;
1334         };
1335         union loginfo_type sas_loginfo;
1336         char *originator_str = NULL;
1337
1338         sas_loginfo.loginfo = log_info;
1339         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1340                 return;
1341
1342         /* each nexus loss loginfo */
1343         if (log_info == 0x31170000)
1344                 return;
1345
1346         /* eat the loginfos associated with task aborts */
1347         if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1348             0x31140000 || log_info == 0x31130000))
1349                 return;
1350
1351         switch (sas_loginfo.dw.originator) {
1352         case 0:
1353                 originator_str = "IOP";
1354                 break;
1355         case 1:
1356                 originator_str = "PL";
1357                 break;
1358         case 2:
1359                 if (!ioc->hide_ir_msg)
1360                         originator_str = "IR";
1361                 else
1362                         originator_str = "WarpDrive";
1363                 break;
1364         }
1365
1366         ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1367                  log_info,
1368                  originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1369 }
1370
1371 /**
1372  * _base_display_reply_info - handle reply descriptors depending on IOC Status
1373  * @ioc: per adapter object
1374  * @smid: system request message index
1375  * @msix_index: MSIX table index supplied by the OS
1376  * @reply: reply message frame (lower 32bit addr)
1377  */
1378 static void
1379 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1380         u32 reply)
1381 {
1382         MPI2DefaultReply_t *mpi_reply;
1383         u16 ioc_status;
1384         u32 loginfo = 0;
1385
1386         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1387         if (unlikely(!mpi_reply)) {
1388                 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1389                         __FILE__, __LINE__, __func__);
1390                 return;
1391         }
1392         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1393
1394         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1395             (ioc->logging_level & MPT_DEBUG_REPLY)) {
1396                 _base_sas_ioc_info(ioc , mpi_reply,
1397                    mpt3sas_base_get_msg_frame(ioc, smid));
1398         }
1399
1400         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1401                 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1402                 _base_sas_log_info(ioc, loginfo);
1403         }
1404
1405         if (ioc_status || loginfo) {
1406                 ioc_status &= MPI2_IOCSTATUS_MASK;
1407                 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1408         }
1409 }
1410
1411 /**
1412  * mpt3sas_base_done - base internal command completion routine
1413  * @ioc: per adapter object
1414  * @smid: system request message index
1415  * @msix_index: MSIX table index supplied by the OS
1416  * @reply: reply message frame(lower 32bit addr)
1417  *
1418  * Return:
1419  * 1 meaning mf should be freed from _base_interrupt
1420  * 0 means the mf is freed from this function.
1421  */
1422 u8
1423 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1424         u32 reply)
1425 {
1426         MPI2DefaultReply_t *mpi_reply;
1427
1428         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1429         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1430                 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1431
1432         if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1433                 return 1;
1434
1435         ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1436         if (mpi_reply) {
1437                 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1438                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1439         }
1440         ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1441
1442         complete(&ioc->base_cmds.done);
1443         return 1;
1444 }
1445
1446 /**
1447  * _base_async_event - main callback handler for firmware asyn events
1448  * @ioc: per adapter object
1449  * @msix_index: MSIX table index supplied by the OS
1450  * @reply: reply message frame(lower 32bit addr)
1451  *
1452  * Return:
1453  * 1 meaning mf should be freed from _base_interrupt
1454  * 0 means the mf is freed from this function.
1455  */
1456 static u8
1457 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1458 {
1459         Mpi2EventNotificationReply_t *mpi_reply;
1460         Mpi2EventAckRequest_t *ack_request;
1461         u16 smid;
1462         struct _event_ack_list *delayed_event_ack;
1463
1464         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1465         if (!mpi_reply)
1466                 return 1;
1467         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1468                 return 1;
1469
1470         _base_display_event_data(ioc, mpi_reply);
1471
1472         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1473                 goto out;
1474         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1475         if (!smid) {
1476                 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1477                                         GFP_ATOMIC);
1478                 if (!delayed_event_ack)
1479                         goto out;
1480                 INIT_LIST_HEAD(&delayed_event_ack->list);
1481                 delayed_event_ack->Event = mpi_reply->Event;
1482                 delayed_event_ack->EventContext = mpi_reply->EventContext;
1483                 list_add_tail(&delayed_event_ack->list,
1484                                 &ioc->delayed_event_ack_list);
1485                 dewtprintk(ioc,
1486                            ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1487                                     le16_to_cpu(mpi_reply->Event)));
1488                 goto out;
1489         }
1490
1491         ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1492         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1493         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1494         ack_request->Event = mpi_reply->Event;
1495         ack_request->EventContext = mpi_reply->EventContext;
1496         ack_request->VF_ID = 0;  /* TODO */
1497         ack_request->VP_ID = 0;
1498         ioc->put_smid_default(ioc, smid);
1499
1500  out:
1501
1502         /* scsih callback handler */
1503         mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1504
1505         /* ctl callback handler */
1506         mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1507
1508         return 1;
1509 }
1510
1511 static struct scsiio_tracker *
1512 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1513 {
1514         struct scsi_cmnd *cmd;
1515
1516         if (WARN_ON(!smid) ||
1517             WARN_ON(smid >= ioc->hi_priority_smid))
1518                 return NULL;
1519
1520         cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1521         if (cmd)
1522                 return scsi_cmd_priv(cmd);
1523
1524         return NULL;
1525 }
1526
1527 /**
1528  * _base_get_cb_idx - obtain the callback index
1529  * @ioc: per adapter object
1530  * @smid: system request message index
1531  *
1532  * Return: callback index.
1533  */
1534 static u8
1535 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1536 {
1537         int i;
1538         u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1539         u8 cb_idx = 0xFF;
1540
1541         if (smid < ioc->hi_priority_smid) {
1542                 struct scsiio_tracker *st;
1543
1544                 if (smid < ctl_smid) {
1545                         st = _get_st_from_smid(ioc, smid);
1546                         if (st)
1547                                 cb_idx = st->cb_idx;
1548                 } else if (smid == ctl_smid)
1549                         cb_idx = ioc->ctl_cb_idx;
1550         } else if (smid < ioc->internal_smid) {
1551                 i = smid - ioc->hi_priority_smid;
1552                 cb_idx = ioc->hpr_lookup[i].cb_idx;
1553         } else if (smid <= ioc->hba_queue_depth) {
1554                 i = smid - ioc->internal_smid;
1555                 cb_idx = ioc->internal_lookup[i].cb_idx;
1556         }
1557         return cb_idx;
1558 }
1559
1560 /**
1561  * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues
1562  *                              when driver is flushing out the IOs.
1563  * @ioc: per adapter object
1564  *
1565  * Pause polling on the mq poll (io uring) queues when driver is flushing
1566  * out the IOs. Otherwise we may see the race condition of completing the same
1567  * IO from two paths.
1568  *
1569  * Returns nothing.
1570  */
1571 void
1572 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1573 {
1574         int iopoll_q_count =
1575             ioc->reply_queue_count - ioc->iopoll_q_start_index;
1576         int qid;
1577
1578         for (qid = 0; qid < iopoll_q_count; qid++)
1579                 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1);
1580
1581         /*
1582          * wait for current poll to complete.
1583          */
1584         for (qid = 0; qid < iopoll_q_count; qid++) {
1585                 while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) {
1586                         cpu_relax();
1587                         udelay(500);
1588                 }
1589         }
1590 }
1591
1592 /**
1593  * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues.
1594  * @ioc: per adapter object
1595  *
1596  * Returns nothing.
1597  */
1598 void
1599 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1600 {
1601         int iopoll_q_count =
1602             ioc->reply_queue_count - ioc->iopoll_q_start_index;
1603         int qid;
1604
1605         for (qid = 0; qid < iopoll_q_count; qid++)
1606                 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0);
1607 }
1608
1609 /**
1610  * mpt3sas_base_mask_interrupts - disable interrupts
1611  * @ioc: per adapter object
1612  *
1613  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1614  */
1615 void
1616 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1617 {
1618         u32 him_register;
1619
1620         ioc->mask_interrupts = 1;
1621         him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1622         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1623         writel(him_register, &ioc->chip->HostInterruptMask);
1624         ioc->base_readl(&ioc->chip->HostInterruptMask);
1625 }
1626
1627 /**
1628  * mpt3sas_base_unmask_interrupts - enable interrupts
1629  * @ioc: per adapter object
1630  *
1631  * Enabling only Reply Interrupts
1632  */
1633 void
1634 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1635 {
1636         u32 him_register;
1637
1638         him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1639         him_register &= ~MPI2_HIM_RIM;
1640         writel(him_register, &ioc->chip->HostInterruptMask);
1641         ioc->mask_interrupts = 0;
1642 }
1643
1644 union reply_descriptor {
1645         u64 word;
1646         struct {
1647                 u32 low;
1648                 u32 high;
1649         } u;
1650 };
1651
1652 static u32 base_mod64(u64 dividend, u32 divisor)
1653 {
1654         u32 remainder;
1655
1656         if (!divisor)
1657                 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1658         remainder = do_div(dividend, divisor);
1659         return remainder;
1660 }
1661
1662 /**
1663  * _base_process_reply_queue - Process reply descriptors from reply
1664  *              descriptor post queue.
1665  * @reply_q: per IRQ's reply queue object.
1666  *
1667  * Return: number of reply descriptors processed from reply
1668  *              descriptor queue.
1669  */
1670 static int
1671 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1672 {
1673         union reply_descriptor rd;
1674         u64 completed_cmds;
1675         u8 request_descript_type;
1676         u16 smid;
1677         u8 cb_idx;
1678         u32 reply;
1679         u8 msix_index = reply_q->msix_index;
1680         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1681         Mpi2ReplyDescriptorsUnion_t *rpf;
1682         u8 rc;
1683
1684         completed_cmds = 0;
1685         if (!atomic_add_unless(&reply_q->busy, 1, 1))
1686                 return completed_cmds;
1687
1688         rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1689         request_descript_type = rpf->Default.ReplyFlags
1690              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1691         if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1692                 atomic_dec(&reply_q->busy);
1693                 return completed_cmds;
1694         }
1695
1696         cb_idx = 0xFF;
1697         do {
1698                 rd.word = le64_to_cpu(rpf->Words);
1699                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1700                         goto out;
1701                 reply = 0;
1702                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1703                 if (request_descript_type ==
1704                     MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1705                     request_descript_type ==
1706                     MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1707                     request_descript_type ==
1708                     MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1709                         cb_idx = _base_get_cb_idx(ioc, smid);
1710                         if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1711                             (likely(mpt_callbacks[cb_idx] != NULL))) {
1712                                 rc = mpt_callbacks[cb_idx](ioc, smid,
1713                                     msix_index, 0);
1714                                 if (rc)
1715                                         mpt3sas_base_free_smid(ioc, smid);
1716                         }
1717                 } else if (request_descript_type ==
1718                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1719                         reply = le32_to_cpu(
1720                             rpf->AddressReply.ReplyFrameAddress);
1721                         if (reply > ioc->reply_dma_max_address ||
1722                             reply < ioc->reply_dma_min_address)
1723                                 reply = 0;
1724                         if (smid) {
1725                                 cb_idx = _base_get_cb_idx(ioc, smid);
1726                                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1727                                     (likely(mpt_callbacks[cb_idx] != NULL))) {
1728                                         rc = mpt_callbacks[cb_idx](ioc, smid,
1729                                             msix_index, reply);
1730                                         if (reply)
1731                                                 _base_display_reply_info(ioc,
1732                                                     smid, msix_index, reply);
1733                                         if (rc)
1734                                                 mpt3sas_base_free_smid(ioc,
1735                                                     smid);
1736                                 }
1737                         } else {
1738                                 _base_async_event(ioc, msix_index, reply);
1739                         }
1740
1741                         /* reply free queue handling */
1742                         if (reply) {
1743                                 ioc->reply_free_host_index =
1744                                     (ioc->reply_free_host_index ==
1745                                     (ioc->reply_free_queue_depth - 1)) ?
1746                                     0 : ioc->reply_free_host_index + 1;
1747                                 ioc->reply_free[ioc->reply_free_host_index] =
1748                                     cpu_to_le32(reply);
1749                                 if (ioc->is_mcpu_endpoint)
1750                                         _base_clone_reply_to_sys_mem(ioc,
1751                                                 reply,
1752                                                 ioc->reply_free_host_index);
1753                                 writel(ioc->reply_free_host_index,
1754                                     &ioc->chip->ReplyFreeHostIndex);
1755                         }
1756                 }
1757
1758                 rpf->Words = cpu_to_le64(ULLONG_MAX);
1759                 reply_q->reply_post_host_index =
1760                     (reply_q->reply_post_host_index ==
1761                     (ioc->reply_post_queue_depth - 1)) ? 0 :
1762                     reply_q->reply_post_host_index + 1;
1763                 request_descript_type =
1764                     reply_q->reply_post_free[reply_q->reply_post_host_index].
1765                     Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1766                 completed_cmds++;
1767                 /* Update the reply post host index after continuously
1768                  * processing the threshold number of Reply Descriptors.
1769                  * So that FW can find enough entries to post the Reply
1770                  * Descriptors in the reply descriptor post queue.
1771                  */
1772                 if (completed_cmds >= ioc->thresh_hold) {
1773                         if (ioc->combined_reply_queue) {
1774                                 writel(reply_q->reply_post_host_index |
1775                                                 ((msix_index  & 7) <<
1776                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1777                                     ioc->replyPostRegisterIndex[msix_index/8]);
1778                         } else {
1779                                 writel(reply_q->reply_post_host_index |
1780                                                 (msix_index <<
1781                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1782                                                 &ioc->chip->ReplyPostHostIndex);
1783                         }
1784                         if (!reply_q->is_iouring_poll_q &&
1785                             !reply_q->irq_poll_scheduled) {
1786                                 reply_q->irq_poll_scheduled = true;
1787                                 irq_poll_sched(&reply_q->irqpoll);
1788                         }
1789                         atomic_dec(&reply_q->busy);
1790                         return completed_cmds;
1791                 }
1792                 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1793                         goto out;
1794                 if (!reply_q->reply_post_host_index)
1795                         rpf = reply_q->reply_post_free;
1796                 else
1797                         rpf++;
1798         } while (1);
1799
1800  out:
1801
1802         if (!completed_cmds) {
1803                 atomic_dec(&reply_q->busy);
1804                 return completed_cmds;
1805         }
1806
1807         if (ioc->is_warpdrive) {
1808                 writel(reply_q->reply_post_host_index,
1809                 ioc->reply_post_host_index[msix_index]);
1810                 atomic_dec(&reply_q->busy);
1811                 return completed_cmds;
1812         }
1813
1814         /* Update Reply Post Host Index.
1815          * For those HBA's which support combined reply queue feature
1816          * 1. Get the correct Supplemental Reply Post Host Index Register.
1817          *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1818          *    Index Register address bank i.e replyPostRegisterIndex[],
1819          * 2. Then update this register with new reply host index value
1820          *    in ReplyPostIndex field and the MSIxIndex field with
1821          *    msix_index value reduced to a value between 0 and 7,
1822          *    using a modulo 8 operation. Since each Supplemental Reply Post
1823          *    Host Index Register supports 8 MSI-X vectors.
1824          *
1825          * For other HBA's just update the Reply Post Host Index register with
1826          * new reply host index value in ReplyPostIndex Field and msix_index
1827          * value in MSIxIndex field.
1828          */
1829         if (ioc->combined_reply_queue)
1830                 writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1831                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1832                         ioc->replyPostRegisterIndex[msix_index/8]);
1833         else
1834                 writel(reply_q->reply_post_host_index | (msix_index <<
1835                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1836                         &ioc->chip->ReplyPostHostIndex);
1837         atomic_dec(&reply_q->busy);
1838         return completed_cmds;
1839 }
1840
1841 /**
1842  * mpt3sas_blk_mq_poll - poll the blk mq poll queue
1843  * @shost: Scsi_Host object
1844  * @queue_num: hw ctx queue number
1845  *
1846  * Return number of entries that has been processed from poll queue.
1847  */
1848 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num)
1849 {
1850         struct MPT3SAS_ADAPTER *ioc =
1851             (struct MPT3SAS_ADAPTER *)shost->hostdata;
1852         struct adapter_reply_queue *reply_q;
1853         int num_entries = 0;
1854         int qid = queue_num - ioc->iopoll_q_start_index;
1855
1856         if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) ||
1857             !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1))
1858                 return 0;
1859
1860         reply_q = ioc->io_uring_poll_queues[qid].reply_q;
1861
1862         num_entries = _base_process_reply_queue(reply_q);
1863         atomic_dec(&ioc->io_uring_poll_queues[qid].busy);
1864
1865         return num_entries;
1866 }
1867
1868 /**
1869  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1870  * @irq: irq number (not used)
1871  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1872  *
1873  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1874  */
1875 static irqreturn_t
1876 _base_interrupt(int irq, void *bus_id)
1877 {
1878         struct adapter_reply_queue *reply_q = bus_id;
1879         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1880
1881         if (ioc->mask_interrupts)
1882                 return IRQ_NONE;
1883         if (reply_q->irq_poll_scheduled)
1884                 return IRQ_HANDLED;
1885         return ((_base_process_reply_queue(reply_q) > 0) ?
1886                         IRQ_HANDLED : IRQ_NONE);
1887 }
1888
1889 /**
1890  * _base_irqpoll - IRQ poll callback handler
1891  * @irqpoll: irq_poll object
1892  * @budget: irq poll weight
1893  *
1894  * Return: number of reply descriptors processed
1895  */
1896 static int
1897 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1898 {
1899         struct adapter_reply_queue *reply_q;
1900         int num_entries = 0;
1901
1902         reply_q = container_of(irqpoll, struct adapter_reply_queue,
1903                         irqpoll);
1904         if (reply_q->irq_line_enable) {
1905                 disable_irq_nosync(reply_q->os_irq);
1906                 reply_q->irq_line_enable = false;
1907         }
1908         num_entries = _base_process_reply_queue(reply_q);
1909         if (num_entries < budget) {
1910                 irq_poll_complete(irqpoll);
1911                 reply_q->irq_poll_scheduled = false;
1912                 reply_q->irq_line_enable = true;
1913                 enable_irq(reply_q->os_irq);
1914                 /*
1915                  * Go for one more round of processing the
1916                  * reply descriptor post queue in case the HBA
1917                  * Firmware has posted some reply descriptors
1918                  * while reenabling the IRQ.
1919                  */
1920                 _base_process_reply_queue(reply_q);
1921         }
1922
1923         return num_entries;
1924 }
1925
1926 /**
1927  * _base_init_irqpolls - initliaze IRQ polls
1928  * @ioc: per adapter object
1929  *
1930  * Return: nothing
1931  */
1932 static void
1933 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1934 {
1935         struct adapter_reply_queue *reply_q, *next;
1936
1937         if (list_empty(&ioc->reply_queue_list))
1938                 return;
1939
1940         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1941                 if (reply_q->is_iouring_poll_q)
1942                         continue;
1943                 irq_poll_init(&reply_q->irqpoll,
1944                         ioc->hba_queue_depth/4, _base_irqpoll);
1945                 reply_q->irq_poll_scheduled = false;
1946                 reply_q->irq_line_enable = true;
1947                 reply_q->os_irq = pci_irq_vector(ioc->pdev,
1948                     reply_q->msix_index);
1949         }
1950 }
1951
1952 /**
1953  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1954  * @ioc: per adapter object
1955  *
1956  * Return: Whether or not MSI/X is enabled.
1957  */
1958 static inline int
1959 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1960 {
1961         return (ioc->facts.IOCCapabilities &
1962             MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1963 }
1964
1965 /**
1966  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1967  * @ioc: per adapter object
1968  * @poll: poll over reply descriptor pools incase interrupt for
1969  *              timed-out SCSI command got delayed
1970  * Context: non-ISR context
1971  *
1972  * Called when a Task Management request has completed.
1973  */
1974 void
1975 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1976 {
1977         struct adapter_reply_queue *reply_q;
1978
1979         /* If MSIX capability is turned off
1980          * then multi-queues are not enabled
1981          */
1982         if (!_base_is_controller_msix_enabled(ioc))
1983                 return;
1984
1985         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1986                 if (ioc->shost_recovery || ioc->remove_host ||
1987                                 ioc->pci_error_recovery)
1988                         return;
1989                 /* TMs are on msix_index == 0 */
1990                 if (reply_q->msix_index == 0)
1991                         continue;
1992
1993                 if (reply_q->is_iouring_poll_q) {
1994                         _base_process_reply_queue(reply_q);
1995                         continue;
1996                 }
1997
1998                 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1999                 if (reply_q->irq_poll_scheduled) {
2000                         /* Calling irq_poll_disable will wait for any pending
2001                          * callbacks to have completed.
2002                          */
2003                         irq_poll_disable(&reply_q->irqpoll);
2004                         irq_poll_enable(&reply_q->irqpoll);
2005                         /* check how the scheduled poll has ended,
2006                          * clean up only if necessary
2007                          */
2008                         if (reply_q->irq_poll_scheduled) {
2009                                 reply_q->irq_poll_scheduled = false;
2010                                 reply_q->irq_line_enable = true;
2011                                 enable_irq(reply_q->os_irq);
2012                         }
2013                 }
2014
2015                 if (poll)
2016                         _base_process_reply_queue(reply_q);
2017         }
2018 }
2019
2020 /**
2021  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
2022  * @cb_idx: callback index
2023  */
2024 void
2025 mpt3sas_base_release_callback_handler(u8 cb_idx)
2026 {
2027         mpt_callbacks[cb_idx] = NULL;
2028 }
2029
2030 /**
2031  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
2032  * @cb_func: callback function
2033  *
2034  * Return: Index of @cb_func.
2035  */
2036 u8
2037 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
2038 {
2039         u8 cb_idx;
2040
2041         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
2042                 if (mpt_callbacks[cb_idx] == NULL)
2043                         break;
2044
2045         mpt_callbacks[cb_idx] = cb_func;
2046         return cb_idx;
2047 }
2048
2049 /**
2050  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
2051  */
2052 void
2053 mpt3sas_base_initialize_callback_handler(void)
2054 {
2055         u8 cb_idx;
2056
2057         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
2058                 mpt3sas_base_release_callback_handler(cb_idx);
2059 }
2060
2061
2062 /**
2063  * _base_build_zero_len_sge - build zero length sg entry
2064  * @ioc: per adapter object
2065  * @paddr: virtual address for SGE
2066  *
2067  * Create a zero length scatter gather entry to insure the IOCs hardware has
2068  * something to use if the target device goes brain dead and tries
2069  * to send data even when none is asked for.
2070  */
2071 static void
2072 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2073 {
2074         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
2075             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
2076             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
2077             MPI2_SGE_FLAGS_SHIFT);
2078         ioc->base_add_sg_single(paddr, flags_length, -1);
2079 }
2080
2081 /**
2082  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
2083  * @paddr: virtual address for SGE
2084  * @flags_length: SGE flags and data transfer length
2085  * @dma_addr: Physical address
2086  */
2087 static void
2088 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2089 {
2090         Mpi2SGESimple32_t *sgel = paddr;
2091
2092         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
2093             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2094         sgel->FlagsLength = cpu_to_le32(flags_length);
2095         sgel->Address = cpu_to_le32(dma_addr);
2096 }
2097
2098
2099 /**
2100  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2101  * @paddr: virtual address for SGE
2102  * @flags_length: SGE flags and data transfer length
2103  * @dma_addr: Physical address
2104  */
2105 static void
2106 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2107 {
2108         Mpi2SGESimple64_t *sgel = paddr;
2109
2110         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2111             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2112         sgel->FlagsLength = cpu_to_le32(flags_length);
2113         sgel->Address = cpu_to_le64(dma_addr);
2114 }
2115
2116 /**
2117  * _base_get_chain_buffer_tracker - obtain chain tracker
2118  * @ioc: per adapter object
2119  * @scmd: SCSI commands of the IO request
2120  *
2121  * Return: chain tracker from chain_lookup table using key as
2122  * smid and smid's chain_offset.
2123  */
2124 static struct chain_tracker *
2125 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2126                                struct scsi_cmnd *scmd)
2127 {
2128         struct chain_tracker *chain_req;
2129         struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2130         u16 smid = st->smid;
2131         u8 chain_offset =
2132            atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2133
2134         if (chain_offset == ioc->chains_needed_per_io)
2135                 return NULL;
2136
2137         chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2138         atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2139         return chain_req;
2140 }
2141
2142
2143 /**
2144  * _base_build_sg - build generic sg
2145  * @ioc: per adapter object
2146  * @psge: virtual address for SGE
2147  * @data_out_dma: physical address for WRITES
2148  * @data_out_sz: data xfer size for WRITES
2149  * @data_in_dma: physical address for READS
2150  * @data_in_sz: data xfer size for READS
2151  */
2152 static void
2153 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2154         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2155         size_t data_in_sz)
2156 {
2157         u32 sgl_flags;
2158
2159         if (!data_out_sz && !data_in_sz) {
2160                 _base_build_zero_len_sge(ioc, psge);
2161                 return;
2162         }
2163
2164         if (data_out_sz && data_in_sz) {
2165                 /* WRITE sgel first */
2166                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2167                     MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2168                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2169                 ioc->base_add_sg_single(psge, sgl_flags |
2170                     data_out_sz, data_out_dma);
2171
2172                 /* incr sgel */
2173                 psge += ioc->sge_size;
2174
2175                 /* READ sgel last */
2176                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2177                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2178                     MPI2_SGE_FLAGS_END_OF_LIST);
2179                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2180                 ioc->base_add_sg_single(psge, sgl_flags |
2181                     data_in_sz, data_in_dma);
2182         } else if (data_out_sz) /* WRITE */ {
2183                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2184                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2185                     MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2186                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2187                 ioc->base_add_sg_single(psge, sgl_flags |
2188                     data_out_sz, data_out_dma);
2189         } else if (data_in_sz) /* READ */ {
2190                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2191                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2192                     MPI2_SGE_FLAGS_END_OF_LIST);
2193                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2194                 ioc->base_add_sg_single(psge, sgl_flags |
2195                     data_in_sz, data_in_dma);
2196         }
2197 }
2198
2199 /* IEEE format sgls */
2200
2201 /**
2202  * _base_build_nvme_prp - This function is called for NVMe end devices to build
2203  *                        a native SGL (NVMe PRP).
2204  * @ioc: per adapter object
2205  * @smid: system request message index for getting asscociated SGL
2206  * @nvme_encap_request: the NVMe request msg frame pointer
2207  * @data_out_dma: physical address for WRITES
2208  * @data_out_sz: data xfer size for WRITES
2209  * @data_in_dma: physical address for READS
2210  * @data_in_sz: data xfer size for READS
2211  *
2212  * The native SGL is built starting in the first PRP
2213  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2214  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2215  * used to describe a larger data buffer.  If the data buffer is too large to
2216  * describe using the two PRP entriess inside the NVMe message, then PRP1
2217  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2218  * list located elsewhere in memory to describe the remaining data memory
2219  * segments.  The PRP list will be contiguous.
2220  *
2221  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2222  * consists of a list of PRP entries to describe a number of noncontigous
2223  * physical memory segments as a single memory buffer, just as a SGL does.  Note
2224  * however, that this function is only used by the IOCTL call, so the memory
2225  * given will be guaranteed to be contiguous.  There is no need to translate
2226  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2227  * contiguous space that is one page size each.
2228  *
2229  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2230  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2231  * contains the second PRP element if the memory being described fits within 2
2232  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2233  *
2234  * A PRP list pointer contains the address of a PRP list, structured as a linear
2235  * array of PRP entries.  Each PRP entry in this list describes a segment of
2236  * physical memory.
2237  *
2238  * Each 64-bit PRP entry comprises an address and an offset field.  The address
2239  * always points at the beginning of a 4KB physical memory page, and the offset
2240  * describes where within that 4KB page the memory segment begins.  Only the
2241  * first element in a PRP list may contain a non-zero offset, implying that all
2242  * memory segments following the first begin at the start of a 4KB page.
2243  *
2244  * Each PRP element normally describes 4KB of physical memory, with exceptions
2245  * for the first and last elements in the list.  If the memory being described
2246  * by the list begins at a non-zero offset within the first 4KB page, then the
2247  * first PRP element will contain a non-zero offset indicating where the region
2248  * begins within the 4KB page.  The last memory segment may end before the end
2249  * of the 4KB segment, depending upon the overall size of the memory being
2250  * described by the PRP list.
2251  *
2252  * Since PRP entries lack any indication of size, the overall data buffer length
2253  * is used to determine where the end of the data memory buffer is located, and
2254  * how many PRP entries are required to describe it.
2255  */
2256 static void
2257 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2258         Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2259         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2260         size_t data_in_sz)
2261 {
2262         int             prp_size = NVME_PRP_SIZE;
2263         __le64          *prp_entry, *prp1_entry, *prp2_entry;
2264         __le64          *prp_page;
2265         dma_addr_t      prp_entry_dma, prp_page_dma, dma_addr;
2266         u32             offset, entry_len;
2267         u32             page_mask_result, page_mask;
2268         size_t          length;
2269         struct mpt3sas_nvme_cmd *nvme_cmd =
2270                 (void *)nvme_encap_request->NVMe_Command;
2271
2272         /*
2273          * Not all commands require a data transfer. If no data, just return
2274          * without constructing any PRP.
2275          */
2276         if (!data_in_sz && !data_out_sz)
2277                 return;
2278         prp1_entry = &nvme_cmd->prp1;
2279         prp2_entry = &nvme_cmd->prp2;
2280         prp_entry = prp1_entry;
2281         /*
2282          * For the PRP entries, use the specially allocated buffer of
2283          * contiguous memory.
2284          */
2285         prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2286         prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2287
2288         /*
2289          * Check if we are within 1 entry of a page boundary we don't
2290          * want our first entry to be a PRP List entry.
2291          */
2292         page_mask = ioc->page_size - 1;
2293         page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2294         if (!page_mask_result) {
2295                 /* Bump up to next page boundary. */
2296                 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2297                 prp_page_dma = prp_page_dma + prp_size;
2298         }
2299
2300         /*
2301          * Set PRP physical pointer, which initially points to the current PRP
2302          * DMA memory page.
2303          */
2304         prp_entry_dma = prp_page_dma;
2305
2306         /* Get physical address and length of the data buffer. */
2307         if (data_in_sz) {
2308                 dma_addr = data_in_dma;
2309                 length = data_in_sz;
2310         } else {
2311                 dma_addr = data_out_dma;
2312                 length = data_out_sz;
2313         }
2314
2315         /* Loop while the length is not zero. */
2316         while (length) {
2317                 /*
2318                  * Check if we need to put a list pointer here if we are at
2319                  * page boundary - prp_size (8 bytes).
2320                  */
2321                 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2322                 if (!page_mask_result) {
2323                         /*
2324                          * This is the last entry in a PRP List, so we need to
2325                          * put a PRP list pointer here.  What this does is:
2326                          *   - bump the current memory pointer to the next
2327                          *     address, which will be the next full page.
2328                          *   - set the PRP Entry to point to that page.  This
2329                          *     is now the PRP List pointer.
2330                          *   - bump the PRP Entry pointer the start of the
2331                          *     next page.  Since all of this PRP memory is
2332                          *     contiguous, no need to get a new page - it's
2333                          *     just the next address.
2334                          */
2335                         prp_entry_dma++;
2336                         *prp_entry = cpu_to_le64(prp_entry_dma);
2337                         prp_entry++;
2338                 }
2339
2340                 /* Need to handle if entry will be part of a page. */
2341                 offset = dma_addr & page_mask;
2342                 entry_len = ioc->page_size - offset;
2343
2344                 if (prp_entry == prp1_entry) {
2345                         /*
2346                          * Must fill in the first PRP pointer (PRP1) before
2347                          * moving on.
2348                          */
2349                         *prp1_entry = cpu_to_le64(dma_addr);
2350
2351                         /*
2352                          * Now point to the second PRP entry within the
2353                          * command (PRP2).
2354                          */
2355                         prp_entry = prp2_entry;
2356                 } else if (prp_entry == prp2_entry) {
2357                         /*
2358                          * Should the PRP2 entry be a PRP List pointer or just
2359                          * a regular PRP pointer?  If there is more than one
2360                          * more page of data, must use a PRP List pointer.
2361                          */
2362                         if (length > ioc->page_size) {
2363                                 /*
2364                                  * PRP2 will contain a PRP List pointer because
2365                                  * more PRP's are needed with this command. The
2366                                  * list will start at the beginning of the
2367                                  * contiguous buffer.
2368                                  */
2369                                 *prp2_entry = cpu_to_le64(prp_entry_dma);
2370
2371                                 /*
2372                                  * The next PRP Entry will be the start of the
2373                                  * first PRP List.
2374                                  */
2375                                 prp_entry = prp_page;
2376                         } else {
2377                                 /*
2378                                  * After this, the PRP Entries are complete.
2379                                  * This command uses 2 PRP's and no PRP list.
2380                                  */
2381                                 *prp2_entry = cpu_to_le64(dma_addr);
2382                         }
2383                 } else {
2384                         /*
2385                          * Put entry in list and bump the addresses.
2386                          *
2387                          * After PRP1 and PRP2 are filled in, this will fill in
2388                          * all remaining PRP entries in a PRP List, one per
2389                          * each time through the loop.
2390                          */
2391                         *prp_entry = cpu_to_le64(dma_addr);
2392                         prp_entry++;
2393                         prp_entry_dma++;
2394                 }
2395
2396                 /*
2397                  * Bump the phys address of the command's data buffer by the
2398                  * entry_len.
2399                  */
2400                 dma_addr += entry_len;
2401
2402                 /* Decrement length accounting for last partial page. */
2403                 if (entry_len > length)
2404                         length = 0;
2405                 else
2406                         length -= entry_len;
2407         }
2408 }
2409
2410 /**
2411  * base_make_prp_nvme - Prepare PRPs (Physical Region Page) -
2412  *                      SGLs specific to NVMe drives only
2413  *
2414  * @ioc:                per adapter object
2415  * @scmd:               SCSI command from the mid-layer
2416  * @mpi_request:        mpi request
2417  * @smid:               msg Index
2418  * @sge_count:          scatter gather element count.
2419  *
2420  * Return:              true: PRPs are built
2421  *                      false: IEEE SGLs needs to be built
2422  */
2423 static void
2424 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2425                 struct scsi_cmnd *scmd,
2426                 Mpi25SCSIIORequest_t *mpi_request,
2427                 u16 smid, int sge_count)
2428 {
2429         int sge_len, num_prp_in_chain = 0;
2430         Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2431         __le64 *curr_buff;
2432         dma_addr_t msg_dma, sge_addr, offset;
2433         u32 page_mask, page_mask_result;
2434         struct scatterlist *sg_scmd;
2435         u32 first_prp_len;
2436         int data_len = scsi_bufflen(scmd);
2437         u32 nvme_pg_size;
2438
2439         nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2440         /*
2441          * Nvme has a very convoluted prp format.  One prp is required
2442          * for each page or partial page. Driver need to split up OS sg_list
2443          * entries if it is longer than one page or cross a page
2444          * boundary.  Driver also have to insert a PRP list pointer entry as
2445          * the last entry in each physical page of the PRP list.
2446          *
2447          * NOTE: The first PRP "entry" is actually placed in the first
2448          * SGL entry in the main message as IEEE 64 format.  The 2nd
2449          * entry in the main message is the chain element, and the rest
2450          * of the PRP entries are built in the contiguous pcie buffer.
2451          */
2452         page_mask = nvme_pg_size - 1;
2453
2454         /*
2455          * Native SGL is needed.
2456          * Put a chain element in main message frame that points to the first
2457          * chain buffer.
2458          *
2459          * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2460          *        a native SGL.
2461          */
2462
2463         /* Set main message chain element pointer */
2464         main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2465         /*
2466          * For NVMe the chain element needs to be the 2nd SG entry in the main
2467          * message.
2468          */
2469         main_chain_element = (Mpi25IeeeSgeChain64_t *)
2470                 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2471
2472         /*
2473          * For the PRP entries, use the specially allocated buffer of
2474          * contiguous memory.  Normal chain buffers can't be used
2475          * because each chain buffer would need to be the size of an OS
2476          * page (4k).
2477          */
2478         curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2479         msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2480
2481         main_chain_element->Address = cpu_to_le64(msg_dma);
2482         main_chain_element->NextChainOffset = 0;
2483         main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2484                         MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2485                         MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2486
2487         /* Build first prp, sge need not to be page aligned*/
2488         ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2489         sg_scmd = scsi_sglist(scmd);
2490         sge_addr = sg_dma_address(sg_scmd);
2491         sge_len = sg_dma_len(sg_scmd);
2492
2493         offset = sge_addr & page_mask;
2494         first_prp_len = nvme_pg_size - offset;
2495
2496         ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2497         ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2498
2499         data_len -= first_prp_len;
2500
2501         if (sge_len > first_prp_len) {
2502                 sge_addr += first_prp_len;
2503                 sge_len -= first_prp_len;
2504         } else if (data_len && (sge_len == first_prp_len)) {
2505                 sg_scmd = sg_next(sg_scmd);
2506                 sge_addr = sg_dma_address(sg_scmd);
2507                 sge_len = sg_dma_len(sg_scmd);
2508         }
2509
2510         for (;;) {
2511                 offset = sge_addr & page_mask;
2512
2513                 /* Put PRP pointer due to page boundary*/
2514                 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2515                 if (unlikely(!page_mask_result)) {
2516                         scmd_printk(KERN_NOTICE,
2517                                 scmd, "page boundary curr_buff: 0x%p\n",
2518                                 curr_buff);
2519                         msg_dma += 8;
2520                         *curr_buff = cpu_to_le64(msg_dma);
2521                         curr_buff++;
2522                         num_prp_in_chain++;
2523                 }
2524
2525                 *curr_buff = cpu_to_le64(sge_addr);
2526                 curr_buff++;
2527                 msg_dma += 8;
2528                 num_prp_in_chain++;
2529
2530                 sge_addr += nvme_pg_size;
2531                 sge_len -= nvme_pg_size;
2532                 data_len -= nvme_pg_size;
2533
2534                 if (data_len <= 0)
2535                         break;
2536
2537                 if (sge_len > 0)
2538                         continue;
2539
2540                 sg_scmd = sg_next(sg_scmd);
2541                 sge_addr = sg_dma_address(sg_scmd);
2542                 sge_len = sg_dma_len(sg_scmd);
2543         }
2544
2545         main_chain_element->Length =
2546                 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2547         return;
2548 }
2549
2550 static bool
2551 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2552         struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2553 {
2554         u32 data_length = 0;
2555         bool build_prp = true;
2556
2557         data_length = scsi_bufflen(scmd);
2558         if (pcie_device &&
2559             (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2560                 build_prp = false;
2561                 return build_prp;
2562         }
2563
2564         /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2565          * we built IEEE SGL
2566          */
2567         if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2568                 build_prp = false;
2569
2570         return build_prp;
2571 }
2572
2573 /**
2574  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2575  * determine if the driver needs to build a native SGL.  If so, that native
2576  * SGL is built in the special contiguous buffers allocated especially for
2577  * PCIe SGL creation.  If the driver will not build a native SGL, return
2578  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2579  * supports NVMe.
2580  * @ioc: per adapter object
2581  * @mpi_request: mf request pointer
2582  * @smid: system request message index
2583  * @scmd: scsi command
2584  * @pcie_device: points to the PCIe device's info
2585  *
2586  * Return: 0 if native SGL was built, 1 if no SGL was built
2587  */
2588 static int
2589 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2590         Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2591         struct _pcie_device *pcie_device)
2592 {
2593         int sges_left;
2594
2595         /* Get the SG list pointer and info. */
2596         sges_left = scsi_dma_map(scmd);
2597         if (sges_left < 0)
2598                 return 1;
2599
2600         /* Check if we need to build a native SG list. */
2601         if (!base_is_prp_possible(ioc, pcie_device,
2602                                 scmd, sges_left)) {
2603                 /* We built a native SG list, just return. */
2604                 goto out;
2605         }
2606
2607         /*
2608          * Build native NVMe PRP.
2609          */
2610         base_make_prp_nvme(ioc, scmd, mpi_request,
2611                         smid, sges_left);
2612
2613         return 0;
2614 out:
2615         scsi_dma_unmap(scmd);
2616         return 1;
2617 }
2618
2619 /**
2620  * _base_add_sg_single_ieee - add sg element for IEEE format
2621  * @paddr: virtual address for SGE
2622  * @flags: SGE flags
2623  * @chain_offset: number of 128 byte elements from start of segment
2624  * @length: data transfer length
2625  * @dma_addr: Physical address
2626  */
2627 static void
2628 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2629         dma_addr_t dma_addr)
2630 {
2631         Mpi25IeeeSgeChain64_t *sgel = paddr;
2632
2633         sgel->Flags = flags;
2634         sgel->NextChainOffset = chain_offset;
2635         sgel->Length = cpu_to_le32(length);
2636         sgel->Address = cpu_to_le64(dma_addr);
2637 }
2638
2639 /**
2640  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2641  * @ioc: per adapter object
2642  * @paddr: virtual address for SGE
2643  *
2644  * Create a zero length scatter gather entry to insure the IOCs hardware has
2645  * something to use if the target device goes brain dead and tries
2646  * to send data even when none is asked for.
2647  */
2648 static void
2649 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2650 {
2651         u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2652                 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2653                 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2654
2655         _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2656 }
2657
2658 /**
2659  * _base_build_sg_scmd - main sg creation routine
2660  *              pcie_device is unused here!
2661  * @ioc: per adapter object
2662  * @scmd: scsi command
2663  * @smid: system request message index
2664  * @unused: unused pcie_device pointer
2665  * Context: none.
2666  *
2667  * The main routine that builds scatter gather table from a given
2668  * scsi request sent via the .queuecommand main handler.
2669  *
2670  * Return: 0 success, anything else error
2671  */
2672 static int
2673 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2674         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2675 {
2676         Mpi2SCSIIORequest_t *mpi_request;
2677         dma_addr_t chain_dma;
2678         struct scatterlist *sg_scmd;
2679         void *sg_local, *chain;
2680         u32 chain_offset;
2681         u32 chain_length;
2682         u32 chain_flags;
2683         int sges_left;
2684         u32 sges_in_segment;
2685         u32 sgl_flags;
2686         u32 sgl_flags_last_element;
2687         u32 sgl_flags_end_buffer;
2688         struct chain_tracker *chain_req;
2689
2690         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2691
2692         /* init scatter gather flags */
2693         sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2694         if (scmd->sc_data_direction == DMA_TO_DEVICE)
2695                 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2696         sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2697             << MPI2_SGE_FLAGS_SHIFT;
2698         sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2699             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2700             << MPI2_SGE_FLAGS_SHIFT;
2701         sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2702
2703         sg_scmd = scsi_sglist(scmd);
2704         sges_left = scsi_dma_map(scmd);
2705         if (sges_left < 0)
2706                 return -ENOMEM;
2707
2708         sg_local = &mpi_request->SGL;
2709         sges_in_segment = ioc->max_sges_in_main_message;
2710         if (sges_left <= sges_in_segment)
2711                 goto fill_in_last_segment;
2712
2713         mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2714             (sges_in_segment * ioc->sge_size))/4;
2715
2716         /* fill in main message segment when there is a chain following */
2717         while (sges_in_segment) {
2718                 if (sges_in_segment == 1)
2719                         ioc->base_add_sg_single(sg_local,
2720                             sgl_flags_last_element | sg_dma_len(sg_scmd),
2721                             sg_dma_address(sg_scmd));
2722                 else
2723                         ioc->base_add_sg_single(sg_local, sgl_flags |
2724                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2725                 sg_scmd = sg_next(sg_scmd);
2726                 sg_local += ioc->sge_size;
2727                 sges_left--;
2728                 sges_in_segment--;
2729         }
2730
2731         /* initializing the chain flags and pointers */
2732         chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2733         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2734         if (!chain_req)
2735                 return -1;
2736         chain = chain_req->chain_buffer;
2737         chain_dma = chain_req->chain_buffer_dma;
2738         do {
2739                 sges_in_segment = (sges_left <=
2740                     ioc->max_sges_in_chain_message) ? sges_left :
2741                     ioc->max_sges_in_chain_message;
2742                 chain_offset = (sges_left == sges_in_segment) ?
2743                     0 : (sges_in_segment * ioc->sge_size)/4;
2744                 chain_length = sges_in_segment * ioc->sge_size;
2745                 if (chain_offset) {
2746                         chain_offset = chain_offset <<
2747                             MPI2_SGE_CHAIN_OFFSET_SHIFT;
2748                         chain_length += ioc->sge_size;
2749                 }
2750                 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2751                     chain_length, chain_dma);
2752                 sg_local = chain;
2753                 if (!chain_offset)
2754                         goto fill_in_last_segment;
2755
2756                 /* fill in chain segments */
2757                 while (sges_in_segment) {
2758                         if (sges_in_segment == 1)
2759                                 ioc->base_add_sg_single(sg_local,
2760                                     sgl_flags_last_element |
2761                                     sg_dma_len(sg_scmd),
2762                                     sg_dma_address(sg_scmd));
2763                         else
2764                                 ioc->base_add_sg_single(sg_local, sgl_flags |
2765                                     sg_dma_len(sg_scmd),
2766                                     sg_dma_address(sg_scmd));
2767                         sg_scmd = sg_next(sg_scmd);
2768                         sg_local += ioc->sge_size;
2769                         sges_left--;
2770                         sges_in_segment--;
2771                 }
2772
2773                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2774                 if (!chain_req)
2775                         return -1;
2776                 chain = chain_req->chain_buffer;
2777                 chain_dma = chain_req->chain_buffer_dma;
2778         } while (1);
2779
2780
2781  fill_in_last_segment:
2782
2783         /* fill the last segment */
2784         while (sges_left) {
2785                 if (sges_left == 1)
2786                         ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2787                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2788                 else
2789                         ioc->base_add_sg_single(sg_local, sgl_flags |
2790                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2791                 sg_scmd = sg_next(sg_scmd);
2792                 sg_local += ioc->sge_size;
2793                 sges_left--;
2794         }
2795
2796         return 0;
2797 }
2798
2799 /**
2800  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2801  * @ioc: per adapter object
2802  * @scmd: scsi command
2803  * @smid: system request message index
2804  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2805  * constructed on need.
2806  * Context: none.
2807  *
2808  * The main routine that builds scatter gather table from a given
2809  * scsi request sent via the .queuecommand main handler.
2810  *
2811  * Return: 0 success, anything else error
2812  */
2813 static int
2814 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2815         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2816 {
2817         Mpi25SCSIIORequest_t *mpi_request;
2818         dma_addr_t chain_dma;
2819         struct scatterlist *sg_scmd;
2820         void *sg_local, *chain;
2821         u32 chain_offset;
2822         u32 chain_length;
2823         int sges_left;
2824         u32 sges_in_segment;
2825         u8 simple_sgl_flags;
2826         u8 simple_sgl_flags_last;
2827         u8 chain_sgl_flags;
2828         struct chain_tracker *chain_req;
2829
2830         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2831
2832         /* init scatter gather flags */
2833         simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2834             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2835         simple_sgl_flags_last = simple_sgl_flags |
2836             MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2837         chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2838             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2839
2840         /* Check if we need to build a native SG list. */
2841         if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2842                         smid, scmd, pcie_device) == 0)) {
2843                 /* We built a native SG list, just return. */
2844                 return 0;
2845         }
2846
2847         sg_scmd = scsi_sglist(scmd);
2848         sges_left = scsi_dma_map(scmd);
2849         if (sges_left < 0)
2850                 return -ENOMEM;
2851
2852         sg_local = &mpi_request->SGL;
2853         sges_in_segment = (ioc->request_sz -
2854                    offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2855         if (sges_left <= sges_in_segment)
2856                 goto fill_in_last_segment;
2857
2858         mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2859             (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2860
2861         /* fill in main message segment when there is a chain following */
2862         while (sges_in_segment > 1) {
2863                 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2864                     sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2865                 sg_scmd = sg_next(sg_scmd);
2866                 sg_local += ioc->sge_size_ieee;
2867                 sges_left--;
2868                 sges_in_segment--;
2869         }
2870
2871         /* initializing the pointers */
2872         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2873         if (!chain_req)
2874                 return -1;
2875         chain = chain_req->chain_buffer;
2876         chain_dma = chain_req->chain_buffer_dma;
2877         do {
2878                 sges_in_segment = (sges_left <=
2879                     ioc->max_sges_in_chain_message) ? sges_left :
2880                     ioc->max_sges_in_chain_message;
2881                 chain_offset = (sges_left == sges_in_segment) ?
2882                     0 : sges_in_segment;
2883                 chain_length = sges_in_segment * ioc->sge_size_ieee;
2884                 if (chain_offset)
2885                         chain_length += ioc->sge_size_ieee;
2886                 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2887                     chain_offset, chain_length, chain_dma);
2888
2889                 sg_local = chain;
2890                 if (!chain_offset)
2891                         goto fill_in_last_segment;
2892
2893                 /* fill in chain segments */
2894                 while (sges_in_segment) {
2895                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2896                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2897                         sg_scmd = sg_next(sg_scmd);
2898                         sg_local += ioc->sge_size_ieee;
2899                         sges_left--;
2900                         sges_in_segment--;
2901                 }
2902
2903                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2904                 if (!chain_req)
2905                         return -1;
2906                 chain = chain_req->chain_buffer;
2907                 chain_dma = chain_req->chain_buffer_dma;
2908         } while (1);
2909
2910
2911  fill_in_last_segment:
2912
2913         /* fill the last segment */
2914         while (sges_left > 0) {
2915                 if (sges_left == 1)
2916                         _base_add_sg_single_ieee(sg_local,
2917                             simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2918                             sg_dma_address(sg_scmd));
2919                 else
2920                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2921                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2922                 sg_scmd = sg_next(sg_scmd);
2923                 sg_local += ioc->sge_size_ieee;
2924                 sges_left--;
2925         }
2926
2927         return 0;
2928 }
2929
2930 /**
2931  * _base_build_sg_ieee - build generic sg for IEEE format
2932  * @ioc: per adapter object
2933  * @psge: virtual address for SGE
2934  * @data_out_dma: physical address for WRITES
2935  * @data_out_sz: data xfer size for WRITES
2936  * @data_in_dma: physical address for READS
2937  * @data_in_sz: data xfer size for READS
2938  */
2939 static void
2940 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2941         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2942         size_t data_in_sz)
2943 {
2944         u8 sgl_flags;
2945
2946         if (!data_out_sz && !data_in_sz) {
2947                 _base_build_zero_len_sge_ieee(ioc, psge);
2948                 return;
2949         }
2950
2951         if (data_out_sz && data_in_sz) {
2952                 /* WRITE sgel first */
2953                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2954                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2955                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2956                     data_out_dma);
2957
2958                 /* incr sgel */
2959                 psge += ioc->sge_size_ieee;
2960
2961                 /* READ sgel last */
2962                 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2963                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2964                     data_in_dma);
2965         } else if (data_out_sz) /* WRITE */ {
2966                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2967                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2968                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2969                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2970                     data_out_dma);
2971         } else if (data_in_sz) /* READ */ {
2972                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2973                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2974                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2975                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2976                     data_in_dma);
2977         }
2978 }
2979
2980 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2981
2982 /**
2983  * _base_config_dma_addressing - set dma addressing
2984  * @ioc: per adapter object
2985  * @pdev: PCI device struct
2986  *
2987  * Return: 0 for success, non-zero for failure.
2988  */
2989 static int
2990 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2991 {
2992         struct sysinfo s;
2993
2994         if (ioc->is_mcpu_endpoint ||
2995             sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma ||
2996             dma_get_required_mask(&pdev->dev) <= 32)
2997                 ioc->dma_mask = 32;
2998         /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2999         else if (ioc->hba_mpi_version_belonged > MPI2_VERSION)
3000                 ioc->dma_mask = 63;
3001         else
3002                 ioc->dma_mask = 64;
3003
3004         if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)) ||
3005             dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)))
3006                 return -ENODEV;
3007
3008         if (ioc->dma_mask > 32) {
3009                 ioc->base_add_sg_single = &_base_add_sg_single_64;
3010                 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
3011         } else {
3012                 ioc->base_add_sg_single = &_base_add_sg_single_32;
3013                 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
3014         }
3015
3016         si_meminfo(&s);
3017         ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
3018                 ioc->dma_mask, convert_to_kb(s.totalram));
3019
3020         return 0;
3021 }
3022
3023 /**
3024  * _base_check_enable_msix - checks MSIX capabable.
3025  * @ioc: per adapter object
3026  *
3027  * Check to see if card is capable of MSIX, and set number
3028  * of available msix vectors
3029  */
3030 static int
3031 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3032 {
3033         int base;
3034         u16 message_control;
3035
3036         /* Check whether controller SAS2008 B0 controller,
3037          * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
3038          */
3039         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
3040             ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
3041                 return -EINVAL;
3042         }
3043
3044         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
3045         if (!base) {
3046                 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
3047                 return -EINVAL;
3048         }
3049
3050         /* get msix vector count */
3051         /* NUMA_IO not supported for older controllers */
3052         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
3053             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
3054             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
3055             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
3056             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
3057             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
3058             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
3059                 ioc->msix_vector_count = 1;
3060         else {
3061                 pci_read_config_word(ioc->pdev, base + 2, &message_control);
3062                 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
3063         }
3064         dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
3065                                   ioc->msix_vector_count));
3066         return 0;
3067 }
3068
3069 /**
3070  * mpt3sas_base_free_irq - free irq
3071  * @ioc: per adapter object
3072  *
3073  * Freeing respective reply_queue from the list.
3074  */
3075 void
3076 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
3077 {
3078         unsigned int irq;
3079         struct adapter_reply_queue *reply_q, *next;
3080
3081         if (list_empty(&ioc->reply_queue_list))
3082                 return;
3083
3084         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3085                 list_del(&reply_q->list);
3086                 if (reply_q->is_iouring_poll_q) {
3087                         kfree(reply_q);
3088                         continue;
3089                 }
3090
3091                 if (ioc->smp_affinity_enable) {
3092                         irq = pci_irq_vector(ioc->pdev, reply_q->msix_index);
3093                         irq_update_affinity_hint(irq, NULL);
3094                 }
3095                 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3096                          reply_q);
3097                 kfree(reply_q);
3098         }
3099 }
3100
3101 /**
3102  * _base_request_irq - request irq
3103  * @ioc: per adapter object
3104  * @index: msix index into vector table
3105  *
3106  * Inserting respective reply_queue into the list.
3107  */
3108 static int
3109 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3110 {
3111         struct pci_dev *pdev = ioc->pdev;
3112         struct adapter_reply_queue *reply_q;
3113         int r, qid;
3114
3115         reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3116         if (!reply_q) {
3117                 ioc_err(ioc, "unable to allocate memory %zu!\n",
3118                         sizeof(struct adapter_reply_queue));
3119                 return -ENOMEM;
3120         }
3121         reply_q->ioc = ioc;
3122         reply_q->msix_index = index;
3123
3124         atomic_set(&reply_q->busy, 0);
3125
3126         if (index >= ioc->iopoll_q_start_index) {
3127                 qid = index - ioc->iopoll_q_start_index;
3128                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d",
3129                     ioc->driver_name, ioc->id, qid);
3130                 reply_q->is_iouring_poll_q = 1;
3131                 ioc->io_uring_poll_queues[qid].reply_q = reply_q;
3132                 goto out;
3133         }
3134
3135
3136         if (ioc->msix_enable)
3137                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3138                     ioc->driver_name, ioc->id, index);
3139         else
3140                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3141                     ioc->driver_name, ioc->id);
3142         r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3143                         IRQF_SHARED, reply_q->name, reply_q);
3144         if (r) {
3145                 pr_err("%s: unable to allocate interrupt %d!\n",
3146                        reply_q->name, pci_irq_vector(pdev, index));
3147                 kfree(reply_q);
3148                 return -EBUSY;
3149         }
3150 out:
3151         INIT_LIST_HEAD(&reply_q->list);
3152         list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3153         return 0;
3154 }
3155
3156 /**
3157  * _base_assign_reply_queues - assigning msix index for each cpu
3158  * @ioc: per adapter object
3159  *
3160  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3161  */
3162 static void
3163 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3164 {
3165         unsigned int cpu, nr_cpus, nr_msix, index = 0, irq;
3166         struct adapter_reply_queue *reply_q;
3167         int iopoll_q_count = ioc->reply_queue_count -
3168             ioc->iopoll_q_start_index;
3169         const struct cpumask *mask;
3170
3171         if (!_base_is_controller_msix_enabled(ioc))
3172                 return;
3173
3174         if (ioc->msix_load_balance)
3175                 return;
3176
3177         memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3178
3179         nr_cpus = num_online_cpus();
3180         nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3181                                                ioc->facts.MaxMSIxVectors);
3182         if (!nr_msix)
3183                 return;
3184
3185         if (ioc->smp_affinity_enable) {
3186
3187                 /*
3188                  * set irq affinity to local numa node for those irqs
3189                  * corresponding to high iops queues.
3190                  */
3191                 if (ioc->high_iops_queues) {
3192                         mask = cpumask_of_node(dev_to_node(&ioc->pdev->dev));
3193                         for (index = 0; index < ioc->high_iops_queues;
3194                             index++) {
3195                                 irq = pci_irq_vector(ioc->pdev, index);
3196                                 irq_set_affinity_and_hint(irq, mask);
3197                         }
3198                 }
3199
3200                 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3201                         const cpumask_t *mask;
3202
3203                         if (reply_q->msix_index < ioc->high_iops_queues ||
3204                             reply_q->msix_index >= ioc->iopoll_q_start_index)
3205                                 continue;
3206
3207                         mask = pci_irq_get_affinity(ioc->pdev,
3208                             reply_q->msix_index);
3209                         if (!mask) {
3210                                 ioc_warn(ioc, "no affinity for msi %x\n",
3211                                          reply_q->msix_index);
3212                                 goto fall_back;
3213                         }
3214
3215                         for_each_cpu_and(cpu, mask, cpu_online_mask) {
3216                                 if (cpu >= ioc->cpu_msix_table_sz)
3217                                         break;
3218                                 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3219                         }
3220                 }
3221                 return;
3222         }
3223
3224 fall_back:
3225         cpu = cpumask_first(cpu_online_mask);
3226         nr_msix -= (ioc->high_iops_queues - iopoll_q_count);
3227         index = 0;
3228
3229         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3230                 unsigned int i, group = nr_cpus / nr_msix;
3231
3232                 if (reply_q->msix_index < ioc->high_iops_queues ||
3233                     reply_q->msix_index >= ioc->iopoll_q_start_index)
3234                         continue;
3235
3236                 if (cpu >= nr_cpus)
3237                         break;
3238
3239                 if (index < nr_cpus % nr_msix)
3240                         group++;
3241
3242                 for (i = 0 ; i < group ; i++) {
3243                         ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3244                         cpu = cpumask_next(cpu, cpu_online_mask);
3245                 }
3246                 index++;
3247         }
3248 }
3249
3250 /**
3251  * _base_check_and_enable_high_iops_queues - enable high iops mode
3252  * @ioc: per adapter object
3253  * @hba_msix_vector_count: msix vectors supported by HBA
3254  *
3255  * Enable high iops queues only if
3256  *  - HBA is a SEA/AERO controller and
3257  *  - MSI-Xs vector supported by the HBA is 128 and
3258  *  - total CPU count in the system >=16 and
3259  *  - loaded driver with default max_msix_vectors module parameter and
3260  *  - system booted in non kdump mode
3261  *
3262  * Return: nothing.
3263  */
3264 static void
3265 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3266                 int hba_msix_vector_count)
3267 {
3268         u16 lnksta, speed;
3269
3270         /*
3271          * Disable high iops queues if io uring poll queues are enabled.
3272          */
3273         if (perf_mode == MPT_PERF_MODE_IOPS ||
3274             perf_mode == MPT_PERF_MODE_LATENCY ||
3275             ioc->io_uring_poll_queues) {
3276                 ioc->high_iops_queues = 0;
3277                 return;
3278         }
3279
3280         if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3281
3282                 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3283                 speed = lnksta & PCI_EXP_LNKSTA_CLS;
3284
3285                 if (speed < 0x4) {
3286                         ioc->high_iops_queues = 0;
3287                         return;
3288                 }
3289         }
3290
3291         if (!reset_devices && ioc->is_aero_ioc &&
3292             hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3293             num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3294             max_msix_vectors == -1)
3295                 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3296         else
3297                 ioc->high_iops_queues = 0;
3298 }
3299
3300 /**
3301  * mpt3sas_base_disable_msix - disables msix
3302  * @ioc: per adapter object
3303  *
3304  */
3305 void
3306 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3307 {
3308         if (!ioc->msix_enable)
3309                 return;
3310         pci_free_irq_vectors(ioc->pdev);
3311         ioc->msix_enable = 0;
3312         kfree(ioc->io_uring_poll_queues);
3313 }
3314
3315 /**
3316  * _base_alloc_irq_vectors - allocate msix vectors
3317  * @ioc: per adapter object
3318  *
3319  */
3320 static int
3321 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3322 {
3323         int i, irq_flags = PCI_IRQ_MSIX;
3324         struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3325         struct irq_affinity *descp = &desc;
3326         /*
3327          * Don't allocate msix vectors for poll_queues.
3328          * msix_vectors is always within a range of FW supported reply queue.
3329          */
3330         int nr_msix_vectors = ioc->iopoll_q_start_index;
3331
3332
3333         if (ioc->smp_affinity_enable)
3334                 irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
3335         else
3336                 descp = NULL;
3337
3338         ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues,
3339             ioc->reply_queue_count, nr_msix_vectors);
3340
3341         i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3342             ioc->high_iops_queues,
3343             nr_msix_vectors, irq_flags, descp);
3344
3345         return i;
3346 }
3347
3348 /**
3349  * _base_enable_msix - enables msix, failback to io_apic
3350  * @ioc: per adapter object
3351  *
3352  */
3353 static int
3354 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3355 {
3356         int r;
3357         int i, local_max_msix_vectors;
3358         u8 try_msix = 0;
3359         int iopoll_q_count = 0;
3360
3361         ioc->msix_load_balance = false;
3362
3363         if (msix_disable == -1 || msix_disable == 0)
3364                 try_msix = 1;
3365
3366         if (!try_msix)
3367                 goto try_ioapic;
3368
3369         if (_base_check_enable_msix(ioc) != 0)
3370                 goto try_ioapic;
3371
3372         ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3373         pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3374                 ioc->cpu_count, max_msix_vectors);
3375
3376         ioc->reply_queue_count =
3377                 min_t(int, ioc->cpu_count, ioc->msix_vector_count);
3378
3379         if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3380                 local_max_msix_vectors = (reset_devices) ? 1 : 8;
3381         else
3382                 local_max_msix_vectors = max_msix_vectors;
3383
3384         if (local_max_msix_vectors == 0)
3385                 goto try_ioapic;
3386
3387         /*
3388          * Enable msix_load_balance only if combined reply queue mode is
3389          * disabled on SAS3 & above generation HBA devices.
3390          */
3391         if (!ioc->combined_reply_queue &&
3392             ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3393                 ioc_info(ioc,
3394                     "combined ReplyQueue is off, Enabling msix load balance\n");
3395                 ioc->msix_load_balance = true;
3396         }
3397
3398         /*
3399          * smp affinity setting is not need when msix load balance
3400          * is enabled.
3401          */
3402         if (ioc->msix_load_balance)
3403                 ioc->smp_affinity_enable = 0;
3404
3405         if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1)
3406                 ioc->shost->host_tagset = 0;
3407
3408         /*
3409          * Enable io uring poll queues only if host_tagset is enabled.
3410          */
3411         if (ioc->shost->host_tagset)
3412                 iopoll_q_count = poll_queues;
3413
3414         if (iopoll_q_count) {
3415                 ioc->io_uring_poll_queues = kcalloc(iopoll_q_count,
3416                     sizeof(struct io_uring_poll_queue), GFP_KERNEL);
3417                 if (!ioc->io_uring_poll_queues)
3418                         iopoll_q_count = 0;
3419         }
3420
3421         if (ioc->is_aero_ioc)
3422                 _base_check_and_enable_high_iops_queues(ioc,
3423                     ioc->msix_vector_count);
3424
3425         /*
3426          * Add high iops queues count to reply queue count if high iops queues
3427          * are enabled.
3428          */
3429         ioc->reply_queue_count = min_t(int,
3430             ioc->reply_queue_count + ioc->high_iops_queues,
3431             ioc->msix_vector_count);
3432
3433         /*
3434          * Adjust the reply queue count incase reply queue count
3435          * exceeds the user provided MSIx vectors count.
3436          */
3437         if (local_max_msix_vectors > 0)
3438                 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3439                     ioc->reply_queue_count);
3440         /*
3441          * Add io uring poll queues count to reply queues count
3442          * if io uring is enabled in driver.
3443          */
3444         if (iopoll_q_count) {
3445                 if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS))
3446                         iopoll_q_count = 0;
3447                 ioc->reply_queue_count = min_t(int,
3448                     ioc->reply_queue_count + iopoll_q_count,
3449                     ioc->msix_vector_count);
3450         }
3451
3452         /*
3453          * Starting index of io uring poll queues in reply queue list.
3454          */
3455         ioc->iopoll_q_start_index =
3456             ioc->reply_queue_count - iopoll_q_count;
3457
3458         r = _base_alloc_irq_vectors(ioc);
3459         if (r < 0) {
3460                 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3461                 goto try_ioapic;
3462         }
3463
3464         /*
3465          * Adjust the reply queue count if the allocated
3466          * MSIx vectors is less then the requested number
3467          * of MSIx vectors.
3468          */
3469         if (r < ioc->iopoll_q_start_index) {
3470                 ioc->reply_queue_count = r + iopoll_q_count;
3471                 ioc->iopoll_q_start_index =
3472                     ioc->reply_queue_count - iopoll_q_count;
3473         }
3474
3475         ioc->msix_enable = 1;
3476         for (i = 0; i < ioc->reply_queue_count; i++) {
3477                 r = _base_request_irq(ioc, i);
3478                 if (r) {
3479                         mpt3sas_base_free_irq(ioc);
3480                         mpt3sas_base_disable_msix(ioc);
3481                         goto try_ioapic;
3482                 }
3483         }
3484
3485         ioc_info(ioc, "High IOPs queues : %s\n",
3486                         ioc->high_iops_queues ? "enabled" : "disabled");
3487
3488         return 0;
3489
3490 /* failback to io_apic interrupt routing */
3491  try_ioapic:
3492         ioc->high_iops_queues = 0;
3493         ioc_info(ioc, "High IOPs queues : disabled\n");
3494         ioc->reply_queue_count = 1;
3495         ioc->iopoll_q_start_index = ioc->reply_queue_count - 0;
3496         r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3497         if (r < 0) {
3498                 dfailprintk(ioc,
3499                             ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3500                                      r));
3501         } else
3502                 r = _base_request_irq(ioc, 0);
3503
3504         return r;
3505 }
3506
3507 /**
3508  * mpt3sas_base_unmap_resources - free controller resources
3509  * @ioc: per adapter object
3510  */
3511 static void
3512 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3513 {
3514         struct pci_dev *pdev = ioc->pdev;
3515
3516         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3517
3518         mpt3sas_base_free_irq(ioc);
3519         mpt3sas_base_disable_msix(ioc);
3520
3521         kfree(ioc->replyPostRegisterIndex);
3522         ioc->replyPostRegisterIndex = NULL;
3523
3524
3525         if (ioc->chip_phys) {
3526                 iounmap(ioc->chip);
3527                 ioc->chip_phys = 0;
3528         }
3529
3530         if (pci_is_enabled(pdev)) {
3531                 pci_release_selected_regions(ioc->pdev, ioc->bars);
3532                 pci_disable_pcie_error_reporting(pdev);
3533                 pci_disable_device(pdev);
3534         }
3535 }
3536
3537 static int
3538 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3539
3540 /**
3541  * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state
3542  *     and if it is in fault state then issue diag reset.
3543  * @ioc: per adapter object
3544  *
3545  * Return: 0 for success, non-zero for failure.
3546  */
3547 int
3548 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3549 {
3550         u32 ioc_state;
3551         int rc = -EFAULT;
3552
3553         dinitprintk(ioc, pr_info("%s\n", __func__));
3554         if (ioc->pci_error_recovery)
3555                 return 0;
3556         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3557         dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3558
3559         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3560                 mpt3sas_print_fault_code(ioc, ioc_state &
3561                     MPI2_DOORBELL_DATA_MASK);
3562                 mpt3sas_base_mask_interrupts(ioc);
3563                 rc = _base_diag_reset(ioc);
3564         } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3565             MPI2_IOC_STATE_COREDUMP) {
3566                 mpt3sas_print_coredump_info(ioc, ioc_state &
3567                      MPI2_DOORBELL_DATA_MASK);
3568                 mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3569                 mpt3sas_base_mask_interrupts(ioc);
3570                 rc = _base_diag_reset(ioc);
3571         }
3572
3573         return rc;
3574 }
3575
3576 /**
3577  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3578  * @ioc: per adapter object
3579  *
3580  * Return: 0 for success, non-zero for failure.
3581  */
3582 int
3583 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3584 {
3585         struct pci_dev *pdev = ioc->pdev;
3586         u32 memap_sz;
3587         u32 pio_sz;
3588         int i, r = 0, rc;
3589         u64 pio_chip = 0;
3590         phys_addr_t chip_phys = 0;
3591         struct adapter_reply_queue *reply_q;
3592         int iopoll_q_count = 0;
3593
3594         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3595
3596         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3597         if (pci_enable_device_mem(pdev)) {
3598                 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3599                 ioc->bars = 0;
3600                 return -ENODEV;
3601         }
3602
3603
3604         if (pci_request_selected_regions(pdev, ioc->bars,
3605             ioc->driver_name)) {
3606                 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3607                 ioc->bars = 0;
3608                 r = -ENODEV;
3609                 goto out_fail;
3610         }
3611
3612 /* AER (Advanced Error Reporting) hooks */
3613         pci_enable_pcie_error_reporting(pdev);
3614
3615         pci_set_master(pdev);
3616
3617
3618         if (_base_config_dma_addressing(ioc, pdev) != 0) {
3619                 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3620                 r = -ENODEV;
3621                 goto out_fail;
3622         }
3623
3624         for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3625              (!memap_sz || !pio_sz); i++) {
3626                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3627                         if (pio_sz)
3628                                 continue;
3629                         pio_chip = (u64)pci_resource_start(pdev, i);
3630                         pio_sz = pci_resource_len(pdev, i);
3631                 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3632                         if (memap_sz)
3633                                 continue;
3634                         ioc->chip_phys = pci_resource_start(pdev, i);
3635                         chip_phys = ioc->chip_phys;
3636                         memap_sz = pci_resource_len(pdev, i);
3637                         ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3638                 }
3639         }
3640
3641         if (ioc->chip == NULL) {
3642                 ioc_err(ioc,
3643                     "unable to map adapter memory! or resource not found\n");
3644                 r = -EINVAL;
3645                 goto out_fail;
3646         }
3647
3648         mpt3sas_base_mask_interrupts(ioc);
3649
3650         r = _base_get_ioc_facts(ioc);
3651         if (r) {
3652                 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
3653                 if (rc || (_base_get_ioc_facts(ioc)))
3654                         goto out_fail;
3655         }
3656
3657         if (!ioc->rdpq_array_enable_assigned) {
3658                 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3659                 ioc->rdpq_array_enable_assigned = 1;
3660         }
3661
3662         r = _base_enable_msix(ioc);
3663         if (r)
3664                 goto out_fail;
3665
3666         iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index;
3667         for (i = 0; i < iopoll_q_count; i++) {
3668                 atomic_set(&ioc->io_uring_poll_queues[i].busy, 0);
3669                 atomic_set(&ioc->io_uring_poll_queues[i].pause, 0);
3670         }
3671
3672         if (!ioc->is_driver_loading)
3673                 _base_init_irqpolls(ioc);
3674         /* Use the Combined reply queue feature only for SAS3 C0 & higher
3675          * revision HBAs and also only when reply queue count is greater than 8
3676          */
3677         if (ioc->combined_reply_queue) {
3678                 /* Determine the Supplemental Reply Post Host Index Registers
3679                  * Addresse. Supplemental Reply Post Host Index Registers
3680                  * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3681                  * each register is at offset bytes of
3682                  * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3683                  */
3684                 ioc->replyPostRegisterIndex = kcalloc(
3685                      ioc->combined_reply_index_count,
3686                      sizeof(resource_size_t *), GFP_KERNEL);
3687                 if (!ioc->replyPostRegisterIndex) {
3688                         ioc_err(ioc,
3689                             "allocation for replyPostRegisterIndex failed!\n");
3690                         r = -ENOMEM;
3691                         goto out_fail;
3692                 }
3693
3694                 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3695                         ioc->replyPostRegisterIndex[i] =
3696                                 (resource_size_t __iomem *)
3697                                 ((u8 __force *)&ioc->chip->Doorbell +
3698                                  MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3699                                  (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3700                 }
3701         }
3702
3703         if (ioc->is_warpdrive) {
3704                 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3705                     &ioc->chip->ReplyPostHostIndex;
3706
3707                 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3708                         ioc->reply_post_host_index[i] =
3709                         (resource_size_t __iomem *)
3710                         ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3711                         * 4)));
3712         }
3713
3714         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3715                 if (reply_q->msix_index >= ioc->iopoll_q_start_index) {
3716                         pr_info("%s: enabled: index: %d\n",
3717                             reply_q->name, reply_q->msix_index);
3718                         continue;
3719                 }
3720
3721                 pr_info("%s: %s enabled: IRQ %d\n",
3722                         reply_q->name,
3723                         ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3724                         pci_irq_vector(ioc->pdev, reply_q->msix_index));
3725         }
3726
3727         ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3728                  &chip_phys, ioc->chip, memap_sz);
3729         ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3730                  (unsigned long long)pio_chip, pio_sz);
3731
3732         /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3733         pci_save_state(pdev);
3734         return 0;
3735
3736  out_fail:
3737         mpt3sas_base_unmap_resources(ioc);
3738         return r;
3739 }
3740
3741 /**
3742  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3743  * @ioc: per adapter object
3744  * @smid: system request message index(smid zero is invalid)
3745  *
3746  * Return: virt pointer to message frame.
3747  */
3748 void *
3749 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3750 {
3751         return (void *)(ioc->request + (smid * ioc->request_sz));
3752 }
3753
3754 /**
3755  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3756  * @ioc: per adapter object
3757  * @smid: system request message index
3758  *
3759  * Return: virt pointer to sense buffer.
3760  */
3761 void *
3762 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3763 {
3764         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3765 }
3766
3767 /**
3768  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3769  * @ioc: per adapter object
3770  * @smid: system request message index
3771  *
3772  * Return: phys pointer to the low 32bit address of the sense buffer.
3773  */
3774 __le32
3775 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3776 {
3777         return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3778             SCSI_SENSE_BUFFERSIZE));
3779 }
3780
3781 /**
3782  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3783  * @ioc: per adapter object
3784  * @smid: system request message index
3785  *
3786  * Return: virt pointer to a PCIe SGL.
3787  */
3788 void *
3789 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3790 {
3791         return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3792 }
3793
3794 /**
3795  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3796  * @ioc: per adapter object
3797  * @smid: system request message index
3798  *
3799  * Return: phys pointer to the address of the PCIe buffer.
3800  */
3801 dma_addr_t
3802 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3803 {
3804         return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3805 }
3806
3807 /**
3808  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3809  * @ioc: per adapter object
3810  * @phys_addr: lower 32 physical addr of the reply
3811  *
3812  * Converts 32bit lower physical addr into a virt address.
3813  */
3814 void *
3815 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3816 {
3817         if (!phys_addr)
3818                 return NULL;
3819         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3820 }
3821
3822 /**
3823  * _base_get_msix_index - get the msix index
3824  * @ioc: per adapter object
3825  * @scmd: scsi_cmnd object
3826  *
3827  * Return: msix index of general reply queues,
3828  * i.e. reply queue on which IO request's reply
3829  * should be posted by the HBA firmware.
3830  */
3831 static inline u8
3832 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3833         struct scsi_cmnd *scmd)
3834 {
3835         /* Enables reply_queue load balancing */
3836         if (ioc->msix_load_balance)
3837                 return ioc->reply_queue_count ?
3838                     base_mod64(atomic64_add_return(1,
3839                     &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3840
3841         if (scmd && ioc->shost->nr_hw_queues > 1) {
3842                 u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3843
3844                 return blk_mq_unique_tag_to_hwq(tag) +
3845                         ioc->high_iops_queues;
3846         }
3847
3848         return ioc->cpu_msix_table[raw_smp_processor_id()];
3849 }
3850
3851 /**
3852  * _base_get_high_iops_msix_index - get the msix index of
3853  *                              high iops queues
3854  * @ioc: per adapter object
3855  * @scmd: scsi_cmnd object
3856  *
3857  * Return: msix index of high iops reply queues.
3858  * i.e. high iops reply queue on which IO request's
3859  * reply should be posted by the HBA firmware.
3860  */
3861 static inline u8
3862 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3863         struct scsi_cmnd *scmd)
3864 {
3865         /**
3866          * Round robin the IO interrupts among the high iops
3867          * reply queues in terms of batch count 16 when outstanding
3868          * IOs on the target device is >=8.
3869          */
3870
3871         if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3872                 return base_mod64((
3873                     atomic64_add_return(1, &ioc->high_iops_outstanding) /
3874                     MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3875                     MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3876
3877         return _base_get_msix_index(ioc, scmd);
3878 }
3879
3880 /**
3881  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3882  * @ioc: per adapter object
3883  * @cb_idx: callback index
3884  *
3885  * Return: smid (zero is invalid)
3886  */
3887 u16
3888 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3889 {
3890         unsigned long flags;
3891         struct request_tracker *request;
3892         u16 smid;
3893
3894         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3895         if (list_empty(&ioc->internal_free_list)) {
3896                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3897                 ioc_err(ioc, "%s: smid not available\n", __func__);
3898                 return 0;
3899         }
3900
3901         request = list_entry(ioc->internal_free_list.next,
3902             struct request_tracker, tracker_list);
3903         request->cb_idx = cb_idx;
3904         smid = request->smid;
3905         list_del(&request->tracker_list);
3906         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3907         return smid;
3908 }
3909
3910 /**
3911  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3912  * @ioc: per adapter object
3913  * @cb_idx: callback index
3914  * @scmd: pointer to scsi command object
3915  *
3916  * Return: smid (zero is invalid)
3917  */
3918 u16
3919 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3920         struct scsi_cmnd *scmd)
3921 {
3922         struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3923         u16 smid;
3924         u32 tag, unique_tag;
3925
3926         unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3927         tag = blk_mq_unique_tag_to_tag(unique_tag);
3928
3929         /*
3930          * Store hw queue number corresponding to the tag.
3931          * This hw queue number is used later to determine
3932          * the unique_tag using the logic below. This unique_tag
3933          * is used to retrieve the scmd pointer corresponding
3934          * to tag using scsi_host_find_tag() API.
3935          *
3936          * tag = smid - 1;
3937          * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag;
3938          */
3939         ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag);
3940
3941         smid = tag + 1;
3942         request->cb_idx = cb_idx;
3943         request->smid = smid;
3944         request->scmd = scmd;
3945         INIT_LIST_HEAD(&request->chain_list);
3946         return smid;
3947 }
3948
3949 /**
3950  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3951  * @ioc: per adapter object
3952  * @cb_idx: callback index
3953  *
3954  * Return: smid (zero is invalid)
3955  */
3956 u16
3957 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3958 {
3959         unsigned long flags;
3960         struct request_tracker *request;
3961         u16 smid;
3962
3963         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3964         if (list_empty(&ioc->hpr_free_list)) {
3965                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3966                 return 0;
3967         }
3968
3969         request = list_entry(ioc->hpr_free_list.next,
3970             struct request_tracker, tracker_list);
3971         request->cb_idx = cb_idx;
3972         smid = request->smid;
3973         list_del(&request->tracker_list);
3974         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3975         return smid;
3976 }
3977
3978 static void
3979 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3980 {
3981         /*
3982          * See _wait_for_commands_to_complete() call with regards to this code.
3983          */
3984         if (ioc->shost_recovery && ioc->pending_io_count) {
3985                 ioc->pending_io_count = scsi_host_busy(ioc->shost);
3986                 if (ioc->pending_io_count == 0)
3987                         wake_up(&ioc->reset_wq);
3988         }
3989 }
3990
3991 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3992                            struct scsiio_tracker *st)
3993 {
3994         if (WARN_ON(st->smid == 0))
3995                 return;
3996         st->cb_idx = 0xFF;
3997         st->direct_io = 0;
3998         st->scmd = NULL;
3999         atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
4000         st->smid = 0;
4001 }
4002
4003 /**
4004  * mpt3sas_base_free_smid - put smid back on free_list
4005  * @ioc: per adapter object
4006  * @smid: system request message index
4007  */
4008 void
4009 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4010 {
4011         unsigned long flags;
4012         int i;
4013
4014         if (smid < ioc->hi_priority_smid) {
4015                 struct scsiio_tracker *st;
4016                 void *request;
4017
4018                 st = _get_st_from_smid(ioc, smid);
4019                 if (!st) {
4020                         _base_recovery_check(ioc);
4021                         return;
4022                 }
4023
4024                 /* Clear MPI request frame */
4025                 request = mpt3sas_base_get_msg_frame(ioc, smid);
4026                 memset(request, 0, ioc->request_sz);
4027
4028                 mpt3sas_base_clear_st(ioc, st);
4029                 _base_recovery_check(ioc);
4030                 ioc->io_queue_num[smid - 1] = 0;
4031                 return;
4032         }
4033
4034         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4035         if (smid < ioc->internal_smid) {
4036                 /* hi-priority */
4037                 i = smid - ioc->hi_priority_smid;
4038                 ioc->hpr_lookup[i].cb_idx = 0xFF;
4039                 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
4040         } else if (smid <= ioc->hba_queue_depth) {
4041                 /* internal queue */
4042                 i = smid - ioc->internal_smid;
4043                 ioc->internal_lookup[i].cb_idx = 0xFF;
4044                 list_add(&ioc->internal_lookup[i].tracker_list,
4045                     &ioc->internal_free_list);
4046         }
4047         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4048 }
4049
4050 /**
4051  * _base_mpi_ep_writeq - 32 bit write to MMIO
4052  * @b: data payload
4053  * @addr: address in MMIO space
4054  * @writeq_lock: spin lock
4055  *
4056  * This special handling for MPI EP to take care of 32 bit
4057  * environment where its not quarenteed to send the entire word
4058  * in one transfer.
4059  */
4060 static inline void
4061 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
4062                                         spinlock_t *writeq_lock)
4063 {
4064         unsigned long flags;
4065
4066         spin_lock_irqsave(writeq_lock, flags);
4067         __raw_writel((u32)(b), addr);
4068         __raw_writel((u32)(b >> 32), (addr + 4));
4069         spin_unlock_irqrestore(writeq_lock, flags);
4070 }
4071
4072 /**
4073  * _base_writeq - 64 bit write to MMIO
4074  * @b: data payload
4075  * @addr: address in MMIO space
4076  * @writeq_lock: spin lock
4077  *
4078  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
4079  * care of 32 bit environment where its not quarenteed to send the entire word
4080  * in one transfer.
4081  */
4082 #if defined(writeq) && defined(CONFIG_64BIT)
4083 static inline void
4084 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4085 {
4086         wmb();
4087         __raw_writeq(b, addr);
4088         barrier();
4089 }
4090 #else
4091 static inline void
4092 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4093 {
4094         _base_mpi_ep_writeq(b, addr, writeq_lock);
4095 }
4096 #endif
4097
4098 /**
4099  * _base_set_and_get_msix_index - get the msix index and assign to msix_io
4100  *                                variable of scsi tracker
4101  * @ioc: per adapter object
4102  * @smid: system request message index
4103  *
4104  * Return: msix index.
4105  */
4106 static u8
4107 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4108 {
4109         struct scsiio_tracker *st = NULL;
4110
4111         if (smid < ioc->hi_priority_smid)
4112                 st = _get_st_from_smid(ioc, smid);
4113
4114         if (st == NULL)
4115                 return  _base_get_msix_index(ioc, NULL);
4116
4117         st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
4118         return st->msix_io;
4119 }
4120
4121 /**
4122  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
4123  * @ioc: per adapter object
4124  * @smid: system request message index
4125  * @handle: device handle
4126  */
4127 static void
4128 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
4129         u16 smid, u16 handle)
4130 {
4131         Mpi2RequestDescriptorUnion_t descriptor;
4132         u64 *request = (u64 *)&descriptor;
4133         void *mpi_req_iomem;
4134         __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4135
4136         _clone_sg_entries(ioc, (void *) mfp, smid);
4137         mpi_req_iomem = (void __force *)ioc->chip +
4138                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4139         _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4140                                         ioc->request_sz);
4141         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4142         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4143         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4144         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4145         descriptor.SCSIIO.LMID = 0;
4146         _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4147             &ioc->scsi_lookup_lock);
4148 }
4149
4150 /**
4151  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
4152  * @ioc: per adapter object
4153  * @smid: system request message index
4154  * @handle: device handle
4155  */
4156 static void
4157 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
4158 {
4159         Mpi2RequestDescriptorUnion_t descriptor;
4160         u64 *request = (u64 *)&descriptor;
4161
4162
4163         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4164         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4165         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4166         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4167         descriptor.SCSIIO.LMID = 0;
4168         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4169             &ioc->scsi_lookup_lock);
4170 }
4171
4172 /**
4173  * _base_put_smid_fast_path - send fast path request to firmware
4174  * @ioc: per adapter object
4175  * @smid: system request message index
4176  * @handle: device handle
4177  */
4178 static void
4179 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4180         u16 handle)
4181 {
4182         Mpi2RequestDescriptorUnion_t descriptor;
4183         u64 *request = (u64 *)&descriptor;
4184
4185         descriptor.SCSIIO.RequestFlags =
4186             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4187         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4188         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4189         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4190         descriptor.SCSIIO.LMID = 0;
4191         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4192             &ioc->scsi_lookup_lock);
4193 }
4194
4195 /**
4196  * _base_put_smid_hi_priority - send Task Management request to firmware
4197  * @ioc: per adapter object
4198  * @smid: system request message index
4199  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4200  */
4201 static void
4202 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4203         u16 msix_task)
4204 {
4205         Mpi2RequestDescriptorUnion_t descriptor;
4206         void *mpi_req_iomem;
4207         u64 *request;
4208
4209         if (ioc->is_mcpu_endpoint) {
4210                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4211
4212                 /* TBD 256 is offset within sys register. */
4213                 mpi_req_iomem = (void __force *)ioc->chip
4214                                         + MPI_FRAME_START_OFFSET
4215                                         + (smid * ioc->request_sz);
4216                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4217                                                         ioc->request_sz);
4218         }
4219
4220         request = (u64 *)&descriptor;
4221
4222         descriptor.HighPriority.RequestFlags =
4223             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4224         descriptor.HighPriority.MSIxIndex =  msix_task;
4225         descriptor.HighPriority.SMID = cpu_to_le16(smid);
4226         descriptor.HighPriority.LMID = 0;
4227         descriptor.HighPriority.Reserved1 = 0;
4228         if (ioc->is_mcpu_endpoint)
4229                 _base_mpi_ep_writeq(*request,
4230                                 &ioc->chip->RequestDescriptorPostLow,
4231                                 &ioc->scsi_lookup_lock);
4232         else
4233                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4234                     &ioc->scsi_lookup_lock);
4235 }
4236
4237 /**
4238  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4239  *  firmware
4240  * @ioc: per adapter object
4241  * @smid: system request message index
4242  */
4243 void
4244 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4245 {
4246         Mpi2RequestDescriptorUnion_t descriptor;
4247         u64 *request = (u64 *)&descriptor;
4248
4249         descriptor.Default.RequestFlags =
4250                 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4251         descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
4252         descriptor.Default.SMID = cpu_to_le16(smid);
4253         descriptor.Default.LMID = 0;
4254         descriptor.Default.DescriptorTypeDependent = 0;
4255         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4256             &ioc->scsi_lookup_lock);
4257 }
4258
4259 /**
4260  * _base_put_smid_default - Default, primarily used for config pages
4261  * @ioc: per adapter object
4262  * @smid: system request message index
4263  */
4264 static void
4265 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4266 {
4267         Mpi2RequestDescriptorUnion_t descriptor;
4268         void *mpi_req_iomem;
4269         u64 *request;
4270
4271         if (ioc->is_mcpu_endpoint) {
4272                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4273
4274                 _clone_sg_entries(ioc, (void *) mfp, smid);
4275                 /* TBD 256 is offset within sys register */
4276                 mpi_req_iomem = (void __force *)ioc->chip +
4277                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4278                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4279                                                         ioc->request_sz);
4280         }
4281         request = (u64 *)&descriptor;
4282         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4283         descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4284         descriptor.Default.SMID = cpu_to_le16(smid);
4285         descriptor.Default.LMID = 0;
4286         descriptor.Default.DescriptorTypeDependent = 0;
4287         if (ioc->is_mcpu_endpoint)
4288                 _base_mpi_ep_writeq(*request,
4289                                 &ioc->chip->RequestDescriptorPostLow,
4290                                 &ioc->scsi_lookup_lock);
4291         else
4292                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4293                                 &ioc->scsi_lookup_lock);
4294 }
4295
4296 /**
4297  * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4298  *   Atomic Request Descriptor
4299  * @ioc: per adapter object
4300  * @smid: system request message index
4301  * @handle: device handle, unused in this function, for function type match
4302  *
4303  * Return: nothing.
4304  */
4305 static void
4306 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4307         u16 handle)
4308 {
4309         Mpi26AtomicRequestDescriptor_t descriptor;
4310         u32 *request = (u32 *)&descriptor;
4311
4312         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4313         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4314         descriptor.SMID = cpu_to_le16(smid);
4315
4316         writel(*request, &ioc->chip->AtomicRequestDescriptorPost);
4317 }
4318
4319 /**
4320  * _base_put_smid_fast_path_atomic - send fast path request to firmware
4321  * using Atomic Request Descriptor
4322  * @ioc: per adapter object
4323  * @smid: system request message index
4324  * @handle: device handle, unused in this function, for function type match
4325  * Return: nothing
4326  */
4327 static void
4328 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4329         u16 handle)
4330 {
4331         Mpi26AtomicRequestDescriptor_t descriptor;
4332         u32 *request = (u32 *)&descriptor;
4333
4334         descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4335         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4336         descriptor.SMID = cpu_to_le16(smid);
4337
4338         writel(*request, &ioc->chip->AtomicRequestDescriptorPost);
4339 }
4340
4341 /**
4342  * _base_put_smid_hi_priority_atomic - send Task Management request to
4343  * firmware using Atomic Request Descriptor
4344  * @ioc: per adapter object
4345  * @smid: system request message index
4346  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4347  *
4348  * Return: nothing.
4349  */
4350 static void
4351 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4352         u16 msix_task)
4353 {
4354         Mpi26AtomicRequestDescriptor_t descriptor;
4355         u32 *request = (u32 *)&descriptor;
4356
4357         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4358         descriptor.MSIxIndex = msix_task;
4359         descriptor.SMID = cpu_to_le16(smid);
4360
4361         writel(*request, &ioc->chip->AtomicRequestDescriptorPost);
4362 }
4363
4364 /**
4365  * _base_put_smid_default_atomic - Default, primarily used for config pages
4366  * use Atomic Request Descriptor
4367  * @ioc: per adapter object
4368  * @smid: system request message index
4369  *
4370  * Return: nothing.
4371  */
4372 static void
4373 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4374 {
4375         Mpi26AtomicRequestDescriptor_t descriptor;
4376         u32 *request = (u32 *)&descriptor;
4377
4378         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4379         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4380         descriptor.SMID = cpu_to_le16(smid);
4381
4382         writel(*request, &ioc->chip->AtomicRequestDescriptorPost);
4383 }
4384
4385 /**
4386  * _base_display_OEMs_branding - Display branding string
4387  * @ioc: per adapter object
4388  */
4389 static void
4390 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4391 {
4392         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4393                 return;
4394
4395         switch (ioc->pdev->subsystem_vendor) {
4396         case PCI_VENDOR_ID_INTEL:
4397                 switch (ioc->pdev->device) {
4398                 case MPI2_MFGPAGE_DEVID_SAS2008:
4399                         switch (ioc->pdev->subsystem_device) {
4400                         case MPT2SAS_INTEL_RMS2LL080_SSDID:
4401                                 ioc_info(ioc, "%s\n",
4402                                          MPT2SAS_INTEL_RMS2LL080_BRANDING);
4403                                 break;
4404                         case MPT2SAS_INTEL_RMS2LL040_SSDID:
4405                                 ioc_info(ioc, "%s\n",
4406                                          MPT2SAS_INTEL_RMS2LL040_BRANDING);
4407                                 break;
4408                         case MPT2SAS_INTEL_SSD910_SSDID:
4409                                 ioc_info(ioc, "%s\n",
4410                                          MPT2SAS_INTEL_SSD910_BRANDING);
4411                                 break;
4412                         default:
4413                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4414                                          ioc->pdev->subsystem_device);
4415                                 break;
4416                         }
4417                         break;
4418                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4419                         switch (ioc->pdev->subsystem_device) {
4420                         case MPT2SAS_INTEL_RS25GB008_SSDID:
4421                                 ioc_info(ioc, "%s\n",
4422                                          MPT2SAS_INTEL_RS25GB008_BRANDING);
4423                                 break;
4424                         case MPT2SAS_INTEL_RMS25JB080_SSDID:
4425                                 ioc_info(ioc, "%s\n",
4426                                          MPT2SAS_INTEL_RMS25JB080_BRANDING);
4427                                 break;
4428                         case MPT2SAS_INTEL_RMS25JB040_SSDID:
4429                                 ioc_info(ioc, "%s\n",
4430                                          MPT2SAS_INTEL_RMS25JB040_BRANDING);
4431                                 break;
4432                         case MPT2SAS_INTEL_RMS25KB080_SSDID:
4433                                 ioc_info(ioc, "%s\n",
4434                                          MPT2SAS_INTEL_RMS25KB080_BRANDING);
4435                                 break;
4436                         case MPT2SAS_INTEL_RMS25KB040_SSDID:
4437                                 ioc_info(ioc, "%s\n",
4438                                          MPT2SAS_INTEL_RMS25KB040_BRANDING);
4439                                 break;
4440                         case MPT2SAS_INTEL_RMS25LB040_SSDID:
4441                                 ioc_info(ioc, "%s\n",
4442                                          MPT2SAS_INTEL_RMS25LB040_BRANDING);
4443                                 break;
4444                         case MPT2SAS_INTEL_RMS25LB080_SSDID:
4445                                 ioc_info(ioc, "%s\n",
4446                                          MPT2SAS_INTEL_RMS25LB080_BRANDING);
4447                                 break;
4448                         default:
4449                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4450                                          ioc->pdev->subsystem_device);
4451                                 break;
4452                         }
4453                         break;
4454                 case MPI25_MFGPAGE_DEVID_SAS3008:
4455                         switch (ioc->pdev->subsystem_device) {
4456                         case MPT3SAS_INTEL_RMS3JC080_SSDID:
4457                                 ioc_info(ioc, "%s\n",
4458                                          MPT3SAS_INTEL_RMS3JC080_BRANDING);
4459                                 break;
4460
4461                         case MPT3SAS_INTEL_RS3GC008_SSDID:
4462                                 ioc_info(ioc, "%s\n",
4463                                          MPT3SAS_INTEL_RS3GC008_BRANDING);
4464                                 break;
4465                         case MPT3SAS_INTEL_RS3FC044_SSDID:
4466                                 ioc_info(ioc, "%s\n",
4467                                          MPT3SAS_INTEL_RS3FC044_BRANDING);
4468                                 break;
4469                         case MPT3SAS_INTEL_RS3UC080_SSDID:
4470                                 ioc_info(ioc, "%s\n",
4471                                          MPT3SAS_INTEL_RS3UC080_BRANDING);
4472                                 break;
4473                         default:
4474                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4475                                          ioc->pdev->subsystem_device);
4476                                 break;
4477                         }
4478                         break;
4479                 default:
4480                         ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4481                                  ioc->pdev->subsystem_device);
4482                         break;
4483                 }
4484                 break;
4485         case PCI_VENDOR_ID_DELL:
4486                 switch (ioc->pdev->device) {
4487                 case MPI2_MFGPAGE_DEVID_SAS2008:
4488                         switch (ioc->pdev->subsystem_device) {
4489                         case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4490                                 ioc_info(ioc, "%s\n",
4491                                          MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4492                                 break;
4493                         case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4494                                 ioc_info(ioc, "%s\n",
4495                                          MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4496                                 break;
4497                         case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4498                                 ioc_info(ioc, "%s\n",
4499                                          MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4500                                 break;
4501                         case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4502                                 ioc_info(ioc, "%s\n",
4503                                          MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4504                                 break;
4505                         case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4506                                 ioc_info(ioc, "%s\n",
4507                                          MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4508                                 break;
4509                         case MPT2SAS_DELL_PERC_H200_SSDID:
4510                                 ioc_info(ioc, "%s\n",
4511                                          MPT2SAS_DELL_PERC_H200_BRANDING);
4512                                 break;
4513                         case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4514                                 ioc_info(ioc, "%s\n",
4515                                          MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4516                                 break;
4517                         default:
4518                                 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4519                                          ioc->pdev->subsystem_device);
4520                                 break;
4521                         }
4522                         break;
4523                 case MPI25_MFGPAGE_DEVID_SAS3008:
4524                         switch (ioc->pdev->subsystem_device) {
4525                         case MPT3SAS_DELL_12G_HBA_SSDID:
4526                                 ioc_info(ioc, "%s\n",
4527                                          MPT3SAS_DELL_12G_HBA_BRANDING);
4528                                 break;
4529                         default:
4530                                 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4531                                          ioc->pdev->subsystem_device);
4532                                 break;
4533                         }
4534                         break;
4535                 default:
4536                         ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4537                                  ioc->pdev->subsystem_device);
4538                         break;
4539                 }
4540                 break;
4541         case PCI_VENDOR_ID_CISCO:
4542                 switch (ioc->pdev->device) {
4543                 case MPI25_MFGPAGE_DEVID_SAS3008:
4544                         switch (ioc->pdev->subsystem_device) {
4545                         case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4546                                 ioc_info(ioc, "%s\n",
4547                                          MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4548                                 break;
4549                         case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4550                                 ioc_info(ioc, "%s\n",
4551                                          MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4552                                 break;
4553                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4554                                 ioc_info(ioc, "%s\n",
4555                                          MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4556                                 break;
4557                         default:
4558                                 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4559                                          ioc->pdev->subsystem_device);
4560                                 break;
4561                         }
4562                         break;
4563                 case MPI25_MFGPAGE_DEVID_SAS3108_1:
4564                         switch (ioc->pdev->subsystem_device) {
4565                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4566                                 ioc_info(ioc, "%s\n",
4567                                          MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4568                                 break;
4569                         case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4570                                 ioc_info(ioc, "%s\n",
4571                                          MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4572                                 break;
4573                         default:
4574                                 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4575                                          ioc->pdev->subsystem_device);
4576                                 break;
4577                         }
4578                         break;
4579                 default:
4580                         ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4581                                  ioc->pdev->subsystem_device);
4582                         break;
4583                 }
4584                 break;
4585         case MPT2SAS_HP_3PAR_SSVID:
4586                 switch (ioc->pdev->device) {
4587                 case MPI2_MFGPAGE_DEVID_SAS2004:
4588                         switch (ioc->pdev->subsystem_device) {
4589                         case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4590                                 ioc_info(ioc, "%s\n",
4591                                          MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4592                                 break;
4593                         default:
4594                                 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4595                                          ioc->pdev->subsystem_device);
4596                                 break;
4597                         }
4598                         break;
4599                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4600                         switch (ioc->pdev->subsystem_device) {
4601                         case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4602                                 ioc_info(ioc, "%s\n",
4603                                          MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4604                                 break;
4605                         case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4606                                 ioc_info(ioc, "%s\n",
4607                                          MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4608                                 break;
4609                         case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4610                                 ioc_info(ioc, "%s\n",
4611                                          MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4612                                 break;
4613                         case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4614                                 ioc_info(ioc, "%s\n",
4615                                          MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4616                                 break;
4617                         default:
4618                                 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4619                                          ioc->pdev->subsystem_device);
4620                                 break;
4621                         }
4622                         break;
4623                 default:
4624                         ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4625                                  ioc->pdev->subsystem_device);
4626                         break;
4627                 }
4628                 break;
4629         default:
4630                 break;
4631         }
4632 }
4633
4634 /**
4635  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4636  *                              version from FW Image Header.
4637  * @ioc: per adapter object
4638  *
4639  * Return: 0 for success, non-zero for failure.
4640  */
4641         static int
4642 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4643 {
4644         Mpi2FWImageHeader_t *fw_img_hdr;
4645         Mpi26ComponentImageHeader_t *cmp_img_hdr;
4646         Mpi25FWUploadRequest_t *mpi_request;
4647         Mpi2FWUploadReply_t mpi_reply;
4648         int r = 0, issue_diag_reset = 0;
4649         u32  package_version = 0;
4650         void *fwpkg_data = NULL;
4651         dma_addr_t fwpkg_data_dma;
4652         u16 smid, ioc_status;
4653         size_t data_length;
4654
4655         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4656
4657         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4658                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
4659                 return -EAGAIN;
4660         }
4661
4662         data_length = sizeof(Mpi2FWImageHeader_t);
4663         fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4664                         &fwpkg_data_dma, GFP_KERNEL);
4665         if (!fwpkg_data) {
4666                 ioc_err(ioc,
4667                     "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4668                         __FILE__, __LINE__, __func__);
4669                 return -ENOMEM;
4670         }
4671
4672         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4673         if (!smid) {
4674                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4675                 r = -EAGAIN;
4676                 goto out;
4677         }
4678
4679         ioc->base_cmds.status = MPT3_CMD_PENDING;
4680         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4681         ioc->base_cmds.smid = smid;
4682         memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4683         mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4684         mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4685         mpi_request->ImageSize = cpu_to_le32(data_length);
4686         ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4687                         data_length);
4688         init_completion(&ioc->base_cmds.done);
4689         ioc->put_smid_default(ioc, smid);
4690         /* Wait for 15 seconds */
4691         wait_for_completion_timeout(&ioc->base_cmds.done,
4692                         FW_IMG_HDR_READ_TIMEOUT*HZ);
4693         ioc_info(ioc, "%s: complete\n", __func__);
4694         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4695                 ioc_err(ioc, "%s: timeout\n", __func__);
4696                 _debug_dump_mf(mpi_request,
4697                                 sizeof(Mpi25FWUploadRequest_t)/4);
4698                 issue_diag_reset = 1;
4699         } else {
4700                 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4701                 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4702                         memcpy(&mpi_reply, ioc->base_cmds.reply,
4703                                         sizeof(Mpi2FWUploadReply_t));
4704                         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4705                                                 MPI2_IOCSTATUS_MASK;
4706                         if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4707                                 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4708                                 if (le32_to_cpu(fw_img_hdr->Signature) ==
4709                                     MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4710                                         cmp_img_hdr =
4711                                             (Mpi26ComponentImageHeader_t *)
4712                                             (fwpkg_data);
4713                                         package_version =
4714                                             le32_to_cpu(
4715                                             cmp_img_hdr->ApplicationSpecific);
4716                                 } else
4717                                         package_version =
4718                                             le32_to_cpu(
4719                                             fw_img_hdr->PackageVersion.Word);
4720                                 if (package_version)
4721                                         ioc_info(ioc,
4722                                         "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4723                                         ((package_version) & 0xFF000000) >> 24,
4724                                         ((package_version) & 0x00FF0000) >> 16,
4725                                         ((package_version) & 0x0000FF00) >> 8,
4726                                         (package_version) & 0x000000FF);
4727                         } else {
4728                                 _debug_dump_mf(&mpi_reply,
4729                                                 sizeof(Mpi2FWUploadReply_t)/4);
4730                         }
4731                 }
4732         }
4733         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4734 out:
4735         if (fwpkg_data)
4736                 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4737                                 fwpkg_data_dma);
4738         if (issue_diag_reset) {
4739                 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
4740                         return -EFAULT;
4741                 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
4742                         return -EFAULT;
4743                 r = -EAGAIN;
4744         }
4745         return r;
4746 }
4747
4748 /**
4749  * _base_display_ioc_capabilities - Display IOC's capabilities.
4750  * @ioc: per adapter object
4751  */
4752 static void
4753 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4754 {
4755         int i = 0;
4756         char desc[17] = {0};
4757         u32 iounit_pg1_flags;
4758         u32 bios_version;
4759
4760         bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4761         strncpy(desc, ioc->manu_pg0.ChipName, 16);
4762         ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4763                  desc,
4764                  (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4765                  (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4766                  (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4767                  ioc->facts.FWVersion.Word & 0x000000FF,
4768                  ioc->pdev->revision,
4769                  (bios_version & 0xFF000000) >> 24,
4770                  (bios_version & 0x00FF0000) >> 16,
4771                  (bios_version & 0x0000FF00) >> 8,
4772                  bios_version & 0x000000FF);
4773
4774         _base_display_OEMs_branding(ioc);
4775
4776         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4777                 pr_info("%sNVMe", i ? "," : "");
4778                 i++;
4779         }
4780
4781         ioc_info(ioc, "Protocol=(");
4782
4783         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4784                 pr_cont("Initiator");
4785                 i++;
4786         }
4787
4788         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4789                 pr_cont("%sTarget", i ? "," : "");
4790                 i++;
4791         }
4792
4793         i = 0;
4794         pr_cont("), Capabilities=(");
4795
4796         if (!ioc->hide_ir_msg) {
4797                 if (ioc->facts.IOCCapabilities &
4798                     MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4799                         pr_cont("Raid");
4800                         i++;
4801                 }
4802         }
4803
4804         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4805                 pr_cont("%sTLR", i ? "," : "");
4806                 i++;
4807         }
4808
4809         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4810                 pr_cont("%sMulticast", i ? "," : "");
4811                 i++;
4812         }
4813
4814         if (ioc->facts.IOCCapabilities &
4815             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4816                 pr_cont("%sBIDI Target", i ? "," : "");
4817                 i++;
4818         }
4819
4820         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4821                 pr_cont("%sEEDP", i ? "," : "");
4822                 i++;
4823         }
4824
4825         if (ioc->facts.IOCCapabilities &
4826             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4827                 pr_cont("%sSnapshot Buffer", i ? "," : "");
4828                 i++;
4829         }
4830
4831         if (ioc->facts.IOCCapabilities &
4832             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4833                 pr_cont("%sDiag Trace Buffer", i ? "," : "");
4834                 i++;
4835         }
4836
4837         if (ioc->facts.IOCCapabilities &
4838             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4839                 pr_cont("%sDiag Extended Buffer", i ? "," : "");
4840                 i++;
4841         }
4842
4843         if (ioc->facts.IOCCapabilities &
4844             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4845                 pr_cont("%sTask Set Full", i ? "," : "");
4846                 i++;
4847         }
4848
4849         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4850         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4851                 pr_cont("%sNCQ", i ? "," : "");
4852                 i++;
4853         }
4854
4855         pr_cont(")\n");
4856 }
4857
4858 /**
4859  * mpt3sas_base_update_missing_delay - change the missing delay timers
4860  * @ioc: per adapter object
4861  * @device_missing_delay: amount of time till device is reported missing
4862  * @io_missing_delay: interval IO is returned when there is a missing device
4863  *
4864  * Passed on the command line, this function will modify the device missing
4865  * delay, as well as the io missing delay. This should be called at driver
4866  * load time.
4867  */
4868 void
4869 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4870         u16 device_missing_delay, u8 io_missing_delay)
4871 {
4872         u16 dmd, dmd_new, dmd_orignal;
4873         u8 io_missing_delay_original;
4874         u16 sz;
4875         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4876         Mpi2ConfigReply_t mpi_reply;
4877         u8 num_phys = 0;
4878         u16 ioc_status;
4879
4880         mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4881         if (!num_phys)
4882                 return;
4883
4884         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4885             sizeof(Mpi2SasIOUnit1PhyData_t));
4886         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4887         if (!sas_iounit_pg1) {
4888                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4889                         __FILE__, __LINE__, __func__);
4890                 goto out;
4891         }
4892         if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4893             sas_iounit_pg1, sz))) {
4894                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4895                         __FILE__, __LINE__, __func__);
4896                 goto out;
4897         }
4898         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4899             MPI2_IOCSTATUS_MASK;
4900         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4901                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4902                         __FILE__, __LINE__, __func__);
4903                 goto out;
4904         }
4905
4906         /* device missing delay */
4907         dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4908         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4909                 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4910         else
4911                 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4912         dmd_orignal = dmd;
4913         if (device_missing_delay > 0x7F) {
4914                 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4915                     device_missing_delay;
4916                 dmd = dmd / 16;
4917                 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4918         } else
4919                 dmd = device_missing_delay;
4920         sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4921
4922         /* io missing delay */
4923         io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4924         sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4925
4926         if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4927             sz)) {
4928                 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4929                         dmd_new = (dmd &
4930                             MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4931                 else
4932                         dmd_new =
4933                     dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4934                 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4935                          dmd_orignal, dmd_new);
4936                 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4937                          io_missing_delay_original,
4938                          io_missing_delay);
4939                 ioc->device_missing_delay = dmd_new;
4940                 ioc->io_missing_delay = io_missing_delay;
4941         }
4942
4943 out:
4944         kfree(sas_iounit_pg1);
4945 }
4946
4947 /**
4948  * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4949  *    according to performance mode.
4950  * @ioc : per adapter object
4951  *
4952  * Return: zero on success; otherwise return EAGAIN error code asking the
4953  * caller to retry.
4954  */
4955 static int
4956 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4957 {
4958         Mpi2IOCPage1_t ioc_pg1;
4959         Mpi2ConfigReply_t mpi_reply;
4960         int rc;
4961
4962         rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4963         if (rc)
4964                 return rc;
4965         memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4966
4967         switch (perf_mode) {
4968         case MPT_PERF_MODE_DEFAULT:
4969         case MPT_PERF_MODE_BALANCED:
4970                 if (ioc->high_iops_queues) {
4971                         ioc_info(ioc,
4972                                 "Enable interrupt coalescing only for first\t"
4973                                 "%d reply queues\n",
4974                                 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4975                         /*
4976                          * If 31st bit is zero then interrupt coalescing is
4977                          * enabled for all reply descriptor post queues.
4978                          * If 31st bit is set to one then user can
4979                          * enable/disable interrupt coalescing on per reply
4980                          * descriptor post queue group(8) basis. So to enable
4981                          * interrupt coalescing only on first reply descriptor
4982                          * post queue group 31st bit and zero th bit is enabled.
4983                          */
4984                         ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4985                             ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4986                         rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4987                         if (rc)
4988                                 return rc;
4989                         ioc_info(ioc, "performance mode: balanced\n");
4990                         return 0;
4991                 }
4992                 fallthrough;
4993         case MPT_PERF_MODE_LATENCY:
4994                 /*
4995                  * Enable interrupt coalescing on all reply queues
4996                  * with timeout value 0xA
4997                  */
4998                 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
4999                 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5000                 ioc_pg1.ProductSpecific = 0;
5001                 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5002                 if (rc)
5003                         return rc;
5004                 ioc_info(ioc, "performance mode: latency\n");
5005                 break;
5006         case MPT_PERF_MODE_IOPS:
5007                 /*
5008                  * Enable interrupt coalescing on all reply queues.
5009                  */
5010                 ioc_info(ioc,
5011                     "performance mode: iops with coalescing timeout: 0x%x\n",
5012                     le32_to_cpu(ioc_pg1.CoalescingTimeout));
5013                 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5014                 ioc_pg1.ProductSpecific = 0;
5015                 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5016                 if (rc)
5017                         return rc;
5018                 break;
5019         }
5020         return 0;
5021 }
5022
5023 /**
5024  * _base_get_event_diag_triggers - get event diag trigger values from
5025  *                              persistent pages
5026  * @ioc : per adapter object
5027  *
5028  * Return: nothing.
5029  */
5030 static int
5031 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5032 {
5033         Mpi26DriverTriggerPage2_t trigger_pg2;
5034         struct SL_WH_EVENT_TRIGGER_T *event_tg;
5035         MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg;
5036         Mpi2ConfigReply_t mpi_reply;
5037         int r = 0, i = 0;
5038         u16 count = 0;
5039         u16 ioc_status;
5040
5041         r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
5042             &trigger_pg2);
5043         if (r)
5044                 return r;
5045
5046         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5047             MPI2_IOCSTATUS_MASK;
5048         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5049                 dinitprintk(ioc,
5050                     ioc_err(ioc,
5051                     "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
5052                    __func__, ioc_status));
5053                 return 0;
5054         }
5055
5056         if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
5057                 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
5058                 count = min_t(u16, NUM_VALID_ENTRIES, count);
5059                 ioc->diag_trigger_event.ValidEntries = count;
5060
5061                 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
5062                 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
5063                 for (i = 0; i < count; i++) {
5064                         event_tg->EventValue = le16_to_cpu(
5065                             mpi_event_tg->MPIEventCode);
5066                         event_tg->LogEntryQualifier = le16_to_cpu(
5067                             mpi_event_tg->MPIEventCodeSpecific);
5068                         event_tg++;
5069                         mpi_event_tg++;
5070                 }
5071         }
5072         return 0;
5073 }
5074
5075 /**
5076  * _base_get_scsi_diag_triggers - get scsi diag trigger values from
5077  *                              persistent pages
5078  * @ioc : per adapter object
5079  *
5080  * Return: 0 on success; otherwise return failure status.
5081  */
5082 static int
5083 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5084 {
5085         Mpi26DriverTriggerPage3_t trigger_pg3;
5086         struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
5087         MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg;
5088         Mpi2ConfigReply_t mpi_reply;
5089         int r = 0, i = 0;
5090         u16 count = 0;
5091         u16 ioc_status;
5092
5093         r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
5094             &trigger_pg3);
5095         if (r)
5096                 return r;
5097
5098         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5099             MPI2_IOCSTATUS_MASK;
5100         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5101                 dinitprintk(ioc,
5102                     ioc_err(ioc,
5103                     "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
5104                     __func__, ioc_status));
5105                 return 0;
5106         }
5107
5108         if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
5109                 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
5110                 count = min_t(u16, NUM_VALID_ENTRIES, count);
5111                 ioc->diag_trigger_scsi.ValidEntries = count;
5112
5113                 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
5114                 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
5115                 for (i = 0; i < count; i++) {
5116                         scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
5117                         scsi_tg->ASC = mpi_scsi_tg->ASC;
5118                         scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
5119
5120                         scsi_tg++;
5121                         mpi_scsi_tg++;
5122                 }
5123         }
5124         return 0;
5125 }
5126
5127 /**
5128  * _base_get_mpi_diag_triggers - get mpi diag trigger values from
5129  *                              persistent pages
5130  * @ioc : per adapter object
5131  *
5132  * Return: 0 on success; otherwise return failure status.
5133  */
5134 static int
5135 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5136 {
5137         Mpi26DriverTriggerPage4_t trigger_pg4;
5138         struct SL_WH_MPI_TRIGGER_T *status_tg;
5139         MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg;
5140         Mpi2ConfigReply_t mpi_reply;
5141         int r = 0, i = 0;
5142         u16 count = 0;
5143         u16 ioc_status;
5144
5145         r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
5146             &trigger_pg4);
5147         if (r)
5148                 return r;
5149
5150         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5151             MPI2_IOCSTATUS_MASK;
5152         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5153                 dinitprintk(ioc,
5154                     ioc_err(ioc,
5155                     "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
5156                     __func__, ioc_status));
5157                 return 0;
5158         }
5159
5160         if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
5161                 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
5162                 count = min_t(u16, NUM_VALID_ENTRIES, count);
5163                 ioc->diag_trigger_mpi.ValidEntries = count;
5164
5165                 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
5166                 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
5167
5168                 for (i = 0; i < count; i++) {
5169                         status_tg->IOCStatus = le16_to_cpu(
5170                             mpi_status_tg->IOCStatus);
5171                         status_tg->IocLogInfo = le32_to_cpu(
5172                             mpi_status_tg->LogInfo);
5173
5174                         status_tg++;
5175                         mpi_status_tg++;
5176                 }
5177         }
5178         return 0;
5179 }
5180
5181 /**
5182  * _base_get_master_diag_triggers - get master diag trigger values from
5183  *                              persistent pages
5184  * @ioc : per adapter object
5185  *
5186  * Return: nothing.
5187  */
5188 static int
5189 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5190 {
5191         Mpi26DriverTriggerPage1_t trigger_pg1;
5192         Mpi2ConfigReply_t mpi_reply;
5193         int r;
5194         u16 ioc_status;
5195
5196         r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
5197             &trigger_pg1);
5198         if (r)
5199                 return r;
5200
5201         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5202             MPI2_IOCSTATUS_MASK;
5203         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5204                 dinitprintk(ioc,
5205                     ioc_err(ioc,
5206                     "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
5207                    __func__, ioc_status));
5208                 return 0;
5209         }
5210
5211         if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
5212                 ioc->diag_trigger_master.MasterData |=
5213                     le32_to_cpu(
5214                     trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
5215         return 0;
5216 }
5217
5218 /**
5219  * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5220  *                                      driver trigger pages or not
5221  * @ioc : per adapter object
5222  * @trigger_flags : address where trigger page0's TriggerFlags value is copied
5223  *
5224  * Return: trigger flags mask if HBA FW supports driver trigger pages;
5225  * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or
5226  * return EAGAIN if diag reset occurred due to FW fault and asking the
5227  * caller to retry the command.
5228  *
5229  */
5230 static int
5231 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags)
5232 {
5233         Mpi26DriverTriggerPage0_t trigger_pg0;
5234         int r = 0;
5235         Mpi2ConfigReply_t mpi_reply;
5236         u16 ioc_status;
5237
5238         r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5239             &trigger_pg0);
5240         if (r)
5241                 return r;
5242
5243         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5244             MPI2_IOCSTATUS_MASK;
5245         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5246                 return -EFAULT;
5247
5248         *trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags);
5249         return 0;
5250 }
5251
5252 /**
5253  * _base_get_diag_triggers - Retrieve diag trigger values from
5254  *                              persistent pages.
5255  * @ioc : per adapter object
5256  *
5257  * Return: zero on success; otherwise return EAGAIN error codes
5258  * asking the caller to retry.
5259  */
5260 static int
5261 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5262 {
5263         int trigger_flags;
5264         int r;
5265
5266         /*
5267          * Default setting of master trigger.
5268          */
5269         ioc->diag_trigger_master.MasterData =
5270             (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5271
5272         r = _base_check_for_trigger_pages_support(ioc, &trigger_flags);
5273         if (r) {
5274                 if (r == -EAGAIN)
5275                         return r;
5276                 /*
5277                  * Don't go for error handling when FW doesn't support
5278                  * driver trigger pages.
5279                  */
5280                 return 0;
5281         }
5282
5283         ioc->supports_trigger_pages = 1;
5284
5285         /*
5286          * Retrieve master diag trigger values from driver trigger pg1
5287          * if master trigger bit enabled in TriggerFlags.
5288          */
5289         if ((u16)trigger_flags &
5290             MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) {
5291                 r = _base_get_master_diag_triggers(ioc);
5292                 if (r)
5293                         return r;
5294         }
5295
5296         /*
5297          * Retrieve event diag trigger values from driver trigger pg2
5298          * if event trigger bit enabled in TriggerFlags.
5299          */
5300         if ((u16)trigger_flags &
5301             MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) {
5302                 r = _base_get_event_diag_triggers(ioc);
5303                 if (r)
5304                         return r;
5305         }
5306
5307         /*
5308          * Retrieve scsi diag trigger values from driver trigger pg3
5309          * if scsi trigger bit enabled in TriggerFlags.
5310          */
5311         if ((u16)trigger_flags &
5312             MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) {
5313                 r = _base_get_scsi_diag_triggers(ioc);
5314                 if (r)
5315                         return r;
5316         }
5317         /*
5318          * Retrieve mpi error diag trigger values from driver trigger pg4
5319          * if loginfo trigger bit enabled in TriggerFlags.
5320          */
5321         if ((u16)trigger_flags &
5322             MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) {
5323                 r = _base_get_mpi_diag_triggers(ioc);
5324                 if (r)
5325                         return r;
5326         }
5327         return 0;
5328 }
5329
5330 /**
5331  * _base_update_diag_trigger_pages - Update the driver trigger pages after
5332  *                      online FW update, in case updated FW supports driver
5333  *                      trigger pages.
5334  * @ioc : per adapter object
5335  *
5336  * Return: nothing.
5337  */
5338 static void
5339 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5340 {
5341
5342         if (ioc->diag_trigger_master.MasterData)
5343                 mpt3sas_config_update_driver_trigger_pg1(ioc,
5344                     &ioc->diag_trigger_master, 1);
5345
5346         if (ioc->diag_trigger_event.ValidEntries)
5347                 mpt3sas_config_update_driver_trigger_pg2(ioc,
5348                     &ioc->diag_trigger_event, 1);
5349
5350         if (ioc->diag_trigger_scsi.ValidEntries)
5351                 mpt3sas_config_update_driver_trigger_pg3(ioc,
5352                     &ioc->diag_trigger_scsi, 1);
5353
5354         if (ioc->diag_trigger_mpi.ValidEntries)
5355                 mpt3sas_config_update_driver_trigger_pg4(ioc,
5356                     &ioc->diag_trigger_mpi, 1);
5357 }
5358
5359 /**
5360  * _base_assign_fw_reported_qd  - Get FW reported QD for SAS/SATA devices.
5361  *                              - On failure set default QD values.
5362  * @ioc : per adapter object
5363  *
5364  * Returns 0 for success, non-zero for failure.
5365  *
5366  */
5367 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc)
5368 {
5369         Mpi2ConfigReply_t mpi_reply;
5370         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
5371         Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1;
5372         u16 depth;
5373         int sz;
5374         int rc = 0;
5375
5376         ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5377         ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5378         ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH;
5379         ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH;
5380         if (!ioc->is_gen35_ioc)
5381                 goto out;
5382         /* sas iounit page 1 */
5383         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData);
5384         sas_iounit_pg1 = kzalloc(sizeof(Mpi2SasIOUnitPage1_t), GFP_KERNEL);
5385         if (!sas_iounit_pg1) {
5386                 pr_err("%s: failure at %s:%d/%s()!\n",
5387                     ioc->name, __FILE__, __LINE__, __func__);
5388                 return rc;
5389         }
5390         rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
5391             sas_iounit_pg1, sz);
5392         if (rc) {
5393                 pr_err("%s: failure at %s:%d/%s()!\n",
5394                     ioc->name, __FILE__, __LINE__, __func__);
5395                 goto out;
5396         }
5397
5398         depth = le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth);
5399         ioc->max_wideport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5400
5401         depth = le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth);
5402         ioc->max_narrowport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5403
5404         depth = sas_iounit_pg1->SATAMaxQDepth;
5405         ioc->max_sata_qd = (depth ? depth : MPT3SAS_SATA_QUEUE_DEPTH);
5406
5407         /* pcie iounit page 1 */
5408         rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply,
5409             &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t));
5410         if (rc) {
5411                 pr_err("%s: failure at %s:%d/%s()!\n",
5412                     ioc->name, __FILE__, __LINE__, __func__);
5413                 goto out;
5414         }
5415         ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ?
5416             (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) :
5417             MPT3SAS_NVME_QUEUE_DEPTH;
5418 out:
5419         dinitprintk(ioc, pr_err(
5420             "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n",
5421             ioc->max_wideport_qd, ioc->max_narrowport_qd,
5422             ioc->max_sata_qd, ioc->max_nvme_qd));
5423         kfree(sas_iounit_pg1);
5424         return rc;
5425 }
5426
5427 /**
5428  * _base_static_config_pages - static start of day config pages
5429  * @ioc: per adapter object
5430  */
5431 static int
5432 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5433 {
5434         Mpi2ConfigReply_t mpi_reply;
5435         u32 iounit_pg1_flags;
5436         int tg_flags = 0;
5437         int rc;
5438         ioc->nvme_abort_timeout = 30;
5439
5440         rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply,
5441             &ioc->manu_pg0);
5442         if (rc)
5443                 return rc;
5444         if (ioc->ir_firmware) {
5445                 rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5446                     &ioc->manu_pg10);
5447                 if (rc)
5448                         return rc;
5449         }
5450         /*
5451          * Ensure correct T10 PI operation if vendor left EEDPTagMode
5452          * flag unset in NVDATA.
5453          */
5454         rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply,
5455             &ioc->manu_pg11);
5456         if (rc)
5457                 return rc;
5458         if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5459                 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5460                     ioc->name);
5461                 ioc->manu_pg11.EEDPTagMode &= ~0x3;
5462                 ioc->manu_pg11.EEDPTagMode |= 0x1;
5463                 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5464                     &ioc->manu_pg11);
5465         }
5466         if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5467                 ioc->tm_custom_handling = 1;
5468         else {
5469                 ioc->tm_custom_handling = 0;
5470                 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5471                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5472                 else if (ioc->manu_pg11.NVMeAbortTO >
5473                                         NVME_TASK_ABORT_MAX_TIMEOUT)
5474                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5475                 else
5476                         ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5477         }
5478         ioc->time_sync_interval =
5479             ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5480         if (ioc->time_sync_interval) {
5481                 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5482                         ioc->time_sync_interval =
5483                             ioc->time_sync_interval * SECONDS_PER_HOUR;
5484                 else
5485                         ioc->time_sync_interval =
5486                             ioc->time_sync_interval * SECONDS_PER_MIN;
5487                 dinitprintk(ioc, ioc_info(ioc,
5488                     "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5489                     ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5490                     MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5491         } else {
5492                 if (ioc->is_gen35_ioc)
5493                         ioc_warn(ioc,
5494                             "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5495         }
5496         rc = _base_assign_fw_reported_qd(ioc);
5497         if (rc)
5498                 return rc;
5499         rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5500         if (rc)
5501                 return rc;
5502         rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5503         if (rc)
5504                 return rc;
5505         rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5506         if (rc)
5507                 return rc;
5508         rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5509         if (rc)
5510                 return rc;
5511         rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5512         if (rc)
5513                 return rc;
5514         rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
5515         if (rc)
5516                 return rc;
5517         _base_display_ioc_capabilities(ioc);
5518
5519         /*
5520          * Enable task_set_full handling in iounit_pg1 when the
5521          * facts capabilities indicate that its supported.
5522          */
5523         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5524         if ((ioc->facts.IOCCapabilities &
5525             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5526                 iounit_pg1_flags &=
5527                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5528         else
5529                 iounit_pg1_flags |=
5530                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5531         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5532         rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5533         if (rc)
5534                 return rc;
5535
5536         if (ioc->iounit_pg8.NumSensors)
5537                 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
5538         if (ioc->is_aero_ioc) {
5539                 rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5540                 if (rc)
5541                         return rc;
5542         }
5543         if (ioc->is_gen35_ioc) {
5544                 if (ioc->is_driver_loading) {
5545                         rc = _base_get_diag_triggers(ioc);
5546                         if (rc)
5547                                 return rc;
5548                 } else {
5549                         /*
5550                          * In case of online HBA FW update operation,
5551                          * check whether updated FW supports the driver trigger
5552                          * pages or not.
5553                          * - If previous FW has not supported driver trigger
5554                          *   pages and newer FW supports them then update these
5555                          *   pages with current diag trigger values.
5556                          * - If previous FW has supported driver trigger pages
5557                          *   and new FW doesn't support them then disable
5558                          *   support_trigger_pages flag.
5559                          */
5560                         _base_check_for_trigger_pages_support(ioc, &tg_flags);
5561                         if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5562                                 _base_update_diag_trigger_pages(ioc);
5563                         else if (ioc->supports_trigger_pages &&
5564                             tg_flags == -EFAULT)
5565                                 ioc->supports_trigger_pages = 0;
5566                 }
5567         }
5568         return 0;
5569 }
5570
5571 /**
5572  * mpt3sas_free_enclosure_list - release memory
5573  * @ioc: per adapter object
5574  *
5575  * Free memory allocated during enclosure add.
5576  */
5577 void
5578 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5579 {
5580         struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5581
5582         /* Free enclosure list */
5583         list_for_each_entry_safe(enclosure_dev,
5584                         enclosure_dev_next, &ioc->enclosure_list, list) {
5585                 list_del(&enclosure_dev->list);
5586                 kfree(enclosure_dev);
5587         }
5588 }
5589
5590 /**
5591  * _base_release_memory_pools - release memory
5592  * @ioc: per adapter object
5593  *
5594  * Free memory allocated from _base_allocate_memory_pools.
5595  */
5596 static void
5597 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5598 {
5599         int i = 0;
5600         int j = 0;
5601         int dma_alloc_count = 0;
5602         struct chain_tracker *ct;
5603         int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5604
5605         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5606
5607         if (ioc->request) {
5608                 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5609                     ioc->request,  ioc->request_dma);
5610                 dexitprintk(ioc,
5611                             ioc_info(ioc, "request_pool(0x%p): free\n",
5612                                      ioc->request));
5613                 ioc->request = NULL;
5614         }
5615
5616         if (ioc->sense) {
5617                 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5618                 dma_pool_destroy(ioc->sense_dma_pool);
5619                 dexitprintk(ioc,
5620                             ioc_info(ioc, "sense_pool(0x%p): free\n",
5621                                      ioc->sense));
5622                 ioc->sense = NULL;
5623         }
5624
5625         if (ioc->reply) {
5626                 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5627                 dma_pool_destroy(ioc->reply_dma_pool);
5628                 dexitprintk(ioc,
5629                             ioc_info(ioc, "reply_pool(0x%p): free\n",
5630                                      ioc->reply));
5631                 ioc->reply = NULL;
5632         }
5633
5634         if (ioc->reply_free) {
5635                 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5636                     ioc->reply_free_dma);
5637                 dma_pool_destroy(ioc->reply_free_dma_pool);
5638                 dexitprintk(ioc,
5639                             ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5640                                      ioc->reply_free));
5641                 ioc->reply_free = NULL;
5642         }
5643
5644         if (ioc->reply_post) {
5645                 dma_alloc_count = DIV_ROUND_UP(count,
5646                                 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5647                 for (i = 0; i < count; i++) {
5648                         if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5649                             && dma_alloc_count) {
5650                                 if (ioc->reply_post[i].reply_post_free) {
5651                                         dma_pool_free(
5652                                             ioc->reply_post_free_dma_pool,
5653                                             ioc->reply_post[i].reply_post_free,
5654                                         ioc->reply_post[i].reply_post_free_dma);
5655                                         dexitprintk(ioc, ioc_info(ioc,
5656                                            "reply_post_free_pool(0x%p): free\n",
5657                                            ioc->reply_post[i].reply_post_free));
5658                                         ioc->reply_post[i].reply_post_free =
5659                                                                         NULL;
5660                                 }
5661                                 --dma_alloc_count;
5662                         }
5663                 }
5664                 dma_pool_destroy(ioc->reply_post_free_dma_pool);
5665                 if (ioc->reply_post_free_array &&
5666                         ioc->rdpq_array_enable) {
5667                         dma_pool_free(ioc->reply_post_free_array_dma_pool,
5668                             ioc->reply_post_free_array,
5669                             ioc->reply_post_free_array_dma);
5670                         ioc->reply_post_free_array = NULL;
5671                 }
5672                 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5673                 kfree(ioc->reply_post);
5674         }
5675
5676         if (ioc->pcie_sgl_dma_pool) {
5677                 for (i = 0; i < ioc->scsiio_depth; i++) {
5678                         dma_pool_free(ioc->pcie_sgl_dma_pool,
5679                                         ioc->pcie_sg_lookup[i].pcie_sgl,
5680                                         ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5681                         ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
5682                 }
5683                 dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5684         }
5685         if (ioc->config_page) {
5686                 dexitprintk(ioc,
5687                             ioc_info(ioc, "config_page(0x%p): free\n",
5688                                      ioc->config_page));
5689                 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5690                     ioc->config_page, ioc->config_page_dma);
5691         }
5692
5693         kfree(ioc->hpr_lookup);
5694         ioc->hpr_lookup = NULL;
5695         kfree(ioc->internal_lookup);
5696         ioc->internal_lookup = NULL;
5697         if (ioc->chain_lookup) {
5698                 for (i = 0; i < ioc->scsiio_depth; i++) {
5699                         for (j = ioc->chains_per_prp_buffer;
5700                             j < ioc->chains_needed_per_io; j++) {
5701                                 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5702                                 if (ct && ct->chain_buffer)
5703                                         dma_pool_free(ioc->chain_dma_pool,
5704                                                 ct->chain_buffer,
5705                                                 ct->chain_buffer_dma);
5706                         }
5707                         kfree(ioc->chain_lookup[i].chains_per_smid);
5708                 }
5709                 dma_pool_destroy(ioc->chain_dma_pool);
5710                 kfree(ioc->chain_lookup);
5711                 ioc->chain_lookup = NULL;
5712         }
5713
5714         kfree(ioc->io_queue_num);
5715         ioc->io_queue_num = NULL;
5716 }
5717
5718 /**
5719  * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5720  *      having same upper 32bits in their base memory address.
5721  * @start_address: Base address of a reply queue set
5722  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5723  *
5724  * Return: 1 if reply queues in a set have a same upper 32bits in their base
5725  * memory address, else 0.
5726  */
5727 static int
5728 mpt3sas_check_same_4gb_region(dma_addr_t start_address, u32 pool_sz)
5729 {
5730         dma_addr_t end_address;
5731
5732         end_address = start_address + pool_sz - 1;
5733
5734         if (upper_32_bits(start_address) == upper_32_bits(end_address))
5735                 return 1;
5736         else
5737                 return 0;
5738 }
5739
5740 /**
5741  * _base_reduce_hba_queue_depth- Retry with reduced queue depth
5742  * @ioc: Adapter object
5743  *
5744  * Return: 0 for success, non-zero for failure.
5745  **/
5746 static inline int
5747 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
5748 {
5749         int reduce_sz = 64;
5750
5751         if ((ioc->hba_queue_depth - reduce_sz) >
5752             (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5753                 ioc->hba_queue_depth -= reduce_sz;
5754                 return 0;
5755         } else
5756                 return -ENOMEM;
5757 }
5758
5759 /**
5760  * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5761  *                      for pcie sgl pools.
5762  * @ioc: Adapter object
5763  * @sz: DMA Pool size
5764  *
5765  * Return: 0 for success, non-zero for failure.
5766  */
5767
5768 static int
5769 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5770 {
5771         int i = 0, j = 0;
5772         struct chain_tracker *ct;
5773
5774         ioc->pcie_sgl_dma_pool =
5775             dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5776             ioc->page_size, 0);
5777         if (!ioc->pcie_sgl_dma_pool) {
5778                 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5779                 return -ENOMEM;
5780         }
5781
5782         ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5783         ioc->chains_per_prp_buffer =
5784             min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5785         for (i = 0; i < ioc->scsiio_depth; i++) {
5786                 ioc->pcie_sg_lookup[i].pcie_sgl =
5787                     dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5788                     &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5789                 if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5790                         ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5791                         return -EAGAIN;
5792                 }
5793
5794                 if (!mpt3sas_check_same_4gb_region(
5795                     ioc->pcie_sg_lookup[i].pcie_sgl_dma, sz)) {
5796                         ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5797                             ioc->pcie_sg_lookup[i].pcie_sgl,
5798                             (unsigned long long)
5799                             ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5800                         ioc->use_32bit_dma = true;
5801                         return -EAGAIN;
5802                 }
5803
5804                 for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5805                         ct = &ioc->chain_lookup[i].chains_per_smid[j];
5806                         ct->chain_buffer =
5807                             ioc->pcie_sg_lookup[i].pcie_sgl +
5808                             (j * ioc->chain_segment_sz);
5809                         ct->chain_buffer_dma =
5810                             ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5811                             (j * ioc->chain_segment_sz);
5812                 }
5813         }
5814         dinitprintk(ioc, ioc_info(ioc,
5815             "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5816             ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
5817         dinitprintk(ioc, ioc_info(ioc,
5818             "Number of chains can fit in a PRP page(%d)\n",
5819             ioc->chains_per_prp_buffer));
5820         return 0;
5821 }
5822
5823 /**
5824  * _base_allocate_chain_dma_pool - Allocating DMA'able memory
5825  *                      for chain dma pool.
5826  * @ioc: Adapter object
5827  * @sz: DMA Pool size
5828  *
5829  * Return: 0 for success, non-zero for failure.
5830  */
5831 static int
5832 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5833 {
5834         int i = 0, j = 0;
5835         struct chain_tracker *ctr;
5836
5837         ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5838             ioc->chain_segment_sz, 16, 0);
5839         if (!ioc->chain_dma_pool)
5840                 return -ENOMEM;
5841
5842         for (i = 0; i < ioc->scsiio_depth; i++) {
5843                 for (j = ioc->chains_per_prp_buffer;
5844                     j < ioc->chains_needed_per_io; j++) {
5845                         ctr = &ioc->chain_lookup[i].chains_per_smid[j];
5846                         ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool,
5847                             GFP_KERNEL, &ctr->chain_buffer_dma);
5848                         if (!ctr->chain_buffer)
5849                                 return -EAGAIN;
5850                         if (!mpt3sas_check_same_4gb_region(
5851                             ctr->chain_buffer_dma, ioc->chain_segment_sz)) {
5852                                 ioc_err(ioc,
5853                                     "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n",
5854                                     ctr->chain_buffer,
5855                                     (unsigned long long)ctr->chain_buffer_dma);
5856                                 ioc->use_32bit_dma = true;
5857                                 return -EAGAIN;
5858                         }
5859                 }
5860         }
5861         dinitprintk(ioc, ioc_info(ioc,
5862             "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n",
5863             ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
5864             (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
5865             ioc->chain_segment_sz))/1024));
5866         return 0;
5867 }
5868
5869 /**
5870  * _base_allocate_sense_dma_pool - Allocating DMA'able memory
5871  *                      for sense dma pool.
5872  * @ioc: Adapter object
5873  * @sz: DMA Pool size
5874  * Return: 0 for success, non-zero for failure.
5875  */
5876 static int
5877 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5878 {
5879         ioc->sense_dma_pool =
5880             dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0);
5881         if (!ioc->sense_dma_pool)
5882                 return -ENOMEM;
5883         ioc->sense = dma_pool_alloc(ioc->sense_dma_pool,
5884             GFP_KERNEL, &ioc->sense_dma);
5885         if (!ioc->sense)
5886                 return -EAGAIN;
5887         if (!mpt3sas_check_same_4gb_region(ioc->sense_dma, sz)) {
5888                 dinitprintk(ioc, pr_err(
5889                     "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n",
5890                     ioc->sense, (unsigned long long) ioc->sense_dma));
5891                 ioc->use_32bit_dma = true;
5892                 return -EAGAIN;
5893         }
5894         ioc_info(ioc,
5895             "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
5896             ioc->sense, (unsigned long long)ioc->sense_dma,
5897             ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
5898         return 0;
5899 }
5900
5901 /**
5902  * _base_allocate_reply_pool - Allocating DMA'able memory
5903  *                      for reply pool.
5904  * @ioc: Adapter object
5905  * @sz: DMA Pool size
5906  * Return: 0 for success, non-zero for failure.
5907  */
5908 static int
5909 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5910 {
5911         /* reply pool, 4 byte align */
5912         ioc->reply_dma_pool = dma_pool_create("reply pool",
5913             &ioc->pdev->dev, sz, 4, 0);
5914         if (!ioc->reply_dma_pool)
5915                 return -ENOMEM;
5916         ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5917             &ioc->reply_dma);
5918         if (!ioc->reply)
5919                 return -EAGAIN;
5920         if (!mpt3sas_check_same_4gb_region(ioc->reply_dma, sz)) {
5921                 dinitprintk(ioc, pr_err(
5922                     "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n",
5923                     ioc->reply, (unsigned long long) ioc->reply_dma));
5924                 ioc->use_32bit_dma = true;
5925                 return -EAGAIN;
5926         }
5927         ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5928         ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5929         ioc_info(ioc,
5930             "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5931             ioc->reply, (unsigned long long)ioc->reply_dma,
5932             ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
5933         return 0;
5934 }
5935
5936 /**
5937  * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
5938  *                      for reply free dma pool.
5939  * @ioc: Adapter object
5940  * @sz: DMA Pool size
5941  * Return: 0 for success, non-zero for failure.
5942  */
5943 static int
5944 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5945 {
5946         /* reply free queue, 16 byte align */
5947         ioc->reply_free_dma_pool = dma_pool_create(
5948             "reply_free pool", &ioc->pdev->dev, sz, 16, 0);
5949         if (!ioc->reply_free_dma_pool)
5950                 return -ENOMEM;
5951         ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool,
5952             GFP_KERNEL, &ioc->reply_free_dma);
5953         if (!ioc->reply_free)
5954                 return -EAGAIN;
5955         if (!mpt3sas_check_same_4gb_region(ioc->reply_free_dma, sz)) {
5956                 dinitprintk(ioc,
5957                     pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
5958                     ioc->reply_free, (unsigned long long) ioc->reply_free_dma));
5959                 ioc->use_32bit_dma = true;
5960                 return -EAGAIN;
5961         }
5962         memset(ioc->reply_free, 0, sz);
5963         dinitprintk(ioc, ioc_info(ioc,
5964             "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5965             ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
5966         dinitprintk(ioc, ioc_info(ioc,
5967             "reply_free_dma (0x%llx)\n",
5968             (unsigned long long)ioc->reply_free_dma));
5969         return 0;
5970 }
5971
5972 /**
5973  * _base_allocate_reply_post_free_array - Allocating DMA'able memory
5974  *                      for reply post free array.
5975  * @ioc: Adapter object
5976  * @reply_post_free_array_sz: DMA Pool size
5977  * Return: 0 for success, non-zero for failure.
5978  */
5979
5980 static int
5981 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
5982         u32 reply_post_free_array_sz)
5983 {
5984         ioc->reply_post_free_array_dma_pool =
5985             dma_pool_create("reply_post_free_array pool",
5986             &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5987         if (!ioc->reply_post_free_array_dma_pool)
5988                 return -ENOMEM;
5989         ioc->reply_post_free_array =
5990             dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
5991             GFP_KERNEL, &ioc->reply_post_free_array_dma);
5992         if (!ioc->reply_post_free_array)
5993                 return -EAGAIN;
5994         if (!mpt3sas_check_same_4gb_region(ioc->reply_post_free_array_dma,
5995             reply_post_free_array_sz)) {
5996                 dinitprintk(ioc, pr_err(
5997                     "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
5998                     ioc->reply_free,
5999                     (unsigned long long) ioc->reply_free_dma));
6000                 ioc->use_32bit_dma = true;
6001                 return -EAGAIN;
6002         }
6003         return 0;
6004 }
6005 /**
6006  * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
6007  *                     for reply queues.
6008  * @ioc: per adapter object
6009  * @sz: DMA Pool size
6010  * Return: 0 for success, non-zero for failure.
6011  */
6012 static int
6013 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
6014 {
6015         int i = 0;
6016         u32 dma_alloc_count = 0;
6017         int reply_post_free_sz = ioc->reply_post_queue_depth *
6018                 sizeof(Mpi2DefaultReplyDescriptor_t);
6019         int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
6020
6021         ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
6022                         GFP_KERNEL);
6023         if (!ioc->reply_post)
6024                 return -ENOMEM;
6025         /*
6026          *  For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
6027          *  VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
6028          *  be within 4GB boundary i.e reply queues in a set must have same
6029          *  upper 32-bits in their memory address. so here driver is allocating
6030          *  the DMA'able memory for reply queues according.
6031          *  Driver uses limitation of
6032          *  VENTURA_SERIES to manage INVADER_SERIES as well.
6033          */
6034         dma_alloc_count = DIV_ROUND_UP(count,
6035                                 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
6036         ioc->reply_post_free_dma_pool =
6037                 dma_pool_create("reply_post_free pool",
6038                     &ioc->pdev->dev, sz, 16, 0);
6039         if (!ioc->reply_post_free_dma_pool)
6040                 return -ENOMEM;
6041         for (i = 0; i < count; i++) {
6042                 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
6043                         ioc->reply_post[i].reply_post_free =
6044                             dma_pool_zalloc(ioc->reply_post_free_dma_pool,
6045                                 GFP_KERNEL,
6046                                 &ioc->reply_post[i].reply_post_free_dma);
6047                         if (!ioc->reply_post[i].reply_post_free)
6048                                 return -ENOMEM;
6049                         /*
6050                          * Each set of RDPQ pool must satisfy 4gb boundary
6051                          * restriction.
6052                          * 1) Check if allocated resources for RDPQ pool are in
6053                          *      the same 4GB range.
6054                          * 2) If #1 is true, continue with 64 bit DMA.
6055                          * 3) If #1 is false, return 1. which means free all the
6056                          * resources and set DMA mask to 32 and allocate.
6057                          */
6058                         if (!mpt3sas_check_same_4gb_region(
6059                                 ioc->reply_post[i].reply_post_free_dma, sz)) {
6060                                 dinitprintk(ioc,
6061                                     ioc_err(ioc, "bad Replypost free pool(0x%p)"
6062                                     "reply_post_free_dma = (0x%llx)\n",
6063                                     ioc->reply_post[i].reply_post_free,
6064                                     (unsigned long long)
6065                                     ioc->reply_post[i].reply_post_free_dma));
6066                                 return -EAGAIN;
6067                         }
6068                         dma_alloc_count--;
6069
6070                 } else {
6071                         ioc->reply_post[i].reply_post_free =
6072                             (Mpi2ReplyDescriptorsUnion_t *)
6073                             ((long)ioc->reply_post[i-1].reply_post_free
6074                             + reply_post_free_sz);
6075                         ioc->reply_post[i].reply_post_free_dma =
6076                             (dma_addr_t)
6077                             (ioc->reply_post[i-1].reply_post_free_dma +
6078                             reply_post_free_sz);
6079                 }
6080         }
6081         return 0;
6082 }
6083
6084 /**
6085  * _base_allocate_memory_pools - allocate start of day memory pools
6086  * @ioc: per adapter object
6087  *
6088  * Return: 0 success, anything else error.
6089  */
6090 static int
6091 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
6092 {
6093         struct mpt3sas_facts *facts;
6094         u16 max_sge_elements;
6095         u16 chains_needed_per_io;
6096         u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
6097         u32 retry_sz;
6098         u32 rdpq_sz = 0, sense_sz = 0;
6099         u16 max_request_credit, nvme_blocks_needed;
6100         unsigned short sg_tablesize;
6101         u16 sge_size;
6102         int i;
6103         int ret = 0, rc = 0;
6104
6105         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6106
6107
6108         retry_sz = 0;
6109         facts = &ioc->facts;
6110
6111         /* command line tunables for max sgl entries */
6112         if (max_sgl_entries != -1)
6113                 sg_tablesize = max_sgl_entries;
6114         else {
6115                 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
6116                         sg_tablesize = MPT2SAS_SG_DEPTH;
6117                 else
6118                         sg_tablesize = MPT3SAS_SG_DEPTH;
6119         }
6120
6121         /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
6122         if (reset_devices)
6123                 sg_tablesize = min_t(unsigned short, sg_tablesize,
6124                    MPT_KDUMP_MIN_PHYS_SEGMENTS);
6125
6126         if (ioc->is_mcpu_endpoint)
6127                 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6128         else {
6129                 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
6130                         sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6131                 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
6132                         sg_tablesize = min_t(unsigned short, sg_tablesize,
6133                                         SG_MAX_SEGMENTS);
6134                         ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
6135                                  sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
6136                 }
6137                 ioc->shost->sg_tablesize = sg_tablesize;
6138         }
6139
6140         ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
6141                 (facts->RequestCredit / 4));
6142         if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
6143                 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
6144                                 INTERNAL_SCSIIO_CMDS_COUNT)) {
6145                         ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
6146                                 facts->RequestCredit);
6147                         return -ENOMEM;
6148                 }
6149                 ioc->internal_depth = 10;
6150         }
6151
6152         ioc->hi_priority_depth = ioc->internal_depth - (5);
6153         /* command line tunables  for max controller queue depth */
6154         if (max_queue_depth != -1 && max_queue_depth != 0) {
6155                 max_request_credit = min_t(u16, max_queue_depth +
6156                         ioc->internal_depth, facts->RequestCredit);
6157                 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
6158                         max_request_credit =  MAX_HBA_QUEUE_DEPTH;
6159         } else if (reset_devices)
6160                 max_request_credit = min_t(u16, facts->RequestCredit,
6161                     (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
6162         else
6163                 max_request_credit = min_t(u16, facts->RequestCredit,
6164                     MAX_HBA_QUEUE_DEPTH);
6165
6166         /* Firmware maintains additional facts->HighPriorityCredit number of
6167          * credits for HiPriprity Request messages, so hba queue depth will be
6168          * sum of max_request_credit and high priority queue depth.
6169          */
6170         ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
6171
6172         /* request frame size */
6173         ioc->request_sz = facts->IOCRequestFrameSize * 4;
6174
6175         /* reply frame size */
6176         ioc->reply_sz = facts->ReplyFrameSize * 4;
6177
6178         /* chain segment size */
6179         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6180                 if (facts->IOCMaxChainSegmentSize)
6181                         ioc->chain_segment_sz =
6182                                         facts->IOCMaxChainSegmentSize *
6183                                         MAX_CHAIN_ELEMT_SZ;
6184                 else
6185                 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
6186                         ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
6187                                                     MAX_CHAIN_ELEMT_SZ;
6188         } else
6189                 ioc->chain_segment_sz = ioc->request_sz;
6190
6191         /* calculate the max scatter element size */
6192         sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
6193
6194  retry_allocation:
6195         total_sz = 0;
6196         /* calculate number of sg elements left over in the 1st frame */
6197         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
6198             sizeof(Mpi2SGEIOUnion_t)) + sge_size);
6199         ioc->max_sges_in_main_message = max_sge_elements/sge_size;
6200
6201         /* now do the same for a chain buffer */
6202         max_sge_elements = ioc->chain_segment_sz - sge_size;
6203         ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
6204
6205         /*
6206          *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
6207          */
6208         chains_needed_per_io = ((ioc->shost->sg_tablesize -
6209            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
6210             + 1;
6211         if (chains_needed_per_io > facts->MaxChainDepth) {
6212                 chains_needed_per_io = facts->MaxChainDepth;
6213                 ioc->shost->sg_tablesize = min_t(u16,
6214                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
6215                 * chains_needed_per_io), ioc->shost->sg_tablesize);
6216         }
6217         ioc->chains_needed_per_io = chains_needed_per_io;
6218
6219         /* reply free queue sizing - taking into account for 64 FW events */
6220         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6221
6222         /* mCPU manage single counters for simplicity */
6223         if (ioc->is_mcpu_endpoint)
6224                 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
6225         else {
6226                 /* calculate reply descriptor post queue depth */
6227                 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
6228                         ioc->reply_free_queue_depth +  1;
6229                 /* align the reply post queue on the next 16 count boundary */
6230                 if (ioc->reply_post_queue_depth % 16)
6231                         ioc->reply_post_queue_depth += 16 -
6232                                 (ioc->reply_post_queue_depth % 16);
6233         }
6234
6235         if (ioc->reply_post_queue_depth >
6236             facts->MaxReplyDescriptorPostQueueDepth) {
6237                 ioc->reply_post_queue_depth =
6238                                 facts->MaxReplyDescriptorPostQueueDepth -
6239                     (facts->MaxReplyDescriptorPostQueueDepth % 16);
6240                 ioc->hba_queue_depth =
6241                                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
6242                 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6243         }
6244
6245         ioc_info(ioc,
6246             "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
6247             "sge_per_io(%d), chains_per_io(%d)\n",
6248             ioc->max_sges_in_main_message,
6249             ioc->max_sges_in_chain_message,
6250             ioc->shost->sg_tablesize,
6251             ioc->chains_needed_per_io);
6252
6253         /* reply post queue, 16 byte align */
6254         reply_post_free_sz = ioc->reply_post_queue_depth *
6255             sizeof(Mpi2DefaultReplyDescriptor_t);
6256         rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
6257         if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
6258             || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK))
6259                 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
6260         ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
6261         if (ret == -EAGAIN) {
6262                 /*
6263                  * Free allocated bad RDPQ memory pools.
6264                  * Change dma coherent mask to 32 bit and reallocate RDPQ
6265                  */
6266                 _base_release_memory_pools(ioc);
6267                 ioc->use_32bit_dma = true;
6268                 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6269                         ioc_err(ioc,
6270                             "32 DMA mask failed %s\n", pci_name(ioc->pdev));
6271                         return -ENODEV;
6272                 }
6273                 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
6274                         return -ENOMEM;
6275         } else if (ret == -ENOMEM)
6276                 return -ENOMEM;
6277         total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
6278             DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
6279         ioc->scsiio_depth = ioc->hba_queue_depth -
6280             ioc->hi_priority_depth - ioc->internal_depth;
6281
6282         /* set the scsi host can_queue depth
6283          * with some internal commands that could be outstanding
6284          */
6285         ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
6286         dinitprintk(ioc,
6287                     ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
6288                              ioc->shost->can_queue));
6289
6290         /* contiguous pool for request and chains, 16 byte align, one extra "
6291          * "frame for smid=0
6292          */
6293         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
6294         sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
6295
6296         /* hi-priority queue */
6297         sz += (ioc->hi_priority_depth * ioc->request_sz);
6298
6299         /* internal queue */
6300         sz += (ioc->internal_depth * ioc->request_sz);
6301
6302         ioc->request_dma_sz = sz;
6303         ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
6304                         &ioc->request_dma, GFP_KERNEL);
6305         if (!ioc->request) {
6306                 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
6307                         ioc->hba_queue_depth, ioc->chains_needed_per_io,
6308                         ioc->request_sz, sz / 1024);
6309                 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
6310                         goto out;
6311                 retry_sz = 64;
6312                 ioc->hba_queue_depth -= retry_sz;
6313                 _base_release_memory_pools(ioc);
6314                 goto retry_allocation;
6315         }
6316
6317         if (retry_sz)
6318                 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
6319                         ioc->hba_queue_depth, ioc->chains_needed_per_io,
6320                         ioc->request_sz, sz / 1024);
6321
6322         /* hi-priority queue */
6323         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
6324             ioc->request_sz);
6325         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
6326             ioc->request_sz);
6327
6328         /* internal queue */
6329         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
6330             ioc->request_sz);
6331         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
6332             ioc->request_sz);
6333
6334         ioc_info(ioc,
6335             "request pool(0x%p) - dma(0x%llx): "
6336             "depth(%d), frame_size(%d), pool_size(%d kB)\n",
6337             ioc->request, (unsigned long long) ioc->request_dma,
6338             ioc->hba_queue_depth, ioc->request_sz,
6339             (ioc->hba_queue_depth * ioc->request_sz) / 1024);
6340
6341         total_sz += sz;
6342
6343         dinitprintk(ioc,
6344                     ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
6345                              ioc->request, ioc->scsiio_depth));
6346
6347         ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
6348         sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
6349         ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
6350         if (!ioc->chain_lookup) {
6351                 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
6352                 goto out;
6353         }
6354
6355         sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
6356         for (i = 0; i < ioc->scsiio_depth; i++) {
6357                 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
6358                 if (!ioc->chain_lookup[i].chains_per_smid) {
6359                         ioc_err(ioc, "chain_lookup: kzalloc failed\n");
6360                         goto out;
6361                 }
6362         }
6363
6364         /* initialize hi-priority queue smid's */
6365         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
6366             sizeof(struct request_tracker), GFP_KERNEL);
6367         if (!ioc->hpr_lookup) {
6368                 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
6369                 goto out;
6370         }
6371         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
6372         dinitprintk(ioc,
6373                     ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
6374                              ioc->hi_priority,
6375                              ioc->hi_priority_depth, ioc->hi_priority_smid));
6376
6377         /* initialize internal queue smid's */
6378         ioc->internal_lookup = kcalloc(ioc->internal_depth,
6379             sizeof(struct request_tracker), GFP_KERNEL);
6380         if (!ioc->internal_lookup) {
6381                 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
6382                 goto out;
6383         }
6384         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
6385         dinitprintk(ioc,
6386                     ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
6387                              ioc->internal,
6388                              ioc->internal_depth, ioc->internal_smid));
6389
6390         ioc->io_queue_num = kcalloc(ioc->scsiio_depth,
6391             sizeof(u16), GFP_KERNEL);
6392         if (!ioc->io_queue_num)
6393                 goto out;
6394         /*
6395          * The number of NVMe page sized blocks needed is:
6396          *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
6397          * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
6398          * that is placed in the main message frame.  8 is the size of each PRP
6399          * entry or PRP list pointer entry.  8 is subtracted from page_size
6400          * because of the PRP list pointer entry at the end of a page, so this
6401          * is not counted as a PRP entry.  The 1 added page is a round up.
6402          *
6403          * To avoid allocation failures due to the amount of memory that could
6404          * be required for NVMe PRP's, only each set of NVMe blocks will be
6405          * contiguous, so a new set is allocated for each possible I/O.
6406          */
6407
6408         ioc->chains_per_prp_buffer = 0;
6409         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
6410                 nvme_blocks_needed =
6411                         (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
6412                 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
6413                 nvme_blocks_needed++;
6414
6415                 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
6416                 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
6417                 if (!ioc->pcie_sg_lookup) {
6418                         ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
6419                         goto out;
6420                 }
6421                 sz = nvme_blocks_needed * ioc->page_size;
6422                 rc = _base_allocate_pcie_sgl_pool(ioc, sz);
6423                 if (rc == -ENOMEM)
6424                         return -ENOMEM;
6425                 else if (rc == -EAGAIN)
6426                         goto try_32bit_dma;
6427                 total_sz += sz * ioc->scsiio_depth;
6428         }
6429
6430         rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz);
6431         if (rc == -ENOMEM)
6432                 return -ENOMEM;
6433         else if (rc == -EAGAIN)
6434                 goto try_32bit_dma;
6435         total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io -
6436                 ioc->chains_per_prp_buffer) * ioc->scsiio_depth);
6437         dinitprintk(ioc,
6438             ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
6439             ioc->chain_depth, ioc->chain_segment_sz,
6440             (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
6441         /* sense buffers, 4 byte align */
6442         sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
6443         rc = _base_allocate_sense_dma_pool(ioc, sense_sz);
6444         if (rc  == -ENOMEM)
6445                 return -ENOMEM;
6446         else if (rc == -EAGAIN)
6447                 goto try_32bit_dma;
6448         total_sz += sense_sz;
6449         ioc_info(ioc,
6450             "sense pool(0x%p)- dma(0x%llx): depth(%d),"
6451             "element_size(%d), pool_size(%d kB)\n",
6452             ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
6453             SCSI_SENSE_BUFFERSIZE, sz / 1024);
6454         /* reply pool, 4 byte align */
6455         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
6456         rc = _base_allocate_reply_pool(ioc, sz);
6457         if (rc == -ENOMEM)
6458                 return -ENOMEM;
6459         else if (rc == -EAGAIN)
6460                 goto try_32bit_dma;
6461         total_sz += sz;
6462
6463         /* reply free queue, 16 byte align */
6464         sz = ioc->reply_free_queue_depth * 4;
6465         rc = _base_allocate_reply_free_dma_pool(ioc, sz);
6466         if (rc  == -ENOMEM)
6467                 return -ENOMEM;
6468         else if (rc == -EAGAIN)
6469                 goto try_32bit_dma;
6470         dinitprintk(ioc,
6471                     ioc_info(ioc, "reply_free_dma (0x%llx)\n",
6472                              (unsigned long long)ioc->reply_free_dma));
6473         total_sz += sz;
6474         if (ioc->rdpq_array_enable) {
6475                 reply_post_free_array_sz = ioc->reply_queue_count *
6476                     sizeof(Mpi2IOCInitRDPQArrayEntry);
6477                 rc = _base_allocate_reply_post_free_array(ioc,
6478                     reply_post_free_array_sz);
6479                 if (rc == -ENOMEM)
6480                         return -ENOMEM;
6481                 else if (rc == -EAGAIN)
6482                         goto try_32bit_dma;
6483         }
6484         ioc->config_page_sz = 512;
6485         ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
6486                         ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
6487         if (!ioc->config_page) {
6488                 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
6489                 goto out;
6490         }
6491
6492         ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
6493             ioc->config_page, (unsigned long long)ioc->config_page_dma,
6494             ioc->config_page_sz);
6495         total_sz += ioc->config_page_sz;
6496
6497         ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6498                  total_sz / 1024);
6499         ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6500                  ioc->shost->can_queue, facts->RequestCredit);
6501         ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6502                  ioc->shost->sg_tablesize);
6503         return 0;
6504
6505 try_32bit_dma:
6506         _base_release_memory_pools(ioc);
6507         if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
6508                 /* Change dma coherent mask to 32 bit and reallocate */
6509                 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6510                         pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
6511                             pci_name(ioc->pdev));
6512                         return -ENODEV;
6513                 }
6514         } else if (_base_reduce_hba_queue_depth(ioc) != 0)
6515                 return -ENOMEM;
6516         goto retry_allocation;
6517
6518  out:
6519         return -ENOMEM;
6520 }
6521
6522 /**
6523  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6524  * @ioc: Pointer to MPT_ADAPTER structure
6525  * @cooked: Request raw or cooked IOC state
6526  *
6527  * Return: all IOC Doorbell register bits if cooked==0, else just the
6528  * Doorbell bits in MPI_IOC_STATE_MASK.
6529  */
6530 u32
6531 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6532 {
6533         u32 s, sc;
6534
6535         s = ioc->base_readl(&ioc->chip->Doorbell);
6536         sc = s & MPI2_IOC_STATE_MASK;
6537         return cooked ? sc : s;
6538 }
6539
6540 /**
6541  * _base_wait_on_iocstate - waiting on a particular ioc state
6542  * @ioc: ?
6543  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6544  * @timeout: timeout in second
6545  *
6546  * Return: 0 for success, non-zero for failure.
6547  */
6548 static int
6549 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6550 {
6551         u32 count, cntdn;
6552         u32 current_state;
6553
6554         count = 0;
6555         cntdn = 1000 * timeout;
6556         do {
6557                 current_state = mpt3sas_base_get_iocstate(ioc, 1);
6558                 if (current_state == ioc_state)
6559                         return 0;
6560                 if (count && current_state == MPI2_IOC_STATE_FAULT)
6561                         break;
6562                 if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6563                         break;
6564
6565                 usleep_range(1000, 1500);
6566                 count++;
6567         } while (--cntdn);
6568
6569         return current_state;
6570 }
6571
6572 /**
6573  * _base_dump_reg_set - This function will print hexdump of register set.
6574  * @ioc: per adapter object
6575  *
6576  * Return: nothing.
6577  */
6578 static inline void
6579 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6580 {
6581         unsigned int i, sz = 256;
6582         u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6583
6584         ioc_info(ioc, "System Register set:\n");
6585         for (i = 0; i < (sz / sizeof(u32)); i++)
6586                 pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
6587 }
6588
6589 /**
6590  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6591  * a write to the doorbell)
6592  * @ioc: per adapter object
6593  * @timeout: timeout in seconds
6594  *
6595  * Return: 0 for success, non-zero for failure.
6596  *
6597  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6598  */
6599
6600 static int
6601 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6602 {
6603         u32 cntdn, count;
6604         u32 int_status;
6605
6606         count = 0;
6607         cntdn = 1000 * timeout;
6608         do {
6609                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6610                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6611                         dhsprintk(ioc,
6612                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6613                                            __func__, count, timeout));
6614                         return 0;
6615                 }
6616
6617                 usleep_range(1000, 1500);
6618                 count++;
6619         } while (--cntdn);
6620
6621         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6622                 __func__, count, int_status);
6623         return -EFAULT;
6624 }
6625
6626 static int
6627 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6628 {
6629         u32 cntdn, count;
6630         u32 int_status;
6631
6632         count = 0;
6633         cntdn = 2000 * timeout;
6634         do {
6635                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6636                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6637                         dhsprintk(ioc,
6638                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6639                                            __func__, count, timeout));
6640                         return 0;
6641                 }
6642
6643                 udelay(500);
6644                 count++;
6645         } while (--cntdn);
6646
6647         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6648                 __func__, count, int_status);
6649         return -EFAULT;
6650
6651 }
6652
6653 /**
6654  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6655  * @ioc: per adapter object
6656  * @timeout: timeout in second
6657  *
6658  * Return: 0 for success, non-zero for failure.
6659  *
6660  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6661  * doorbell.
6662  */
6663 static int
6664 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6665 {
6666         u32 cntdn, count;
6667         u32 int_status;
6668         u32 doorbell;
6669
6670         count = 0;
6671         cntdn = 1000 * timeout;
6672         do {
6673                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6674                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6675                         dhsprintk(ioc,
6676                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6677                                            __func__, count, timeout));
6678                         return 0;
6679                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6680                         doorbell = ioc->base_readl(&ioc->chip->Doorbell);
6681                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
6682                             MPI2_IOC_STATE_FAULT) {
6683                                 mpt3sas_print_fault_code(ioc, doorbell);
6684                                 return -EFAULT;
6685                         }
6686                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
6687                             MPI2_IOC_STATE_COREDUMP) {
6688                                 mpt3sas_print_coredump_info(ioc, doorbell);
6689                                 return -EFAULT;
6690                         }
6691                 } else if (int_status == 0xFFFFFFFF)
6692                         goto out;
6693
6694                 usleep_range(1000, 1500);
6695                 count++;
6696         } while (--cntdn);
6697
6698  out:
6699         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6700                 __func__, count, int_status);
6701         return -EFAULT;
6702 }
6703
6704 /**
6705  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6706  * @ioc: per adapter object
6707  * @timeout: timeout in second
6708  *
6709  * Return: 0 for success, non-zero for failure.
6710  */
6711 static int
6712 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6713 {
6714         u32 cntdn, count;
6715         u32 doorbell_reg;
6716
6717         count = 0;
6718         cntdn = 1000 * timeout;
6719         do {
6720                 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
6721                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6722                         dhsprintk(ioc,
6723                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6724                                            __func__, count, timeout));
6725                         return 0;
6726                 }
6727
6728                 usleep_range(1000, 1500);
6729                 count++;
6730         } while (--cntdn);
6731
6732         ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6733                 __func__, count, doorbell_reg);
6734         return -EFAULT;
6735 }
6736
6737 /**
6738  * _base_send_ioc_reset - send doorbell reset
6739  * @ioc: per adapter object
6740  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6741  * @timeout: timeout in second
6742  *
6743  * Return: 0 for success, non-zero for failure.
6744  */
6745 static int
6746 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6747 {
6748         u32 ioc_state;
6749         int r = 0;
6750         unsigned long flags;
6751
6752         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6753                 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6754                 return -EFAULT;
6755         }
6756
6757         if (!(ioc->facts.IOCCapabilities &
6758            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6759                 return -EFAULT;
6760
6761         ioc_info(ioc, "sending message unit reset !!\n");
6762
6763         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6764             &ioc->chip->Doorbell);
6765         if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6766                 r = -EFAULT;
6767                 goto out;
6768         }
6769
6770         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6771         if (ioc_state) {
6772                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6773                         __func__, ioc_state);
6774                 r = -EFAULT;
6775                 goto out;
6776         }
6777  out:
6778         if (r != 0) {
6779                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6780                 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6781                 /*
6782                  * Wait for IOC state CoreDump to clear only during
6783                  * HBA initialization & release time.
6784                  */
6785                 if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6786                     MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6787                     ioc->fault_reset_work_q == NULL)) {
6788                         spin_unlock_irqrestore(
6789                             &ioc->ioc_reset_in_progress_lock, flags);
6790                         mpt3sas_print_coredump_info(ioc, ioc_state);
6791                         mpt3sas_base_wait_for_coredump_completion(ioc,
6792                             __func__);
6793                         spin_lock_irqsave(
6794                             &ioc->ioc_reset_in_progress_lock, flags);
6795                 }
6796                 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6797         }
6798         ioc_info(ioc, "message unit reset: %s\n",
6799                  r == 0 ? "SUCCESS" : "FAILED");
6800         return r;
6801 }
6802
6803 /**
6804  * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6805  * @ioc: per adapter object
6806  * @timeout: timeout in seconds
6807  *
6808  * Return: Waits up to timeout seconds for the IOC to
6809  * become operational. Returns 0 if IOC is present
6810  * and operational; otherwise returns %-EFAULT.
6811  */
6812
6813 int
6814 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
6815 {
6816         int wait_state_count = 0;
6817         u32 ioc_state;
6818
6819         do {
6820                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
6821                 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
6822                         break;
6823
6824                 /*
6825                  * Watchdog thread will be started after IOC Initialization, so
6826                  * no need to wait here for IOC state to become operational
6827                  * when IOC Initialization is on. Instead the driver will
6828                  * return ETIME status, so that calling function can issue
6829                  * diag reset operation and retry the command.
6830                  */
6831                 if (ioc->is_driver_loading)
6832                         return -ETIME;
6833
6834                 ssleep(1);
6835                 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
6836                                 __func__, ++wait_state_count);
6837         } while (--timeout);
6838         if (!timeout) {
6839                 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
6840                 return -EFAULT;
6841         }
6842         if (wait_state_count)
6843                 ioc_info(ioc, "ioc is operational\n");
6844         return 0;
6845 }
6846
6847 /**
6848  * _base_handshake_req_reply_wait - send request thru doorbell interface
6849  * @ioc: per adapter object
6850  * @request_bytes: request length
6851  * @request: pointer having request payload
6852  * @reply_bytes: reply length
6853  * @reply: pointer to reply payload
6854  * @timeout: timeout in second
6855  *
6856  * Return: 0 for success, non-zero for failure.
6857  */
6858 static int
6859 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
6860         u32 *request, int reply_bytes, u16 *reply, int timeout)
6861 {
6862         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
6863         int i;
6864         u8 failed;
6865         __le32 *mfp;
6866
6867         /* make sure doorbell is not in use */
6868         if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
6869                 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
6870                 return -EFAULT;
6871         }
6872
6873         /* clear pending doorbell interrupts from previous state changes */
6874         if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
6875             MPI2_HIS_IOC2SYS_DB_STATUS)
6876                 writel(0, &ioc->chip->HostInterruptStatus);
6877
6878         /* send message to ioc */
6879         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
6880             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
6881             &ioc->chip->Doorbell);
6882
6883         if ((_base_spin_on_doorbell_int(ioc, 5))) {
6884                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6885                         __LINE__);
6886                 return -EFAULT;
6887         }
6888         writel(0, &ioc->chip->HostInterruptStatus);
6889
6890         if ((_base_wait_for_doorbell_ack(ioc, 5))) {
6891                 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
6892                         __LINE__);
6893                 return -EFAULT;
6894         }
6895
6896         /* send message 32-bits at a time */
6897         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
6898                 writel(request[i], &ioc->chip->Doorbell);
6899                 if ((_base_wait_for_doorbell_ack(ioc, 5)))
6900                         failed = 1;
6901         }
6902
6903         if (failed) {
6904                 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
6905                         __LINE__);
6906                 return -EFAULT;
6907         }
6908
6909         /* now wait for the reply */
6910         if ((_base_wait_for_doorbell_int(ioc, timeout))) {
6911                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6912                         __LINE__);
6913                 return -EFAULT;
6914         }
6915
6916         /* read the first two 16-bits, it gives the total length of the reply */
6917         reply[0] = ioc->base_readl(&ioc->chip->Doorbell)
6918                 & MPI2_DOORBELL_DATA_MASK;
6919         writel(0, &ioc->chip->HostInterruptStatus);
6920         if ((_base_wait_for_doorbell_int(ioc, 5))) {
6921                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6922                         __LINE__);
6923                 return -EFAULT;
6924         }
6925         reply[1] = ioc->base_readl(&ioc->chip->Doorbell)
6926                 & MPI2_DOORBELL_DATA_MASK;
6927         writel(0, &ioc->chip->HostInterruptStatus);
6928
6929         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
6930                 if ((_base_wait_for_doorbell_int(ioc, 5))) {
6931                         ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6932                                 __LINE__);
6933                         return -EFAULT;
6934                 }
6935                 if (i >=  reply_bytes/2) /* overflow case */
6936                         ioc->base_readl(&ioc->chip->Doorbell);
6937                 else
6938                         reply[i] = ioc->base_readl(&ioc->chip->Doorbell)
6939                                 & MPI2_DOORBELL_DATA_MASK;
6940                 writel(0, &ioc->chip->HostInterruptStatus);
6941         }
6942
6943         _base_wait_for_doorbell_int(ioc, 5);
6944         if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
6945                 dhsprintk(ioc,
6946                           ioc_info(ioc, "doorbell is in use (line=%d)\n",
6947                                    __LINE__));
6948         }
6949         writel(0, &ioc->chip->HostInterruptStatus);
6950
6951         if (ioc->logging_level & MPT_DEBUG_INIT) {
6952                 mfp = (__le32 *)reply;
6953                 pr_info("\toffset:data\n");
6954                 for (i = 0; i < reply_bytes/4; i++)
6955                         ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6956                             le32_to_cpu(mfp[i]));
6957         }
6958         return 0;
6959 }
6960
6961 /**
6962  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
6963  * @ioc: per adapter object
6964  * @mpi_reply: the reply payload from FW
6965  * @mpi_request: the request payload sent to FW
6966  *
6967  * The SAS IO Unit Control Request message allows the host to perform low-level
6968  * operations, such as resets on the PHYs of the IO Unit, also allows the host
6969  * to obtain the IOC assigned device handles for a device if it has other
6970  * identifying information about the device, in addition allows the host to
6971  * remove IOC resources associated with the device.
6972  *
6973  * Return: 0 for success, non-zero for failure.
6974  */
6975 int
6976 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
6977         Mpi2SasIoUnitControlReply_t *mpi_reply,
6978         Mpi2SasIoUnitControlRequest_t *mpi_request)
6979 {
6980         u16 smid;
6981         u8 issue_reset = 0;
6982         int rc;
6983         void *request;
6984
6985         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6986
6987         mutex_lock(&ioc->base_cmds.mutex);
6988
6989         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6990                 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6991                 rc = -EAGAIN;
6992                 goto out;
6993         }
6994
6995         rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6996         if (rc)
6997                 goto out;
6998
6999         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7000         if (!smid) {
7001                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7002                 rc = -EAGAIN;
7003                 goto out;
7004         }
7005
7006         rc = 0;
7007         ioc->base_cmds.status = MPT3_CMD_PENDING;
7008         request = mpt3sas_base_get_msg_frame(ioc, smid);
7009         ioc->base_cmds.smid = smid;
7010         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
7011         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7012             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
7013                 ioc->ioc_link_reset_in_progress = 1;
7014         init_completion(&ioc->base_cmds.done);
7015         ioc->put_smid_default(ioc, smid);
7016         wait_for_completion_timeout(&ioc->base_cmds.done,
7017             msecs_to_jiffies(10000));
7018         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7019             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
7020             ioc->ioc_link_reset_in_progress)
7021                 ioc->ioc_link_reset_in_progress = 0;
7022         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7023                 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
7024                     mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
7025                     issue_reset);
7026                 goto issue_host_reset;
7027         }
7028         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7029                 memcpy(mpi_reply, ioc->base_cmds.reply,
7030                     sizeof(Mpi2SasIoUnitControlReply_t));
7031         else
7032                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
7033         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7034         goto out;
7035
7036  issue_host_reset:
7037         if (issue_reset)
7038                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7039         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7040         rc = -EFAULT;
7041  out:
7042         mutex_unlock(&ioc->base_cmds.mutex);
7043         return rc;
7044 }
7045
7046 /**
7047  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
7048  * @ioc: per adapter object
7049  * @mpi_reply: the reply payload from FW
7050  * @mpi_request: the request payload sent to FW
7051  *
7052  * The SCSI Enclosure Processor request message causes the IOC to
7053  * communicate with SES devices to control LED status signals.
7054  *
7055  * Return: 0 for success, non-zero for failure.
7056  */
7057 int
7058 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
7059         Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
7060 {
7061         u16 smid;
7062         u8 issue_reset = 0;
7063         int rc;
7064         void *request;
7065
7066         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7067
7068         mutex_lock(&ioc->base_cmds.mutex);
7069
7070         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7071                 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7072                 rc = -EAGAIN;
7073                 goto out;
7074         }
7075
7076         rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7077         if (rc)
7078                 goto out;
7079
7080         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7081         if (!smid) {
7082                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7083                 rc = -EAGAIN;
7084                 goto out;
7085         }
7086
7087         rc = 0;
7088         ioc->base_cmds.status = MPT3_CMD_PENDING;
7089         request = mpt3sas_base_get_msg_frame(ioc, smid);
7090         ioc->base_cmds.smid = smid;
7091         memset(request, 0, ioc->request_sz);
7092         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
7093         init_completion(&ioc->base_cmds.done);
7094         ioc->put_smid_default(ioc, smid);
7095         wait_for_completion_timeout(&ioc->base_cmds.done,
7096             msecs_to_jiffies(10000));
7097         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7098                 mpt3sas_check_cmd_timeout(ioc,
7099                     ioc->base_cmds.status, mpi_request,
7100                     sizeof(Mpi2SepRequest_t)/4, issue_reset);
7101                 goto issue_host_reset;
7102         }
7103         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7104                 memcpy(mpi_reply, ioc->base_cmds.reply,
7105                     sizeof(Mpi2SepReply_t));
7106         else
7107                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
7108         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7109         goto out;
7110
7111  issue_host_reset:
7112         if (issue_reset)
7113                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7114         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7115         rc = -EFAULT;
7116  out:
7117         mutex_unlock(&ioc->base_cmds.mutex);
7118         return rc;
7119 }
7120
7121 /**
7122  * _base_get_port_facts - obtain port facts reply and save in ioc
7123  * @ioc: per adapter object
7124  * @port: ?
7125  *
7126  * Return: 0 for success, non-zero for failure.
7127  */
7128 static int
7129 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
7130 {
7131         Mpi2PortFactsRequest_t mpi_request;
7132         Mpi2PortFactsReply_t mpi_reply;
7133         struct mpt3sas_port_facts *pfacts;
7134         int mpi_reply_sz, mpi_request_sz, r;
7135
7136         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7137
7138         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
7139         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
7140         memset(&mpi_request, 0, mpi_request_sz);
7141         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
7142         mpi_request.PortNumber = port;
7143         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7144             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7145
7146         if (r != 0) {
7147                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7148                 return r;
7149         }
7150
7151         pfacts = &ioc->pfacts[port];
7152         memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
7153         pfacts->PortNumber = mpi_reply.PortNumber;
7154         pfacts->VP_ID = mpi_reply.VP_ID;
7155         pfacts->VF_ID = mpi_reply.VF_ID;
7156         pfacts->MaxPostedCmdBuffers =
7157             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
7158
7159         return 0;
7160 }
7161
7162 /**
7163  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
7164  * @ioc: per adapter object
7165  * @timeout:
7166  *
7167  * Return: 0 for success, non-zero for failure.
7168  */
7169 static int
7170 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
7171 {
7172         u32 ioc_state;
7173         int rc;
7174
7175         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7176
7177         if (ioc->pci_error_recovery) {
7178                 dfailprintk(ioc,
7179                             ioc_info(ioc, "%s: host in pci error recovery\n",
7180                                      __func__));
7181                 return -EFAULT;
7182         }
7183
7184         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7185         dhsprintk(ioc,
7186                   ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7187                            __func__, ioc_state));
7188
7189         if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
7190             (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7191                 return 0;
7192
7193         if (ioc_state & MPI2_DOORBELL_USED) {
7194                 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
7195                 goto issue_diag_reset;
7196         }
7197
7198         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7199                 mpt3sas_print_fault_code(ioc, ioc_state &
7200                     MPI2_DOORBELL_DATA_MASK);
7201                 goto issue_diag_reset;
7202         } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
7203             MPI2_IOC_STATE_COREDUMP) {
7204                 ioc_info(ioc,
7205                     "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
7206                     __func__, ioc_state);
7207                 return -EFAULT;
7208         }
7209
7210         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
7211         if (ioc_state) {
7212                 dfailprintk(ioc,
7213                             ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7214                                      __func__, ioc_state));
7215                 return -EFAULT;
7216         }
7217
7218  issue_diag_reset:
7219         rc = _base_diag_reset(ioc);
7220         return rc;
7221 }
7222
7223 /**
7224  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
7225  * @ioc: per adapter object
7226  *
7227  * Return: 0 for success, non-zero for failure.
7228  */
7229 static int
7230 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
7231 {
7232         Mpi2IOCFactsRequest_t mpi_request;
7233         Mpi2IOCFactsReply_t mpi_reply;
7234         struct mpt3sas_facts *facts;
7235         int mpi_reply_sz, mpi_request_sz, r;
7236
7237         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7238
7239         r = _base_wait_for_iocstate(ioc, 10);
7240         if (r) {
7241                 dfailprintk(ioc,
7242                             ioc_info(ioc, "%s: failed getting to correct state\n",
7243                                      __func__));
7244                 return r;
7245         }
7246         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
7247         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
7248         memset(&mpi_request, 0, mpi_request_sz);
7249         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
7250         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7251             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7252
7253         if (r != 0) {
7254                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7255                 return r;
7256         }
7257
7258         facts = &ioc->facts;
7259         memset(facts, 0, sizeof(struct mpt3sas_facts));
7260         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
7261         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
7262         facts->VP_ID = mpi_reply.VP_ID;
7263         facts->VF_ID = mpi_reply.VF_ID;
7264         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
7265         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
7266         facts->WhoInit = mpi_reply.WhoInit;
7267         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
7268         facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
7269         if (ioc->msix_enable && (facts->MaxMSIxVectors <=
7270             MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
7271                 ioc->combined_reply_queue = 0;
7272         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
7273         facts->MaxReplyDescriptorPostQueueDepth =
7274             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
7275         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
7276         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
7277         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
7278                 ioc->ir_firmware = 1;
7279         if ((facts->IOCCapabilities &
7280               MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
7281                 ioc->rdpq_array_capable = 1;
7282         if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
7283             && ioc->is_aero_ioc)
7284                 ioc->atomic_desc_capable = 1;
7285         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
7286         facts->IOCRequestFrameSize =
7287             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
7288         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7289                 facts->IOCMaxChainSegmentSize =
7290                         le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
7291         }
7292         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
7293         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
7294         ioc->shost->max_id = -1;
7295         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
7296         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
7297         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
7298         facts->HighPriorityCredit =
7299             le16_to_cpu(mpi_reply.HighPriorityCredit);
7300         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
7301         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
7302         facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
7303
7304         /*
7305          * Get the Page Size from IOC Facts. If it's 0, default to 4k.
7306          */
7307         ioc->page_size = 1 << facts->CurrentHostPageSize;
7308         if (ioc->page_size == 1) {
7309                 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
7310                 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
7311         }
7312         dinitprintk(ioc,
7313                     ioc_info(ioc, "CurrentHostPageSize(%d)\n",
7314                              facts->CurrentHostPageSize));
7315
7316         dinitprintk(ioc,
7317                     ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
7318                              facts->RequestCredit, facts->MaxChainDepth));
7319         dinitprintk(ioc,
7320                     ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
7321                              facts->IOCRequestFrameSize * 4,
7322                              facts->ReplyFrameSize * 4));
7323         return 0;
7324 }
7325
7326 /**
7327  * _base_send_ioc_init - send ioc_init to firmware
7328  * @ioc: per adapter object
7329  *
7330  * Return: 0 for success, non-zero for failure.
7331  */
7332 static int
7333 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
7334 {
7335         Mpi2IOCInitRequest_t mpi_request;
7336         Mpi2IOCInitReply_t mpi_reply;
7337         int i, r = 0;
7338         ktime_t current_time;
7339         u16 ioc_status;
7340         u32 reply_post_free_array_sz = 0;
7341
7342         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7343
7344         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
7345         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
7346         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
7347         mpi_request.VF_ID = 0; /* TODO */
7348         mpi_request.VP_ID = 0;
7349         mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
7350         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
7351         mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
7352
7353         if (_base_is_controller_msix_enabled(ioc))
7354                 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
7355         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
7356         mpi_request.ReplyDescriptorPostQueueDepth =
7357             cpu_to_le16(ioc->reply_post_queue_depth);
7358         mpi_request.ReplyFreeQueueDepth =
7359             cpu_to_le16(ioc->reply_free_queue_depth);
7360
7361         mpi_request.SenseBufferAddressHigh =
7362             cpu_to_le32((u64)ioc->sense_dma >> 32);
7363         mpi_request.SystemReplyAddressHigh =
7364             cpu_to_le32((u64)ioc->reply_dma >> 32);
7365         mpi_request.SystemRequestFrameBaseAddress =
7366             cpu_to_le64((u64)ioc->request_dma);
7367         mpi_request.ReplyFreeQueueAddress =
7368             cpu_to_le64((u64)ioc->reply_free_dma);
7369
7370         if (ioc->rdpq_array_enable) {
7371                 reply_post_free_array_sz = ioc->reply_queue_count *
7372                     sizeof(Mpi2IOCInitRDPQArrayEntry);
7373                 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
7374                 for (i = 0; i < ioc->reply_queue_count; i++)
7375                         ioc->reply_post_free_array[i].RDPQBaseAddress =
7376                             cpu_to_le64(
7377                                 (u64)ioc->reply_post[i].reply_post_free_dma);
7378                 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
7379                 mpi_request.ReplyDescriptorPostQueueAddress =
7380                     cpu_to_le64((u64)ioc->reply_post_free_array_dma);
7381         } else {
7382                 mpi_request.ReplyDescriptorPostQueueAddress =
7383                     cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
7384         }
7385
7386         /*
7387          * Set the flag to enable CoreDump state feature in IOC firmware.
7388          */
7389         mpi_request.ConfigurationFlags |=
7390             cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
7391
7392         /* This time stamp specifies number of milliseconds
7393          * since epoch ~ midnight January 1, 1970.
7394          */
7395         current_time = ktime_get_real();
7396         mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
7397
7398         if (ioc->logging_level & MPT_DEBUG_INIT) {
7399                 __le32 *mfp;
7400                 int i;
7401
7402                 mfp = (__le32 *)&mpi_request;
7403                 ioc_info(ioc, "\toffset:data\n");
7404                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
7405                         ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7406                             le32_to_cpu(mfp[i]));
7407         }
7408
7409         r = _base_handshake_req_reply_wait(ioc,
7410             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
7411             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
7412
7413         if (r != 0) {
7414                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7415                 return r;
7416         }
7417
7418         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
7419         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
7420             mpi_reply.IOCLogInfo) {
7421                 ioc_err(ioc, "%s: failed\n", __func__);
7422                 r = -EIO;
7423         }
7424
7425         /* Reset TimeSync Counter*/
7426         ioc->timestamp_update_count = 0;
7427         return r;
7428 }
7429
7430 /**
7431  * mpt3sas_port_enable_done - command completion routine for port enable
7432  * @ioc: per adapter object
7433  * @smid: system request message index
7434  * @msix_index: MSIX table index supplied by the OS
7435  * @reply: reply message frame(lower 32bit addr)
7436  *
7437  * Return: 1 meaning mf should be freed from _base_interrupt
7438  *          0 means the mf is freed from this function.
7439  */
7440 u8
7441 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
7442         u32 reply)
7443 {
7444         MPI2DefaultReply_t *mpi_reply;
7445         u16 ioc_status;
7446
7447         if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
7448                 return 1;
7449
7450         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
7451         if (!mpi_reply)
7452                 return 1;
7453
7454         if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
7455                 return 1;
7456
7457         ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
7458         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
7459         ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
7460         memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
7461         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7462         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
7463                 ioc->port_enable_failed = 1;
7464
7465         if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) {
7466                 ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC;
7467                 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
7468                         mpt3sas_port_enable_complete(ioc);
7469                         return 1;
7470                 } else {
7471                         ioc->start_scan_failed = ioc_status;
7472                         ioc->start_scan = 0;
7473                         return 1;
7474                 }
7475         }
7476         complete(&ioc->port_enable_cmds.done);
7477         return 1;
7478 }
7479
7480 /**
7481  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
7482  * @ioc: per adapter object
7483  *
7484  * Return: 0 for success, non-zero for failure.
7485  */
7486 static int
7487 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
7488 {
7489         Mpi2PortEnableRequest_t *mpi_request;
7490         Mpi2PortEnableReply_t *mpi_reply;
7491         int r = 0;
7492         u16 smid;
7493         u16 ioc_status;
7494
7495         ioc_info(ioc, "sending port enable !!\n");
7496
7497         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7498                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7499                 return -EAGAIN;
7500         }
7501
7502         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7503         if (!smid) {
7504                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7505                 return -EAGAIN;
7506         }
7507
7508         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7509         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7510         ioc->port_enable_cmds.smid = smid;
7511         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7512         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7513
7514         init_completion(&ioc->port_enable_cmds.done);
7515         ioc->put_smid_default(ioc, smid);
7516         wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
7517         if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
7518                 ioc_err(ioc, "%s: timeout\n", __func__);
7519                 _debug_dump_mf(mpi_request,
7520                     sizeof(Mpi2PortEnableRequest_t)/4);
7521                 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7522                         r = -EFAULT;
7523                 else
7524                         r = -ETIME;
7525                 goto out;
7526         }
7527
7528         mpi_reply = ioc->port_enable_cmds.reply;
7529         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7530         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7531                 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7532                         __func__, ioc_status);
7533                 r = -EFAULT;
7534                 goto out;
7535         }
7536
7537  out:
7538         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7539         ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7540         return r;
7541 }
7542
7543 /**
7544  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7545  * @ioc: per adapter object
7546  *
7547  * Return: 0 for success, non-zero for failure.
7548  */
7549 int
7550 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7551 {
7552         Mpi2PortEnableRequest_t *mpi_request;
7553         u16 smid;
7554
7555         ioc_info(ioc, "sending port enable !!\n");
7556
7557         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7558                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7559                 return -EAGAIN;
7560         }
7561
7562         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7563         if (!smid) {
7564                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7565                 return -EAGAIN;
7566         }
7567         ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED;
7568         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7569         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC;
7570         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7571         ioc->port_enable_cmds.smid = smid;
7572         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7573         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7574
7575         ioc->put_smid_default(ioc, smid);
7576         return 0;
7577 }
7578
7579 /**
7580  * _base_determine_wait_on_discovery - desposition
7581  * @ioc: per adapter object
7582  *
7583  * Decide whether to wait on discovery to complete. Used to either
7584  * locate boot device, or report volumes ahead of physical devices.
7585  *
7586  * Return: 1 for wait, 0 for don't wait.
7587  */
7588 static int
7589 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7590 {
7591         /* We wait for discovery to complete if IR firmware is loaded.
7592          * The sas topology events arrive before PD events, so we need time to
7593          * turn on the bit in ioc->pd_handles to indicate PD
7594          * Also, it maybe required to report Volumes ahead of physical
7595          * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7596          */
7597         if (ioc->ir_firmware)
7598                 return 1;
7599
7600         /* if no Bios, then we don't need to wait */
7601         if (!ioc->bios_pg3.BiosVersion)
7602                 return 0;
7603
7604         /* Bios is present, then we drop down here.
7605          *
7606          * If there any entries in the Bios Page 2, then we wait
7607          * for discovery to complete.
7608          */
7609
7610         /* Current Boot Device */
7611         if ((ioc->bios_pg2.CurrentBootDeviceForm &
7612             MPI2_BIOSPAGE2_FORM_MASK) ==
7613             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7614         /* Request Boot Device */
7615            (ioc->bios_pg2.ReqBootDeviceForm &
7616             MPI2_BIOSPAGE2_FORM_MASK) ==
7617             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7618         /* Alternate Request Boot Device */
7619            (ioc->bios_pg2.ReqAltBootDeviceForm &
7620             MPI2_BIOSPAGE2_FORM_MASK) ==
7621             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7622                 return 0;
7623
7624         return 1;
7625 }
7626
7627 /**
7628  * _base_unmask_events - turn on notification for this event
7629  * @ioc: per adapter object
7630  * @event: firmware event
7631  *
7632  * The mask is stored in ioc->event_masks.
7633  */
7634 static void
7635 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7636 {
7637         u32 desired_event;
7638
7639         if (event >= 128)
7640                 return;
7641
7642         desired_event = (1 << (event % 32));
7643
7644         if (event < 32)
7645                 ioc->event_masks[0] &= ~desired_event;
7646         else if (event < 64)
7647                 ioc->event_masks[1] &= ~desired_event;
7648         else if (event < 96)
7649                 ioc->event_masks[2] &= ~desired_event;
7650         else if (event < 128)
7651                 ioc->event_masks[3] &= ~desired_event;
7652 }
7653
7654 /**
7655  * _base_event_notification - send event notification
7656  * @ioc: per adapter object
7657  *
7658  * Return: 0 for success, non-zero for failure.
7659  */
7660 static int
7661 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7662 {
7663         Mpi2EventNotificationRequest_t *mpi_request;
7664         u16 smid;
7665         int r = 0;
7666         int i, issue_diag_reset = 0;
7667
7668         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7669
7670         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7671                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7672                 return -EAGAIN;
7673         }
7674
7675         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7676         if (!smid) {
7677                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7678                 return -EAGAIN;
7679         }
7680         ioc->base_cmds.status = MPT3_CMD_PENDING;
7681         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7682         ioc->base_cmds.smid = smid;
7683         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7684         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7685         mpi_request->VF_ID = 0; /* TODO */
7686         mpi_request->VP_ID = 0;
7687         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7688                 mpi_request->EventMasks[i] =
7689                     cpu_to_le32(ioc->event_masks[i]);
7690         init_completion(&ioc->base_cmds.done);
7691         ioc->put_smid_default(ioc, smid);
7692         wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7693         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7694                 ioc_err(ioc, "%s: timeout\n", __func__);
7695                 _debug_dump_mf(mpi_request,
7696                     sizeof(Mpi2EventNotificationRequest_t)/4);
7697                 if (ioc->base_cmds.status & MPT3_CMD_RESET)
7698                         r = -EFAULT;
7699                 else
7700                         issue_diag_reset = 1;
7701
7702         } else
7703                 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7704         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7705
7706         if (issue_diag_reset) {
7707                 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
7708                         return -EFAULT;
7709                 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
7710                         return -EFAULT;
7711                 r = -EAGAIN;
7712         }
7713         return r;
7714 }
7715
7716 /**
7717  * mpt3sas_base_validate_event_type - validating event types
7718  * @ioc: per adapter object
7719  * @event_type: firmware event
7720  *
7721  * This will turn on firmware event notification when application
7722  * ask for that event. We don't mask events that are already enabled.
7723  */
7724 void
7725 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7726 {
7727         int i, j;
7728         u32 event_mask, desired_event;
7729         u8 send_update_to_fw;
7730
7731         for (i = 0, send_update_to_fw = 0; i <
7732             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7733                 event_mask = ~event_type[i];
7734                 desired_event = 1;
7735                 for (j = 0; j < 32; j++) {
7736                         if (!(event_mask & desired_event) &&
7737                             (ioc->event_masks[i] & desired_event)) {
7738                                 ioc->event_masks[i] &= ~desired_event;
7739                                 send_update_to_fw = 1;
7740                         }
7741                         desired_event = (desired_event << 1);
7742                 }
7743         }
7744
7745         if (!send_update_to_fw)
7746                 return;
7747
7748         mutex_lock(&ioc->base_cmds.mutex);
7749         _base_event_notification(ioc);
7750         mutex_unlock(&ioc->base_cmds.mutex);
7751 }
7752
7753 /**
7754  * _base_diag_reset - the "big hammer" start of day reset
7755  * @ioc: per adapter object
7756  *
7757  * Return: 0 for success, non-zero for failure.
7758  */
7759 static int
7760 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
7761 {
7762         u32 host_diagnostic;
7763         u32 ioc_state;
7764         u32 count;
7765         u32 hcb_size;
7766
7767         ioc_info(ioc, "sending diag reset !!\n");
7768
7769         pci_cfg_access_lock(ioc->pdev);
7770
7771         drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
7772
7773         count = 0;
7774         do {
7775                 /* Write magic sequence to WriteSequence register
7776                  * Loop until in diagnostic mode
7777                  */
7778                 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7779                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7780                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7781                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7782                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7783                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7784                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7785                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7786
7787                 /* wait 100 msec */
7788                 msleep(100);
7789
7790                 if (count++ > 20) {
7791                         ioc_info(ioc,
7792                             "Stop writing magic sequence after 20 retries\n");
7793                         _base_dump_reg_set(ioc);
7794                         goto out;
7795                 }
7796
7797                 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7798                 drsprintk(ioc,
7799                           ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7800                                    count, host_diagnostic));
7801
7802         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7803
7804         hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
7805
7806         drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
7807         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
7808              &ioc->chip->HostDiagnostic);
7809
7810         /*This delay allows the chip PCIe hardware time to finish reset tasks*/
7811         msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
7812
7813         /* Approximately 300 second max wait */
7814         for (count = 0; count < (300000000 /
7815                 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
7816
7817                 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7818
7819                 if (host_diagnostic == 0xFFFFFFFF) {
7820                         ioc_info(ioc,
7821                             "Invalid host diagnostic register value\n");
7822                         _base_dump_reg_set(ioc);
7823                         goto out;
7824                 }
7825                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
7826                         break;
7827
7828                 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
7829         }
7830
7831         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
7832
7833                 drsprintk(ioc,
7834                           ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
7835                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
7836                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
7837                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
7838
7839                 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
7840                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
7841                     &ioc->chip->HCBSize);
7842         }
7843
7844         drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
7845         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
7846             &ioc->chip->HostDiagnostic);
7847
7848         drsprintk(ioc,
7849                   ioc_info(ioc, "disable writes to the diagnostic register\n"));
7850         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7851
7852         drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
7853         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
7854         if (ioc_state) {
7855                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7856                         __func__, ioc_state);
7857                 _base_dump_reg_set(ioc);
7858                 goto out;
7859         }
7860
7861         pci_cfg_access_unlock(ioc->pdev);
7862         ioc_info(ioc, "diag reset: SUCCESS\n");
7863         return 0;
7864
7865  out:
7866         pci_cfg_access_unlock(ioc->pdev);
7867         ioc_err(ioc, "diag reset: FAILED\n");
7868         return -EFAULT;
7869 }
7870
7871 /**
7872  * mpt3sas_base_make_ioc_ready - put controller in READY state
7873  * @ioc: per adapter object
7874  * @type: FORCE_BIG_HAMMER or SOFT_RESET
7875  *
7876  * Return: 0 for success, non-zero for failure.
7877  */
7878 int
7879 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
7880 {
7881         u32 ioc_state;
7882         int rc;
7883         int count;
7884
7885         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7886
7887         if (ioc->pci_error_recovery)
7888                 return 0;
7889
7890         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7891         dhsprintk(ioc,
7892                   ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7893                            __func__, ioc_state));
7894
7895         /* if in RESET state, it should move to READY state shortly */
7896         count = 0;
7897         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
7898                 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
7899                     MPI2_IOC_STATE_READY) {
7900                         if (count++ == 10) {
7901                                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7902                                         __func__, ioc_state);
7903                                 return -EFAULT;
7904                         }
7905                         ssleep(1);
7906                         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7907                 }
7908         }
7909
7910         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
7911                 return 0;
7912
7913         if (ioc_state & MPI2_DOORBELL_USED) {
7914                 ioc_info(ioc, "unexpected doorbell active!\n");
7915                 goto issue_diag_reset;
7916         }
7917
7918         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7919                 mpt3sas_print_fault_code(ioc, ioc_state &
7920                     MPI2_DOORBELL_DATA_MASK);
7921                 goto issue_diag_reset;
7922         }
7923
7924         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
7925                 /*
7926                  * if host reset is invoked while watch dog thread is waiting
7927                  * for IOC state to be changed to Fault state then driver has
7928                  * to wait here for CoreDump state to clear otherwise reset
7929                  * will be issued to the FW and FW move the IOC state to
7930                  * reset state without copying the FW logs to coredump region.
7931                  */
7932                 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
7933                         mpt3sas_print_coredump_info(ioc, ioc_state &
7934                             MPI2_DOORBELL_DATA_MASK);
7935                         mpt3sas_base_wait_for_coredump_completion(ioc,
7936                             __func__);
7937                 }
7938                 goto issue_diag_reset;
7939         }
7940
7941         if (type == FORCE_BIG_HAMMER)
7942                 goto issue_diag_reset;
7943
7944         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7945                 if (!(_base_send_ioc_reset(ioc,
7946                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
7947                         return 0;
7948         }
7949
7950  issue_diag_reset:
7951         rc = _base_diag_reset(ioc);
7952         return rc;
7953 }
7954
7955 /**
7956  * _base_make_ioc_operational - put controller in OPERATIONAL state
7957  * @ioc: per adapter object
7958  *
7959  * Return: 0 for success, non-zero for failure.
7960  */
7961 static int
7962 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
7963 {
7964         int r, i, index, rc;
7965         unsigned long   flags;
7966         u32 reply_address;
7967         u16 smid;
7968         struct _tr_list *delayed_tr, *delayed_tr_next;
7969         struct _sc_list *delayed_sc, *delayed_sc_next;
7970         struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
7971         u8 hide_flag;
7972         struct adapter_reply_queue *reply_q;
7973         Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
7974
7975         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7976
7977         /* clean the delayed target reset list */
7978         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7979             &ioc->delayed_tr_list, list) {
7980                 list_del(&delayed_tr->list);
7981                 kfree(delayed_tr);
7982         }
7983
7984
7985         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7986             &ioc->delayed_tr_volume_list, list) {
7987                 list_del(&delayed_tr->list);
7988                 kfree(delayed_tr);
7989         }
7990
7991         list_for_each_entry_safe(delayed_sc, delayed_sc_next,
7992             &ioc->delayed_sc_list, list) {
7993                 list_del(&delayed_sc->list);
7994                 kfree(delayed_sc);
7995         }
7996
7997         list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
7998             &ioc->delayed_event_ack_list, list) {
7999                 list_del(&delayed_event_ack->list);
8000                 kfree(delayed_event_ack);
8001         }
8002
8003         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
8004
8005         /* hi-priority queue */
8006         INIT_LIST_HEAD(&ioc->hpr_free_list);
8007         smid = ioc->hi_priority_smid;
8008         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
8009                 ioc->hpr_lookup[i].cb_idx = 0xFF;
8010                 ioc->hpr_lookup[i].smid = smid;
8011                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
8012                     &ioc->hpr_free_list);
8013         }
8014
8015         /* internal queue */
8016         INIT_LIST_HEAD(&ioc->internal_free_list);
8017         smid = ioc->internal_smid;
8018         for (i = 0; i < ioc->internal_depth; i++, smid++) {
8019                 ioc->internal_lookup[i].cb_idx = 0xFF;
8020                 ioc->internal_lookup[i].smid = smid;
8021                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
8022                     &ioc->internal_free_list);
8023         }
8024
8025         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
8026
8027         /* initialize Reply Free Queue */
8028         for (i = 0, reply_address = (u32)ioc->reply_dma ;
8029             i < ioc->reply_free_queue_depth ; i++, reply_address +=
8030             ioc->reply_sz) {
8031                 ioc->reply_free[i] = cpu_to_le32(reply_address);
8032                 if (ioc->is_mcpu_endpoint)
8033                         _base_clone_reply_to_sys_mem(ioc,
8034                                         reply_address, i);
8035         }
8036
8037         /* initialize reply queues */
8038         if (ioc->is_driver_loading)
8039                 _base_assign_reply_queues(ioc);
8040
8041         /* initialize Reply Post Free Queue */
8042         index = 0;
8043         reply_post_free_contig = ioc->reply_post[0].reply_post_free;
8044         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8045                 /*
8046                  * If RDPQ is enabled, switch to the next allocation.
8047                  * Otherwise advance within the contiguous region.
8048                  */
8049                 if (ioc->rdpq_array_enable) {
8050                         reply_q->reply_post_free =
8051                                 ioc->reply_post[index++].reply_post_free;
8052                 } else {
8053                         reply_q->reply_post_free = reply_post_free_contig;
8054                         reply_post_free_contig += ioc->reply_post_queue_depth;
8055                 }
8056
8057                 reply_q->reply_post_host_index = 0;
8058                 for (i = 0; i < ioc->reply_post_queue_depth; i++)
8059                         reply_q->reply_post_free[i].Words =
8060                             cpu_to_le64(ULLONG_MAX);
8061                 if (!_base_is_controller_msix_enabled(ioc))
8062                         goto skip_init_reply_post_free_queue;
8063         }
8064  skip_init_reply_post_free_queue:
8065
8066         r = _base_send_ioc_init(ioc);
8067         if (r) {
8068                 /*
8069                  * No need to check IOC state for fault state & issue
8070                  * diag reset during host reset. This check is need
8071                  * only during driver load time.
8072                  */
8073                 if (!ioc->is_driver_loading)
8074                         return r;
8075
8076                 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8077                 if (rc || (_base_send_ioc_init(ioc)))
8078                         return r;
8079         }
8080
8081         /* initialize reply free host index */
8082         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
8083         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
8084
8085         /* initialize reply post host index */
8086         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8087                 if (ioc->combined_reply_queue)
8088                         writel((reply_q->msix_index & 7)<<
8089                            MPI2_RPHI_MSIX_INDEX_SHIFT,
8090                            ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
8091                 else
8092                         writel(reply_q->msix_index <<
8093                                 MPI2_RPHI_MSIX_INDEX_SHIFT,
8094                                 &ioc->chip->ReplyPostHostIndex);
8095
8096                 if (!_base_is_controller_msix_enabled(ioc))
8097                         goto skip_init_reply_post_host_index;
8098         }
8099
8100  skip_init_reply_post_host_index:
8101
8102         mpt3sas_base_unmask_interrupts(ioc);
8103
8104         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
8105                 r = _base_display_fwpkg_version(ioc);
8106                 if (r)
8107                         return r;
8108         }
8109
8110         r = _base_static_config_pages(ioc);
8111         if (r)
8112                 return r;
8113
8114         r = _base_event_notification(ioc);
8115         if (r)
8116                 return r;
8117
8118         if (!ioc->shost_recovery) {
8119
8120                 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
8121                     == 0x80) {
8122                         hide_flag = (u8) (
8123                             le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
8124                             MFG_PAGE10_HIDE_SSDS_MASK);
8125                         if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
8126                                 ioc->mfg_pg10_hide_flag = hide_flag;
8127                 }
8128
8129                 ioc->wait_for_discovery_to_complete =
8130                     _base_determine_wait_on_discovery(ioc);
8131
8132                 return r; /* scan_start and scan_finished support */
8133         }
8134
8135         r = _base_send_port_enable(ioc);
8136         if (r)
8137                 return r;
8138
8139         return r;
8140 }
8141
8142 /**
8143  * mpt3sas_base_free_resources - free resources controller resources
8144  * @ioc: per adapter object
8145  */
8146 void
8147 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
8148 {
8149         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8150
8151         /* synchronizing freeing resource with pci_access_mutex lock */
8152         mutex_lock(&ioc->pci_access_mutex);
8153         if (ioc->chip_phys && ioc->chip) {
8154                 mpt3sas_base_mask_interrupts(ioc);
8155                 ioc->shost_recovery = 1;
8156                 mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8157                 ioc->shost_recovery = 0;
8158         }
8159
8160         mpt3sas_base_unmap_resources(ioc);
8161         mutex_unlock(&ioc->pci_access_mutex);
8162         return;
8163 }
8164
8165 /**
8166  * mpt3sas_base_attach - attach controller instance
8167  * @ioc: per adapter object
8168  *
8169  * Return: 0 for success, non-zero for failure.
8170  */
8171 int
8172 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
8173 {
8174         int r, i, rc;
8175         int cpu_id, last_cpu_id = 0;
8176
8177         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8178
8179         /* setup cpu_msix_table */
8180         ioc->cpu_count = num_online_cpus();
8181         for_each_online_cpu(cpu_id)
8182                 last_cpu_id = cpu_id;
8183         ioc->cpu_msix_table_sz = last_cpu_id + 1;
8184         ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
8185         ioc->reply_queue_count = 1;
8186         if (!ioc->cpu_msix_table) {
8187                 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
8188                 r = -ENOMEM;
8189                 goto out_free_resources;
8190         }
8191
8192         if (ioc->is_warpdrive) {
8193                 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
8194                     sizeof(resource_size_t *), GFP_KERNEL);
8195                 if (!ioc->reply_post_host_index) {
8196                         ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
8197                         r = -ENOMEM;
8198                         goto out_free_resources;
8199                 }
8200         }
8201
8202         ioc->smp_affinity_enable = smp_affinity_enable;
8203
8204         ioc->rdpq_array_enable_assigned = 0;
8205         ioc->use_32bit_dma = false;
8206         ioc->dma_mask = 64;
8207         if (ioc->is_aero_ioc)
8208                 ioc->base_readl = &_base_readl_aero;
8209         else
8210                 ioc->base_readl = &_base_readl;
8211         r = mpt3sas_base_map_resources(ioc);
8212         if (r)
8213                 goto out_free_resources;
8214
8215         pci_set_drvdata(ioc->pdev, ioc->shost);
8216         r = _base_get_ioc_facts(ioc);
8217         if (r) {
8218                 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8219                 if (rc || (_base_get_ioc_facts(ioc)))
8220                         goto out_free_resources;
8221         }
8222
8223         switch (ioc->hba_mpi_version_belonged) {
8224         case MPI2_VERSION:
8225                 ioc->build_sg_scmd = &_base_build_sg_scmd;
8226                 ioc->build_sg = &_base_build_sg;
8227                 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
8228                 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8229                 break;
8230         case MPI25_VERSION:
8231         case MPI26_VERSION:
8232                 /*
8233                  * In SAS3.0,
8234                  * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
8235                  * Target Status - all require the IEEE formatted scatter gather
8236                  * elements.
8237                  */
8238                 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
8239                 ioc->build_sg = &_base_build_sg_ieee;
8240                 ioc->build_nvme_prp = &_base_build_nvme_prp;
8241                 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
8242                 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
8243                 if (ioc->high_iops_queues)
8244                         ioc->get_msix_index_for_smlio =
8245                                         &_base_get_high_iops_msix_index;
8246                 else
8247                         ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8248                 break;
8249         }
8250         if (ioc->atomic_desc_capable) {
8251                 ioc->put_smid_default = &_base_put_smid_default_atomic;
8252                 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
8253                 ioc->put_smid_fast_path =
8254                                 &_base_put_smid_fast_path_atomic;
8255                 ioc->put_smid_hi_priority =
8256                                 &_base_put_smid_hi_priority_atomic;
8257         } else {
8258                 ioc->put_smid_default = &_base_put_smid_default;
8259                 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
8260                 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
8261                 if (ioc->is_mcpu_endpoint)
8262                         ioc->put_smid_scsi_io =
8263                                 &_base_put_smid_mpi_ep_scsi_io;
8264                 else
8265                         ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
8266         }
8267         /*
8268          * These function pointers for other requests that don't
8269          * the require IEEE scatter gather elements.
8270          *
8271          * For example Configuration Pages and SAS IOUNIT Control don't.
8272          */
8273         ioc->build_sg_mpi = &_base_build_sg;
8274         ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
8275
8276         r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8277         if (r)
8278                 goto out_free_resources;
8279
8280         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
8281             sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
8282         if (!ioc->pfacts) {
8283                 r = -ENOMEM;
8284                 goto out_free_resources;
8285         }
8286
8287         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
8288                 r = _base_get_port_facts(ioc, i);
8289                 if (r) {
8290                         rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8291                         if (rc || (_base_get_port_facts(ioc, i)))
8292                                 goto out_free_resources;
8293                 }
8294         }
8295
8296         r = _base_allocate_memory_pools(ioc);
8297         if (r)
8298                 goto out_free_resources;
8299
8300         if (irqpoll_weight > 0)
8301                 ioc->thresh_hold = irqpoll_weight;
8302         else
8303                 ioc->thresh_hold = ioc->hba_queue_depth/4;
8304
8305         _base_init_irqpolls(ioc);
8306         init_waitqueue_head(&ioc->reset_wq);
8307
8308         /* allocate memory pd handle bitmask list */
8309         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8310         if (ioc->facts.MaxDevHandle % 8)
8311                 ioc->pd_handles_sz++;
8312         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
8313             GFP_KERNEL);
8314         if (!ioc->pd_handles) {
8315                 r = -ENOMEM;
8316                 goto out_free_resources;
8317         }
8318         ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
8319             GFP_KERNEL);
8320         if (!ioc->blocking_handles) {
8321                 r = -ENOMEM;
8322                 goto out_free_resources;
8323         }
8324
8325         /* allocate memory for pending OS device add list */
8326         ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
8327         if (ioc->facts.MaxDevHandle % 8)
8328                 ioc->pend_os_device_add_sz++;
8329         ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
8330             GFP_KERNEL);
8331         if (!ioc->pend_os_device_add) {
8332                 r = -ENOMEM;
8333                 goto out_free_resources;
8334         }
8335
8336         ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
8337         ioc->device_remove_in_progress =
8338                 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
8339         if (!ioc->device_remove_in_progress) {
8340                 r = -ENOMEM;
8341                 goto out_free_resources;
8342         }
8343
8344         ioc->fwfault_debug = mpt3sas_fwfault_debug;
8345
8346         /* base internal command bits */
8347         mutex_init(&ioc->base_cmds.mutex);
8348         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8349         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
8350
8351         /* port_enable command bits */
8352         ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8353         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
8354
8355         /* transport internal command bits */
8356         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8357         ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
8358         mutex_init(&ioc->transport_cmds.mutex);
8359
8360         /* scsih internal command bits */
8361         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8362         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
8363         mutex_init(&ioc->scsih_cmds.mutex);
8364
8365         /* task management internal command bits */
8366         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8367         ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
8368         mutex_init(&ioc->tm_cmds.mutex);
8369
8370         /* config page internal command bits */
8371         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8372         ioc->config_cmds.status = MPT3_CMD_NOT_USED;
8373         mutex_init(&ioc->config_cmds.mutex);
8374
8375         /* ctl module internal command bits */
8376         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8377         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
8378         ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
8379         mutex_init(&ioc->ctl_cmds.mutex);
8380
8381         if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
8382             !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
8383             !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
8384             !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
8385                 r = -ENOMEM;
8386                 goto out_free_resources;
8387         }
8388
8389         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
8390                 ioc->event_masks[i] = -1;
8391
8392         /* here we enable the events we care about */
8393         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
8394         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
8395         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
8396         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
8397         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
8398         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
8399         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
8400         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
8401         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
8402         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
8403         _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
8404         _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
8405         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
8406         if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
8407                 if (ioc->is_gen35_ioc) {
8408                         _base_unmask_events(ioc,
8409                                 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
8410                         _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
8411                         _base_unmask_events(ioc,
8412                                 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
8413                 }
8414         }
8415         r = _base_make_ioc_operational(ioc);
8416         if (r == -EAGAIN) {
8417                 r = _base_make_ioc_operational(ioc);
8418                 if (r)
8419                         goto out_free_resources;
8420         }
8421
8422         /*
8423          * Copy current copy of IOCFacts in prev_fw_facts
8424          * and it will be used during online firmware upgrade.
8425          */
8426         memcpy(&ioc->prev_fw_facts, &ioc->facts,
8427             sizeof(struct mpt3sas_facts));
8428
8429         ioc->non_operational_loop = 0;
8430         ioc->ioc_coredump_loop = 0;
8431         ioc->got_task_abort_from_ioctl = 0;
8432         return 0;
8433
8434  out_free_resources:
8435
8436         ioc->remove_host = 1;
8437
8438         mpt3sas_base_free_resources(ioc);
8439         _base_release_memory_pools(ioc);
8440         pci_set_drvdata(ioc->pdev, NULL);
8441         kfree(ioc->cpu_msix_table);
8442         if (ioc->is_warpdrive)
8443                 kfree(ioc->reply_post_host_index);
8444         kfree(ioc->pd_handles);
8445         kfree(ioc->blocking_handles);
8446         kfree(ioc->device_remove_in_progress);
8447         kfree(ioc->pend_os_device_add);
8448         kfree(ioc->tm_cmds.reply);
8449         kfree(ioc->transport_cmds.reply);
8450         kfree(ioc->scsih_cmds.reply);
8451         kfree(ioc->config_cmds.reply);
8452         kfree(ioc->base_cmds.reply);
8453         kfree(ioc->port_enable_cmds.reply);
8454         kfree(ioc->ctl_cmds.reply);
8455         kfree(ioc->ctl_cmds.sense);
8456         kfree(ioc->pfacts);
8457         ioc->ctl_cmds.reply = NULL;
8458         ioc->base_cmds.reply = NULL;
8459         ioc->tm_cmds.reply = NULL;
8460         ioc->scsih_cmds.reply = NULL;
8461         ioc->transport_cmds.reply = NULL;
8462         ioc->config_cmds.reply = NULL;
8463         ioc->pfacts = NULL;
8464         return r;
8465 }
8466
8467
8468 /**
8469  * mpt3sas_base_detach - remove controller instance
8470  * @ioc: per adapter object
8471  */
8472 void
8473 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
8474 {
8475         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8476
8477         mpt3sas_base_stop_watchdog(ioc);
8478         mpt3sas_base_free_resources(ioc);
8479         _base_release_memory_pools(ioc);
8480         mpt3sas_free_enclosure_list(ioc);
8481         pci_set_drvdata(ioc->pdev, NULL);
8482         kfree(ioc->cpu_msix_table);
8483         if (ioc->is_warpdrive)
8484                 kfree(ioc->reply_post_host_index);
8485         kfree(ioc->pd_handles);
8486         kfree(ioc->blocking_handles);
8487         kfree(ioc->device_remove_in_progress);
8488         kfree(ioc->pend_os_device_add);
8489         kfree(ioc->pfacts);
8490         kfree(ioc->ctl_cmds.reply);
8491         kfree(ioc->ctl_cmds.sense);
8492         kfree(ioc->base_cmds.reply);
8493         kfree(ioc->port_enable_cmds.reply);
8494         kfree(ioc->tm_cmds.reply);
8495         kfree(ioc->transport_cmds.reply);
8496         kfree(ioc->scsih_cmds.reply);
8497         kfree(ioc->config_cmds.reply);
8498 }
8499
8500 /**
8501  * _base_pre_reset_handler - pre reset handler
8502  * @ioc: per adapter object
8503  */
8504 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
8505 {
8506         mpt3sas_scsih_pre_reset_handler(ioc);
8507         mpt3sas_ctl_pre_reset_handler(ioc);
8508         dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
8509 }
8510
8511 /**
8512  * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
8513  * @ioc: per adapter object
8514  */
8515 static void
8516 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
8517 {
8518         dtmprintk(ioc,
8519             ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
8520         if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
8521                 ioc->transport_cmds.status |= MPT3_CMD_RESET;
8522                 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
8523                 complete(&ioc->transport_cmds.done);
8524         }
8525         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
8526                 ioc->base_cmds.status |= MPT3_CMD_RESET;
8527                 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
8528                 complete(&ioc->base_cmds.done);
8529         }
8530         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
8531                 ioc->port_enable_failed = 1;
8532                 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
8533                 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
8534                 if (ioc->is_driver_loading) {
8535                         ioc->start_scan_failed =
8536                                 MPI2_IOCSTATUS_INTERNAL_ERROR;
8537                         ioc->start_scan = 0;
8538                 } else {
8539                         complete(&ioc->port_enable_cmds.done);
8540                 }
8541         }
8542         if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
8543                 ioc->config_cmds.status |= MPT3_CMD_RESET;
8544                 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8545                 ioc->config_cmds.smid = USHRT_MAX;
8546                 complete(&ioc->config_cmds.done);
8547         }
8548 }
8549
8550 /**
8551  * _base_clear_outstanding_commands - clear all outstanding commands
8552  * @ioc: per adapter object
8553  */
8554 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8555 {
8556         mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8557         mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8558         _base_clear_outstanding_mpt_commands(ioc);
8559 }
8560
8561 /**
8562  * _base_reset_done_handler - reset done handler
8563  * @ioc: per adapter object
8564  */
8565 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8566 {
8567         mpt3sas_scsih_reset_done_handler(ioc);
8568         mpt3sas_ctl_reset_done_handler(ioc);
8569         dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8570 }
8571
8572 /**
8573  * mpt3sas_wait_for_commands_to_complete - reset controller
8574  * @ioc: Pointer to MPT_ADAPTER structure
8575  *
8576  * This function is waiting 10s for all pending commands to complete
8577  * prior to putting controller in reset.
8578  */
8579 void
8580 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8581 {
8582         u32 ioc_state;
8583
8584         ioc->pending_io_count = 0;
8585
8586         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8587         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8588                 return;
8589
8590         /* pending command count */
8591         ioc->pending_io_count = scsi_host_busy(ioc->shost);
8592
8593         if (!ioc->pending_io_count)
8594                 return;
8595
8596         /* wait for pending commands to complete */
8597         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8598 }
8599
8600 /**
8601  * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8602  *     attributes during online firmware upgrade and update the corresponding
8603  *     IOC variables accordingly.
8604  *
8605  * @ioc: Pointer to MPT_ADAPTER structure
8606  */
8607 static int
8608 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8609 {
8610         u16 pd_handles_sz;
8611         void *pd_handles = NULL, *blocking_handles = NULL;
8612         void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8613         struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8614
8615         if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8616                 pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8617                 if (ioc->facts.MaxDevHandle % 8)
8618                         pd_handles_sz++;
8619
8620                 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8621                     GFP_KERNEL);
8622                 if (!pd_handles) {
8623                         ioc_info(ioc,
8624                             "Unable to allocate the memory for pd_handles of sz: %d\n",
8625                             pd_handles_sz);
8626                         return -ENOMEM;
8627                 }
8628                 memset(pd_handles + ioc->pd_handles_sz, 0,
8629                     (pd_handles_sz - ioc->pd_handles_sz));
8630                 ioc->pd_handles = pd_handles;
8631
8632                 blocking_handles = krealloc(ioc->blocking_handles,
8633                     pd_handles_sz, GFP_KERNEL);
8634                 if (!blocking_handles) {
8635                         ioc_info(ioc,
8636                             "Unable to allocate the memory for "
8637                             "blocking_handles of sz: %d\n",
8638                             pd_handles_sz);
8639                         return -ENOMEM;
8640                 }
8641                 memset(blocking_handles + ioc->pd_handles_sz, 0,
8642                     (pd_handles_sz - ioc->pd_handles_sz));
8643                 ioc->blocking_handles = blocking_handles;
8644                 ioc->pd_handles_sz = pd_handles_sz;
8645
8646                 pend_os_device_add = krealloc(ioc->pend_os_device_add,
8647                     pd_handles_sz, GFP_KERNEL);
8648                 if (!pend_os_device_add) {
8649                         ioc_info(ioc,
8650                             "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8651                             pd_handles_sz);
8652                         return -ENOMEM;
8653                 }
8654                 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8655                     (pd_handles_sz - ioc->pend_os_device_add_sz));
8656                 ioc->pend_os_device_add = pend_os_device_add;
8657                 ioc->pend_os_device_add_sz = pd_handles_sz;
8658
8659                 device_remove_in_progress = krealloc(
8660                     ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8661                 if (!device_remove_in_progress) {
8662                         ioc_info(ioc,
8663                             "Unable to allocate the memory for "
8664                             "device_remove_in_progress of sz: %d\n "
8665                             , pd_handles_sz);
8666                         return -ENOMEM;
8667                 }
8668                 memset(device_remove_in_progress +
8669                     ioc->device_remove_in_progress_sz, 0,
8670                     (pd_handles_sz - ioc->device_remove_in_progress_sz));
8671                 ioc->device_remove_in_progress = device_remove_in_progress;
8672                 ioc->device_remove_in_progress_sz = pd_handles_sz;
8673         }
8674
8675         memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8676         return 0;
8677 }
8678
8679 /**
8680  * mpt3sas_base_hard_reset_handler - reset controller
8681  * @ioc: Pointer to MPT_ADAPTER structure
8682  * @type: FORCE_BIG_HAMMER or SOFT_RESET
8683  *
8684  * Return: 0 for success, non-zero for failure.
8685  */
8686 int
8687 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8688         enum reset_type type)
8689 {
8690         int r;
8691         unsigned long flags;
8692         u32 ioc_state;
8693         u8 is_fault = 0, is_trigger = 0;
8694
8695         dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8696
8697         if (ioc->pci_error_recovery) {
8698                 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8699                 r = 0;
8700                 goto out_unlocked;
8701         }
8702
8703         if (mpt3sas_fwfault_debug)
8704                 mpt3sas_halt_firmware(ioc);
8705
8706         /* wait for an active reset in progress to complete */
8707         mutex_lock(&ioc->reset_in_progress_mutex);
8708
8709         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8710         ioc->shost_recovery = 1;
8711         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8712
8713         if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8714             MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8715             (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8716             MPT3_DIAG_BUFFER_IS_RELEASED))) {
8717                 is_trigger = 1;
8718                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8719                 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8720                     (ioc_state & MPI2_IOC_STATE_MASK) ==
8721                     MPI2_IOC_STATE_COREDUMP) {
8722                         is_fault = 1;
8723                         ioc->htb_rel.trigger_info_dwords[1] =
8724                             (ioc_state & MPI2_DOORBELL_DATA_MASK);
8725                 }
8726         }
8727         _base_pre_reset_handler(ioc);
8728         mpt3sas_wait_for_commands_to_complete(ioc);
8729         mpt3sas_base_mask_interrupts(ioc);
8730         mpt3sas_base_pause_mq_polling(ioc);
8731         r = mpt3sas_base_make_ioc_ready(ioc, type);
8732         if (r)
8733                 goto out;
8734         _base_clear_outstanding_commands(ioc);
8735
8736         /* If this hard reset is called while port enable is active, then
8737          * there is no reason to call make_ioc_operational
8738          */
8739         if (ioc->is_driver_loading && ioc->port_enable_failed) {
8740                 ioc->remove_host = 1;
8741                 r = -EFAULT;
8742                 goto out;
8743         }
8744         r = _base_get_ioc_facts(ioc);
8745         if (r)
8746                 goto out;
8747
8748         r = _base_check_ioc_facts_changes(ioc);
8749         if (r) {
8750                 ioc_info(ioc,
8751                     "Some of the parameters got changed in this new firmware"
8752                     " image and it requires system reboot\n");
8753                 goto out;
8754         }
8755         if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8756                 panic("%s: Issue occurred with flashing controller firmware."
8757                       "Please reboot the system and ensure that the correct"
8758                       " firmware version is running\n", ioc->name);
8759
8760         r = _base_make_ioc_operational(ioc);
8761         if (!r)
8762                 _base_reset_done_handler(ioc);
8763
8764  out:
8765         ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
8766
8767         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8768         ioc->shost_recovery = 0;
8769         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8770         ioc->ioc_reset_count++;
8771         mutex_unlock(&ioc->reset_in_progress_mutex);
8772         mpt3sas_base_resume_mq_polling(ioc);
8773
8774  out_unlocked:
8775         if ((r == 0) && is_trigger) {
8776                 if (is_fault)
8777                         mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
8778                 else
8779                         mpt3sas_trigger_master(ioc,
8780                             MASTER_TRIGGER_ADAPTER_RESET);
8781         }
8782         dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
8783         return r;
8784 }