scsi: mpt3sas: Fix loop logic
[platform/kernel/linux-starfive.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63
64
65 #include "mpt3sas_base.h"
66
67 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
68
69
70 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
71
72  /* maximum controller queue depth */
73 #define MAX_HBA_QUEUE_DEPTH     30000
74 #define MAX_CHAIN_DEPTH         100000
75 static int max_queue_depth = -1;
76 module_param(max_queue_depth, int, 0444);
77 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
78
79 static int max_sgl_entries = -1;
80 module_param(max_sgl_entries, int, 0444);
81 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
82
83 static int msix_disable = -1;
84 module_param(msix_disable, int, 0444);
85 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
86
87 static int smp_affinity_enable = 1;
88 module_param(smp_affinity_enable, int, 0444);
89 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
90
91 static int max_msix_vectors = -1;
92 module_param(max_msix_vectors, int, 0444);
93 MODULE_PARM_DESC(max_msix_vectors,
94         " max msix vectors");
95
96 static int irqpoll_weight = -1;
97 module_param(irqpoll_weight, int, 0444);
98 MODULE_PARM_DESC(irqpoll_weight,
99         "irq poll weight (default= one fourth of HBA queue depth)");
100
101 static int mpt3sas_fwfault_debug;
102 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
103         " enable detection of firmware fault and halt firmware - (default=0)");
104
105 static int perf_mode = -1;
106 module_param(perf_mode, int, 0444);
107 MODULE_PARM_DESC(perf_mode,
108         "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
109         "0 - balanced: high iops mode is enabled &\n\t\t"
110         "interrupt coalescing is enabled only on high iops queues,\n\t\t"
111         "1 - iops: high iops mode is disabled &\n\t\t"
112         "interrupt coalescing is enabled on all queues,\n\t\t"
113         "2 - latency: high iops mode is disabled &\n\t\t"
114         "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
115         "\t\tdefault - default perf_mode is 'balanced'"
116         );
117
118 static int poll_queues;
119 module_param(poll_queues, int, 0444);
120 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t"
121         "This parameter is effective only if host_tagset_enable=1. &\n\t\t"
122         "when poll_queues are enabled then &\n\t\t"
123         "perf_mode is set to latency mode. &\n\t\t"
124         );
125
126 enum mpt3sas_perf_mode {
127         MPT_PERF_MODE_DEFAULT   = -1,
128         MPT_PERF_MODE_BALANCED  = 0,
129         MPT_PERF_MODE_IOPS      = 1,
130         MPT_PERF_MODE_LATENCY   = 2,
131 };
132
133 static int
134 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
135                 u32 ioc_state, int timeout);
136 static int
137 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
138 static void
139 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
140
141 static u32
142 _base_readl_ext_retry(const void __iomem *addr);
143
144 /**
145  * mpt3sas_base_check_cmd_timeout - Function
146  *              to check timeout and command termination due
147  *              to Host reset.
148  *
149  * @ioc:        per adapter object.
150  * @status:     Status of issued command.
151  * @mpi_request:mf request pointer.
152  * @sz:         size of buffer.
153  *
154  * Return: 1/0 Reset to be done or Not
155  */
156 u8
157 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
158                 u8 status, void *mpi_request, int sz)
159 {
160         u8 issue_reset = 0;
161
162         if (!(status & MPT3_CMD_RESET))
163                 issue_reset = 1;
164
165         ioc_err(ioc, "Command %s\n",
166                 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
167         _debug_dump_mf(mpi_request, sz);
168
169         return issue_reset;
170 }
171
172 /**
173  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
174  * @val: ?
175  * @kp: ?
176  *
177  * Return: ?
178  */
179 static int
180 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
181 {
182         int ret = param_set_int(val, kp);
183         struct MPT3SAS_ADAPTER *ioc;
184
185         if (ret)
186                 return ret;
187
188         /* global ioc spinlock to protect controller list on list operations */
189         pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
190         spin_lock(&gioc_lock);
191         list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
192                 ioc->fwfault_debug = mpt3sas_fwfault_debug;
193         spin_unlock(&gioc_lock);
194         return 0;
195 }
196 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
197         param_get_int, &mpt3sas_fwfault_debug, 0644);
198
199 /**
200  * _base_readl_aero - retry readl for max three times.
201  * @addr: MPT Fusion system interface register address
202  *
203  * Retry the readl() for max three times if it gets zero value
204  * while reading the system interface register.
205  */
206 static inline u32
207 _base_readl_aero(const void __iomem *addr)
208 {
209         u32 i = 0, ret_val;
210
211         do {
212                 ret_val = readl(addr);
213                 i++;
214         } while (ret_val == 0 && i < 3);
215
216         return ret_val;
217 }
218
219 static u32
220 _base_readl_ext_retry(const void __iomem *addr)
221 {
222         u32 i, ret_val;
223
224         for (i = 0 ; i < 30 ; i++) {
225                 ret_val = readl(addr);
226                 if (ret_val != 0)
227                         break;
228         }
229
230         return ret_val;
231 }
232
233 static inline u32
234 _base_readl(const void __iomem *addr)
235 {
236         return readl(addr);
237 }
238
239 /**
240  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
241  *                                in BAR0 space.
242  *
243  * @ioc: per adapter object
244  * @reply: reply message frame(lower 32bit addr)
245  * @index: System request message index.
246  */
247 static void
248 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
249                 u32 index)
250 {
251         /*
252          * 256 is offset within sys register.
253          * 256 offset MPI frame starts. Max MPI frame supported is 32.
254          * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
255          */
256         u16 cmd_credit = ioc->facts.RequestCredit + 1;
257         void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
258                         MPI_FRAME_START_OFFSET +
259                         (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
260
261         writel(reply, reply_free_iomem);
262 }
263
264 /**
265  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
266  *                              to system/BAR0 region.
267  *
268  * @dst_iomem: Pointer to the destination location in BAR0 space.
269  * @src: Pointer to the Source data.
270  * @size: Size of data to be copied.
271  */
272 static void
273 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
274 {
275         int i;
276         u32 *src_virt_mem = (u32 *)src;
277
278         for (i = 0; i < size/4; i++)
279                 writel((u32)src_virt_mem[i],
280                                 (void __iomem *)dst_iomem + (i * 4));
281 }
282
283 /**
284  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
285  *
286  * @dst_iomem: Pointer to the destination location in BAR0 space.
287  * @src: Pointer to the Source data.
288  * @size: Size of data to be copied.
289  */
290 static void
291 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
292 {
293         int i;
294         u32 *src_virt_mem = (u32 *)(src);
295
296         for (i = 0; i < size/4; i++)
297                 writel((u32)src_virt_mem[i],
298                         (void __iomem *)dst_iomem + (i * 4));
299 }
300
301 /**
302  * _base_get_chain - Calculates and Returns virtual chain address
303  *                       for the provided smid in BAR0 space.
304  *
305  * @ioc: per adapter object
306  * @smid: system request message index
307  * @sge_chain_count: Scatter gather chain count.
308  *
309  * Return: the chain address.
310  */
311 static inline void __iomem*
312 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
313                 u8 sge_chain_count)
314 {
315         void __iomem *base_chain, *chain_virt;
316         u16 cmd_credit = ioc->facts.RequestCredit + 1;
317
318         base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
319                 (cmd_credit * ioc->request_sz) +
320                 REPLY_FREE_POOL_SIZE;
321         chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
322                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
323         return chain_virt;
324 }
325
326 /**
327  * _base_get_chain_phys - Calculates and Returns physical address
328  *                      in BAR0 for scatter gather chains, for
329  *                      the provided smid.
330  *
331  * @ioc: per adapter object
332  * @smid: system request message index
333  * @sge_chain_count: Scatter gather chain count.
334  *
335  * Return: Physical chain address.
336  */
337 static inline phys_addr_t
338 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
339                 u8 sge_chain_count)
340 {
341         phys_addr_t base_chain_phys, chain_phys;
342         u16 cmd_credit = ioc->facts.RequestCredit + 1;
343
344         base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
345                 (cmd_credit * ioc->request_sz) +
346                 REPLY_FREE_POOL_SIZE;
347         chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
348                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
349         return chain_phys;
350 }
351
352 /**
353  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
354  *                      buffer address for the provided smid.
355  *                      (Each smid can have 64K starts from 17024)
356  *
357  * @ioc: per adapter object
358  * @smid: system request message index
359  *
360  * Return: Pointer to buffer location in BAR0.
361  */
362
363 static void __iomem *
364 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
365 {
366         u16 cmd_credit = ioc->facts.RequestCredit + 1;
367         // Added extra 1 to reach end of chain.
368         void __iomem *chain_end = _base_get_chain(ioc,
369                         cmd_credit + 1,
370                         ioc->facts.MaxChainDepth);
371         return chain_end + (smid * 64 * 1024);
372 }
373
374 /**
375  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
376  *              Host buffer Physical address for the provided smid.
377  *              (Each smid can have 64K starts from 17024)
378  *
379  * @ioc: per adapter object
380  * @smid: system request message index
381  *
382  * Return: Pointer to buffer location in BAR0.
383  */
384 static phys_addr_t
385 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
386 {
387         u16 cmd_credit = ioc->facts.RequestCredit + 1;
388         phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
389                         cmd_credit + 1,
390                         ioc->facts.MaxChainDepth);
391         return chain_end_phys + (smid * 64 * 1024);
392 }
393
394 /**
395  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
396  *                      lookup list and Provides chain_buffer
397  *                      address for the matching dma address.
398  *                      (Each smid can have 64K starts from 17024)
399  *
400  * @ioc: per adapter object
401  * @chain_buffer_dma: Chain buffer dma address.
402  *
403  * Return: Pointer to chain buffer. Or Null on Failure.
404  */
405 static void *
406 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
407                 dma_addr_t chain_buffer_dma)
408 {
409         u16 index, j;
410         struct chain_tracker *ct;
411
412         for (index = 0; index < ioc->scsiio_depth; index++) {
413                 for (j = 0; j < ioc->chains_needed_per_io; j++) {
414                         ct = &ioc->chain_lookup[index].chains_per_smid[j];
415                         if (ct && ct->chain_buffer_dma == chain_buffer_dma)
416                                 return ct->chain_buffer;
417                 }
418         }
419         ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
420         return NULL;
421 }
422
423 /**
424  * _clone_sg_entries -  MPI EP's scsiio and config requests
425  *                      are handled here. Base function for
426  *                      double buffering, before submitting
427  *                      the requests.
428  *
429  * @ioc: per adapter object.
430  * @mpi_request: mf request pointer.
431  * @smid: system request message index.
432  */
433 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
434                 void *mpi_request, u16 smid)
435 {
436         Mpi2SGESimple32_t *sgel, *sgel_next;
437         u32  sgl_flags, sge_chain_count = 0;
438         bool is_write = false;
439         u16 i = 0;
440         void __iomem *buffer_iomem;
441         phys_addr_t buffer_iomem_phys;
442         void __iomem *buff_ptr;
443         phys_addr_t buff_ptr_phys;
444         void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
445         void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
446         phys_addr_t dst_addr_phys;
447         MPI2RequestHeader_t *request_hdr;
448         struct scsi_cmnd *scmd;
449         struct scatterlist *sg_scmd = NULL;
450         int is_scsiio_req = 0;
451
452         request_hdr = (MPI2RequestHeader_t *) mpi_request;
453
454         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
455                 Mpi25SCSIIORequest_t *scsiio_request =
456                         (Mpi25SCSIIORequest_t *)mpi_request;
457                 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
458                 is_scsiio_req = 1;
459         } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
460                 Mpi2ConfigRequest_t  *config_req =
461                         (Mpi2ConfigRequest_t *)mpi_request;
462                 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
463         } else
464                 return;
465
466         /* From smid we can get scsi_cmd, once we have sg_scmd,
467          * we just need to get sg_virt and sg_next to get virtual
468          * address associated with sgel->Address.
469          */
470
471         if (is_scsiio_req) {
472                 /* Get scsi_cmd using smid */
473                 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
474                 if (scmd == NULL) {
475                         ioc_err(ioc, "scmd is NULL\n");
476                         return;
477                 }
478
479                 /* Get sg_scmd from scmd provided */
480                 sg_scmd = scsi_sglist(scmd);
481         }
482
483         /*
484          * 0 - 255      System register
485          * 256 - 4352   MPI Frame. (This is based on maxCredit 32)
486          * 4352 - 4864  Reply_free pool (512 byte is reserved
487          *              considering maxCredit 32. Reply need extra
488          *              room, for mCPU case kept four times of
489          *              maxCredit).
490          * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
491          *              128 byte size = 12288)
492          * 17152 - x    Host buffer mapped with smid.
493          *              (Each smid can have 64K Max IO.)
494          * BAR0+Last 1K MSIX Addr and Data
495          * Total size in use 2113664 bytes of 4MB BAR0
496          */
497
498         buffer_iomem = _base_get_buffer_bar0(ioc, smid);
499         buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
500
501         buff_ptr = buffer_iomem;
502         buff_ptr_phys = buffer_iomem_phys;
503         WARN_ON(buff_ptr_phys > U32_MAX);
504
505         if (le32_to_cpu(sgel->FlagsLength) &
506                         (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
507                 is_write = true;
508
509         for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
510
511                 sgl_flags =
512                     (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
513
514                 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
515                 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
516                         /*
517                          * Helper function which on passing
518                          * chain_buffer_dma returns chain_buffer. Get
519                          * the virtual address for sgel->Address
520                          */
521                         sgel_next =
522                                 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
523                                                 le32_to_cpu(sgel->Address));
524                         if (sgel_next == NULL)
525                                 return;
526                         /*
527                          * This is coping 128 byte chain
528                          * frame (not a host buffer)
529                          */
530                         dst_chain_addr[sge_chain_count] =
531                                 _base_get_chain(ioc,
532                                         smid, sge_chain_count);
533                         src_chain_addr[sge_chain_count] =
534                                                 (void *) sgel_next;
535                         dst_addr_phys = _base_get_chain_phys(ioc,
536                                                 smid, sge_chain_count);
537                         WARN_ON(dst_addr_phys > U32_MAX);
538                         sgel->Address =
539                                 cpu_to_le32(lower_32_bits(dst_addr_phys));
540                         sgel = sgel_next;
541                         sge_chain_count++;
542                         break;
543                 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
544                         if (is_write) {
545                                 if (is_scsiio_req) {
546                                         _base_clone_to_sys_mem(buff_ptr,
547                                             sg_virt(sg_scmd),
548                                             (le32_to_cpu(sgel->FlagsLength) &
549                                             0x00ffffff));
550                                         /*
551                                          * FIXME: this relies on a a zero
552                                          * PCI mem_offset.
553                                          */
554                                         sgel->Address =
555                                             cpu_to_le32((u32)buff_ptr_phys);
556                                 } else {
557                                         _base_clone_to_sys_mem(buff_ptr,
558                                             ioc->config_vaddr,
559                                             (le32_to_cpu(sgel->FlagsLength) &
560                                             0x00ffffff));
561                                         sgel->Address =
562                                             cpu_to_le32((u32)buff_ptr_phys);
563                                 }
564                         }
565                         buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
566                             0x00ffffff);
567                         buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
568                             0x00ffffff);
569                         if ((le32_to_cpu(sgel->FlagsLength) &
570                             (MPI2_SGE_FLAGS_END_OF_BUFFER
571                                         << MPI2_SGE_FLAGS_SHIFT)))
572                                 goto eob_clone_chain;
573                         else {
574                                 /*
575                                  * Every single element in MPT will have
576                                  * associated sg_next. Better to sanity that
577                                  * sg_next is not NULL, but it will be a bug
578                                  * if it is null.
579                                  */
580                                 if (is_scsiio_req) {
581                                         sg_scmd = sg_next(sg_scmd);
582                                         if (sg_scmd)
583                                                 sgel++;
584                                         else
585                                                 goto eob_clone_chain;
586                                 }
587                         }
588                         break;
589                 }
590         }
591
592 eob_clone_chain:
593         for (i = 0; i < sge_chain_count; i++) {
594                 if (is_scsiio_req)
595                         _base_clone_to_sys_mem(dst_chain_addr[i],
596                                 src_chain_addr[i], ioc->request_sz);
597         }
598 }
599
600 /**
601  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
602  * @arg: input argument, used to derive ioc
603  *
604  * Return:
605  * 0 if controller is removed from pci subsystem.
606  * -1 for other case.
607  */
608 static int mpt3sas_remove_dead_ioc_func(void *arg)
609 {
610         struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
611         struct pci_dev *pdev;
612
613         if (!ioc)
614                 return -1;
615
616         pdev = ioc->pdev;
617         if (!pdev)
618                 return -1;
619         pci_stop_and_remove_bus_device_locked(pdev);
620         return 0;
621 }
622
623 /**
624  * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
625  * @ioc: Per Adapter Object
626  *
627  * Return: nothing.
628  */
629 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
630 {
631         Mpi26IoUnitControlRequest_t *mpi_request;
632         Mpi26IoUnitControlReply_t *mpi_reply;
633         u16 smid;
634         ktime_t current_time;
635         u64 TimeStamp = 0;
636         u8 issue_reset = 0;
637
638         mutex_lock(&ioc->scsih_cmds.mutex);
639         if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
640                 ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
641                 goto out;
642         }
643         ioc->scsih_cmds.status = MPT3_CMD_PENDING;
644         smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
645         if (!smid) {
646                 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
647                 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
648                 goto out;
649         }
650         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
651         ioc->scsih_cmds.smid = smid;
652         memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
653         mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
654         mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
655         mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
656         current_time = ktime_get_real();
657         TimeStamp = ktime_to_ms(current_time);
658         mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32);
659         mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
660         init_completion(&ioc->scsih_cmds.done);
661         ioc->put_smid_default(ioc, smid);
662         dinitprintk(ioc, ioc_info(ioc,
663             "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
664             TimeStamp));
665         wait_for_completion_timeout(&ioc->scsih_cmds.done,
666                 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
667         if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
668                 mpt3sas_check_cmd_timeout(ioc,
669                     ioc->scsih_cmds.status, mpi_request,
670                     sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
671                 goto issue_host_reset;
672         }
673         if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
674                 mpi_reply = ioc->scsih_cmds.reply;
675                 dinitprintk(ioc, ioc_info(ioc,
676                     "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
677                     le16_to_cpu(mpi_reply->IOCStatus),
678                     le32_to_cpu(mpi_reply->IOCLogInfo)));
679         }
680 issue_host_reset:
681         if (issue_reset)
682                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
683         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
684 out:
685         mutex_unlock(&ioc->scsih_cmds.mutex);
686 }
687
688 /**
689  * _base_fault_reset_work - workq handling ioc fault conditions
690  * @work: input argument, used to derive ioc
691  *
692  * Context: sleep.
693  */
694 static void
695 _base_fault_reset_work(struct work_struct *work)
696 {
697         struct MPT3SAS_ADAPTER *ioc =
698             container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
699         unsigned long    flags;
700         u32 doorbell;
701         int rc;
702         struct task_struct *p;
703
704
705         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
706         if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
707                         ioc->pci_error_recovery)
708                 goto rearm_timer;
709         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
710
711         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
712         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
713                 ioc_err(ioc, "SAS host is non-operational !!!!\n");
714
715                 /* It may be possible that EEH recovery can resolve some of
716                  * pci bus failure issues rather removing the dead ioc function
717                  * by considering controller is in a non-operational state. So
718                  * here priority is given to the EEH recovery. If it doesn't
719                  * not resolve this issue, mpt3sas driver will consider this
720                  * controller to non-operational state and remove the dead ioc
721                  * function.
722                  */
723                 if (ioc->non_operational_loop++ < 5) {
724                         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
725                                                          flags);
726                         goto rearm_timer;
727                 }
728
729                 /*
730                  * Call _scsih_flush_pending_cmds callback so that we flush all
731                  * pending commands back to OS. This call is required to avoid
732                  * deadlock at block layer. Dead IOC will fail to do diag reset,
733                  * and this call is safe since dead ioc will never return any
734                  * command back from HW.
735                  */
736                 mpt3sas_base_pause_mq_polling(ioc);
737                 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
738                 /*
739                  * Set remove_host flag early since kernel thread will
740                  * take some time to execute.
741                  */
742                 ioc->remove_host = 1;
743                 /*Remove the Dead Host */
744                 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
745                     "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
746                 if (IS_ERR(p))
747                         ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
748                                 __func__);
749                 else
750                         ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
751                                 __func__);
752                 return; /* don't rearm timer */
753         }
754
755         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
756                 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
757                     ioc->manu_pg11.CoreDumpTOSec :
758                     MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
759
760                 timeout /= (FAULT_POLLING_INTERVAL/1000);
761
762                 if (ioc->ioc_coredump_loop == 0) {
763                         mpt3sas_print_coredump_info(ioc,
764                             doorbell & MPI2_DOORBELL_DATA_MASK);
765                         /* do not accept any IOs and disable the interrupts */
766                         spin_lock_irqsave(
767                             &ioc->ioc_reset_in_progress_lock, flags);
768                         ioc->shost_recovery = 1;
769                         spin_unlock_irqrestore(
770                             &ioc->ioc_reset_in_progress_lock, flags);
771                         mpt3sas_base_mask_interrupts(ioc);
772                         mpt3sas_base_pause_mq_polling(ioc);
773                         _base_clear_outstanding_commands(ioc);
774                 }
775
776                 ioc_info(ioc, "%s: CoreDump loop %d.",
777                     __func__, ioc->ioc_coredump_loop);
778
779                 /* Wait until CoreDump completes or times out */
780                 if (ioc->ioc_coredump_loop++ < timeout) {
781                         spin_lock_irqsave(
782                             &ioc->ioc_reset_in_progress_lock, flags);
783                         goto rearm_timer;
784                 }
785         }
786
787         if (ioc->ioc_coredump_loop) {
788                 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
789                         ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
790                             __func__, ioc->ioc_coredump_loop);
791                 else
792                         ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
793                             __func__, ioc->ioc_coredump_loop);
794                 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
795         }
796         ioc->non_operational_loop = 0;
797         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
798                 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
799                 ioc_warn(ioc, "%s: hard reset: %s\n",
800                          __func__, rc == 0 ? "success" : "failed");
801                 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
802                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
803                         mpt3sas_print_fault_code(ioc, doorbell &
804                             MPI2_DOORBELL_DATA_MASK);
805                 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
806                     MPI2_IOC_STATE_COREDUMP)
807                         mpt3sas_print_coredump_info(ioc, doorbell &
808                             MPI2_DOORBELL_DATA_MASK);
809                 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
810                     MPI2_IOC_STATE_OPERATIONAL)
811                         return; /* don't rearm timer */
812         }
813         ioc->ioc_coredump_loop = 0;
814         if (ioc->time_sync_interval &&
815             ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
816                 ioc->timestamp_update_count = 0;
817                 _base_sync_drv_fw_timestamp(ioc);
818         }
819         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
820  rearm_timer:
821         if (ioc->fault_reset_work_q)
822                 queue_delayed_work(ioc->fault_reset_work_q,
823                     &ioc->fault_reset_work,
824                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
825         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
826 }
827
828 /**
829  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
830  * @ioc: per adapter object
831  *
832  * Context: sleep.
833  */
834 void
835 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
836 {
837         unsigned long    flags;
838
839         if (ioc->fault_reset_work_q)
840                 return;
841
842         ioc->timestamp_update_count = 0;
843         /* initialize fault polling */
844
845         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
846         snprintf(ioc->fault_reset_work_q_name,
847             sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
848             ioc->driver_name, ioc->id);
849         ioc->fault_reset_work_q =
850                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
851         if (!ioc->fault_reset_work_q) {
852                 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
853                 return;
854         }
855         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
856         if (ioc->fault_reset_work_q)
857                 queue_delayed_work(ioc->fault_reset_work_q,
858                     &ioc->fault_reset_work,
859                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
860         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
861 }
862
863 /**
864  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
865  * @ioc: per adapter object
866  *
867  * Context: sleep.
868  */
869 void
870 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
871 {
872         unsigned long flags;
873         struct workqueue_struct *wq;
874
875         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
876         wq = ioc->fault_reset_work_q;
877         ioc->fault_reset_work_q = NULL;
878         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
879         if (wq) {
880                 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
881                         flush_workqueue(wq);
882                 destroy_workqueue(wq);
883         }
884 }
885
886 /**
887  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
888  * @ioc: per adapter object
889  * @fault_code: fault code
890  */
891 void
892 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
893 {
894         ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
895 }
896
897 /**
898  * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
899  * @ioc: per adapter object
900  * @fault_code: fault code
901  *
902  * Return: nothing.
903  */
904 void
905 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
906 {
907         ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
908 }
909
910 /**
911  * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
912  * completes or times out
913  * @ioc: per adapter object
914  * @caller: caller function name
915  *
916  * Return: 0 for success, non-zero for failure.
917  */
918 int
919 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
920                 const char *caller)
921 {
922         u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
923                         ioc->manu_pg11.CoreDumpTOSec :
924                         MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
925
926         int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
927                                         timeout);
928
929         if (ioc_state)
930                 ioc_err(ioc,
931                     "%s: CoreDump timed out. (ioc_state=0x%x)\n",
932                     caller, ioc_state);
933         else
934                 ioc_info(ioc,
935                     "%s: CoreDump completed. (ioc_state=0x%x)\n",
936                     caller, ioc_state);
937
938         return ioc_state;
939 }
940
941 /**
942  * mpt3sas_halt_firmware - halt's mpt controller firmware
943  * @ioc: per adapter object
944  *
945  * For debugging timeout related issues.  Writing 0xCOFFEE00
946  * to the doorbell register will halt controller firmware. With
947  * the purpose to stop both driver and firmware, the enduser can
948  * obtain a ring buffer from controller UART.
949  */
950 void
951 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
952 {
953         u32 doorbell;
954
955         if (!ioc->fwfault_debug)
956                 return;
957
958         dump_stack();
959
960         doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
961         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
962                 mpt3sas_print_fault_code(ioc, doorbell &
963                     MPI2_DOORBELL_DATA_MASK);
964         } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
965             MPI2_IOC_STATE_COREDUMP) {
966                 mpt3sas_print_coredump_info(ioc, doorbell &
967                     MPI2_DOORBELL_DATA_MASK);
968         } else {
969                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
970                 ioc_err(ioc, "Firmware is halted due to command timeout\n");
971         }
972
973         if (ioc->fwfault_debug == 2)
974                 for (;;)
975                         ;
976         else
977                 panic("panic in %s\n", __func__);
978 }
979
980 /**
981  * _base_sas_ioc_info - verbose translation of the ioc status
982  * @ioc: per adapter object
983  * @mpi_reply: reply mf payload returned from firmware
984  * @request_hdr: request mf
985  */
986 static void
987 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
988         MPI2RequestHeader_t *request_hdr)
989 {
990         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
991             MPI2_IOCSTATUS_MASK;
992         char *desc = NULL;
993         u16 frame_sz;
994         char *func_str = NULL;
995
996         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
997         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
998             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
999             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
1000                 return;
1001
1002         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
1003                 return;
1004         /*
1005          * Older Firmware version doesn't support driver trigger pages.
1006          * So, skip displaying 'config invalid type' type
1007          * of error message.
1008          */
1009         if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
1010                 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
1011
1012                 if ((rqst->ExtPageType ==
1013                     MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
1014                     !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
1015                         return;
1016                 }
1017         }
1018
1019         switch (ioc_status) {
1020
1021 /****************************************************************************
1022 *  Common IOCStatus values for all replies
1023 ****************************************************************************/
1024
1025         case MPI2_IOCSTATUS_INVALID_FUNCTION:
1026                 desc = "invalid function";
1027                 break;
1028         case MPI2_IOCSTATUS_BUSY:
1029                 desc = "busy";
1030                 break;
1031         case MPI2_IOCSTATUS_INVALID_SGL:
1032                 desc = "invalid sgl";
1033                 break;
1034         case MPI2_IOCSTATUS_INTERNAL_ERROR:
1035                 desc = "internal error";
1036                 break;
1037         case MPI2_IOCSTATUS_INVALID_VPID:
1038                 desc = "invalid vpid";
1039                 break;
1040         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1041                 desc = "insufficient resources";
1042                 break;
1043         case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1044                 desc = "insufficient power";
1045                 break;
1046         case MPI2_IOCSTATUS_INVALID_FIELD:
1047                 desc = "invalid field";
1048                 break;
1049         case MPI2_IOCSTATUS_INVALID_STATE:
1050                 desc = "invalid state";
1051                 break;
1052         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1053                 desc = "op state not supported";
1054                 break;
1055
1056 /****************************************************************************
1057 *  Config IOCStatus values
1058 ****************************************************************************/
1059
1060         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1061                 desc = "config invalid action";
1062                 break;
1063         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1064                 desc = "config invalid type";
1065                 break;
1066         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1067                 desc = "config invalid page";
1068                 break;
1069         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1070                 desc = "config invalid data";
1071                 break;
1072         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1073                 desc = "config no defaults";
1074                 break;
1075         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1076                 desc = "config can't commit";
1077                 break;
1078
1079 /****************************************************************************
1080 *  SCSI IO Reply
1081 ****************************************************************************/
1082
1083         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1084         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1085         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1086         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1087         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1088         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1089         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1090         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1091         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1092         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1093         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1094         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1095                 break;
1096
1097 /****************************************************************************
1098 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
1099 ****************************************************************************/
1100
1101         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1102                 desc = "eedp guard error";
1103                 break;
1104         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1105                 desc = "eedp ref tag error";
1106                 break;
1107         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1108                 desc = "eedp app tag error";
1109                 break;
1110
1111 /****************************************************************************
1112 *  SCSI Target values
1113 ****************************************************************************/
1114
1115         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1116                 desc = "target invalid io index";
1117                 break;
1118         case MPI2_IOCSTATUS_TARGET_ABORTED:
1119                 desc = "target aborted";
1120                 break;
1121         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1122                 desc = "target no conn retryable";
1123                 break;
1124         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1125                 desc = "target no connection";
1126                 break;
1127         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1128                 desc = "target xfer count mismatch";
1129                 break;
1130         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1131                 desc = "target data offset error";
1132                 break;
1133         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1134                 desc = "target too much write data";
1135                 break;
1136         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1137                 desc = "target iu too short";
1138                 break;
1139         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1140                 desc = "target ack nak timeout";
1141                 break;
1142         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1143                 desc = "target nak received";
1144                 break;
1145
1146 /****************************************************************************
1147 *  Serial Attached SCSI values
1148 ****************************************************************************/
1149
1150         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1151                 desc = "smp request failed";
1152                 break;
1153         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1154                 desc = "smp data overrun";
1155                 break;
1156
1157 /****************************************************************************
1158 *  Diagnostic Buffer Post / Diagnostic Release values
1159 ****************************************************************************/
1160
1161         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1162                 desc = "diagnostic released";
1163                 break;
1164         default:
1165                 break;
1166         }
1167
1168         if (!desc)
1169                 return;
1170
1171         switch (request_hdr->Function) {
1172         case MPI2_FUNCTION_CONFIG:
1173                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1174                 func_str = "config_page";
1175                 break;
1176         case MPI2_FUNCTION_SCSI_TASK_MGMT:
1177                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1178                 func_str = "task_mgmt";
1179                 break;
1180         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1181                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1182                 func_str = "sas_iounit_ctl";
1183                 break;
1184         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1185                 frame_sz = sizeof(Mpi2SepRequest_t);
1186                 func_str = "enclosure";
1187                 break;
1188         case MPI2_FUNCTION_IOC_INIT:
1189                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
1190                 func_str = "ioc_init";
1191                 break;
1192         case MPI2_FUNCTION_PORT_ENABLE:
1193                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
1194                 func_str = "port_enable";
1195                 break;
1196         case MPI2_FUNCTION_SMP_PASSTHROUGH:
1197                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1198                 func_str = "smp_passthru";
1199                 break;
1200         case MPI2_FUNCTION_NVME_ENCAPSULATED:
1201                 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1202                     ioc->sge_size;
1203                 func_str = "nvme_encapsulated";
1204                 break;
1205         default:
1206                 frame_sz = 32;
1207                 func_str = "unknown";
1208                 break;
1209         }
1210
1211         ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1212                  desc, ioc_status, request_hdr, func_str);
1213
1214         _debug_dump_mf(request_hdr, frame_sz/4);
1215 }
1216
1217 /**
1218  * _base_display_event_data - verbose translation of firmware asyn events
1219  * @ioc: per adapter object
1220  * @mpi_reply: reply mf payload returned from firmware
1221  */
1222 static void
1223 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1224         Mpi2EventNotificationReply_t *mpi_reply)
1225 {
1226         char *desc = NULL;
1227         u16 event;
1228
1229         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1230                 return;
1231
1232         event = le16_to_cpu(mpi_reply->Event);
1233
1234         switch (event) {
1235         case MPI2_EVENT_LOG_DATA:
1236                 desc = "Log Data";
1237                 break;
1238         case MPI2_EVENT_STATE_CHANGE:
1239                 desc = "Status Change";
1240                 break;
1241         case MPI2_EVENT_HARD_RESET_RECEIVED:
1242                 desc = "Hard Reset Received";
1243                 break;
1244         case MPI2_EVENT_EVENT_CHANGE:
1245                 desc = "Event Change";
1246                 break;
1247         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1248                 desc = "Device Status Change";
1249                 break;
1250         case MPI2_EVENT_IR_OPERATION_STATUS:
1251                 if (!ioc->hide_ir_msg)
1252                         desc = "IR Operation Status";
1253                 break;
1254         case MPI2_EVENT_SAS_DISCOVERY:
1255         {
1256                 Mpi2EventDataSasDiscovery_t *event_data =
1257                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1258                 ioc_info(ioc, "Discovery: (%s)",
1259                          event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1260                          "start" : "stop");
1261                 if (event_data->DiscoveryStatus)
1262                         pr_cont(" discovery_status(0x%08x)",
1263                             le32_to_cpu(event_data->DiscoveryStatus));
1264                 pr_cont("\n");
1265                 return;
1266         }
1267         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1268                 desc = "SAS Broadcast Primitive";
1269                 break;
1270         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1271                 desc = "SAS Init Device Status Change";
1272                 break;
1273         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1274                 desc = "SAS Init Table Overflow";
1275                 break;
1276         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1277                 desc = "SAS Topology Change List";
1278                 break;
1279         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1280                 desc = "SAS Enclosure Device Status Change";
1281                 break;
1282         case MPI2_EVENT_IR_VOLUME:
1283                 if (!ioc->hide_ir_msg)
1284                         desc = "IR Volume";
1285                 break;
1286         case MPI2_EVENT_IR_PHYSICAL_DISK:
1287                 if (!ioc->hide_ir_msg)
1288                         desc = "IR Physical Disk";
1289                 break;
1290         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1291                 if (!ioc->hide_ir_msg)
1292                         desc = "IR Configuration Change List";
1293                 break;
1294         case MPI2_EVENT_LOG_ENTRY_ADDED:
1295                 if (!ioc->hide_ir_msg)
1296                         desc = "Log Entry Added";
1297                 break;
1298         case MPI2_EVENT_TEMP_THRESHOLD:
1299                 desc = "Temperature Threshold";
1300                 break;
1301         case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1302                 desc = "Cable Event";
1303                 break;
1304         case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1305                 desc = "SAS Device Discovery Error";
1306                 break;
1307         case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1308                 desc = "PCIE Device Status Change";
1309                 break;
1310         case MPI2_EVENT_PCIE_ENUMERATION:
1311         {
1312                 Mpi26EventDataPCIeEnumeration_t *event_data =
1313                         (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1314                 ioc_info(ioc, "PCIE Enumeration: (%s)",
1315                          event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1316                          "start" : "stop");
1317                 if (event_data->EnumerationStatus)
1318                         pr_cont("enumeration_status(0x%08x)",
1319                                 le32_to_cpu(event_data->EnumerationStatus));
1320                 pr_cont("\n");
1321                 return;
1322         }
1323         case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1324                 desc = "PCIE Topology Change List";
1325                 break;
1326         }
1327
1328         if (!desc)
1329                 return;
1330
1331         ioc_info(ioc, "%s\n", desc);
1332 }
1333
1334 /**
1335  * _base_sas_log_info - verbose translation of firmware log info
1336  * @ioc: per adapter object
1337  * @log_info: log info
1338  */
1339 static void
1340 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc, u32 log_info)
1341 {
1342         union loginfo_type {
1343                 u32     loginfo;
1344                 struct {
1345                         u32     subcode:16;
1346                         u32     code:8;
1347                         u32     originator:4;
1348                         u32     bus_type:4;
1349                 } dw;
1350         };
1351         union loginfo_type sas_loginfo;
1352         char *originator_str = NULL;
1353
1354         sas_loginfo.loginfo = log_info;
1355         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1356                 return;
1357
1358         /* each nexus loss loginfo */
1359         if (log_info == 0x31170000)
1360                 return;
1361
1362         /* eat the loginfos associated with task aborts */
1363         if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1364             0x31140000 || log_info == 0x31130000))
1365                 return;
1366
1367         switch (sas_loginfo.dw.originator) {
1368         case 0:
1369                 originator_str = "IOP";
1370                 break;
1371         case 1:
1372                 originator_str = "PL";
1373                 break;
1374         case 2:
1375                 if (!ioc->hide_ir_msg)
1376                         originator_str = "IR";
1377                 else
1378                         originator_str = "WarpDrive";
1379                 break;
1380         }
1381
1382         ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1383                  log_info,
1384                  originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1385 }
1386
1387 /**
1388  * _base_display_reply_info - handle reply descriptors depending on IOC Status
1389  * @ioc: per adapter object
1390  * @smid: system request message index
1391  * @msix_index: MSIX table index supplied by the OS
1392  * @reply: reply message frame (lower 32bit addr)
1393  */
1394 static void
1395 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1396         u32 reply)
1397 {
1398         MPI2DefaultReply_t *mpi_reply;
1399         u16 ioc_status;
1400         u32 loginfo = 0;
1401
1402         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1403         if (unlikely(!mpi_reply)) {
1404                 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1405                         __FILE__, __LINE__, __func__);
1406                 return;
1407         }
1408         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1409
1410         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1411             (ioc->logging_level & MPT_DEBUG_REPLY)) {
1412                 _base_sas_ioc_info(ioc, mpi_reply,
1413                    mpt3sas_base_get_msg_frame(ioc, smid));
1414         }
1415
1416         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1417                 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1418                 _base_sas_log_info(ioc, loginfo);
1419         }
1420
1421         if (ioc_status || loginfo) {
1422                 ioc_status &= MPI2_IOCSTATUS_MASK;
1423                 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1424         }
1425 }
1426
1427 /**
1428  * mpt3sas_base_done - base internal command completion routine
1429  * @ioc: per adapter object
1430  * @smid: system request message index
1431  * @msix_index: MSIX table index supplied by the OS
1432  * @reply: reply message frame(lower 32bit addr)
1433  *
1434  * Return:
1435  * 1 meaning mf should be freed from _base_interrupt
1436  * 0 means the mf is freed from this function.
1437  */
1438 u8
1439 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1440         u32 reply)
1441 {
1442         MPI2DefaultReply_t *mpi_reply;
1443
1444         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1445         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1446                 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1447
1448         if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1449                 return 1;
1450
1451         ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1452         if (mpi_reply) {
1453                 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1454                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1455         }
1456         ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1457
1458         complete(&ioc->base_cmds.done);
1459         return 1;
1460 }
1461
1462 /**
1463  * _base_async_event - main callback handler for firmware asyn events
1464  * @ioc: per adapter object
1465  * @msix_index: MSIX table index supplied by the OS
1466  * @reply: reply message frame(lower 32bit addr)
1467  *
1468  * Return:
1469  * 1 meaning mf should be freed from _base_interrupt
1470  * 0 means the mf is freed from this function.
1471  */
1472 static u8
1473 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1474 {
1475         Mpi2EventNotificationReply_t *mpi_reply;
1476         Mpi2EventAckRequest_t *ack_request;
1477         u16 smid;
1478         struct _event_ack_list *delayed_event_ack;
1479
1480         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1481         if (!mpi_reply)
1482                 return 1;
1483         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1484                 return 1;
1485
1486         _base_display_event_data(ioc, mpi_reply);
1487
1488         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1489                 goto out;
1490         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1491         if (!smid) {
1492                 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1493                                         GFP_ATOMIC);
1494                 if (!delayed_event_ack)
1495                         goto out;
1496                 INIT_LIST_HEAD(&delayed_event_ack->list);
1497                 delayed_event_ack->Event = mpi_reply->Event;
1498                 delayed_event_ack->EventContext = mpi_reply->EventContext;
1499                 list_add_tail(&delayed_event_ack->list,
1500                                 &ioc->delayed_event_ack_list);
1501                 dewtprintk(ioc,
1502                            ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1503                                     le16_to_cpu(mpi_reply->Event)));
1504                 goto out;
1505         }
1506
1507         ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1508         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1509         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1510         ack_request->Event = mpi_reply->Event;
1511         ack_request->EventContext = mpi_reply->EventContext;
1512         ack_request->VF_ID = 0;  /* TODO */
1513         ack_request->VP_ID = 0;
1514         ioc->put_smid_default(ioc, smid);
1515
1516  out:
1517
1518         /* scsih callback handler */
1519         mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1520
1521         /* ctl callback handler */
1522         mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1523
1524         return 1;
1525 }
1526
1527 static struct scsiio_tracker *
1528 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1529 {
1530         struct scsi_cmnd *cmd;
1531
1532         if (WARN_ON(!smid) ||
1533             WARN_ON(smid >= ioc->hi_priority_smid))
1534                 return NULL;
1535
1536         cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1537         if (cmd)
1538                 return scsi_cmd_priv(cmd);
1539
1540         return NULL;
1541 }
1542
1543 /**
1544  * _base_get_cb_idx - obtain the callback index
1545  * @ioc: per adapter object
1546  * @smid: system request message index
1547  *
1548  * Return: callback index.
1549  */
1550 static u8
1551 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1552 {
1553         int i;
1554         u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1555         u8 cb_idx = 0xFF;
1556
1557         if (smid < ioc->hi_priority_smid) {
1558                 struct scsiio_tracker *st;
1559
1560                 if (smid < ctl_smid) {
1561                         st = _get_st_from_smid(ioc, smid);
1562                         if (st)
1563                                 cb_idx = st->cb_idx;
1564                 } else if (smid == ctl_smid)
1565                         cb_idx = ioc->ctl_cb_idx;
1566         } else if (smid < ioc->internal_smid) {
1567                 i = smid - ioc->hi_priority_smid;
1568                 cb_idx = ioc->hpr_lookup[i].cb_idx;
1569         } else if (smid <= ioc->hba_queue_depth) {
1570                 i = smid - ioc->internal_smid;
1571                 cb_idx = ioc->internal_lookup[i].cb_idx;
1572         }
1573         return cb_idx;
1574 }
1575
1576 /**
1577  * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues
1578  *                              when driver is flushing out the IOs.
1579  * @ioc: per adapter object
1580  *
1581  * Pause polling on the mq poll (io uring) queues when driver is flushing
1582  * out the IOs. Otherwise we may see the race condition of completing the same
1583  * IO from two paths.
1584  *
1585  * Returns nothing.
1586  */
1587 void
1588 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1589 {
1590         int iopoll_q_count =
1591             ioc->reply_queue_count - ioc->iopoll_q_start_index;
1592         int qid;
1593
1594         for (qid = 0; qid < iopoll_q_count; qid++)
1595                 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1);
1596
1597         /*
1598          * wait for current poll to complete.
1599          */
1600         for (qid = 0; qid < iopoll_q_count; qid++) {
1601                 while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) {
1602                         cpu_relax();
1603                         udelay(500);
1604                 }
1605         }
1606 }
1607
1608 /**
1609  * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues.
1610  * @ioc: per adapter object
1611  *
1612  * Returns nothing.
1613  */
1614 void
1615 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1616 {
1617         int iopoll_q_count =
1618             ioc->reply_queue_count - ioc->iopoll_q_start_index;
1619         int qid;
1620
1621         for (qid = 0; qid < iopoll_q_count; qid++)
1622                 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0);
1623 }
1624
1625 /**
1626  * mpt3sas_base_mask_interrupts - disable interrupts
1627  * @ioc: per adapter object
1628  *
1629  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1630  */
1631 void
1632 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1633 {
1634         u32 him_register;
1635
1636         ioc->mask_interrupts = 1;
1637         him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1638         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1639         writel(him_register, &ioc->chip->HostInterruptMask);
1640         ioc->base_readl(&ioc->chip->HostInterruptMask);
1641 }
1642
1643 /**
1644  * mpt3sas_base_unmask_interrupts - enable interrupts
1645  * @ioc: per adapter object
1646  *
1647  * Enabling only Reply Interrupts
1648  */
1649 void
1650 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1651 {
1652         u32 him_register;
1653
1654         him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1655         him_register &= ~MPI2_HIM_RIM;
1656         writel(him_register, &ioc->chip->HostInterruptMask);
1657         ioc->mask_interrupts = 0;
1658 }
1659
1660 union reply_descriptor {
1661         u64 word;
1662         struct {
1663                 u32 low;
1664                 u32 high;
1665         } u;
1666 };
1667
1668 static u32 base_mod64(u64 dividend, u32 divisor)
1669 {
1670         u32 remainder;
1671
1672         if (!divisor)
1673                 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1674         remainder = do_div(dividend, divisor);
1675         return remainder;
1676 }
1677
1678 /**
1679  * _base_process_reply_queue - Process reply descriptors from reply
1680  *              descriptor post queue.
1681  * @reply_q: per IRQ's reply queue object.
1682  *
1683  * Return: number of reply descriptors processed from reply
1684  *              descriptor queue.
1685  */
1686 static int
1687 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1688 {
1689         union reply_descriptor rd;
1690         u64 completed_cmds;
1691         u8 request_descript_type;
1692         u16 smid;
1693         u8 cb_idx;
1694         u32 reply;
1695         u8 msix_index = reply_q->msix_index;
1696         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1697         Mpi2ReplyDescriptorsUnion_t *rpf;
1698         u8 rc;
1699
1700         completed_cmds = 0;
1701         if (!atomic_add_unless(&reply_q->busy, 1, 1))
1702                 return completed_cmds;
1703
1704         rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1705         request_descript_type = rpf->Default.ReplyFlags
1706              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1707         if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1708                 atomic_dec(&reply_q->busy);
1709                 return completed_cmds;
1710         }
1711
1712         cb_idx = 0xFF;
1713         do {
1714                 rd.word = le64_to_cpu(rpf->Words);
1715                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1716                         goto out;
1717                 reply = 0;
1718                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1719                 if (request_descript_type ==
1720                     MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1721                     request_descript_type ==
1722                     MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1723                     request_descript_type ==
1724                     MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1725                         cb_idx = _base_get_cb_idx(ioc, smid);
1726                         if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1727                             (likely(mpt_callbacks[cb_idx] != NULL))) {
1728                                 rc = mpt_callbacks[cb_idx](ioc, smid,
1729                                     msix_index, 0);
1730                                 if (rc)
1731                                         mpt3sas_base_free_smid(ioc, smid);
1732                         }
1733                 } else if (request_descript_type ==
1734                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1735                         reply = le32_to_cpu(
1736                             rpf->AddressReply.ReplyFrameAddress);
1737                         if (reply > ioc->reply_dma_max_address ||
1738                             reply < ioc->reply_dma_min_address)
1739                                 reply = 0;
1740                         if (smid) {
1741                                 cb_idx = _base_get_cb_idx(ioc, smid);
1742                                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1743                                     (likely(mpt_callbacks[cb_idx] != NULL))) {
1744                                         rc = mpt_callbacks[cb_idx](ioc, smid,
1745                                             msix_index, reply);
1746                                         if (reply)
1747                                                 _base_display_reply_info(ioc,
1748                                                     smid, msix_index, reply);
1749                                         if (rc)
1750                                                 mpt3sas_base_free_smid(ioc,
1751                                                     smid);
1752                                 }
1753                         } else {
1754                                 _base_async_event(ioc, msix_index, reply);
1755                         }
1756
1757                         /* reply free queue handling */
1758                         if (reply) {
1759                                 ioc->reply_free_host_index =
1760                                     (ioc->reply_free_host_index ==
1761                                     (ioc->reply_free_queue_depth - 1)) ?
1762                                     0 : ioc->reply_free_host_index + 1;
1763                                 ioc->reply_free[ioc->reply_free_host_index] =
1764                                     cpu_to_le32(reply);
1765                                 if (ioc->is_mcpu_endpoint)
1766                                         _base_clone_reply_to_sys_mem(ioc,
1767                                                 reply,
1768                                                 ioc->reply_free_host_index);
1769                                 writel(ioc->reply_free_host_index,
1770                                     &ioc->chip->ReplyFreeHostIndex);
1771                         }
1772                 }
1773
1774                 rpf->Words = cpu_to_le64(ULLONG_MAX);
1775                 reply_q->reply_post_host_index =
1776                     (reply_q->reply_post_host_index ==
1777                     (ioc->reply_post_queue_depth - 1)) ? 0 :
1778                     reply_q->reply_post_host_index + 1;
1779                 request_descript_type =
1780                     reply_q->reply_post_free[reply_q->reply_post_host_index].
1781                     Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1782                 completed_cmds++;
1783                 /* Update the reply post host index after continuously
1784                  * processing the threshold number of Reply Descriptors.
1785                  * So that FW can find enough entries to post the Reply
1786                  * Descriptors in the reply descriptor post queue.
1787                  */
1788                 if (completed_cmds >= ioc->thresh_hold) {
1789                         if (ioc->combined_reply_queue) {
1790                                 writel(reply_q->reply_post_host_index |
1791                                                 ((msix_index  & 7) <<
1792                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1793                                     ioc->replyPostRegisterIndex[msix_index/8]);
1794                         } else {
1795                                 writel(reply_q->reply_post_host_index |
1796                                                 (msix_index <<
1797                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1798                                                 &ioc->chip->ReplyPostHostIndex);
1799                         }
1800                         if (!reply_q->is_iouring_poll_q &&
1801                             !reply_q->irq_poll_scheduled) {
1802                                 reply_q->irq_poll_scheduled = true;
1803                                 irq_poll_sched(&reply_q->irqpoll);
1804                         }
1805                         atomic_dec(&reply_q->busy);
1806                         return completed_cmds;
1807                 }
1808                 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1809                         goto out;
1810                 if (!reply_q->reply_post_host_index)
1811                         rpf = reply_q->reply_post_free;
1812                 else
1813                         rpf++;
1814         } while (1);
1815
1816  out:
1817
1818         if (!completed_cmds) {
1819                 atomic_dec(&reply_q->busy);
1820                 return completed_cmds;
1821         }
1822
1823         if (ioc->is_warpdrive) {
1824                 writel(reply_q->reply_post_host_index,
1825                 ioc->reply_post_host_index[msix_index]);
1826                 atomic_dec(&reply_q->busy);
1827                 return completed_cmds;
1828         }
1829
1830         /* Update Reply Post Host Index.
1831          * For those HBA's which support combined reply queue feature
1832          * 1. Get the correct Supplemental Reply Post Host Index Register.
1833          *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1834          *    Index Register address bank i.e replyPostRegisterIndex[],
1835          * 2. Then update this register with new reply host index value
1836          *    in ReplyPostIndex field and the MSIxIndex field with
1837          *    msix_index value reduced to a value between 0 and 7,
1838          *    using a modulo 8 operation. Since each Supplemental Reply Post
1839          *    Host Index Register supports 8 MSI-X vectors.
1840          *
1841          * For other HBA's just update the Reply Post Host Index register with
1842          * new reply host index value in ReplyPostIndex Field and msix_index
1843          * value in MSIxIndex field.
1844          */
1845         if (ioc->combined_reply_queue)
1846                 writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1847                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1848                         ioc->replyPostRegisterIndex[msix_index/8]);
1849         else
1850                 writel(reply_q->reply_post_host_index | (msix_index <<
1851                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1852                         &ioc->chip->ReplyPostHostIndex);
1853         atomic_dec(&reply_q->busy);
1854         return completed_cmds;
1855 }
1856
1857 /**
1858  * mpt3sas_blk_mq_poll - poll the blk mq poll queue
1859  * @shost: Scsi_Host object
1860  * @queue_num: hw ctx queue number
1861  *
1862  * Return number of entries that has been processed from poll queue.
1863  */
1864 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num)
1865 {
1866         struct MPT3SAS_ADAPTER *ioc =
1867             (struct MPT3SAS_ADAPTER *)shost->hostdata;
1868         struct adapter_reply_queue *reply_q;
1869         int num_entries = 0;
1870         int qid = queue_num - ioc->iopoll_q_start_index;
1871
1872         if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) ||
1873             !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1))
1874                 return 0;
1875
1876         reply_q = ioc->io_uring_poll_queues[qid].reply_q;
1877
1878         num_entries = _base_process_reply_queue(reply_q);
1879         atomic_dec(&ioc->io_uring_poll_queues[qid].busy);
1880
1881         return num_entries;
1882 }
1883
1884 /**
1885  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1886  * @irq: irq number (not used)
1887  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1888  *
1889  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1890  */
1891 static irqreturn_t
1892 _base_interrupt(int irq, void *bus_id)
1893 {
1894         struct adapter_reply_queue *reply_q = bus_id;
1895         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1896
1897         if (ioc->mask_interrupts)
1898                 return IRQ_NONE;
1899         if (reply_q->irq_poll_scheduled)
1900                 return IRQ_HANDLED;
1901         return ((_base_process_reply_queue(reply_q) > 0) ?
1902                         IRQ_HANDLED : IRQ_NONE);
1903 }
1904
1905 /**
1906  * _base_irqpoll - IRQ poll callback handler
1907  * @irqpoll: irq_poll object
1908  * @budget: irq poll weight
1909  *
1910  * Return: number of reply descriptors processed
1911  */
1912 static int
1913 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1914 {
1915         struct adapter_reply_queue *reply_q;
1916         int num_entries = 0;
1917
1918         reply_q = container_of(irqpoll, struct adapter_reply_queue,
1919                         irqpoll);
1920         if (reply_q->irq_line_enable) {
1921                 disable_irq_nosync(reply_q->os_irq);
1922                 reply_q->irq_line_enable = false;
1923         }
1924         num_entries = _base_process_reply_queue(reply_q);
1925         if (num_entries < budget) {
1926                 irq_poll_complete(irqpoll);
1927                 reply_q->irq_poll_scheduled = false;
1928                 reply_q->irq_line_enable = true;
1929                 enable_irq(reply_q->os_irq);
1930                 /*
1931                  * Go for one more round of processing the
1932                  * reply descriptor post queue in case the HBA
1933                  * Firmware has posted some reply descriptors
1934                  * while reenabling the IRQ.
1935                  */
1936                 _base_process_reply_queue(reply_q);
1937         }
1938
1939         return num_entries;
1940 }
1941
1942 /**
1943  * _base_init_irqpolls - initliaze IRQ polls
1944  * @ioc: per adapter object
1945  *
1946  * Return: nothing
1947  */
1948 static void
1949 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1950 {
1951         struct adapter_reply_queue *reply_q, *next;
1952
1953         if (list_empty(&ioc->reply_queue_list))
1954                 return;
1955
1956         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1957                 if (reply_q->is_iouring_poll_q)
1958                         continue;
1959                 irq_poll_init(&reply_q->irqpoll,
1960                         ioc->hba_queue_depth/4, _base_irqpoll);
1961                 reply_q->irq_poll_scheduled = false;
1962                 reply_q->irq_line_enable = true;
1963                 reply_q->os_irq = pci_irq_vector(ioc->pdev,
1964                     reply_q->msix_index);
1965         }
1966 }
1967
1968 /**
1969  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1970  * @ioc: per adapter object
1971  *
1972  * Return: Whether or not MSI/X is enabled.
1973  */
1974 static inline int
1975 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1976 {
1977         return (ioc->facts.IOCCapabilities &
1978             MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1979 }
1980
1981 /**
1982  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1983  * @ioc: per adapter object
1984  * @poll: poll over reply descriptor pools incase interrupt for
1985  *              timed-out SCSI command got delayed
1986  * Context: non-ISR context
1987  *
1988  * Called when a Task Management request has completed.
1989  */
1990 void
1991 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1992 {
1993         struct adapter_reply_queue *reply_q;
1994
1995         /* If MSIX capability is turned off
1996          * then multi-queues are not enabled
1997          */
1998         if (!_base_is_controller_msix_enabled(ioc))
1999                 return;
2000
2001         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2002                 if (ioc->shost_recovery || ioc->remove_host ||
2003                                 ioc->pci_error_recovery)
2004                         return;
2005                 /* TMs are on msix_index == 0 */
2006                 if (reply_q->msix_index == 0)
2007                         continue;
2008
2009                 if (reply_q->is_iouring_poll_q) {
2010                         _base_process_reply_queue(reply_q);
2011                         continue;
2012                 }
2013
2014                 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
2015                 if (reply_q->irq_poll_scheduled) {
2016                         /* Calling irq_poll_disable will wait for any pending
2017                          * callbacks to have completed.
2018                          */
2019                         irq_poll_disable(&reply_q->irqpoll);
2020                         irq_poll_enable(&reply_q->irqpoll);
2021                         /* check how the scheduled poll has ended,
2022                          * clean up only if necessary
2023                          */
2024                         if (reply_q->irq_poll_scheduled) {
2025                                 reply_q->irq_poll_scheduled = false;
2026                                 reply_q->irq_line_enable = true;
2027                                 enable_irq(reply_q->os_irq);
2028                         }
2029                 }
2030
2031                 if (poll)
2032                         _base_process_reply_queue(reply_q);
2033         }
2034 }
2035
2036 /**
2037  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
2038  * @cb_idx: callback index
2039  */
2040 void
2041 mpt3sas_base_release_callback_handler(u8 cb_idx)
2042 {
2043         mpt_callbacks[cb_idx] = NULL;
2044 }
2045
2046 /**
2047  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
2048  * @cb_func: callback function
2049  *
2050  * Return: Index of @cb_func.
2051  */
2052 u8
2053 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
2054 {
2055         u8 cb_idx;
2056
2057         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
2058                 if (mpt_callbacks[cb_idx] == NULL)
2059                         break;
2060
2061         mpt_callbacks[cb_idx] = cb_func;
2062         return cb_idx;
2063 }
2064
2065 /**
2066  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
2067  */
2068 void
2069 mpt3sas_base_initialize_callback_handler(void)
2070 {
2071         u8 cb_idx;
2072
2073         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
2074                 mpt3sas_base_release_callback_handler(cb_idx);
2075 }
2076
2077
2078 /**
2079  * _base_build_zero_len_sge - build zero length sg entry
2080  * @ioc: per adapter object
2081  * @paddr: virtual address for SGE
2082  *
2083  * Create a zero length scatter gather entry to insure the IOCs hardware has
2084  * something to use if the target device goes brain dead and tries
2085  * to send data even when none is asked for.
2086  */
2087 static void
2088 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2089 {
2090         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
2091             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
2092             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
2093             MPI2_SGE_FLAGS_SHIFT);
2094         ioc->base_add_sg_single(paddr, flags_length, -1);
2095 }
2096
2097 /**
2098  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
2099  * @paddr: virtual address for SGE
2100  * @flags_length: SGE flags and data transfer length
2101  * @dma_addr: Physical address
2102  */
2103 static void
2104 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2105 {
2106         Mpi2SGESimple32_t *sgel = paddr;
2107
2108         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
2109             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2110         sgel->FlagsLength = cpu_to_le32(flags_length);
2111         sgel->Address = cpu_to_le32(dma_addr);
2112 }
2113
2114
2115 /**
2116  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2117  * @paddr: virtual address for SGE
2118  * @flags_length: SGE flags and data transfer length
2119  * @dma_addr: Physical address
2120  */
2121 static void
2122 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2123 {
2124         Mpi2SGESimple64_t *sgel = paddr;
2125
2126         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2127             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2128         sgel->FlagsLength = cpu_to_le32(flags_length);
2129         sgel->Address = cpu_to_le64(dma_addr);
2130 }
2131
2132 /**
2133  * _base_get_chain_buffer_tracker - obtain chain tracker
2134  * @ioc: per adapter object
2135  * @scmd: SCSI commands of the IO request
2136  *
2137  * Return: chain tracker from chain_lookup table using key as
2138  * smid and smid's chain_offset.
2139  */
2140 static struct chain_tracker *
2141 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2142                                struct scsi_cmnd *scmd)
2143 {
2144         struct chain_tracker *chain_req;
2145         struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2146         u16 smid = st->smid;
2147         u8 chain_offset =
2148            atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2149
2150         if (chain_offset == ioc->chains_needed_per_io)
2151                 return NULL;
2152
2153         chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2154         atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2155         return chain_req;
2156 }
2157
2158
2159 /**
2160  * _base_build_sg - build generic sg
2161  * @ioc: per adapter object
2162  * @psge: virtual address for SGE
2163  * @data_out_dma: physical address for WRITES
2164  * @data_out_sz: data xfer size for WRITES
2165  * @data_in_dma: physical address for READS
2166  * @data_in_sz: data xfer size for READS
2167  */
2168 static void
2169 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2170         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2171         size_t data_in_sz)
2172 {
2173         u32 sgl_flags;
2174
2175         if (!data_out_sz && !data_in_sz) {
2176                 _base_build_zero_len_sge(ioc, psge);
2177                 return;
2178         }
2179
2180         if (data_out_sz && data_in_sz) {
2181                 /* WRITE sgel first */
2182                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2183                     MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2184                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2185                 ioc->base_add_sg_single(psge, sgl_flags |
2186                     data_out_sz, data_out_dma);
2187
2188                 /* incr sgel */
2189                 psge += ioc->sge_size;
2190
2191                 /* READ sgel last */
2192                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2193                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2194                     MPI2_SGE_FLAGS_END_OF_LIST);
2195                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2196                 ioc->base_add_sg_single(psge, sgl_flags |
2197                     data_in_sz, data_in_dma);
2198         } else if (data_out_sz) /* WRITE */ {
2199                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2200                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2201                     MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2202                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2203                 ioc->base_add_sg_single(psge, sgl_flags |
2204                     data_out_sz, data_out_dma);
2205         } else if (data_in_sz) /* READ */ {
2206                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2207                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2208                     MPI2_SGE_FLAGS_END_OF_LIST);
2209                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2210                 ioc->base_add_sg_single(psge, sgl_flags |
2211                     data_in_sz, data_in_dma);
2212         }
2213 }
2214
2215 /* IEEE format sgls */
2216
2217 /**
2218  * _base_build_nvme_prp - This function is called for NVMe end devices to build
2219  *                        a native SGL (NVMe PRP).
2220  * @ioc: per adapter object
2221  * @smid: system request message index for getting asscociated SGL
2222  * @nvme_encap_request: the NVMe request msg frame pointer
2223  * @data_out_dma: physical address for WRITES
2224  * @data_out_sz: data xfer size for WRITES
2225  * @data_in_dma: physical address for READS
2226  * @data_in_sz: data xfer size for READS
2227  *
2228  * The native SGL is built starting in the first PRP
2229  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2230  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2231  * used to describe a larger data buffer.  If the data buffer is too large to
2232  * describe using the two PRP entriess inside the NVMe message, then PRP1
2233  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2234  * list located elsewhere in memory to describe the remaining data memory
2235  * segments.  The PRP list will be contiguous.
2236  *
2237  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2238  * consists of a list of PRP entries to describe a number of noncontigous
2239  * physical memory segments as a single memory buffer, just as a SGL does.  Note
2240  * however, that this function is only used by the IOCTL call, so the memory
2241  * given will be guaranteed to be contiguous.  There is no need to translate
2242  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2243  * contiguous space that is one page size each.
2244  *
2245  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2246  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2247  * contains the second PRP element if the memory being described fits within 2
2248  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2249  *
2250  * A PRP list pointer contains the address of a PRP list, structured as a linear
2251  * array of PRP entries.  Each PRP entry in this list describes a segment of
2252  * physical memory.
2253  *
2254  * Each 64-bit PRP entry comprises an address and an offset field.  The address
2255  * always points at the beginning of a 4KB physical memory page, and the offset
2256  * describes where within that 4KB page the memory segment begins.  Only the
2257  * first element in a PRP list may contain a non-zero offset, implying that all
2258  * memory segments following the first begin at the start of a 4KB page.
2259  *
2260  * Each PRP element normally describes 4KB of physical memory, with exceptions
2261  * for the first and last elements in the list.  If the memory being described
2262  * by the list begins at a non-zero offset within the first 4KB page, then the
2263  * first PRP element will contain a non-zero offset indicating where the region
2264  * begins within the 4KB page.  The last memory segment may end before the end
2265  * of the 4KB segment, depending upon the overall size of the memory being
2266  * described by the PRP list.
2267  *
2268  * Since PRP entries lack any indication of size, the overall data buffer length
2269  * is used to determine where the end of the data memory buffer is located, and
2270  * how many PRP entries are required to describe it.
2271  */
2272 static void
2273 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2274         Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2275         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2276         size_t data_in_sz)
2277 {
2278         int             prp_size = NVME_PRP_SIZE;
2279         __le64          *prp_entry, *prp1_entry, *prp2_entry;
2280         __le64          *prp_page;
2281         dma_addr_t      prp_entry_dma, prp_page_dma, dma_addr;
2282         u32             offset, entry_len;
2283         u32             page_mask_result, page_mask;
2284         size_t          length;
2285         struct mpt3sas_nvme_cmd *nvme_cmd =
2286                 (void *)nvme_encap_request->NVMe_Command;
2287
2288         /*
2289          * Not all commands require a data transfer. If no data, just return
2290          * without constructing any PRP.
2291          */
2292         if (!data_in_sz && !data_out_sz)
2293                 return;
2294         prp1_entry = &nvme_cmd->prp1;
2295         prp2_entry = &nvme_cmd->prp2;
2296         prp_entry = prp1_entry;
2297         /*
2298          * For the PRP entries, use the specially allocated buffer of
2299          * contiguous memory.
2300          */
2301         prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2302         prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2303
2304         /*
2305          * Check if we are within 1 entry of a page boundary we don't
2306          * want our first entry to be a PRP List entry.
2307          */
2308         page_mask = ioc->page_size - 1;
2309         page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2310         if (!page_mask_result) {
2311                 /* Bump up to next page boundary. */
2312                 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2313                 prp_page_dma = prp_page_dma + prp_size;
2314         }
2315
2316         /*
2317          * Set PRP physical pointer, which initially points to the current PRP
2318          * DMA memory page.
2319          */
2320         prp_entry_dma = prp_page_dma;
2321
2322         /* Get physical address and length of the data buffer. */
2323         if (data_in_sz) {
2324                 dma_addr = data_in_dma;
2325                 length = data_in_sz;
2326         } else {
2327                 dma_addr = data_out_dma;
2328                 length = data_out_sz;
2329         }
2330
2331         /* Loop while the length is not zero. */
2332         while (length) {
2333                 /*
2334                  * Check if we need to put a list pointer here if we are at
2335                  * page boundary - prp_size (8 bytes).
2336                  */
2337                 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2338                 if (!page_mask_result) {
2339                         /*
2340                          * This is the last entry in a PRP List, so we need to
2341                          * put a PRP list pointer here.  What this does is:
2342                          *   - bump the current memory pointer to the next
2343                          *     address, which will be the next full page.
2344                          *   - set the PRP Entry to point to that page.  This
2345                          *     is now the PRP List pointer.
2346                          *   - bump the PRP Entry pointer the start of the
2347                          *     next page.  Since all of this PRP memory is
2348                          *     contiguous, no need to get a new page - it's
2349                          *     just the next address.
2350                          */
2351                         prp_entry_dma++;
2352                         *prp_entry = cpu_to_le64(prp_entry_dma);
2353                         prp_entry++;
2354                 }
2355
2356                 /* Need to handle if entry will be part of a page. */
2357                 offset = dma_addr & page_mask;
2358                 entry_len = ioc->page_size - offset;
2359
2360                 if (prp_entry == prp1_entry) {
2361                         /*
2362                          * Must fill in the first PRP pointer (PRP1) before
2363                          * moving on.
2364                          */
2365                         *prp1_entry = cpu_to_le64(dma_addr);
2366
2367                         /*
2368                          * Now point to the second PRP entry within the
2369                          * command (PRP2).
2370                          */
2371                         prp_entry = prp2_entry;
2372                 } else if (prp_entry == prp2_entry) {
2373                         /*
2374                          * Should the PRP2 entry be a PRP List pointer or just
2375                          * a regular PRP pointer?  If there is more than one
2376                          * more page of data, must use a PRP List pointer.
2377                          */
2378                         if (length > ioc->page_size) {
2379                                 /*
2380                                  * PRP2 will contain a PRP List pointer because
2381                                  * more PRP's are needed with this command. The
2382                                  * list will start at the beginning of the
2383                                  * contiguous buffer.
2384                                  */
2385                                 *prp2_entry = cpu_to_le64(prp_entry_dma);
2386
2387                                 /*
2388                                  * The next PRP Entry will be the start of the
2389                                  * first PRP List.
2390                                  */
2391                                 prp_entry = prp_page;
2392                         } else {
2393                                 /*
2394                                  * After this, the PRP Entries are complete.
2395                                  * This command uses 2 PRP's and no PRP list.
2396                                  */
2397                                 *prp2_entry = cpu_to_le64(dma_addr);
2398                         }
2399                 } else {
2400                         /*
2401                          * Put entry in list and bump the addresses.
2402                          *
2403                          * After PRP1 and PRP2 are filled in, this will fill in
2404                          * all remaining PRP entries in a PRP List, one per
2405                          * each time through the loop.
2406                          */
2407                         *prp_entry = cpu_to_le64(dma_addr);
2408                         prp_entry++;
2409                         prp_entry_dma++;
2410                 }
2411
2412                 /*
2413                  * Bump the phys address of the command's data buffer by the
2414                  * entry_len.
2415                  */
2416                 dma_addr += entry_len;
2417
2418                 /* Decrement length accounting for last partial page. */
2419                 if (entry_len > length)
2420                         length = 0;
2421                 else
2422                         length -= entry_len;
2423         }
2424 }
2425
2426 /**
2427  * base_make_prp_nvme - Prepare PRPs (Physical Region Page) -
2428  *                      SGLs specific to NVMe drives only
2429  *
2430  * @ioc:                per adapter object
2431  * @scmd:               SCSI command from the mid-layer
2432  * @mpi_request:        mpi request
2433  * @smid:               msg Index
2434  * @sge_count:          scatter gather element count.
2435  *
2436  * Return:              true: PRPs are built
2437  *                      false: IEEE SGLs needs to be built
2438  */
2439 static void
2440 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2441                 struct scsi_cmnd *scmd,
2442                 Mpi25SCSIIORequest_t *mpi_request,
2443                 u16 smid, int sge_count)
2444 {
2445         int sge_len, num_prp_in_chain = 0;
2446         Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2447         __le64 *curr_buff;
2448         dma_addr_t msg_dma, sge_addr, offset;
2449         u32 page_mask, page_mask_result;
2450         struct scatterlist *sg_scmd;
2451         u32 first_prp_len;
2452         int data_len = scsi_bufflen(scmd);
2453         u32 nvme_pg_size;
2454
2455         nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2456         /*
2457          * Nvme has a very convoluted prp format.  One prp is required
2458          * for each page or partial page. Driver need to split up OS sg_list
2459          * entries if it is longer than one page or cross a page
2460          * boundary.  Driver also have to insert a PRP list pointer entry as
2461          * the last entry in each physical page of the PRP list.
2462          *
2463          * NOTE: The first PRP "entry" is actually placed in the first
2464          * SGL entry in the main message as IEEE 64 format.  The 2nd
2465          * entry in the main message is the chain element, and the rest
2466          * of the PRP entries are built in the contiguous pcie buffer.
2467          */
2468         page_mask = nvme_pg_size - 1;
2469
2470         /*
2471          * Native SGL is needed.
2472          * Put a chain element in main message frame that points to the first
2473          * chain buffer.
2474          *
2475          * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2476          *        a native SGL.
2477          */
2478
2479         /* Set main message chain element pointer */
2480         main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2481         /*
2482          * For NVMe the chain element needs to be the 2nd SG entry in the main
2483          * message.
2484          */
2485         main_chain_element = (Mpi25IeeeSgeChain64_t *)
2486                 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2487
2488         /*
2489          * For the PRP entries, use the specially allocated buffer of
2490          * contiguous memory.  Normal chain buffers can't be used
2491          * because each chain buffer would need to be the size of an OS
2492          * page (4k).
2493          */
2494         curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2495         msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2496
2497         main_chain_element->Address = cpu_to_le64(msg_dma);
2498         main_chain_element->NextChainOffset = 0;
2499         main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2500                         MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2501                         MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2502
2503         /* Build first prp, sge need not to be page aligned*/
2504         ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2505         sg_scmd = scsi_sglist(scmd);
2506         sge_addr = sg_dma_address(sg_scmd);
2507         sge_len = sg_dma_len(sg_scmd);
2508
2509         offset = sge_addr & page_mask;
2510         first_prp_len = nvme_pg_size - offset;
2511
2512         ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2513         ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2514
2515         data_len -= first_prp_len;
2516
2517         if (sge_len > first_prp_len) {
2518                 sge_addr += first_prp_len;
2519                 sge_len -= first_prp_len;
2520         } else if (data_len && (sge_len == first_prp_len)) {
2521                 sg_scmd = sg_next(sg_scmd);
2522                 sge_addr = sg_dma_address(sg_scmd);
2523                 sge_len = sg_dma_len(sg_scmd);
2524         }
2525
2526         for (;;) {
2527                 offset = sge_addr & page_mask;
2528
2529                 /* Put PRP pointer due to page boundary*/
2530                 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2531                 if (unlikely(!page_mask_result)) {
2532                         scmd_printk(KERN_NOTICE,
2533                                 scmd, "page boundary curr_buff: 0x%p\n",
2534                                 curr_buff);
2535                         msg_dma += 8;
2536                         *curr_buff = cpu_to_le64(msg_dma);
2537                         curr_buff++;
2538                         num_prp_in_chain++;
2539                 }
2540
2541                 *curr_buff = cpu_to_le64(sge_addr);
2542                 curr_buff++;
2543                 msg_dma += 8;
2544                 num_prp_in_chain++;
2545
2546                 sge_addr += nvme_pg_size;
2547                 sge_len -= nvme_pg_size;
2548                 data_len -= nvme_pg_size;
2549
2550                 if (data_len <= 0)
2551                         break;
2552
2553                 if (sge_len > 0)
2554                         continue;
2555
2556                 sg_scmd = sg_next(sg_scmd);
2557                 sge_addr = sg_dma_address(sg_scmd);
2558                 sge_len = sg_dma_len(sg_scmd);
2559         }
2560
2561         main_chain_element->Length =
2562                 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2563         return;
2564 }
2565
2566 static bool
2567 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2568         struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2569 {
2570         u32 data_length = 0;
2571         bool build_prp = true;
2572
2573         data_length = scsi_bufflen(scmd);
2574         if (pcie_device &&
2575             (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2576                 build_prp = false;
2577                 return build_prp;
2578         }
2579
2580         /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2581          * we built IEEE SGL
2582          */
2583         if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2584                 build_prp = false;
2585
2586         return build_prp;
2587 }
2588
2589 /**
2590  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2591  * determine if the driver needs to build a native SGL.  If so, that native
2592  * SGL is built in the special contiguous buffers allocated especially for
2593  * PCIe SGL creation.  If the driver will not build a native SGL, return
2594  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2595  * supports NVMe.
2596  * @ioc: per adapter object
2597  * @mpi_request: mf request pointer
2598  * @smid: system request message index
2599  * @scmd: scsi command
2600  * @pcie_device: points to the PCIe device's info
2601  *
2602  * Return: 0 if native SGL was built, 1 if no SGL was built
2603  */
2604 static int
2605 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2606         Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2607         struct _pcie_device *pcie_device)
2608 {
2609         int sges_left;
2610
2611         /* Get the SG list pointer and info. */
2612         sges_left = scsi_dma_map(scmd);
2613         if (sges_left < 0)
2614                 return 1;
2615
2616         /* Check if we need to build a native SG list. */
2617         if (!base_is_prp_possible(ioc, pcie_device,
2618                                 scmd, sges_left)) {
2619                 /* We built a native SG list, just return. */
2620                 goto out;
2621         }
2622
2623         /*
2624          * Build native NVMe PRP.
2625          */
2626         base_make_prp_nvme(ioc, scmd, mpi_request,
2627                         smid, sges_left);
2628
2629         return 0;
2630 out:
2631         scsi_dma_unmap(scmd);
2632         return 1;
2633 }
2634
2635 /**
2636  * _base_add_sg_single_ieee - add sg element for IEEE format
2637  * @paddr: virtual address for SGE
2638  * @flags: SGE flags
2639  * @chain_offset: number of 128 byte elements from start of segment
2640  * @length: data transfer length
2641  * @dma_addr: Physical address
2642  */
2643 static void
2644 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2645         dma_addr_t dma_addr)
2646 {
2647         Mpi25IeeeSgeChain64_t *sgel = paddr;
2648
2649         sgel->Flags = flags;
2650         sgel->NextChainOffset = chain_offset;
2651         sgel->Length = cpu_to_le32(length);
2652         sgel->Address = cpu_to_le64(dma_addr);
2653 }
2654
2655 /**
2656  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2657  * @ioc: per adapter object
2658  * @paddr: virtual address for SGE
2659  *
2660  * Create a zero length scatter gather entry to insure the IOCs hardware has
2661  * something to use if the target device goes brain dead and tries
2662  * to send data even when none is asked for.
2663  */
2664 static void
2665 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2666 {
2667         u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2668                 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2669                 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2670
2671         _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2672 }
2673
2674 /**
2675  * _base_build_sg_scmd - main sg creation routine
2676  *              pcie_device is unused here!
2677  * @ioc: per adapter object
2678  * @scmd: scsi command
2679  * @smid: system request message index
2680  * @unused: unused pcie_device pointer
2681  * Context: none.
2682  *
2683  * The main routine that builds scatter gather table from a given
2684  * scsi request sent via the .queuecommand main handler.
2685  *
2686  * Return: 0 success, anything else error
2687  */
2688 static int
2689 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2690         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2691 {
2692         Mpi2SCSIIORequest_t *mpi_request;
2693         dma_addr_t chain_dma;
2694         struct scatterlist *sg_scmd;
2695         void *sg_local, *chain;
2696         u32 chain_offset;
2697         u32 chain_length;
2698         u32 chain_flags;
2699         int sges_left;
2700         u32 sges_in_segment;
2701         u32 sgl_flags;
2702         u32 sgl_flags_last_element;
2703         u32 sgl_flags_end_buffer;
2704         struct chain_tracker *chain_req;
2705
2706         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2707
2708         /* init scatter gather flags */
2709         sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2710         if (scmd->sc_data_direction == DMA_TO_DEVICE)
2711                 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2712         sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2713             << MPI2_SGE_FLAGS_SHIFT;
2714         sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2715             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2716             << MPI2_SGE_FLAGS_SHIFT;
2717         sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2718
2719         sg_scmd = scsi_sglist(scmd);
2720         sges_left = scsi_dma_map(scmd);
2721         if (sges_left < 0)
2722                 return -ENOMEM;
2723
2724         sg_local = &mpi_request->SGL;
2725         sges_in_segment = ioc->max_sges_in_main_message;
2726         if (sges_left <= sges_in_segment)
2727                 goto fill_in_last_segment;
2728
2729         mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2730             (sges_in_segment * ioc->sge_size))/4;
2731
2732         /* fill in main message segment when there is a chain following */
2733         while (sges_in_segment) {
2734                 if (sges_in_segment == 1)
2735                         ioc->base_add_sg_single(sg_local,
2736                             sgl_flags_last_element | sg_dma_len(sg_scmd),
2737                             sg_dma_address(sg_scmd));
2738                 else
2739                         ioc->base_add_sg_single(sg_local, sgl_flags |
2740                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2741                 sg_scmd = sg_next(sg_scmd);
2742                 sg_local += ioc->sge_size;
2743                 sges_left--;
2744                 sges_in_segment--;
2745         }
2746
2747         /* initializing the chain flags and pointers */
2748         chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2749         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2750         if (!chain_req)
2751                 return -1;
2752         chain = chain_req->chain_buffer;
2753         chain_dma = chain_req->chain_buffer_dma;
2754         do {
2755                 sges_in_segment = (sges_left <=
2756                     ioc->max_sges_in_chain_message) ? sges_left :
2757                     ioc->max_sges_in_chain_message;
2758                 chain_offset = (sges_left == sges_in_segment) ?
2759                     0 : (sges_in_segment * ioc->sge_size)/4;
2760                 chain_length = sges_in_segment * ioc->sge_size;
2761                 if (chain_offset) {
2762                         chain_offset = chain_offset <<
2763                             MPI2_SGE_CHAIN_OFFSET_SHIFT;
2764                         chain_length += ioc->sge_size;
2765                 }
2766                 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2767                     chain_length, chain_dma);
2768                 sg_local = chain;
2769                 if (!chain_offset)
2770                         goto fill_in_last_segment;
2771
2772                 /* fill in chain segments */
2773                 while (sges_in_segment) {
2774                         if (sges_in_segment == 1)
2775                                 ioc->base_add_sg_single(sg_local,
2776                                     sgl_flags_last_element |
2777                                     sg_dma_len(sg_scmd),
2778                                     sg_dma_address(sg_scmd));
2779                         else
2780                                 ioc->base_add_sg_single(sg_local, sgl_flags |
2781                                     sg_dma_len(sg_scmd),
2782                                     sg_dma_address(sg_scmd));
2783                         sg_scmd = sg_next(sg_scmd);
2784                         sg_local += ioc->sge_size;
2785                         sges_left--;
2786                         sges_in_segment--;
2787                 }
2788
2789                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2790                 if (!chain_req)
2791                         return -1;
2792                 chain = chain_req->chain_buffer;
2793                 chain_dma = chain_req->chain_buffer_dma;
2794         } while (1);
2795
2796
2797  fill_in_last_segment:
2798
2799         /* fill the last segment */
2800         while (sges_left) {
2801                 if (sges_left == 1)
2802                         ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2803                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2804                 else
2805                         ioc->base_add_sg_single(sg_local, sgl_flags |
2806                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2807                 sg_scmd = sg_next(sg_scmd);
2808                 sg_local += ioc->sge_size;
2809                 sges_left--;
2810         }
2811
2812         return 0;
2813 }
2814
2815 /**
2816  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2817  * @ioc: per adapter object
2818  * @scmd: scsi command
2819  * @smid: system request message index
2820  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2821  * constructed on need.
2822  * Context: none.
2823  *
2824  * The main routine that builds scatter gather table from a given
2825  * scsi request sent via the .queuecommand main handler.
2826  *
2827  * Return: 0 success, anything else error
2828  */
2829 static int
2830 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2831         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2832 {
2833         Mpi25SCSIIORequest_t *mpi_request;
2834         dma_addr_t chain_dma;
2835         struct scatterlist *sg_scmd;
2836         void *sg_local, *chain;
2837         u32 chain_offset;
2838         u32 chain_length;
2839         int sges_left;
2840         u32 sges_in_segment;
2841         u8 simple_sgl_flags;
2842         u8 simple_sgl_flags_last;
2843         u8 chain_sgl_flags;
2844         struct chain_tracker *chain_req;
2845
2846         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2847
2848         /* init scatter gather flags */
2849         simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2850             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2851         simple_sgl_flags_last = simple_sgl_flags |
2852             MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2853         chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2854             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2855
2856         /* Check if we need to build a native SG list. */
2857         if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2858                         smid, scmd, pcie_device) == 0)) {
2859                 /* We built a native SG list, just return. */
2860                 return 0;
2861         }
2862
2863         sg_scmd = scsi_sglist(scmd);
2864         sges_left = scsi_dma_map(scmd);
2865         if (sges_left < 0)
2866                 return -ENOMEM;
2867
2868         sg_local = &mpi_request->SGL;
2869         sges_in_segment = (ioc->request_sz -
2870                    offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2871         if (sges_left <= sges_in_segment)
2872                 goto fill_in_last_segment;
2873
2874         mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2875             (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2876
2877         /* fill in main message segment when there is a chain following */
2878         while (sges_in_segment > 1) {
2879                 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2880                     sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2881                 sg_scmd = sg_next(sg_scmd);
2882                 sg_local += ioc->sge_size_ieee;
2883                 sges_left--;
2884                 sges_in_segment--;
2885         }
2886
2887         /* initializing the pointers */
2888         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2889         if (!chain_req)
2890                 return -1;
2891         chain = chain_req->chain_buffer;
2892         chain_dma = chain_req->chain_buffer_dma;
2893         do {
2894                 sges_in_segment = (sges_left <=
2895                     ioc->max_sges_in_chain_message) ? sges_left :
2896                     ioc->max_sges_in_chain_message;
2897                 chain_offset = (sges_left == sges_in_segment) ?
2898                     0 : sges_in_segment;
2899                 chain_length = sges_in_segment * ioc->sge_size_ieee;
2900                 if (chain_offset)
2901                         chain_length += ioc->sge_size_ieee;
2902                 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2903                     chain_offset, chain_length, chain_dma);
2904
2905                 sg_local = chain;
2906                 if (!chain_offset)
2907                         goto fill_in_last_segment;
2908
2909                 /* fill in chain segments */
2910                 while (sges_in_segment) {
2911                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2912                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2913                         sg_scmd = sg_next(sg_scmd);
2914                         sg_local += ioc->sge_size_ieee;
2915                         sges_left--;
2916                         sges_in_segment--;
2917                 }
2918
2919                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2920                 if (!chain_req)
2921                         return -1;
2922                 chain = chain_req->chain_buffer;
2923                 chain_dma = chain_req->chain_buffer_dma;
2924         } while (1);
2925
2926
2927  fill_in_last_segment:
2928
2929         /* fill the last segment */
2930         while (sges_left > 0) {
2931                 if (sges_left == 1)
2932                         _base_add_sg_single_ieee(sg_local,
2933                             simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2934                             sg_dma_address(sg_scmd));
2935                 else
2936                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2937                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2938                 sg_scmd = sg_next(sg_scmd);
2939                 sg_local += ioc->sge_size_ieee;
2940                 sges_left--;
2941         }
2942
2943         return 0;
2944 }
2945
2946 /**
2947  * _base_build_sg_ieee - build generic sg for IEEE format
2948  * @ioc: per adapter object
2949  * @psge: virtual address for SGE
2950  * @data_out_dma: physical address for WRITES
2951  * @data_out_sz: data xfer size for WRITES
2952  * @data_in_dma: physical address for READS
2953  * @data_in_sz: data xfer size for READS
2954  */
2955 static void
2956 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2957         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2958         size_t data_in_sz)
2959 {
2960         u8 sgl_flags;
2961
2962         if (!data_out_sz && !data_in_sz) {
2963                 _base_build_zero_len_sge_ieee(ioc, psge);
2964                 return;
2965         }
2966
2967         if (data_out_sz && data_in_sz) {
2968                 /* WRITE sgel first */
2969                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2970                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2971                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2972                     data_out_dma);
2973
2974                 /* incr sgel */
2975                 psge += ioc->sge_size_ieee;
2976
2977                 /* READ sgel last */
2978                 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2979                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2980                     data_in_dma);
2981         } else if (data_out_sz) /* WRITE */ {
2982                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2983                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2984                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2985                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2986                     data_out_dma);
2987         } else if (data_in_sz) /* READ */ {
2988                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2989                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2990                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2991                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2992                     data_in_dma);
2993         }
2994 }
2995
2996 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2997
2998 /**
2999  * _base_config_dma_addressing - set dma addressing
3000  * @ioc: per adapter object
3001  * @pdev: PCI device struct
3002  *
3003  * Return: 0 for success, non-zero for failure.
3004  */
3005 static int
3006 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
3007 {
3008         struct sysinfo s;
3009         u64 coherent_dma_mask, dma_mask;
3010
3011         if (ioc->is_mcpu_endpoint || sizeof(dma_addr_t) == 4) {
3012                 ioc->dma_mask = 32;
3013                 coherent_dma_mask = dma_mask = DMA_BIT_MASK(32);
3014         /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
3015         } else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) {
3016                 ioc->dma_mask = 63;
3017                 coherent_dma_mask = dma_mask = DMA_BIT_MASK(63);
3018         } else {
3019                 ioc->dma_mask = 64;
3020                 coherent_dma_mask = dma_mask = DMA_BIT_MASK(64);
3021         }
3022
3023         if (ioc->use_32bit_dma)
3024                 coherent_dma_mask = DMA_BIT_MASK(32);
3025
3026         if (dma_set_mask(&pdev->dev, dma_mask) ||
3027             dma_set_coherent_mask(&pdev->dev, coherent_dma_mask))
3028                 return -ENODEV;
3029
3030         if (ioc->dma_mask > 32) {
3031                 ioc->base_add_sg_single = &_base_add_sg_single_64;
3032                 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
3033         } else {
3034                 ioc->base_add_sg_single = &_base_add_sg_single_32;
3035                 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
3036         }
3037
3038         si_meminfo(&s);
3039         ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
3040                 ioc->dma_mask, convert_to_kb(s.totalram));
3041
3042         return 0;
3043 }
3044
3045 /**
3046  * _base_check_enable_msix - checks MSIX capabable.
3047  * @ioc: per adapter object
3048  *
3049  * Check to see if card is capable of MSIX, and set number
3050  * of available msix vectors
3051  */
3052 static int
3053 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3054 {
3055         int base;
3056         u16 message_control;
3057
3058         /* Check whether controller SAS2008 B0 controller,
3059          * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
3060          */
3061         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
3062             ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
3063                 return -EINVAL;
3064         }
3065
3066         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
3067         if (!base) {
3068                 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
3069                 return -EINVAL;
3070         }
3071
3072         /* get msix vector count */
3073         /* NUMA_IO not supported for older controllers */
3074         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
3075             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
3076             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
3077             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
3078             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
3079             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
3080             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
3081                 ioc->msix_vector_count = 1;
3082         else {
3083                 pci_read_config_word(ioc->pdev, base + 2, &message_control);
3084                 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
3085         }
3086         dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
3087                                   ioc->msix_vector_count));
3088         return 0;
3089 }
3090
3091 /**
3092  * mpt3sas_base_free_irq - free irq
3093  * @ioc: per adapter object
3094  *
3095  * Freeing respective reply_queue from the list.
3096  */
3097 void
3098 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
3099 {
3100         unsigned int irq;
3101         struct adapter_reply_queue *reply_q, *next;
3102
3103         if (list_empty(&ioc->reply_queue_list))
3104                 return;
3105
3106         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3107                 list_del(&reply_q->list);
3108                 if (reply_q->is_iouring_poll_q) {
3109                         kfree(reply_q);
3110                         continue;
3111                 }
3112
3113                 if (ioc->smp_affinity_enable) {
3114                         irq = pci_irq_vector(ioc->pdev, reply_q->msix_index);
3115                         irq_update_affinity_hint(irq, NULL);
3116                 }
3117                 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3118                          reply_q);
3119                 kfree(reply_q);
3120         }
3121 }
3122
3123 /**
3124  * _base_request_irq - request irq
3125  * @ioc: per adapter object
3126  * @index: msix index into vector table
3127  *
3128  * Inserting respective reply_queue into the list.
3129  */
3130 static int
3131 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3132 {
3133         struct pci_dev *pdev = ioc->pdev;
3134         struct adapter_reply_queue *reply_q;
3135         int r, qid;
3136
3137         reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3138         if (!reply_q) {
3139                 ioc_err(ioc, "unable to allocate memory %zu!\n",
3140                         sizeof(struct adapter_reply_queue));
3141                 return -ENOMEM;
3142         }
3143         reply_q->ioc = ioc;
3144         reply_q->msix_index = index;
3145
3146         atomic_set(&reply_q->busy, 0);
3147
3148         if (index >= ioc->iopoll_q_start_index) {
3149                 qid = index - ioc->iopoll_q_start_index;
3150                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d",
3151                     ioc->driver_name, ioc->id, qid);
3152                 reply_q->is_iouring_poll_q = 1;
3153                 ioc->io_uring_poll_queues[qid].reply_q = reply_q;
3154                 goto out;
3155         }
3156
3157
3158         if (ioc->msix_enable)
3159                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3160                     ioc->driver_name, ioc->id, index);
3161         else
3162                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3163                     ioc->driver_name, ioc->id);
3164         r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3165                         IRQF_SHARED, reply_q->name, reply_q);
3166         if (r) {
3167                 pr_err("%s: unable to allocate interrupt %d!\n",
3168                        reply_q->name, pci_irq_vector(pdev, index));
3169                 kfree(reply_q);
3170                 return -EBUSY;
3171         }
3172 out:
3173         INIT_LIST_HEAD(&reply_q->list);
3174         list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3175         return 0;
3176 }
3177
3178 /**
3179  * _base_assign_reply_queues - assigning msix index for each cpu
3180  * @ioc: per adapter object
3181  *
3182  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3183  */
3184 static void
3185 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3186 {
3187         unsigned int cpu, nr_cpus, nr_msix, index = 0, irq;
3188         struct adapter_reply_queue *reply_q;
3189         int iopoll_q_count = ioc->reply_queue_count -
3190             ioc->iopoll_q_start_index;
3191         const struct cpumask *mask;
3192
3193         if (!_base_is_controller_msix_enabled(ioc))
3194                 return;
3195
3196         if (ioc->msix_load_balance)
3197                 return;
3198
3199         memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3200
3201         nr_cpus = num_online_cpus();
3202         nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3203                                                ioc->facts.MaxMSIxVectors);
3204         if (!nr_msix)
3205                 return;
3206
3207         if (ioc->smp_affinity_enable) {
3208
3209                 /*
3210                  * set irq affinity to local numa node for those irqs
3211                  * corresponding to high iops queues.
3212                  */
3213                 if (ioc->high_iops_queues) {
3214                         mask = cpumask_of_node(dev_to_node(&ioc->pdev->dev));
3215                         for (index = 0; index < ioc->high_iops_queues;
3216                             index++) {
3217                                 irq = pci_irq_vector(ioc->pdev, index);
3218                                 irq_set_affinity_and_hint(irq, mask);
3219                         }
3220                 }
3221
3222                 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3223                         const cpumask_t *mask;
3224
3225                         if (reply_q->msix_index < ioc->high_iops_queues ||
3226                             reply_q->msix_index >= ioc->iopoll_q_start_index)
3227                                 continue;
3228
3229                         mask = pci_irq_get_affinity(ioc->pdev,
3230                             reply_q->msix_index);
3231                         if (!mask) {
3232                                 ioc_warn(ioc, "no affinity for msi %x\n",
3233                                          reply_q->msix_index);
3234                                 goto fall_back;
3235                         }
3236
3237                         for_each_cpu_and(cpu, mask, cpu_online_mask) {
3238                                 if (cpu >= ioc->cpu_msix_table_sz)
3239                                         break;
3240                                 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3241                         }
3242                 }
3243                 return;
3244         }
3245
3246 fall_back:
3247         cpu = cpumask_first(cpu_online_mask);
3248         nr_msix -= (ioc->high_iops_queues - iopoll_q_count);
3249         index = 0;
3250
3251         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3252                 unsigned int i, group = nr_cpus / nr_msix;
3253
3254                 if (reply_q->msix_index < ioc->high_iops_queues ||
3255                     reply_q->msix_index >= ioc->iopoll_q_start_index)
3256                         continue;
3257
3258                 if (cpu >= nr_cpus)
3259                         break;
3260
3261                 if (index < nr_cpus % nr_msix)
3262                         group++;
3263
3264                 for (i = 0 ; i < group ; i++) {
3265                         ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3266                         cpu = cpumask_next(cpu, cpu_online_mask);
3267                 }
3268                 index++;
3269         }
3270 }
3271
3272 /**
3273  * _base_check_and_enable_high_iops_queues - enable high iops mode
3274  * @ioc: per adapter object
3275  * @hba_msix_vector_count: msix vectors supported by HBA
3276  *
3277  * Enable high iops queues only if
3278  *  - HBA is a SEA/AERO controller and
3279  *  - MSI-Xs vector supported by the HBA is 128 and
3280  *  - total CPU count in the system >=16 and
3281  *  - loaded driver with default max_msix_vectors module parameter and
3282  *  - system booted in non kdump mode
3283  *
3284  * Return: nothing.
3285  */
3286 static void
3287 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3288                 int hba_msix_vector_count)
3289 {
3290         u16 lnksta, speed;
3291
3292         /*
3293          * Disable high iops queues if io uring poll queues are enabled.
3294          */
3295         if (perf_mode == MPT_PERF_MODE_IOPS ||
3296             perf_mode == MPT_PERF_MODE_LATENCY ||
3297             ioc->io_uring_poll_queues) {
3298                 ioc->high_iops_queues = 0;
3299                 return;
3300         }
3301
3302         if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3303
3304                 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3305                 speed = lnksta & PCI_EXP_LNKSTA_CLS;
3306
3307                 if (speed < 0x4) {
3308                         ioc->high_iops_queues = 0;
3309                         return;
3310                 }
3311         }
3312
3313         if (!reset_devices && ioc->is_aero_ioc &&
3314             hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3315             num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3316             max_msix_vectors == -1)
3317                 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3318         else
3319                 ioc->high_iops_queues = 0;
3320 }
3321
3322 /**
3323  * mpt3sas_base_disable_msix - disables msix
3324  * @ioc: per adapter object
3325  *
3326  */
3327 void
3328 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3329 {
3330         if (!ioc->msix_enable)
3331                 return;
3332         pci_free_irq_vectors(ioc->pdev);
3333         ioc->msix_enable = 0;
3334         kfree(ioc->io_uring_poll_queues);
3335 }
3336
3337 /**
3338  * _base_alloc_irq_vectors - allocate msix vectors
3339  * @ioc: per adapter object
3340  *
3341  */
3342 static int
3343 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3344 {
3345         int i, irq_flags = PCI_IRQ_MSIX;
3346         struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3347         struct irq_affinity *descp = &desc;
3348         /*
3349          * Don't allocate msix vectors for poll_queues.
3350          * msix_vectors is always within a range of FW supported reply queue.
3351          */
3352         int nr_msix_vectors = ioc->iopoll_q_start_index;
3353
3354
3355         if (ioc->smp_affinity_enable)
3356                 irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
3357         else
3358                 descp = NULL;
3359
3360         ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues,
3361             ioc->reply_queue_count, nr_msix_vectors);
3362
3363         i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3364             ioc->high_iops_queues,
3365             nr_msix_vectors, irq_flags, descp);
3366
3367         return i;
3368 }
3369
3370 /**
3371  * _base_enable_msix - enables msix, failback to io_apic
3372  * @ioc: per adapter object
3373  *
3374  */
3375 static int
3376 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3377 {
3378         int r;
3379         int i, local_max_msix_vectors;
3380         u8 try_msix = 0;
3381         int iopoll_q_count = 0;
3382
3383         ioc->msix_load_balance = false;
3384
3385         if (msix_disable == -1 || msix_disable == 0)
3386                 try_msix = 1;
3387
3388         if (!try_msix)
3389                 goto try_ioapic;
3390
3391         if (_base_check_enable_msix(ioc) != 0)
3392                 goto try_ioapic;
3393
3394         ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3395         pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3396                 ioc->cpu_count, max_msix_vectors);
3397
3398         ioc->reply_queue_count =
3399                 min_t(int, ioc->cpu_count, ioc->msix_vector_count);
3400
3401         if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3402                 local_max_msix_vectors = (reset_devices) ? 1 : 8;
3403         else
3404                 local_max_msix_vectors = max_msix_vectors;
3405
3406         if (local_max_msix_vectors == 0)
3407                 goto try_ioapic;
3408
3409         /*
3410          * Enable msix_load_balance only if combined reply queue mode is
3411          * disabled on SAS3 & above generation HBA devices.
3412          */
3413         if (!ioc->combined_reply_queue &&
3414             ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3415                 ioc_info(ioc,
3416                     "combined ReplyQueue is off, Enabling msix load balance\n");
3417                 ioc->msix_load_balance = true;
3418         }
3419
3420         /*
3421          * smp affinity setting is not need when msix load balance
3422          * is enabled.
3423          */
3424         if (ioc->msix_load_balance)
3425                 ioc->smp_affinity_enable = 0;
3426
3427         if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1)
3428                 ioc->shost->host_tagset = 0;
3429
3430         /*
3431          * Enable io uring poll queues only if host_tagset is enabled.
3432          */
3433         if (ioc->shost->host_tagset)
3434                 iopoll_q_count = poll_queues;
3435
3436         if (iopoll_q_count) {
3437                 ioc->io_uring_poll_queues = kcalloc(iopoll_q_count,
3438                     sizeof(struct io_uring_poll_queue), GFP_KERNEL);
3439                 if (!ioc->io_uring_poll_queues)
3440                         iopoll_q_count = 0;
3441         }
3442
3443         if (ioc->is_aero_ioc)
3444                 _base_check_and_enable_high_iops_queues(ioc,
3445                     ioc->msix_vector_count);
3446
3447         /*
3448          * Add high iops queues count to reply queue count if high iops queues
3449          * are enabled.
3450          */
3451         ioc->reply_queue_count = min_t(int,
3452             ioc->reply_queue_count + ioc->high_iops_queues,
3453             ioc->msix_vector_count);
3454
3455         /*
3456          * Adjust the reply queue count incase reply queue count
3457          * exceeds the user provided MSIx vectors count.
3458          */
3459         if (local_max_msix_vectors > 0)
3460                 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3461                     ioc->reply_queue_count);
3462         /*
3463          * Add io uring poll queues count to reply queues count
3464          * if io uring is enabled in driver.
3465          */
3466         if (iopoll_q_count) {
3467                 if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS))
3468                         iopoll_q_count = 0;
3469                 ioc->reply_queue_count = min_t(int,
3470                     ioc->reply_queue_count + iopoll_q_count,
3471                     ioc->msix_vector_count);
3472         }
3473
3474         /*
3475          * Starting index of io uring poll queues in reply queue list.
3476          */
3477         ioc->iopoll_q_start_index =
3478             ioc->reply_queue_count - iopoll_q_count;
3479
3480         r = _base_alloc_irq_vectors(ioc);
3481         if (r < 0) {
3482                 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3483                 goto try_ioapic;
3484         }
3485
3486         /*
3487          * Adjust the reply queue count if the allocated
3488          * MSIx vectors is less then the requested number
3489          * of MSIx vectors.
3490          */
3491         if (r < ioc->iopoll_q_start_index) {
3492                 ioc->reply_queue_count = r + iopoll_q_count;
3493                 ioc->iopoll_q_start_index =
3494                     ioc->reply_queue_count - iopoll_q_count;
3495         }
3496
3497         ioc->msix_enable = 1;
3498         for (i = 0; i < ioc->reply_queue_count; i++) {
3499                 r = _base_request_irq(ioc, i);
3500                 if (r) {
3501                         mpt3sas_base_free_irq(ioc);
3502                         mpt3sas_base_disable_msix(ioc);
3503                         goto try_ioapic;
3504                 }
3505         }
3506
3507         ioc_info(ioc, "High IOPs queues : %s\n",
3508                         ioc->high_iops_queues ? "enabled" : "disabled");
3509
3510         return 0;
3511
3512 /* failback to io_apic interrupt routing */
3513  try_ioapic:
3514         ioc->high_iops_queues = 0;
3515         ioc_info(ioc, "High IOPs queues : disabled\n");
3516         ioc->reply_queue_count = 1;
3517         ioc->iopoll_q_start_index = ioc->reply_queue_count - 0;
3518         r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3519         if (r < 0) {
3520                 dfailprintk(ioc,
3521                             ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3522                                      r));
3523         } else
3524                 r = _base_request_irq(ioc, 0);
3525
3526         return r;
3527 }
3528
3529 /**
3530  * mpt3sas_base_unmap_resources - free controller resources
3531  * @ioc: per adapter object
3532  */
3533 static void
3534 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3535 {
3536         struct pci_dev *pdev = ioc->pdev;
3537
3538         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3539
3540         mpt3sas_base_free_irq(ioc);
3541         mpt3sas_base_disable_msix(ioc);
3542
3543         kfree(ioc->replyPostRegisterIndex);
3544         ioc->replyPostRegisterIndex = NULL;
3545
3546
3547         if (ioc->chip_phys) {
3548                 iounmap(ioc->chip);
3549                 ioc->chip_phys = 0;
3550         }
3551
3552         if (pci_is_enabled(pdev)) {
3553                 pci_release_selected_regions(ioc->pdev, ioc->bars);
3554                 pci_disable_device(pdev);
3555         }
3556 }
3557
3558 static int
3559 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3560
3561 /**
3562  * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state
3563  *     and if it is in fault state then issue diag reset.
3564  * @ioc: per adapter object
3565  *
3566  * Return: 0 for success, non-zero for failure.
3567  */
3568 int
3569 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3570 {
3571         u32 ioc_state;
3572         int rc = -EFAULT;
3573
3574         dinitprintk(ioc, pr_info("%s\n", __func__));
3575         if (ioc->pci_error_recovery)
3576                 return 0;
3577         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3578         dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3579
3580         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3581                 mpt3sas_print_fault_code(ioc, ioc_state &
3582                     MPI2_DOORBELL_DATA_MASK);
3583                 mpt3sas_base_mask_interrupts(ioc);
3584                 rc = _base_diag_reset(ioc);
3585         } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3586             MPI2_IOC_STATE_COREDUMP) {
3587                 mpt3sas_print_coredump_info(ioc, ioc_state &
3588                      MPI2_DOORBELL_DATA_MASK);
3589                 mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3590                 mpt3sas_base_mask_interrupts(ioc);
3591                 rc = _base_diag_reset(ioc);
3592         }
3593
3594         return rc;
3595 }
3596
3597 /**
3598  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3599  * @ioc: per adapter object
3600  *
3601  * Return: 0 for success, non-zero for failure.
3602  */
3603 int
3604 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3605 {
3606         struct pci_dev *pdev = ioc->pdev;
3607         u32 memap_sz;
3608         u32 pio_sz;
3609         int i, r = 0, rc;
3610         u64 pio_chip = 0;
3611         phys_addr_t chip_phys = 0;
3612         struct adapter_reply_queue *reply_q;
3613         int iopoll_q_count = 0;
3614
3615         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3616
3617         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3618         if (pci_enable_device_mem(pdev)) {
3619                 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3620                 ioc->bars = 0;
3621                 return -ENODEV;
3622         }
3623
3624
3625         if (pci_request_selected_regions(pdev, ioc->bars,
3626             ioc->driver_name)) {
3627                 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3628                 ioc->bars = 0;
3629                 r = -ENODEV;
3630                 goto out_fail;
3631         }
3632
3633         pci_set_master(pdev);
3634
3635
3636         if (_base_config_dma_addressing(ioc, pdev) != 0) {
3637                 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3638                 r = -ENODEV;
3639                 goto out_fail;
3640         }
3641
3642         for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3643              (!memap_sz || !pio_sz); i++) {
3644                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3645                         if (pio_sz)
3646                                 continue;
3647                         pio_chip = (u64)pci_resource_start(pdev, i);
3648                         pio_sz = pci_resource_len(pdev, i);
3649                 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3650                         if (memap_sz)
3651                                 continue;
3652                         ioc->chip_phys = pci_resource_start(pdev, i);
3653                         chip_phys = ioc->chip_phys;
3654                         memap_sz = pci_resource_len(pdev, i);
3655                         ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3656                 }
3657         }
3658
3659         if (ioc->chip == NULL) {
3660                 ioc_err(ioc,
3661                     "unable to map adapter memory! or resource not found\n");
3662                 r = -EINVAL;
3663                 goto out_fail;
3664         }
3665
3666         mpt3sas_base_mask_interrupts(ioc);
3667
3668         r = _base_get_ioc_facts(ioc);
3669         if (r) {
3670                 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
3671                 if (rc || (_base_get_ioc_facts(ioc)))
3672                         goto out_fail;
3673         }
3674
3675         if (!ioc->rdpq_array_enable_assigned) {
3676                 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3677                 ioc->rdpq_array_enable_assigned = 1;
3678         }
3679
3680         r = _base_enable_msix(ioc);
3681         if (r)
3682                 goto out_fail;
3683
3684         iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index;
3685         for (i = 0; i < iopoll_q_count; i++) {
3686                 atomic_set(&ioc->io_uring_poll_queues[i].busy, 0);
3687                 atomic_set(&ioc->io_uring_poll_queues[i].pause, 0);
3688         }
3689
3690         if (!ioc->is_driver_loading)
3691                 _base_init_irqpolls(ioc);
3692         /* Use the Combined reply queue feature only for SAS3 C0 & higher
3693          * revision HBAs and also only when reply queue count is greater than 8
3694          */
3695         if (ioc->combined_reply_queue) {
3696                 /* Determine the Supplemental Reply Post Host Index Registers
3697                  * Addresse. Supplemental Reply Post Host Index Registers
3698                  * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3699                  * each register is at offset bytes of
3700                  * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3701                  */
3702                 ioc->replyPostRegisterIndex = kcalloc(
3703                      ioc->combined_reply_index_count,
3704                      sizeof(resource_size_t *), GFP_KERNEL);
3705                 if (!ioc->replyPostRegisterIndex) {
3706                         ioc_err(ioc,
3707                             "allocation for replyPostRegisterIndex failed!\n");
3708                         r = -ENOMEM;
3709                         goto out_fail;
3710                 }
3711
3712                 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3713                         ioc->replyPostRegisterIndex[i] =
3714                                 (resource_size_t __iomem *)
3715                                 ((u8 __force *)&ioc->chip->Doorbell +
3716                                  MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3717                                  (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3718                 }
3719         }
3720
3721         if (ioc->is_warpdrive) {
3722                 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3723                     &ioc->chip->ReplyPostHostIndex;
3724
3725                 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3726                         ioc->reply_post_host_index[i] =
3727                         (resource_size_t __iomem *)
3728                         ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3729                         * 4)));
3730         }
3731
3732         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3733                 if (reply_q->msix_index >= ioc->iopoll_q_start_index) {
3734                         pr_info("%s: enabled: index: %d\n",
3735                             reply_q->name, reply_q->msix_index);
3736                         continue;
3737                 }
3738
3739                 pr_info("%s: %s enabled: IRQ %d\n",
3740                         reply_q->name,
3741                         ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3742                         pci_irq_vector(ioc->pdev, reply_q->msix_index));
3743         }
3744
3745         ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3746                  &chip_phys, ioc->chip, memap_sz);
3747         ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3748                  (unsigned long long)pio_chip, pio_sz);
3749
3750         /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3751         pci_save_state(pdev);
3752         return 0;
3753
3754  out_fail:
3755         mpt3sas_base_unmap_resources(ioc);
3756         return r;
3757 }
3758
3759 /**
3760  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3761  * @ioc: per adapter object
3762  * @smid: system request message index(smid zero is invalid)
3763  *
3764  * Return: virt pointer to message frame.
3765  */
3766 void *
3767 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3768 {
3769         return (void *)(ioc->request + (smid * ioc->request_sz));
3770 }
3771
3772 /**
3773  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3774  * @ioc: per adapter object
3775  * @smid: system request message index
3776  *
3777  * Return: virt pointer to sense buffer.
3778  */
3779 void *
3780 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3781 {
3782         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3783 }
3784
3785 /**
3786  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3787  * @ioc: per adapter object
3788  * @smid: system request message index
3789  *
3790  * Return: phys pointer to the low 32bit address of the sense buffer.
3791  */
3792 __le32
3793 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3794 {
3795         return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3796             SCSI_SENSE_BUFFERSIZE));
3797 }
3798
3799 /**
3800  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3801  * @ioc: per adapter object
3802  * @smid: system request message index
3803  *
3804  * Return: virt pointer to a PCIe SGL.
3805  */
3806 void *
3807 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3808 {
3809         return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3810 }
3811
3812 /**
3813  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3814  * @ioc: per adapter object
3815  * @smid: system request message index
3816  *
3817  * Return: phys pointer to the address of the PCIe buffer.
3818  */
3819 dma_addr_t
3820 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3821 {
3822         return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3823 }
3824
3825 /**
3826  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3827  * @ioc: per adapter object
3828  * @phys_addr: lower 32 physical addr of the reply
3829  *
3830  * Converts 32bit lower physical addr into a virt address.
3831  */
3832 void *
3833 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3834 {
3835         if (!phys_addr)
3836                 return NULL;
3837         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3838 }
3839
3840 /**
3841  * _base_get_msix_index - get the msix index
3842  * @ioc: per adapter object
3843  * @scmd: scsi_cmnd object
3844  *
3845  * Return: msix index of general reply queues,
3846  * i.e. reply queue on which IO request's reply
3847  * should be posted by the HBA firmware.
3848  */
3849 static inline u8
3850 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3851         struct scsi_cmnd *scmd)
3852 {
3853         /* Enables reply_queue load balancing */
3854         if (ioc->msix_load_balance)
3855                 return ioc->reply_queue_count ?
3856                     base_mod64(atomic64_add_return(1,
3857                     &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3858
3859         if (scmd && ioc->shost->nr_hw_queues > 1) {
3860                 u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3861
3862                 return blk_mq_unique_tag_to_hwq(tag) +
3863                         ioc->high_iops_queues;
3864         }
3865
3866         return ioc->cpu_msix_table[raw_smp_processor_id()];
3867 }
3868
3869 /**
3870  * _base_get_high_iops_msix_index - get the msix index of
3871  *                              high iops queues
3872  * @ioc: per adapter object
3873  * @scmd: scsi_cmnd object
3874  *
3875  * Return: msix index of high iops reply queues.
3876  * i.e. high iops reply queue on which IO request's
3877  * reply should be posted by the HBA firmware.
3878  */
3879 static inline u8
3880 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3881         struct scsi_cmnd *scmd)
3882 {
3883         /**
3884          * Round robin the IO interrupts among the high iops
3885          * reply queues in terms of batch count 16 when outstanding
3886          * IOs on the target device is >=8.
3887          */
3888
3889         if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3890                 return base_mod64((
3891                     atomic64_add_return(1, &ioc->high_iops_outstanding) /
3892                     MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3893                     MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3894
3895         return _base_get_msix_index(ioc, scmd);
3896 }
3897
3898 /**
3899  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3900  * @ioc: per adapter object
3901  * @cb_idx: callback index
3902  *
3903  * Return: smid (zero is invalid)
3904  */
3905 u16
3906 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3907 {
3908         unsigned long flags;
3909         struct request_tracker *request;
3910         u16 smid;
3911
3912         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3913         if (list_empty(&ioc->internal_free_list)) {
3914                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3915                 ioc_err(ioc, "%s: smid not available\n", __func__);
3916                 return 0;
3917         }
3918
3919         request = list_entry(ioc->internal_free_list.next,
3920             struct request_tracker, tracker_list);
3921         request->cb_idx = cb_idx;
3922         smid = request->smid;
3923         list_del(&request->tracker_list);
3924         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3925         return smid;
3926 }
3927
3928 /**
3929  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3930  * @ioc: per adapter object
3931  * @cb_idx: callback index
3932  * @scmd: pointer to scsi command object
3933  *
3934  * Return: smid (zero is invalid)
3935  */
3936 u16
3937 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3938         struct scsi_cmnd *scmd)
3939 {
3940         struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3941         u16 smid;
3942         u32 tag, unique_tag;
3943
3944         unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3945         tag = blk_mq_unique_tag_to_tag(unique_tag);
3946
3947         /*
3948          * Store hw queue number corresponding to the tag.
3949          * This hw queue number is used later to determine
3950          * the unique_tag using the logic below. This unique_tag
3951          * is used to retrieve the scmd pointer corresponding
3952          * to tag using scsi_host_find_tag() API.
3953          *
3954          * tag = smid - 1;
3955          * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag;
3956          */
3957         ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag);
3958
3959         smid = tag + 1;
3960         request->cb_idx = cb_idx;
3961         request->smid = smid;
3962         request->scmd = scmd;
3963         INIT_LIST_HEAD(&request->chain_list);
3964         return smid;
3965 }
3966
3967 /**
3968  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3969  * @ioc: per adapter object
3970  * @cb_idx: callback index
3971  *
3972  * Return: smid (zero is invalid)
3973  */
3974 u16
3975 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3976 {
3977         unsigned long flags;
3978         struct request_tracker *request;
3979         u16 smid;
3980
3981         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3982         if (list_empty(&ioc->hpr_free_list)) {
3983                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3984                 return 0;
3985         }
3986
3987         request = list_entry(ioc->hpr_free_list.next,
3988             struct request_tracker, tracker_list);
3989         request->cb_idx = cb_idx;
3990         smid = request->smid;
3991         list_del(&request->tracker_list);
3992         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3993         return smid;
3994 }
3995
3996 static void
3997 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3998 {
3999         /*
4000          * See _wait_for_commands_to_complete() call with regards to this code.
4001          */
4002         if (ioc->shost_recovery && ioc->pending_io_count) {
4003                 ioc->pending_io_count = scsi_host_busy(ioc->shost);
4004                 if (ioc->pending_io_count == 0)
4005                         wake_up(&ioc->reset_wq);
4006         }
4007 }
4008
4009 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
4010                            struct scsiio_tracker *st)
4011 {
4012         if (WARN_ON(st->smid == 0))
4013                 return;
4014         st->cb_idx = 0xFF;
4015         st->direct_io = 0;
4016         st->scmd = NULL;
4017         atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
4018         st->smid = 0;
4019 }
4020
4021 /**
4022  * mpt3sas_base_free_smid - put smid back on free_list
4023  * @ioc: per adapter object
4024  * @smid: system request message index
4025  */
4026 void
4027 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4028 {
4029         unsigned long flags;
4030         int i;
4031
4032         if (smid < ioc->hi_priority_smid) {
4033                 struct scsiio_tracker *st;
4034                 void *request;
4035
4036                 st = _get_st_from_smid(ioc, smid);
4037                 if (!st) {
4038                         _base_recovery_check(ioc);
4039                         return;
4040                 }
4041
4042                 /* Clear MPI request frame */
4043                 request = mpt3sas_base_get_msg_frame(ioc, smid);
4044                 memset(request, 0, ioc->request_sz);
4045
4046                 mpt3sas_base_clear_st(ioc, st);
4047                 _base_recovery_check(ioc);
4048                 ioc->io_queue_num[smid - 1] = 0;
4049                 return;
4050         }
4051
4052         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4053         if (smid < ioc->internal_smid) {
4054                 /* hi-priority */
4055                 i = smid - ioc->hi_priority_smid;
4056                 ioc->hpr_lookup[i].cb_idx = 0xFF;
4057                 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
4058         } else if (smid <= ioc->hba_queue_depth) {
4059                 /* internal queue */
4060                 i = smid - ioc->internal_smid;
4061                 ioc->internal_lookup[i].cb_idx = 0xFF;
4062                 list_add(&ioc->internal_lookup[i].tracker_list,
4063                     &ioc->internal_free_list);
4064         }
4065         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4066 }
4067
4068 /**
4069  * _base_mpi_ep_writeq - 32 bit write to MMIO
4070  * @b: data payload
4071  * @addr: address in MMIO space
4072  * @writeq_lock: spin lock
4073  *
4074  * This special handling for MPI EP to take care of 32 bit
4075  * environment where its not quarenteed to send the entire word
4076  * in one transfer.
4077  */
4078 static inline void
4079 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
4080                                         spinlock_t *writeq_lock)
4081 {
4082         unsigned long flags;
4083
4084         spin_lock_irqsave(writeq_lock, flags);
4085         __raw_writel((u32)(b), addr);
4086         __raw_writel((u32)(b >> 32), (addr + 4));
4087         spin_unlock_irqrestore(writeq_lock, flags);
4088 }
4089
4090 /**
4091  * _base_writeq - 64 bit write to MMIO
4092  * @b: data payload
4093  * @addr: address in MMIO space
4094  * @writeq_lock: spin lock
4095  *
4096  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
4097  * care of 32 bit environment where its not quarenteed to send the entire word
4098  * in one transfer.
4099  */
4100 #if defined(writeq) && defined(CONFIG_64BIT)
4101 static inline void
4102 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4103 {
4104         wmb();
4105         __raw_writeq(b, addr);
4106         barrier();
4107 }
4108 #else
4109 static inline void
4110 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4111 {
4112         _base_mpi_ep_writeq(b, addr, writeq_lock);
4113 }
4114 #endif
4115
4116 /**
4117  * _base_set_and_get_msix_index - get the msix index and assign to msix_io
4118  *                                variable of scsi tracker
4119  * @ioc: per adapter object
4120  * @smid: system request message index
4121  *
4122  * Return: msix index.
4123  */
4124 static u8
4125 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4126 {
4127         struct scsiio_tracker *st = NULL;
4128
4129         if (smid < ioc->hi_priority_smid)
4130                 st = _get_st_from_smid(ioc, smid);
4131
4132         if (st == NULL)
4133                 return  _base_get_msix_index(ioc, NULL);
4134
4135         st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
4136         return st->msix_io;
4137 }
4138
4139 /**
4140  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
4141  * @ioc: per adapter object
4142  * @smid: system request message index
4143  * @handle: device handle
4144  */
4145 static void
4146 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
4147         u16 smid, u16 handle)
4148 {
4149         Mpi2RequestDescriptorUnion_t descriptor;
4150         u64 *request = (u64 *)&descriptor;
4151         void *mpi_req_iomem;
4152         __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4153
4154         _clone_sg_entries(ioc, (void *) mfp, smid);
4155         mpi_req_iomem = (void __force *)ioc->chip +
4156                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4157         _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4158                                         ioc->request_sz);
4159         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4160         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4161         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4162         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4163         descriptor.SCSIIO.LMID = 0;
4164         _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4165             &ioc->scsi_lookup_lock);
4166 }
4167
4168 /**
4169  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
4170  * @ioc: per adapter object
4171  * @smid: system request message index
4172  * @handle: device handle
4173  */
4174 static void
4175 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
4176 {
4177         Mpi2RequestDescriptorUnion_t descriptor;
4178         u64 *request = (u64 *)&descriptor;
4179
4180
4181         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4182         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4183         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4184         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4185         descriptor.SCSIIO.LMID = 0;
4186         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4187             &ioc->scsi_lookup_lock);
4188 }
4189
4190 /**
4191  * _base_put_smid_fast_path - send fast path request to firmware
4192  * @ioc: per adapter object
4193  * @smid: system request message index
4194  * @handle: device handle
4195  */
4196 static void
4197 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4198         u16 handle)
4199 {
4200         Mpi2RequestDescriptorUnion_t descriptor;
4201         u64 *request = (u64 *)&descriptor;
4202
4203         descriptor.SCSIIO.RequestFlags =
4204             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4205         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4206         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4207         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4208         descriptor.SCSIIO.LMID = 0;
4209         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4210             &ioc->scsi_lookup_lock);
4211 }
4212
4213 /**
4214  * _base_put_smid_hi_priority - send Task Management request to firmware
4215  * @ioc: per adapter object
4216  * @smid: system request message index
4217  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4218  */
4219 static void
4220 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4221         u16 msix_task)
4222 {
4223         Mpi2RequestDescriptorUnion_t descriptor;
4224         void *mpi_req_iomem;
4225         u64 *request;
4226
4227         if (ioc->is_mcpu_endpoint) {
4228                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4229
4230                 /* TBD 256 is offset within sys register. */
4231                 mpi_req_iomem = (void __force *)ioc->chip
4232                                         + MPI_FRAME_START_OFFSET
4233                                         + (smid * ioc->request_sz);
4234                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4235                                                         ioc->request_sz);
4236         }
4237
4238         request = (u64 *)&descriptor;
4239
4240         descriptor.HighPriority.RequestFlags =
4241             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4242         descriptor.HighPriority.MSIxIndex =  msix_task;
4243         descriptor.HighPriority.SMID = cpu_to_le16(smid);
4244         descriptor.HighPriority.LMID = 0;
4245         descriptor.HighPriority.Reserved1 = 0;
4246         if (ioc->is_mcpu_endpoint)
4247                 _base_mpi_ep_writeq(*request,
4248                                 &ioc->chip->RequestDescriptorPostLow,
4249                                 &ioc->scsi_lookup_lock);
4250         else
4251                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4252                     &ioc->scsi_lookup_lock);
4253 }
4254
4255 /**
4256  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4257  *  firmware
4258  * @ioc: per adapter object
4259  * @smid: system request message index
4260  */
4261 void
4262 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4263 {
4264         Mpi2RequestDescriptorUnion_t descriptor;
4265         u64 *request = (u64 *)&descriptor;
4266
4267         descriptor.Default.RequestFlags =
4268                 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4269         descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
4270         descriptor.Default.SMID = cpu_to_le16(smid);
4271         descriptor.Default.LMID = 0;
4272         descriptor.Default.DescriptorTypeDependent = 0;
4273         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4274             &ioc->scsi_lookup_lock);
4275 }
4276
4277 /**
4278  * _base_put_smid_default - Default, primarily used for config pages
4279  * @ioc: per adapter object
4280  * @smid: system request message index
4281  */
4282 static void
4283 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4284 {
4285         Mpi2RequestDescriptorUnion_t descriptor;
4286         void *mpi_req_iomem;
4287         u64 *request;
4288
4289         if (ioc->is_mcpu_endpoint) {
4290                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4291
4292                 _clone_sg_entries(ioc, (void *) mfp, smid);
4293                 /* TBD 256 is offset within sys register */
4294                 mpi_req_iomem = (void __force *)ioc->chip +
4295                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4296                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4297                                                         ioc->request_sz);
4298         }
4299         request = (u64 *)&descriptor;
4300         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4301         descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4302         descriptor.Default.SMID = cpu_to_le16(smid);
4303         descriptor.Default.LMID = 0;
4304         descriptor.Default.DescriptorTypeDependent = 0;
4305         if (ioc->is_mcpu_endpoint)
4306                 _base_mpi_ep_writeq(*request,
4307                                 &ioc->chip->RequestDescriptorPostLow,
4308                                 &ioc->scsi_lookup_lock);
4309         else
4310                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4311                                 &ioc->scsi_lookup_lock);
4312 }
4313
4314 /**
4315  * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4316  *   Atomic Request Descriptor
4317  * @ioc: per adapter object
4318  * @smid: system request message index
4319  * @handle: device handle, unused in this function, for function type match
4320  *
4321  * Return: nothing.
4322  */
4323 static void
4324 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4325         u16 handle)
4326 {
4327         Mpi26AtomicRequestDescriptor_t descriptor;
4328         u32 *request = (u32 *)&descriptor;
4329
4330         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4331         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4332         descriptor.SMID = cpu_to_le16(smid);
4333
4334         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4335 }
4336
4337 /**
4338  * _base_put_smid_fast_path_atomic - send fast path request to firmware
4339  * using Atomic Request Descriptor
4340  * @ioc: per adapter object
4341  * @smid: system request message index
4342  * @handle: device handle, unused in this function, for function type match
4343  * Return: nothing
4344  */
4345 static void
4346 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4347         u16 handle)
4348 {
4349         Mpi26AtomicRequestDescriptor_t descriptor;
4350         u32 *request = (u32 *)&descriptor;
4351
4352         descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4353         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4354         descriptor.SMID = cpu_to_le16(smid);
4355
4356         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4357 }
4358
4359 /**
4360  * _base_put_smid_hi_priority_atomic - send Task Management request to
4361  * firmware using Atomic Request Descriptor
4362  * @ioc: per adapter object
4363  * @smid: system request message index
4364  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4365  *
4366  * Return: nothing.
4367  */
4368 static void
4369 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4370         u16 msix_task)
4371 {
4372         Mpi26AtomicRequestDescriptor_t descriptor;
4373         u32 *request = (u32 *)&descriptor;
4374
4375         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4376         descriptor.MSIxIndex = msix_task;
4377         descriptor.SMID = cpu_to_le16(smid);
4378
4379         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4380 }
4381
4382 /**
4383  * _base_put_smid_default_atomic - Default, primarily used for config pages
4384  * use Atomic Request Descriptor
4385  * @ioc: per adapter object
4386  * @smid: system request message index
4387  *
4388  * Return: nothing.
4389  */
4390 static void
4391 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4392 {
4393         Mpi26AtomicRequestDescriptor_t descriptor;
4394         u32 *request = (u32 *)&descriptor;
4395
4396         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4397         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4398         descriptor.SMID = cpu_to_le16(smid);
4399
4400         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4401 }
4402
4403 /**
4404  * _base_display_OEMs_branding - Display branding string
4405  * @ioc: per adapter object
4406  */
4407 static void
4408 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4409 {
4410         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4411                 return;
4412
4413         switch (ioc->pdev->subsystem_vendor) {
4414         case PCI_VENDOR_ID_INTEL:
4415                 switch (ioc->pdev->device) {
4416                 case MPI2_MFGPAGE_DEVID_SAS2008:
4417                         switch (ioc->pdev->subsystem_device) {
4418                         case MPT2SAS_INTEL_RMS2LL080_SSDID:
4419                                 ioc_info(ioc, "%s\n",
4420                                          MPT2SAS_INTEL_RMS2LL080_BRANDING);
4421                                 break;
4422                         case MPT2SAS_INTEL_RMS2LL040_SSDID:
4423                                 ioc_info(ioc, "%s\n",
4424                                          MPT2SAS_INTEL_RMS2LL040_BRANDING);
4425                                 break;
4426                         case MPT2SAS_INTEL_SSD910_SSDID:
4427                                 ioc_info(ioc, "%s\n",
4428                                          MPT2SAS_INTEL_SSD910_BRANDING);
4429                                 break;
4430                         default:
4431                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4432                                          ioc->pdev->subsystem_device);
4433                                 break;
4434                         }
4435                         break;
4436                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4437                         switch (ioc->pdev->subsystem_device) {
4438                         case MPT2SAS_INTEL_RS25GB008_SSDID:
4439                                 ioc_info(ioc, "%s\n",
4440                                          MPT2SAS_INTEL_RS25GB008_BRANDING);
4441                                 break;
4442                         case MPT2SAS_INTEL_RMS25JB080_SSDID:
4443                                 ioc_info(ioc, "%s\n",
4444                                          MPT2SAS_INTEL_RMS25JB080_BRANDING);
4445                                 break;
4446                         case MPT2SAS_INTEL_RMS25JB040_SSDID:
4447                                 ioc_info(ioc, "%s\n",
4448                                          MPT2SAS_INTEL_RMS25JB040_BRANDING);
4449                                 break;
4450                         case MPT2SAS_INTEL_RMS25KB080_SSDID:
4451                                 ioc_info(ioc, "%s\n",
4452                                          MPT2SAS_INTEL_RMS25KB080_BRANDING);
4453                                 break;
4454                         case MPT2SAS_INTEL_RMS25KB040_SSDID:
4455                                 ioc_info(ioc, "%s\n",
4456                                          MPT2SAS_INTEL_RMS25KB040_BRANDING);
4457                                 break;
4458                         case MPT2SAS_INTEL_RMS25LB040_SSDID:
4459                                 ioc_info(ioc, "%s\n",
4460                                          MPT2SAS_INTEL_RMS25LB040_BRANDING);
4461                                 break;
4462                         case MPT2SAS_INTEL_RMS25LB080_SSDID:
4463                                 ioc_info(ioc, "%s\n",
4464                                          MPT2SAS_INTEL_RMS25LB080_BRANDING);
4465                                 break;
4466                         default:
4467                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4468                                          ioc->pdev->subsystem_device);
4469                                 break;
4470                         }
4471                         break;
4472                 case MPI25_MFGPAGE_DEVID_SAS3008:
4473                         switch (ioc->pdev->subsystem_device) {
4474                         case MPT3SAS_INTEL_RMS3JC080_SSDID:
4475                                 ioc_info(ioc, "%s\n",
4476                                          MPT3SAS_INTEL_RMS3JC080_BRANDING);
4477                                 break;
4478
4479                         case MPT3SAS_INTEL_RS3GC008_SSDID:
4480                                 ioc_info(ioc, "%s\n",
4481                                          MPT3SAS_INTEL_RS3GC008_BRANDING);
4482                                 break;
4483                         case MPT3SAS_INTEL_RS3FC044_SSDID:
4484                                 ioc_info(ioc, "%s\n",
4485                                          MPT3SAS_INTEL_RS3FC044_BRANDING);
4486                                 break;
4487                         case MPT3SAS_INTEL_RS3UC080_SSDID:
4488                                 ioc_info(ioc, "%s\n",
4489                                          MPT3SAS_INTEL_RS3UC080_BRANDING);
4490                                 break;
4491                         default:
4492                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4493                                          ioc->pdev->subsystem_device);
4494                                 break;
4495                         }
4496                         break;
4497                 default:
4498                         ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4499                                  ioc->pdev->subsystem_device);
4500                         break;
4501                 }
4502                 break;
4503         case PCI_VENDOR_ID_DELL:
4504                 switch (ioc->pdev->device) {
4505                 case MPI2_MFGPAGE_DEVID_SAS2008:
4506                         switch (ioc->pdev->subsystem_device) {
4507                         case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4508                                 ioc_info(ioc, "%s\n",
4509                                          MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4510                                 break;
4511                         case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4512                                 ioc_info(ioc, "%s\n",
4513                                          MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4514                                 break;
4515                         case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4516                                 ioc_info(ioc, "%s\n",
4517                                          MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4518                                 break;
4519                         case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4520                                 ioc_info(ioc, "%s\n",
4521                                          MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4522                                 break;
4523                         case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4524                                 ioc_info(ioc, "%s\n",
4525                                          MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4526                                 break;
4527                         case MPT2SAS_DELL_PERC_H200_SSDID:
4528                                 ioc_info(ioc, "%s\n",
4529                                          MPT2SAS_DELL_PERC_H200_BRANDING);
4530                                 break;
4531                         case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4532                                 ioc_info(ioc, "%s\n",
4533                                          MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4534                                 break;
4535                         default:
4536                                 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4537                                          ioc->pdev->subsystem_device);
4538                                 break;
4539                         }
4540                         break;
4541                 case MPI25_MFGPAGE_DEVID_SAS3008:
4542                         switch (ioc->pdev->subsystem_device) {
4543                         case MPT3SAS_DELL_12G_HBA_SSDID:
4544                                 ioc_info(ioc, "%s\n",
4545                                          MPT3SAS_DELL_12G_HBA_BRANDING);
4546                                 break;
4547                         default:
4548                                 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4549                                          ioc->pdev->subsystem_device);
4550                                 break;
4551                         }
4552                         break;
4553                 default:
4554                         ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4555                                  ioc->pdev->subsystem_device);
4556                         break;
4557                 }
4558                 break;
4559         case PCI_VENDOR_ID_CISCO:
4560                 switch (ioc->pdev->device) {
4561                 case MPI25_MFGPAGE_DEVID_SAS3008:
4562                         switch (ioc->pdev->subsystem_device) {
4563                         case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4564                                 ioc_info(ioc, "%s\n",
4565                                          MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4566                                 break;
4567                         case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4568                                 ioc_info(ioc, "%s\n",
4569                                          MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4570                                 break;
4571                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4572                                 ioc_info(ioc, "%s\n",
4573                                          MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4574                                 break;
4575                         default:
4576                                 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4577                                          ioc->pdev->subsystem_device);
4578                                 break;
4579                         }
4580                         break;
4581                 case MPI25_MFGPAGE_DEVID_SAS3108_1:
4582                         switch (ioc->pdev->subsystem_device) {
4583                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4584                                 ioc_info(ioc, "%s\n",
4585                                          MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4586                                 break;
4587                         case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4588                                 ioc_info(ioc, "%s\n",
4589                                          MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4590                                 break;
4591                         default:
4592                                 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4593                                          ioc->pdev->subsystem_device);
4594                                 break;
4595                         }
4596                         break;
4597                 default:
4598                         ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4599                                  ioc->pdev->subsystem_device);
4600                         break;
4601                 }
4602                 break;
4603         case MPT2SAS_HP_3PAR_SSVID:
4604                 switch (ioc->pdev->device) {
4605                 case MPI2_MFGPAGE_DEVID_SAS2004:
4606                         switch (ioc->pdev->subsystem_device) {
4607                         case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4608                                 ioc_info(ioc, "%s\n",
4609                                          MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4610                                 break;
4611                         default:
4612                                 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4613                                          ioc->pdev->subsystem_device);
4614                                 break;
4615                         }
4616                         break;
4617                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4618                         switch (ioc->pdev->subsystem_device) {
4619                         case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4620                                 ioc_info(ioc, "%s\n",
4621                                          MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4622                                 break;
4623                         case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4624                                 ioc_info(ioc, "%s\n",
4625                                          MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4626                                 break;
4627                         case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4628                                 ioc_info(ioc, "%s\n",
4629                                          MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4630                                 break;
4631                         case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4632                                 ioc_info(ioc, "%s\n",
4633                                          MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4634                                 break;
4635                         default:
4636                                 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4637                                          ioc->pdev->subsystem_device);
4638                                 break;
4639                         }
4640                         break;
4641                 default:
4642                         ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4643                                  ioc->pdev->subsystem_device);
4644                         break;
4645                 }
4646                 break;
4647         default:
4648                 break;
4649         }
4650 }
4651
4652 /**
4653  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4654  *                              version from FW Image Header.
4655  * @ioc: per adapter object
4656  *
4657  * Return: 0 for success, non-zero for failure.
4658  */
4659         static int
4660 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4661 {
4662         Mpi2FWImageHeader_t *fw_img_hdr;
4663         Mpi26ComponentImageHeader_t *cmp_img_hdr;
4664         Mpi25FWUploadRequest_t *mpi_request;
4665         Mpi2FWUploadReply_t mpi_reply;
4666         int r = 0, issue_diag_reset = 0;
4667         u32  package_version = 0;
4668         void *fwpkg_data = NULL;
4669         dma_addr_t fwpkg_data_dma;
4670         u16 smid, ioc_status;
4671         size_t data_length;
4672
4673         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4674
4675         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4676                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
4677                 return -EAGAIN;
4678         }
4679
4680         data_length = sizeof(Mpi2FWImageHeader_t);
4681         fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4682                         &fwpkg_data_dma, GFP_KERNEL);
4683         if (!fwpkg_data) {
4684                 ioc_err(ioc,
4685                     "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4686                         __FILE__, __LINE__, __func__);
4687                 return -ENOMEM;
4688         }
4689
4690         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4691         if (!smid) {
4692                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4693                 r = -EAGAIN;
4694                 goto out;
4695         }
4696
4697         ioc->base_cmds.status = MPT3_CMD_PENDING;
4698         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4699         ioc->base_cmds.smid = smid;
4700         memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4701         mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4702         mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4703         mpi_request->ImageSize = cpu_to_le32(data_length);
4704         ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4705                         data_length);
4706         init_completion(&ioc->base_cmds.done);
4707         ioc->put_smid_default(ioc, smid);
4708         /* Wait for 15 seconds */
4709         wait_for_completion_timeout(&ioc->base_cmds.done,
4710                         FW_IMG_HDR_READ_TIMEOUT*HZ);
4711         ioc_info(ioc, "%s: complete\n", __func__);
4712         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4713                 ioc_err(ioc, "%s: timeout\n", __func__);
4714                 _debug_dump_mf(mpi_request,
4715                                 sizeof(Mpi25FWUploadRequest_t)/4);
4716                 issue_diag_reset = 1;
4717         } else {
4718                 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4719                 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4720                         memcpy(&mpi_reply, ioc->base_cmds.reply,
4721                                         sizeof(Mpi2FWUploadReply_t));
4722                         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4723                                                 MPI2_IOCSTATUS_MASK;
4724                         if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4725                                 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4726                                 if (le32_to_cpu(fw_img_hdr->Signature) ==
4727                                     MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4728                                         cmp_img_hdr =
4729                                             (Mpi26ComponentImageHeader_t *)
4730                                             (fwpkg_data);
4731                                         package_version =
4732                                             le32_to_cpu(
4733                                             cmp_img_hdr->ApplicationSpecific);
4734                                 } else
4735                                         package_version =
4736                                             le32_to_cpu(
4737                                             fw_img_hdr->PackageVersion.Word);
4738                                 if (package_version)
4739                                         ioc_info(ioc,
4740                                         "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4741                                         ((package_version) & 0xFF000000) >> 24,
4742                                         ((package_version) & 0x00FF0000) >> 16,
4743                                         ((package_version) & 0x0000FF00) >> 8,
4744                                         (package_version) & 0x000000FF);
4745                         } else {
4746                                 _debug_dump_mf(&mpi_reply,
4747                                                 sizeof(Mpi2FWUploadReply_t)/4);
4748                         }
4749                 }
4750         }
4751         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4752 out:
4753         if (fwpkg_data)
4754                 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4755                                 fwpkg_data_dma);
4756         if (issue_diag_reset) {
4757                 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
4758                         return -EFAULT;
4759                 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
4760                         return -EFAULT;
4761                 r = -EAGAIN;
4762         }
4763         return r;
4764 }
4765
4766 /**
4767  * _base_display_ioc_capabilities - Display IOC's capabilities.
4768  * @ioc: per adapter object
4769  */
4770 static void
4771 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4772 {
4773         int i = 0;
4774         char desc[17] = {0};
4775         u32 iounit_pg1_flags;
4776
4777         strncpy(desc, ioc->manu_pg0.ChipName, 16);
4778         ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x)\n",
4779                  desc,
4780                  (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4781                  (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4782                  (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4783                  ioc->facts.FWVersion.Word & 0x000000FF,
4784                  ioc->pdev->revision);
4785
4786         _base_display_OEMs_branding(ioc);
4787
4788         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4789                 pr_info("%sNVMe", i ? "," : "");
4790                 i++;
4791         }
4792
4793         ioc_info(ioc, "Protocol=(");
4794
4795         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4796                 pr_cont("Initiator");
4797                 i++;
4798         }
4799
4800         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4801                 pr_cont("%sTarget", i ? "," : "");
4802                 i++;
4803         }
4804
4805         i = 0;
4806         pr_cont("), Capabilities=(");
4807
4808         if (!ioc->hide_ir_msg) {
4809                 if (ioc->facts.IOCCapabilities &
4810                     MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4811                         pr_cont("Raid");
4812                         i++;
4813                 }
4814         }
4815
4816         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4817                 pr_cont("%sTLR", i ? "," : "");
4818                 i++;
4819         }
4820
4821         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4822                 pr_cont("%sMulticast", i ? "," : "");
4823                 i++;
4824         }
4825
4826         if (ioc->facts.IOCCapabilities &
4827             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4828                 pr_cont("%sBIDI Target", i ? "," : "");
4829                 i++;
4830         }
4831
4832         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4833                 pr_cont("%sEEDP", i ? "," : "");
4834                 i++;
4835         }
4836
4837         if (ioc->facts.IOCCapabilities &
4838             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4839                 pr_cont("%sSnapshot Buffer", i ? "," : "");
4840                 i++;
4841         }
4842
4843         if (ioc->facts.IOCCapabilities &
4844             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4845                 pr_cont("%sDiag Trace Buffer", i ? "," : "");
4846                 i++;
4847         }
4848
4849         if (ioc->facts.IOCCapabilities &
4850             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4851                 pr_cont("%sDiag Extended Buffer", i ? "," : "");
4852                 i++;
4853         }
4854
4855         if (ioc->facts.IOCCapabilities &
4856             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4857                 pr_cont("%sTask Set Full", i ? "," : "");
4858                 i++;
4859         }
4860
4861         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4862         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4863                 pr_cont("%sNCQ", i ? "," : "");
4864                 i++;
4865         }
4866
4867         pr_cont(")\n");
4868 }
4869
4870 /**
4871  * mpt3sas_base_update_missing_delay - change the missing delay timers
4872  * @ioc: per adapter object
4873  * @device_missing_delay: amount of time till device is reported missing
4874  * @io_missing_delay: interval IO is returned when there is a missing device
4875  *
4876  * Passed on the command line, this function will modify the device missing
4877  * delay, as well as the io missing delay. This should be called at driver
4878  * load time.
4879  */
4880 void
4881 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4882         u16 device_missing_delay, u8 io_missing_delay)
4883 {
4884         u16 dmd, dmd_new, dmd_orignal;
4885         u8 io_missing_delay_original;
4886         u16 sz;
4887         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4888         Mpi2ConfigReply_t mpi_reply;
4889         u8 num_phys = 0;
4890         u16 ioc_status;
4891
4892         mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4893         if (!num_phys)
4894                 return;
4895
4896         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4897             sizeof(Mpi2SasIOUnit1PhyData_t));
4898         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4899         if (!sas_iounit_pg1) {
4900                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4901                         __FILE__, __LINE__, __func__);
4902                 goto out;
4903         }
4904         if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4905             sas_iounit_pg1, sz))) {
4906                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4907                         __FILE__, __LINE__, __func__);
4908                 goto out;
4909         }
4910         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4911             MPI2_IOCSTATUS_MASK;
4912         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4913                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4914                         __FILE__, __LINE__, __func__);
4915                 goto out;
4916         }
4917
4918         /* device missing delay */
4919         dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4920         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4921                 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4922         else
4923                 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4924         dmd_orignal = dmd;
4925         if (device_missing_delay > 0x7F) {
4926                 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4927                     device_missing_delay;
4928                 dmd = dmd / 16;
4929                 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4930         } else
4931                 dmd = device_missing_delay;
4932         sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4933
4934         /* io missing delay */
4935         io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4936         sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4937
4938         if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4939             sz)) {
4940                 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4941                         dmd_new = (dmd &
4942                             MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4943                 else
4944                         dmd_new =
4945                     dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4946                 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4947                          dmd_orignal, dmd_new);
4948                 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4949                          io_missing_delay_original,
4950                          io_missing_delay);
4951                 ioc->device_missing_delay = dmd_new;
4952                 ioc->io_missing_delay = io_missing_delay;
4953         }
4954
4955 out:
4956         kfree(sas_iounit_pg1);
4957 }
4958
4959 /**
4960  * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4961  *    according to performance mode.
4962  * @ioc : per adapter object
4963  *
4964  * Return: zero on success; otherwise return EAGAIN error code asking the
4965  * caller to retry.
4966  */
4967 static int
4968 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4969 {
4970         Mpi2IOCPage1_t ioc_pg1;
4971         Mpi2ConfigReply_t mpi_reply;
4972         int rc;
4973
4974         rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4975         if (rc)
4976                 return rc;
4977         memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4978
4979         switch (perf_mode) {
4980         case MPT_PERF_MODE_DEFAULT:
4981         case MPT_PERF_MODE_BALANCED:
4982                 if (ioc->high_iops_queues) {
4983                         ioc_info(ioc,
4984                                 "Enable interrupt coalescing only for first\t"
4985                                 "%d reply queues\n",
4986                                 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4987                         /*
4988                          * If 31st bit is zero then interrupt coalescing is
4989                          * enabled for all reply descriptor post queues.
4990                          * If 31st bit is set to one then user can
4991                          * enable/disable interrupt coalescing on per reply
4992                          * descriptor post queue group(8) basis. So to enable
4993                          * interrupt coalescing only on first reply descriptor
4994                          * post queue group 31st bit and zero th bit is enabled.
4995                          */
4996                         ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4997                             ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4998                         rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4999                         if (rc)
5000                                 return rc;
5001                         ioc_info(ioc, "performance mode: balanced\n");
5002                         return 0;
5003                 }
5004                 fallthrough;
5005         case MPT_PERF_MODE_LATENCY:
5006                 /*
5007                  * Enable interrupt coalescing on all reply queues
5008                  * with timeout value 0xA
5009                  */
5010                 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
5011                 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5012                 ioc_pg1.ProductSpecific = 0;
5013                 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5014                 if (rc)
5015                         return rc;
5016                 ioc_info(ioc, "performance mode: latency\n");
5017                 break;
5018         case MPT_PERF_MODE_IOPS:
5019                 /*
5020                  * Enable interrupt coalescing on all reply queues.
5021                  */
5022                 ioc_info(ioc,
5023                     "performance mode: iops with coalescing timeout: 0x%x\n",
5024                     le32_to_cpu(ioc_pg1.CoalescingTimeout));
5025                 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5026                 ioc_pg1.ProductSpecific = 0;
5027                 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5028                 if (rc)
5029                         return rc;
5030                 break;
5031         }
5032         return 0;
5033 }
5034
5035 /**
5036  * _base_get_event_diag_triggers - get event diag trigger values from
5037  *                              persistent pages
5038  * @ioc : per adapter object
5039  *
5040  * Return: nothing.
5041  */
5042 static int
5043 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5044 {
5045         Mpi26DriverTriggerPage2_t trigger_pg2;
5046         struct SL_WH_EVENT_TRIGGER_T *event_tg;
5047         MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg;
5048         Mpi2ConfigReply_t mpi_reply;
5049         int r = 0, i = 0;
5050         u16 count = 0;
5051         u16 ioc_status;
5052
5053         r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
5054             &trigger_pg2);
5055         if (r)
5056                 return r;
5057
5058         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5059             MPI2_IOCSTATUS_MASK;
5060         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5061                 dinitprintk(ioc,
5062                     ioc_err(ioc,
5063                     "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
5064                    __func__, ioc_status));
5065                 return 0;
5066         }
5067
5068         if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
5069                 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
5070                 count = min_t(u16, NUM_VALID_ENTRIES, count);
5071                 ioc->diag_trigger_event.ValidEntries = count;
5072
5073                 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
5074                 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
5075                 for (i = 0; i < count; i++) {
5076                         event_tg->EventValue = le16_to_cpu(
5077                             mpi_event_tg->MPIEventCode);
5078                         event_tg->LogEntryQualifier = le16_to_cpu(
5079                             mpi_event_tg->MPIEventCodeSpecific);
5080                         event_tg++;
5081                         mpi_event_tg++;
5082                 }
5083         }
5084         return 0;
5085 }
5086
5087 /**
5088  * _base_get_scsi_diag_triggers - get scsi diag trigger values from
5089  *                              persistent pages
5090  * @ioc : per adapter object
5091  *
5092  * Return: 0 on success; otherwise return failure status.
5093  */
5094 static int
5095 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5096 {
5097         Mpi26DriverTriggerPage3_t trigger_pg3;
5098         struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
5099         MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg;
5100         Mpi2ConfigReply_t mpi_reply;
5101         int r = 0, i = 0;
5102         u16 count = 0;
5103         u16 ioc_status;
5104
5105         r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
5106             &trigger_pg3);
5107         if (r)
5108                 return r;
5109
5110         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5111             MPI2_IOCSTATUS_MASK;
5112         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5113                 dinitprintk(ioc,
5114                     ioc_err(ioc,
5115                     "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
5116                     __func__, ioc_status));
5117                 return 0;
5118         }
5119
5120         if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
5121                 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
5122                 count = min_t(u16, NUM_VALID_ENTRIES, count);
5123                 ioc->diag_trigger_scsi.ValidEntries = count;
5124
5125                 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
5126                 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
5127                 for (i = 0; i < count; i++) {
5128                         scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
5129                         scsi_tg->ASC = mpi_scsi_tg->ASC;
5130                         scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
5131
5132                         scsi_tg++;
5133                         mpi_scsi_tg++;
5134                 }
5135         }
5136         return 0;
5137 }
5138
5139 /**
5140  * _base_get_mpi_diag_triggers - get mpi diag trigger values from
5141  *                              persistent pages
5142  * @ioc : per adapter object
5143  *
5144  * Return: 0 on success; otherwise return failure status.
5145  */
5146 static int
5147 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5148 {
5149         Mpi26DriverTriggerPage4_t trigger_pg4;
5150         struct SL_WH_MPI_TRIGGER_T *status_tg;
5151         MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg;
5152         Mpi2ConfigReply_t mpi_reply;
5153         int r = 0, i = 0;
5154         u16 count = 0;
5155         u16 ioc_status;
5156
5157         r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
5158             &trigger_pg4);
5159         if (r)
5160                 return r;
5161
5162         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5163             MPI2_IOCSTATUS_MASK;
5164         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5165                 dinitprintk(ioc,
5166                     ioc_err(ioc,
5167                     "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
5168                     __func__, ioc_status));
5169                 return 0;
5170         }
5171
5172         if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
5173                 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
5174                 count = min_t(u16, NUM_VALID_ENTRIES, count);
5175                 ioc->diag_trigger_mpi.ValidEntries = count;
5176
5177                 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
5178                 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
5179
5180                 for (i = 0; i < count; i++) {
5181                         status_tg->IOCStatus = le16_to_cpu(
5182                             mpi_status_tg->IOCStatus);
5183                         status_tg->IocLogInfo = le32_to_cpu(
5184                             mpi_status_tg->LogInfo);
5185
5186                         status_tg++;
5187                         mpi_status_tg++;
5188                 }
5189         }
5190         return 0;
5191 }
5192
5193 /**
5194  * _base_get_master_diag_triggers - get master diag trigger values from
5195  *                              persistent pages
5196  * @ioc : per adapter object
5197  *
5198  * Return: nothing.
5199  */
5200 static int
5201 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5202 {
5203         Mpi26DriverTriggerPage1_t trigger_pg1;
5204         Mpi2ConfigReply_t mpi_reply;
5205         int r;
5206         u16 ioc_status;
5207
5208         r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
5209             &trigger_pg1);
5210         if (r)
5211                 return r;
5212
5213         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5214             MPI2_IOCSTATUS_MASK;
5215         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5216                 dinitprintk(ioc,
5217                     ioc_err(ioc,
5218                     "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
5219                    __func__, ioc_status));
5220                 return 0;
5221         }
5222
5223         if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
5224                 ioc->diag_trigger_master.MasterData |=
5225                     le32_to_cpu(
5226                     trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
5227         return 0;
5228 }
5229
5230 /**
5231  * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5232  *                                      driver trigger pages or not
5233  * @ioc : per adapter object
5234  * @trigger_flags : address where trigger page0's TriggerFlags value is copied
5235  *
5236  * Return: trigger flags mask if HBA FW supports driver trigger pages;
5237  * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or
5238  * return EAGAIN if diag reset occurred due to FW fault and asking the
5239  * caller to retry the command.
5240  *
5241  */
5242 static int
5243 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags)
5244 {
5245         Mpi26DriverTriggerPage0_t trigger_pg0;
5246         int r = 0;
5247         Mpi2ConfigReply_t mpi_reply;
5248         u16 ioc_status;
5249
5250         r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5251             &trigger_pg0);
5252         if (r)
5253                 return r;
5254
5255         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5256             MPI2_IOCSTATUS_MASK;
5257         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5258                 return -EFAULT;
5259
5260         *trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags);
5261         return 0;
5262 }
5263
5264 /**
5265  * _base_get_diag_triggers - Retrieve diag trigger values from
5266  *                              persistent pages.
5267  * @ioc : per adapter object
5268  *
5269  * Return: zero on success; otherwise return EAGAIN error codes
5270  * asking the caller to retry.
5271  */
5272 static int
5273 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5274 {
5275         int trigger_flags;
5276         int r;
5277
5278         /*
5279          * Default setting of master trigger.
5280          */
5281         ioc->diag_trigger_master.MasterData =
5282             (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5283
5284         r = _base_check_for_trigger_pages_support(ioc, &trigger_flags);
5285         if (r) {
5286                 if (r == -EAGAIN)
5287                         return r;
5288                 /*
5289                  * Don't go for error handling when FW doesn't support
5290                  * driver trigger pages.
5291                  */
5292                 return 0;
5293         }
5294
5295         ioc->supports_trigger_pages = 1;
5296
5297         /*
5298          * Retrieve master diag trigger values from driver trigger pg1
5299          * if master trigger bit enabled in TriggerFlags.
5300          */
5301         if ((u16)trigger_flags &
5302             MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) {
5303                 r = _base_get_master_diag_triggers(ioc);
5304                 if (r)
5305                         return r;
5306         }
5307
5308         /*
5309          * Retrieve event diag trigger values from driver trigger pg2
5310          * if event trigger bit enabled in TriggerFlags.
5311          */
5312         if ((u16)trigger_flags &
5313             MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) {
5314                 r = _base_get_event_diag_triggers(ioc);
5315                 if (r)
5316                         return r;
5317         }
5318
5319         /*
5320          * Retrieve scsi diag trigger values from driver trigger pg3
5321          * if scsi trigger bit enabled in TriggerFlags.
5322          */
5323         if ((u16)trigger_flags &
5324             MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) {
5325                 r = _base_get_scsi_diag_triggers(ioc);
5326                 if (r)
5327                         return r;
5328         }
5329         /*
5330          * Retrieve mpi error diag trigger values from driver trigger pg4
5331          * if loginfo trigger bit enabled in TriggerFlags.
5332          */
5333         if ((u16)trigger_flags &
5334             MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) {
5335                 r = _base_get_mpi_diag_triggers(ioc);
5336                 if (r)
5337                         return r;
5338         }
5339         return 0;
5340 }
5341
5342 /**
5343  * _base_update_diag_trigger_pages - Update the driver trigger pages after
5344  *                      online FW update, in case updated FW supports driver
5345  *                      trigger pages.
5346  * @ioc : per adapter object
5347  *
5348  * Return: nothing.
5349  */
5350 static void
5351 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5352 {
5353
5354         if (ioc->diag_trigger_master.MasterData)
5355                 mpt3sas_config_update_driver_trigger_pg1(ioc,
5356                     &ioc->diag_trigger_master, 1);
5357
5358         if (ioc->diag_trigger_event.ValidEntries)
5359                 mpt3sas_config_update_driver_trigger_pg2(ioc,
5360                     &ioc->diag_trigger_event, 1);
5361
5362         if (ioc->diag_trigger_scsi.ValidEntries)
5363                 mpt3sas_config_update_driver_trigger_pg3(ioc,
5364                     &ioc->diag_trigger_scsi, 1);
5365
5366         if (ioc->diag_trigger_mpi.ValidEntries)
5367                 mpt3sas_config_update_driver_trigger_pg4(ioc,
5368                     &ioc->diag_trigger_mpi, 1);
5369 }
5370
5371 /**
5372  * _base_assign_fw_reported_qd  - Get FW reported QD for SAS/SATA devices.
5373  *                              - On failure set default QD values.
5374  * @ioc : per adapter object
5375  *
5376  * Returns 0 for success, non-zero for failure.
5377  *
5378  */
5379 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc)
5380 {
5381         Mpi2ConfigReply_t mpi_reply;
5382         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
5383         Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1;
5384         u16 depth;
5385         int sz;
5386         int rc = 0;
5387
5388         ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5389         ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5390         ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH;
5391         ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH;
5392         if (!ioc->is_gen35_ioc)
5393                 goto out;
5394         /* sas iounit page 1 */
5395         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData);
5396         sas_iounit_pg1 = kzalloc(sizeof(Mpi2SasIOUnitPage1_t), GFP_KERNEL);
5397         if (!sas_iounit_pg1) {
5398                 pr_err("%s: failure at %s:%d/%s()!\n",
5399                     ioc->name, __FILE__, __LINE__, __func__);
5400                 return rc;
5401         }
5402         rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
5403             sas_iounit_pg1, sz);
5404         if (rc) {
5405                 pr_err("%s: failure at %s:%d/%s()!\n",
5406                     ioc->name, __FILE__, __LINE__, __func__);
5407                 goto out;
5408         }
5409
5410         depth = le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth);
5411         ioc->max_wideport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5412
5413         depth = le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth);
5414         ioc->max_narrowport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5415
5416         depth = sas_iounit_pg1->SATAMaxQDepth;
5417         ioc->max_sata_qd = (depth ? depth : MPT3SAS_SATA_QUEUE_DEPTH);
5418
5419         /* pcie iounit page 1 */
5420         rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply,
5421             &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t));
5422         if (rc) {
5423                 pr_err("%s: failure at %s:%d/%s()!\n",
5424                     ioc->name, __FILE__, __LINE__, __func__);
5425                 goto out;
5426         }
5427         ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ?
5428             (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) :
5429             MPT3SAS_NVME_QUEUE_DEPTH;
5430 out:
5431         dinitprintk(ioc, pr_err(
5432             "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n",
5433             ioc->max_wideport_qd, ioc->max_narrowport_qd,
5434             ioc->max_sata_qd, ioc->max_nvme_qd));
5435         kfree(sas_iounit_pg1);
5436         return rc;
5437 }
5438
5439 /**
5440  * mpt3sas_atto_validate_nvram - validate the ATTO nvram read from mfg pg1
5441  *
5442  * @ioc : per adapter object
5443  * @n   : ptr to the ATTO nvram structure
5444  * Return: 0 for success, non-zero for failure.
5445  */
5446 static int
5447 mpt3sas_atto_validate_nvram(struct MPT3SAS_ADAPTER *ioc,
5448                             struct ATTO_SAS_NVRAM *n)
5449 {
5450         int r = -EINVAL;
5451         union ATTO_SAS_ADDRESS *s1;
5452         u32 len;
5453         u8 *pb;
5454         u8 ckSum;
5455
5456         /* validate nvram checksum */
5457         pb = (u8 *) n;
5458         ckSum = ATTO_SASNVR_CKSUM_SEED;
5459         len = sizeof(struct ATTO_SAS_NVRAM);
5460
5461         while (len--)
5462                 ckSum = ckSum + pb[len];
5463
5464         if (ckSum) {
5465                 ioc_err(ioc, "Invalid ATTO NVRAM checksum\n");
5466                 return r;
5467         }
5468
5469         s1 = (union ATTO_SAS_ADDRESS *) n->SasAddr;
5470
5471         if (n->Signature[0] != 'E'
5472         || n->Signature[1] != 'S'
5473         || n->Signature[2] != 'A'
5474         || n->Signature[3] != 'S')
5475                 ioc_err(ioc, "Invalid ATTO NVRAM signature\n");
5476         else if (n->Version > ATTO_SASNVR_VERSION)
5477                 ioc_info(ioc, "Invalid ATTO NVRAM version");
5478         else if ((n->SasAddr[7] & (ATTO_SAS_ADDR_ALIGN - 1))
5479                         || s1->b[0] != 0x50
5480                         || s1->b[1] != 0x01
5481                         || s1->b[2] != 0x08
5482                         || (s1->b[3] & 0xF0) != 0x60
5483                         || ((s1->b[3] & 0x0F) | le32_to_cpu(s1->d[1])) == 0) {
5484                 ioc_err(ioc, "Invalid ATTO SAS address\n");
5485         } else
5486                 r = 0;
5487         return r;
5488 }
5489
5490 /**
5491  * mpt3sas_atto_get_sas_addr - get the ATTO SAS address from mfg page 1
5492  *
5493  * @ioc : per adapter object
5494  * @*sas_addr : return sas address
5495  * Return: 0 for success, non-zero for failure.
5496  */
5497 static int
5498 mpt3sas_atto_get_sas_addr(struct MPT3SAS_ADAPTER *ioc, union ATTO_SAS_ADDRESS *sas_addr)
5499 {
5500         Mpi2ManufacturingPage1_t mfg_pg1;
5501         Mpi2ConfigReply_t mpi_reply;
5502         struct ATTO_SAS_NVRAM *nvram;
5503         int r;
5504         __be64 addr;
5505
5506         r = mpt3sas_config_get_manufacturing_pg1(ioc, &mpi_reply, &mfg_pg1);
5507         if (r) {
5508                 ioc_err(ioc, "Failed to read manufacturing page 1\n");
5509                 return r;
5510         }
5511
5512         /* validate nvram */
5513         nvram = (struct ATTO_SAS_NVRAM *) mfg_pg1.VPD;
5514         r = mpt3sas_atto_validate_nvram(ioc, nvram);
5515         if (r)
5516                 return r;
5517
5518         addr = *((__be64 *) nvram->SasAddr);
5519         sas_addr->q = cpu_to_le64(be64_to_cpu(addr));
5520         return r;
5521 }
5522
5523 /**
5524  * mpt3sas_atto_init - perform initializaion for ATTO branded
5525  *                                      adapter.
5526  * @ioc : per adapter object
5527  *5
5528  * Return: 0 for success, non-zero for failure.
5529  */
5530 static int
5531 mpt3sas_atto_init(struct MPT3SAS_ADAPTER *ioc)
5532 {
5533         int sz = 0;
5534         Mpi2BiosPage4_t *bios_pg4 = NULL;
5535         Mpi2ConfigReply_t mpi_reply;
5536         int r;
5537         int ix;
5538         union ATTO_SAS_ADDRESS sas_addr;
5539         union ATTO_SAS_ADDRESS temp;
5540         union ATTO_SAS_ADDRESS bias;
5541
5542         r = mpt3sas_atto_get_sas_addr(ioc, &sas_addr);
5543         if (r)
5544                 return r;
5545
5546         /* get header first to get size */
5547         r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, NULL, 0);
5548         if (r) {
5549                 ioc_err(ioc, "Failed to read ATTO bios page 4 header.\n");
5550                 return r;
5551         }
5552
5553         sz = mpi_reply.Header.PageLength * sizeof(u32);
5554         bios_pg4 = kzalloc(sz, GFP_KERNEL);
5555         if (!bios_pg4) {
5556                 ioc_err(ioc, "Failed to allocate memory for ATTO bios page.\n");
5557                 return -ENOMEM;
5558         }
5559
5560         /* read bios page 4 */
5561         r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, bios_pg4, sz);
5562         if (r) {
5563                 ioc_err(ioc, "Failed to read ATTO bios page 4\n");
5564                 goto out;
5565         }
5566
5567         /* Update bios page 4 with the ATTO WWID */
5568         bias.q = sas_addr.q;
5569         bias.b[7] += ATTO_SAS_ADDR_DEVNAME_BIAS;
5570
5571         for (ix = 0; ix < bios_pg4->NumPhys; ix++) {
5572                 temp.q = sas_addr.q;
5573                 temp.b[7] += ix;
5574                 bios_pg4->Phy[ix].ReassignmentWWID = temp.q;
5575                 bios_pg4->Phy[ix].ReassignmentDeviceName = bias.q;
5576         }
5577         r = mpt3sas_config_set_bios_pg4(ioc, &mpi_reply, bios_pg4, sz);
5578
5579 out:
5580         kfree(bios_pg4);
5581         return r;
5582 }
5583
5584 /**
5585  * _base_static_config_pages - static start of day config pages
5586  * @ioc: per adapter object
5587  */
5588 static int
5589 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5590 {
5591         Mpi2ConfigReply_t mpi_reply;
5592         u32 iounit_pg1_flags;
5593         int tg_flags = 0;
5594         int rc;
5595         ioc->nvme_abort_timeout = 30;
5596
5597         rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply,
5598             &ioc->manu_pg0);
5599         if (rc)
5600                 return rc;
5601         if (ioc->ir_firmware) {
5602                 rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5603                     &ioc->manu_pg10);
5604                 if (rc)
5605                         return rc;
5606         }
5607
5608         if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO) {
5609                 rc = mpt3sas_atto_init(ioc);
5610                 if (rc)
5611                         return rc;
5612         }
5613
5614         /*
5615          * Ensure correct T10 PI operation if vendor left EEDPTagMode
5616          * flag unset in NVDATA.
5617          */
5618         rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply,
5619             &ioc->manu_pg11);
5620         if (rc)
5621                 return rc;
5622         if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5623                 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5624                     ioc->name);
5625                 ioc->manu_pg11.EEDPTagMode &= ~0x3;
5626                 ioc->manu_pg11.EEDPTagMode |= 0x1;
5627                 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5628                     &ioc->manu_pg11);
5629         }
5630         if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5631                 ioc->tm_custom_handling = 1;
5632         else {
5633                 ioc->tm_custom_handling = 0;
5634                 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5635                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5636                 else if (ioc->manu_pg11.NVMeAbortTO >
5637                                         NVME_TASK_ABORT_MAX_TIMEOUT)
5638                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5639                 else
5640                         ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5641         }
5642         ioc->time_sync_interval =
5643             ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5644         if (ioc->time_sync_interval) {
5645                 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5646                         ioc->time_sync_interval =
5647                             ioc->time_sync_interval * SECONDS_PER_HOUR;
5648                 else
5649                         ioc->time_sync_interval =
5650                             ioc->time_sync_interval * SECONDS_PER_MIN;
5651                 dinitprintk(ioc, ioc_info(ioc,
5652                     "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5653                     ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5654                     MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5655         } else {
5656                 if (ioc->is_gen35_ioc)
5657                         ioc_warn(ioc,
5658                             "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5659         }
5660         rc = _base_assign_fw_reported_qd(ioc);
5661         if (rc)
5662                 return rc;
5663
5664         /*
5665          * ATTO doesn't use bios page 2 and 3 for bios settings.
5666          */
5667         if (ioc->pdev->vendor ==  MPI2_MFGPAGE_VENDORID_ATTO)
5668                 ioc->bios_pg3.BiosVersion = 0;
5669         else {
5670                 rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5671                 if (rc)
5672                         return rc;
5673                 rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5674                 if (rc)
5675                         return rc;
5676         }
5677
5678         rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5679         if (rc)
5680                 return rc;
5681         rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5682         if (rc)
5683                 return rc;
5684         rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5685         if (rc)
5686                 return rc;
5687         rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
5688         if (rc)
5689                 return rc;
5690         _base_display_ioc_capabilities(ioc);
5691
5692         /*
5693          * Enable task_set_full handling in iounit_pg1 when the
5694          * facts capabilities indicate that its supported.
5695          */
5696         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5697         if ((ioc->facts.IOCCapabilities &
5698             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5699                 iounit_pg1_flags &=
5700                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5701         else
5702                 iounit_pg1_flags |=
5703                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5704         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5705         rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5706         if (rc)
5707                 return rc;
5708
5709         if (ioc->iounit_pg8.NumSensors)
5710                 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
5711         if (ioc->is_aero_ioc) {
5712                 rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5713                 if (rc)
5714                         return rc;
5715         }
5716         if (ioc->is_gen35_ioc) {
5717                 if (ioc->is_driver_loading) {
5718                         rc = _base_get_diag_triggers(ioc);
5719                         if (rc)
5720                                 return rc;
5721                 } else {
5722                         /*
5723                          * In case of online HBA FW update operation,
5724                          * check whether updated FW supports the driver trigger
5725                          * pages or not.
5726                          * - If previous FW has not supported driver trigger
5727                          *   pages and newer FW supports them then update these
5728                          *   pages with current diag trigger values.
5729                          * - If previous FW has supported driver trigger pages
5730                          *   and new FW doesn't support them then disable
5731                          *   support_trigger_pages flag.
5732                          */
5733                         _base_check_for_trigger_pages_support(ioc, &tg_flags);
5734                         if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5735                                 _base_update_diag_trigger_pages(ioc);
5736                         else if (ioc->supports_trigger_pages &&
5737                             tg_flags == -EFAULT)
5738                                 ioc->supports_trigger_pages = 0;
5739                 }
5740         }
5741         return 0;
5742 }
5743
5744 /**
5745  * mpt3sas_free_enclosure_list - release memory
5746  * @ioc: per adapter object
5747  *
5748  * Free memory allocated during enclosure add.
5749  */
5750 void
5751 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5752 {
5753         struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5754
5755         /* Free enclosure list */
5756         list_for_each_entry_safe(enclosure_dev,
5757                         enclosure_dev_next, &ioc->enclosure_list, list) {
5758                 list_del(&enclosure_dev->list);
5759                 kfree(enclosure_dev);
5760         }
5761 }
5762
5763 /**
5764  * _base_release_memory_pools - release memory
5765  * @ioc: per adapter object
5766  *
5767  * Free memory allocated from _base_allocate_memory_pools.
5768  */
5769 static void
5770 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5771 {
5772         int i = 0;
5773         int j = 0;
5774         int dma_alloc_count = 0;
5775         struct chain_tracker *ct;
5776         int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5777
5778         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5779
5780         if (ioc->request) {
5781                 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5782                     ioc->request,  ioc->request_dma);
5783                 dexitprintk(ioc,
5784                             ioc_info(ioc, "request_pool(0x%p): free\n",
5785                                      ioc->request));
5786                 ioc->request = NULL;
5787         }
5788
5789         if (ioc->sense) {
5790                 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5791                 dma_pool_destroy(ioc->sense_dma_pool);
5792                 dexitprintk(ioc,
5793                             ioc_info(ioc, "sense_pool(0x%p): free\n",
5794                                      ioc->sense));
5795                 ioc->sense = NULL;
5796         }
5797
5798         if (ioc->reply) {
5799                 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5800                 dma_pool_destroy(ioc->reply_dma_pool);
5801                 dexitprintk(ioc,
5802                             ioc_info(ioc, "reply_pool(0x%p): free\n",
5803                                      ioc->reply));
5804                 ioc->reply = NULL;
5805         }
5806
5807         if (ioc->reply_free) {
5808                 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5809                     ioc->reply_free_dma);
5810                 dma_pool_destroy(ioc->reply_free_dma_pool);
5811                 dexitprintk(ioc,
5812                             ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5813                                      ioc->reply_free));
5814                 ioc->reply_free = NULL;
5815         }
5816
5817         if (ioc->reply_post) {
5818                 dma_alloc_count = DIV_ROUND_UP(count,
5819                                 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5820                 for (i = 0; i < count; i++) {
5821                         if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5822                             && dma_alloc_count) {
5823                                 if (ioc->reply_post[i].reply_post_free) {
5824                                         dma_pool_free(
5825                                             ioc->reply_post_free_dma_pool,
5826                                             ioc->reply_post[i].reply_post_free,
5827                                         ioc->reply_post[i].reply_post_free_dma);
5828                                         dexitprintk(ioc, ioc_info(ioc,
5829                                            "reply_post_free_pool(0x%p): free\n",
5830                                            ioc->reply_post[i].reply_post_free));
5831                                         ioc->reply_post[i].reply_post_free =
5832                                                                         NULL;
5833                                 }
5834                                 --dma_alloc_count;
5835                         }
5836                 }
5837                 dma_pool_destroy(ioc->reply_post_free_dma_pool);
5838                 if (ioc->reply_post_free_array &&
5839                         ioc->rdpq_array_enable) {
5840                         dma_pool_free(ioc->reply_post_free_array_dma_pool,
5841                             ioc->reply_post_free_array,
5842                             ioc->reply_post_free_array_dma);
5843                         ioc->reply_post_free_array = NULL;
5844                 }
5845                 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5846                 kfree(ioc->reply_post);
5847         }
5848
5849         if (ioc->pcie_sgl_dma_pool) {
5850                 for (i = 0; i < ioc->scsiio_depth; i++) {
5851                         dma_pool_free(ioc->pcie_sgl_dma_pool,
5852                                         ioc->pcie_sg_lookup[i].pcie_sgl,
5853                                         ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5854                         ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
5855                 }
5856                 dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5857         }
5858         kfree(ioc->pcie_sg_lookup);
5859         ioc->pcie_sg_lookup = NULL;
5860
5861         if (ioc->config_page) {
5862                 dexitprintk(ioc,
5863                             ioc_info(ioc, "config_page(0x%p): free\n",
5864                                      ioc->config_page));
5865                 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5866                     ioc->config_page, ioc->config_page_dma);
5867         }
5868
5869         kfree(ioc->hpr_lookup);
5870         ioc->hpr_lookup = NULL;
5871         kfree(ioc->internal_lookup);
5872         ioc->internal_lookup = NULL;
5873         if (ioc->chain_lookup) {
5874                 for (i = 0; i < ioc->scsiio_depth; i++) {
5875                         for (j = ioc->chains_per_prp_buffer;
5876                             j < ioc->chains_needed_per_io; j++) {
5877                                 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5878                                 if (ct && ct->chain_buffer)
5879                                         dma_pool_free(ioc->chain_dma_pool,
5880                                                 ct->chain_buffer,
5881                                                 ct->chain_buffer_dma);
5882                         }
5883                         kfree(ioc->chain_lookup[i].chains_per_smid);
5884                 }
5885                 dma_pool_destroy(ioc->chain_dma_pool);
5886                 kfree(ioc->chain_lookup);
5887                 ioc->chain_lookup = NULL;
5888         }
5889
5890         kfree(ioc->io_queue_num);
5891         ioc->io_queue_num = NULL;
5892 }
5893
5894 /**
5895  * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5896  *      having same upper 32bits in their base memory address.
5897  * @start_address: Base address of a reply queue set
5898  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5899  *
5900  * Return: 1 if reply queues in a set have a same upper 32bits in their base
5901  * memory address, else 0.
5902  */
5903 static int
5904 mpt3sas_check_same_4gb_region(dma_addr_t start_address, u32 pool_sz)
5905 {
5906         dma_addr_t end_address;
5907
5908         end_address = start_address + pool_sz - 1;
5909
5910         if (upper_32_bits(start_address) == upper_32_bits(end_address))
5911                 return 1;
5912         else
5913                 return 0;
5914 }
5915
5916 /**
5917  * _base_reduce_hba_queue_depth- Retry with reduced queue depth
5918  * @ioc: Adapter object
5919  *
5920  * Return: 0 for success, non-zero for failure.
5921  **/
5922 static inline int
5923 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
5924 {
5925         int reduce_sz = 64;
5926
5927         if ((ioc->hba_queue_depth - reduce_sz) >
5928             (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5929                 ioc->hba_queue_depth -= reduce_sz;
5930                 return 0;
5931         } else
5932                 return -ENOMEM;
5933 }
5934
5935 /**
5936  * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5937  *                      for pcie sgl pools.
5938  * @ioc: Adapter object
5939  * @sz: DMA Pool size
5940  *
5941  * Return: 0 for success, non-zero for failure.
5942  */
5943
5944 static int
5945 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5946 {
5947         int i = 0, j = 0;
5948         struct chain_tracker *ct;
5949
5950         ioc->pcie_sgl_dma_pool =
5951             dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5952             ioc->page_size, 0);
5953         if (!ioc->pcie_sgl_dma_pool) {
5954                 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5955                 return -ENOMEM;
5956         }
5957
5958         ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5959         ioc->chains_per_prp_buffer =
5960             min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5961         for (i = 0; i < ioc->scsiio_depth; i++) {
5962                 ioc->pcie_sg_lookup[i].pcie_sgl =
5963                     dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5964                     &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5965                 if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5966                         ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5967                         return -EAGAIN;
5968                 }
5969
5970                 if (!mpt3sas_check_same_4gb_region(
5971                     ioc->pcie_sg_lookup[i].pcie_sgl_dma, sz)) {
5972                         ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5973                             ioc->pcie_sg_lookup[i].pcie_sgl,
5974                             (unsigned long long)
5975                             ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5976                         ioc->use_32bit_dma = true;
5977                         return -EAGAIN;
5978                 }
5979
5980                 for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5981                         ct = &ioc->chain_lookup[i].chains_per_smid[j];
5982                         ct->chain_buffer =
5983                             ioc->pcie_sg_lookup[i].pcie_sgl +
5984                             (j * ioc->chain_segment_sz);
5985                         ct->chain_buffer_dma =
5986                             ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5987                             (j * ioc->chain_segment_sz);
5988                 }
5989         }
5990         dinitprintk(ioc, ioc_info(ioc,
5991             "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5992             ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
5993         dinitprintk(ioc, ioc_info(ioc,
5994             "Number of chains can fit in a PRP page(%d)\n",
5995             ioc->chains_per_prp_buffer));
5996         return 0;
5997 }
5998
5999 /**
6000  * _base_allocate_chain_dma_pool - Allocating DMA'able memory
6001  *                      for chain dma pool.
6002  * @ioc: Adapter object
6003  * @sz: DMA Pool size
6004  *
6005  * Return: 0 for success, non-zero for failure.
6006  */
6007 static int
6008 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6009 {
6010         int i = 0, j = 0;
6011         struct chain_tracker *ctr;
6012
6013         ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
6014             ioc->chain_segment_sz, 16, 0);
6015         if (!ioc->chain_dma_pool)
6016                 return -ENOMEM;
6017
6018         for (i = 0; i < ioc->scsiio_depth; i++) {
6019                 for (j = ioc->chains_per_prp_buffer;
6020                     j < ioc->chains_needed_per_io; j++) {
6021                         ctr = &ioc->chain_lookup[i].chains_per_smid[j];
6022                         ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool,
6023                             GFP_KERNEL, &ctr->chain_buffer_dma);
6024                         if (!ctr->chain_buffer)
6025                                 return -EAGAIN;
6026                         if (!mpt3sas_check_same_4gb_region(
6027                             ctr->chain_buffer_dma, ioc->chain_segment_sz)) {
6028                                 ioc_err(ioc,
6029                                     "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n",
6030                                     ctr->chain_buffer,
6031                                     (unsigned long long)ctr->chain_buffer_dma);
6032                                 ioc->use_32bit_dma = true;
6033                                 return -EAGAIN;
6034                         }
6035                 }
6036         }
6037         dinitprintk(ioc, ioc_info(ioc,
6038             "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n",
6039             ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
6040             (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
6041             ioc->chain_segment_sz))/1024));
6042         return 0;
6043 }
6044
6045 /**
6046  * _base_allocate_sense_dma_pool - Allocating DMA'able memory
6047  *                      for sense dma pool.
6048  * @ioc: Adapter object
6049  * @sz: DMA Pool size
6050  * Return: 0 for success, non-zero for failure.
6051  */
6052 static int
6053 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6054 {
6055         ioc->sense_dma_pool =
6056             dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0);
6057         if (!ioc->sense_dma_pool)
6058                 return -ENOMEM;
6059         ioc->sense = dma_pool_alloc(ioc->sense_dma_pool,
6060             GFP_KERNEL, &ioc->sense_dma);
6061         if (!ioc->sense)
6062                 return -EAGAIN;
6063         if (!mpt3sas_check_same_4gb_region(ioc->sense_dma, sz)) {
6064                 dinitprintk(ioc, pr_err(
6065                     "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n",
6066                     ioc->sense, (unsigned long long) ioc->sense_dma));
6067                 ioc->use_32bit_dma = true;
6068                 return -EAGAIN;
6069         }
6070         ioc_info(ioc,
6071             "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
6072             ioc->sense, (unsigned long long)ioc->sense_dma,
6073             ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
6074         return 0;
6075 }
6076
6077 /**
6078  * _base_allocate_reply_pool - Allocating DMA'able memory
6079  *                      for reply pool.
6080  * @ioc: Adapter object
6081  * @sz: DMA Pool size
6082  * Return: 0 for success, non-zero for failure.
6083  */
6084 static int
6085 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6086 {
6087         /* reply pool, 4 byte align */
6088         ioc->reply_dma_pool = dma_pool_create("reply pool",
6089             &ioc->pdev->dev, sz, 4, 0);
6090         if (!ioc->reply_dma_pool)
6091                 return -ENOMEM;
6092         ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
6093             &ioc->reply_dma);
6094         if (!ioc->reply)
6095                 return -EAGAIN;
6096         if (!mpt3sas_check_same_4gb_region(ioc->reply_dma, sz)) {
6097                 dinitprintk(ioc, pr_err(
6098                     "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n",
6099                     ioc->reply, (unsigned long long) ioc->reply_dma));
6100                 ioc->use_32bit_dma = true;
6101                 return -EAGAIN;
6102         }
6103         ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
6104         ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
6105         ioc_info(ioc,
6106             "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n",
6107             ioc->reply, (unsigned long long)ioc->reply_dma,
6108             ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
6109         return 0;
6110 }
6111
6112 /**
6113  * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
6114  *                      for reply free dma pool.
6115  * @ioc: Adapter object
6116  * @sz: DMA Pool size
6117  * Return: 0 for success, non-zero for failure.
6118  */
6119 static int
6120 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6121 {
6122         /* reply free queue, 16 byte align */
6123         ioc->reply_free_dma_pool = dma_pool_create(
6124             "reply_free pool", &ioc->pdev->dev, sz, 16, 0);
6125         if (!ioc->reply_free_dma_pool)
6126                 return -ENOMEM;
6127         ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool,
6128             GFP_KERNEL, &ioc->reply_free_dma);
6129         if (!ioc->reply_free)
6130                 return -EAGAIN;
6131         if (!mpt3sas_check_same_4gb_region(ioc->reply_free_dma, sz)) {
6132                 dinitprintk(ioc,
6133                     pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6134                     ioc->reply_free, (unsigned long long) ioc->reply_free_dma));
6135                 ioc->use_32bit_dma = true;
6136                 return -EAGAIN;
6137         }
6138         memset(ioc->reply_free, 0, sz);
6139         dinitprintk(ioc, ioc_info(ioc,
6140             "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
6141             ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
6142         dinitprintk(ioc, ioc_info(ioc,
6143             "reply_free_dma (0x%llx)\n",
6144             (unsigned long long)ioc->reply_free_dma));
6145         return 0;
6146 }
6147
6148 /**
6149  * _base_allocate_reply_post_free_array - Allocating DMA'able memory
6150  *                      for reply post free array.
6151  * @ioc: Adapter object
6152  * @reply_post_free_array_sz: DMA Pool size
6153  * Return: 0 for success, non-zero for failure.
6154  */
6155
6156 static int
6157 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
6158         u32 reply_post_free_array_sz)
6159 {
6160         ioc->reply_post_free_array_dma_pool =
6161             dma_pool_create("reply_post_free_array pool",
6162             &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
6163         if (!ioc->reply_post_free_array_dma_pool)
6164                 return -ENOMEM;
6165         ioc->reply_post_free_array =
6166             dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
6167             GFP_KERNEL, &ioc->reply_post_free_array_dma);
6168         if (!ioc->reply_post_free_array)
6169                 return -EAGAIN;
6170         if (!mpt3sas_check_same_4gb_region(ioc->reply_post_free_array_dma,
6171             reply_post_free_array_sz)) {
6172                 dinitprintk(ioc, pr_err(
6173                     "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6174                     ioc->reply_free,
6175                     (unsigned long long) ioc->reply_free_dma));
6176                 ioc->use_32bit_dma = true;
6177                 return -EAGAIN;
6178         }
6179         return 0;
6180 }
6181 /**
6182  * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
6183  *                     for reply queues.
6184  * @ioc: per adapter object
6185  * @sz: DMA Pool size
6186  * Return: 0 for success, non-zero for failure.
6187  */
6188 static int
6189 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
6190 {
6191         int i = 0;
6192         u32 dma_alloc_count = 0;
6193         int reply_post_free_sz = ioc->reply_post_queue_depth *
6194                 sizeof(Mpi2DefaultReplyDescriptor_t);
6195         int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
6196
6197         ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
6198                         GFP_KERNEL);
6199         if (!ioc->reply_post)
6200                 return -ENOMEM;
6201         /*
6202          *  For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
6203          *  VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
6204          *  be within 4GB boundary i.e reply queues in a set must have same
6205          *  upper 32-bits in their memory address. so here driver is allocating
6206          *  the DMA'able memory for reply queues according.
6207          *  Driver uses limitation of
6208          *  VENTURA_SERIES to manage INVADER_SERIES as well.
6209          */
6210         dma_alloc_count = DIV_ROUND_UP(count,
6211                                 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
6212         ioc->reply_post_free_dma_pool =
6213                 dma_pool_create("reply_post_free pool",
6214                     &ioc->pdev->dev, sz, 16, 0);
6215         if (!ioc->reply_post_free_dma_pool)
6216                 return -ENOMEM;
6217         for (i = 0; i < count; i++) {
6218                 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
6219                         ioc->reply_post[i].reply_post_free =
6220                             dma_pool_zalloc(ioc->reply_post_free_dma_pool,
6221                                 GFP_KERNEL,
6222                                 &ioc->reply_post[i].reply_post_free_dma);
6223                         if (!ioc->reply_post[i].reply_post_free)
6224                                 return -ENOMEM;
6225                         /*
6226                          * Each set of RDPQ pool must satisfy 4gb boundary
6227                          * restriction.
6228                          * 1) Check if allocated resources for RDPQ pool are in
6229                          *      the same 4GB range.
6230                          * 2) If #1 is true, continue with 64 bit DMA.
6231                          * 3) If #1 is false, return 1. which means free all the
6232                          * resources and set DMA mask to 32 and allocate.
6233                          */
6234                         if (!mpt3sas_check_same_4gb_region(
6235                                 ioc->reply_post[i].reply_post_free_dma, sz)) {
6236                                 dinitprintk(ioc,
6237                                     ioc_err(ioc, "bad Replypost free pool(0x%p)"
6238                                     "reply_post_free_dma = (0x%llx)\n",
6239                                     ioc->reply_post[i].reply_post_free,
6240                                     (unsigned long long)
6241                                     ioc->reply_post[i].reply_post_free_dma));
6242                                 return -EAGAIN;
6243                         }
6244                         dma_alloc_count--;
6245
6246                 } else {
6247                         ioc->reply_post[i].reply_post_free =
6248                             (Mpi2ReplyDescriptorsUnion_t *)
6249                             ((long)ioc->reply_post[i-1].reply_post_free
6250                             + reply_post_free_sz);
6251                         ioc->reply_post[i].reply_post_free_dma =
6252                             (dma_addr_t)
6253                             (ioc->reply_post[i-1].reply_post_free_dma +
6254                             reply_post_free_sz);
6255                 }
6256         }
6257         return 0;
6258 }
6259
6260 /**
6261  * _base_allocate_memory_pools - allocate start of day memory pools
6262  * @ioc: per adapter object
6263  *
6264  * Return: 0 success, anything else error.
6265  */
6266 static int
6267 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
6268 {
6269         struct mpt3sas_facts *facts;
6270         u16 max_sge_elements;
6271         u16 chains_needed_per_io;
6272         u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
6273         u32 retry_sz;
6274         u32 rdpq_sz = 0, sense_sz = 0;
6275         u16 max_request_credit, nvme_blocks_needed;
6276         unsigned short sg_tablesize;
6277         u16 sge_size;
6278         int i;
6279         int ret = 0, rc = 0;
6280
6281         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6282
6283
6284         retry_sz = 0;
6285         facts = &ioc->facts;
6286
6287         /* command line tunables for max sgl entries */
6288         if (max_sgl_entries != -1)
6289                 sg_tablesize = max_sgl_entries;
6290         else {
6291                 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
6292                         sg_tablesize = MPT2SAS_SG_DEPTH;
6293                 else
6294                         sg_tablesize = MPT3SAS_SG_DEPTH;
6295         }
6296
6297         /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
6298         if (reset_devices)
6299                 sg_tablesize = min_t(unsigned short, sg_tablesize,
6300                    MPT_KDUMP_MIN_PHYS_SEGMENTS);
6301
6302         if (ioc->is_mcpu_endpoint)
6303                 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6304         else {
6305                 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
6306                         sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6307                 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
6308                         sg_tablesize = min_t(unsigned short, sg_tablesize,
6309                                         SG_MAX_SEGMENTS);
6310                         ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
6311                                  sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
6312                 }
6313                 ioc->shost->sg_tablesize = sg_tablesize;
6314         }
6315
6316         ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
6317                 (facts->RequestCredit / 4));
6318         if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
6319                 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
6320                                 INTERNAL_SCSIIO_CMDS_COUNT)) {
6321                         ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
6322                                 facts->RequestCredit);
6323                         return -ENOMEM;
6324                 }
6325                 ioc->internal_depth = 10;
6326         }
6327
6328         ioc->hi_priority_depth = ioc->internal_depth - (5);
6329         /* command line tunables  for max controller queue depth */
6330         if (max_queue_depth != -1 && max_queue_depth != 0) {
6331                 max_request_credit = min_t(u16, max_queue_depth +
6332                         ioc->internal_depth, facts->RequestCredit);
6333                 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
6334                         max_request_credit =  MAX_HBA_QUEUE_DEPTH;
6335         } else if (reset_devices)
6336                 max_request_credit = min_t(u16, facts->RequestCredit,
6337                     (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
6338         else
6339                 max_request_credit = min_t(u16, facts->RequestCredit,
6340                     MAX_HBA_QUEUE_DEPTH);
6341
6342         /* Firmware maintains additional facts->HighPriorityCredit number of
6343          * credits for HiPriprity Request messages, so hba queue depth will be
6344          * sum of max_request_credit and high priority queue depth.
6345          */
6346         ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
6347
6348         /* request frame size */
6349         ioc->request_sz = facts->IOCRequestFrameSize * 4;
6350
6351         /* reply frame size */
6352         ioc->reply_sz = facts->ReplyFrameSize * 4;
6353
6354         /* chain segment size */
6355         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6356                 if (facts->IOCMaxChainSegmentSize)
6357                         ioc->chain_segment_sz =
6358                                         facts->IOCMaxChainSegmentSize *
6359                                         MAX_CHAIN_ELEMT_SZ;
6360                 else
6361                 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
6362                         ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
6363                                                     MAX_CHAIN_ELEMT_SZ;
6364         } else
6365                 ioc->chain_segment_sz = ioc->request_sz;
6366
6367         /* calculate the max scatter element size */
6368         sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
6369
6370  retry_allocation:
6371         total_sz = 0;
6372         /* calculate number of sg elements left over in the 1st frame */
6373         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
6374             sizeof(Mpi2SGEIOUnion_t)) + sge_size);
6375         ioc->max_sges_in_main_message = max_sge_elements/sge_size;
6376
6377         /* now do the same for a chain buffer */
6378         max_sge_elements = ioc->chain_segment_sz - sge_size;
6379         ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
6380
6381         /*
6382          *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
6383          */
6384         chains_needed_per_io = ((ioc->shost->sg_tablesize -
6385            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
6386             + 1;
6387         if (chains_needed_per_io > facts->MaxChainDepth) {
6388                 chains_needed_per_io = facts->MaxChainDepth;
6389                 ioc->shost->sg_tablesize = min_t(u16,
6390                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
6391                 * chains_needed_per_io), ioc->shost->sg_tablesize);
6392         }
6393         ioc->chains_needed_per_io = chains_needed_per_io;
6394
6395         /* reply free queue sizing - taking into account for 64 FW events */
6396         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6397
6398         /* mCPU manage single counters for simplicity */
6399         if (ioc->is_mcpu_endpoint)
6400                 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
6401         else {
6402                 /* calculate reply descriptor post queue depth */
6403                 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
6404                         ioc->reply_free_queue_depth +  1;
6405                 /* align the reply post queue on the next 16 count boundary */
6406                 if (ioc->reply_post_queue_depth % 16)
6407                         ioc->reply_post_queue_depth += 16 -
6408                                 (ioc->reply_post_queue_depth % 16);
6409         }
6410
6411         if (ioc->reply_post_queue_depth >
6412             facts->MaxReplyDescriptorPostQueueDepth) {
6413                 ioc->reply_post_queue_depth =
6414                                 facts->MaxReplyDescriptorPostQueueDepth -
6415                     (facts->MaxReplyDescriptorPostQueueDepth % 16);
6416                 ioc->hba_queue_depth =
6417                                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
6418                 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6419         }
6420
6421         ioc_info(ioc,
6422             "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
6423             "sge_per_io(%d), chains_per_io(%d)\n",
6424             ioc->max_sges_in_main_message,
6425             ioc->max_sges_in_chain_message,
6426             ioc->shost->sg_tablesize,
6427             ioc->chains_needed_per_io);
6428
6429         /* reply post queue, 16 byte align */
6430         reply_post_free_sz = ioc->reply_post_queue_depth *
6431             sizeof(Mpi2DefaultReplyDescriptor_t);
6432         rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
6433         if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
6434             || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK))
6435                 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
6436         ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
6437         if (ret == -EAGAIN) {
6438                 /*
6439                  * Free allocated bad RDPQ memory pools.
6440                  * Change dma coherent mask to 32 bit and reallocate RDPQ
6441                  */
6442                 _base_release_memory_pools(ioc);
6443                 ioc->use_32bit_dma = true;
6444                 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6445                         ioc_err(ioc,
6446                             "32 DMA mask failed %s\n", pci_name(ioc->pdev));
6447                         return -ENODEV;
6448                 }
6449                 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
6450                         return -ENOMEM;
6451         } else if (ret == -ENOMEM)
6452                 return -ENOMEM;
6453         total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
6454             DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
6455         ioc->scsiio_depth = ioc->hba_queue_depth -
6456             ioc->hi_priority_depth - ioc->internal_depth;
6457
6458         /* set the scsi host can_queue depth
6459          * with some internal commands that could be outstanding
6460          */
6461         ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
6462         dinitprintk(ioc,
6463                     ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
6464                              ioc->shost->can_queue));
6465
6466         /* contiguous pool for request and chains, 16 byte align, one extra "
6467          * "frame for smid=0
6468          */
6469         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
6470         sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
6471
6472         /* hi-priority queue */
6473         sz += (ioc->hi_priority_depth * ioc->request_sz);
6474
6475         /* internal queue */
6476         sz += (ioc->internal_depth * ioc->request_sz);
6477
6478         ioc->request_dma_sz = sz;
6479         ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
6480                         &ioc->request_dma, GFP_KERNEL);
6481         if (!ioc->request) {
6482                 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
6483                         ioc->hba_queue_depth, ioc->chains_needed_per_io,
6484                         ioc->request_sz, sz / 1024);
6485                 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
6486                         goto out;
6487                 retry_sz = 64;
6488                 ioc->hba_queue_depth -= retry_sz;
6489                 _base_release_memory_pools(ioc);
6490                 goto retry_allocation;
6491         }
6492
6493         if (retry_sz)
6494                 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
6495                         ioc->hba_queue_depth, ioc->chains_needed_per_io,
6496                         ioc->request_sz, sz / 1024);
6497
6498         /* hi-priority queue */
6499         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
6500             ioc->request_sz);
6501         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
6502             ioc->request_sz);
6503
6504         /* internal queue */
6505         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
6506             ioc->request_sz);
6507         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
6508             ioc->request_sz);
6509
6510         ioc_info(ioc,
6511             "request pool(0x%p) - dma(0x%llx): "
6512             "depth(%d), frame_size(%d), pool_size(%d kB)\n",
6513             ioc->request, (unsigned long long) ioc->request_dma,
6514             ioc->hba_queue_depth, ioc->request_sz,
6515             (ioc->hba_queue_depth * ioc->request_sz) / 1024);
6516
6517         total_sz += sz;
6518
6519         dinitprintk(ioc,
6520                     ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
6521                              ioc->request, ioc->scsiio_depth));
6522
6523         ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
6524         sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
6525         ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
6526         if (!ioc->chain_lookup) {
6527                 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
6528                 goto out;
6529         }
6530
6531         sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
6532         for (i = 0; i < ioc->scsiio_depth; i++) {
6533                 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
6534                 if (!ioc->chain_lookup[i].chains_per_smid) {
6535                         ioc_err(ioc, "chain_lookup: kzalloc failed\n");
6536                         goto out;
6537                 }
6538         }
6539
6540         /* initialize hi-priority queue smid's */
6541         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
6542             sizeof(struct request_tracker), GFP_KERNEL);
6543         if (!ioc->hpr_lookup) {
6544                 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
6545                 goto out;
6546         }
6547         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
6548         dinitprintk(ioc,
6549                     ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
6550                              ioc->hi_priority,
6551                              ioc->hi_priority_depth, ioc->hi_priority_smid));
6552
6553         /* initialize internal queue smid's */
6554         ioc->internal_lookup = kcalloc(ioc->internal_depth,
6555             sizeof(struct request_tracker), GFP_KERNEL);
6556         if (!ioc->internal_lookup) {
6557                 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
6558                 goto out;
6559         }
6560         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
6561         dinitprintk(ioc,
6562                     ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
6563                              ioc->internal,
6564                              ioc->internal_depth, ioc->internal_smid));
6565
6566         ioc->io_queue_num = kcalloc(ioc->scsiio_depth,
6567             sizeof(u16), GFP_KERNEL);
6568         if (!ioc->io_queue_num)
6569                 goto out;
6570         /*
6571          * The number of NVMe page sized blocks needed is:
6572          *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
6573          * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
6574          * that is placed in the main message frame.  8 is the size of each PRP
6575          * entry or PRP list pointer entry.  8 is subtracted from page_size
6576          * because of the PRP list pointer entry at the end of a page, so this
6577          * is not counted as a PRP entry.  The 1 added page is a round up.
6578          *
6579          * To avoid allocation failures due to the amount of memory that could
6580          * be required for NVMe PRP's, only each set of NVMe blocks will be
6581          * contiguous, so a new set is allocated for each possible I/O.
6582          */
6583
6584         ioc->chains_per_prp_buffer = 0;
6585         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
6586                 nvme_blocks_needed =
6587                         (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
6588                 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
6589                 nvme_blocks_needed++;
6590
6591                 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
6592                 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
6593                 if (!ioc->pcie_sg_lookup) {
6594                         ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
6595                         goto out;
6596                 }
6597                 sz = nvme_blocks_needed * ioc->page_size;
6598                 rc = _base_allocate_pcie_sgl_pool(ioc, sz);
6599                 if (rc == -ENOMEM)
6600                         return -ENOMEM;
6601                 else if (rc == -EAGAIN)
6602                         goto try_32bit_dma;
6603                 total_sz += sz * ioc->scsiio_depth;
6604         }
6605
6606         rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz);
6607         if (rc == -ENOMEM)
6608                 return -ENOMEM;
6609         else if (rc == -EAGAIN)
6610                 goto try_32bit_dma;
6611         total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io -
6612                 ioc->chains_per_prp_buffer) * ioc->scsiio_depth);
6613         dinitprintk(ioc,
6614             ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
6615             ioc->chain_depth, ioc->chain_segment_sz,
6616             (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
6617         /* sense buffers, 4 byte align */
6618         sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
6619         rc = _base_allocate_sense_dma_pool(ioc, sense_sz);
6620         if (rc  == -ENOMEM)
6621                 return -ENOMEM;
6622         else if (rc == -EAGAIN)
6623                 goto try_32bit_dma;
6624         total_sz += sense_sz;
6625         /* reply pool, 4 byte align */
6626         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
6627         rc = _base_allocate_reply_pool(ioc, sz);
6628         if (rc == -ENOMEM)
6629                 return -ENOMEM;
6630         else if (rc == -EAGAIN)
6631                 goto try_32bit_dma;
6632         total_sz += sz;
6633
6634         /* reply free queue, 16 byte align */
6635         sz = ioc->reply_free_queue_depth * 4;
6636         rc = _base_allocate_reply_free_dma_pool(ioc, sz);
6637         if (rc  == -ENOMEM)
6638                 return -ENOMEM;
6639         else if (rc == -EAGAIN)
6640                 goto try_32bit_dma;
6641         dinitprintk(ioc,
6642                     ioc_info(ioc, "reply_free_dma (0x%llx)\n",
6643                              (unsigned long long)ioc->reply_free_dma));
6644         total_sz += sz;
6645         if (ioc->rdpq_array_enable) {
6646                 reply_post_free_array_sz = ioc->reply_queue_count *
6647                     sizeof(Mpi2IOCInitRDPQArrayEntry);
6648                 rc = _base_allocate_reply_post_free_array(ioc,
6649                     reply_post_free_array_sz);
6650                 if (rc == -ENOMEM)
6651                         return -ENOMEM;
6652                 else if (rc == -EAGAIN)
6653                         goto try_32bit_dma;
6654         }
6655         ioc->config_page_sz = 512;
6656         ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
6657                         ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
6658         if (!ioc->config_page) {
6659                 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
6660                 goto out;
6661         }
6662
6663         ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
6664             ioc->config_page, (unsigned long long)ioc->config_page_dma,
6665             ioc->config_page_sz);
6666         total_sz += ioc->config_page_sz;
6667
6668         ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6669                  total_sz / 1024);
6670         ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6671                  ioc->shost->can_queue, facts->RequestCredit);
6672         ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6673                  ioc->shost->sg_tablesize);
6674         return 0;
6675
6676 try_32bit_dma:
6677         _base_release_memory_pools(ioc);
6678         if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
6679                 /* Change dma coherent mask to 32 bit and reallocate */
6680                 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6681                         pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
6682                             pci_name(ioc->pdev));
6683                         return -ENODEV;
6684                 }
6685         } else if (_base_reduce_hba_queue_depth(ioc) != 0)
6686                 return -ENOMEM;
6687         goto retry_allocation;
6688
6689  out:
6690         return -ENOMEM;
6691 }
6692
6693 /**
6694  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6695  * @ioc: Pointer to MPT_ADAPTER structure
6696  * @cooked: Request raw or cooked IOC state
6697  *
6698  * Return: all IOC Doorbell register bits if cooked==0, else just the
6699  * Doorbell bits in MPI_IOC_STATE_MASK.
6700  */
6701 u32
6702 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6703 {
6704         u32 s, sc;
6705
6706         s = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6707         sc = s & MPI2_IOC_STATE_MASK;
6708         return cooked ? sc : s;
6709 }
6710
6711 /**
6712  * _base_wait_on_iocstate - waiting on a particular ioc state
6713  * @ioc: ?
6714  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6715  * @timeout: timeout in second
6716  *
6717  * Return: 0 for success, non-zero for failure.
6718  */
6719 static int
6720 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6721 {
6722         u32 count, cntdn;
6723         u32 current_state;
6724
6725         count = 0;
6726         cntdn = 1000 * timeout;
6727         do {
6728                 current_state = mpt3sas_base_get_iocstate(ioc, 1);
6729                 if (current_state == ioc_state)
6730                         return 0;
6731                 if (count && current_state == MPI2_IOC_STATE_FAULT)
6732                         break;
6733                 if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6734                         break;
6735
6736                 usleep_range(1000, 1500);
6737                 count++;
6738         } while (--cntdn);
6739
6740         return current_state;
6741 }
6742
6743 /**
6744  * _base_dump_reg_set - This function will print hexdump of register set.
6745  * @ioc: per adapter object
6746  *
6747  * Return: nothing.
6748  */
6749 static inline void
6750 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6751 {
6752         unsigned int i, sz = 256;
6753         u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6754
6755         ioc_info(ioc, "System Register set:\n");
6756         for (i = 0; i < (sz / sizeof(u32)); i++)
6757                 pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
6758 }
6759
6760 /**
6761  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6762  * a write to the doorbell)
6763  * @ioc: per adapter object
6764  * @timeout: timeout in seconds
6765  *
6766  * Return: 0 for success, non-zero for failure.
6767  *
6768  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6769  */
6770
6771 static int
6772 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6773 {
6774         u32 cntdn, count;
6775         u32 int_status;
6776
6777         count = 0;
6778         cntdn = 1000 * timeout;
6779         do {
6780                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6781                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6782                         dhsprintk(ioc,
6783                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6784                                            __func__, count, timeout));
6785                         return 0;
6786                 }
6787
6788                 usleep_range(1000, 1500);
6789                 count++;
6790         } while (--cntdn);
6791
6792         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6793                 __func__, count, int_status);
6794         return -EFAULT;
6795 }
6796
6797 static int
6798 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6799 {
6800         u32 cntdn, count;
6801         u32 int_status;
6802
6803         count = 0;
6804         cntdn = 2000 * timeout;
6805         do {
6806                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6807                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6808                         dhsprintk(ioc,
6809                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6810                                            __func__, count, timeout));
6811                         return 0;
6812                 }
6813
6814                 udelay(500);
6815                 count++;
6816         } while (--cntdn);
6817
6818         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6819                 __func__, count, int_status);
6820         return -EFAULT;
6821
6822 }
6823
6824 /**
6825  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6826  * @ioc: per adapter object
6827  * @timeout: timeout in second
6828  *
6829  * Return: 0 for success, non-zero for failure.
6830  *
6831  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6832  * doorbell.
6833  */
6834 static int
6835 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6836 {
6837         u32 cntdn, count;
6838         u32 int_status;
6839         u32 doorbell;
6840
6841         count = 0;
6842         cntdn = 1000 * timeout;
6843         do {
6844                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6845                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6846                         dhsprintk(ioc,
6847                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6848                                            __func__, count, timeout));
6849                         return 0;
6850                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6851                         doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6852                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
6853                             MPI2_IOC_STATE_FAULT) {
6854                                 mpt3sas_print_fault_code(ioc, doorbell);
6855                                 return -EFAULT;
6856                         }
6857                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
6858                             MPI2_IOC_STATE_COREDUMP) {
6859                                 mpt3sas_print_coredump_info(ioc, doorbell);
6860                                 return -EFAULT;
6861                         }
6862                 } else if (int_status == 0xFFFFFFFF)
6863                         goto out;
6864
6865                 usleep_range(1000, 1500);
6866                 count++;
6867         } while (--cntdn);
6868
6869  out:
6870         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6871                 __func__, count, int_status);
6872         return -EFAULT;
6873 }
6874
6875 /**
6876  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6877  * @ioc: per adapter object
6878  * @timeout: timeout in second
6879  *
6880  * Return: 0 for success, non-zero for failure.
6881  */
6882 static int
6883 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6884 {
6885         u32 cntdn, count;
6886         u32 doorbell_reg;
6887
6888         count = 0;
6889         cntdn = 1000 * timeout;
6890         do {
6891                 doorbell_reg = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6892                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6893                         dhsprintk(ioc,
6894                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6895                                            __func__, count, timeout));
6896                         return 0;
6897                 }
6898
6899                 usleep_range(1000, 1500);
6900                 count++;
6901         } while (--cntdn);
6902
6903         ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6904                 __func__, count, doorbell_reg);
6905         return -EFAULT;
6906 }
6907
6908 /**
6909  * _base_send_ioc_reset - send doorbell reset
6910  * @ioc: per adapter object
6911  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6912  * @timeout: timeout in second
6913  *
6914  * Return: 0 for success, non-zero for failure.
6915  */
6916 static int
6917 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6918 {
6919         u32 ioc_state;
6920         int r = 0;
6921         unsigned long flags;
6922
6923         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6924                 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6925                 return -EFAULT;
6926         }
6927
6928         if (!(ioc->facts.IOCCapabilities &
6929            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6930                 return -EFAULT;
6931
6932         ioc_info(ioc, "sending message unit reset !!\n");
6933
6934         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6935             &ioc->chip->Doorbell);
6936         if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6937                 r = -EFAULT;
6938                 goto out;
6939         }
6940
6941         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6942         if (ioc_state) {
6943                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6944                         __func__, ioc_state);
6945                 r = -EFAULT;
6946                 goto out;
6947         }
6948  out:
6949         if (r != 0) {
6950                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6951                 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6952                 /*
6953                  * Wait for IOC state CoreDump to clear only during
6954                  * HBA initialization & release time.
6955                  */
6956                 if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6957                     MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6958                     ioc->fault_reset_work_q == NULL)) {
6959                         spin_unlock_irqrestore(
6960                             &ioc->ioc_reset_in_progress_lock, flags);
6961                         mpt3sas_print_coredump_info(ioc, ioc_state);
6962                         mpt3sas_base_wait_for_coredump_completion(ioc,
6963                             __func__);
6964                         spin_lock_irqsave(
6965                             &ioc->ioc_reset_in_progress_lock, flags);
6966                 }
6967                 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6968         }
6969         ioc_info(ioc, "message unit reset: %s\n",
6970                  r == 0 ? "SUCCESS" : "FAILED");
6971         return r;
6972 }
6973
6974 /**
6975  * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6976  * @ioc: per adapter object
6977  * @timeout: timeout in seconds
6978  *
6979  * Return: Waits up to timeout seconds for the IOC to
6980  * become operational. Returns 0 if IOC is present
6981  * and operational; otherwise returns %-EFAULT.
6982  */
6983
6984 int
6985 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
6986 {
6987         int wait_state_count = 0;
6988         u32 ioc_state;
6989
6990         do {
6991                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
6992                 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
6993                         break;
6994
6995                 /*
6996                  * Watchdog thread will be started after IOC Initialization, so
6997                  * no need to wait here for IOC state to become operational
6998                  * when IOC Initialization is on. Instead the driver will
6999                  * return ETIME status, so that calling function can issue
7000                  * diag reset operation and retry the command.
7001                  */
7002                 if (ioc->is_driver_loading)
7003                         return -ETIME;
7004
7005                 ssleep(1);
7006                 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
7007                                 __func__, ++wait_state_count);
7008         } while (--timeout);
7009         if (!timeout) {
7010                 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
7011                 return -EFAULT;
7012         }
7013         if (wait_state_count)
7014                 ioc_info(ioc, "ioc is operational\n");
7015         return 0;
7016 }
7017
7018 /**
7019  * _base_handshake_req_reply_wait - send request thru doorbell interface
7020  * @ioc: per adapter object
7021  * @request_bytes: request length
7022  * @request: pointer having request payload
7023  * @reply_bytes: reply length
7024  * @reply: pointer to reply payload
7025  * @timeout: timeout in second
7026  *
7027  * Return: 0 for success, non-zero for failure.
7028  */
7029 static int
7030 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
7031         u32 *request, int reply_bytes, u16 *reply, int timeout)
7032 {
7033         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
7034         int i;
7035         u8 failed;
7036         __le32 *mfp;
7037
7038         /* make sure doorbell is not in use */
7039         if ((ioc->base_readl_ext_retry(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
7040                 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
7041                 return -EFAULT;
7042         }
7043
7044         /* clear pending doorbell interrupts from previous state changes */
7045         if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
7046             MPI2_HIS_IOC2SYS_DB_STATUS)
7047                 writel(0, &ioc->chip->HostInterruptStatus);
7048
7049         /* send message to ioc */
7050         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
7051             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
7052             &ioc->chip->Doorbell);
7053
7054         if ((_base_spin_on_doorbell_int(ioc, 5))) {
7055                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7056                         __LINE__);
7057                 return -EFAULT;
7058         }
7059         writel(0, &ioc->chip->HostInterruptStatus);
7060
7061         if ((_base_wait_for_doorbell_ack(ioc, 5))) {
7062                 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
7063                         __LINE__);
7064                 return -EFAULT;
7065         }
7066
7067         /* send message 32-bits at a time */
7068         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
7069                 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
7070                 if ((_base_wait_for_doorbell_ack(ioc, 5)))
7071                         failed = 1;
7072         }
7073
7074         if (failed) {
7075                 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
7076                         __LINE__);
7077                 return -EFAULT;
7078         }
7079
7080         /* now wait for the reply */
7081         if ((_base_wait_for_doorbell_int(ioc, timeout))) {
7082                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7083                         __LINE__);
7084                 return -EFAULT;
7085         }
7086
7087         /* read the first two 16-bits, it gives the total length of the reply */
7088         reply[0] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
7089             & MPI2_DOORBELL_DATA_MASK);
7090         writel(0, &ioc->chip->HostInterruptStatus);
7091         if ((_base_wait_for_doorbell_int(ioc, 5))) {
7092                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7093                         __LINE__);
7094                 return -EFAULT;
7095         }
7096         reply[1] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
7097             & MPI2_DOORBELL_DATA_MASK);
7098         writel(0, &ioc->chip->HostInterruptStatus);
7099
7100         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
7101                 if ((_base_wait_for_doorbell_int(ioc, 5))) {
7102                         ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7103                                 __LINE__);
7104                         return -EFAULT;
7105                 }
7106                 if (i >=  reply_bytes/2) /* overflow case */
7107                         ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
7108                 else
7109                         reply[i] = le16_to_cpu(
7110                             ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
7111                             & MPI2_DOORBELL_DATA_MASK);
7112                 writel(0, &ioc->chip->HostInterruptStatus);
7113         }
7114
7115         _base_wait_for_doorbell_int(ioc, 5);
7116         if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
7117                 dhsprintk(ioc,
7118                           ioc_info(ioc, "doorbell is in use (line=%d)\n",
7119                                    __LINE__));
7120         }
7121         writel(0, &ioc->chip->HostInterruptStatus);
7122
7123         if (ioc->logging_level & MPT_DEBUG_INIT) {
7124                 mfp = (__le32 *)reply;
7125                 pr_info("\toffset:data\n");
7126                 for (i = 0; i < reply_bytes/4; i++)
7127                         ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7128                             le32_to_cpu(mfp[i]));
7129         }
7130         return 0;
7131 }
7132
7133 /**
7134  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
7135  * @ioc: per adapter object
7136  * @mpi_reply: the reply payload from FW
7137  * @mpi_request: the request payload sent to FW
7138  *
7139  * The SAS IO Unit Control Request message allows the host to perform low-level
7140  * operations, such as resets on the PHYs of the IO Unit, also allows the host
7141  * to obtain the IOC assigned device handles for a device if it has other
7142  * identifying information about the device, in addition allows the host to
7143  * remove IOC resources associated with the device.
7144  *
7145  * Return: 0 for success, non-zero for failure.
7146  */
7147 int
7148 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
7149         Mpi2SasIoUnitControlReply_t *mpi_reply,
7150         Mpi2SasIoUnitControlRequest_t *mpi_request)
7151 {
7152         u16 smid;
7153         u8 issue_reset = 0;
7154         int rc;
7155         void *request;
7156
7157         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7158
7159         mutex_lock(&ioc->base_cmds.mutex);
7160
7161         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7162                 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7163                 rc = -EAGAIN;
7164                 goto out;
7165         }
7166
7167         rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7168         if (rc)
7169                 goto out;
7170
7171         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7172         if (!smid) {
7173                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7174                 rc = -EAGAIN;
7175                 goto out;
7176         }
7177
7178         rc = 0;
7179         ioc->base_cmds.status = MPT3_CMD_PENDING;
7180         request = mpt3sas_base_get_msg_frame(ioc, smid);
7181         ioc->base_cmds.smid = smid;
7182         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
7183         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7184             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
7185                 ioc->ioc_link_reset_in_progress = 1;
7186         init_completion(&ioc->base_cmds.done);
7187         ioc->put_smid_default(ioc, smid);
7188         wait_for_completion_timeout(&ioc->base_cmds.done,
7189             msecs_to_jiffies(10000));
7190         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7191             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
7192             ioc->ioc_link_reset_in_progress)
7193                 ioc->ioc_link_reset_in_progress = 0;
7194         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7195                 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
7196                     mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
7197                     issue_reset);
7198                 goto issue_host_reset;
7199         }
7200         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7201                 memcpy(mpi_reply, ioc->base_cmds.reply,
7202                     sizeof(Mpi2SasIoUnitControlReply_t));
7203         else
7204                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
7205         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7206         goto out;
7207
7208  issue_host_reset:
7209         if (issue_reset)
7210                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7211         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7212         rc = -EFAULT;
7213  out:
7214         mutex_unlock(&ioc->base_cmds.mutex);
7215         return rc;
7216 }
7217
7218 /**
7219  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
7220  * @ioc: per adapter object
7221  * @mpi_reply: the reply payload from FW
7222  * @mpi_request: the request payload sent to FW
7223  *
7224  * The SCSI Enclosure Processor request message causes the IOC to
7225  * communicate with SES devices to control LED status signals.
7226  *
7227  * Return: 0 for success, non-zero for failure.
7228  */
7229 int
7230 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
7231         Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
7232 {
7233         u16 smid;
7234         u8 issue_reset = 0;
7235         int rc;
7236         void *request;
7237
7238         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7239
7240         mutex_lock(&ioc->base_cmds.mutex);
7241
7242         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7243                 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7244                 rc = -EAGAIN;
7245                 goto out;
7246         }
7247
7248         rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7249         if (rc)
7250                 goto out;
7251
7252         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7253         if (!smid) {
7254                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7255                 rc = -EAGAIN;
7256                 goto out;
7257         }
7258
7259         rc = 0;
7260         ioc->base_cmds.status = MPT3_CMD_PENDING;
7261         request = mpt3sas_base_get_msg_frame(ioc, smid);
7262         ioc->base_cmds.smid = smid;
7263         memset(request, 0, ioc->request_sz);
7264         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
7265         init_completion(&ioc->base_cmds.done);
7266         ioc->put_smid_default(ioc, smid);
7267         wait_for_completion_timeout(&ioc->base_cmds.done,
7268             msecs_to_jiffies(10000));
7269         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7270                 mpt3sas_check_cmd_timeout(ioc,
7271                     ioc->base_cmds.status, mpi_request,
7272                     sizeof(Mpi2SepRequest_t)/4, issue_reset);
7273                 goto issue_host_reset;
7274         }
7275         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7276                 memcpy(mpi_reply, ioc->base_cmds.reply,
7277                     sizeof(Mpi2SepReply_t));
7278         else
7279                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
7280         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7281         goto out;
7282
7283  issue_host_reset:
7284         if (issue_reset)
7285                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7286         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7287         rc = -EFAULT;
7288  out:
7289         mutex_unlock(&ioc->base_cmds.mutex);
7290         return rc;
7291 }
7292
7293 /**
7294  * _base_get_port_facts - obtain port facts reply and save in ioc
7295  * @ioc: per adapter object
7296  * @port: ?
7297  *
7298  * Return: 0 for success, non-zero for failure.
7299  */
7300 static int
7301 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
7302 {
7303         Mpi2PortFactsRequest_t mpi_request;
7304         Mpi2PortFactsReply_t mpi_reply;
7305         struct mpt3sas_port_facts *pfacts;
7306         int mpi_reply_sz, mpi_request_sz, r;
7307
7308         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7309
7310         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
7311         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
7312         memset(&mpi_request, 0, mpi_request_sz);
7313         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
7314         mpi_request.PortNumber = port;
7315         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7316             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7317
7318         if (r != 0) {
7319                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7320                 return r;
7321         }
7322
7323         pfacts = &ioc->pfacts[port];
7324         memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
7325         pfacts->PortNumber = mpi_reply.PortNumber;
7326         pfacts->VP_ID = mpi_reply.VP_ID;
7327         pfacts->VF_ID = mpi_reply.VF_ID;
7328         pfacts->MaxPostedCmdBuffers =
7329             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
7330
7331         return 0;
7332 }
7333
7334 /**
7335  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
7336  * @ioc: per adapter object
7337  * @timeout:
7338  *
7339  * Return: 0 for success, non-zero for failure.
7340  */
7341 static int
7342 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
7343 {
7344         u32 ioc_state;
7345         int rc;
7346
7347         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7348
7349         if (ioc->pci_error_recovery) {
7350                 dfailprintk(ioc,
7351                             ioc_info(ioc, "%s: host in pci error recovery\n",
7352                                      __func__));
7353                 return -EFAULT;
7354         }
7355
7356         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7357         dhsprintk(ioc,
7358                   ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7359                            __func__, ioc_state));
7360
7361         if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
7362             (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7363                 return 0;
7364
7365         if (ioc_state & MPI2_DOORBELL_USED) {
7366                 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
7367                 goto issue_diag_reset;
7368         }
7369
7370         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7371                 mpt3sas_print_fault_code(ioc, ioc_state &
7372                     MPI2_DOORBELL_DATA_MASK);
7373                 goto issue_diag_reset;
7374         } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
7375             MPI2_IOC_STATE_COREDUMP) {
7376                 ioc_info(ioc,
7377                     "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
7378                     __func__, ioc_state);
7379                 return -EFAULT;
7380         }
7381
7382         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
7383         if (ioc_state) {
7384                 dfailprintk(ioc,
7385                             ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7386                                      __func__, ioc_state));
7387                 return -EFAULT;
7388         }
7389
7390  issue_diag_reset:
7391         rc = _base_diag_reset(ioc);
7392         return rc;
7393 }
7394
7395 /**
7396  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
7397  * @ioc: per adapter object
7398  *
7399  * Return: 0 for success, non-zero for failure.
7400  */
7401 static int
7402 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
7403 {
7404         Mpi2IOCFactsRequest_t mpi_request;
7405         Mpi2IOCFactsReply_t mpi_reply;
7406         struct mpt3sas_facts *facts;
7407         int mpi_reply_sz, mpi_request_sz, r;
7408
7409         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7410
7411         r = _base_wait_for_iocstate(ioc, 10);
7412         if (r) {
7413                 dfailprintk(ioc,
7414                             ioc_info(ioc, "%s: failed getting to correct state\n",
7415                                      __func__));
7416                 return r;
7417         }
7418         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
7419         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
7420         memset(&mpi_request, 0, mpi_request_sz);
7421         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
7422         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7423             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7424
7425         if (r != 0) {
7426                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7427                 return r;
7428         }
7429
7430         facts = &ioc->facts;
7431         memset(facts, 0, sizeof(struct mpt3sas_facts));
7432         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
7433         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
7434         facts->VP_ID = mpi_reply.VP_ID;
7435         facts->VF_ID = mpi_reply.VF_ID;
7436         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
7437         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
7438         facts->WhoInit = mpi_reply.WhoInit;
7439         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
7440         facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
7441         if (ioc->msix_enable && (facts->MaxMSIxVectors <=
7442             MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
7443                 ioc->combined_reply_queue = 0;
7444         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
7445         facts->MaxReplyDescriptorPostQueueDepth =
7446             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
7447         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
7448         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
7449         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
7450                 ioc->ir_firmware = 1;
7451         if ((facts->IOCCapabilities &
7452               MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
7453                 ioc->rdpq_array_capable = 1;
7454         if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
7455             && ioc->is_aero_ioc)
7456                 ioc->atomic_desc_capable = 1;
7457         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
7458         facts->IOCRequestFrameSize =
7459             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
7460         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7461                 facts->IOCMaxChainSegmentSize =
7462                         le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
7463         }
7464         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
7465         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
7466         ioc->shost->max_id = -1;
7467         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
7468         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
7469         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
7470         facts->HighPriorityCredit =
7471             le16_to_cpu(mpi_reply.HighPriorityCredit);
7472         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
7473         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
7474         facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
7475
7476         /*
7477          * Get the Page Size from IOC Facts. If it's 0, default to 4k.
7478          */
7479         ioc->page_size = 1 << facts->CurrentHostPageSize;
7480         if (ioc->page_size == 1) {
7481                 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
7482                 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
7483         }
7484         dinitprintk(ioc,
7485                     ioc_info(ioc, "CurrentHostPageSize(%d)\n",
7486                              facts->CurrentHostPageSize));
7487
7488         dinitprintk(ioc,
7489                     ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
7490                              facts->RequestCredit, facts->MaxChainDepth));
7491         dinitprintk(ioc,
7492                     ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
7493                              facts->IOCRequestFrameSize * 4,
7494                              facts->ReplyFrameSize * 4));
7495         return 0;
7496 }
7497
7498 /**
7499  * _base_send_ioc_init - send ioc_init to firmware
7500  * @ioc: per adapter object
7501  *
7502  * Return: 0 for success, non-zero for failure.
7503  */
7504 static int
7505 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
7506 {
7507         Mpi2IOCInitRequest_t mpi_request;
7508         Mpi2IOCInitReply_t mpi_reply;
7509         int i, r = 0;
7510         ktime_t current_time;
7511         u16 ioc_status;
7512         u32 reply_post_free_array_sz = 0;
7513
7514         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7515
7516         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
7517         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
7518         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
7519         mpi_request.VF_ID = 0; /* TODO */
7520         mpi_request.VP_ID = 0;
7521         mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
7522         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
7523         mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
7524
7525         if (_base_is_controller_msix_enabled(ioc))
7526                 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
7527         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
7528         mpi_request.ReplyDescriptorPostQueueDepth =
7529             cpu_to_le16(ioc->reply_post_queue_depth);
7530         mpi_request.ReplyFreeQueueDepth =
7531             cpu_to_le16(ioc->reply_free_queue_depth);
7532
7533         mpi_request.SenseBufferAddressHigh =
7534             cpu_to_le32((u64)ioc->sense_dma >> 32);
7535         mpi_request.SystemReplyAddressHigh =
7536             cpu_to_le32((u64)ioc->reply_dma >> 32);
7537         mpi_request.SystemRequestFrameBaseAddress =
7538             cpu_to_le64((u64)ioc->request_dma);
7539         mpi_request.ReplyFreeQueueAddress =
7540             cpu_to_le64((u64)ioc->reply_free_dma);
7541
7542         if (ioc->rdpq_array_enable) {
7543                 reply_post_free_array_sz = ioc->reply_queue_count *
7544                     sizeof(Mpi2IOCInitRDPQArrayEntry);
7545                 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
7546                 for (i = 0; i < ioc->reply_queue_count; i++)
7547                         ioc->reply_post_free_array[i].RDPQBaseAddress =
7548                             cpu_to_le64(
7549                                 (u64)ioc->reply_post[i].reply_post_free_dma);
7550                 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
7551                 mpi_request.ReplyDescriptorPostQueueAddress =
7552                     cpu_to_le64((u64)ioc->reply_post_free_array_dma);
7553         } else {
7554                 mpi_request.ReplyDescriptorPostQueueAddress =
7555                     cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
7556         }
7557
7558         /*
7559          * Set the flag to enable CoreDump state feature in IOC firmware.
7560          */
7561         mpi_request.ConfigurationFlags |=
7562             cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
7563
7564         /* This time stamp specifies number of milliseconds
7565          * since epoch ~ midnight January 1, 1970.
7566          */
7567         current_time = ktime_get_real();
7568         mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
7569
7570         if (ioc->logging_level & MPT_DEBUG_INIT) {
7571                 __le32 *mfp;
7572                 int i;
7573
7574                 mfp = (__le32 *)&mpi_request;
7575                 ioc_info(ioc, "\toffset:data\n");
7576                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
7577                         ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7578                             le32_to_cpu(mfp[i]));
7579         }
7580
7581         r = _base_handshake_req_reply_wait(ioc,
7582             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
7583             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
7584
7585         if (r != 0) {
7586                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7587                 return r;
7588         }
7589
7590         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
7591         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
7592             mpi_reply.IOCLogInfo) {
7593                 ioc_err(ioc, "%s: failed\n", __func__);
7594                 r = -EIO;
7595         }
7596
7597         /* Reset TimeSync Counter*/
7598         ioc->timestamp_update_count = 0;
7599         return r;
7600 }
7601
7602 /**
7603  * mpt3sas_port_enable_done - command completion routine for port enable
7604  * @ioc: per adapter object
7605  * @smid: system request message index
7606  * @msix_index: MSIX table index supplied by the OS
7607  * @reply: reply message frame(lower 32bit addr)
7608  *
7609  * Return: 1 meaning mf should be freed from _base_interrupt
7610  *          0 means the mf is freed from this function.
7611  */
7612 u8
7613 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
7614         u32 reply)
7615 {
7616         MPI2DefaultReply_t *mpi_reply;
7617         u16 ioc_status;
7618
7619         if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
7620                 return 1;
7621
7622         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
7623         if (!mpi_reply)
7624                 return 1;
7625
7626         if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
7627                 return 1;
7628
7629         ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
7630         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
7631         ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
7632         memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
7633         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7634         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
7635                 ioc->port_enable_failed = 1;
7636
7637         if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) {
7638                 ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC;
7639                 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
7640                         mpt3sas_port_enable_complete(ioc);
7641                         return 1;
7642                 } else {
7643                         ioc->start_scan_failed = ioc_status;
7644                         ioc->start_scan = 0;
7645                         return 1;
7646                 }
7647         }
7648         complete(&ioc->port_enable_cmds.done);
7649         return 1;
7650 }
7651
7652 /**
7653  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
7654  * @ioc: per adapter object
7655  *
7656  * Return: 0 for success, non-zero for failure.
7657  */
7658 static int
7659 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
7660 {
7661         Mpi2PortEnableRequest_t *mpi_request;
7662         Mpi2PortEnableReply_t *mpi_reply;
7663         int r = 0;
7664         u16 smid;
7665         u16 ioc_status;
7666
7667         ioc_info(ioc, "sending port enable !!\n");
7668
7669         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7670                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7671                 return -EAGAIN;
7672         }
7673
7674         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7675         if (!smid) {
7676                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7677                 return -EAGAIN;
7678         }
7679
7680         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7681         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7682         ioc->port_enable_cmds.smid = smid;
7683         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7684         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7685
7686         init_completion(&ioc->port_enable_cmds.done);
7687         ioc->put_smid_default(ioc, smid);
7688         wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
7689         if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
7690                 ioc_err(ioc, "%s: timeout\n", __func__);
7691                 _debug_dump_mf(mpi_request,
7692                     sizeof(Mpi2PortEnableRequest_t)/4);
7693                 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7694                         r = -EFAULT;
7695                 else
7696                         r = -ETIME;
7697                 goto out;
7698         }
7699
7700         mpi_reply = ioc->port_enable_cmds.reply;
7701         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7702         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7703                 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7704                         __func__, ioc_status);
7705                 r = -EFAULT;
7706                 goto out;
7707         }
7708
7709  out:
7710         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7711         ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7712         return r;
7713 }
7714
7715 /**
7716  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7717  * @ioc: per adapter object
7718  *
7719  * Return: 0 for success, non-zero for failure.
7720  */
7721 int
7722 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7723 {
7724         Mpi2PortEnableRequest_t *mpi_request;
7725         u16 smid;
7726
7727         ioc_info(ioc, "sending port enable !!\n");
7728
7729         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7730                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7731                 return -EAGAIN;
7732         }
7733
7734         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7735         if (!smid) {
7736                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7737                 return -EAGAIN;
7738         }
7739         ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED;
7740         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7741         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC;
7742         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7743         ioc->port_enable_cmds.smid = smid;
7744         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7745         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7746
7747         ioc->put_smid_default(ioc, smid);
7748         return 0;
7749 }
7750
7751 /**
7752  * _base_determine_wait_on_discovery - desposition
7753  * @ioc: per adapter object
7754  *
7755  * Decide whether to wait on discovery to complete. Used to either
7756  * locate boot device, or report volumes ahead of physical devices.
7757  *
7758  * Return: 1 for wait, 0 for don't wait.
7759  */
7760 static int
7761 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7762 {
7763         /* We wait for discovery to complete if IR firmware is loaded.
7764          * The sas topology events arrive before PD events, so we need time to
7765          * turn on the bit in ioc->pd_handles to indicate PD
7766          * Also, it maybe required to report Volumes ahead of physical
7767          * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7768          */
7769         if (ioc->ir_firmware)
7770                 return 1;
7771
7772         /* if no Bios, then we don't need to wait */
7773         if (!ioc->bios_pg3.BiosVersion)
7774                 return 0;
7775
7776         /* Bios is present, then we drop down here.
7777          *
7778          * If there any entries in the Bios Page 2, then we wait
7779          * for discovery to complete.
7780          */
7781
7782         /* Current Boot Device */
7783         if ((ioc->bios_pg2.CurrentBootDeviceForm &
7784             MPI2_BIOSPAGE2_FORM_MASK) ==
7785             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7786         /* Request Boot Device */
7787            (ioc->bios_pg2.ReqBootDeviceForm &
7788             MPI2_BIOSPAGE2_FORM_MASK) ==
7789             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7790         /* Alternate Request Boot Device */
7791            (ioc->bios_pg2.ReqAltBootDeviceForm &
7792             MPI2_BIOSPAGE2_FORM_MASK) ==
7793             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7794                 return 0;
7795
7796         return 1;
7797 }
7798
7799 /**
7800  * _base_unmask_events - turn on notification for this event
7801  * @ioc: per adapter object
7802  * @event: firmware event
7803  *
7804  * The mask is stored in ioc->event_masks.
7805  */
7806 static void
7807 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7808 {
7809         u32 desired_event;
7810
7811         if (event >= 128)
7812                 return;
7813
7814         desired_event = (1 << (event % 32));
7815
7816         if (event < 32)
7817                 ioc->event_masks[0] &= ~desired_event;
7818         else if (event < 64)
7819                 ioc->event_masks[1] &= ~desired_event;
7820         else if (event < 96)
7821                 ioc->event_masks[2] &= ~desired_event;
7822         else if (event < 128)
7823                 ioc->event_masks[3] &= ~desired_event;
7824 }
7825
7826 /**
7827  * _base_event_notification - send event notification
7828  * @ioc: per adapter object
7829  *
7830  * Return: 0 for success, non-zero for failure.
7831  */
7832 static int
7833 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7834 {
7835         Mpi2EventNotificationRequest_t *mpi_request;
7836         u16 smid;
7837         int r = 0;
7838         int i, issue_diag_reset = 0;
7839
7840         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7841
7842         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7843                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7844                 return -EAGAIN;
7845         }
7846
7847         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7848         if (!smid) {
7849                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7850                 return -EAGAIN;
7851         }
7852         ioc->base_cmds.status = MPT3_CMD_PENDING;
7853         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7854         ioc->base_cmds.smid = smid;
7855         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7856         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7857         mpi_request->VF_ID = 0; /* TODO */
7858         mpi_request->VP_ID = 0;
7859         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7860                 mpi_request->EventMasks[i] =
7861                     cpu_to_le32(ioc->event_masks[i]);
7862         init_completion(&ioc->base_cmds.done);
7863         ioc->put_smid_default(ioc, smid);
7864         wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7865         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7866                 ioc_err(ioc, "%s: timeout\n", __func__);
7867                 _debug_dump_mf(mpi_request,
7868                     sizeof(Mpi2EventNotificationRequest_t)/4);
7869                 if (ioc->base_cmds.status & MPT3_CMD_RESET)
7870                         r = -EFAULT;
7871                 else
7872                         issue_diag_reset = 1;
7873
7874         } else
7875                 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7876         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7877
7878         if (issue_diag_reset) {
7879                 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
7880                         return -EFAULT;
7881                 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
7882                         return -EFAULT;
7883                 r = -EAGAIN;
7884         }
7885         return r;
7886 }
7887
7888 /**
7889  * mpt3sas_base_validate_event_type - validating event types
7890  * @ioc: per adapter object
7891  * @event_type: firmware event
7892  *
7893  * This will turn on firmware event notification when application
7894  * ask for that event. We don't mask events that are already enabled.
7895  */
7896 void
7897 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7898 {
7899         int i, j;
7900         u32 event_mask, desired_event;
7901         u8 send_update_to_fw;
7902
7903         for (i = 0, send_update_to_fw = 0; i <
7904             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7905                 event_mask = ~event_type[i];
7906                 desired_event = 1;
7907                 for (j = 0; j < 32; j++) {
7908                         if (!(event_mask & desired_event) &&
7909                             (ioc->event_masks[i] & desired_event)) {
7910                                 ioc->event_masks[i] &= ~desired_event;
7911                                 send_update_to_fw = 1;
7912                         }
7913                         desired_event = (desired_event << 1);
7914                 }
7915         }
7916
7917         if (!send_update_to_fw)
7918                 return;
7919
7920         mutex_lock(&ioc->base_cmds.mutex);
7921         _base_event_notification(ioc);
7922         mutex_unlock(&ioc->base_cmds.mutex);
7923 }
7924
7925 /**
7926  * _base_diag_reset - the "big hammer" start of day reset
7927  * @ioc: per adapter object
7928  *
7929  * Return: 0 for success, non-zero for failure.
7930  */
7931 static int
7932 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
7933 {
7934         u32 host_diagnostic;
7935         u32 ioc_state;
7936         u32 count;
7937         u32 hcb_size;
7938
7939         ioc_info(ioc, "sending diag reset !!\n");
7940
7941         pci_cfg_access_lock(ioc->pdev);
7942
7943         drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
7944
7945         count = 0;
7946         do {
7947                 /* Write magic sequence to WriteSequence register
7948                  * Loop until in diagnostic mode
7949                  */
7950                 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7951                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7952                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7953                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7954                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7955                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7956                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7957                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7958
7959                 /* wait 100 msec */
7960                 msleep(100);
7961
7962                 if (count++ > 20) {
7963                         ioc_info(ioc,
7964                             "Stop writing magic sequence after 20 retries\n");
7965                         _base_dump_reg_set(ioc);
7966                         goto out;
7967                 }
7968
7969                 host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic);
7970                 drsprintk(ioc,
7971                           ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7972                                    count, host_diagnostic));
7973
7974         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7975
7976         hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
7977
7978         drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
7979         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
7980              &ioc->chip->HostDiagnostic);
7981
7982         /*This delay allows the chip PCIe hardware time to finish reset tasks*/
7983         msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
7984
7985         /* Approximately 300 second max wait */
7986         for (count = 0; count < (300000000 /
7987                 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
7988
7989                 host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic);
7990
7991                 if (host_diagnostic == 0xFFFFFFFF) {
7992                         ioc_info(ioc,
7993                             "Invalid host diagnostic register value\n");
7994                         _base_dump_reg_set(ioc);
7995                         goto out;
7996                 }
7997                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
7998                         break;
7999
8000                 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
8001         }
8002
8003         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
8004
8005                 drsprintk(ioc,
8006                           ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
8007                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
8008                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
8009                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
8010
8011                 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
8012                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
8013                     &ioc->chip->HCBSize);
8014         }
8015
8016         drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
8017         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
8018             &ioc->chip->HostDiagnostic);
8019
8020         drsprintk(ioc,
8021                   ioc_info(ioc, "disable writes to the diagnostic register\n"));
8022         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
8023
8024         drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
8025         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
8026         if (ioc_state) {
8027                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
8028                         __func__, ioc_state);
8029                 _base_dump_reg_set(ioc);
8030                 goto out;
8031         }
8032
8033         pci_cfg_access_unlock(ioc->pdev);
8034         ioc_info(ioc, "diag reset: SUCCESS\n");
8035         return 0;
8036
8037  out:
8038         pci_cfg_access_unlock(ioc->pdev);
8039         ioc_err(ioc, "diag reset: FAILED\n");
8040         return -EFAULT;
8041 }
8042
8043 /**
8044  * mpt3sas_base_make_ioc_ready - put controller in READY state
8045  * @ioc: per adapter object
8046  * @type: FORCE_BIG_HAMMER or SOFT_RESET
8047  *
8048  * Return: 0 for success, non-zero for failure.
8049  */
8050 int
8051 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
8052 {
8053         u32 ioc_state;
8054         int rc;
8055         int count;
8056
8057         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8058
8059         if (ioc->pci_error_recovery)
8060                 return 0;
8061
8062         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8063         dhsprintk(ioc,
8064                   ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
8065                            __func__, ioc_state));
8066
8067         /* if in RESET state, it should move to READY state shortly */
8068         count = 0;
8069         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
8070                 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
8071                     MPI2_IOC_STATE_READY) {
8072                         if (count++ == 10) {
8073                                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
8074                                         __func__, ioc_state);
8075                                 return -EFAULT;
8076                         }
8077                         ssleep(1);
8078                         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8079                 }
8080         }
8081
8082         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
8083                 return 0;
8084
8085         if (ioc_state & MPI2_DOORBELL_USED) {
8086                 ioc_info(ioc, "unexpected doorbell active!\n");
8087                 goto issue_diag_reset;
8088         }
8089
8090         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
8091                 mpt3sas_print_fault_code(ioc, ioc_state &
8092                     MPI2_DOORBELL_DATA_MASK);
8093                 goto issue_diag_reset;
8094         }
8095
8096         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
8097                 /*
8098                  * if host reset is invoked while watch dog thread is waiting
8099                  * for IOC state to be changed to Fault state then driver has
8100                  * to wait here for CoreDump state to clear otherwise reset
8101                  * will be issued to the FW and FW move the IOC state to
8102                  * reset state without copying the FW logs to coredump region.
8103                  */
8104                 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
8105                         mpt3sas_print_coredump_info(ioc, ioc_state &
8106                             MPI2_DOORBELL_DATA_MASK);
8107                         mpt3sas_base_wait_for_coredump_completion(ioc,
8108                             __func__);
8109                 }
8110                 goto issue_diag_reset;
8111         }
8112
8113         if (type == FORCE_BIG_HAMMER)
8114                 goto issue_diag_reset;
8115
8116         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
8117                 if (!(_base_send_ioc_reset(ioc,
8118                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
8119                         return 0;
8120         }
8121
8122  issue_diag_reset:
8123         rc = _base_diag_reset(ioc);
8124         return rc;
8125 }
8126
8127 /**
8128  * _base_make_ioc_operational - put controller in OPERATIONAL state
8129  * @ioc: per adapter object
8130  *
8131  * Return: 0 for success, non-zero for failure.
8132  */
8133 static int
8134 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
8135 {
8136         int r, i, index, rc;
8137         unsigned long   flags;
8138         u32 reply_address;
8139         u16 smid;
8140         struct _tr_list *delayed_tr, *delayed_tr_next;
8141         struct _sc_list *delayed_sc, *delayed_sc_next;
8142         struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
8143         u8 hide_flag;
8144         struct adapter_reply_queue *reply_q;
8145         Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
8146
8147         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8148
8149         /* clean the delayed target reset list */
8150         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
8151             &ioc->delayed_tr_list, list) {
8152                 list_del(&delayed_tr->list);
8153                 kfree(delayed_tr);
8154         }
8155
8156
8157         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
8158             &ioc->delayed_tr_volume_list, list) {
8159                 list_del(&delayed_tr->list);
8160                 kfree(delayed_tr);
8161         }
8162
8163         list_for_each_entry_safe(delayed_sc, delayed_sc_next,
8164             &ioc->delayed_sc_list, list) {
8165                 list_del(&delayed_sc->list);
8166                 kfree(delayed_sc);
8167         }
8168
8169         list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
8170             &ioc->delayed_event_ack_list, list) {
8171                 list_del(&delayed_event_ack->list);
8172                 kfree(delayed_event_ack);
8173         }
8174
8175         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
8176
8177         /* hi-priority queue */
8178         INIT_LIST_HEAD(&ioc->hpr_free_list);
8179         smid = ioc->hi_priority_smid;
8180         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
8181                 ioc->hpr_lookup[i].cb_idx = 0xFF;
8182                 ioc->hpr_lookup[i].smid = smid;
8183                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
8184                     &ioc->hpr_free_list);
8185         }
8186
8187         /* internal queue */
8188         INIT_LIST_HEAD(&ioc->internal_free_list);
8189         smid = ioc->internal_smid;
8190         for (i = 0; i < ioc->internal_depth; i++, smid++) {
8191                 ioc->internal_lookup[i].cb_idx = 0xFF;
8192                 ioc->internal_lookup[i].smid = smid;
8193                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
8194                     &ioc->internal_free_list);
8195         }
8196
8197         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
8198
8199         /* initialize Reply Free Queue */
8200         for (i = 0, reply_address = (u32)ioc->reply_dma ;
8201             i < ioc->reply_free_queue_depth ; i++, reply_address +=
8202             ioc->reply_sz) {
8203                 ioc->reply_free[i] = cpu_to_le32(reply_address);
8204                 if (ioc->is_mcpu_endpoint)
8205                         _base_clone_reply_to_sys_mem(ioc,
8206                                         reply_address, i);
8207         }
8208
8209         /* initialize reply queues */
8210         if (ioc->is_driver_loading)
8211                 _base_assign_reply_queues(ioc);
8212
8213         /* initialize Reply Post Free Queue */
8214         index = 0;
8215         reply_post_free_contig = ioc->reply_post[0].reply_post_free;
8216         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8217                 /*
8218                  * If RDPQ is enabled, switch to the next allocation.
8219                  * Otherwise advance within the contiguous region.
8220                  */
8221                 if (ioc->rdpq_array_enable) {
8222                         reply_q->reply_post_free =
8223                                 ioc->reply_post[index++].reply_post_free;
8224                 } else {
8225                         reply_q->reply_post_free = reply_post_free_contig;
8226                         reply_post_free_contig += ioc->reply_post_queue_depth;
8227                 }
8228
8229                 reply_q->reply_post_host_index = 0;
8230                 for (i = 0; i < ioc->reply_post_queue_depth; i++)
8231                         reply_q->reply_post_free[i].Words =
8232                             cpu_to_le64(ULLONG_MAX);
8233                 if (!_base_is_controller_msix_enabled(ioc))
8234                         goto skip_init_reply_post_free_queue;
8235         }
8236  skip_init_reply_post_free_queue:
8237
8238         r = _base_send_ioc_init(ioc);
8239         if (r) {
8240                 /*
8241                  * No need to check IOC state for fault state & issue
8242                  * diag reset during host reset. This check is need
8243                  * only during driver load time.
8244                  */
8245                 if (!ioc->is_driver_loading)
8246                         return r;
8247
8248                 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8249                 if (rc || (_base_send_ioc_init(ioc)))
8250                         return r;
8251         }
8252
8253         /* initialize reply free host index */
8254         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
8255         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
8256
8257         /* initialize reply post host index */
8258         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8259                 if (ioc->combined_reply_queue)
8260                         writel((reply_q->msix_index & 7)<<
8261                            MPI2_RPHI_MSIX_INDEX_SHIFT,
8262                            ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
8263                 else
8264                         writel(reply_q->msix_index <<
8265                                 MPI2_RPHI_MSIX_INDEX_SHIFT,
8266                                 &ioc->chip->ReplyPostHostIndex);
8267
8268                 if (!_base_is_controller_msix_enabled(ioc))
8269                         goto skip_init_reply_post_host_index;
8270         }
8271
8272  skip_init_reply_post_host_index:
8273
8274         mpt3sas_base_unmask_interrupts(ioc);
8275
8276         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
8277                 r = _base_display_fwpkg_version(ioc);
8278                 if (r)
8279                         return r;
8280         }
8281
8282         r = _base_static_config_pages(ioc);
8283         if (r)
8284                 return r;
8285
8286         r = _base_event_notification(ioc);
8287         if (r)
8288                 return r;
8289
8290         if (!ioc->shost_recovery) {
8291
8292                 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
8293                     == 0x80) {
8294                         hide_flag = (u8) (
8295                             le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
8296                             MFG_PAGE10_HIDE_SSDS_MASK);
8297                         if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
8298                                 ioc->mfg_pg10_hide_flag = hide_flag;
8299                 }
8300
8301                 ioc->wait_for_discovery_to_complete =
8302                     _base_determine_wait_on_discovery(ioc);
8303
8304                 return r; /* scan_start and scan_finished support */
8305         }
8306
8307         r = _base_send_port_enable(ioc);
8308         if (r)
8309                 return r;
8310
8311         return r;
8312 }
8313
8314 /**
8315  * mpt3sas_base_free_resources - free resources controller resources
8316  * @ioc: per adapter object
8317  */
8318 void
8319 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
8320 {
8321         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8322
8323         /* synchronizing freeing resource with pci_access_mutex lock */
8324         mutex_lock(&ioc->pci_access_mutex);
8325         if (ioc->chip_phys && ioc->chip) {
8326                 mpt3sas_base_mask_interrupts(ioc);
8327                 ioc->shost_recovery = 1;
8328                 mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8329                 ioc->shost_recovery = 0;
8330         }
8331
8332         mpt3sas_base_unmap_resources(ioc);
8333         mutex_unlock(&ioc->pci_access_mutex);
8334         return;
8335 }
8336
8337 /**
8338  * mpt3sas_base_attach - attach controller instance
8339  * @ioc: per adapter object
8340  *
8341  * Return: 0 for success, non-zero for failure.
8342  */
8343 int
8344 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
8345 {
8346         int r, i, rc;
8347         int cpu_id, last_cpu_id = 0;
8348
8349         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8350
8351         /* setup cpu_msix_table */
8352         ioc->cpu_count = num_online_cpus();
8353         for_each_online_cpu(cpu_id)
8354                 last_cpu_id = cpu_id;
8355         ioc->cpu_msix_table_sz = last_cpu_id + 1;
8356         ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
8357         ioc->reply_queue_count = 1;
8358         if (!ioc->cpu_msix_table) {
8359                 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
8360                 r = -ENOMEM;
8361                 goto out_free_resources;
8362         }
8363
8364         if (ioc->is_warpdrive) {
8365                 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
8366                     sizeof(resource_size_t *), GFP_KERNEL);
8367                 if (!ioc->reply_post_host_index) {
8368                         ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
8369                         r = -ENOMEM;
8370                         goto out_free_resources;
8371                 }
8372         }
8373
8374         ioc->smp_affinity_enable = smp_affinity_enable;
8375
8376         ioc->rdpq_array_enable_assigned = 0;
8377         ioc->use_32bit_dma = false;
8378         ioc->dma_mask = 64;
8379         if (ioc->is_aero_ioc) {
8380                 ioc->base_readl = &_base_readl_aero;
8381                 ioc->base_readl_ext_retry = &_base_readl_ext_retry;
8382         } else {
8383                 ioc->base_readl = &_base_readl;
8384                 ioc->base_readl_ext_retry = &_base_readl;
8385         }
8386         r = mpt3sas_base_map_resources(ioc);
8387         if (r)
8388                 goto out_free_resources;
8389
8390         pci_set_drvdata(ioc->pdev, ioc->shost);
8391         r = _base_get_ioc_facts(ioc);
8392         if (r) {
8393                 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8394                 if (rc || (_base_get_ioc_facts(ioc)))
8395                         goto out_free_resources;
8396         }
8397
8398         switch (ioc->hba_mpi_version_belonged) {
8399         case MPI2_VERSION:
8400                 ioc->build_sg_scmd = &_base_build_sg_scmd;
8401                 ioc->build_sg = &_base_build_sg;
8402                 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
8403                 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8404                 break;
8405         case MPI25_VERSION:
8406         case MPI26_VERSION:
8407                 /*
8408                  * In SAS3.0,
8409                  * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
8410                  * Target Status - all require the IEEE formatted scatter gather
8411                  * elements.
8412                  */
8413                 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
8414                 ioc->build_sg = &_base_build_sg_ieee;
8415                 ioc->build_nvme_prp = &_base_build_nvme_prp;
8416                 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
8417                 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
8418                 if (ioc->high_iops_queues)
8419                         ioc->get_msix_index_for_smlio =
8420                                         &_base_get_high_iops_msix_index;
8421                 else
8422                         ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8423                 break;
8424         }
8425         if (ioc->atomic_desc_capable) {
8426                 ioc->put_smid_default = &_base_put_smid_default_atomic;
8427                 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
8428                 ioc->put_smid_fast_path =
8429                                 &_base_put_smid_fast_path_atomic;
8430                 ioc->put_smid_hi_priority =
8431                                 &_base_put_smid_hi_priority_atomic;
8432         } else {
8433                 ioc->put_smid_default = &_base_put_smid_default;
8434                 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
8435                 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
8436                 if (ioc->is_mcpu_endpoint)
8437                         ioc->put_smid_scsi_io =
8438                                 &_base_put_smid_mpi_ep_scsi_io;
8439                 else
8440                         ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
8441         }
8442         /*
8443          * These function pointers for other requests that don't
8444          * the require IEEE scatter gather elements.
8445          *
8446          * For example Configuration Pages and SAS IOUNIT Control don't.
8447          */
8448         ioc->build_sg_mpi = &_base_build_sg;
8449         ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
8450
8451         r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8452         if (r)
8453                 goto out_free_resources;
8454
8455         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
8456             sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
8457         if (!ioc->pfacts) {
8458                 r = -ENOMEM;
8459                 goto out_free_resources;
8460         }
8461
8462         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
8463                 r = _base_get_port_facts(ioc, i);
8464                 if (r) {
8465                         rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8466                         if (rc || (_base_get_port_facts(ioc, i)))
8467                                 goto out_free_resources;
8468                 }
8469         }
8470
8471         r = _base_allocate_memory_pools(ioc);
8472         if (r)
8473                 goto out_free_resources;
8474
8475         if (irqpoll_weight > 0)
8476                 ioc->thresh_hold = irqpoll_weight;
8477         else
8478                 ioc->thresh_hold = ioc->hba_queue_depth/4;
8479
8480         _base_init_irqpolls(ioc);
8481         init_waitqueue_head(&ioc->reset_wq);
8482
8483         /* allocate memory pd handle bitmask list */
8484         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8485         if (ioc->facts.MaxDevHandle % 8)
8486                 ioc->pd_handles_sz++;
8487         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
8488             GFP_KERNEL);
8489         if (!ioc->pd_handles) {
8490                 r = -ENOMEM;
8491                 goto out_free_resources;
8492         }
8493         ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
8494             GFP_KERNEL);
8495         if (!ioc->blocking_handles) {
8496                 r = -ENOMEM;
8497                 goto out_free_resources;
8498         }
8499
8500         /* allocate memory for pending OS device add list */
8501         ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
8502         if (ioc->facts.MaxDevHandle % 8)
8503                 ioc->pend_os_device_add_sz++;
8504         ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
8505             GFP_KERNEL);
8506         if (!ioc->pend_os_device_add) {
8507                 r = -ENOMEM;
8508                 goto out_free_resources;
8509         }
8510
8511         ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
8512         ioc->device_remove_in_progress =
8513                 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
8514         if (!ioc->device_remove_in_progress) {
8515                 r = -ENOMEM;
8516                 goto out_free_resources;
8517         }
8518
8519         ioc->fwfault_debug = mpt3sas_fwfault_debug;
8520
8521         /* base internal command bits */
8522         mutex_init(&ioc->base_cmds.mutex);
8523         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8524         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
8525
8526         /* port_enable command bits */
8527         ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8528         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
8529
8530         /* transport internal command bits */
8531         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8532         ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
8533         mutex_init(&ioc->transport_cmds.mutex);
8534
8535         /* scsih internal command bits */
8536         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8537         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
8538         mutex_init(&ioc->scsih_cmds.mutex);
8539
8540         /* task management internal command bits */
8541         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8542         ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
8543         mutex_init(&ioc->tm_cmds.mutex);
8544
8545         /* config page internal command bits */
8546         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8547         ioc->config_cmds.status = MPT3_CMD_NOT_USED;
8548         mutex_init(&ioc->config_cmds.mutex);
8549
8550         /* ctl module internal command bits */
8551         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8552         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
8553         ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
8554         mutex_init(&ioc->ctl_cmds.mutex);
8555
8556         if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
8557             !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
8558             !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
8559             !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
8560                 r = -ENOMEM;
8561                 goto out_free_resources;
8562         }
8563
8564         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
8565                 ioc->event_masks[i] = -1;
8566
8567         /* here we enable the events we care about */
8568         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
8569         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
8570         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
8571         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
8572         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
8573         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
8574         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
8575         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
8576         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
8577         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
8578         _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
8579         _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
8580         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
8581         if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
8582                 if (ioc->is_gen35_ioc) {
8583                         _base_unmask_events(ioc,
8584                                 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
8585                         _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
8586                         _base_unmask_events(ioc,
8587                                 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
8588                 }
8589         }
8590         r = _base_make_ioc_operational(ioc);
8591         if (r == -EAGAIN) {
8592                 r = _base_make_ioc_operational(ioc);
8593                 if (r)
8594                         goto out_free_resources;
8595         }
8596
8597         /*
8598          * Copy current copy of IOCFacts in prev_fw_facts
8599          * and it will be used during online firmware upgrade.
8600          */
8601         memcpy(&ioc->prev_fw_facts, &ioc->facts,
8602             sizeof(struct mpt3sas_facts));
8603
8604         ioc->non_operational_loop = 0;
8605         ioc->ioc_coredump_loop = 0;
8606         ioc->got_task_abort_from_ioctl = 0;
8607         return 0;
8608
8609  out_free_resources:
8610
8611         ioc->remove_host = 1;
8612
8613         mpt3sas_base_free_resources(ioc);
8614         _base_release_memory_pools(ioc);
8615         pci_set_drvdata(ioc->pdev, NULL);
8616         kfree(ioc->cpu_msix_table);
8617         if (ioc->is_warpdrive)
8618                 kfree(ioc->reply_post_host_index);
8619         kfree(ioc->pd_handles);
8620         kfree(ioc->blocking_handles);
8621         kfree(ioc->device_remove_in_progress);
8622         kfree(ioc->pend_os_device_add);
8623         kfree(ioc->tm_cmds.reply);
8624         kfree(ioc->transport_cmds.reply);
8625         kfree(ioc->scsih_cmds.reply);
8626         kfree(ioc->config_cmds.reply);
8627         kfree(ioc->base_cmds.reply);
8628         kfree(ioc->port_enable_cmds.reply);
8629         kfree(ioc->ctl_cmds.reply);
8630         kfree(ioc->ctl_cmds.sense);
8631         kfree(ioc->pfacts);
8632         ioc->ctl_cmds.reply = NULL;
8633         ioc->base_cmds.reply = NULL;
8634         ioc->tm_cmds.reply = NULL;
8635         ioc->scsih_cmds.reply = NULL;
8636         ioc->transport_cmds.reply = NULL;
8637         ioc->config_cmds.reply = NULL;
8638         ioc->pfacts = NULL;
8639         return r;
8640 }
8641
8642
8643 /**
8644  * mpt3sas_base_detach - remove controller instance
8645  * @ioc: per adapter object
8646  */
8647 void
8648 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
8649 {
8650         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8651
8652         mpt3sas_base_stop_watchdog(ioc);
8653         mpt3sas_base_free_resources(ioc);
8654         _base_release_memory_pools(ioc);
8655         mpt3sas_free_enclosure_list(ioc);
8656         pci_set_drvdata(ioc->pdev, NULL);
8657         kfree(ioc->cpu_msix_table);
8658         if (ioc->is_warpdrive)
8659                 kfree(ioc->reply_post_host_index);
8660         kfree(ioc->pd_handles);
8661         kfree(ioc->blocking_handles);
8662         kfree(ioc->device_remove_in_progress);
8663         kfree(ioc->pend_os_device_add);
8664         kfree(ioc->pfacts);
8665         kfree(ioc->ctl_cmds.reply);
8666         kfree(ioc->ctl_cmds.sense);
8667         kfree(ioc->base_cmds.reply);
8668         kfree(ioc->port_enable_cmds.reply);
8669         kfree(ioc->tm_cmds.reply);
8670         kfree(ioc->transport_cmds.reply);
8671         kfree(ioc->scsih_cmds.reply);
8672         kfree(ioc->config_cmds.reply);
8673 }
8674
8675 /**
8676  * _base_pre_reset_handler - pre reset handler
8677  * @ioc: per adapter object
8678  */
8679 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
8680 {
8681         mpt3sas_scsih_pre_reset_handler(ioc);
8682         mpt3sas_ctl_pre_reset_handler(ioc);
8683         dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
8684 }
8685
8686 /**
8687  * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
8688  * @ioc: per adapter object
8689  */
8690 static void
8691 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
8692 {
8693         dtmprintk(ioc,
8694             ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
8695         if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
8696                 ioc->transport_cmds.status |= MPT3_CMD_RESET;
8697                 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
8698                 complete(&ioc->transport_cmds.done);
8699         }
8700         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
8701                 ioc->base_cmds.status |= MPT3_CMD_RESET;
8702                 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
8703                 complete(&ioc->base_cmds.done);
8704         }
8705         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
8706                 ioc->port_enable_failed = 1;
8707                 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
8708                 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
8709                 if (ioc->is_driver_loading) {
8710                         ioc->start_scan_failed =
8711                                 MPI2_IOCSTATUS_INTERNAL_ERROR;
8712                         ioc->start_scan = 0;
8713                 } else {
8714                         complete(&ioc->port_enable_cmds.done);
8715                 }
8716         }
8717         if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
8718                 ioc->config_cmds.status |= MPT3_CMD_RESET;
8719                 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8720                 ioc->config_cmds.smid = USHRT_MAX;
8721                 complete(&ioc->config_cmds.done);
8722         }
8723 }
8724
8725 /**
8726  * _base_clear_outstanding_commands - clear all outstanding commands
8727  * @ioc: per adapter object
8728  */
8729 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8730 {
8731         mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8732         mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8733         _base_clear_outstanding_mpt_commands(ioc);
8734 }
8735
8736 /**
8737  * _base_reset_done_handler - reset done handler
8738  * @ioc: per adapter object
8739  */
8740 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8741 {
8742         mpt3sas_scsih_reset_done_handler(ioc);
8743         mpt3sas_ctl_reset_done_handler(ioc);
8744         dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8745 }
8746
8747 /**
8748  * mpt3sas_wait_for_commands_to_complete - reset controller
8749  * @ioc: Pointer to MPT_ADAPTER structure
8750  *
8751  * This function is waiting 10s for all pending commands to complete
8752  * prior to putting controller in reset.
8753  */
8754 void
8755 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8756 {
8757         u32 ioc_state;
8758
8759         ioc->pending_io_count = 0;
8760
8761         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8762         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8763                 return;
8764
8765         /* pending command count */
8766         ioc->pending_io_count = scsi_host_busy(ioc->shost);
8767
8768         if (!ioc->pending_io_count)
8769                 return;
8770
8771         /* wait for pending commands to complete */
8772         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8773 }
8774
8775 /**
8776  * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8777  *     attributes during online firmware upgrade and update the corresponding
8778  *     IOC variables accordingly.
8779  *
8780  * @ioc: Pointer to MPT_ADAPTER structure
8781  */
8782 static int
8783 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8784 {
8785         u16 pd_handles_sz;
8786         void *pd_handles = NULL, *blocking_handles = NULL;
8787         void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8788         struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8789
8790         if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8791                 pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8792                 if (ioc->facts.MaxDevHandle % 8)
8793                         pd_handles_sz++;
8794
8795                 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8796                     GFP_KERNEL);
8797                 if (!pd_handles) {
8798                         ioc_info(ioc,
8799                             "Unable to allocate the memory for pd_handles of sz: %d\n",
8800                             pd_handles_sz);
8801                         return -ENOMEM;
8802                 }
8803                 memset(pd_handles + ioc->pd_handles_sz, 0,
8804                     (pd_handles_sz - ioc->pd_handles_sz));
8805                 ioc->pd_handles = pd_handles;
8806
8807                 blocking_handles = krealloc(ioc->blocking_handles,
8808                     pd_handles_sz, GFP_KERNEL);
8809                 if (!blocking_handles) {
8810                         ioc_info(ioc,
8811                             "Unable to allocate the memory for "
8812                             "blocking_handles of sz: %d\n",
8813                             pd_handles_sz);
8814                         return -ENOMEM;
8815                 }
8816                 memset(blocking_handles + ioc->pd_handles_sz, 0,
8817                     (pd_handles_sz - ioc->pd_handles_sz));
8818                 ioc->blocking_handles = blocking_handles;
8819                 ioc->pd_handles_sz = pd_handles_sz;
8820
8821                 pend_os_device_add = krealloc(ioc->pend_os_device_add,
8822                     pd_handles_sz, GFP_KERNEL);
8823                 if (!pend_os_device_add) {
8824                         ioc_info(ioc,
8825                             "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8826                             pd_handles_sz);
8827                         return -ENOMEM;
8828                 }
8829                 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8830                     (pd_handles_sz - ioc->pend_os_device_add_sz));
8831                 ioc->pend_os_device_add = pend_os_device_add;
8832                 ioc->pend_os_device_add_sz = pd_handles_sz;
8833
8834                 device_remove_in_progress = krealloc(
8835                     ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8836                 if (!device_remove_in_progress) {
8837                         ioc_info(ioc,
8838                             "Unable to allocate the memory for "
8839                             "device_remove_in_progress of sz: %d\n "
8840                             , pd_handles_sz);
8841                         return -ENOMEM;
8842                 }
8843                 memset(device_remove_in_progress +
8844                     ioc->device_remove_in_progress_sz, 0,
8845                     (pd_handles_sz - ioc->device_remove_in_progress_sz));
8846                 ioc->device_remove_in_progress = device_remove_in_progress;
8847                 ioc->device_remove_in_progress_sz = pd_handles_sz;
8848         }
8849
8850         memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8851         return 0;
8852 }
8853
8854 /**
8855  * mpt3sas_base_hard_reset_handler - reset controller
8856  * @ioc: Pointer to MPT_ADAPTER structure
8857  * @type: FORCE_BIG_HAMMER or SOFT_RESET
8858  *
8859  * Return: 0 for success, non-zero for failure.
8860  */
8861 int
8862 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8863         enum reset_type type)
8864 {
8865         int r;
8866         unsigned long flags;
8867         u32 ioc_state;
8868         u8 is_fault = 0, is_trigger = 0;
8869
8870         dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8871
8872         if (ioc->pci_error_recovery) {
8873                 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8874                 r = 0;
8875                 goto out_unlocked;
8876         }
8877
8878         if (mpt3sas_fwfault_debug)
8879                 mpt3sas_halt_firmware(ioc);
8880
8881         /* wait for an active reset in progress to complete */
8882         mutex_lock(&ioc->reset_in_progress_mutex);
8883
8884         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8885         ioc->shost_recovery = 1;
8886         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8887
8888         if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8889             MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8890             (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8891             MPT3_DIAG_BUFFER_IS_RELEASED))) {
8892                 is_trigger = 1;
8893                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8894                 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8895                     (ioc_state & MPI2_IOC_STATE_MASK) ==
8896                     MPI2_IOC_STATE_COREDUMP) {
8897                         is_fault = 1;
8898                         ioc->htb_rel.trigger_info_dwords[1] =
8899                             (ioc_state & MPI2_DOORBELL_DATA_MASK);
8900                 }
8901         }
8902         _base_pre_reset_handler(ioc);
8903         mpt3sas_wait_for_commands_to_complete(ioc);
8904         mpt3sas_base_mask_interrupts(ioc);
8905         mpt3sas_base_pause_mq_polling(ioc);
8906         r = mpt3sas_base_make_ioc_ready(ioc, type);
8907         if (r)
8908                 goto out;
8909         _base_clear_outstanding_commands(ioc);
8910
8911         /* If this hard reset is called while port enable is active, then
8912          * there is no reason to call make_ioc_operational
8913          */
8914         if (ioc->is_driver_loading && ioc->port_enable_failed) {
8915                 ioc->remove_host = 1;
8916                 r = -EFAULT;
8917                 goto out;
8918         }
8919         r = _base_get_ioc_facts(ioc);
8920         if (r)
8921                 goto out;
8922
8923         r = _base_check_ioc_facts_changes(ioc);
8924         if (r) {
8925                 ioc_info(ioc,
8926                     "Some of the parameters got changed in this new firmware"
8927                     " image and it requires system reboot\n");
8928                 goto out;
8929         }
8930         if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8931                 panic("%s: Issue occurred with flashing controller firmware."
8932                       "Please reboot the system and ensure that the correct"
8933                       " firmware version is running\n", ioc->name);
8934
8935         r = _base_make_ioc_operational(ioc);
8936         if (!r)
8937                 _base_reset_done_handler(ioc);
8938
8939  out:
8940         ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
8941
8942         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8943         ioc->shost_recovery = 0;
8944         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8945         ioc->ioc_reset_count++;
8946         mutex_unlock(&ioc->reset_in_progress_mutex);
8947         mpt3sas_base_resume_mq_polling(ioc);
8948
8949  out_unlocked:
8950         if ((r == 0) && is_trigger) {
8951                 if (is_fault)
8952                         mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
8953                 else
8954                         mpt3sas_trigger_master(ioc,
8955                             MASTER_TRIGGER_ADAPTER_RESET);
8956         }
8957         dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
8958         return r;
8959 }