87999905bca347c191e957c6ab3c94510a0ca945
[platform/kernel/linux-rpi.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <linux/aer.h>
63
64
65 #include "mpt3sas_base.h"
66
67 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
68
69
70 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
71
72  /* maximum controller queue depth */
73 #define MAX_HBA_QUEUE_DEPTH     30000
74 #define MAX_CHAIN_DEPTH         100000
75 static int max_queue_depth = -1;
76 module_param(max_queue_depth, int, 0);
77 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
78
79 static int max_sgl_entries = -1;
80 module_param(max_sgl_entries, int, 0);
81 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
82
83 static int msix_disable = -1;
84 module_param(msix_disable, int, 0);
85 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
86
87 static int smp_affinity_enable = 1;
88 module_param(smp_affinity_enable, int, S_IRUGO);
89 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disbale Default: enable(1)");
90
91 static int max_msix_vectors = -1;
92 module_param(max_msix_vectors, int, 0);
93 MODULE_PARM_DESC(max_msix_vectors,
94         " max msix vectors");
95
96 static int mpt3sas_fwfault_debug;
97 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
98         " enable detection of firmware fault and halt firmware - (default=0)");
99
100 static int
101 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
102
103 /**
104  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
105  *
106  */
107 static int
108 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
109 {
110         int ret = param_set_int(val, kp);
111         struct MPT3SAS_ADAPTER *ioc;
112
113         if (ret)
114                 return ret;
115
116         /* global ioc spinlock to protect controller list on list operations */
117         pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
118         spin_lock(&gioc_lock);
119         list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
120                 ioc->fwfault_debug = mpt3sas_fwfault_debug;
121         spin_unlock(&gioc_lock);
122         return 0;
123 }
124 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
125         param_get_int, &mpt3sas_fwfault_debug, 0644);
126
127 /**
128  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
129  * @arg: input argument, used to derive ioc
130  *
131  * Return 0 if controller is removed from pci subsystem.
132  * Return -1 for other case.
133  */
134 static int mpt3sas_remove_dead_ioc_func(void *arg)
135 {
136         struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
137         struct pci_dev *pdev;
138
139         if ((ioc == NULL))
140                 return -1;
141
142         pdev = ioc->pdev;
143         if ((pdev == NULL))
144                 return -1;
145         pci_stop_and_remove_bus_device_locked(pdev);
146         return 0;
147 }
148
149 /**
150  * _base_fault_reset_work - workq handling ioc fault conditions
151  * @work: input argument, used to derive ioc
152  * Context: sleep.
153  *
154  * Return nothing.
155  */
156 static void
157 _base_fault_reset_work(struct work_struct *work)
158 {
159         struct MPT3SAS_ADAPTER *ioc =
160             container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
161         unsigned long    flags;
162         u32 doorbell;
163         int rc;
164         struct task_struct *p;
165
166
167         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
168         if (ioc->shost_recovery || ioc->pci_error_recovery)
169                 goto rearm_timer;
170         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
171
172         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
173         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
174                 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
175                     ioc->name);
176
177                 /* It may be possible that EEH recovery can resolve some of
178                  * pci bus failure issues rather removing the dead ioc function
179                  * by considering controller is in a non-operational state. So
180                  * here priority is given to the EEH recovery. If it doesn't
181                  * not resolve this issue, mpt3sas driver will consider this
182                  * controller to non-operational state and remove the dead ioc
183                  * function.
184                  */
185                 if (ioc->non_operational_loop++ < 5) {
186                         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
187                                                          flags);
188                         goto rearm_timer;
189                 }
190
191                 /*
192                  * Call _scsih_flush_pending_cmds callback so that we flush all
193                  * pending commands back to OS. This call is required to aovid
194                  * deadlock at block layer. Dead IOC will fail to do diag reset,
195                  * and this call is safe since dead ioc will never return any
196                  * command back from HW.
197                  */
198                 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
199                 /*
200                  * Set remove_host flag early since kernel thread will
201                  * take some time to execute.
202                  */
203                 ioc->remove_host = 1;
204                 /*Remove the Dead Host */
205                 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
206                     "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
207                 if (IS_ERR(p))
208                         pr_err(MPT3SAS_FMT
209                         "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
210                         ioc->name, __func__);
211                 else
212                         pr_err(MPT3SAS_FMT
213                         "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
214                         ioc->name, __func__);
215                 return; /* don't rearm timer */
216         }
217
218         ioc->non_operational_loop = 0;
219
220         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
221                 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
222                 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
223                     __func__, (rc == 0) ? "success" : "failed");
224                 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
225                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
226                         mpt3sas_base_fault_info(ioc, doorbell &
227                             MPI2_DOORBELL_DATA_MASK);
228                 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
229                     MPI2_IOC_STATE_OPERATIONAL)
230                         return; /* don't rearm timer */
231         }
232
233         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
234  rearm_timer:
235         if (ioc->fault_reset_work_q)
236                 queue_delayed_work(ioc->fault_reset_work_q,
237                     &ioc->fault_reset_work,
238                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
239         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
240 }
241
242 /**
243  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
244  * @ioc: per adapter object
245  * Context: sleep.
246  *
247  * Return nothing.
248  */
249 void
250 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
251 {
252         unsigned long    flags;
253
254         if (ioc->fault_reset_work_q)
255                 return;
256
257         /* initialize fault polling */
258
259         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
260         snprintf(ioc->fault_reset_work_q_name,
261             sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
262             ioc->driver_name, ioc->id);
263         ioc->fault_reset_work_q =
264                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
265         if (!ioc->fault_reset_work_q) {
266                 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
267                     ioc->name, __func__, __LINE__);
268                         return;
269         }
270         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
271         if (ioc->fault_reset_work_q)
272                 queue_delayed_work(ioc->fault_reset_work_q,
273                     &ioc->fault_reset_work,
274                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
275         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
276 }
277
278 /**
279  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
280  * @ioc: per adapter object
281  * Context: sleep.
282  *
283  * Return nothing.
284  */
285 void
286 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
287 {
288         unsigned long flags;
289         struct workqueue_struct *wq;
290
291         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
292         wq = ioc->fault_reset_work_q;
293         ioc->fault_reset_work_q = NULL;
294         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
295         if (wq) {
296                 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
297                         flush_workqueue(wq);
298                 destroy_workqueue(wq);
299         }
300 }
301
302 /**
303  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
304  * @ioc: per adapter object
305  * @fault_code: fault code
306  *
307  * Return nothing.
308  */
309 void
310 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
311 {
312         pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
313             ioc->name, fault_code);
314 }
315
316 /**
317  * mpt3sas_halt_firmware - halt's mpt controller firmware
318  * @ioc: per adapter object
319  *
320  * For debugging timeout related issues.  Writing 0xCOFFEE00
321  * to the doorbell register will halt controller firmware. With
322  * the purpose to stop both driver and firmware, the enduser can
323  * obtain a ring buffer from controller UART.
324  */
325 void
326 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
327 {
328         u32 doorbell;
329
330         if (!ioc->fwfault_debug)
331                 return;
332
333         dump_stack();
334
335         doorbell = readl(&ioc->chip->Doorbell);
336         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
337                 mpt3sas_base_fault_info(ioc , doorbell);
338         else {
339                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
340                 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
341                         ioc->name);
342         }
343
344         if (ioc->fwfault_debug == 2)
345                 for (;;)
346                         ;
347         else
348                 panic("panic in %s\n", __func__);
349 }
350
351 /**
352  * _base_sas_ioc_info - verbose translation of the ioc status
353  * @ioc: per adapter object
354  * @mpi_reply: reply mf payload returned from firmware
355  * @request_hdr: request mf
356  *
357  * Return nothing.
358  */
359 static void
360 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
361         MPI2RequestHeader_t *request_hdr)
362 {
363         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
364             MPI2_IOCSTATUS_MASK;
365         char *desc = NULL;
366         u16 frame_sz;
367         char *func_str = NULL;
368
369         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
370         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
371             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
372             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
373                 return;
374
375         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
376                 return;
377
378         switch (ioc_status) {
379
380 /****************************************************************************
381 *  Common IOCStatus values for all replies
382 ****************************************************************************/
383
384         case MPI2_IOCSTATUS_INVALID_FUNCTION:
385                 desc = "invalid function";
386                 break;
387         case MPI2_IOCSTATUS_BUSY:
388                 desc = "busy";
389                 break;
390         case MPI2_IOCSTATUS_INVALID_SGL:
391                 desc = "invalid sgl";
392                 break;
393         case MPI2_IOCSTATUS_INTERNAL_ERROR:
394                 desc = "internal error";
395                 break;
396         case MPI2_IOCSTATUS_INVALID_VPID:
397                 desc = "invalid vpid";
398                 break;
399         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
400                 desc = "insufficient resources";
401                 break;
402         case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
403                 desc = "insufficient power";
404                 break;
405         case MPI2_IOCSTATUS_INVALID_FIELD:
406                 desc = "invalid field";
407                 break;
408         case MPI2_IOCSTATUS_INVALID_STATE:
409                 desc = "invalid state";
410                 break;
411         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
412                 desc = "op state not supported";
413                 break;
414
415 /****************************************************************************
416 *  Config IOCStatus values
417 ****************************************************************************/
418
419         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
420                 desc = "config invalid action";
421                 break;
422         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
423                 desc = "config invalid type";
424                 break;
425         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
426                 desc = "config invalid page";
427                 break;
428         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
429                 desc = "config invalid data";
430                 break;
431         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
432                 desc = "config no defaults";
433                 break;
434         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
435                 desc = "config cant commit";
436                 break;
437
438 /****************************************************************************
439 *  SCSI IO Reply
440 ****************************************************************************/
441
442         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
443         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
444         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
445         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
446         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
447         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
448         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
449         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
450         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
451         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
452         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
453         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
454                 break;
455
456 /****************************************************************************
457 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
458 ****************************************************************************/
459
460         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
461                 desc = "eedp guard error";
462                 break;
463         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
464                 desc = "eedp ref tag error";
465                 break;
466         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
467                 desc = "eedp app tag error";
468                 break;
469
470 /****************************************************************************
471 *  SCSI Target values
472 ****************************************************************************/
473
474         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
475                 desc = "target invalid io index";
476                 break;
477         case MPI2_IOCSTATUS_TARGET_ABORTED:
478                 desc = "target aborted";
479                 break;
480         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
481                 desc = "target no conn retryable";
482                 break;
483         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
484                 desc = "target no connection";
485                 break;
486         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
487                 desc = "target xfer count mismatch";
488                 break;
489         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
490                 desc = "target data offset error";
491                 break;
492         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
493                 desc = "target too much write data";
494                 break;
495         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
496                 desc = "target iu too short";
497                 break;
498         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
499                 desc = "target ack nak timeout";
500                 break;
501         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
502                 desc = "target nak received";
503                 break;
504
505 /****************************************************************************
506 *  Serial Attached SCSI values
507 ****************************************************************************/
508
509         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
510                 desc = "smp request failed";
511                 break;
512         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
513                 desc = "smp data overrun";
514                 break;
515
516 /****************************************************************************
517 *  Diagnostic Buffer Post / Diagnostic Release values
518 ****************************************************************************/
519
520         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
521                 desc = "diagnostic released";
522                 break;
523         default:
524                 break;
525         }
526
527         if (!desc)
528                 return;
529
530         switch (request_hdr->Function) {
531         case MPI2_FUNCTION_CONFIG:
532                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
533                 func_str = "config_page";
534                 break;
535         case MPI2_FUNCTION_SCSI_TASK_MGMT:
536                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
537                 func_str = "task_mgmt";
538                 break;
539         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
540                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
541                 func_str = "sas_iounit_ctl";
542                 break;
543         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
544                 frame_sz = sizeof(Mpi2SepRequest_t);
545                 func_str = "enclosure";
546                 break;
547         case MPI2_FUNCTION_IOC_INIT:
548                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
549                 func_str = "ioc_init";
550                 break;
551         case MPI2_FUNCTION_PORT_ENABLE:
552                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
553                 func_str = "port_enable";
554                 break;
555         case MPI2_FUNCTION_SMP_PASSTHROUGH:
556                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
557                 func_str = "smp_passthru";
558                 break;
559         default:
560                 frame_sz = 32;
561                 func_str = "unknown";
562                 break;
563         }
564
565         pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
566                 ioc->name, desc, ioc_status, request_hdr, func_str);
567
568         _debug_dump_mf(request_hdr, frame_sz/4);
569 }
570
571 /**
572  * _base_display_event_data - verbose translation of firmware asyn events
573  * @ioc: per adapter object
574  * @mpi_reply: reply mf payload returned from firmware
575  *
576  * Return nothing.
577  */
578 static void
579 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
580         Mpi2EventNotificationReply_t *mpi_reply)
581 {
582         char *desc = NULL;
583         u16 event;
584
585         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
586                 return;
587
588         event = le16_to_cpu(mpi_reply->Event);
589
590         switch (event) {
591         case MPI2_EVENT_LOG_DATA:
592                 desc = "Log Data";
593                 break;
594         case MPI2_EVENT_STATE_CHANGE:
595                 desc = "Status Change";
596                 break;
597         case MPI2_EVENT_HARD_RESET_RECEIVED:
598                 desc = "Hard Reset Received";
599                 break;
600         case MPI2_EVENT_EVENT_CHANGE:
601                 desc = "Event Change";
602                 break;
603         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
604                 desc = "Device Status Change";
605                 break;
606         case MPI2_EVENT_IR_OPERATION_STATUS:
607                 if (!ioc->hide_ir_msg)
608                         desc = "IR Operation Status";
609                 break;
610         case MPI2_EVENT_SAS_DISCOVERY:
611         {
612                 Mpi2EventDataSasDiscovery_t *event_data =
613                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
614                 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
615                     (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
616                     "start" : "stop");
617                 if (event_data->DiscoveryStatus)
618                         pr_cont(" discovery_status(0x%08x)",
619                             le32_to_cpu(event_data->DiscoveryStatus));
620                 pr_cont("\n");
621                 return;
622         }
623         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
624                 desc = "SAS Broadcast Primitive";
625                 break;
626         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
627                 desc = "SAS Init Device Status Change";
628                 break;
629         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
630                 desc = "SAS Init Table Overflow";
631                 break;
632         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
633                 desc = "SAS Topology Change List";
634                 break;
635         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
636                 desc = "SAS Enclosure Device Status Change";
637                 break;
638         case MPI2_EVENT_IR_VOLUME:
639                 if (!ioc->hide_ir_msg)
640                         desc = "IR Volume";
641                 break;
642         case MPI2_EVENT_IR_PHYSICAL_DISK:
643                 if (!ioc->hide_ir_msg)
644                         desc = "IR Physical Disk";
645                 break;
646         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
647                 if (!ioc->hide_ir_msg)
648                         desc = "IR Configuration Change List";
649                 break;
650         case MPI2_EVENT_LOG_ENTRY_ADDED:
651                 if (!ioc->hide_ir_msg)
652                         desc = "Log Entry Added";
653                 break;
654         case MPI2_EVENT_TEMP_THRESHOLD:
655                 desc = "Temperature Threshold";
656                 break;
657         case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
658                 desc = "Active cable exception";
659                 break;
660         }
661
662         if (!desc)
663                 return;
664
665         pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
666 }
667
668 /**
669  * _base_sas_log_info - verbose translation of firmware log info
670  * @ioc: per adapter object
671  * @log_info: log info
672  *
673  * Return nothing.
674  */
675 static void
676 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
677 {
678         union loginfo_type {
679                 u32     loginfo;
680                 struct {
681                         u32     subcode:16;
682                         u32     code:8;
683                         u32     originator:4;
684                         u32     bus_type:4;
685                 } dw;
686         };
687         union loginfo_type sas_loginfo;
688         char *originator_str = NULL;
689
690         sas_loginfo.loginfo = log_info;
691         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
692                 return;
693
694         /* each nexus loss loginfo */
695         if (log_info == 0x31170000)
696                 return;
697
698         /* eat the loginfos associated with task aborts */
699         if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
700             0x31140000 || log_info == 0x31130000))
701                 return;
702
703         switch (sas_loginfo.dw.originator) {
704         case 0:
705                 originator_str = "IOP";
706                 break;
707         case 1:
708                 originator_str = "PL";
709                 break;
710         case 2:
711                 if (!ioc->hide_ir_msg)
712                         originator_str = "IR";
713                 else
714                         originator_str = "WarpDrive";
715                 break;
716         }
717
718         pr_warn(MPT3SAS_FMT
719                 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
720                 ioc->name, log_info,
721              originator_str, sas_loginfo.dw.code,
722              sas_loginfo.dw.subcode);
723 }
724
725 /**
726  * _base_display_reply_info -
727  * @ioc: per adapter object
728  * @smid: system request message index
729  * @msix_index: MSIX table index supplied by the OS
730  * @reply: reply message frame(lower 32bit addr)
731  *
732  * Return nothing.
733  */
734 static void
735 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
736         u32 reply)
737 {
738         MPI2DefaultReply_t *mpi_reply;
739         u16 ioc_status;
740         u32 loginfo = 0;
741
742         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
743         if (unlikely(!mpi_reply)) {
744                 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
745                     ioc->name, __FILE__, __LINE__, __func__);
746                 return;
747         }
748         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
749
750         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
751             (ioc->logging_level & MPT_DEBUG_REPLY)) {
752                 _base_sas_ioc_info(ioc , mpi_reply,
753                    mpt3sas_base_get_msg_frame(ioc, smid));
754         }
755
756         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
757                 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
758                 _base_sas_log_info(ioc, loginfo);
759         }
760
761         if (ioc_status || loginfo) {
762                 ioc_status &= MPI2_IOCSTATUS_MASK;
763                 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
764         }
765 }
766
767 /**
768  * mpt3sas_base_done - base internal command completion routine
769  * @ioc: per adapter object
770  * @smid: system request message index
771  * @msix_index: MSIX table index supplied by the OS
772  * @reply: reply message frame(lower 32bit addr)
773  *
774  * Return 1 meaning mf should be freed from _base_interrupt
775  *        0 means the mf is freed from this function.
776  */
777 u8
778 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
779         u32 reply)
780 {
781         MPI2DefaultReply_t *mpi_reply;
782
783         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
784         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
785                 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
786
787         if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
788                 return 1;
789
790         ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
791         if (mpi_reply) {
792                 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
793                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
794         }
795         ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
796
797         complete(&ioc->base_cmds.done);
798         return 1;
799 }
800
801 /**
802  * _base_async_event - main callback handler for firmware asyn events
803  * @ioc: per adapter object
804  * @msix_index: MSIX table index supplied by the OS
805  * @reply: reply message frame(lower 32bit addr)
806  *
807  * Return 1 meaning mf should be freed from _base_interrupt
808  *        0 means the mf is freed from this function.
809  */
810 static u8
811 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
812 {
813         Mpi2EventNotificationReply_t *mpi_reply;
814         Mpi2EventAckRequest_t *ack_request;
815         u16 smid;
816         struct _event_ack_list *delayed_event_ack;
817
818         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
819         if (!mpi_reply)
820                 return 1;
821         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
822                 return 1;
823
824         _base_display_event_data(ioc, mpi_reply);
825
826         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
827                 goto out;
828         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
829         if (!smid) {
830                 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
831                                         GFP_ATOMIC);
832                 if (!delayed_event_ack)
833                         goto out;
834                 INIT_LIST_HEAD(&delayed_event_ack->list);
835                 delayed_event_ack->Event = mpi_reply->Event;
836                 delayed_event_ack->EventContext = mpi_reply->EventContext;
837                 list_add_tail(&delayed_event_ack->list,
838                                 &ioc->delayed_event_ack_list);
839                 dewtprintk(ioc, pr_info(MPT3SAS_FMT
840                                 "DELAYED: EVENT ACK: event (0x%04x)\n",
841                                 ioc->name, le16_to_cpu(mpi_reply->Event)));
842                 goto out;
843         }
844
845         ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
846         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
847         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
848         ack_request->Event = mpi_reply->Event;
849         ack_request->EventContext = mpi_reply->EventContext;
850         ack_request->VF_ID = 0;  /* TODO */
851         ack_request->VP_ID = 0;
852         ioc->put_smid_default(ioc, smid);
853
854  out:
855
856         /* scsih callback handler */
857         mpt3sas_scsih_event_callback(ioc, msix_index, reply);
858
859         /* ctl callback handler */
860         mpt3sas_ctl_event_callback(ioc, msix_index, reply);
861
862         return 1;
863 }
864
865 /**
866  * _base_get_cb_idx - obtain the callback index
867  * @ioc: per adapter object
868  * @smid: system request message index
869  *
870  * Return callback index.
871  */
872 static u8
873 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
874 {
875         int i;
876         u8 cb_idx;
877
878         if (smid < ioc->hi_priority_smid) {
879                 i = smid - 1;
880                 cb_idx = ioc->scsi_lookup[i].cb_idx;
881         } else if (smid < ioc->internal_smid) {
882                 i = smid - ioc->hi_priority_smid;
883                 cb_idx = ioc->hpr_lookup[i].cb_idx;
884         } else if (smid <= ioc->hba_queue_depth) {
885                 i = smid - ioc->internal_smid;
886                 cb_idx = ioc->internal_lookup[i].cb_idx;
887         } else
888                 cb_idx = 0xFF;
889         return cb_idx;
890 }
891
892 /**
893  * _base_mask_interrupts - disable interrupts
894  * @ioc: per adapter object
895  *
896  * Disabling ResetIRQ, Reply and Doorbell Interrupts
897  *
898  * Return nothing.
899  */
900 static void
901 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
902 {
903         u32 him_register;
904
905         ioc->mask_interrupts = 1;
906         him_register = readl(&ioc->chip->HostInterruptMask);
907         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
908         writel(him_register, &ioc->chip->HostInterruptMask);
909         readl(&ioc->chip->HostInterruptMask);
910 }
911
912 /**
913  * _base_unmask_interrupts - enable interrupts
914  * @ioc: per adapter object
915  *
916  * Enabling only Reply Interrupts
917  *
918  * Return nothing.
919  */
920 static void
921 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
922 {
923         u32 him_register;
924
925         him_register = readl(&ioc->chip->HostInterruptMask);
926         him_register &= ~MPI2_HIM_RIM;
927         writel(him_register, &ioc->chip->HostInterruptMask);
928         ioc->mask_interrupts = 0;
929 }
930
931 union reply_descriptor {
932         u64 word;
933         struct {
934                 u32 low;
935                 u32 high;
936         } u;
937 };
938
939 /**
940  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
941  * @irq: irq number (not used)
942  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
943  * @r: pt_regs pointer (not used)
944  *
945  * Return IRQ_HANDLE if processed, else IRQ_NONE.
946  */
947 static irqreturn_t
948 _base_interrupt(int irq, void *bus_id)
949 {
950         struct adapter_reply_queue *reply_q = bus_id;
951         union reply_descriptor rd;
952         u32 completed_cmds;
953         u8 request_desript_type;
954         u16 smid;
955         u8 cb_idx;
956         u32 reply;
957         u8 msix_index = reply_q->msix_index;
958         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
959         Mpi2ReplyDescriptorsUnion_t *rpf;
960         u8 rc;
961
962         if (ioc->mask_interrupts)
963                 return IRQ_NONE;
964
965         if (!atomic_add_unless(&reply_q->busy, 1, 1))
966                 return IRQ_NONE;
967
968         rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
969         request_desript_type = rpf->Default.ReplyFlags
970              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
971         if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
972                 atomic_dec(&reply_q->busy);
973                 return IRQ_NONE;
974         }
975
976         completed_cmds = 0;
977         cb_idx = 0xFF;
978         do {
979                 rd.word = le64_to_cpu(rpf->Words);
980                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
981                         goto out;
982                 reply = 0;
983                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
984                 if (request_desript_type ==
985                     MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
986                     request_desript_type ==
987                     MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
988                         cb_idx = _base_get_cb_idx(ioc, smid);
989                         if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
990                             (likely(mpt_callbacks[cb_idx] != NULL))) {
991                                 rc = mpt_callbacks[cb_idx](ioc, smid,
992                                     msix_index, 0);
993                                 if (rc)
994                                         mpt3sas_base_free_smid(ioc, smid);
995                         }
996                 } else if (request_desript_type ==
997                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
998                         reply = le32_to_cpu(
999                             rpf->AddressReply.ReplyFrameAddress);
1000                         if (reply > ioc->reply_dma_max_address ||
1001                             reply < ioc->reply_dma_min_address)
1002                                 reply = 0;
1003                         if (smid) {
1004                                 cb_idx = _base_get_cb_idx(ioc, smid);
1005                                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1006                                     (likely(mpt_callbacks[cb_idx] != NULL))) {
1007                                         rc = mpt_callbacks[cb_idx](ioc, smid,
1008                                             msix_index, reply);
1009                                         if (reply)
1010                                                 _base_display_reply_info(ioc,
1011                                                     smid, msix_index, reply);
1012                                         if (rc)
1013                                                 mpt3sas_base_free_smid(ioc,
1014                                                     smid);
1015                                 }
1016                         } else {
1017                                 _base_async_event(ioc, msix_index, reply);
1018                         }
1019
1020                         /* reply free queue handling */
1021                         if (reply) {
1022                                 ioc->reply_free_host_index =
1023                                     (ioc->reply_free_host_index ==
1024                                     (ioc->reply_free_queue_depth - 1)) ?
1025                                     0 : ioc->reply_free_host_index + 1;
1026                                 ioc->reply_free[ioc->reply_free_host_index] =
1027                                     cpu_to_le32(reply);
1028                                 writel(ioc->reply_free_host_index,
1029                                     &ioc->chip->ReplyFreeHostIndex);
1030                         }
1031                 }
1032
1033                 rpf->Words = cpu_to_le64(ULLONG_MAX);
1034                 reply_q->reply_post_host_index =
1035                     (reply_q->reply_post_host_index ==
1036                     (ioc->reply_post_queue_depth - 1)) ? 0 :
1037                     reply_q->reply_post_host_index + 1;
1038                 request_desript_type =
1039                     reply_q->reply_post_free[reply_q->reply_post_host_index].
1040                     Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1041                 completed_cmds++;
1042                 /* Update the reply post host index after continuously
1043                  * processing the threshold number of Reply Descriptors.
1044                  * So that FW can find enough entries to post the Reply
1045                  * Descriptors in the reply descriptor post queue.
1046                  */
1047                 if (completed_cmds > ioc->hba_queue_depth/3) {
1048                         if (ioc->combined_reply_queue) {
1049                                 writel(reply_q->reply_post_host_index |
1050                                                 ((msix_index  & 7) <<
1051                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1052                                     ioc->replyPostRegisterIndex[msix_index/8]);
1053                         } else {
1054                                 writel(reply_q->reply_post_host_index |
1055                                                 (msix_index <<
1056                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1057                                                 &ioc->chip->ReplyPostHostIndex);
1058                         }
1059                         completed_cmds = 1;
1060                 }
1061                 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1062                         goto out;
1063                 if (!reply_q->reply_post_host_index)
1064                         rpf = reply_q->reply_post_free;
1065                 else
1066                         rpf++;
1067         } while (1);
1068
1069  out:
1070
1071         if (!completed_cmds) {
1072                 atomic_dec(&reply_q->busy);
1073                 return IRQ_NONE;
1074         }
1075
1076         if (ioc->is_warpdrive) {
1077                 writel(reply_q->reply_post_host_index,
1078                 ioc->reply_post_host_index[msix_index]);
1079                 atomic_dec(&reply_q->busy);
1080                 return IRQ_HANDLED;
1081         }
1082
1083         /* Update Reply Post Host Index.
1084          * For those HBA's which support combined reply queue feature
1085          * 1. Get the correct Supplemental Reply Post Host Index Register.
1086          *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1087          *    Index Register address bank i.e replyPostRegisterIndex[],
1088          * 2. Then update this register with new reply host index value
1089          *    in ReplyPostIndex field and the MSIxIndex field with
1090          *    msix_index value reduced to a value between 0 and 7,
1091          *    using a modulo 8 operation. Since each Supplemental Reply Post
1092          *    Host Index Register supports 8 MSI-X vectors.
1093          *
1094          * For other HBA's just update the Reply Post Host Index register with
1095          * new reply host index value in ReplyPostIndex Field and msix_index
1096          * value in MSIxIndex field.
1097          */
1098         if (ioc->combined_reply_queue)
1099                 writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1100                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1101                         ioc->replyPostRegisterIndex[msix_index/8]);
1102         else
1103                 writel(reply_q->reply_post_host_index | (msix_index <<
1104                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1105                         &ioc->chip->ReplyPostHostIndex);
1106         atomic_dec(&reply_q->busy);
1107         return IRQ_HANDLED;
1108 }
1109
1110 /**
1111  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1112  * @ioc: per adapter object
1113  *
1114  */
1115 static inline int
1116 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1117 {
1118         return (ioc->facts.IOCCapabilities &
1119             MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1120 }
1121
1122 /**
1123  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1124  * @ioc: per adapter object
1125  * Context: non ISR conext
1126  *
1127  * Called when a Task Management request has completed.
1128  *
1129  * Return nothing.
1130  */
1131 void
1132 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1133 {
1134         struct adapter_reply_queue *reply_q;
1135
1136         /* If MSIX capability is turned off
1137          * then multi-queues are not enabled
1138          */
1139         if (!_base_is_controller_msix_enabled(ioc))
1140                 return;
1141
1142         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1143                 if (ioc->shost_recovery || ioc->remove_host ||
1144                                 ioc->pci_error_recovery)
1145                         return;
1146                 /* TMs are on msix_index == 0 */
1147                 if (reply_q->msix_index == 0)
1148                         continue;
1149                 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1150         }
1151 }
1152
1153 /**
1154  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1155  * @cb_idx: callback index
1156  *
1157  * Return nothing.
1158  */
1159 void
1160 mpt3sas_base_release_callback_handler(u8 cb_idx)
1161 {
1162         mpt_callbacks[cb_idx] = NULL;
1163 }
1164
1165 /**
1166  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1167  * @cb_func: callback function
1168  *
1169  * Returns cb_func.
1170  */
1171 u8
1172 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1173 {
1174         u8 cb_idx;
1175
1176         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1177                 if (mpt_callbacks[cb_idx] == NULL)
1178                         break;
1179
1180         mpt_callbacks[cb_idx] = cb_func;
1181         return cb_idx;
1182 }
1183
1184 /**
1185  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1186  *
1187  * Return nothing.
1188  */
1189 void
1190 mpt3sas_base_initialize_callback_handler(void)
1191 {
1192         u8 cb_idx;
1193
1194         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1195                 mpt3sas_base_release_callback_handler(cb_idx);
1196 }
1197
1198
1199 /**
1200  * _base_build_zero_len_sge - build zero length sg entry
1201  * @ioc: per adapter object
1202  * @paddr: virtual address for SGE
1203  *
1204  * Create a zero length scatter gather entry to insure the IOCs hardware has
1205  * something to use if the target device goes brain dead and tries
1206  * to send data even when none is asked for.
1207  *
1208  * Return nothing.
1209  */
1210 static void
1211 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1212 {
1213         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1214             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1215             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1216             MPI2_SGE_FLAGS_SHIFT);
1217         ioc->base_add_sg_single(paddr, flags_length, -1);
1218 }
1219
1220 /**
1221  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1222  * @paddr: virtual address for SGE
1223  * @flags_length: SGE flags and data transfer length
1224  * @dma_addr: Physical address
1225  *
1226  * Return nothing.
1227  */
1228 static void
1229 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1230 {
1231         Mpi2SGESimple32_t *sgel = paddr;
1232
1233         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1234             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1235         sgel->FlagsLength = cpu_to_le32(flags_length);
1236         sgel->Address = cpu_to_le32(dma_addr);
1237 }
1238
1239
1240 /**
1241  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1242  * @paddr: virtual address for SGE
1243  * @flags_length: SGE flags and data transfer length
1244  * @dma_addr: Physical address
1245  *
1246  * Return nothing.
1247  */
1248 static void
1249 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1250 {
1251         Mpi2SGESimple64_t *sgel = paddr;
1252
1253         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1254             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1255         sgel->FlagsLength = cpu_to_le32(flags_length);
1256         sgel->Address = cpu_to_le64(dma_addr);
1257 }
1258
1259 /**
1260  * _base_get_chain_buffer_tracker - obtain chain tracker
1261  * @ioc: per adapter object
1262  * @smid: smid associated to an IO request
1263  *
1264  * Returns chain tracker(from ioc->free_chain_list)
1265  */
1266 static struct chain_tracker *
1267 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1268 {
1269         struct chain_tracker *chain_req;
1270         unsigned long flags;
1271
1272         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1273         if (list_empty(&ioc->free_chain_list)) {
1274                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1275                 dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1276                         "chain buffers not available\n", ioc->name));
1277                 return NULL;
1278         }
1279         chain_req = list_entry(ioc->free_chain_list.next,
1280             struct chain_tracker, tracker_list);
1281         list_del_init(&chain_req->tracker_list);
1282         list_add_tail(&chain_req->tracker_list,
1283             &ioc->scsi_lookup[smid - 1].chain_list);
1284         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1285         return chain_req;
1286 }
1287
1288
1289 /**
1290  * _base_build_sg - build generic sg
1291  * @ioc: per adapter object
1292  * @psge: virtual address for SGE
1293  * @data_out_dma: physical address for WRITES
1294  * @data_out_sz: data xfer size for WRITES
1295  * @data_in_dma: physical address for READS
1296  * @data_in_sz: data xfer size for READS
1297  *
1298  * Return nothing.
1299  */
1300 static void
1301 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1302         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1303         size_t data_in_sz)
1304 {
1305         u32 sgl_flags;
1306
1307         if (!data_out_sz && !data_in_sz) {
1308                 _base_build_zero_len_sge(ioc, psge);
1309                 return;
1310         }
1311
1312         if (data_out_sz && data_in_sz) {
1313                 /* WRITE sgel first */
1314                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1315                     MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1316                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1317                 ioc->base_add_sg_single(psge, sgl_flags |
1318                     data_out_sz, data_out_dma);
1319
1320                 /* incr sgel */
1321                 psge += ioc->sge_size;
1322
1323                 /* READ sgel last */
1324                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1325                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1326                     MPI2_SGE_FLAGS_END_OF_LIST);
1327                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1328                 ioc->base_add_sg_single(psge, sgl_flags |
1329                     data_in_sz, data_in_dma);
1330         } else if (data_out_sz) /* WRITE */ {
1331                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1332                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1333                     MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1334                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1335                 ioc->base_add_sg_single(psge, sgl_flags |
1336                     data_out_sz, data_out_dma);
1337         } else if (data_in_sz) /* READ */ {
1338                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1339                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1340                     MPI2_SGE_FLAGS_END_OF_LIST);
1341                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1342                 ioc->base_add_sg_single(psge, sgl_flags |
1343                     data_in_sz, data_in_dma);
1344         }
1345 }
1346
1347 /* IEEE format sgls */
1348
1349 /**
1350  * _base_add_sg_single_ieee - add sg element for IEEE format
1351  * @paddr: virtual address for SGE
1352  * @flags: SGE flags
1353  * @chain_offset: number of 128 byte elements from start of segment
1354  * @length: data transfer length
1355  * @dma_addr: Physical address
1356  *
1357  * Return nothing.
1358  */
1359 static void
1360 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1361         dma_addr_t dma_addr)
1362 {
1363         Mpi25IeeeSgeChain64_t *sgel = paddr;
1364
1365         sgel->Flags = flags;
1366         sgel->NextChainOffset = chain_offset;
1367         sgel->Length = cpu_to_le32(length);
1368         sgel->Address = cpu_to_le64(dma_addr);
1369 }
1370
1371 /**
1372  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1373  * @ioc: per adapter object
1374  * @paddr: virtual address for SGE
1375  *
1376  * Create a zero length scatter gather entry to insure the IOCs hardware has
1377  * something to use if the target device goes brain dead and tries
1378  * to send data even when none is asked for.
1379  *
1380  * Return nothing.
1381  */
1382 static void
1383 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1384 {
1385         u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1386                 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1387                 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1388
1389         _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1390 }
1391
1392 /**
1393  * _base_build_sg_scmd - main sg creation routine
1394  * @ioc: per adapter object
1395  * @scmd: scsi command
1396  * @smid: system request message index
1397  * Context: none.
1398  *
1399  * The main routine that builds scatter gather table from a given
1400  * scsi request sent via the .queuecommand main handler.
1401  *
1402  * Returns 0 success, anything else error
1403  */
1404 static int
1405 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
1406                 struct scsi_cmnd *scmd, u16 smid)
1407 {
1408         Mpi2SCSIIORequest_t *mpi_request;
1409         dma_addr_t chain_dma;
1410         struct scatterlist *sg_scmd;
1411         void *sg_local, *chain;
1412         u32 chain_offset;
1413         u32 chain_length;
1414         u32 chain_flags;
1415         int sges_left;
1416         u32 sges_in_segment;
1417         u32 sgl_flags;
1418         u32 sgl_flags_last_element;
1419         u32 sgl_flags_end_buffer;
1420         struct chain_tracker *chain_req;
1421
1422         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1423
1424         /* init scatter gather flags */
1425         sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
1426         if (scmd->sc_data_direction == DMA_TO_DEVICE)
1427                 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
1428         sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
1429             << MPI2_SGE_FLAGS_SHIFT;
1430         sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
1431             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
1432             << MPI2_SGE_FLAGS_SHIFT;
1433         sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1434
1435         sg_scmd = scsi_sglist(scmd);
1436         sges_left = scsi_dma_map(scmd);
1437         if (sges_left < 0) {
1438                 sdev_printk(KERN_ERR, scmd->device,
1439                  "pci_map_sg failed: request for %d bytes!\n",
1440                  scsi_bufflen(scmd));
1441                 return -ENOMEM;
1442         }
1443
1444         sg_local = &mpi_request->SGL;
1445         sges_in_segment = ioc->max_sges_in_main_message;
1446         if (sges_left <= sges_in_segment)
1447                 goto fill_in_last_segment;
1448
1449         mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
1450             (sges_in_segment * ioc->sge_size))/4;
1451
1452         /* fill in main message segment when there is a chain following */
1453         while (sges_in_segment) {
1454                 if (sges_in_segment == 1)
1455                         ioc->base_add_sg_single(sg_local,
1456                             sgl_flags_last_element | sg_dma_len(sg_scmd),
1457                             sg_dma_address(sg_scmd));
1458                 else
1459                         ioc->base_add_sg_single(sg_local, sgl_flags |
1460                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1461                 sg_scmd = sg_next(sg_scmd);
1462                 sg_local += ioc->sge_size;
1463                 sges_left--;
1464                 sges_in_segment--;
1465         }
1466
1467         /* initializing the chain flags and pointers */
1468         chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
1469         chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1470         if (!chain_req)
1471                 return -1;
1472         chain = chain_req->chain_buffer;
1473         chain_dma = chain_req->chain_buffer_dma;
1474         do {
1475                 sges_in_segment = (sges_left <=
1476                     ioc->max_sges_in_chain_message) ? sges_left :
1477                     ioc->max_sges_in_chain_message;
1478                 chain_offset = (sges_left == sges_in_segment) ?
1479                     0 : (sges_in_segment * ioc->sge_size)/4;
1480                 chain_length = sges_in_segment * ioc->sge_size;
1481                 if (chain_offset) {
1482                         chain_offset = chain_offset <<
1483                             MPI2_SGE_CHAIN_OFFSET_SHIFT;
1484                         chain_length += ioc->sge_size;
1485                 }
1486                 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
1487                     chain_length, chain_dma);
1488                 sg_local = chain;
1489                 if (!chain_offset)
1490                         goto fill_in_last_segment;
1491
1492                 /* fill in chain segments */
1493                 while (sges_in_segment) {
1494                         if (sges_in_segment == 1)
1495                                 ioc->base_add_sg_single(sg_local,
1496                                     sgl_flags_last_element |
1497                                     sg_dma_len(sg_scmd),
1498                                     sg_dma_address(sg_scmd));
1499                         else
1500                                 ioc->base_add_sg_single(sg_local, sgl_flags |
1501                                     sg_dma_len(sg_scmd),
1502                                     sg_dma_address(sg_scmd));
1503                         sg_scmd = sg_next(sg_scmd);
1504                         sg_local += ioc->sge_size;
1505                         sges_left--;
1506                         sges_in_segment--;
1507                 }
1508
1509                 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1510                 if (!chain_req)
1511                         return -1;
1512                 chain = chain_req->chain_buffer;
1513                 chain_dma = chain_req->chain_buffer_dma;
1514         } while (1);
1515
1516
1517  fill_in_last_segment:
1518
1519         /* fill the last segment */
1520         while (sges_left) {
1521                 if (sges_left == 1)
1522                         ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
1523                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1524                 else
1525                         ioc->base_add_sg_single(sg_local, sgl_flags |
1526                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1527                 sg_scmd = sg_next(sg_scmd);
1528                 sg_local += ioc->sge_size;
1529                 sges_left--;
1530         }
1531
1532         return 0;
1533 }
1534
1535 /**
1536  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1537  * @ioc: per adapter object
1538  * @scmd: scsi command
1539  * @smid: system request message index
1540  * Context: none.
1541  *
1542  * The main routine that builds scatter gather table from a given
1543  * scsi request sent via the .queuecommand main handler.
1544  *
1545  * Returns 0 success, anything else error
1546  */
1547 static int
1548 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1549         struct scsi_cmnd *scmd, u16 smid)
1550 {
1551         Mpi2SCSIIORequest_t *mpi_request;
1552         dma_addr_t chain_dma;
1553         struct scatterlist *sg_scmd;
1554         void *sg_local, *chain;
1555         u32 chain_offset;
1556         u32 chain_length;
1557         int sges_left;
1558         u32 sges_in_segment;
1559         u8 simple_sgl_flags;
1560         u8 simple_sgl_flags_last;
1561         u8 chain_sgl_flags;
1562         struct chain_tracker *chain_req;
1563
1564         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1565
1566         /* init scatter gather flags */
1567         simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1568             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1569         simple_sgl_flags_last = simple_sgl_flags |
1570             MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1571         chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1572             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1573
1574         sg_scmd = scsi_sglist(scmd);
1575         sges_left = scsi_dma_map(scmd);
1576         if (sges_left < 0) {
1577                 sdev_printk(KERN_ERR, scmd->device,
1578                         "pci_map_sg failed: request for %d bytes!\n",
1579                         scsi_bufflen(scmd));
1580                 return -ENOMEM;
1581         }
1582
1583         sg_local = &mpi_request->SGL;
1584         sges_in_segment = (ioc->request_sz -
1585             offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1586         if (sges_left <= sges_in_segment)
1587                 goto fill_in_last_segment;
1588
1589         mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1590             (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1591
1592         /* fill in main message segment when there is a chain following */
1593         while (sges_in_segment > 1) {
1594                 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1595                     sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1596                 sg_scmd = sg_next(sg_scmd);
1597                 sg_local += ioc->sge_size_ieee;
1598                 sges_left--;
1599                 sges_in_segment--;
1600         }
1601
1602         /* initializing the pointers */
1603         chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1604         if (!chain_req)
1605                 return -1;
1606         chain = chain_req->chain_buffer;
1607         chain_dma = chain_req->chain_buffer_dma;
1608         do {
1609                 sges_in_segment = (sges_left <=
1610                     ioc->max_sges_in_chain_message) ? sges_left :
1611                     ioc->max_sges_in_chain_message;
1612                 chain_offset = (sges_left == sges_in_segment) ?
1613                     0 : sges_in_segment;
1614                 chain_length = sges_in_segment * ioc->sge_size_ieee;
1615                 if (chain_offset)
1616                         chain_length += ioc->sge_size_ieee;
1617                 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1618                     chain_offset, chain_length, chain_dma);
1619
1620                 sg_local = chain;
1621                 if (!chain_offset)
1622                         goto fill_in_last_segment;
1623
1624                 /* fill in chain segments */
1625                 while (sges_in_segment) {
1626                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1627                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1628                         sg_scmd = sg_next(sg_scmd);
1629                         sg_local += ioc->sge_size_ieee;
1630                         sges_left--;
1631                         sges_in_segment--;
1632                 }
1633
1634                 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1635                 if (!chain_req)
1636                         return -1;
1637                 chain = chain_req->chain_buffer;
1638                 chain_dma = chain_req->chain_buffer_dma;
1639         } while (1);
1640
1641
1642  fill_in_last_segment:
1643
1644         /* fill the last segment */
1645         while (sges_left > 0) {
1646                 if (sges_left == 1)
1647                         _base_add_sg_single_ieee(sg_local,
1648                             simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1649                             sg_dma_address(sg_scmd));
1650                 else
1651                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1652                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1653                 sg_scmd = sg_next(sg_scmd);
1654                 sg_local += ioc->sge_size_ieee;
1655                 sges_left--;
1656         }
1657
1658         return 0;
1659 }
1660
1661 /**
1662  * _base_build_sg_ieee - build generic sg for IEEE format
1663  * @ioc: per adapter object
1664  * @psge: virtual address for SGE
1665  * @data_out_dma: physical address for WRITES
1666  * @data_out_sz: data xfer size for WRITES
1667  * @data_in_dma: physical address for READS
1668  * @data_in_sz: data xfer size for READS
1669  *
1670  * Return nothing.
1671  */
1672 static void
1673 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1674         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1675         size_t data_in_sz)
1676 {
1677         u8 sgl_flags;
1678
1679         if (!data_out_sz && !data_in_sz) {
1680                 _base_build_zero_len_sge_ieee(ioc, psge);
1681                 return;
1682         }
1683
1684         if (data_out_sz && data_in_sz) {
1685                 /* WRITE sgel first */
1686                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1687                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1688                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1689                     data_out_dma);
1690
1691                 /* incr sgel */
1692                 psge += ioc->sge_size_ieee;
1693
1694                 /* READ sgel last */
1695                 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1696                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1697                     data_in_dma);
1698         } else if (data_out_sz) /* WRITE */ {
1699                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1700                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1701                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1702                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1703                     data_out_dma);
1704         } else if (data_in_sz) /* READ */ {
1705                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1706                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1707                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1708                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1709                     data_in_dma);
1710         }
1711 }
1712
1713 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1714
1715 /**
1716  * _base_config_dma_addressing - set dma addressing
1717  * @ioc: per adapter object
1718  * @pdev: PCI device struct
1719  *
1720  * Returns 0 for success, non-zero for failure.
1721  */
1722 static int
1723 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1724 {
1725         struct sysinfo s;
1726         u64 consistent_dma_mask;
1727
1728         if (ioc->dma_mask)
1729                 consistent_dma_mask = DMA_BIT_MASK(64);
1730         else
1731                 consistent_dma_mask = DMA_BIT_MASK(32);
1732
1733         if (sizeof(dma_addr_t) > 4) {
1734                 const uint64_t required_mask =
1735                     dma_get_required_mask(&pdev->dev);
1736                 if ((required_mask > DMA_BIT_MASK(32)) &&
1737                     !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1738                     !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1739                         ioc->base_add_sg_single = &_base_add_sg_single_64;
1740                         ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1741                         ioc->dma_mask = 64;
1742                         goto out;
1743                 }
1744         }
1745
1746         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1747             && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1748                 ioc->base_add_sg_single = &_base_add_sg_single_32;
1749                 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1750                 ioc->dma_mask = 32;
1751         } else
1752                 return -ENODEV;
1753
1754  out:
1755         si_meminfo(&s);
1756         pr_info(MPT3SAS_FMT
1757                 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1758                 ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1759
1760         return 0;
1761 }
1762
1763 static int
1764 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1765                                       struct pci_dev *pdev)
1766 {
1767         if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1768                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1769                         return -ENODEV;
1770         }
1771         return 0;
1772 }
1773
1774 /**
1775  * _base_check_enable_msix - checks MSIX capabable.
1776  * @ioc: per adapter object
1777  *
1778  * Check to see if card is capable of MSIX, and set number
1779  * of available msix vectors
1780  */
1781 static int
1782 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1783 {
1784         int base;
1785         u16 message_control;
1786
1787         /* Check whether controller SAS2008 B0 controller,
1788          * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
1789          */
1790         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
1791             ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
1792                 return -EINVAL;
1793         }
1794
1795         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1796         if (!base) {
1797                 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1798                         ioc->name));
1799                 return -EINVAL;
1800         }
1801
1802         /* get msix vector count */
1803         /* NUMA_IO not supported for older controllers */
1804         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
1805             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
1806             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
1807             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
1808             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
1809             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
1810             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
1811                 ioc->msix_vector_count = 1;
1812         else {
1813                 pci_read_config_word(ioc->pdev, base + 2, &message_control);
1814                 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1815         }
1816         dinitprintk(ioc, pr_info(MPT3SAS_FMT
1817                 "msix is supported, vector_count(%d)\n",
1818                 ioc->name, ioc->msix_vector_count));
1819         return 0;
1820 }
1821
1822 /**
1823  * _base_free_irq - free irq
1824  * @ioc: per adapter object
1825  *
1826  * Freeing respective reply_queue from the list.
1827  */
1828 static void
1829 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1830 {
1831         struct adapter_reply_queue *reply_q, *next;
1832
1833         if (list_empty(&ioc->reply_queue_list))
1834                 return;
1835
1836         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1837                 list_del(&reply_q->list);
1838                 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
1839                          reply_q);
1840                 kfree(reply_q);
1841         }
1842 }
1843
1844 /**
1845  * _base_request_irq - request irq
1846  * @ioc: per adapter object
1847  * @index: msix index into vector table
1848  *
1849  * Inserting respective reply_queue into the list.
1850  */
1851 static int
1852 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
1853 {
1854         struct pci_dev *pdev = ioc->pdev;
1855         struct adapter_reply_queue *reply_q;
1856         int r;
1857
1858         reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1859         if (!reply_q) {
1860                 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1861                     ioc->name, (int)sizeof(struct adapter_reply_queue));
1862                 return -ENOMEM;
1863         }
1864         reply_q->ioc = ioc;
1865         reply_q->msix_index = index;
1866
1867         atomic_set(&reply_q->busy, 0);
1868         if (ioc->msix_enable)
1869                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1870                     ioc->driver_name, ioc->id, index);
1871         else
1872                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1873                     ioc->driver_name, ioc->id);
1874         r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
1875                         IRQF_SHARED, reply_q->name, reply_q);
1876         if (r) {
1877                 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1878                        reply_q->name, pci_irq_vector(pdev, index));
1879                 kfree(reply_q);
1880                 return -EBUSY;
1881         }
1882
1883         INIT_LIST_HEAD(&reply_q->list);
1884         list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1885         return 0;
1886 }
1887
1888 /**
1889  * _base_assign_reply_queues - assigning msix index for each cpu
1890  * @ioc: per adapter object
1891  *
1892  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1893  *
1894  * It would nice if we could call irq_set_affinity, however it is not
1895  * an exported symbol
1896  */
1897 static void
1898 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1899 {
1900         unsigned int cpu, nr_cpus, nr_msix, index = 0;
1901         struct adapter_reply_queue *reply_q;
1902
1903         if (!_base_is_controller_msix_enabled(ioc))
1904                 return;
1905
1906         memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1907
1908         nr_cpus = num_online_cpus();
1909         nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1910                                                ioc->facts.MaxMSIxVectors);
1911         if (!nr_msix)
1912                 return;
1913
1914         if (smp_affinity_enable) {
1915                 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1916                         const cpumask_t *mask = pci_irq_get_affinity(ioc->pdev,
1917                                                         reply_q->msix_index);
1918                         if (!mask) {
1919                                 pr_warn(MPT3SAS_FMT "no affinity for msi %x\n",
1920                                         ioc->name, reply_q->msix_index);
1921                                 continue;
1922                         }
1923
1924                         for_each_cpu(cpu, mask)
1925                                 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
1926                 }
1927                 return;
1928         }
1929         cpu = cpumask_first(cpu_online_mask);
1930
1931         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1932
1933                 unsigned int i, group = nr_cpus / nr_msix;
1934
1935                 if (cpu >= nr_cpus)
1936                         break;
1937
1938                 if (index < nr_cpus % nr_msix)
1939                         group++;
1940
1941                 for (i = 0 ; i < group ; i++) {
1942                         ioc->cpu_msix_table[cpu] = reply_q->msix_index;
1943                         cpu = cpumask_next(cpu, cpu_online_mask);
1944                 }
1945                 index++;
1946         }
1947 }
1948
1949 /**
1950  * _base_disable_msix - disables msix
1951  * @ioc: per adapter object
1952  *
1953  */
1954 static void
1955 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1956 {
1957         if (!ioc->msix_enable)
1958                 return;
1959         pci_disable_msix(ioc->pdev);
1960         ioc->msix_enable = 0;
1961 }
1962
1963 /**
1964  * _base_enable_msix - enables msix, failback to io_apic
1965  * @ioc: per adapter object
1966  *
1967  */
1968 static int
1969 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1970 {
1971         int r;
1972         int i, local_max_msix_vectors;
1973         u8 try_msix = 0;
1974         unsigned int irq_flags = PCI_IRQ_MSIX;
1975
1976         if (msix_disable == -1 || msix_disable == 0)
1977                 try_msix = 1;
1978
1979         if (!try_msix)
1980                 goto try_ioapic;
1981
1982         if (_base_check_enable_msix(ioc) != 0)
1983                 goto try_ioapic;
1984
1985         ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1986                 ioc->msix_vector_count);
1987
1988         printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1989           ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1990           ioc->cpu_count, max_msix_vectors);
1991
1992         if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1993                 local_max_msix_vectors = 8;
1994         else
1995                 local_max_msix_vectors = max_msix_vectors;
1996
1997         if (local_max_msix_vectors > 0)
1998                 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
1999                         ioc->reply_queue_count);
2000         else if (local_max_msix_vectors == 0)
2001                 goto try_ioapic;
2002
2003         if (ioc->msix_vector_count < ioc->cpu_count)
2004                 smp_affinity_enable = 0;
2005
2006         if (smp_affinity_enable)
2007                 irq_flags |= PCI_IRQ_AFFINITY;
2008
2009         r = pci_alloc_irq_vectors(ioc->pdev, 1, ioc->reply_queue_count,
2010                                   irq_flags);
2011         if (r < 0) {
2012                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2013                         "pci_alloc_irq_vectors failed (r=%d) !!!\n",
2014                         ioc->name, r));
2015                 goto try_ioapic;
2016         }
2017
2018         ioc->msix_enable = 1;
2019         ioc->reply_queue_count = r;
2020         for (i = 0; i < ioc->reply_queue_count; i++) {
2021                 r = _base_request_irq(ioc, i);
2022                 if (r) {
2023                         _base_free_irq(ioc);
2024                         _base_disable_msix(ioc);
2025                         goto try_ioapic;
2026                 }
2027         }
2028
2029         return 0;
2030
2031 /* failback to io_apic interrupt routing */
2032  try_ioapic:
2033
2034         ioc->reply_queue_count = 1;
2035         r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
2036         if (r < 0) {
2037                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2038                         "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
2039                         ioc->name, r));
2040         } else
2041                 r = _base_request_irq(ioc, 0);
2042
2043         return r;
2044 }
2045
2046 /**
2047  * mpt3sas_base_unmap_resources - free controller resources
2048  * @ioc: per adapter object
2049  */
2050 static void
2051 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2052 {
2053         struct pci_dev *pdev = ioc->pdev;
2054
2055         dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2056                 ioc->name, __func__));
2057
2058         _base_free_irq(ioc);
2059         _base_disable_msix(ioc);
2060
2061         if (ioc->combined_reply_queue) {
2062                 kfree(ioc->replyPostRegisterIndex);
2063                 ioc->replyPostRegisterIndex = NULL;
2064         }
2065
2066         if (ioc->chip_phys) {
2067                 iounmap(ioc->chip);
2068                 ioc->chip_phys = 0;
2069         }
2070
2071         if (pci_is_enabled(pdev)) {
2072                 pci_release_selected_regions(ioc->pdev, ioc->bars);
2073                 pci_disable_pcie_error_reporting(pdev);
2074                 pci_disable_device(pdev);
2075         }
2076 }
2077
2078 /**
2079  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2080  * @ioc: per adapter object
2081  *
2082  * Returns 0 for success, non-zero for failure.
2083  */
2084 int
2085 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2086 {
2087         struct pci_dev *pdev = ioc->pdev;
2088         u32 memap_sz;
2089         u32 pio_sz;
2090         int i, r = 0;
2091         u64 pio_chip = 0;
2092         u64 chip_phys = 0;
2093         struct adapter_reply_queue *reply_q;
2094
2095         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2096             ioc->name, __func__));
2097
2098         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2099         if (pci_enable_device_mem(pdev)) {
2100                 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2101                         ioc->name);
2102                 ioc->bars = 0;
2103                 return -ENODEV;
2104         }
2105
2106
2107         if (pci_request_selected_regions(pdev, ioc->bars,
2108             ioc->driver_name)) {
2109                 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2110                         ioc->name);
2111                 ioc->bars = 0;
2112                 r = -ENODEV;
2113                 goto out_fail;
2114         }
2115
2116 /* AER (Advanced Error Reporting) hooks */
2117         pci_enable_pcie_error_reporting(pdev);
2118
2119         pci_set_master(pdev);
2120
2121
2122         if (_base_config_dma_addressing(ioc, pdev) != 0) {
2123                 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2124                     ioc->name, pci_name(pdev));
2125                 r = -ENODEV;
2126                 goto out_fail;
2127         }
2128
2129         for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2130              (!memap_sz || !pio_sz); i++) {
2131                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2132                         if (pio_sz)
2133                                 continue;
2134                         pio_chip = (u64)pci_resource_start(pdev, i);
2135                         pio_sz = pci_resource_len(pdev, i);
2136                 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2137                         if (memap_sz)
2138                                 continue;
2139                         ioc->chip_phys = pci_resource_start(pdev, i);
2140                         chip_phys = (u64)ioc->chip_phys;
2141                         memap_sz = pci_resource_len(pdev, i);
2142                         ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2143                 }
2144         }
2145
2146         if (ioc->chip == NULL) {
2147                 pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2148                         " or resource not found\n", ioc->name);
2149                 r = -EINVAL;
2150                 goto out_fail;
2151         }
2152
2153         _base_mask_interrupts(ioc);
2154
2155         r = _base_get_ioc_facts(ioc);
2156         if (r)
2157                 goto out_fail;
2158
2159         if (!ioc->rdpq_array_enable_assigned) {
2160                 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
2161                 ioc->rdpq_array_enable_assigned = 1;
2162         }
2163
2164         r = _base_enable_msix(ioc);
2165         if (r)
2166                 goto out_fail;
2167
2168         /* Use the Combined reply queue feature only for SAS3 C0 & higher
2169          * revision HBAs and also only when reply queue count is greater than 8
2170          */
2171         if (ioc->combined_reply_queue && ioc->reply_queue_count > 8) {
2172                 /* Determine the Supplemental Reply Post Host Index Registers
2173                  * Addresse. Supplemental Reply Post Host Index Registers
2174                  * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
2175                  * each register is at offset bytes of
2176                  * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
2177                  */
2178                 ioc->replyPostRegisterIndex = kcalloc(
2179                      ioc->combined_reply_index_count,
2180                      sizeof(resource_size_t *), GFP_KERNEL);
2181                 if (!ioc->replyPostRegisterIndex) {
2182                         dfailprintk(ioc, printk(MPT3SAS_FMT
2183                         "allocation for reply Post Register Index failed!!!\n",
2184                                                                    ioc->name));
2185                         r = -ENOMEM;
2186                         goto out_fail;
2187                 }
2188
2189                 for (i = 0; i < ioc->combined_reply_index_count; i++) {
2190                         ioc->replyPostRegisterIndex[i] = (resource_size_t *)
2191                              ((u8 *)&ioc->chip->Doorbell +
2192                              MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
2193                              (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
2194                 }
2195         } else
2196                 ioc->combined_reply_queue = 0;
2197
2198         if (ioc->is_warpdrive) {
2199                 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
2200                     &ioc->chip->ReplyPostHostIndex;
2201
2202                 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
2203                         ioc->reply_post_host_index[i] =
2204                         (resource_size_t __iomem *)
2205                         ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
2206                         * 4)));
2207         }
2208
2209         list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
2210                 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
2211                     reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
2212                     "IO-APIC enabled"),
2213                     pci_irq_vector(ioc->pdev, reply_q->msix_index));
2214
2215         pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
2216             ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
2217         pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
2218             ioc->name, (unsigned long long)pio_chip, pio_sz);
2219
2220         /* Save PCI configuration state for recovery from PCI AER/EEH errors */
2221         pci_save_state(pdev);
2222         return 0;
2223
2224  out_fail:
2225         mpt3sas_base_unmap_resources(ioc);
2226         return r;
2227 }
2228
2229 /**
2230  * mpt3sas_base_get_msg_frame - obtain request mf pointer
2231  * @ioc: per adapter object
2232  * @smid: system request message index(smid zero is invalid)
2233  *
2234  * Returns virt pointer to message frame.
2235  */
2236 void *
2237 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2238 {
2239         return (void *)(ioc->request + (smid * ioc->request_sz));
2240 }
2241
2242 /**
2243  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
2244  * @ioc: per adapter object
2245  * @smid: system request message index
2246  *
2247  * Returns virt pointer to sense buffer.
2248  */
2249 void *
2250 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2251 {
2252         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
2253 }
2254
2255 /**
2256  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
2257  * @ioc: per adapter object
2258  * @smid: system request message index
2259  *
2260  * Returns phys pointer to the low 32bit address of the sense buffer.
2261  */
2262 __le32
2263 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2264 {
2265         return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
2266             SCSI_SENSE_BUFFERSIZE));
2267 }
2268
2269 /**
2270  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
2271  * @ioc: per adapter object
2272  * @phys_addr: lower 32 physical addr of the reply
2273  *
2274  * Converts 32bit lower physical addr into a virt address.
2275  */
2276 void *
2277 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
2278 {
2279         if (!phys_addr)
2280                 return NULL;
2281         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
2282 }
2283
2284 static inline u8
2285 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2286 {
2287         return ioc->cpu_msix_table[raw_smp_processor_id()];
2288 }
2289
2290 /**
2291  * mpt3sas_base_get_smid - obtain a free smid from internal queue
2292  * @ioc: per adapter object
2293  * @cb_idx: callback index
2294  *
2295  * Returns smid (zero is invalid)
2296  */
2297 u16
2298 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2299 {
2300         unsigned long flags;
2301         struct request_tracker *request;
2302         u16 smid;
2303
2304         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2305         if (list_empty(&ioc->internal_free_list)) {
2306                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2307                 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2308                     ioc->name, __func__);
2309                 return 0;
2310         }
2311
2312         request = list_entry(ioc->internal_free_list.next,
2313             struct request_tracker, tracker_list);
2314         request->cb_idx = cb_idx;
2315         smid = request->smid;
2316         list_del(&request->tracker_list);
2317         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2318         return smid;
2319 }
2320
2321 /**
2322  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
2323  * @ioc: per adapter object
2324  * @cb_idx: callback index
2325  * @scmd: pointer to scsi command object
2326  *
2327  * Returns smid (zero is invalid)
2328  */
2329 u16
2330 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2331         struct scsi_cmnd *scmd)
2332 {
2333         unsigned long flags;
2334         struct scsiio_tracker *request;
2335         u16 smid;
2336
2337         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2338         if (list_empty(&ioc->free_list)) {
2339                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2340                 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2341                     ioc->name, __func__);
2342                 return 0;
2343         }
2344
2345         request = list_entry(ioc->free_list.next,
2346             struct scsiio_tracker, tracker_list);
2347         request->scmd = scmd;
2348         request->cb_idx = cb_idx;
2349         smid = request->smid;
2350         request->msix_io = _base_get_msix_index(ioc);
2351         list_del(&request->tracker_list);
2352         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2353         return smid;
2354 }
2355
2356 /**
2357  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2358  * @ioc: per adapter object
2359  * @cb_idx: callback index
2360  *
2361  * Returns smid (zero is invalid)
2362  */
2363 u16
2364 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2365 {
2366         unsigned long flags;
2367         struct request_tracker *request;
2368         u16 smid;
2369
2370         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2371         if (list_empty(&ioc->hpr_free_list)) {
2372                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2373                 return 0;
2374         }
2375
2376         request = list_entry(ioc->hpr_free_list.next,
2377             struct request_tracker, tracker_list);
2378         request->cb_idx = cb_idx;
2379         smid = request->smid;
2380         list_del(&request->tracker_list);
2381         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2382         return smid;
2383 }
2384
2385 /**
2386  * mpt3sas_base_free_smid - put smid back on free_list
2387  * @ioc: per adapter object
2388  * @smid: system request message index
2389  *
2390  * Return nothing.
2391  */
2392 void
2393 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2394 {
2395         unsigned long flags;
2396         int i;
2397         struct chain_tracker *chain_req, *next;
2398
2399         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2400         if (smid < ioc->hi_priority_smid) {
2401                 /* scsiio queue */
2402                 i = smid - 1;
2403                 if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2404                         list_for_each_entry_safe(chain_req, next,
2405                             &ioc->scsi_lookup[i].chain_list, tracker_list) {
2406                                 list_del_init(&chain_req->tracker_list);
2407                                 list_add(&chain_req->tracker_list,
2408                                     &ioc->free_chain_list);
2409                         }
2410                 }
2411                 ioc->scsi_lookup[i].cb_idx = 0xFF;
2412                 ioc->scsi_lookup[i].scmd = NULL;
2413                 ioc->scsi_lookup[i].direct_io = 0;
2414                 list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2415                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2416
2417                 /*
2418                  * See _wait_for_commands_to_complete() call with regards
2419                  * to this code.
2420                  */
2421                 if (ioc->shost_recovery && ioc->pending_io_count) {
2422                         if (ioc->pending_io_count == 1)
2423                                 wake_up(&ioc->reset_wq);
2424                         ioc->pending_io_count--;
2425                 }
2426                 return;
2427         } else if (smid < ioc->internal_smid) {
2428                 /* hi-priority */
2429                 i = smid - ioc->hi_priority_smid;
2430                 ioc->hpr_lookup[i].cb_idx = 0xFF;
2431                 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2432         } else if (smid <= ioc->hba_queue_depth) {
2433                 /* internal queue */
2434                 i = smid - ioc->internal_smid;
2435                 ioc->internal_lookup[i].cb_idx = 0xFF;
2436                 list_add(&ioc->internal_lookup[i].tracker_list,
2437                     &ioc->internal_free_list);
2438         }
2439         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2440 }
2441
2442 /**
2443  * _base_writeq - 64 bit write to MMIO
2444  * @ioc: per adapter object
2445  * @b: data payload
2446  * @addr: address in MMIO space
2447  * @writeq_lock: spin lock
2448  *
2449  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2450  * care of 32 bit environment where its not quarenteed to send the entire word
2451  * in one transfer.
2452  */
2453 #if defined(writeq) && defined(CONFIG_64BIT)
2454 static inline void
2455 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2456 {
2457         writeq(cpu_to_le64(b), addr);
2458 }
2459 #else
2460 static inline void
2461 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2462 {
2463         unsigned long flags;
2464         __u64 data_out = cpu_to_le64(b);
2465
2466         spin_lock_irqsave(writeq_lock, flags);
2467         writel((u32)(data_out), addr);
2468         writel((u32)(data_out >> 32), (addr + 4));
2469         spin_unlock_irqrestore(writeq_lock, flags);
2470 }
2471 #endif
2472
2473 /**
2474  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
2475  * @ioc: per adapter object
2476  * @smid: system request message index
2477  * @handle: device handle
2478  *
2479  * Return nothing.
2480  */
2481 static void
2482 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2483 {
2484         Mpi2RequestDescriptorUnion_t descriptor;
2485         u64 *request = (u64 *)&descriptor;
2486
2487
2488         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2489         descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
2490         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2491         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2492         descriptor.SCSIIO.LMID = 0;
2493         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2494             &ioc->scsi_lookup_lock);
2495 }
2496
2497 /**
2498  * _base_put_smid_fast_path - send fast path request to firmware
2499  * @ioc: per adapter object
2500  * @smid: system request message index
2501  * @handle: device handle
2502  *
2503  * Return nothing.
2504  */
2505 static void
2506 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2507         u16 handle)
2508 {
2509         Mpi2RequestDescriptorUnion_t descriptor;
2510         u64 *request = (u64 *)&descriptor;
2511
2512         descriptor.SCSIIO.RequestFlags =
2513             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2514         descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2515         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2516         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2517         descriptor.SCSIIO.LMID = 0;
2518         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2519             &ioc->scsi_lookup_lock);
2520 }
2521
2522 /**
2523  * _base_put_smid_hi_priority - send Task Management request to firmware
2524  * @ioc: per adapter object
2525  * @smid: system request message index
2526  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
2527  * Return nothing.
2528  */
2529 static void
2530 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2531         u16 msix_task)
2532 {
2533         Mpi2RequestDescriptorUnion_t descriptor;
2534         u64 *request = (u64 *)&descriptor;
2535
2536         descriptor.HighPriority.RequestFlags =
2537             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2538         descriptor.HighPriority.MSIxIndex =  msix_task;
2539         descriptor.HighPriority.SMID = cpu_to_le16(smid);
2540         descriptor.HighPriority.LMID = 0;
2541         descriptor.HighPriority.Reserved1 = 0;
2542         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2543             &ioc->scsi_lookup_lock);
2544 }
2545
2546 /**
2547  * _base_put_smid_default - Default, primarily used for config pages
2548  * @ioc: per adapter object
2549  * @smid: system request message index
2550  *
2551  * Return nothing.
2552  */
2553 static void
2554 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2555 {
2556         Mpi2RequestDescriptorUnion_t descriptor;
2557         u64 *request = (u64 *)&descriptor;
2558
2559         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2560         descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
2561         descriptor.Default.SMID = cpu_to_le16(smid);
2562         descriptor.Default.LMID = 0;
2563         descriptor.Default.DescriptorTypeDependent = 0;
2564         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2565             &ioc->scsi_lookup_lock);
2566 }
2567
2568 /**
2569 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
2570 *   Atomic Request Descriptor
2571 * @ioc: per adapter object
2572 * @smid: system request message index
2573 * @handle: device handle, unused in this function, for function type match
2574 *
2575 * Return nothing.
2576 */
2577 static void
2578 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2579         u16 handle)
2580 {
2581         Mpi26AtomicRequestDescriptor_t descriptor;
2582         u32 *request = (u32 *)&descriptor;
2583
2584         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2585         descriptor.MSIxIndex = _base_get_msix_index(ioc);
2586         descriptor.SMID = cpu_to_le16(smid);
2587
2588         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2589 }
2590
2591 /**
2592  * _base_put_smid_fast_path_atomic - send fast path request to firmware
2593  * using Atomic Request Descriptor
2594  * @ioc: per adapter object
2595  * @smid: system request message index
2596  * @handle: device handle, unused in this function, for function type match
2597  * Return nothing
2598  */
2599 static void
2600 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2601         u16 handle)
2602 {
2603         Mpi26AtomicRequestDescriptor_t descriptor;
2604         u32 *request = (u32 *)&descriptor;
2605
2606         descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2607         descriptor.MSIxIndex = _base_get_msix_index(ioc);
2608         descriptor.SMID = cpu_to_le16(smid);
2609
2610         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2611 }
2612
2613 /**
2614  * _base_put_smid_hi_priority_atomic - send Task Management request to
2615  * firmware using Atomic Request Descriptor
2616  * @ioc: per adapter object
2617  * @smid: system request message index
2618  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
2619  *
2620  * Return nothing.
2621  */
2622 static void
2623 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2624         u16 msix_task)
2625 {
2626         Mpi26AtomicRequestDescriptor_t descriptor;
2627         u32 *request = (u32 *)&descriptor;
2628
2629         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2630         descriptor.MSIxIndex = msix_task;
2631         descriptor.SMID = cpu_to_le16(smid);
2632
2633         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2634 }
2635
2636 /**
2637  * _base_put_smid_default - Default, primarily used for config pages
2638  * use Atomic Request Descriptor
2639  * @ioc: per adapter object
2640  * @smid: system request message index
2641  *
2642  * Return nothing.
2643  */
2644 static void
2645 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2646 {
2647         Mpi26AtomicRequestDescriptor_t descriptor;
2648         u32 *request = (u32 *)&descriptor;
2649
2650         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2651         descriptor.MSIxIndex = _base_get_msix_index(ioc);
2652         descriptor.SMID = cpu_to_le16(smid);
2653
2654         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2655 }
2656
2657 /**
2658  * _base_display_OEMs_branding - Display branding string
2659  * @ioc: per adapter object
2660  *
2661  * Return nothing.
2662  */
2663 static void
2664 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
2665 {
2666         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2667                 return;
2668
2669         switch (ioc->pdev->subsystem_vendor) {
2670         case PCI_VENDOR_ID_INTEL:
2671                 switch (ioc->pdev->device) {
2672                 case MPI2_MFGPAGE_DEVID_SAS2008:
2673                         switch (ioc->pdev->subsystem_device) {
2674                         case MPT2SAS_INTEL_RMS2LL080_SSDID:
2675                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2676                                     MPT2SAS_INTEL_RMS2LL080_BRANDING);
2677                                 break;
2678                         case MPT2SAS_INTEL_RMS2LL040_SSDID:
2679                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2680                                     MPT2SAS_INTEL_RMS2LL040_BRANDING);
2681                                 break;
2682                         case MPT2SAS_INTEL_SSD910_SSDID:
2683                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2684                                     MPT2SAS_INTEL_SSD910_BRANDING);
2685                                 break;
2686                         default:
2687                                 pr_info(MPT3SAS_FMT
2688                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
2689                                  ioc->name, ioc->pdev->subsystem_device);
2690                                 break;
2691                         }
2692                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2693                         switch (ioc->pdev->subsystem_device) {
2694                         case MPT2SAS_INTEL_RS25GB008_SSDID:
2695                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2696                                     MPT2SAS_INTEL_RS25GB008_BRANDING);
2697                                 break;
2698                         case MPT2SAS_INTEL_RMS25JB080_SSDID:
2699                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2700                                     MPT2SAS_INTEL_RMS25JB080_BRANDING);
2701                                 break;
2702                         case MPT2SAS_INTEL_RMS25JB040_SSDID:
2703                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2704                                     MPT2SAS_INTEL_RMS25JB040_BRANDING);
2705                                 break;
2706                         case MPT2SAS_INTEL_RMS25KB080_SSDID:
2707                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2708                                     MPT2SAS_INTEL_RMS25KB080_BRANDING);
2709                                 break;
2710                         case MPT2SAS_INTEL_RMS25KB040_SSDID:
2711                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2712                                     MPT2SAS_INTEL_RMS25KB040_BRANDING);
2713                                 break;
2714                         case MPT2SAS_INTEL_RMS25LB040_SSDID:
2715                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2716                                     MPT2SAS_INTEL_RMS25LB040_BRANDING);
2717                                 break;
2718                         case MPT2SAS_INTEL_RMS25LB080_SSDID:
2719                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2720                                     MPT2SAS_INTEL_RMS25LB080_BRANDING);
2721                                 break;
2722                         default:
2723                                 pr_info(MPT3SAS_FMT
2724                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
2725                                  ioc->name, ioc->pdev->subsystem_device);
2726                                 break;
2727                         }
2728                 case MPI25_MFGPAGE_DEVID_SAS3008:
2729                         switch (ioc->pdev->subsystem_device) {
2730                         case MPT3SAS_INTEL_RMS3JC080_SSDID:
2731                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2732                                         MPT3SAS_INTEL_RMS3JC080_BRANDING);
2733                                 break;
2734
2735                         case MPT3SAS_INTEL_RS3GC008_SSDID:
2736                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2737                                         MPT3SAS_INTEL_RS3GC008_BRANDING);
2738                                 break;
2739                         case MPT3SAS_INTEL_RS3FC044_SSDID:
2740                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2741                                         MPT3SAS_INTEL_RS3FC044_BRANDING);
2742                                 break;
2743                         case MPT3SAS_INTEL_RS3UC080_SSDID:
2744                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2745                                         MPT3SAS_INTEL_RS3UC080_BRANDING);
2746                                 break;
2747                         default:
2748                                 pr_info(MPT3SAS_FMT
2749                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
2750                                  ioc->name, ioc->pdev->subsystem_device);
2751                                 break;
2752                         }
2753                         break;
2754                 default:
2755                         pr_info(MPT3SAS_FMT
2756                          "Intel(R) Controller: Subsystem ID: 0x%X\n",
2757                          ioc->name, ioc->pdev->subsystem_device);
2758                         break;
2759                 }
2760                 break;
2761         case PCI_VENDOR_ID_DELL:
2762                 switch (ioc->pdev->device) {
2763                 case MPI2_MFGPAGE_DEVID_SAS2008:
2764                         switch (ioc->pdev->subsystem_device) {
2765                         case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
2766                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2767                                  MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
2768                                 break;
2769                         case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
2770                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2771                                  MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
2772                                 break;
2773                         case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
2774                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2775                                  MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
2776                                 break;
2777                         case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
2778                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2779                                  MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
2780                                 break;
2781                         case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
2782                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2783                                  MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
2784                                 break;
2785                         case MPT2SAS_DELL_PERC_H200_SSDID:
2786                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2787                                  MPT2SAS_DELL_PERC_H200_BRANDING);
2788                                 break;
2789                         case MPT2SAS_DELL_6GBPS_SAS_SSDID:
2790                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2791                                  MPT2SAS_DELL_6GBPS_SAS_BRANDING);
2792                                 break;
2793                         default:
2794                                 pr_info(MPT3SAS_FMT
2795                                    "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
2796                                    ioc->name, ioc->pdev->subsystem_device);
2797                                 break;
2798                         }
2799                         break;
2800                 case MPI25_MFGPAGE_DEVID_SAS3008:
2801                         switch (ioc->pdev->subsystem_device) {
2802                         case MPT3SAS_DELL_12G_HBA_SSDID:
2803                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2804                                         MPT3SAS_DELL_12G_HBA_BRANDING);
2805                                 break;
2806                         default:
2807                                 pr_info(MPT3SAS_FMT
2808                                    "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
2809                                    ioc->name, ioc->pdev->subsystem_device);
2810                                 break;
2811                         }
2812                         break;
2813                 default:
2814                         pr_info(MPT3SAS_FMT
2815                            "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
2816                            ioc->pdev->subsystem_device);
2817                         break;
2818                 }
2819                 break;
2820         case PCI_VENDOR_ID_CISCO:
2821                 switch (ioc->pdev->device) {
2822                 case MPI25_MFGPAGE_DEVID_SAS3008:
2823                         switch (ioc->pdev->subsystem_device) {
2824                         case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
2825                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2826                                         MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
2827                                 break;
2828                         case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
2829                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2830                                         MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
2831                                 break;
2832                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2833                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2834                                         MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2835                                 break;
2836                         default:
2837                                 pr_info(MPT3SAS_FMT
2838                                   "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2839                                   ioc->name, ioc->pdev->subsystem_device);
2840                                 break;
2841                         }
2842                         break;
2843                 case MPI25_MFGPAGE_DEVID_SAS3108_1:
2844                         switch (ioc->pdev->subsystem_device) {
2845                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2846                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2847                                 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2848                                 break;
2849                         case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
2850                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2851                                 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
2852                                 );
2853                                 break;
2854                         default:
2855                                 pr_info(MPT3SAS_FMT
2856                                  "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2857                                  ioc->name, ioc->pdev->subsystem_device);
2858                                 break;
2859                         }
2860                         break;
2861                 default:
2862                         pr_info(MPT3SAS_FMT
2863                            "Cisco SAS HBA: Subsystem ID: 0x%X\n",
2864                            ioc->name, ioc->pdev->subsystem_device);
2865                         break;
2866                 }
2867                 break;
2868         case MPT2SAS_HP_3PAR_SSVID:
2869                 switch (ioc->pdev->device) {
2870                 case MPI2_MFGPAGE_DEVID_SAS2004:
2871                         switch (ioc->pdev->subsystem_device) {
2872                         case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
2873                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2874                                     MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
2875                                 break;
2876                         default:
2877                                 pr_info(MPT3SAS_FMT
2878                                    "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2879                                    ioc->name, ioc->pdev->subsystem_device);
2880                                 break;
2881                         }
2882                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2883                         switch (ioc->pdev->subsystem_device) {
2884                         case MPT2SAS_HP_2_4_INTERNAL_SSDID:
2885                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2886                                     MPT2SAS_HP_2_4_INTERNAL_BRANDING);
2887                                 break;
2888                         case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
2889                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2890                                     MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
2891                                 break;
2892                         case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
2893                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2894                                  MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
2895                                 break;
2896                         case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
2897                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2898                                     MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
2899                                 break;
2900                         default:
2901                                 pr_info(MPT3SAS_FMT
2902                                    "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2903                                    ioc->name, ioc->pdev->subsystem_device);
2904                                 break;
2905                         }
2906                 default:
2907                         pr_info(MPT3SAS_FMT
2908                            "HP SAS HBA: Subsystem ID: 0x%X\n",
2909                            ioc->name, ioc->pdev->subsystem_device);
2910                         break;
2911                 }
2912         default:
2913                 break;
2914         }
2915 }
2916
2917 /**
2918  * _base_display_ioc_capabilities - Disply IOC's capabilities.
2919  * @ioc: per adapter object
2920  *
2921  * Return nothing.
2922  */
2923 static void
2924 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2925 {
2926         int i = 0;
2927         char desc[16];
2928         u32 iounit_pg1_flags;
2929         u32 bios_version;
2930
2931         bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2932         strncpy(desc, ioc->manu_pg0.ChipName, 16);
2933         pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2934            "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2935             ioc->name, desc,
2936            (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2937            (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2938            (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2939            ioc->facts.FWVersion.Word & 0x000000FF,
2940            ioc->pdev->revision,
2941            (bios_version & 0xFF000000) >> 24,
2942            (bios_version & 0x00FF0000) >> 16,
2943            (bios_version & 0x0000FF00) >> 8,
2944             bios_version & 0x000000FF);
2945
2946         _base_display_OEMs_branding(ioc);
2947
2948         pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2949
2950         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2951                 pr_info("Initiator");
2952                 i++;
2953         }
2954
2955         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2956                 pr_info("%sTarget", i ? "," : "");
2957                 i++;
2958         }
2959
2960         i = 0;
2961         pr_info("), ");
2962         pr_info("Capabilities=(");
2963
2964         if (!ioc->hide_ir_msg) {
2965                 if (ioc->facts.IOCCapabilities &
2966                     MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2967                         pr_info("Raid");
2968                         i++;
2969                 }
2970         }
2971
2972         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2973                 pr_info("%sTLR", i ? "," : "");
2974                 i++;
2975         }
2976
2977         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2978                 pr_info("%sMulticast", i ? "," : "");
2979                 i++;
2980         }
2981
2982         if (ioc->facts.IOCCapabilities &
2983             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2984                 pr_info("%sBIDI Target", i ? "," : "");
2985                 i++;
2986         }
2987
2988         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2989                 pr_info("%sEEDP", i ? "," : "");
2990                 i++;
2991         }
2992
2993         if (ioc->facts.IOCCapabilities &
2994             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2995                 pr_info("%sSnapshot Buffer", i ? "," : "");
2996                 i++;
2997         }
2998
2999         if (ioc->facts.IOCCapabilities &
3000             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
3001                 pr_info("%sDiag Trace Buffer", i ? "," : "");
3002                 i++;
3003         }
3004
3005         if (ioc->facts.IOCCapabilities &
3006             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
3007                 pr_info("%sDiag Extended Buffer", i ? "," : "");
3008                 i++;
3009         }
3010
3011         if (ioc->facts.IOCCapabilities &
3012             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
3013                 pr_info("%sTask Set Full", i ? "," : "");
3014                 i++;
3015         }
3016
3017         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3018         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
3019                 pr_info("%sNCQ", i ? "," : "");
3020                 i++;
3021         }
3022
3023         pr_info(")\n");
3024 }
3025
3026 /**
3027  * mpt3sas_base_update_missing_delay - change the missing delay timers
3028  * @ioc: per adapter object
3029  * @device_missing_delay: amount of time till device is reported missing
3030  * @io_missing_delay: interval IO is returned when there is a missing device
3031  *
3032  * Return nothing.
3033  *
3034  * Passed on the command line, this function will modify the device missing
3035  * delay, as well as the io missing delay. This should be called at driver
3036  * load time.
3037  */
3038 void
3039 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
3040         u16 device_missing_delay, u8 io_missing_delay)
3041 {
3042         u16 dmd, dmd_new, dmd_orignal;
3043         u8 io_missing_delay_original;
3044         u16 sz;
3045         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
3046         Mpi2ConfigReply_t mpi_reply;
3047         u8 num_phys = 0;
3048         u16 ioc_status;
3049
3050         mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
3051         if (!num_phys)
3052                 return;
3053
3054         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
3055             sizeof(Mpi2SasIOUnit1PhyData_t));
3056         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
3057         if (!sas_iounit_pg1) {
3058                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3059                     ioc->name, __FILE__, __LINE__, __func__);
3060                 goto out;
3061         }
3062         if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
3063             sas_iounit_pg1, sz))) {
3064                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3065                     ioc->name, __FILE__, __LINE__, __func__);
3066                 goto out;
3067         }
3068         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
3069             MPI2_IOCSTATUS_MASK;
3070         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
3071                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3072                     ioc->name, __FILE__, __LINE__, __func__);
3073                 goto out;
3074         }
3075
3076         /* device missing delay */
3077         dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
3078         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
3079                 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
3080         else
3081                 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
3082         dmd_orignal = dmd;
3083         if (device_missing_delay > 0x7F) {
3084                 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
3085                     device_missing_delay;
3086                 dmd = dmd / 16;
3087                 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
3088         } else
3089                 dmd = device_missing_delay;
3090         sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
3091
3092         /* io missing delay */
3093         io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
3094         sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
3095
3096         if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
3097             sz)) {
3098                 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
3099                         dmd_new = (dmd &
3100                             MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
3101                 else
3102                         dmd_new =
3103                     dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
3104                 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
3105                         ioc->name, dmd_orignal, dmd_new);
3106                 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
3107                         ioc->name, io_missing_delay_original,
3108                     io_missing_delay);
3109                 ioc->device_missing_delay = dmd_new;
3110                 ioc->io_missing_delay = io_missing_delay;
3111         }
3112
3113 out:
3114         kfree(sas_iounit_pg1);
3115 }
3116 /**
3117  * _base_static_config_pages - static start of day config pages
3118  * @ioc: per adapter object
3119  *
3120  * Return nothing.
3121  */
3122 static void
3123 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
3124 {
3125         Mpi2ConfigReply_t mpi_reply;
3126         u32 iounit_pg1_flags;
3127
3128         mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
3129         if (ioc->ir_firmware)
3130                 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
3131                     &ioc->manu_pg10);
3132
3133         /*
3134          * Ensure correct T10 PI operation if vendor left EEDPTagMode
3135          * flag unset in NVDATA.
3136          */
3137         mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
3138         if (ioc->manu_pg11.EEDPTagMode == 0) {
3139                 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
3140                     ioc->name);
3141                 ioc->manu_pg11.EEDPTagMode &= ~0x3;
3142                 ioc->manu_pg11.EEDPTagMode |= 0x1;
3143                 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
3144                     &ioc->manu_pg11);
3145         }
3146
3147         mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
3148         mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
3149         mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
3150         mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
3151         mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3152         mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
3153         _base_display_ioc_capabilities(ioc);
3154
3155         /*
3156          * Enable task_set_full handling in iounit_pg1 when the
3157          * facts capabilities indicate that its supported.
3158          */
3159         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3160         if ((ioc->facts.IOCCapabilities &
3161             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
3162                 iounit_pg1_flags &=
3163                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3164         else
3165                 iounit_pg1_flags |=
3166                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3167         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
3168         mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3169
3170         if (ioc->iounit_pg8.NumSensors)
3171                 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
3172 }
3173
3174 /**
3175  * _base_release_memory_pools - release memory
3176  * @ioc: per adapter object
3177  *
3178  * Free memory allocated from _base_allocate_memory_pools.
3179  *
3180  * Return nothing.
3181  */
3182 static void
3183 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3184 {
3185         int i = 0;
3186         struct reply_post_struct *rps;
3187
3188         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3189             __func__));
3190
3191         if (ioc->request) {
3192                 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
3193                     ioc->request,  ioc->request_dma);
3194                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3195                         "request_pool(0x%p): free\n",
3196                         ioc->name, ioc->request));
3197                 ioc->request = NULL;
3198         }
3199
3200         if (ioc->sense) {
3201                 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
3202                 dma_pool_destroy(ioc->sense_dma_pool);
3203                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3204                         "sense_pool(0x%p): free\n",
3205                         ioc->name, ioc->sense));
3206                 ioc->sense = NULL;
3207         }
3208
3209         if (ioc->reply) {
3210                 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
3211                 dma_pool_destroy(ioc->reply_dma_pool);
3212                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3213                         "reply_pool(0x%p): free\n",
3214                         ioc->name, ioc->reply));
3215                 ioc->reply = NULL;
3216         }
3217
3218         if (ioc->reply_free) {
3219                 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
3220                     ioc->reply_free_dma);
3221                 dma_pool_destroy(ioc->reply_free_dma_pool);
3222                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3223                         "reply_free_pool(0x%p): free\n",
3224                         ioc->name, ioc->reply_free));
3225                 ioc->reply_free = NULL;
3226         }
3227
3228         if (ioc->reply_post) {
3229                 do {
3230                         rps = &ioc->reply_post[i];
3231                         if (rps->reply_post_free) {
3232                                 dma_pool_free(
3233                                     ioc->reply_post_free_dma_pool,
3234                                     rps->reply_post_free,
3235                                     rps->reply_post_free_dma);
3236                                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3237                                     "reply_post_free_pool(0x%p): free\n",
3238                                     ioc->name, rps->reply_post_free));
3239                                 rps->reply_post_free = NULL;
3240                         }
3241                 } while (ioc->rdpq_array_enable &&
3242                            (++i < ioc->reply_queue_count));
3243
3244                 dma_pool_destroy(ioc->reply_post_free_dma_pool);
3245                 kfree(ioc->reply_post);
3246         }
3247
3248         if (ioc->config_page) {
3249                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3250                     "config_page(0x%p): free\n", ioc->name,
3251                     ioc->config_page));
3252                 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
3253                     ioc->config_page, ioc->config_page_dma);
3254         }
3255
3256         if (ioc->scsi_lookup) {
3257                 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
3258                 ioc->scsi_lookup = NULL;
3259         }
3260         kfree(ioc->hpr_lookup);
3261         kfree(ioc->internal_lookup);
3262         if (ioc->chain_lookup) {
3263                 for (i = 0; i < ioc->chain_depth; i++) {
3264                         if (ioc->chain_lookup[i].chain_buffer)
3265                                 dma_pool_free(ioc->chain_dma_pool,
3266                                     ioc->chain_lookup[i].chain_buffer,
3267                                     ioc->chain_lookup[i].chain_buffer_dma);
3268                 }
3269                 dma_pool_destroy(ioc->chain_dma_pool);
3270                 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
3271                 ioc->chain_lookup = NULL;
3272         }
3273 }
3274
3275 /**
3276  * _base_allocate_memory_pools - allocate start of day memory pools
3277  * @ioc: per adapter object
3278  *
3279  * Returns 0 success, anything else error
3280  */
3281 static int
3282 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3283 {
3284         struct mpt3sas_facts *facts;
3285         u16 max_sge_elements;
3286         u16 chains_needed_per_io;
3287         u32 sz, total_sz, reply_post_free_sz;
3288         u32 retry_sz;
3289         u16 max_request_credit;
3290         unsigned short sg_tablesize;
3291         u16 sge_size;
3292         int i;
3293
3294         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3295             __func__));
3296
3297
3298         retry_sz = 0;
3299         facts = &ioc->facts;
3300
3301         /* command line tunables for max sgl entries */
3302         if (max_sgl_entries != -1)
3303                 sg_tablesize = max_sgl_entries;
3304         else {
3305                 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
3306                         sg_tablesize = MPT2SAS_SG_DEPTH;
3307                 else
3308                         sg_tablesize = MPT3SAS_SG_DEPTH;
3309         }
3310
3311         if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
3312                 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
3313         else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
3314                 sg_tablesize = min_t(unsigned short, sg_tablesize,
3315                                       SG_MAX_SEGMENTS);
3316                 pr_warn(MPT3SAS_FMT
3317                  "sg_tablesize(%u) is bigger than kernel"
3318                  " defined SG_CHUNK_SIZE(%u)\n", ioc->name,
3319                  sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
3320         }
3321         ioc->shost->sg_tablesize = sg_tablesize;
3322
3323         ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
3324                 (facts->RequestCredit / 4));
3325         if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
3326                 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
3327                                 INTERNAL_SCSIIO_CMDS_COUNT)) {
3328                         pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \
3329                             Credits, it has just %d number of credits\n",
3330                             ioc->name, facts->RequestCredit);
3331                         return -ENOMEM;
3332                 }
3333                 ioc->internal_depth = 10;
3334         }
3335
3336         ioc->hi_priority_depth = ioc->internal_depth - (5);
3337         /* command line tunables  for max controller queue depth */
3338         if (max_queue_depth != -1 && max_queue_depth != 0) {
3339                 max_request_credit = min_t(u16, max_queue_depth +
3340                         ioc->internal_depth, facts->RequestCredit);
3341                 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
3342                         max_request_credit =  MAX_HBA_QUEUE_DEPTH;
3343         } else
3344                 max_request_credit = min_t(u16, facts->RequestCredit,
3345                     MAX_HBA_QUEUE_DEPTH);
3346
3347         /* Firmware maintains additional facts->HighPriorityCredit number of
3348          * credits for HiPriprity Request messages, so hba queue depth will be
3349          * sum of max_request_credit and high priority queue depth.
3350          */
3351         ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
3352
3353         /* request frame size */
3354         ioc->request_sz = facts->IOCRequestFrameSize * 4;
3355
3356         /* reply frame size */
3357         ioc->reply_sz = facts->ReplyFrameSize * 4;
3358
3359         /* chain segment size */
3360         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3361                 if (facts->IOCMaxChainSegmentSize)
3362                         ioc->chain_segment_sz =
3363                                         facts->IOCMaxChainSegmentSize *
3364                                         MAX_CHAIN_ELEMT_SZ;
3365                 else
3366                 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
3367                         ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
3368                                                     MAX_CHAIN_ELEMT_SZ;
3369         } else
3370                 ioc->chain_segment_sz = ioc->request_sz;
3371
3372         /* calculate the max scatter element size */
3373         sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
3374
3375  retry_allocation:
3376         total_sz = 0;
3377         /* calculate number of sg elements left over in the 1st frame */
3378         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
3379             sizeof(Mpi2SGEIOUnion_t)) + sge_size);
3380         ioc->max_sges_in_main_message = max_sge_elements/sge_size;
3381
3382         /* now do the same for a chain buffer */
3383         max_sge_elements = ioc->chain_segment_sz - sge_size;
3384         ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
3385
3386         /*
3387          *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
3388          */
3389         chains_needed_per_io = ((ioc->shost->sg_tablesize -
3390            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
3391             + 1;
3392         if (chains_needed_per_io > facts->MaxChainDepth) {
3393                 chains_needed_per_io = facts->MaxChainDepth;
3394                 ioc->shost->sg_tablesize = min_t(u16,
3395                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
3396                 * chains_needed_per_io), ioc->shost->sg_tablesize);
3397         }
3398         ioc->chains_needed_per_io = chains_needed_per_io;
3399
3400         /* reply free queue sizing - taking into account for 64 FW events */
3401         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3402
3403         /* calculate reply descriptor post queue depth */
3404         ioc->reply_post_queue_depth = ioc->hba_queue_depth +
3405                                 ioc->reply_free_queue_depth +  1 ;
3406         /* align the reply post queue on the next 16 count boundary */
3407         if (ioc->reply_post_queue_depth % 16)
3408                 ioc->reply_post_queue_depth += 16 -
3409                 (ioc->reply_post_queue_depth % 16);
3410
3411         if (ioc->reply_post_queue_depth >
3412             facts->MaxReplyDescriptorPostQueueDepth) {
3413                 ioc->reply_post_queue_depth =
3414                                 facts->MaxReplyDescriptorPostQueueDepth -
3415                     (facts->MaxReplyDescriptorPostQueueDepth % 16);
3416                 ioc->hba_queue_depth =
3417                                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
3418                 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3419         }
3420
3421         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
3422             "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
3423             "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
3424             ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
3425             ioc->chains_needed_per_io));
3426
3427         /* reply post queue, 16 byte align */
3428         reply_post_free_sz = ioc->reply_post_queue_depth *
3429             sizeof(Mpi2DefaultReplyDescriptor_t);
3430
3431         sz = reply_post_free_sz;
3432         if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
3433                 sz *= ioc->reply_queue_count;
3434
3435         ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
3436             (ioc->reply_queue_count):1,
3437             sizeof(struct reply_post_struct), GFP_KERNEL);
3438
3439         if (!ioc->reply_post) {
3440                 pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
3441                         ioc->name);
3442                 goto out;
3443         }
3444         ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool",
3445             &ioc->pdev->dev, sz, 16, 0);
3446         if (!ioc->reply_post_free_dma_pool) {
3447                 pr_err(MPT3SAS_FMT
3448                  "reply_post_free pool: dma_pool_create failed\n",
3449                  ioc->name);
3450                 goto out;
3451         }
3452         i = 0;
3453         do {
3454                 ioc->reply_post[i].reply_post_free =
3455                     dma_pool_alloc(ioc->reply_post_free_dma_pool,
3456                     GFP_KERNEL,
3457                     &ioc->reply_post[i].reply_post_free_dma);
3458                 if (!ioc->reply_post[i].reply_post_free) {
3459                         pr_err(MPT3SAS_FMT
3460                         "reply_post_free pool: dma_pool_alloc failed\n",
3461                         ioc->name);
3462                         goto out;
3463                 }
3464                 memset(ioc->reply_post[i].reply_post_free, 0, sz);
3465                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3466                     "reply post free pool (0x%p): depth(%d),"
3467                     "element_size(%d), pool_size(%d kB)\n", ioc->name,
3468                     ioc->reply_post[i].reply_post_free,
3469                     ioc->reply_post_queue_depth, 8, sz/1024));
3470                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3471                     "reply_post_free_dma = (0x%llx)\n", ioc->name,
3472                     (unsigned long long)
3473                     ioc->reply_post[i].reply_post_free_dma));
3474                 total_sz += sz;
3475         } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
3476
3477         if (ioc->dma_mask == 64) {
3478                 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
3479                         pr_warn(MPT3SAS_FMT
3480                             "no suitable consistent DMA mask for %s\n",
3481                             ioc->name, pci_name(ioc->pdev));
3482                         goto out;
3483                 }
3484         }
3485
3486         ioc->scsiio_depth = ioc->hba_queue_depth -
3487             ioc->hi_priority_depth - ioc->internal_depth;
3488
3489         /* set the scsi host can_queue depth
3490          * with some internal commands that could be outstanding
3491          */
3492         ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
3493         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3494                 "scsi host: can_queue depth (%d)\n",
3495                 ioc->name, ioc->shost->can_queue));
3496
3497
3498         /* contiguous pool for request and chains, 16 byte align, one extra "
3499          * "frame for smid=0
3500          */
3501         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
3502         sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
3503
3504         /* hi-priority queue */
3505         sz += (ioc->hi_priority_depth * ioc->request_sz);
3506
3507         /* internal queue */
3508         sz += (ioc->internal_depth * ioc->request_sz);
3509
3510         ioc->request_dma_sz = sz;
3511         ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
3512         if (!ioc->request) {
3513                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3514                     "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3515                     "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
3516                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3517                 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
3518                         goto out;
3519                 retry_sz = 64;
3520                 ioc->hba_queue_depth -= retry_sz;
3521                 _base_release_memory_pools(ioc);
3522                 goto retry_allocation;
3523         }
3524
3525         if (retry_sz)
3526                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3527                     "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3528                     "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
3529                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3530
3531         /* hi-priority queue */
3532         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
3533             ioc->request_sz);
3534         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
3535             ioc->request_sz);
3536
3537         /* internal queue */
3538         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
3539             ioc->request_sz);
3540         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
3541             ioc->request_sz);
3542
3543         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3544                 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3545                 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
3546             (ioc->hba_queue_depth * ioc->request_sz)/1024));
3547
3548         dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
3549             ioc->name, (unsigned long long) ioc->request_dma));
3550         total_sz += sz;
3551
3552         sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
3553         ioc->scsi_lookup_pages = get_order(sz);
3554         ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
3555             GFP_KERNEL, ioc->scsi_lookup_pages);
3556         if (!ioc->scsi_lookup) {
3557                 pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
3558                         ioc->name, (int)sz);
3559                 goto out;
3560         }
3561
3562         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
3563                 ioc->name, ioc->request, ioc->scsiio_depth));
3564
3565         ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
3566         sz = ioc->chain_depth * sizeof(struct chain_tracker);
3567         ioc->chain_pages = get_order(sz);
3568         ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
3569             GFP_KERNEL, ioc->chain_pages);
3570         if (!ioc->chain_lookup) {
3571                 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
3572                         ioc->name);
3573                 goto out;
3574         }
3575         ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
3576             ioc->chain_segment_sz, 16, 0);
3577         if (!ioc->chain_dma_pool) {
3578                 pr_err(MPT3SAS_FMT "chain_dma_pool: dma_pool_create failed\n",
3579                         ioc->name);
3580                 goto out;
3581         }
3582         for (i = 0; i < ioc->chain_depth; i++) {
3583                 ioc->chain_lookup[i].chain_buffer = dma_pool_alloc(
3584                     ioc->chain_dma_pool , GFP_KERNEL,
3585                     &ioc->chain_lookup[i].chain_buffer_dma);
3586                 if (!ioc->chain_lookup[i].chain_buffer) {
3587                         ioc->chain_depth = i;
3588                         goto chain_done;
3589                 }
3590                 total_sz += ioc->chain_segment_sz;
3591         }
3592  chain_done:
3593         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3594                 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
3595                 ioc->name, ioc->chain_depth, ioc->chain_segment_sz,
3596                 ((ioc->chain_depth *  ioc->chain_segment_sz))/1024));
3597
3598         /* initialize hi-priority queue smid's */
3599         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
3600             sizeof(struct request_tracker), GFP_KERNEL);
3601         if (!ioc->hpr_lookup) {
3602                 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
3603                     ioc->name);
3604                 goto out;
3605         }
3606         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
3607         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3608                 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
3609                 ioc->name, ioc->hi_priority,
3610             ioc->hi_priority_depth, ioc->hi_priority_smid));
3611
3612         /* initialize internal queue smid's */
3613         ioc->internal_lookup = kcalloc(ioc->internal_depth,
3614             sizeof(struct request_tracker), GFP_KERNEL);
3615         if (!ioc->internal_lookup) {
3616                 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
3617                     ioc->name);
3618                 goto out;
3619         }
3620         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
3621         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3622                 "internal(0x%p): depth(%d), start smid(%d)\n",
3623                 ioc->name, ioc->internal,
3624             ioc->internal_depth, ioc->internal_smid));
3625
3626         /* sense buffers, 4 byte align */
3627         sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
3628         ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
3629                                               4, 0);
3630         if (!ioc->sense_dma_pool) {
3631                 pr_err(MPT3SAS_FMT "sense pool: dma_pool_create failed\n",
3632                     ioc->name);
3633                 goto out;
3634         }
3635         ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
3636             &ioc->sense_dma);
3637         if (!ioc->sense) {
3638                 pr_err(MPT3SAS_FMT "sense pool: dma_pool_alloc failed\n",
3639                     ioc->name);
3640                 goto out;
3641         }
3642         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3643             "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
3644             "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
3645             SCSI_SENSE_BUFFERSIZE, sz/1024));
3646         dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
3647             ioc->name, (unsigned long long)ioc->sense_dma));
3648         total_sz += sz;
3649
3650         /* reply pool, 4 byte align */
3651         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
3652         ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
3653                                               4, 0);
3654         if (!ioc->reply_dma_pool) {
3655                 pr_err(MPT3SAS_FMT "reply pool: dma_pool_create failed\n",
3656                     ioc->name);
3657                 goto out;
3658         }
3659         ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
3660             &ioc->reply_dma);
3661         if (!ioc->reply) {
3662                 pr_err(MPT3SAS_FMT "reply pool: dma_pool_alloc failed\n",
3663                     ioc->name);
3664                 goto out;
3665         }
3666         ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3667         ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3668         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3669                 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3670                 ioc->name, ioc->reply,
3671             ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3672         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3673             ioc->name, (unsigned long long)ioc->reply_dma));
3674         total_sz += sz;
3675
3676         /* reply free queue, 16 byte align */
3677         sz = ioc->reply_free_queue_depth * 4;
3678         ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
3679             &ioc->pdev->dev, sz, 16, 0);
3680         if (!ioc->reply_free_dma_pool) {
3681                 pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_create failed\n",
3682                         ioc->name);
3683                 goto out;
3684         }
3685         ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool, GFP_KERNEL,
3686             &ioc->reply_free_dma);
3687         if (!ioc->reply_free) {
3688                 pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_alloc failed\n",
3689                         ioc->name);
3690                 goto out;
3691         }
3692         memset(ioc->reply_free, 0, sz);
3693         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3694             "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3695             ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3696         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3697                 "reply_free_dma (0x%llx)\n",
3698                 ioc->name, (unsigned long long)ioc->reply_free_dma));
3699         total_sz += sz;
3700
3701         ioc->config_page_sz = 512;
3702         ioc->config_page = pci_alloc_consistent(ioc->pdev,
3703             ioc->config_page_sz, &ioc->config_page_dma);
3704         if (!ioc->config_page) {
3705                 pr_err(MPT3SAS_FMT
3706                         "config page: dma_pool_alloc failed\n",
3707                         ioc->name);
3708                 goto out;
3709         }
3710         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3711                 "config page(0x%p): size(%d)\n",
3712                 ioc->name, ioc->config_page, ioc->config_page_sz));
3713         dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3714                 ioc->name, (unsigned long long)ioc->config_page_dma));
3715         total_sz += ioc->config_page_sz;
3716
3717         pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3718             ioc->name, total_sz/1024);
3719         pr_info(MPT3SAS_FMT
3720                 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3721             ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3722         pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3723             ioc->name, ioc->shost->sg_tablesize);
3724         return 0;
3725
3726  out:
3727         return -ENOMEM;
3728 }
3729
3730 /**
3731  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3732  * @ioc: Pointer to MPT_ADAPTER structure
3733  * @cooked: Request raw or cooked IOC state
3734  *
3735  * Returns all IOC Doorbell register bits if cooked==0, else just the
3736  * Doorbell bits in MPI_IOC_STATE_MASK.
3737  */
3738 u32
3739 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3740 {
3741         u32 s, sc;
3742
3743         s = readl(&ioc->chip->Doorbell);
3744         sc = s & MPI2_IOC_STATE_MASK;
3745         return cooked ? sc : s;
3746 }
3747
3748 /**
3749  * _base_wait_on_iocstate - waiting on a particular ioc state
3750  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3751  * @timeout: timeout in second
3752  *
3753  * Returns 0 for success, non-zero for failure.
3754  */
3755 static int
3756 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
3757 {
3758         u32 count, cntdn;
3759         u32 current_state;
3760
3761         count = 0;
3762         cntdn = 1000 * timeout;
3763         do {
3764                 current_state = mpt3sas_base_get_iocstate(ioc, 1);
3765                 if (current_state == ioc_state)
3766                         return 0;
3767                 if (count && current_state == MPI2_IOC_STATE_FAULT)
3768                         break;
3769
3770                 usleep_range(1000, 1500);
3771                 count++;
3772         } while (--cntdn);
3773
3774         return current_state;
3775 }
3776
3777 /**
3778  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3779  * a write to the doorbell)
3780  * @ioc: per adapter object
3781  * @timeout: timeout in second
3782  *
3783  * Returns 0 for success, non-zero for failure.
3784  *
3785  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3786  */
3787 static int
3788 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3789
3790 static int
3791 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
3792 {
3793         u32 cntdn, count;
3794         u32 int_status;
3795
3796         count = 0;
3797         cntdn = 1000 * timeout;
3798         do {
3799                 int_status = readl(&ioc->chip->HostInterruptStatus);
3800                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3801                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3802                                 "%s: successful count(%d), timeout(%d)\n",
3803                                 ioc->name, __func__, count, timeout));
3804                         return 0;
3805                 }
3806
3807                 usleep_range(1000, 1500);
3808                 count++;
3809         } while (--cntdn);
3810
3811         pr_err(MPT3SAS_FMT
3812                 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3813                 ioc->name, __func__, count, int_status);
3814         return -EFAULT;
3815 }
3816
3817 static int
3818 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
3819 {
3820         u32 cntdn, count;
3821         u32 int_status;
3822
3823         count = 0;
3824         cntdn = 2000 * timeout;
3825         do {
3826                 int_status = readl(&ioc->chip->HostInterruptStatus);
3827                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3828                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3829                                 "%s: successful count(%d), timeout(%d)\n",
3830                                 ioc->name, __func__, count, timeout));
3831                         return 0;
3832                 }
3833
3834                 udelay(500);
3835                 count++;
3836         } while (--cntdn);
3837
3838         pr_err(MPT3SAS_FMT
3839                 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3840                 ioc->name, __func__, count, int_status);
3841         return -EFAULT;
3842
3843 }
3844
3845 /**
3846  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3847  * @ioc: per adapter object
3848  * @timeout: timeout in second
3849  *
3850  * Returns 0 for success, non-zero for failure.
3851  *
3852  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3853  * doorbell.
3854  */
3855 static int
3856 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
3857 {
3858         u32 cntdn, count;
3859         u32 int_status;
3860         u32 doorbell;
3861
3862         count = 0;
3863         cntdn = 1000 * timeout;
3864         do {
3865                 int_status = readl(&ioc->chip->HostInterruptStatus);
3866                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3867                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3868                                 "%s: successful count(%d), timeout(%d)\n",
3869                                 ioc->name, __func__, count, timeout));
3870                         return 0;
3871                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3872                         doorbell = readl(&ioc->chip->Doorbell);
3873                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
3874                             MPI2_IOC_STATE_FAULT) {
3875                                 mpt3sas_base_fault_info(ioc , doorbell);
3876                                 return -EFAULT;
3877                         }
3878                 } else if (int_status == 0xFFFFFFFF)
3879                         goto out;
3880
3881                 usleep_range(1000, 1500);
3882                 count++;
3883         } while (--cntdn);
3884
3885  out:
3886         pr_err(MPT3SAS_FMT
3887          "%s: failed due to timeout count(%d), int_status(%x)!\n",
3888          ioc->name, __func__, count, int_status);
3889         return -EFAULT;
3890 }
3891
3892 /**
3893  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3894  * @ioc: per adapter object
3895  * @timeout: timeout in second
3896  *
3897  * Returns 0 for success, non-zero for failure.
3898  *
3899  */
3900 static int
3901 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
3902 {
3903         u32 cntdn, count;
3904         u32 doorbell_reg;
3905
3906         count = 0;
3907         cntdn = 1000 * timeout;
3908         do {
3909                 doorbell_reg = readl(&ioc->chip->Doorbell);
3910                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3911                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3912                                 "%s: successful count(%d), timeout(%d)\n",
3913                                 ioc->name, __func__, count, timeout));
3914                         return 0;
3915                 }
3916
3917                 usleep_range(1000, 1500);
3918                 count++;
3919         } while (--cntdn);
3920
3921         pr_err(MPT3SAS_FMT
3922                 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3923                 ioc->name, __func__, count, doorbell_reg);
3924         return -EFAULT;
3925 }
3926
3927 /**
3928  * _base_send_ioc_reset - send doorbell reset
3929  * @ioc: per adapter object
3930  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3931  * @timeout: timeout in second
3932  *
3933  * Returns 0 for success, non-zero for failure.
3934  */
3935 static int
3936 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
3937 {
3938         u32 ioc_state;
3939         int r = 0;
3940
3941         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3942                 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3943                     ioc->name, __func__);
3944                 return -EFAULT;
3945         }
3946
3947         if (!(ioc->facts.IOCCapabilities &
3948            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3949                 return -EFAULT;
3950
3951         pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3952
3953         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3954             &ioc->chip->Doorbell);
3955         if ((_base_wait_for_doorbell_ack(ioc, 15))) {
3956                 r = -EFAULT;
3957                 goto out;
3958         }
3959         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
3960         if (ioc_state) {
3961                 pr_err(MPT3SAS_FMT
3962                         "%s: failed going to ready state (ioc_state=0x%x)\n",
3963                         ioc->name, __func__, ioc_state);
3964                 r = -EFAULT;
3965                 goto out;
3966         }
3967  out:
3968         pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3969             ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3970         return r;
3971 }
3972
3973 /**
3974  * _base_handshake_req_reply_wait - send request thru doorbell interface
3975  * @ioc: per adapter object
3976  * @request_bytes: request length
3977  * @request: pointer having request payload
3978  * @reply_bytes: reply length
3979  * @reply: pointer to reply payload
3980  * @timeout: timeout in second
3981  *
3982  * Returns 0 for success, non-zero for failure.
3983  */
3984 static int
3985 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3986         u32 *request, int reply_bytes, u16 *reply, int timeout)
3987 {
3988         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3989         int i;
3990         u8 failed;
3991         __le32 *mfp;
3992
3993         /* make sure doorbell is not in use */
3994         if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3995                 pr_err(MPT3SAS_FMT
3996                         "doorbell is in use (line=%d)\n",
3997                         ioc->name, __LINE__);
3998                 return -EFAULT;
3999         }
4000
4001         /* clear pending doorbell interrupts from previous state changes */
4002         if (readl(&ioc->chip->HostInterruptStatus) &
4003             MPI2_HIS_IOC2SYS_DB_STATUS)
4004                 writel(0, &ioc->chip->HostInterruptStatus);
4005
4006         /* send message to ioc */
4007         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
4008             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
4009             &ioc->chip->Doorbell);
4010
4011         if ((_base_spin_on_doorbell_int(ioc, 5))) {
4012                 pr_err(MPT3SAS_FMT
4013                         "doorbell handshake int failed (line=%d)\n",
4014                         ioc->name, __LINE__);
4015                 return -EFAULT;
4016         }
4017         writel(0, &ioc->chip->HostInterruptStatus);
4018
4019         if ((_base_wait_for_doorbell_ack(ioc, 5))) {
4020                 pr_err(MPT3SAS_FMT
4021                         "doorbell handshake ack failed (line=%d)\n",
4022                         ioc->name, __LINE__);
4023                 return -EFAULT;
4024         }
4025
4026         /* send message 32-bits at a time */
4027         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
4028                 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
4029                 if ((_base_wait_for_doorbell_ack(ioc, 5)))
4030                         failed = 1;
4031         }
4032
4033         if (failed) {
4034                 pr_err(MPT3SAS_FMT
4035                         "doorbell handshake sending request failed (line=%d)\n",
4036                         ioc->name, __LINE__);
4037                 return -EFAULT;
4038         }
4039
4040         /* now wait for the reply */
4041         if ((_base_wait_for_doorbell_int(ioc, timeout))) {
4042                 pr_err(MPT3SAS_FMT
4043                         "doorbell handshake int failed (line=%d)\n",
4044                         ioc->name, __LINE__);
4045                 return -EFAULT;
4046         }
4047
4048         /* read the first two 16-bits, it gives the total length of the reply */
4049         reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4050             & MPI2_DOORBELL_DATA_MASK);
4051         writel(0, &ioc->chip->HostInterruptStatus);
4052         if ((_base_wait_for_doorbell_int(ioc, 5))) {
4053                 pr_err(MPT3SAS_FMT
4054                         "doorbell handshake int failed (line=%d)\n",
4055                         ioc->name, __LINE__);
4056                 return -EFAULT;
4057         }
4058         reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4059             & MPI2_DOORBELL_DATA_MASK);
4060         writel(0, &ioc->chip->HostInterruptStatus);
4061
4062         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
4063                 if ((_base_wait_for_doorbell_int(ioc, 5))) {
4064                         pr_err(MPT3SAS_FMT
4065                                 "doorbell handshake int failed (line=%d)\n",
4066                                 ioc->name, __LINE__);
4067                         return -EFAULT;
4068                 }
4069                 if (i >=  reply_bytes/2) /* overflow case */
4070                         readl(&ioc->chip->Doorbell);
4071                 else
4072                         reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4073                             & MPI2_DOORBELL_DATA_MASK);
4074                 writel(0, &ioc->chip->HostInterruptStatus);
4075         }
4076
4077         _base_wait_for_doorbell_int(ioc, 5);
4078         if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
4079                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
4080                         "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
4081         }
4082         writel(0, &ioc->chip->HostInterruptStatus);
4083
4084         if (ioc->logging_level & MPT_DEBUG_INIT) {
4085                 mfp = (__le32 *)reply;
4086                 pr_info("\toffset:data\n");
4087                 for (i = 0; i < reply_bytes/4; i++)
4088                         pr_info("\t[0x%02x]:%08x\n", i*4,
4089                             le32_to_cpu(mfp[i]));
4090         }
4091         return 0;
4092 }
4093
4094 /**
4095  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
4096  * @ioc: per adapter object
4097  * @mpi_reply: the reply payload from FW
4098  * @mpi_request: the request payload sent to FW
4099  *
4100  * The SAS IO Unit Control Request message allows the host to perform low-level
4101  * operations, such as resets on the PHYs of the IO Unit, also allows the host
4102  * to obtain the IOC assigned device handles for a device if it has other
4103  * identifying information about the device, in addition allows the host to
4104  * remove IOC resources associated with the device.
4105  *
4106  * Returns 0 for success, non-zero for failure.
4107  */
4108 int
4109 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
4110         Mpi2SasIoUnitControlReply_t *mpi_reply,
4111         Mpi2SasIoUnitControlRequest_t *mpi_request)
4112 {
4113         u16 smid;
4114         u32 ioc_state;
4115         bool issue_reset = false;
4116         int rc;
4117         void *request;
4118         u16 wait_state_count;
4119
4120         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4121             __func__));
4122
4123         mutex_lock(&ioc->base_cmds.mutex);
4124
4125         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4126                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4127                     ioc->name, __func__);
4128                 rc = -EAGAIN;
4129                 goto out;
4130         }
4131
4132         wait_state_count = 0;
4133         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4134         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4135                 if (wait_state_count++ == 10) {
4136                         pr_err(MPT3SAS_FMT
4137                             "%s: failed due to ioc not operational\n",
4138                             ioc->name, __func__);
4139                         rc = -EFAULT;
4140                         goto out;
4141                 }
4142                 ssleep(1);
4143                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4144                 pr_info(MPT3SAS_FMT
4145                         "%s: waiting for operational state(count=%d)\n",
4146                         ioc->name, __func__, wait_state_count);
4147         }
4148
4149         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4150         if (!smid) {
4151                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4152                     ioc->name, __func__);
4153                 rc = -EAGAIN;
4154                 goto out;
4155         }
4156
4157         rc = 0;
4158         ioc->base_cmds.status = MPT3_CMD_PENDING;
4159         request = mpt3sas_base_get_msg_frame(ioc, smid);
4160         ioc->base_cmds.smid = smid;
4161         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
4162         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4163             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
4164                 ioc->ioc_link_reset_in_progress = 1;
4165         init_completion(&ioc->base_cmds.done);
4166         ioc->put_smid_default(ioc, smid);
4167         wait_for_completion_timeout(&ioc->base_cmds.done,
4168             msecs_to_jiffies(10000));
4169         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4170             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
4171             ioc->ioc_link_reset_in_progress)
4172                 ioc->ioc_link_reset_in_progress = 0;
4173         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4174                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4175                     ioc->name, __func__);
4176                 _debug_dump_mf(mpi_request,
4177                     sizeof(Mpi2SasIoUnitControlRequest_t)/4);
4178                 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4179                         issue_reset = true;
4180                 goto issue_host_reset;
4181         }
4182         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4183                 memcpy(mpi_reply, ioc->base_cmds.reply,
4184                     sizeof(Mpi2SasIoUnitControlReply_t));
4185         else
4186                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
4187         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4188         goto out;
4189
4190  issue_host_reset:
4191         if (issue_reset)
4192                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
4193         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4194         rc = -EFAULT;
4195  out:
4196         mutex_unlock(&ioc->base_cmds.mutex);
4197         return rc;
4198 }
4199
4200 /**
4201  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
4202  * @ioc: per adapter object
4203  * @mpi_reply: the reply payload from FW
4204  * @mpi_request: the request payload sent to FW
4205  *
4206  * The SCSI Enclosure Processor request message causes the IOC to
4207  * communicate with SES devices to control LED status signals.
4208  *
4209  * Returns 0 for success, non-zero for failure.
4210  */
4211 int
4212 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
4213         Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
4214 {
4215         u16 smid;
4216         u32 ioc_state;
4217         bool issue_reset = false;
4218         int rc;
4219         void *request;
4220         u16 wait_state_count;
4221
4222         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4223             __func__));
4224
4225         mutex_lock(&ioc->base_cmds.mutex);
4226
4227         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4228                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4229                     ioc->name, __func__);
4230                 rc = -EAGAIN;
4231                 goto out;
4232         }
4233
4234         wait_state_count = 0;
4235         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4236         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4237                 if (wait_state_count++ == 10) {
4238                         pr_err(MPT3SAS_FMT
4239                             "%s: failed due to ioc not operational\n",
4240                             ioc->name, __func__);
4241                         rc = -EFAULT;
4242                         goto out;
4243                 }
4244                 ssleep(1);
4245                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4246                 pr_info(MPT3SAS_FMT
4247                         "%s: waiting for operational state(count=%d)\n",
4248                         ioc->name,
4249                     __func__, wait_state_count);
4250         }
4251
4252         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4253         if (!smid) {
4254                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4255                     ioc->name, __func__);
4256                 rc = -EAGAIN;
4257                 goto out;
4258         }
4259
4260         rc = 0;
4261         ioc->base_cmds.status = MPT3_CMD_PENDING;
4262         request = mpt3sas_base_get_msg_frame(ioc, smid);
4263         ioc->base_cmds.smid = smid;
4264         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
4265         init_completion(&ioc->base_cmds.done);
4266         ioc->put_smid_default(ioc, smid);
4267         wait_for_completion_timeout(&ioc->base_cmds.done,
4268             msecs_to_jiffies(10000));
4269         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4270                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4271                     ioc->name, __func__);
4272                 _debug_dump_mf(mpi_request,
4273                     sizeof(Mpi2SepRequest_t)/4);
4274                 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4275                         issue_reset = false;
4276                 goto issue_host_reset;
4277         }
4278         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4279                 memcpy(mpi_reply, ioc->base_cmds.reply,
4280                     sizeof(Mpi2SepReply_t));
4281         else
4282                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
4283         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4284         goto out;
4285
4286  issue_host_reset:
4287         if (issue_reset)
4288                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
4289         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4290         rc = -EFAULT;
4291  out:
4292         mutex_unlock(&ioc->base_cmds.mutex);
4293         return rc;
4294 }
4295
4296 /**
4297  * _base_get_port_facts - obtain port facts reply and save in ioc
4298  * @ioc: per adapter object
4299  *
4300  * Returns 0 for success, non-zero for failure.
4301  */
4302 static int
4303 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
4304 {
4305         Mpi2PortFactsRequest_t mpi_request;
4306         Mpi2PortFactsReply_t mpi_reply;
4307         struct mpt3sas_port_facts *pfacts;
4308         int mpi_reply_sz, mpi_request_sz, r;
4309
4310         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4311             __func__));
4312
4313         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
4314         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
4315         memset(&mpi_request, 0, mpi_request_sz);
4316         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
4317         mpi_request.PortNumber = port;
4318         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4319             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
4320
4321         if (r != 0) {
4322                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4323                     ioc->name, __func__, r);
4324                 return r;
4325         }
4326
4327         pfacts = &ioc->pfacts[port];
4328         memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
4329         pfacts->PortNumber = mpi_reply.PortNumber;
4330         pfacts->VP_ID = mpi_reply.VP_ID;
4331         pfacts->VF_ID = mpi_reply.VF_ID;
4332         pfacts->MaxPostedCmdBuffers =
4333             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
4334
4335         return 0;
4336 }
4337
4338 /**
4339  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
4340  * @ioc: per adapter object
4341  * @timeout:
4342  *
4343  * Returns 0 for success, non-zero for failure.
4344  */
4345 static int
4346 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
4347 {
4348         u32 ioc_state;
4349         int rc;
4350
4351         dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
4352             __func__));
4353
4354         if (ioc->pci_error_recovery) {
4355                 dfailprintk(ioc, printk(MPT3SAS_FMT
4356                     "%s: host in pci error recovery\n", ioc->name, __func__));
4357                 return -EFAULT;
4358         }
4359
4360         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4361         dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4362             ioc->name, __func__, ioc_state));
4363
4364         if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
4365             (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4366                 return 0;
4367
4368         if (ioc_state & MPI2_DOORBELL_USED) {
4369                 dhsprintk(ioc, printk(MPT3SAS_FMT
4370                     "unexpected doorbell active!\n", ioc->name));
4371                 goto issue_diag_reset;
4372         }
4373
4374         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4375                 mpt3sas_base_fault_info(ioc, ioc_state &
4376                     MPI2_DOORBELL_DATA_MASK);
4377                 goto issue_diag_reset;
4378         }
4379
4380         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
4381         if (ioc_state) {
4382                 dfailprintk(ioc, printk(MPT3SAS_FMT
4383                     "%s: failed going to ready state (ioc_state=0x%x)\n",
4384                     ioc->name, __func__, ioc_state));
4385                 return -EFAULT;
4386         }
4387
4388  issue_diag_reset:
4389         rc = _base_diag_reset(ioc);
4390         return rc;
4391 }
4392
4393 /**
4394  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
4395  * @ioc: per adapter object
4396  *
4397  * Returns 0 for success, non-zero for failure.
4398  */
4399 static int
4400 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
4401 {
4402         Mpi2IOCFactsRequest_t mpi_request;
4403         Mpi2IOCFactsReply_t mpi_reply;
4404         struct mpt3sas_facts *facts;
4405         int mpi_reply_sz, mpi_request_sz, r;
4406
4407         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4408             __func__));
4409
4410         r = _base_wait_for_iocstate(ioc, 10);
4411         if (r) {
4412                 dfailprintk(ioc, printk(MPT3SAS_FMT
4413                     "%s: failed getting to correct state\n",
4414                     ioc->name, __func__));
4415                 return r;
4416         }
4417         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
4418         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
4419         memset(&mpi_request, 0, mpi_request_sz);
4420         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
4421         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4422             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
4423
4424         if (r != 0) {
4425                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4426                     ioc->name, __func__, r);
4427                 return r;
4428         }
4429
4430         facts = &ioc->facts;
4431         memset(facts, 0, sizeof(struct mpt3sas_facts));
4432         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
4433         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
4434         facts->VP_ID = mpi_reply.VP_ID;
4435         facts->VF_ID = mpi_reply.VF_ID;
4436         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
4437         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
4438         facts->WhoInit = mpi_reply.WhoInit;
4439         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
4440         facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
4441         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
4442         facts->MaxReplyDescriptorPostQueueDepth =
4443             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
4444         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
4445         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
4446         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
4447                 ioc->ir_firmware = 1;
4448         if ((facts->IOCCapabilities &
4449               MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
4450                 ioc->rdpq_array_capable = 1;
4451         if (facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
4452                 ioc->atomic_desc_capable = 1;
4453         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
4454         facts->IOCRequestFrameSize =
4455             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
4456         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4457                 facts->IOCMaxChainSegmentSize =
4458                         le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
4459         }
4460         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
4461         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
4462         ioc->shost->max_id = -1;
4463         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
4464         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
4465         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
4466         facts->HighPriorityCredit =
4467             le16_to_cpu(mpi_reply.HighPriorityCredit);
4468         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
4469         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
4470
4471         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4472                 "hba queue depth(%d), max chains per io(%d)\n",
4473                 ioc->name, facts->RequestCredit,
4474             facts->MaxChainDepth));
4475         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4476                 "request frame size(%d), reply frame size(%d)\n", ioc->name,
4477             facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
4478         return 0;
4479 }
4480
4481 /**
4482  * _base_send_ioc_init - send ioc_init to firmware
4483  * @ioc: per adapter object
4484  *
4485  * Returns 0 for success, non-zero for failure.
4486  */
4487 static int
4488 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
4489 {
4490         Mpi2IOCInitRequest_t mpi_request;
4491         Mpi2IOCInitReply_t mpi_reply;
4492         int i, r = 0;
4493         ktime_t current_time;
4494         u16 ioc_status;
4495         u32 reply_post_free_array_sz = 0;
4496         Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
4497         dma_addr_t reply_post_free_array_dma;
4498
4499         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4500             __func__));
4501
4502         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
4503         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
4504         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
4505         mpi_request.VF_ID = 0; /* TODO */
4506         mpi_request.VP_ID = 0;
4507         mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
4508         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
4509
4510         if (_base_is_controller_msix_enabled(ioc))
4511                 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
4512         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
4513         mpi_request.ReplyDescriptorPostQueueDepth =
4514             cpu_to_le16(ioc->reply_post_queue_depth);
4515         mpi_request.ReplyFreeQueueDepth =
4516             cpu_to_le16(ioc->reply_free_queue_depth);
4517
4518         mpi_request.SenseBufferAddressHigh =
4519             cpu_to_le32((u64)ioc->sense_dma >> 32);
4520         mpi_request.SystemReplyAddressHigh =
4521             cpu_to_le32((u64)ioc->reply_dma >> 32);
4522         mpi_request.SystemRequestFrameBaseAddress =
4523             cpu_to_le64((u64)ioc->request_dma);
4524         mpi_request.ReplyFreeQueueAddress =
4525             cpu_to_le64((u64)ioc->reply_free_dma);
4526
4527         if (ioc->rdpq_array_enable) {
4528                 reply_post_free_array_sz = ioc->reply_queue_count *
4529                     sizeof(Mpi2IOCInitRDPQArrayEntry);
4530                 reply_post_free_array = pci_alloc_consistent(ioc->pdev,
4531                         reply_post_free_array_sz, &reply_post_free_array_dma);
4532                 if (!reply_post_free_array) {
4533                         pr_err(MPT3SAS_FMT
4534                         "reply_post_free_array: pci_alloc_consistent failed\n",
4535                         ioc->name);
4536                         r = -ENOMEM;
4537                         goto out;
4538                 }
4539                 memset(reply_post_free_array, 0, reply_post_free_array_sz);
4540                 for (i = 0; i < ioc->reply_queue_count; i++)
4541                         reply_post_free_array[i].RDPQBaseAddress =
4542                             cpu_to_le64(
4543                                 (u64)ioc->reply_post[i].reply_post_free_dma);
4544                 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
4545                 mpi_request.ReplyDescriptorPostQueueAddress =
4546                     cpu_to_le64((u64)reply_post_free_array_dma);
4547         } else {
4548                 mpi_request.ReplyDescriptorPostQueueAddress =
4549                     cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
4550         }
4551
4552         /* This time stamp specifies number of milliseconds
4553          * since epoch ~ midnight January 1, 1970.
4554          */
4555         current_time = ktime_get_real();
4556         mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
4557
4558         if (ioc->logging_level & MPT_DEBUG_INIT) {
4559                 __le32 *mfp;
4560                 int i;
4561
4562                 mfp = (__le32 *)&mpi_request;
4563                 pr_info("\toffset:data\n");
4564                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
4565                         pr_info("\t[0x%02x]:%08x\n", i*4,
4566                             le32_to_cpu(mfp[i]));
4567         }
4568
4569         r = _base_handshake_req_reply_wait(ioc,
4570             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
4571             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
4572
4573         if (r != 0) {
4574                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4575                     ioc->name, __func__, r);
4576                 goto out;
4577         }
4578
4579         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
4580         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
4581             mpi_reply.IOCLogInfo) {
4582                 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
4583                 r = -EIO;
4584         }
4585
4586 out:
4587         if (reply_post_free_array)
4588                 pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
4589                                     reply_post_free_array,
4590                                     reply_post_free_array_dma);
4591         return r;
4592 }
4593
4594 /**
4595  * mpt3sas_port_enable_done - command completion routine for port enable
4596  * @ioc: per adapter object
4597  * @smid: system request message index
4598  * @msix_index: MSIX table index supplied by the OS
4599  * @reply: reply message frame(lower 32bit addr)
4600  *
4601  * Return 1 meaning mf should be freed from _base_interrupt
4602  *        0 means the mf is freed from this function.
4603  */
4604 u8
4605 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
4606         u32 reply)
4607 {
4608         MPI2DefaultReply_t *mpi_reply;
4609         u16 ioc_status;
4610
4611         if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
4612                 return 1;
4613
4614         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
4615         if (!mpi_reply)
4616                 return 1;
4617
4618         if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
4619                 return 1;
4620
4621         ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
4622         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
4623         ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
4624         memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
4625         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4626         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
4627                 ioc->port_enable_failed = 1;
4628
4629         if (ioc->is_driver_loading) {
4630                 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4631                         mpt3sas_port_enable_complete(ioc);
4632                         return 1;
4633                 } else {
4634                         ioc->start_scan_failed = ioc_status;
4635                         ioc->start_scan = 0;
4636                         return 1;
4637                 }
4638         }
4639         complete(&ioc->port_enable_cmds.done);
4640         return 1;
4641 }
4642
4643 /**
4644  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
4645  * @ioc: per adapter object
4646  *
4647  * Returns 0 for success, non-zero for failure.
4648  */
4649 static int
4650 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
4651 {
4652         Mpi2PortEnableRequest_t *mpi_request;
4653         Mpi2PortEnableReply_t *mpi_reply;
4654         int r = 0;
4655         u16 smid;
4656         u16 ioc_status;
4657
4658         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4659
4660         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4661                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4662                     ioc->name, __func__);
4663                 return -EAGAIN;
4664         }
4665
4666         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4667         if (!smid) {
4668                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4669                     ioc->name, __func__);
4670                 return -EAGAIN;
4671         }
4672
4673         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4674         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4675         ioc->port_enable_cmds.smid = smid;
4676         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4677         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4678
4679         init_completion(&ioc->port_enable_cmds.done);
4680         ioc->put_smid_default(ioc, smid);
4681         wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
4682         if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
4683                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4684                     ioc->name, __func__);
4685                 _debug_dump_mf(mpi_request,
4686                     sizeof(Mpi2PortEnableRequest_t)/4);
4687                 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
4688                         r = -EFAULT;
4689                 else
4690                         r = -ETIME;
4691                 goto out;
4692         }
4693
4694         mpi_reply = ioc->port_enable_cmds.reply;
4695         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4696         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4697                 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
4698                     ioc->name, __func__, ioc_status);
4699                 r = -EFAULT;
4700                 goto out;
4701         }
4702
4703  out:
4704         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4705         pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
4706             "SUCCESS" : "FAILED"));
4707         return r;
4708 }
4709
4710 /**
4711  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
4712  * @ioc: per adapter object
4713  *
4714  * Returns 0 for success, non-zero for failure.
4715  */
4716 int
4717 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4718 {
4719         Mpi2PortEnableRequest_t *mpi_request;
4720         u16 smid;
4721
4722         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4723
4724         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4725                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4726                     ioc->name, __func__);
4727                 return -EAGAIN;
4728         }
4729
4730         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4731         if (!smid) {
4732                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4733                     ioc->name, __func__);
4734                 return -EAGAIN;
4735         }
4736
4737         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4738         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4739         ioc->port_enable_cmds.smid = smid;
4740         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4741         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4742
4743         ioc->put_smid_default(ioc, smid);
4744         return 0;
4745 }
4746
4747 /**
4748  * _base_determine_wait_on_discovery - desposition
4749  * @ioc: per adapter object
4750  *
4751  * Decide whether to wait on discovery to complete. Used to either
4752  * locate boot device, or report volumes ahead of physical devices.
4753  *
4754  * Returns 1 for wait, 0 for don't wait
4755  */
4756 static int
4757 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4758 {
4759         /* We wait for discovery to complete if IR firmware is loaded.
4760          * The sas topology events arrive before PD events, so we need time to
4761          * turn on the bit in ioc->pd_handles to indicate PD
4762          * Also, it maybe required to report Volumes ahead of physical
4763          * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4764          */
4765         if (ioc->ir_firmware)
4766                 return 1;
4767
4768         /* if no Bios, then we don't need to wait */
4769         if (!ioc->bios_pg3.BiosVersion)
4770                 return 0;
4771
4772         /* Bios is present, then we drop down here.
4773          *
4774          * If there any entries in the Bios Page 2, then we wait
4775          * for discovery to complete.
4776          */
4777
4778         /* Current Boot Device */
4779         if ((ioc->bios_pg2.CurrentBootDeviceForm &
4780             MPI2_BIOSPAGE2_FORM_MASK) ==
4781             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4782         /* Request Boot Device */
4783            (ioc->bios_pg2.ReqBootDeviceForm &
4784             MPI2_BIOSPAGE2_FORM_MASK) ==
4785             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4786         /* Alternate Request Boot Device */
4787            (ioc->bios_pg2.ReqAltBootDeviceForm &
4788             MPI2_BIOSPAGE2_FORM_MASK) ==
4789             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4790                 return 0;
4791
4792         return 1;
4793 }
4794
4795 /**
4796  * _base_unmask_events - turn on notification for this event
4797  * @ioc: per adapter object
4798  * @event: firmware event
4799  *
4800  * The mask is stored in ioc->event_masks.
4801  */
4802 static void
4803 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4804 {
4805         u32 desired_event;
4806
4807         if (event >= 128)
4808                 return;
4809
4810         desired_event = (1 << (event % 32));
4811
4812         if (event < 32)
4813                 ioc->event_masks[0] &= ~desired_event;
4814         else if (event < 64)
4815                 ioc->event_masks[1] &= ~desired_event;
4816         else if (event < 96)
4817                 ioc->event_masks[2] &= ~desired_event;
4818         else if (event < 128)
4819                 ioc->event_masks[3] &= ~desired_event;
4820 }
4821
4822 /**
4823  * _base_event_notification - send event notification
4824  * @ioc: per adapter object
4825  *
4826  * Returns 0 for success, non-zero for failure.
4827  */
4828 static int
4829 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
4830 {
4831         Mpi2EventNotificationRequest_t *mpi_request;
4832         u16 smid;
4833         int r = 0;
4834         int i;
4835
4836         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4837             __func__));
4838
4839         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4840                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4841                     ioc->name, __func__);
4842                 return -EAGAIN;
4843         }
4844
4845         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4846         if (!smid) {
4847                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4848                     ioc->name, __func__);
4849                 return -EAGAIN;
4850         }
4851         ioc->base_cmds.status = MPT3_CMD_PENDING;
4852         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4853         ioc->base_cmds.smid = smid;
4854         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4855         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4856         mpi_request->VF_ID = 0; /* TODO */
4857         mpi_request->VP_ID = 0;
4858         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4859                 mpi_request->EventMasks[i] =
4860                     cpu_to_le32(ioc->event_masks[i]);
4861         init_completion(&ioc->base_cmds.done);
4862         ioc->put_smid_default(ioc, smid);
4863         wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4864         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4865                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4866                     ioc->name, __func__);
4867                 _debug_dump_mf(mpi_request,
4868                     sizeof(Mpi2EventNotificationRequest_t)/4);
4869                 if (ioc->base_cmds.status & MPT3_CMD_RESET)
4870                         r = -EFAULT;
4871                 else
4872                         r = -ETIME;
4873         } else
4874                 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4875                     ioc->name, __func__));
4876         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4877         return r;
4878 }
4879
4880 /**
4881  * mpt3sas_base_validate_event_type - validating event types
4882  * @ioc: per adapter object
4883  * @event: firmware event
4884  *
4885  * This will turn on firmware event notification when application
4886  * ask for that event. We don't mask events that are already enabled.
4887  */
4888 void
4889 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4890 {
4891         int i, j;
4892         u32 event_mask, desired_event;
4893         u8 send_update_to_fw;
4894
4895         for (i = 0, send_update_to_fw = 0; i <
4896             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4897                 event_mask = ~event_type[i];
4898                 desired_event = 1;
4899                 for (j = 0; j < 32; j++) {
4900                         if (!(event_mask & desired_event) &&
4901                             (ioc->event_masks[i] & desired_event)) {
4902                                 ioc->event_masks[i] &= ~desired_event;
4903                                 send_update_to_fw = 1;
4904                         }
4905                         desired_event = (desired_event << 1);
4906                 }
4907         }
4908
4909         if (!send_update_to_fw)
4910                 return;
4911
4912         mutex_lock(&ioc->base_cmds.mutex);
4913         _base_event_notification(ioc);
4914         mutex_unlock(&ioc->base_cmds.mutex);
4915 }
4916
4917 /**
4918  * _base_diag_reset - the "big hammer" start of day reset
4919  * @ioc: per adapter object
4920  *
4921  * Returns 0 for success, non-zero for failure.
4922  */
4923 static int
4924 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
4925 {
4926         u32 host_diagnostic;
4927         u32 ioc_state;
4928         u32 count;
4929         u32 hcb_size;
4930
4931         pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4932
4933         drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4934             ioc->name));
4935
4936         count = 0;
4937         do {
4938                 /* Write magic sequence to WriteSequence register
4939                  * Loop until in diagnostic mode
4940                  */
4941                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4942                         "write magic sequence\n", ioc->name));
4943                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4944                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4945                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4946                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4947                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4948                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4949                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4950
4951                 /* wait 100 msec */
4952                 msleep(100);
4953
4954                 if (count++ > 20)
4955                         goto out;
4956
4957                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4958                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4959                         "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4960                     ioc->name, count, host_diagnostic));
4961
4962         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4963
4964         hcb_size = readl(&ioc->chip->HCBSize);
4965
4966         drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4967             ioc->name));
4968         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4969              &ioc->chip->HostDiagnostic);
4970
4971         /*This delay allows the chip PCIe hardware time to finish reset tasks*/
4972         msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4973
4974         /* Approximately 300 second max wait */
4975         for (count = 0; count < (300000000 /
4976                 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4977
4978                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4979
4980                 if (host_diagnostic == 0xFFFFFFFF)
4981                         goto out;
4982                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4983                         break;
4984
4985                 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
4986         }
4987
4988         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4989
4990                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4991                 "restart the adapter assuming the HCB Address points to good F/W\n",
4992                     ioc->name));
4993                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4994                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4995                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4996
4997                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4998                     "re-enable the HCDW\n", ioc->name));
4999                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
5000                     &ioc->chip->HCBSize);
5001         }
5002
5003         drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
5004             ioc->name));
5005         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
5006             &ioc->chip->HostDiagnostic);
5007
5008         drsprintk(ioc, pr_info(MPT3SAS_FMT
5009                 "disable writes to the diagnostic register\n", ioc->name));
5010         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
5011
5012         drsprintk(ioc, pr_info(MPT3SAS_FMT
5013                 "Wait for FW to go to the READY state\n", ioc->name));
5014         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
5015         if (ioc_state) {
5016                 pr_err(MPT3SAS_FMT
5017                         "%s: failed going to ready state (ioc_state=0x%x)\n",
5018                         ioc->name, __func__, ioc_state);
5019                 goto out;
5020         }
5021
5022         pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
5023         return 0;
5024
5025  out:
5026         pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
5027         return -EFAULT;
5028 }
5029
5030 /**
5031  * _base_make_ioc_ready - put controller in READY state
5032  * @ioc: per adapter object
5033  * @type: FORCE_BIG_HAMMER or SOFT_RESET
5034  *
5035  * Returns 0 for success, non-zero for failure.
5036  */
5037 static int
5038 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
5039 {
5040         u32 ioc_state;
5041         int rc;
5042         int count;
5043
5044         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5045             __func__));
5046
5047         if (ioc->pci_error_recovery)
5048                 return 0;
5049
5050         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5051         dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
5052             ioc->name, __func__, ioc_state));
5053
5054         /* if in RESET state, it should move to READY state shortly */
5055         count = 0;
5056         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
5057                 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
5058                     MPI2_IOC_STATE_READY) {
5059                         if (count++ == 10) {
5060                                 pr_err(MPT3SAS_FMT
5061                                         "%s: failed going to ready state (ioc_state=0x%x)\n",
5062                                     ioc->name, __func__, ioc_state);
5063                                 return -EFAULT;
5064                         }
5065                         ssleep(1);
5066                         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5067                 }
5068         }
5069
5070         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
5071                 return 0;
5072
5073         if (ioc_state & MPI2_DOORBELL_USED) {
5074                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
5075                         "unexpected doorbell active!\n",
5076                         ioc->name));
5077                 goto issue_diag_reset;
5078         }
5079
5080         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
5081                 mpt3sas_base_fault_info(ioc, ioc_state &
5082                     MPI2_DOORBELL_DATA_MASK);
5083                 goto issue_diag_reset;
5084         }
5085
5086         if (type == FORCE_BIG_HAMMER)
5087                 goto issue_diag_reset;
5088
5089         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
5090                 if (!(_base_send_ioc_reset(ioc,
5091                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
5092                         return 0;
5093         }
5094
5095  issue_diag_reset:
5096         rc = _base_diag_reset(ioc);
5097         return rc;
5098 }
5099
5100 /**
5101  * _base_make_ioc_operational - put controller in OPERATIONAL state
5102  * @ioc: per adapter object
5103  *
5104  * Returns 0 for success, non-zero for failure.
5105  */
5106 static int
5107 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
5108 {
5109         int r, i, index;
5110         unsigned long   flags;
5111         u32 reply_address;
5112         u16 smid;
5113         struct _tr_list *delayed_tr, *delayed_tr_next;
5114         struct _sc_list *delayed_sc, *delayed_sc_next;
5115         struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
5116         u8 hide_flag;
5117         struct adapter_reply_queue *reply_q;
5118         Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
5119
5120         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5121             __func__));
5122
5123         /* clean the delayed target reset list */
5124         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5125             &ioc->delayed_tr_list, list) {
5126                 list_del(&delayed_tr->list);
5127                 kfree(delayed_tr);
5128         }
5129
5130
5131         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5132             &ioc->delayed_tr_volume_list, list) {
5133                 list_del(&delayed_tr->list);
5134                 kfree(delayed_tr);
5135         }
5136
5137         list_for_each_entry_safe(delayed_sc, delayed_sc_next,
5138             &ioc->delayed_sc_list, list) {
5139                 list_del(&delayed_sc->list);
5140                 kfree(delayed_sc);
5141         }
5142
5143         list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
5144             &ioc->delayed_event_ack_list, list) {
5145                 list_del(&delayed_event_ack->list);
5146                 kfree(delayed_event_ack);
5147         }
5148
5149         /* initialize the scsi lookup free list */
5150         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5151         INIT_LIST_HEAD(&ioc->free_list);
5152         smid = 1;
5153         for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
5154                 INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
5155                 ioc->scsi_lookup[i].cb_idx = 0xFF;
5156                 ioc->scsi_lookup[i].smid = smid;
5157                 ioc->scsi_lookup[i].scmd = NULL;
5158                 ioc->scsi_lookup[i].direct_io = 0;
5159                 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
5160                     &ioc->free_list);
5161         }
5162
5163         /* hi-priority queue */
5164         INIT_LIST_HEAD(&ioc->hpr_free_list);
5165         smid = ioc->hi_priority_smid;
5166         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
5167                 ioc->hpr_lookup[i].cb_idx = 0xFF;
5168                 ioc->hpr_lookup[i].smid = smid;
5169                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
5170                     &ioc->hpr_free_list);
5171         }
5172
5173         /* internal queue */
5174         INIT_LIST_HEAD(&ioc->internal_free_list);
5175         smid = ioc->internal_smid;
5176         for (i = 0; i < ioc->internal_depth; i++, smid++) {
5177                 ioc->internal_lookup[i].cb_idx = 0xFF;
5178                 ioc->internal_lookup[i].smid = smid;
5179                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
5180                     &ioc->internal_free_list);
5181         }
5182
5183         /* chain pool */
5184         INIT_LIST_HEAD(&ioc->free_chain_list);
5185         for (i = 0; i < ioc->chain_depth; i++)
5186                 list_add_tail(&ioc->chain_lookup[i].tracker_list,
5187                     &ioc->free_chain_list);
5188
5189         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5190
5191         /* initialize Reply Free Queue */
5192         for (i = 0, reply_address = (u32)ioc->reply_dma ;
5193             i < ioc->reply_free_queue_depth ; i++, reply_address +=
5194             ioc->reply_sz)
5195                 ioc->reply_free[i] = cpu_to_le32(reply_address);
5196
5197         /* initialize reply queues */
5198         if (ioc->is_driver_loading)
5199                 _base_assign_reply_queues(ioc);
5200
5201         /* initialize Reply Post Free Queue */
5202         index = 0;
5203         reply_post_free_contig = ioc->reply_post[0].reply_post_free;
5204         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5205                 /*
5206                  * If RDPQ is enabled, switch to the next allocation.
5207                  * Otherwise advance within the contiguous region.
5208                  */
5209                 if (ioc->rdpq_array_enable) {
5210                         reply_q->reply_post_free =
5211                                 ioc->reply_post[index++].reply_post_free;
5212                 } else {
5213                         reply_q->reply_post_free = reply_post_free_contig;
5214                         reply_post_free_contig += ioc->reply_post_queue_depth;
5215                 }
5216
5217                 reply_q->reply_post_host_index = 0;
5218                 for (i = 0; i < ioc->reply_post_queue_depth; i++)
5219                         reply_q->reply_post_free[i].Words =
5220                             cpu_to_le64(ULLONG_MAX);
5221                 if (!_base_is_controller_msix_enabled(ioc))
5222                         goto skip_init_reply_post_free_queue;
5223         }
5224  skip_init_reply_post_free_queue:
5225
5226         r = _base_send_ioc_init(ioc);
5227         if (r)
5228                 return r;
5229
5230         /* initialize reply free host index */
5231         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
5232         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
5233
5234         /* initialize reply post host index */
5235         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5236                 if (ioc->combined_reply_queue)
5237                         writel((reply_q->msix_index & 7)<<
5238                            MPI2_RPHI_MSIX_INDEX_SHIFT,
5239                            ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
5240                 else
5241                         writel(reply_q->msix_index <<
5242                                 MPI2_RPHI_MSIX_INDEX_SHIFT,
5243                                 &ioc->chip->ReplyPostHostIndex);
5244
5245                 if (!_base_is_controller_msix_enabled(ioc))
5246                         goto skip_init_reply_post_host_index;
5247         }
5248
5249  skip_init_reply_post_host_index:
5250
5251         _base_unmask_interrupts(ioc);
5252         r = _base_event_notification(ioc);
5253         if (r)
5254                 return r;
5255
5256         _base_static_config_pages(ioc);
5257
5258         if (ioc->is_driver_loading) {
5259
5260                 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
5261                     == 0x80) {
5262                         hide_flag = (u8) (
5263                             le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
5264                             MFG_PAGE10_HIDE_SSDS_MASK);
5265                         if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
5266                                 ioc->mfg_pg10_hide_flag = hide_flag;
5267                 }
5268
5269                 ioc->wait_for_discovery_to_complete =
5270                     _base_determine_wait_on_discovery(ioc);
5271
5272                 return r; /* scan_start and scan_finished support */
5273         }
5274
5275         r = _base_send_port_enable(ioc);
5276         if (r)
5277                 return r;
5278
5279         return r;
5280 }
5281
5282 /**
5283  * mpt3sas_base_free_resources - free resources controller resources
5284  * @ioc: per adapter object
5285  *
5286  * Return nothing.
5287  */
5288 void
5289 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
5290 {
5291         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5292             __func__));
5293
5294         /* synchronizing freeing resource with pci_access_mutex lock */
5295         mutex_lock(&ioc->pci_access_mutex);
5296         if (ioc->chip_phys && ioc->chip) {
5297                 _base_mask_interrupts(ioc);
5298                 ioc->shost_recovery = 1;
5299                 _base_make_ioc_ready(ioc, SOFT_RESET);
5300                 ioc->shost_recovery = 0;
5301         }
5302
5303         mpt3sas_base_unmap_resources(ioc);
5304         mutex_unlock(&ioc->pci_access_mutex);
5305         return;
5306 }
5307
5308 /**
5309  * mpt3sas_base_attach - attach controller instance
5310  * @ioc: per adapter object
5311  *
5312  * Returns 0 for success, non-zero for failure.
5313  */
5314 int
5315 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
5316 {
5317         int r, i;
5318         int cpu_id, last_cpu_id = 0;
5319
5320         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5321             __func__));
5322
5323         /* setup cpu_msix_table */
5324         ioc->cpu_count = num_online_cpus();
5325         for_each_online_cpu(cpu_id)
5326                 last_cpu_id = cpu_id;
5327         ioc->cpu_msix_table_sz = last_cpu_id + 1;
5328         ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
5329         ioc->reply_queue_count = 1;
5330         if (!ioc->cpu_msix_table) {
5331                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
5332                         "allocation for cpu_msix_table failed!!!\n",
5333                         ioc->name));
5334                 r = -ENOMEM;
5335                 goto out_free_resources;
5336         }
5337
5338         if (ioc->is_warpdrive) {
5339                 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
5340                     sizeof(resource_size_t *), GFP_KERNEL);
5341                 if (!ioc->reply_post_host_index) {
5342                         dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
5343                                 "for reply_post_host_index failed!!!\n",
5344                                 ioc->name));
5345                         r = -ENOMEM;
5346                         goto out_free_resources;
5347                 }
5348         }
5349
5350         ioc->rdpq_array_enable_assigned = 0;
5351         ioc->dma_mask = 0;
5352         r = mpt3sas_base_map_resources(ioc);
5353         if (r)
5354                 goto out_free_resources;
5355
5356         pci_set_drvdata(ioc->pdev, ioc->shost);
5357         r = _base_get_ioc_facts(ioc);
5358         if (r)
5359                 goto out_free_resources;
5360
5361         switch (ioc->hba_mpi_version_belonged) {
5362         case MPI2_VERSION:
5363                 ioc->build_sg_scmd = &_base_build_sg_scmd;
5364                 ioc->build_sg = &_base_build_sg;
5365                 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
5366                 break;
5367         case MPI25_VERSION:
5368         case MPI26_VERSION:
5369                 /*
5370                  * In SAS3.0,
5371                  * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
5372                  * Target Status - all require the IEEE formated scatter gather
5373                  * elements.
5374                  */
5375                 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
5376                 ioc->build_sg = &_base_build_sg_ieee;
5377                 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
5378                 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
5379
5380                 break;
5381         }
5382
5383         if (ioc->atomic_desc_capable) {
5384                 ioc->put_smid_default = &_base_put_smid_default_atomic;
5385                 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
5386                 ioc->put_smid_fast_path = &_base_put_smid_fast_path_atomic;
5387                 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority_atomic;
5388         } else {
5389                 ioc->put_smid_default = &_base_put_smid_default;
5390                 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
5391                 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
5392                 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
5393         }
5394
5395
5396         /*
5397          * These function pointers for other requests that don't
5398          * the require IEEE scatter gather elements.
5399          *
5400          * For example Configuration Pages and SAS IOUNIT Control don't.
5401          */
5402         ioc->build_sg_mpi = &_base_build_sg;
5403         ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
5404
5405         r = _base_make_ioc_ready(ioc, SOFT_RESET);
5406         if (r)
5407                 goto out_free_resources;
5408
5409         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
5410             sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
5411         if (!ioc->pfacts) {
5412                 r = -ENOMEM;
5413                 goto out_free_resources;
5414         }
5415
5416         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
5417                 r = _base_get_port_facts(ioc, i);
5418                 if (r)
5419                         goto out_free_resources;
5420         }
5421
5422         r = _base_allocate_memory_pools(ioc);
5423         if (r)
5424                 goto out_free_resources;
5425
5426         init_waitqueue_head(&ioc->reset_wq);
5427
5428         /* allocate memory pd handle bitmask list */
5429         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
5430         if (ioc->facts.MaxDevHandle % 8)
5431                 ioc->pd_handles_sz++;
5432         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
5433             GFP_KERNEL);
5434         if (!ioc->pd_handles) {
5435                 r = -ENOMEM;
5436                 goto out_free_resources;
5437         }
5438         ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
5439             GFP_KERNEL);
5440         if (!ioc->blocking_handles) {
5441                 r = -ENOMEM;
5442                 goto out_free_resources;
5443         }
5444
5445         /* allocate memory for pending OS device add list */
5446         ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
5447         if (ioc->facts.MaxDevHandle % 8)
5448                 ioc->pend_os_device_add_sz++;
5449         ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
5450             GFP_KERNEL);
5451         if (!ioc->pend_os_device_add)
5452                 goto out_free_resources;
5453
5454         ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
5455         ioc->device_remove_in_progress =
5456                 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
5457         if (!ioc->device_remove_in_progress)
5458                 goto out_free_resources;
5459
5460         ioc->fwfault_debug = mpt3sas_fwfault_debug;
5461
5462         /* base internal command bits */
5463         mutex_init(&ioc->base_cmds.mutex);
5464         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5465         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5466
5467         /* port_enable command bits */
5468         ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5469         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5470
5471         /* transport internal command bits */
5472         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5473         ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
5474         mutex_init(&ioc->transport_cmds.mutex);
5475
5476         /* scsih internal command bits */
5477         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5478         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
5479         mutex_init(&ioc->scsih_cmds.mutex);
5480
5481         /* task management internal command bits */
5482         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5483         ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
5484         mutex_init(&ioc->tm_cmds.mutex);
5485
5486         /* config page internal command bits */
5487         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5488         ioc->config_cmds.status = MPT3_CMD_NOT_USED;
5489         mutex_init(&ioc->config_cmds.mutex);
5490
5491         /* ctl module internal command bits */
5492         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5493         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
5494         ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
5495         mutex_init(&ioc->ctl_cmds.mutex);
5496
5497         if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
5498             !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
5499             !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
5500             !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
5501                 r = -ENOMEM;
5502                 goto out_free_resources;
5503         }
5504
5505         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5506                 ioc->event_masks[i] = -1;
5507
5508         /* here we enable the events we care about */
5509         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
5510         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
5511         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
5512         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
5513         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
5514         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
5515         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
5516         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
5517         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
5518         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
5519         _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
5520         if (ioc->hba_mpi_version_belonged == MPI26_VERSION)
5521                 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
5522
5523         r = _base_make_ioc_operational(ioc);
5524         if (r)
5525                 goto out_free_resources;
5526
5527         ioc->non_operational_loop = 0;
5528         ioc->got_task_abort_from_ioctl = 0;
5529         return 0;
5530
5531  out_free_resources:
5532
5533         ioc->remove_host = 1;
5534
5535         mpt3sas_base_free_resources(ioc);
5536         _base_release_memory_pools(ioc);
5537         pci_set_drvdata(ioc->pdev, NULL);
5538         kfree(ioc->cpu_msix_table);
5539         if (ioc->is_warpdrive)
5540                 kfree(ioc->reply_post_host_index);
5541         kfree(ioc->pd_handles);
5542         kfree(ioc->blocking_handles);
5543         kfree(ioc->device_remove_in_progress);
5544         kfree(ioc->pend_os_device_add);
5545         kfree(ioc->tm_cmds.reply);
5546         kfree(ioc->transport_cmds.reply);
5547         kfree(ioc->scsih_cmds.reply);
5548         kfree(ioc->config_cmds.reply);
5549         kfree(ioc->base_cmds.reply);
5550         kfree(ioc->port_enable_cmds.reply);
5551         kfree(ioc->ctl_cmds.reply);
5552         kfree(ioc->ctl_cmds.sense);
5553         kfree(ioc->pfacts);
5554         ioc->ctl_cmds.reply = NULL;
5555         ioc->base_cmds.reply = NULL;
5556         ioc->tm_cmds.reply = NULL;
5557         ioc->scsih_cmds.reply = NULL;
5558         ioc->transport_cmds.reply = NULL;
5559         ioc->config_cmds.reply = NULL;
5560         ioc->pfacts = NULL;
5561         return r;
5562 }
5563
5564
5565 /**
5566  * mpt3sas_base_detach - remove controller instance
5567  * @ioc: per adapter object
5568  *
5569  * Return nothing.
5570  */
5571 void
5572 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
5573 {
5574         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5575             __func__));
5576
5577         mpt3sas_base_stop_watchdog(ioc);
5578         mpt3sas_base_free_resources(ioc);
5579         _base_release_memory_pools(ioc);
5580         pci_set_drvdata(ioc->pdev, NULL);
5581         kfree(ioc->cpu_msix_table);
5582         if (ioc->is_warpdrive)
5583                 kfree(ioc->reply_post_host_index);
5584         kfree(ioc->pd_handles);
5585         kfree(ioc->blocking_handles);
5586         kfree(ioc->device_remove_in_progress);
5587         kfree(ioc->pend_os_device_add);
5588         kfree(ioc->pfacts);
5589         kfree(ioc->ctl_cmds.reply);
5590         kfree(ioc->ctl_cmds.sense);
5591         kfree(ioc->base_cmds.reply);
5592         kfree(ioc->port_enable_cmds.reply);
5593         kfree(ioc->tm_cmds.reply);
5594         kfree(ioc->transport_cmds.reply);
5595         kfree(ioc->scsih_cmds.reply);
5596         kfree(ioc->config_cmds.reply);
5597 }
5598
5599 /**
5600  * _base_reset_handler - reset callback handler (for base)
5601  * @ioc: per adapter object
5602  * @reset_phase: phase
5603  *
5604  * The handler for doing any required cleanup or initialization.
5605  *
5606  * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
5607  * MPT3_IOC_DONE_RESET
5608  *
5609  * Return nothing.
5610  */
5611 static void
5612 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
5613 {
5614         mpt3sas_scsih_reset_handler(ioc, reset_phase);
5615         mpt3sas_ctl_reset_handler(ioc, reset_phase);
5616         switch (reset_phase) {
5617         case MPT3_IOC_PRE_RESET:
5618                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5619                 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
5620                 break;
5621         case MPT3_IOC_AFTER_RESET:
5622                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5623                 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
5624                 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
5625                         ioc->transport_cmds.status |= MPT3_CMD_RESET;
5626                         mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
5627                         complete(&ioc->transport_cmds.done);
5628                 }
5629                 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5630                         ioc->base_cmds.status |= MPT3_CMD_RESET;
5631                         mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
5632                         complete(&ioc->base_cmds.done);
5633                 }
5634                 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5635                         ioc->port_enable_failed = 1;
5636                         ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
5637                         mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
5638                         if (ioc->is_driver_loading) {
5639                                 ioc->start_scan_failed =
5640                                     MPI2_IOCSTATUS_INTERNAL_ERROR;
5641                                 ioc->start_scan = 0;
5642                                 ioc->port_enable_cmds.status =
5643                                     MPT3_CMD_NOT_USED;
5644                         } else
5645                                 complete(&ioc->port_enable_cmds.done);
5646                 }
5647                 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
5648                         ioc->config_cmds.status |= MPT3_CMD_RESET;
5649                         mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
5650                         ioc->config_cmds.smid = USHRT_MAX;
5651                         complete(&ioc->config_cmds.done);
5652                 }
5653                 break;
5654         case MPT3_IOC_DONE_RESET:
5655                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5656                         "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
5657                 break;
5658         }
5659 }
5660
5661 /**
5662  * _wait_for_commands_to_complete - reset controller
5663  * @ioc: Pointer to MPT_ADAPTER structure
5664  *
5665  * This function waiting(3s) for all pending commands to complete
5666  * prior to putting controller in reset.
5667  */
5668 static void
5669 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
5670 {
5671         u32 ioc_state;
5672         unsigned long flags;
5673         u16 i;
5674
5675         ioc->pending_io_count = 0;
5676
5677         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5678         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
5679                 return;
5680
5681         /* pending command count */
5682         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5683         for (i = 0; i < ioc->scsiio_depth; i++)
5684                 if (ioc->scsi_lookup[i].cb_idx != 0xFF)
5685                         ioc->pending_io_count++;
5686         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5687
5688         if (!ioc->pending_io_count)
5689                 return;
5690
5691         /* wait for pending commands to complete */
5692         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
5693 }
5694
5695 /**
5696  * mpt3sas_base_hard_reset_handler - reset controller
5697  * @ioc: Pointer to MPT_ADAPTER structure
5698  * @type: FORCE_BIG_HAMMER or SOFT_RESET
5699  *
5700  * Returns 0 for success, non-zero for failure.
5701  */
5702 int
5703 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
5704         enum reset_type type)
5705 {
5706         int r;
5707         unsigned long flags;
5708         u32 ioc_state;
5709         u8 is_fault = 0, is_trigger = 0;
5710
5711         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
5712             __func__));
5713
5714         if (ioc->pci_error_recovery) {
5715                 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
5716                     ioc->name, __func__);
5717                 r = 0;
5718                 goto out_unlocked;
5719         }
5720
5721         if (mpt3sas_fwfault_debug)
5722                 mpt3sas_halt_firmware(ioc);
5723
5724         /* wait for an active reset in progress to complete */
5725         if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
5726                 do {
5727                         ssleep(1);
5728                 } while (ioc->shost_recovery == 1);
5729                 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5730                     __func__));
5731                 return ioc->ioc_reset_in_progress_status;
5732         }
5733
5734         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5735         ioc->shost_recovery = 1;
5736         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5737
5738         if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5739             MPT3_DIAG_BUFFER_IS_REGISTERED) &&
5740             (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5741             MPT3_DIAG_BUFFER_IS_RELEASED))) {
5742                 is_trigger = 1;
5743                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5744                 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
5745                         is_fault = 1;
5746         }
5747         _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
5748         _wait_for_commands_to_complete(ioc);
5749         _base_mask_interrupts(ioc);
5750         r = _base_make_ioc_ready(ioc, type);
5751         if (r)
5752                 goto out;
5753         _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
5754
5755         /* If this hard reset is called while port enable is active, then
5756          * there is no reason to call make_ioc_operational
5757          */
5758         if (ioc->is_driver_loading && ioc->port_enable_failed) {
5759                 ioc->remove_host = 1;
5760                 r = -EFAULT;
5761                 goto out;
5762         }
5763         r = _base_get_ioc_facts(ioc);
5764         if (r)
5765                 goto out;
5766
5767         if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5768                 panic("%s: Issue occurred with flashing controller firmware."
5769                       "Please reboot the system and ensure that the correct"
5770                       " firmware version is running\n", ioc->name);
5771
5772         r = _base_make_ioc_operational(ioc);
5773         if (!r)
5774                 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5775
5776  out:
5777         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5778             ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5779
5780         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5781         ioc->ioc_reset_in_progress_status = r;
5782         ioc->shost_recovery = 0;
5783         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5784         ioc->ioc_reset_count++;
5785         mutex_unlock(&ioc->reset_in_progress_mutex);
5786
5787  out_unlocked:
5788         if ((r == 0) && is_trigger) {
5789                 if (is_fault)
5790                         mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5791                 else
5792                         mpt3sas_trigger_master(ioc,
5793                             MASTER_TRIGGER_ADAPTER_RESET);
5794         }
5795         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5796             __func__));
5797         return r;
5798 }