Merge branch 'ib/5.17-cros-ec-keyb' into next
[platform/kernel/linux-starfive.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 #include <linux/aer.h>
64
65
66 #include "mpt3sas_base.h"
67
68 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
69
70
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72
73  /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH     30000
75 #define MAX_CHAIN_DEPTH         100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95         " max msix vectors");
96
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100         "irq poll weight (default= one fourth of HBA queue depth)");
101
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104         " enable detection of firmware fault and halt firmware - (default=0)");
105
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109         "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110         "0 - balanced: high iops mode is enabled &\n\t\t"
111         "interrupt coalescing is enabled only on high iops queues,\n\t\t"
112         "1 - iops: high iops mode is disabled &\n\t\t"
113         "interrupt coalescing is enabled on all queues,\n\t\t"
114         "2 - latency: high iops mode is disabled &\n\t\t"
115         "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116         "\t\tdefault - default perf_mode is 'balanced'"
117         );
118
119 static int poll_queues;
120 module_param(poll_queues, int, 0444);
121 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t"
122         "This parameter is effective only if host_tagset_enable=1. &\n\t\t"
123         "when poll_queues are enabled then &\n\t\t"
124         "perf_mode is set to latency mode. &\n\t\t"
125         );
126
127 enum mpt3sas_perf_mode {
128         MPT_PERF_MODE_DEFAULT   = -1,
129         MPT_PERF_MODE_BALANCED  = 0,
130         MPT_PERF_MODE_IOPS      = 1,
131         MPT_PERF_MODE_LATENCY   = 2,
132 };
133
134 static int
135 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
136                 u32 ioc_state, int timeout);
137 static int
138 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
139 static void
140 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
141
142 /**
143  * mpt3sas_base_check_cmd_timeout - Function
144  *              to check timeout and command termination due
145  *              to Host reset.
146  *
147  * @ioc:        per adapter object.
148  * @status:     Status of issued command.
149  * @mpi_request:mf request pointer.
150  * @sz:         size of buffer.
151  *
152  * Return: 1/0 Reset to be done or Not
153  */
154 u8
155 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
156                 u8 status, void *mpi_request, int sz)
157 {
158         u8 issue_reset = 0;
159
160         if (!(status & MPT3_CMD_RESET))
161                 issue_reset = 1;
162
163         ioc_err(ioc, "Command %s\n",
164                 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
165         _debug_dump_mf(mpi_request, sz);
166
167         return issue_reset;
168 }
169
170 /**
171  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
172  * @val: ?
173  * @kp: ?
174  *
175  * Return: ?
176  */
177 static int
178 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
179 {
180         int ret = param_set_int(val, kp);
181         struct MPT3SAS_ADAPTER *ioc;
182
183         if (ret)
184                 return ret;
185
186         /* global ioc spinlock to protect controller list on list operations */
187         pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
188         spin_lock(&gioc_lock);
189         list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
190                 ioc->fwfault_debug = mpt3sas_fwfault_debug;
191         spin_unlock(&gioc_lock);
192         return 0;
193 }
194 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
195         param_get_int, &mpt3sas_fwfault_debug, 0644);
196
197 /**
198  * _base_readl_aero - retry readl for max three times.
199  * @addr: MPT Fusion system interface register address
200  *
201  * Retry the readl() for max three times if it gets zero value
202  * while reading the system interface register.
203  */
204 static inline u32
205 _base_readl_aero(const volatile void __iomem *addr)
206 {
207         u32 i = 0, ret_val;
208
209         do {
210                 ret_val = readl(addr);
211                 i++;
212         } while (ret_val == 0 && i < 3);
213
214         return ret_val;
215 }
216
217 static inline u32
218 _base_readl(const volatile void __iomem *addr)
219 {
220         return readl(addr);
221 }
222
223 /**
224  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
225  *                                in BAR0 space.
226  *
227  * @ioc: per adapter object
228  * @reply: reply message frame(lower 32bit addr)
229  * @index: System request message index.
230  */
231 static void
232 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
233                 u32 index)
234 {
235         /*
236          * 256 is offset within sys register.
237          * 256 offset MPI frame starts. Max MPI frame supported is 32.
238          * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
239          */
240         u16 cmd_credit = ioc->facts.RequestCredit + 1;
241         void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
242                         MPI_FRAME_START_OFFSET +
243                         (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
244
245         writel(reply, reply_free_iomem);
246 }
247
248 /**
249  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
250  *                              to system/BAR0 region.
251  *
252  * @dst_iomem: Pointer to the destination location in BAR0 space.
253  * @src: Pointer to the Source data.
254  * @size: Size of data to be copied.
255  */
256 static void
257 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
258 {
259         int i;
260         u32 *src_virt_mem = (u32 *)src;
261
262         for (i = 0; i < size/4; i++)
263                 writel((u32)src_virt_mem[i],
264                                 (void __iomem *)dst_iomem + (i * 4));
265 }
266
267 /**
268  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
269  *
270  * @dst_iomem: Pointer to the destination location in BAR0 space.
271  * @src: Pointer to the Source data.
272  * @size: Size of data to be copied.
273  */
274 static void
275 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
276 {
277         int i;
278         u32 *src_virt_mem = (u32 *)(src);
279
280         for (i = 0; i < size/4; i++)
281                 writel((u32)src_virt_mem[i],
282                         (void __iomem *)dst_iomem + (i * 4));
283 }
284
285 /**
286  * _base_get_chain - Calculates and Returns virtual chain address
287  *                       for the provided smid in BAR0 space.
288  *
289  * @ioc: per adapter object
290  * @smid: system request message index
291  * @sge_chain_count: Scatter gather chain count.
292  *
293  * Return: the chain address.
294  */
295 static inline void __iomem*
296 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
297                 u8 sge_chain_count)
298 {
299         void __iomem *base_chain, *chain_virt;
300         u16 cmd_credit = ioc->facts.RequestCredit + 1;
301
302         base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
303                 (cmd_credit * ioc->request_sz) +
304                 REPLY_FREE_POOL_SIZE;
305         chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
306                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
307         return chain_virt;
308 }
309
310 /**
311  * _base_get_chain_phys - Calculates and Returns physical address
312  *                      in BAR0 for scatter gather chains, for
313  *                      the provided smid.
314  *
315  * @ioc: per adapter object
316  * @smid: system request message index
317  * @sge_chain_count: Scatter gather chain count.
318  *
319  * Return: Physical chain address.
320  */
321 static inline phys_addr_t
322 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
323                 u8 sge_chain_count)
324 {
325         phys_addr_t base_chain_phys, chain_phys;
326         u16 cmd_credit = ioc->facts.RequestCredit + 1;
327
328         base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
329                 (cmd_credit * ioc->request_sz) +
330                 REPLY_FREE_POOL_SIZE;
331         chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
332                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
333         return chain_phys;
334 }
335
336 /**
337  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
338  *                      buffer address for the provided smid.
339  *                      (Each smid can have 64K starts from 17024)
340  *
341  * @ioc: per adapter object
342  * @smid: system request message index
343  *
344  * Return: Pointer to buffer location in BAR0.
345  */
346
347 static void __iomem *
348 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
349 {
350         u16 cmd_credit = ioc->facts.RequestCredit + 1;
351         // Added extra 1 to reach end of chain.
352         void __iomem *chain_end = _base_get_chain(ioc,
353                         cmd_credit + 1,
354                         ioc->facts.MaxChainDepth);
355         return chain_end + (smid * 64 * 1024);
356 }
357
358 /**
359  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
360  *              Host buffer Physical address for the provided smid.
361  *              (Each smid can have 64K starts from 17024)
362  *
363  * @ioc: per adapter object
364  * @smid: system request message index
365  *
366  * Return: Pointer to buffer location in BAR0.
367  */
368 static phys_addr_t
369 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
370 {
371         u16 cmd_credit = ioc->facts.RequestCredit + 1;
372         phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
373                         cmd_credit + 1,
374                         ioc->facts.MaxChainDepth);
375         return chain_end_phys + (smid * 64 * 1024);
376 }
377
378 /**
379  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
380  *                      lookup list and Provides chain_buffer
381  *                      address for the matching dma address.
382  *                      (Each smid can have 64K starts from 17024)
383  *
384  * @ioc: per adapter object
385  * @chain_buffer_dma: Chain buffer dma address.
386  *
387  * Return: Pointer to chain buffer. Or Null on Failure.
388  */
389 static void *
390 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
391                 dma_addr_t chain_buffer_dma)
392 {
393         u16 index, j;
394         struct chain_tracker *ct;
395
396         for (index = 0; index < ioc->scsiio_depth; index++) {
397                 for (j = 0; j < ioc->chains_needed_per_io; j++) {
398                         ct = &ioc->chain_lookup[index].chains_per_smid[j];
399                         if (ct && ct->chain_buffer_dma == chain_buffer_dma)
400                                 return ct->chain_buffer;
401                 }
402         }
403         ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
404         return NULL;
405 }
406
407 /**
408  * _clone_sg_entries -  MPI EP's scsiio and config requests
409  *                      are handled here. Base function for
410  *                      double buffering, before submitting
411  *                      the requests.
412  *
413  * @ioc: per adapter object.
414  * @mpi_request: mf request pointer.
415  * @smid: system request message index.
416  */
417 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
418                 void *mpi_request, u16 smid)
419 {
420         Mpi2SGESimple32_t *sgel, *sgel_next;
421         u32  sgl_flags, sge_chain_count = 0;
422         bool is_write = false;
423         u16 i = 0;
424         void __iomem *buffer_iomem;
425         phys_addr_t buffer_iomem_phys;
426         void __iomem *buff_ptr;
427         phys_addr_t buff_ptr_phys;
428         void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
429         void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
430         phys_addr_t dst_addr_phys;
431         MPI2RequestHeader_t *request_hdr;
432         struct scsi_cmnd *scmd;
433         struct scatterlist *sg_scmd = NULL;
434         int is_scsiio_req = 0;
435
436         request_hdr = (MPI2RequestHeader_t *) mpi_request;
437
438         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
439                 Mpi25SCSIIORequest_t *scsiio_request =
440                         (Mpi25SCSIIORequest_t *)mpi_request;
441                 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
442                 is_scsiio_req = 1;
443         } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
444                 Mpi2ConfigRequest_t  *config_req =
445                         (Mpi2ConfigRequest_t *)mpi_request;
446                 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
447         } else
448                 return;
449
450         /* From smid we can get scsi_cmd, once we have sg_scmd,
451          * we just need to get sg_virt and sg_next to get virtual
452          * address associated with sgel->Address.
453          */
454
455         if (is_scsiio_req) {
456                 /* Get scsi_cmd using smid */
457                 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
458                 if (scmd == NULL) {
459                         ioc_err(ioc, "scmd is NULL\n");
460                         return;
461                 }
462
463                 /* Get sg_scmd from scmd provided */
464                 sg_scmd = scsi_sglist(scmd);
465         }
466
467         /*
468          * 0 - 255      System register
469          * 256 - 4352   MPI Frame. (This is based on maxCredit 32)
470          * 4352 - 4864  Reply_free pool (512 byte is reserved
471          *              considering maxCredit 32. Reply need extra
472          *              room, for mCPU case kept four times of
473          *              maxCredit).
474          * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
475          *              128 byte size = 12288)
476          * 17152 - x    Host buffer mapped with smid.
477          *              (Each smid can have 64K Max IO.)
478          * BAR0+Last 1K MSIX Addr and Data
479          * Total size in use 2113664 bytes of 4MB BAR0
480          */
481
482         buffer_iomem = _base_get_buffer_bar0(ioc, smid);
483         buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
484
485         buff_ptr = buffer_iomem;
486         buff_ptr_phys = buffer_iomem_phys;
487         WARN_ON(buff_ptr_phys > U32_MAX);
488
489         if (le32_to_cpu(sgel->FlagsLength) &
490                         (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
491                 is_write = true;
492
493         for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
494
495                 sgl_flags =
496                     (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
497
498                 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
499                 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
500                         /*
501                          * Helper function which on passing
502                          * chain_buffer_dma returns chain_buffer. Get
503                          * the virtual address for sgel->Address
504                          */
505                         sgel_next =
506                                 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
507                                                 le32_to_cpu(sgel->Address));
508                         if (sgel_next == NULL)
509                                 return;
510                         /*
511                          * This is coping 128 byte chain
512                          * frame (not a host buffer)
513                          */
514                         dst_chain_addr[sge_chain_count] =
515                                 _base_get_chain(ioc,
516                                         smid, sge_chain_count);
517                         src_chain_addr[sge_chain_count] =
518                                                 (void *) sgel_next;
519                         dst_addr_phys = _base_get_chain_phys(ioc,
520                                                 smid, sge_chain_count);
521                         WARN_ON(dst_addr_phys > U32_MAX);
522                         sgel->Address =
523                                 cpu_to_le32(lower_32_bits(dst_addr_phys));
524                         sgel = sgel_next;
525                         sge_chain_count++;
526                         break;
527                 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
528                         if (is_write) {
529                                 if (is_scsiio_req) {
530                                         _base_clone_to_sys_mem(buff_ptr,
531                                             sg_virt(sg_scmd),
532                                             (le32_to_cpu(sgel->FlagsLength) &
533                                             0x00ffffff));
534                                         /*
535                                          * FIXME: this relies on a a zero
536                                          * PCI mem_offset.
537                                          */
538                                         sgel->Address =
539                                             cpu_to_le32((u32)buff_ptr_phys);
540                                 } else {
541                                         _base_clone_to_sys_mem(buff_ptr,
542                                             ioc->config_vaddr,
543                                             (le32_to_cpu(sgel->FlagsLength) &
544                                             0x00ffffff));
545                                         sgel->Address =
546                                             cpu_to_le32((u32)buff_ptr_phys);
547                                 }
548                         }
549                         buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
550                             0x00ffffff);
551                         buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
552                             0x00ffffff);
553                         if ((le32_to_cpu(sgel->FlagsLength) &
554                             (MPI2_SGE_FLAGS_END_OF_BUFFER
555                                         << MPI2_SGE_FLAGS_SHIFT)))
556                                 goto eob_clone_chain;
557                         else {
558                                 /*
559                                  * Every single element in MPT will have
560                                  * associated sg_next. Better to sanity that
561                                  * sg_next is not NULL, but it will be a bug
562                                  * if it is null.
563                                  */
564                                 if (is_scsiio_req) {
565                                         sg_scmd = sg_next(sg_scmd);
566                                         if (sg_scmd)
567                                                 sgel++;
568                                         else
569                                                 goto eob_clone_chain;
570                                 }
571                         }
572                         break;
573                 }
574         }
575
576 eob_clone_chain:
577         for (i = 0; i < sge_chain_count; i++) {
578                 if (is_scsiio_req)
579                         _base_clone_to_sys_mem(dst_chain_addr[i],
580                                 src_chain_addr[i], ioc->request_sz);
581         }
582 }
583
584 /**
585  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
586  * @arg: input argument, used to derive ioc
587  *
588  * Return:
589  * 0 if controller is removed from pci subsystem.
590  * -1 for other case.
591  */
592 static int mpt3sas_remove_dead_ioc_func(void *arg)
593 {
594         struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
595         struct pci_dev *pdev;
596
597         if (!ioc)
598                 return -1;
599
600         pdev = ioc->pdev;
601         if (!pdev)
602                 return -1;
603         pci_stop_and_remove_bus_device_locked(pdev);
604         return 0;
605 }
606
607 /**
608  * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
609  * @ioc: Per Adapter Object
610  *
611  * Return: nothing.
612  */
613 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
614 {
615         Mpi26IoUnitControlRequest_t *mpi_request;
616         Mpi26IoUnitControlReply_t *mpi_reply;
617         u16 smid;
618         ktime_t current_time;
619         u64 TimeStamp = 0;
620         u8 issue_reset = 0;
621
622         mutex_lock(&ioc->scsih_cmds.mutex);
623         if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
624                 ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
625                 goto out;
626         }
627         ioc->scsih_cmds.status = MPT3_CMD_PENDING;
628         smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
629         if (!smid) {
630                 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
631                 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
632                 goto out;
633         }
634         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
635         ioc->scsih_cmds.smid = smid;
636         memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
637         mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
638         mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
639         mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
640         current_time = ktime_get_real();
641         TimeStamp = ktime_to_ms(current_time);
642         mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32);
643         mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
644         init_completion(&ioc->scsih_cmds.done);
645         ioc->put_smid_default(ioc, smid);
646         dinitprintk(ioc, ioc_info(ioc,
647             "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
648             TimeStamp));
649         wait_for_completion_timeout(&ioc->scsih_cmds.done,
650                 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
651         if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
652                 mpt3sas_check_cmd_timeout(ioc,
653                     ioc->scsih_cmds.status, mpi_request,
654                     sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
655                 goto issue_host_reset;
656         }
657         if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
658                 mpi_reply = ioc->scsih_cmds.reply;
659                 dinitprintk(ioc, ioc_info(ioc,
660                     "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
661                     le16_to_cpu(mpi_reply->IOCStatus),
662                     le32_to_cpu(mpi_reply->IOCLogInfo)));
663         }
664 issue_host_reset:
665         if (issue_reset)
666                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
667         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
668 out:
669         mutex_unlock(&ioc->scsih_cmds.mutex);
670 }
671
672 /**
673  * _base_fault_reset_work - workq handling ioc fault conditions
674  * @work: input argument, used to derive ioc
675  *
676  * Context: sleep.
677  */
678 static void
679 _base_fault_reset_work(struct work_struct *work)
680 {
681         struct MPT3SAS_ADAPTER *ioc =
682             container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
683         unsigned long    flags;
684         u32 doorbell;
685         int rc;
686         struct task_struct *p;
687
688
689         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
690         if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
691                         ioc->pci_error_recovery)
692                 goto rearm_timer;
693         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
694
695         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
696         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
697                 ioc_err(ioc, "SAS host is non-operational !!!!\n");
698
699                 /* It may be possible that EEH recovery can resolve some of
700                  * pci bus failure issues rather removing the dead ioc function
701                  * by considering controller is in a non-operational state. So
702                  * here priority is given to the EEH recovery. If it doesn't
703                  * not resolve this issue, mpt3sas driver will consider this
704                  * controller to non-operational state and remove the dead ioc
705                  * function.
706                  */
707                 if (ioc->non_operational_loop++ < 5) {
708                         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
709                                                          flags);
710                         goto rearm_timer;
711                 }
712
713                 /*
714                  * Call _scsih_flush_pending_cmds callback so that we flush all
715                  * pending commands back to OS. This call is required to avoid
716                  * deadlock at block layer. Dead IOC will fail to do diag reset,
717                  * and this call is safe since dead ioc will never return any
718                  * command back from HW.
719                  */
720                 mpt3sas_base_pause_mq_polling(ioc);
721                 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
722                 /*
723                  * Set remove_host flag early since kernel thread will
724                  * take some time to execute.
725                  */
726                 ioc->remove_host = 1;
727                 /*Remove the Dead Host */
728                 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
729                     "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
730                 if (IS_ERR(p))
731                         ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
732                                 __func__);
733                 else
734                         ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
735                                 __func__);
736                 return; /* don't rearm timer */
737         }
738
739         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
740                 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
741                     ioc->manu_pg11.CoreDumpTOSec :
742                     MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
743
744                 timeout /= (FAULT_POLLING_INTERVAL/1000);
745
746                 if (ioc->ioc_coredump_loop == 0) {
747                         mpt3sas_print_coredump_info(ioc,
748                             doorbell & MPI2_DOORBELL_DATA_MASK);
749                         /* do not accept any IOs and disable the interrupts */
750                         spin_lock_irqsave(
751                             &ioc->ioc_reset_in_progress_lock, flags);
752                         ioc->shost_recovery = 1;
753                         spin_unlock_irqrestore(
754                             &ioc->ioc_reset_in_progress_lock, flags);
755                         mpt3sas_base_mask_interrupts(ioc);
756                         mpt3sas_base_pause_mq_polling(ioc);
757                         _base_clear_outstanding_commands(ioc);
758                 }
759
760                 ioc_info(ioc, "%s: CoreDump loop %d.",
761                     __func__, ioc->ioc_coredump_loop);
762
763                 /* Wait until CoreDump completes or times out */
764                 if (ioc->ioc_coredump_loop++ < timeout) {
765                         spin_lock_irqsave(
766                             &ioc->ioc_reset_in_progress_lock, flags);
767                         goto rearm_timer;
768                 }
769         }
770
771         if (ioc->ioc_coredump_loop) {
772                 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
773                         ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
774                             __func__, ioc->ioc_coredump_loop);
775                 else
776                         ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
777                             __func__, ioc->ioc_coredump_loop);
778                 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
779         }
780         ioc->non_operational_loop = 0;
781         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
782                 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
783                 ioc_warn(ioc, "%s: hard reset: %s\n",
784                          __func__, rc == 0 ? "success" : "failed");
785                 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
786                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
787                         mpt3sas_print_fault_code(ioc, doorbell &
788                             MPI2_DOORBELL_DATA_MASK);
789                 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
790                     MPI2_IOC_STATE_COREDUMP)
791                         mpt3sas_print_coredump_info(ioc, doorbell &
792                             MPI2_DOORBELL_DATA_MASK);
793                 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
794                     MPI2_IOC_STATE_OPERATIONAL)
795                         return; /* don't rearm timer */
796         }
797         ioc->ioc_coredump_loop = 0;
798         if (ioc->time_sync_interval &&
799             ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
800                 ioc->timestamp_update_count = 0;
801                 _base_sync_drv_fw_timestamp(ioc);
802         }
803         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
804  rearm_timer:
805         if (ioc->fault_reset_work_q)
806                 queue_delayed_work(ioc->fault_reset_work_q,
807                     &ioc->fault_reset_work,
808                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
809         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
810 }
811
812 /**
813  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
814  * @ioc: per adapter object
815  *
816  * Context: sleep.
817  */
818 void
819 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
820 {
821         unsigned long    flags;
822
823         if (ioc->fault_reset_work_q)
824                 return;
825
826         ioc->timestamp_update_count = 0;
827         /* initialize fault polling */
828
829         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
830         snprintf(ioc->fault_reset_work_q_name,
831             sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
832             ioc->driver_name, ioc->id);
833         ioc->fault_reset_work_q =
834                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
835         if (!ioc->fault_reset_work_q) {
836                 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
837                 return;
838         }
839         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
840         if (ioc->fault_reset_work_q)
841                 queue_delayed_work(ioc->fault_reset_work_q,
842                     &ioc->fault_reset_work,
843                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
844         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
845 }
846
847 /**
848  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
849  * @ioc: per adapter object
850  *
851  * Context: sleep.
852  */
853 void
854 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
855 {
856         unsigned long flags;
857         struct workqueue_struct *wq;
858
859         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
860         wq = ioc->fault_reset_work_q;
861         ioc->fault_reset_work_q = NULL;
862         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
863         if (wq) {
864                 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
865                         flush_workqueue(wq);
866                 destroy_workqueue(wq);
867         }
868 }
869
870 /**
871  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
872  * @ioc: per adapter object
873  * @fault_code: fault code
874  */
875 void
876 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
877 {
878         ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
879 }
880
881 /**
882  * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
883  * @ioc: per adapter object
884  * @fault_code: fault code
885  *
886  * Return: nothing.
887  */
888 void
889 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
890 {
891         ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
892 }
893
894 /**
895  * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
896  * completes or times out
897  * @ioc: per adapter object
898  * @caller: caller function name
899  *
900  * Return: 0 for success, non-zero for failure.
901  */
902 int
903 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
904                 const char *caller)
905 {
906         u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
907                         ioc->manu_pg11.CoreDumpTOSec :
908                         MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
909
910         int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
911                                         timeout);
912
913         if (ioc_state)
914                 ioc_err(ioc,
915                     "%s: CoreDump timed out. (ioc_state=0x%x)\n",
916                     caller, ioc_state);
917         else
918                 ioc_info(ioc,
919                     "%s: CoreDump completed. (ioc_state=0x%x)\n",
920                     caller, ioc_state);
921
922         return ioc_state;
923 }
924
925 /**
926  * mpt3sas_halt_firmware - halt's mpt controller firmware
927  * @ioc: per adapter object
928  *
929  * For debugging timeout related issues.  Writing 0xCOFFEE00
930  * to the doorbell register will halt controller firmware. With
931  * the purpose to stop both driver and firmware, the enduser can
932  * obtain a ring buffer from controller UART.
933  */
934 void
935 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
936 {
937         u32 doorbell;
938
939         if (!ioc->fwfault_debug)
940                 return;
941
942         dump_stack();
943
944         doorbell = ioc->base_readl(&ioc->chip->Doorbell);
945         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
946                 mpt3sas_print_fault_code(ioc, doorbell &
947                     MPI2_DOORBELL_DATA_MASK);
948         } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
949             MPI2_IOC_STATE_COREDUMP) {
950                 mpt3sas_print_coredump_info(ioc, doorbell &
951                     MPI2_DOORBELL_DATA_MASK);
952         } else {
953                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
954                 ioc_err(ioc, "Firmware is halted due to command timeout\n");
955         }
956
957         if (ioc->fwfault_debug == 2)
958                 for (;;)
959                         ;
960         else
961                 panic("panic in %s\n", __func__);
962 }
963
964 /**
965  * _base_sas_ioc_info - verbose translation of the ioc status
966  * @ioc: per adapter object
967  * @mpi_reply: reply mf payload returned from firmware
968  * @request_hdr: request mf
969  */
970 static void
971 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
972         MPI2RequestHeader_t *request_hdr)
973 {
974         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
975             MPI2_IOCSTATUS_MASK;
976         char *desc = NULL;
977         u16 frame_sz;
978         char *func_str = NULL;
979
980         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
981         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
982             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
983             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
984                 return;
985
986         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
987                 return;
988         /*
989          * Older Firmware version doesn't support driver trigger pages.
990          * So, skip displaying 'config invalid type' type
991          * of error message.
992          */
993         if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
994                 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
995
996                 if ((rqst->ExtPageType ==
997                     MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
998                     !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
999                         return;
1000                 }
1001         }
1002
1003         switch (ioc_status) {
1004
1005 /****************************************************************************
1006 *  Common IOCStatus values for all replies
1007 ****************************************************************************/
1008
1009         case MPI2_IOCSTATUS_INVALID_FUNCTION:
1010                 desc = "invalid function";
1011                 break;
1012         case MPI2_IOCSTATUS_BUSY:
1013                 desc = "busy";
1014                 break;
1015         case MPI2_IOCSTATUS_INVALID_SGL:
1016                 desc = "invalid sgl";
1017                 break;
1018         case MPI2_IOCSTATUS_INTERNAL_ERROR:
1019                 desc = "internal error";
1020                 break;
1021         case MPI2_IOCSTATUS_INVALID_VPID:
1022                 desc = "invalid vpid";
1023                 break;
1024         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1025                 desc = "insufficient resources";
1026                 break;
1027         case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1028                 desc = "insufficient power";
1029                 break;
1030         case MPI2_IOCSTATUS_INVALID_FIELD:
1031                 desc = "invalid field";
1032                 break;
1033         case MPI2_IOCSTATUS_INVALID_STATE:
1034                 desc = "invalid state";
1035                 break;
1036         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1037                 desc = "op state not supported";
1038                 break;
1039
1040 /****************************************************************************
1041 *  Config IOCStatus values
1042 ****************************************************************************/
1043
1044         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1045                 desc = "config invalid action";
1046                 break;
1047         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1048                 desc = "config invalid type";
1049                 break;
1050         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1051                 desc = "config invalid page";
1052                 break;
1053         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1054                 desc = "config invalid data";
1055                 break;
1056         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1057                 desc = "config no defaults";
1058                 break;
1059         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1060                 desc = "config cant commit";
1061                 break;
1062
1063 /****************************************************************************
1064 *  SCSI IO Reply
1065 ****************************************************************************/
1066
1067         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1068         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1069         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1070         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1071         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1072         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1073         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1074         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1075         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1076         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1077         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1078         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1079                 break;
1080
1081 /****************************************************************************
1082 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
1083 ****************************************************************************/
1084
1085         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1086                 desc = "eedp guard error";
1087                 break;
1088         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1089                 desc = "eedp ref tag error";
1090                 break;
1091         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1092                 desc = "eedp app tag error";
1093                 break;
1094
1095 /****************************************************************************
1096 *  SCSI Target values
1097 ****************************************************************************/
1098
1099         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1100                 desc = "target invalid io index";
1101                 break;
1102         case MPI2_IOCSTATUS_TARGET_ABORTED:
1103                 desc = "target aborted";
1104                 break;
1105         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1106                 desc = "target no conn retryable";
1107                 break;
1108         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1109                 desc = "target no connection";
1110                 break;
1111         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1112                 desc = "target xfer count mismatch";
1113                 break;
1114         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1115                 desc = "target data offset error";
1116                 break;
1117         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1118                 desc = "target too much write data";
1119                 break;
1120         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1121                 desc = "target iu too short";
1122                 break;
1123         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1124                 desc = "target ack nak timeout";
1125                 break;
1126         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1127                 desc = "target nak received";
1128                 break;
1129
1130 /****************************************************************************
1131 *  Serial Attached SCSI values
1132 ****************************************************************************/
1133
1134         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1135                 desc = "smp request failed";
1136                 break;
1137         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1138                 desc = "smp data overrun";
1139                 break;
1140
1141 /****************************************************************************
1142 *  Diagnostic Buffer Post / Diagnostic Release values
1143 ****************************************************************************/
1144
1145         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1146                 desc = "diagnostic released";
1147                 break;
1148         default:
1149                 break;
1150         }
1151
1152         if (!desc)
1153                 return;
1154
1155         switch (request_hdr->Function) {
1156         case MPI2_FUNCTION_CONFIG:
1157                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1158                 func_str = "config_page";
1159                 break;
1160         case MPI2_FUNCTION_SCSI_TASK_MGMT:
1161                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1162                 func_str = "task_mgmt";
1163                 break;
1164         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1165                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1166                 func_str = "sas_iounit_ctl";
1167                 break;
1168         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1169                 frame_sz = sizeof(Mpi2SepRequest_t);
1170                 func_str = "enclosure";
1171                 break;
1172         case MPI2_FUNCTION_IOC_INIT:
1173                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
1174                 func_str = "ioc_init";
1175                 break;
1176         case MPI2_FUNCTION_PORT_ENABLE:
1177                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
1178                 func_str = "port_enable";
1179                 break;
1180         case MPI2_FUNCTION_SMP_PASSTHROUGH:
1181                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1182                 func_str = "smp_passthru";
1183                 break;
1184         case MPI2_FUNCTION_NVME_ENCAPSULATED:
1185                 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1186                     ioc->sge_size;
1187                 func_str = "nvme_encapsulated";
1188                 break;
1189         default:
1190                 frame_sz = 32;
1191                 func_str = "unknown";
1192                 break;
1193         }
1194
1195         ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1196                  desc, ioc_status, request_hdr, func_str);
1197
1198         _debug_dump_mf(request_hdr, frame_sz/4);
1199 }
1200
1201 /**
1202  * _base_display_event_data - verbose translation of firmware asyn events
1203  * @ioc: per adapter object
1204  * @mpi_reply: reply mf payload returned from firmware
1205  */
1206 static void
1207 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1208         Mpi2EventNotificationReply_t *mpi_reply)
1209 {
1210         char *desc = NULL;
1211         u16 event;
1212
1213         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1214                 return;
1215
1216         event = le16_to_cpu(mpi_reply->Event);
1217
1218         switch (event) {
1219         case MPI2_EVENT_LOG_DATA:
1220                 desc = "Log Data";
1221                 break;
1222         case MPI2_EVENT_STATE_CHANGE:
1223                 desc = "Status Change";
1224                 break;
1225         case MPI2_EVENT_HARD_RESET_RECEIVED:
1226                 desc = "Hard Reset Received";
1227                 break;
1228         case MPI2_EVENT_EVENT_CHANGE:
1229                 desc = "Event Change";
1230                 break;
1231         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1232                 desc = "Device Status Change";
1233                 break;
1234         case MPI2_EVENT_IR_OPERATION_STATUS:
1235                 if (!ioc->hide_ir_msg)
1236                         desc = "IR Operation Status";
1237                 break;
1238         case MPI2_EVENT_SAS_DISCOVERY:
1239         {
1240                 Mpi2EventDataSasDiscovery_t *event_data =
1241                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1242                 ioc_info(ioc, "Discovery: (%s)",
1243                          event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1244                          "start" : "stop");
1245                 if (event_data->DiscoveryStatus)
1246                         pr_cont(" discovery_status(0x%08x)",
1247                             le32_to_cpu(event_data->DiscoveryStatus));
1248                 pr_cont("\n");
1249                 return;
1250         }
1251         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1252                 desc = "SAS Broadcast Primitive";
1253                 break;
1254         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1255                 desc = "SAS Init Device Status Change";
1256                 break;
1257         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1258                 desc = "SAS Init Table Overflow";
1259                 break;
1260         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1261                 desc = "SAS Topology Change List";
1262                 break;
1263         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1264                 desc = "SAS Enclosure Device Status Change";
1265                 break;
1266         case MPI2_EVENT_IR_VOLUME:
1267                 if (!ioc->hide_ir_msg)
1268                         desc = "IR Volume";
1269                 break;
1270         case MPI2_EVENT_IR_PHYSICAL_DISK:
1271                 if (!ioc->hide_ir_msg)
1272                         desc = "IR Physical Disk";
1273                 break;
1274         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1275                 if (!ioc->hide_ir_msg)
1276                         desc = "IR Configuration Change List";
1277                 break;
1278         case MPI2_EVENT_LOG_ENTRY_ADDED:
1279                 if (!ioc->hide_ir_msg)
1280                         desc = "Log Entry Added";
1281                 break;
1282         case MPI2_EVENT_TEMP_THRESHOLD:
1283                 desc = "Temperature Threshold";
1284                 break;
1285         case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1286                 desc = "Cable Event";
1287                 break;
1288         case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1289                 desc = "SAS Device Discovery Error";
1290                 break;
1291         case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1292                 desc = "PCIE Device Status Change";
1293                 break;
1294         case MPI2_EVENT_PCIE_ENUMERATION:
1295         {
1296                 Mpi26EventDataPCIeEnumeration_t *event_data =
1297                         (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1298                 ioc_info(ioc, "PCIE Enumeration: (%s)",
1299                          event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1300                          "start" : "stop");
1301                 if (event_data->EnumerationStatus)
1302                         pr_cont("enumeration_status(0x%08x)",
1303                                 le32_to_cpu(event_data->EnumerationStatus));
1304                 pr_cont("\n");
1305                 return;
1306         }
1307         case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1308                 desc = "PCIE Topology Change List";
1309                 break;
1310         }
1311
1312         if (!desc)
1313                 return;
1314
1315         ioc_info(ioc, "%s\n", desc);
1316 }
1317
1318 /**
1319  * _base_sas_log_info - verbose translation of firmware log info
1320  * @ioc: per adapter object
1321  * @log_info: log info
1322  */
1323 static void
1324 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1325 {
1326         union loginfo_type {
1327                 u32     loginfo;
1328                 struct {
1329                         u32     subcode:16;
1330                         u32     code:8;
1331                         u32     originator:4;
1332                         u32     bus_type:4;
1333                 } dw;
1334         };
1335         union loginfo_type sas_loginfo;
1336         char *originator_str = NULL;
1337
1338         sas_loginfo.loginfo = log_info;
1339         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1340                 return;
1341
1342         /* each nexus loss loginfo */
1343         if (log_info == 0x31170000)
1344                 return;
1345
1346         /* eat the loginfos associated with task aborts */
1347         if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1348             0x31140000 || log_info == 0x31130000))
1349                 return;
1350
1351         switch (sas_loginfo.dw.originator) {
1352         case 0:
1353                 originator_str = "IOP";
1354                 break;
1355         case 1:
1356                 originator_str = "PL";
1357                 break;
1358         case 2:
1359                 if (!ioc->hide_ir_msg)
1360                         originator_str = "IR";
1361                 else
1362                         originator_str = "WarpDrive";
1363                 break;
1364         }
1365
1366         ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1367                  log_info,
1368                  originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1369 }
1370
1371 /**
1372  * _base_display_reply_info - handle reply descriptors depending on IOC Status
1373  * @ioc: per adapter object
1374  * @smid: system request message index
1375  * @msix_index: MSIX table index supplied by the OS
1376  * @reply: reply message frame (lower 32bit addr)
1377  */
1378 static void
1379 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1380         u32 reply)
1381 {
1382         MPI2DefaultReply_t *mpi_reply;
1383         u16 ioc_status;
1384         u32 loginfo = 0;
1385
1386         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1387         if (unlikely(!mpi_reply)) {
1388                 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1389                         __FILE__, __LINE__, __func__);
1390                 return;
1391         }
1392         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1393
1394         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1395             (ioc->logging_level & MPT_DEBUG_REPLY)) {
1396                 _base_sas_ioc_info(ioc , mpi_reply,
1397                    mpt3sas_base_get_msg_frame(ioc, smid));
1398         }
1399
1400         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1401                 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1402                 _base_sas_log_info(ioc, loginfo);
1403         }
1404
1405         if (ioc_status || loginfo) {
1406                 ioc_status &= MPI2_IOCSTATUS_MASK;
1407                 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1408         }
1409 }
1410
1411 /**
1412  * mpt3sas_base_done - base internal command completion routine
1413  * @ioc: per adapter object
1414  * @smid: system request message index
1415  * @msix_index: MSIX table index supplied by the OS
1416  * @reply: reply message frame(lower 32bit addr)
1417  *
1418  * Return:
1419  * 1 meaning mf should be freed from _base_interrupt
1420  * 0 means the mf is freed from this function.
1421  */
1422 u8
1423 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1424         u32 reply)
1425 {
1426         MPI2DefaultReply_t *mpi_reply;
1427
1428         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1429         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1430                 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1431
1432         if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1433                 return 1;
1434
1435         ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1436         if (mpi_reply) {
1437                 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1438                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1439         }
1440         ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1441
1442         complete(&ioc->base_cmds.done);
1443         return 1;
1444 }
1445
1446 /**
1447  * _base_async_event - main callback handler for firmware asyn events
1448  * @ioc: per adapter object
1449  * @msix_index: MSIX table index supplied by the OS
1450  * @reply: reply message frame(lower 32bit addr)
1451  *
1452  * Return:
1453  * 1 meaning mf should be freed from _base_interrupt
1454  * 0 means the mf is freed from this function.
1455  */
1456 static u8
1457 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1458 {
1459         Mpi2EventNotificationReply_t *mpi_reply;
1460         Mpi2EventAckRequest_t *ack_request;
1461         u16 smid;
1462         struct _event_ack_list *delayed_event_ack;
1463
1464         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1465         if (!mpi_reply)
1466                 return 1;
1467         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1468                 return 1;
1469
1470         _base_display_event_data(ioc, mpi_reply);
1471
1472         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1473                 goto out;
1474         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1475         if (!smid) {
1476                 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1477                                         GFP_ATOMIC);
1478                 if (!delayed_event_ack)
1479                         goto out;
1480                 INIT_LIST_HEAD(&delayed_event_ack->list);
1481                 delayed_event_ack->Event = mpi_reply->Event;
1482                 delayed_event_ack->EventContext = mpi_reply->EventContext;
1483                 list_add_tail(&delayed_event_ack->list,
1484                                 &ioc->delayed_event_ack_list);
1485                 dewtprintk(ioc,
1486                            ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1487                                     le16_to_cpu(mpi_reply->Event)));
1488                 goto out;
1489         }
1490
1491         ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1492         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1493         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1494         ack_request->Event = mpi_reply->Event;
1495         ack_request->EventContext = mpi_reply->EventContext;
1496         ack_request->VF_ID = 0;  /* TODO */
1497         ack_request->VP_ID = 0;
1498         ioc->put_smid_default(ioc, smid);
1499
1500  out:
1501
1502         /* scsih callback handler */
1503         mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1504
1505         /* ctl callback handler */
1506         mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1507
1508         return 1;
1509 }
1510
1511 static struct scsiio_tracker *
1512 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1513 {
1514         struct scsi_cmnd *cmd;
1515
1516         if (WARN_ON(!smid) ||
1517             WARN_ON(smid >= ioc->hi_priority_smid))
1518                 return NULL;
1519
1520         cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1521         if (cmd)
1522                 return scsi_cmd_priv(cmd);
1523
1524         return NULL;
1525 }
1526
1527 /**
1528  * _base_get_cb_idx - obtain the callback index
1529  * @ioc: per adapter object
1530  * @smid: system request message index
1531  *
1532  * Return: callback index.
1533  */
1534 static u8
1535 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1536 {
1537         int i;
1538         u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1539         u8 cb_idx = 0xFF;
1540
1541         if (smid < ioc->hi_priority_smid) {
1542                 struct scsiio_tracker *st;
1543
1544                 if (smid < ctl_smid) {
1545                         st = _get_st_from_smid(ioc, smid);
1546                         if (st)
1547                                 cb_idx = st->cb_idx;
1548                 } else if (smid == ctl_smid)
1549                         cb_idx = ioc->ctl_cb_idx;
1550         } else if (smid < ioc->internal_smid) {
1551                 i = smid - ioc->hi_priority_smid;
1552                 cb_idx = ioc->hpr_lookup[i].cb_idx;
1553         } else if (smid <= ioc->hba_queue_depth) {
1554                 i = smid - ioc->internal_smid;
1555                 cb_idx = ioc->internal_lookup[i].cb_idx;
1556         }
1557         return cb_idx;
1558 }
1559
1560 /**
1561  * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues
1562  *                              when driver is flushing out the IOs.
1563  * @ioc: per adapter object
1564  *
1565  * Pause polling on the mq poll (io uring) queues when driver is flushing
1566  * out the IOs. Otherwise we may see the race condition of completing the same
1567  * IO from two paths.
1568  *
1569  * Returns nothing.
1570  */
1571 void
1572 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1573 {
1574         int iopoll_q_count =
1575             ioc->reply_queue_count - ioc->iopoll_q_start_index;
1576         int qid;
1577
1578         for (qid = 0; qid < iopoll_q_count; qid++)
1579                 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1);
1580
1581         /*
1582          * wait for current poll to complete.
1583          */
1584         for (qid = 0; qid < iopoll_q_count; qid++) {
1585                 while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) {
1586                         cpu_relax();
1587                         udelay(500);
1588                 }
1589         }
1590 }
1591
1592 /**
1593  * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues.
1594  * @ioc: per adapter object
1595  *
1596  * Returns nothing.
1597  */
1598 void
1599 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1600 {
1601         int iopoll_q_count =
1602             ioc->reply_queue_count - ioc->iopoll_q_start_index;
1603         int qid;
1604
1605         for (qid = 0; qid < iopoll_q_count; qid++)
1606                 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0);
1607 }
1608
1609 /**
1610  * mpt3sas_base_mask_interrupts - disable interrupts
1611  * @ioc: per adapter object
1612  *
1613  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1614  */
1615 void
1616 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1617 {
1618         u32 him_register;
1619
1620         ioc->mask_interrupts = 1;
1621         him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1622         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1623         writel(him_register, &ioc->chip->HostInterruptMask);
1624         ioc->base_readl(&ioc->chip->HostInterruptMask);
1625 }
1626
1627 /**
1628  * mpt3sas_base_unmask_interrupts - enable interrupts
1629  * @ioc: per adapter object
1630  *
1631  * Enabling only Reply Interrupts
1632  */
1633 void
1634 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1635 {
1636         u32 him_register;
1637
1638         him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1639         him_register &= ~MPI2_HIM_RIM;
1640         writel(him_register, &ioc->chip->HostInterruptMask);
1641         ioc->mask_interrupts = 0;
1642 }
1643
1644 union reply_descriptor {
1645         u64 word;
1646         struct {
1647                 u32 low;
1648                 u32 high;
1649         } u;
1650 };
1651
1652 static u32 base_mod64(u64 dividend, u32 divisor)
1653 {
1654         u32 remainder;
1655
1656         if (!divisor)
1657                 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1658         remainder = do_div(dividend, divisor);
1659         return remainder;
1660 }
1661
1662 /**
1663  * _base_process_reply_queue - Process reply descriptors from reply
1664  *              descriptor post queue.
1665  * @reply_q: per IRQ's reply queue object.
1666  *
1667  * Return: number of reply descriptors processed from reply
1668  *              descriptor queue.
1669  */
1670 static int
1671 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1672 {
1673         union reply_descriptor rd;
1674         u64 completed_cmds;
1675         u8 request_descript_type;
1676         u16 smid;
1677         u8 cb_idx;
1678         u32 reply;
1679         u8 msix_index = reply_q->msix_index;
1680         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1681         Mpi2ReplyDescriptorsUnion_t *rpf;
1682         u8 rc;
1683
1684         completed_cmds = 0;
1685         if (!atomic_add_unless(&reply_q->busy, 1, 1))
1686                 return completed_cmds;
1687
1688         rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1689         request_descript_type = rpf->Default.ReplyFlags
1690              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1691         if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1692                 atomic_dec(&reply_q->busy);
1693                 return completed_cmds;
1694         }
1695
1696         cb_idx = 0xFF;
1697         do {
1698                 rd.word = le64_to_cpu(rpf->Words);
1699                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1700                         goto out;
1701                 reply = 0;
1702                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1703                 if (request_descript_type ==
1704                     MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1705                     request_descript_type ==
1706                     MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1707                     request_descript_type ==
1708                     MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1709                         cb_idx = _base_get_cb_idx(ioc, smid);
1710                         if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1711                             (likely(mpt_callbacks[cb_idx] != NULL))) {
1712                                 rc = mpt_callbacks[cb_idx](ioc, smid,
1713                                     msix_index, 0);
1714                                 if (rc)
1715                                         mpt3sas_base_free_smid(ioc, smid);
1716                         }
1717                 } else if (request_descript_type ==
1718                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1719                         reply = le32_to_cpu(
1720                             rpf->AddressReply.ReplyFrameAddress);
1721                         if (reply > ioc->reply_dma_max_address ||
1722                             reply < ioc->reply_dma_min_address)
1723                                 reply = 0;
1724                         if (smid) {
1725                                 cb_idx = _base_get_cb_idx(ioc, smid);
1726                                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1727                                     (likely(mpt_callbacks[cb_idx] != NULL))) {
1728                                         rc = mpt_callbacks[cb_idx](ioc, smid,
1729                                             msix_index, reply);
1730                                         if (reply)
1731                                                 _base_display_reply_info(ioc,
1732                                                     smid, msix_index, reply);
1733                                         if (rc)
1734                                                 mpt3sas_base_free_smid(ioc,
1735                                                     smid);
1736                                 }
1737                         } else {
1738                                 _base_async_event(ioc, msix_index, reply);
1739                         }
1740
1741                         /* reply free queue handling */
1742                         if (reply) {
1743                                 ioc->reply_free_host_index =
1744                                     (ioc->reply_free_host_index ==
1745                                     (ioc->reply_free_queue_depth - 1)) ?
1746                                     0 : ioc->reply_free_host_index + 1;
1747                                 ioc->reply_free[ioc->reply_free_host_index] =
1748                                     cpu_to_le32(reply);
1749                                 if (ioc->is_mcpu_endpoint)
1750                                         _base_clone_reply_to_sys_mem(ioc,
1751                                                 reply,
1752                                                 ioc->reply_free_host_index);
1753                                 writel(ioc->reply_free_host_index,
1754                                     &ioc->chip->ReplyFreeHostIndex);
1755                         }
1756                 }
1757
1758                 rpf->Words = cpu_to_le64(ULLONG_MAX);
1759                 reply_q->reply_post_host_index =
1760                     (reply_q->reply_post_host_index ==
1761                     (ioc->reply_post_queue_depth - 1)) ? 0 :
1762                     reply_q->reply_post_host_index + 1;
1763                 request_descript_type =
1764                     reply_q->reply_post_free[reply_q->reply_post_host_index].
1765                     Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1766                 completed_cmds++;
1767                 /* Update the reply post host index after continuously
1768                  * processing the threshold number of Reply Descriptors.
1769                  * So that FW can find enough entries to post the Reply
1770                  * Descriptors in the reply descriptor post queue.
1771                  */
1772                 if (completed_cmds >= ioc->thresh_hold) {
1773                         if (ioc->combined_reply_queue) {
1774                                 writel(reply_q->reply_post_host_index |
1775                                                 ((msix_index  & 7) <<
1776                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1777                                     ioc->replyPostRegisterIndex[msix_index/8]);
1778                         } else {
1779                                 writel(reply_q->reply_post_host_index |
1780                                                 (msix_index <<
1781                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1782                                                 &ioc->chip->ReplyPostHostIndex);
1783                         }
1784                         if (!reply_q->is_iouring_poll_q &&
1785                             !reply_q->irq_poll_scheduled) {
1786                                 reply_q->irq_poll_scheduled = true;
1787                                 irq_poll_sched(&reply_q->irqpoll);
1788                         }
1789                         atomic_dec(&reply_q->busy);
1790                         return completed_cmds;
1791                 }
1792                 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1793                         goto out;
1794                 if (!reply_q->reply_post_host_index)
1795                         rpf = reply_q->reply_post_free;
1796                 else
1797                         rpf++;
1798         } while (1);
1799
1800  out:
1801
1802         if (!completed_cmds) {
1803                 atomic_dec(&reply_q->busy);
1804                 return completed_cmds;
1805         }
1806
1807         if (ioc->is_warpdrive) {
1808                 writel(reply_q->reply_post_host_index,
1809                 ioc->reply_post_host_index[msix_index]);
1810                 atomic_dec(&reply_q->busy);
1811                 return completed_cmds;
1812         }
1813
1814         /* Update Reply Post Host Index.
1815          * For those HBA's which support combined reply queue feature
1816          * 1. Get the correct Supplemental Reply Post Host Index Register.
1817          *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1818          *    Index Register address bank i.e replyPostRegisterIndex[],
1819          * 2. Then update this register with new reply host index value
1820          *    in ReplyPostIndex field and the MSIxIndex field with
1821          *    msix_index value reduced to a value between 0 and 7,
1822          *    using a modulo 8 operation. Since each Supplemental Reply Post
1823          *    Host Index Register supports 8 MSI-X vectors.
1824          *
1825          * For other HBA's just update the Reply Post Host Index register with
1826          * new reply host index value in ReplyPostIndex Field and msix_index
1827          * value in MSIxIndex field.
1828          */
1829         if (ioc->combined_reply_queue)
1830                 writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1831                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1832                         ioc->replyPostRegisterIndex[msix_index/8]);
1833         else
1834                 writel(reply_q->reply_post_host_index | (msix_index <<
1835                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1836                         &ioc->chip->ReplyPostHostIndex);
1837         atomic_dec(&reply_q->busy);
1838         return completed_cmds;
1839 }
1840
1841 /**
1842  * mpt3sas_blk_mq_poll - poll the blk mq poll queue
1843  * @shost: Scsi_Host object
1844  * @queue_num: hw ctx queue number
1845  *
1846  * Return number of entries that has been processed from poll queue.
1847  */
1848 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num)
1849 {
1850         struct MPT3SAS_ADAPTER *ioc =
1851             (struct MPT3SAS_ADAPTER *)shost->hostdata;
1852         struct adapter_reply_queue *reply_q;
1853         int num_entries = 0;
1854         int qid = queue_num - ioc->iopoll_q_start_index;
1855
1856         if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) ||
1857             !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1))
1858                 return 0;
1859
1860         reply_q = ioc->io_uring_poll_queues[qid].reply_q;
1861
1862         num_entries = _base_process_reply_queue(reply_q);
1863         atomic_dec(&ioc->io_uring_poll_queues[qid].busy);
1864
1865         return num_entries;
1866 }
1867
1868 /**
1869  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1870  * @irq: irq number (not used)
1871  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1872  *
1873  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1874  */
1875 static irqreturn_t
1876 _base_interrupt(int irq, void *bus_id)
1877 {
1878         struct adapter_reply_queue *reply_q = bus_id;
1879         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1880
1881         if (ioc->mask_interrupts)
1882                 return IRQ_NONE;
1883         if (reply_q->irq_poll_scheduled)
1884                 return IRQ_HANDLED;
1885         return ((_base_process_reply_queue(reply_q) > 0) ?
1886                         IRQ_HANDLED : IRQ_NONE);
1887 }
1888
1889 /**
1890  * _base_irqpoll - IRQ poll callback handler
1891  * @irqpoll: irq_poll object
1892  * @budget: irq poll weight
1893  *
1894  * Return: number of reply descriptors processed
1895  */
1896 static int
1897 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1898 {
1899         struct adapter_reply_queue *reply_q;
1900         int num_entries = 0;
1901
1902         reply_q = container_of(irqpoll, struct adapter_reply_queue,
1903                         irqpoll);
1904         if (reply_q->irq_line_enable) {
1905                 disable_irq_nosync(reply_q->os_irq);
1906                 reply_q->irq_line_enable = false;
1907         }
1908         num_entries = _base_process_reply_queue(reply_q);
1909         if (num_entries < budget) {
1910                 irq_poll_complete(irqpoll);
1911                 reply_q->irq_poll_scheduled = false;
1912                 reply_q->irq_line_enable = true;
1913                 enable_irq(reply_q->os_irq);
1914                 /*
1915                  * Go for one more round of processing the
1916                  * reply descriptor post queue in case the HBA
1917                  * Firmware has posted some reply descriptors
1918                  * while reenabling the IRQ.
1919                  */
1920                 _base_process_reply_queue(reply_q);
1921         }
1922
1923         return num_entries;
1924 }
1925
1926 /**
1927  * _base_init_irqpolls - initliaze IRQ polls
1928  * @ioc: per adapter object
1929  *
1930  * Return: nothing
1931  */
1932 static void
1933 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1934 {
1935         struct adapter_reply_queue *reply_q, *next;
1936
1937         if (list_empty(&ioc->reply_queue_list))
1938                 return;
1939
1940         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1941                 if (reply_q->is_iouring_poll_q)
1942                         continue;
1943                 irq_poll_init(&reply_q->irqpoll,
1944                         ioc->hba_queue_depth/4, _base_irqpoll);
1945                 reply_q->irq_poll_scheduled = false;
1946                 reply_q->irq_line_enable = true;
1947                 reply_q->os_irq = pci_irq_vector(ioc->pdev,
1948                     reply_q->msix_index);
1949         }
1950 }
1951
1952 /**
1953  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1954  * @ioc: per adapter object
1955  *
1956  * Return: Whether or not MSI/X is enabled.
1957  */
1958 static inline int
1959 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1960 {
1961         return (ioc->facts.IOCCapabilities &
1962             MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1963 }
1964
1965 /**
1966  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1967  * @ioc: per adapter object
1968  * @poll: poll over reply descriptor pools incase interrupt for
1969  *              timed-out SCSI command got delayed
1970  * Context: non-ISR context
1971  *
1972  * Called when a Task Management request has completed.
1973  */
1974 void
1975 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1976 {
1977         struct adapter_reply_queue *reply_q;
1978
1979         /* If MSIX capability is turned off
1980          * then multi-queues are not enabled
1981          */
1982         if (!_base_is_controller_msix_enabled(ioc))
1983                 return;
1984
1985         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1986                 if (ioc->shost_recovery || ioc->remove_host ||
1987                                 ioc->pci_error_recovery)
1988                         return;
1989                 /* TMs are on msix_index == 0 */
1990                 if (reply_q->msix_index == 0)
1991                         continue;
1992
1993                 if (reply_q->is_iouring_poll_q) {
1994                         _base_process_reply_queue(reply_q);
1995                         continue;
1996                 }
1997
1998                 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1999                 if (reply_q->irq_poll_scheduled) {
2000                         /* Calling irq_poll_disable will wait for any pending
2001                          * callbacks to have completed.
2002                          */
2003                         irq_poll_disable(&reply_q->irqpoll);
2004                         irq_poll_enable(&reply_q->irqpoll);
2005                         /* check how the scheduled poll has ended,
2006                          * clean up only if necessary
2007                          */
2008                         if (reply_q->irq_poll_scheduled) {
2009                                 reply_q->irq_poll_scheduled = false;
2010                                 reply_q->irq_line_enable = true;
2011                                 enable_irq(reply_q->os_irq);
2012                         }
2013                 }
2014
2015                 if (poll)
2016                         _base_process_reply_queue(reply_q);
2017         }
2018 }
2019
2020 /**
2021  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
2022  * @cb_idx: callback index
2023  */
2024 void
2025 mpt3sas_base_release_callback_handler(u8 cb_idx)
2026 {
2027         mpt_callbacks[cb_idx] = NULL;
2028 }
2029
2030 /**
2031  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
2032  * @cb_func: callback function
2033  *
2034  * Return: Index of @cb_func.
2035  */
2036 u8
2037 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
2038 {
2039         u8 cb_idx;
2040
2041         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
2042                 if (mpt_callbacks[cb_idx] == NULL)
2043                         break;
2044
2045         mpt_callbacks[cb_idx] = cb_func;
2046         return cb_idx;
2047 }
2048
2049 /**
2050  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
2051  */
2052 void
2053 mpt3sas_base_initialize_callback_handler(void)
2054 {
2055         u8 cb_idx;
2056
2057         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
2058                 mpt3sas_base_release_callback_handler(cb_idx);
2059 }
2060
2061
2062 /**
2063  * _base_build_zero_len_sge - build zero length sg entry
2064  * @ioc: per adapter object
2065  * @paddr: virtual address for SGE
2066  *
2067  * Create a zero length scatter gather entry to insure the IOCs hardware has
2068  * something to use if the target device goes brain dead and tries
2069  * to send data even when none is asked for.
2070  */
2071 static void
2072 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2073 {
2074         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
2075             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
2076             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
2077             MPI2_SGE_FLAGS_SHIFT);
2078         ioc->base_add_sg_single(paddr, flags_length, -1);
2079 }
2080
2081 /**
2082  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
2083  * @paddr: virtual address for SGE
2084  * @flags_length: SGE flags and data transfer length
2085  * @dma_addr: Physical address
2086  */
2087 static void
2088 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2089 {
2090         Mpi2SGESimple32_t *sgel = paddr;
2091
2092         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
2093             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2094         sgel->FlagsLength = cpu_to_le32(flags_length);
2095         sgel->Address = cpu_to_le32(dma_addr);
2096 }
2097
2098
2099 /**
2100  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2101  * @paddr: virtual address for SGE
2102  * @flags_length: SGE flags and data transfer length
2103  * @dma_addr: Physical address
2104  */
2105 static void
2106 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2107 {
2108         Mpi2SGESimple64_t *sgel = paddr;
2109
2110         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2111             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2112         sgel->FlagsLength = cpu_to_le32(flags_length);
2113         sgel->Address = cpu_to_le64(dma_addr);
2114 }
2115
2116 /**
2117  * _base_get_chain_buffer_tracker - obtain chain tracker
2118  * @ioc: per adapter object
2119  * @scmd: SCSI commands of the IO request
2120  *
2121  * Return: chain tracker from chain_lookup table using key as
2122  * smid and smid's chain_offset.
2123  */
2124 static struct chain_tracker *
2125 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2126                                struct scsi_cmnd *scmd)
2127 {
2128         struct chain_tracker *chain_req;
2129         struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2130         u16 smid = st->smid;
2131         u8 chain_offset =
2132            atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2133
2134         if (chain_offset == ioc->chains_needed_per_io)
2135                 return NULL;
2136
2137         chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2138         atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2139         return chain_req;
2140 }
2141
2142
2143 /**
2144  * _base_build_sg - build generic sg
2145  * @ioc: per adapter object
2146  * @psge: virtual address for SGE
2147  * @data_out_dma: physical address for WRITES
2148  * @data_out_sz: data xfer size for WRITES
2149  * @data_in_dma: physical address for READS
2150  * @data_in_sz: data xfer size for READS
2151  */
2152 static void
2153 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2154         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2155         size_t data_in_sz)
2156 {
2157         u32 sgl_flags;
2158
2159         if (!data_out_sz && !data_in_sz) {
2160                 _base_build_zero_len_sge(ioc, psge);
2161                 return;
2162         }
2163
2164         if (data_out_sz && data_in_sz) {
2165                 /* WRITE sgel first */
2166                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2167                     MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2168                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2169                 ioc->base_add_sg_single(psge, sgl_flags |
2170                     data_out_sz, data_out_dma);
2171
2172                 /* incr sgel */
2173                 psge += ioc->sge_size;
2174
2175                 /* READ sgel last */
2176                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2177                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2178                     MPI2_SGE_FLAGS_END_OF_LIST);
2179                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2180                 ioc->base_add_sg_single(psge, sgl_flags |
2181                     data_in_sz, data_in_dma);
2182         } else if (data_out_sz) /* WRITE */ {
2183                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2184                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2185                     MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2186                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2187                 ioc->base_add_sg_single(psge, sgl_flags |
2188                     data_out_sz, data_out_dma);
2189         } else if (data_in_sz) /* READ */ {
2190                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2191                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2192                     MPI2_SGE_FLAGS_END_OF_LIST);
2193                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2194                 ioc->base_add_sg_single(psge, sgl_flags |
2195                     data_in_sz, data_in_dma);
2196         }
2197 }
2198
2199 /* IEEE format sgls */
2200
2201 /**
2202  * _base_build_nvme_prp - This function is called for NVMe end devices to build
2203  *                        a native SGL (NVMe PRP).
2204  * @ioc: per adapter object
2205  * @smid: system request message index for getting asscociated SGL
2206  * @nvme_encap_request: the NVMe request msg frame pointer
2207  * @data_out_dma: physical address for WRITES
2208  * @data_out_sz: data xfer size for WRITES
2209  * @data_in_dma: physical address for READS
2210  * @data_in_sz: data xfer size for READS
2211  *
2212  * The native SGL is built starting in the first PRP
2213  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2214  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2215  * used to describe a larger data buffer.  If the data buffer is too large to
2216  * describe using the two PRP entriess inside the NVMe message, then PRP1
2217  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2218  * list located elsewhere in memory to describe the remaining data memory
2219  * segments.  The PRP list will be contiguous.
2220  *
2221  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2222  * consists of a list of PRP entries to describe a number of noncontigous
2223  * physical memory segments as a single memory buffer, just as a SGL does.  Note
2224  * however, that this function is only used by the IOCTL call, so the memory
2225  * given will be guaranteed to be contiguous.  There is no need to translate
2226  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2227  * contiguous space that is one page size each.
2228  *
2229  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2230  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2231  * contains the second PRP element if the memory being described fits within 2
2232  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2233  *
2234  * A PRP list pointer contains the address of a PRP list, structured as a linear
2235  * array of PRP entries.  Each PRP entry in this list describes a segment of
2236  * physical memory.
2237  *
2238  * Each 64-bit PRP entry comprises an address and an offset field.  The address
2239  * always points at the beginning of a 4KB physical memory page, and the offset
2240  * describes where within that 4KB page the memory segment begins.  Only the
2241  * first element in a PRP list may contain a non-zero offset, implying that all
2242  * memory segments following the first begin at the start of a 4KB page.
2243  *
2244  * Each PRP element normally describes 4KB of physical memory, with exceptions
2245  * for the first and last elements in the list.  If the memory being described
2246  * by the list begins at a non-zero offset within the first 4KB page, then the
2247  * first PRP element will contain a non-zero offset indicating where the region
2248  * begins within the 4KB page.  The last memory segment may end before the end
2249  * of the 4KB segment, depending upon the overall size of the memory being
2250  * described by the PRP list.
2251  *
2252  * Since PRP entries lack any indication of size, the overall data buffer length
2253  * is used to determine where the end of the data memory buffer is located, and
2254  * how many PRP entries are required to describe it.
2255  */
2256 static void
2257 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2258         Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2259         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2260         size_t data_in_sz)
2261 {
2262         int             prp_size = NVME_PRP_SIZE;
2263         __le64          *prp_entry, *prp1_entry, *prp2_entry;
2264         __le64          *prp_page;
2265         dma_addr_t      prp_entry_dma, prp_page_dma, dma_addr;
2266         u32             offset, entry_len;
2267         u32             page_mask_result, page_mask;
2268         size_t          length;
2269         struct mpt3sas_nvme_cmd *nvme_cmd =
2270                 (void *)nvme_encap_request->NVMe_Command;
2271
2272         /*
2273          * Not all commands require a data transfer. If no data, just return
2274          * without constructing any PRP.
2275          */
2276         if (!data_in_sz && !data_out_sz)
2277                 return;
2278         prp1_entry = &nvme_cmd->prp1;
2279         prp2_entry = &nvme_cmd->prp2;
2280         prp_entry = prp1_entry;
2281         /*
2282          * For the PRP entries, use the specially allocated buffer of
2283          * contiguous memory.
2284          */
2285         prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2286         prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2287
2288         /*
2289          * Check if we are within 1 entry of a page boundary we don't
2290          * want our first entry to be a PRP List entry.
2291          */
2292         page_mask = ioc->page_size - 1;
2293         page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2294         if (!page_mask_result) {
2295                 /* Bump up to next page boundary. */
2296                 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2297                 prp_page_dma = prp_page_dma + prp_size;
2298         }
2299
2300         /*
2301          * Set PRP physical pointer, which initially points to the current PRP
2302          * DMA memory page.
2303          */
2304         prp_entry_dma = prp_page_dma;
2305
2306         /* Get physical address and length of the data buffer. */
2307         if (data_in_sz) {
2308                 dma_addr = data_in_dma;
2309                 length = data_in_sz;
2310         } else {
2311                 dma_addr = data_out_dma;
2312                 length = data_out_sz;
2313         }
2314
2315         /* Loop while the length is not zero. */
2316         while (length) {
2317                 /*
2318                  * Check if we need to put a list pointer here if we are at
2319                  * page boundary - prp_size (8 bytes).
2320                  */
2321                 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2322                 if (!page_mask_result) {
2323                         /*
2324                          * This is the last entry in a PRP List, so we need to
2325                          * put a PRP list pointer here.  What this does is:
2326                          *   - bump the current memory pointer to the next
2327                          *     address, which will be the next full page.
2328                          *   - set the PRP Entry to point to that page.  This
2329                          *     is now the PRP List pointer.
2330                          *   - bump the PRP Entry pointer the start of the
2331                          *     next page.  Since all of this PRP memory is
2332                          *     contiguous, no need to get a new page - it's
2333                          *     just the next address.
2334                          */
2335                         prp_entry_dma++;
2336                         *prp_entry = cpu_to_le64(prp_entry_dma);
2337                         prp_entry++;
2338                 }
2339
2340                 /* Need to handle if entry will be part of a page. */
2341                 offset = dma_addr & page_mask;
2342                 entry_len = ioc->page_size - offset;
2343
2344                 if (prp_entry == prp1_entry) {
2345                         /*
2346                          * Must fill in the first PRP pointer (PRP1) before
2347                          * moving on.
2348                          */
2349                         *prp1_entry = cpu_to_le64(dma_addr);
2350
2351                         /*
2352                          * Now point to the second PRP entry within the
2353                          * command (PRP2).
2354                          */
2355                         prp_entry = prp2_entry;
2356                 } else if (prp_entry == prp2_entry) {
2357                         /*
2358                          * Should the PRP2 entry be a PRP List pointer or just
2359                          * a regular PRP pointer?  If there is more than one
2360                          * more page of data, must use a PRP List pointer.
2361                          */
2362                         if (length > ioc->page_size) {
2363                                 /*
2364                                  * PRP2 will contain a PRP List pointer because
2365                                  * more PRP's are needed with this command. The
2366                                  * list will start at the beginning of the
2367                                  * contiguous buffer.
2368                                  */
2369                                 *prp2_entry = cpu_to_le64(prp_entry_dma);
2370
2371                                 /*
2372                                  * The next PRP Entry will be the start of the
2373                                  * first PRP List.
2374                                  */
2375                                 prp_entry = prp_page;
2376                         } else {
2377                                 /*
2378                                  * After this, the PRP Entries are complete.
2379                                  * This command uses 2 PRP's and no PRP list.
2380                                  */
2381                                 *prp2_entry = cpu_to_le64(dma_addr);
2382                         }
2383                 } else {
2384                         /*
2385                          * Put entry in list and bump the addresses.
2386                          *
2387                          * After PRP1 and PRP2 are filled in, this will fill in
2388                          * all remaining PRP entries in a PRP List, one per
2389                          * each time through the loop.
2390                          */
2391                         *prp_entry = cpu_to_le64(dma_addr);
2392                         prp_entry++;
2393                         prp_entry_dma++;
2394                 }
2395
2396                 /*
2397                  * Bump the phys address of the command's data buffer by the
2398                  * entry_len.
2399                  */
2400                 dma_addr += entry_len;
2401
2402                 /* Decrement length accounting for last partial page. */
2403                 if (entry_len > length)
2404                         length = 0;
2405                 else
2406                         length -= entry_len;
2407         }
2408 }
2409
2410 /**
2411  * base_make_prp_nvme - Prepare PRPs (Physical Region Page) -
2412  *                      SGLs specific to NVMe drives only
2413  *
2414  * @ioc:                per adapter object
2415  * @scmd:               SCSI command from the mid-layer
2416  * @mpi_request:        mpi request
2417  * @smid:               msg Index
2418  * @sge_count:          scatter gather element count.
2419  *
2420  * Return:              true: PRPs are built
2421  *                      false: IEEE SGLs needs to be built
2422  */
2423 static void
2424 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2425                 struct scsi_cmnd *scmd,
2426                 Mpi25SCSIIORequest_t *mpi_request,
2427                 u16 smid, int sge_count)
2428 {
2429         int sge_len, num_prp_in_chain = 0;
2430         Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2431         __le64 *curr_buff;
2432         dma_addr_t msg_dma, sge_addr, offset;
2433         u32 page_mask, page_mask_result;
2434         struct scatterlist *sg_scmd;
2435         u32 first_prp_len;
2436         int data_len = scsi_bufflen(scmd);
2437         u32 nvme_pg_size;
2438
2439         nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2440         /*
2441          * Nvme has a very convoluted prp format.  One prp is required
2442          * for each page or partial page. Driver need to split up OS sg_list
2443          * entries if it is longer than one page or cross a page
2444          * boundary.  Driver also have to insert a PRP list pointer entry as
2445          * the last entry in each physical page of the PRP list.
2446          *
2447          * NOTE: The first PRP "entry" is actually placed in the first
2448          * SGL entry in the main message as IEEE 64 format.  The 2nd
2449          * entry in the main message is the chain element, and the rest
2450          * of the PRP entries are built in the contiguous pcie buffer.
2451          */
2452         page_mask = nvme_pg_size - 1;
2453
2454         /*
2455          * Native SGL is needed.
2456          * Put a chain element in main message frame that points to the first
2457          * chain buffer.
2458          *
2459          * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2460          *        a native SGL.
2461          */
2462
2463         /* Set main message chain element pointer */
2464         main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2465         /*
2466          * For NVMe the chain element needs to be the 2nd SG entry in the main
2467          * message.
2468          */
2469         main_chain_element = (Mpi25IeeeSgeChain64_t *)
2470                 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2471
2472         /*
2473          * For the PRP entries, use the specially allocated buffer of
2474          * contiguous memory.  Normal chain buffers can't be used
2475          * because each chain buffer would need to be the size of an OS
2476          * page (4k).
2477          */
2478         curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2479         msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2480
2481         main_chain_element->Address = cpu_to_le64(msg_dma);
2482         main_chain_element->NextChainOffset = 0;
2483         main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2484                         MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2485                         MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2486
2487         /* Build first prp, sge need not to be page aligned*/
2488         ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2489         sg_scmd = scsi_sglist(scmd);
2490         sge_addr = sg_dma_address(sg_scmd);
2491         sge_len = sg_dma_len(sg_scmd);
2492
2493         offset = sge_addr & page_mask;
2494         first_prp_len = nvme_pg_size - offset;
2495
2496         ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2497         ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2498
2499         data_len -= first_prp_len;
2500
2501         if (sge_len > first_prp_len) {
2502                 sge_addr += first_prp_len;
2503                 sge_len -= first_prp_len;
2504         } else if (data_len && (sge_len == first_prp_len)) {
2505                 sg_scmd = sg_next(sg_scmd);
2506                 sge_addr = sg_dma_address(sg_scmd);
2507                 sge_len = sg_dma_len(sg_scmd);
2508         }
2509
2510         for (;;) {
2511                 offset = sge_addr & page_mask;
2512
2513                 /* Put PRP pointer due to page boundary*/
2514                 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2515                 if (unlikely(!page_mask_result)) {
2516                         scmd_printk(KERN_NOTICE,
2517                                 scmd, "page boundary curr_buff: 0x%p\n",
2518                                 curr_buff);
2519                         msg_dma += 8;
2520                         *curr_buff = cpu_to_le64(msg_dma);
2521                         curr_buff++;
2522                         num_prp_in_chain++;
2523                 }
2524
2525                 *curr_buff = cpu_to_le64(sge_addr);
2526                 curr_buff++;
2527                 msg_dma += 8;
2528                 num_prp_in_chain++;
2529
2530                 sge_addr += nvme_pg_size;
2531                 sge_len -= nvme_pg_size;
2532                 data_len -= nvme_pg_size;
2533
2534                 if (data_len <= 0)
2535                         break;
2536
2537                 if (sge_len > 0)
2538                         continue;
2539
2540                 sg_scmd = sg_next(sg_scmd);
2541                 sge_addr = sg_dma_address(sg_scmd);
2542                 sge_len = sg_dma_len(sg_scmd);
2543         }
2544
2545         main_chain_element->Length =
2546                 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2547         return;
2548 }
2549
2550 static bool
2551 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2552         struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2553 {
2554         u32 data_length = 0;
2555         bool build_prp = true;
2556
2557         data_length = scsi_bufflen(scmd);
2558         if (pcie_device &&
2559             (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2560                 build_prp = false;
2561                 return build_prp;
2562         }
2563
2564         /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2565          * we built IEEE SGL
2566          */
2567         if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2568                 build_prp = false;
2569
2570         return build_prp;
2571 }
2572
2573 /**
2574  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2575  * determine if the driver needs to build a native SGL.  If so, that native
2576  * SGL is built in the special contiguous buffers allocated especially for
2577  * PCIe SGL creation.  If the driver will not build a native SGL, return
2578  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2579  * supports NVMe.
2580  * @ioc: per adapter object
2581  * @mpi_request: mf request pointer
2582  * @smid: system request message index
2583  * @scmd: scsi command
2584  * @pcie_device: points to the PCIe device's info
2585  *
2586  * Return: 0 if native SGL was built, 1 if no SGL was built
2587  */
2588 static int
2589 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2590         Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2591         struct _pcie_device *pcie_device)
2592 {
2593         int sges_left;
2594
2595         /* Get the SG list pointer and info. */
2596         sges_left = scsi_dma_map(scmd);
2597         if (sges_left < 0) {
2598                 sdev_printk(KERN_ERR, scmd->device,
2599                         "scsi_dma_map failed: request for %d bytes!\n",
2600                         scsi_bufflen(scmd));
2601                 return 1;
2602         }
2603
2604         /* Check if we need to build a native SG list. */
2605         if (!base_is_prp_possible(ioc, pcie_device,
2606                                 scmd, sges_left)) {
2607                 /* We built a native SG list, just return. */
2608                 goto out;
2609         }
2610
2611         /*
2612          * Build native NVMe PRP.
2613          */
2614         base_make_prp_nvme(ioc, scmd, mpi_request,
2615                         smid, sges_left);
2616
2617         return 0;
2618 out:
2619         scsi_dma_unmap(scmd);
2620         return 1;
2621 }
2622
2623 /**
2624  * _base_add_sg_single_ieee - add sg element for IEEE format
2625  * @paddr: virtual address for SGE
2626  * @flags: SGE flags
2627  * @chain_offset: number of 128 byte elements from start of segment
2628  * @length: data transfer length
2629  * @dma_addr: Physical address
2630  */
2631 static void
2632 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2633         dma_addr_t dma_addr)
2634 {
2635         Mpi25IeeeSgeChain64_t *sgel = paddr;
2636
2637         sgel->Flags = flags;
2638         sgel->NextChainOffset = chain_offset;
2639         sgel->Length = cpu_to_le32(length);
2640         sgel->Address = cpu_to_le64(dma_addr);
2641 }
2642
2643 /**
2644  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2645  * @ioc: per adapter object
2646  * @paddr: virtual address for SGE
2647  *
2648  * Create a zero length scatter gather entry to insure the IOCs hardware has
2649  * something to use if the target device goes brain dead and tries
2650  * to send data even when none is asked for.
2651  */
2652 static void
2653 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2654 {
2655         u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2656                 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2657                 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2658
2659         _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2660 }
2661
2662 /**
2663  * _base_build_sg_scmd - main sg creation routine
2664  *              pcie_device is unused here!
2665  * @ioc: per adapter object
2666  * @scmd: scsi command
2667  * @smid: system request message index
2668  * @unused: unused pcie_device pointer
2669  * Context: none.
2670  *
2671  * The main routine that builds scatter gather table from a given
2672  * scsi request sent via the .queuecommand main handler.
2673  *
2674  * Return: 0 success, anything else error
2675  */
2676 static int
2677 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2678         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2679 {
2680         Mpi2SCSIIORequest_t *mpi_request;
2681         dma_addr_t chain_dma;
2682         struct scatterlist *sg_scmd;
2683         void *sg_local, *chain;
2684         u32 chain_offset;
2685         u32 chain_length;
2686         u32 chain_flags;
2687         int sges_left;
2688         u32 sges_in_segment;
2689         u32 sgl_flags;
2690         u32 sgl_flags_last_element;
2691         u32 sgl_flags_end_buffer;
2692         struct chain_tracker *chain_req;
2693
2694         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2695
2696         /* init scatter gather flags */
2697         sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2698         if (scmd->sc_data_direction == DMA_TO_DEVICE)
2699                 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2700         sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2701             << MPI2_SGE_FLAGS_SHIFT;
2702         sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2703             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2704             << MPI2_SGE_FLAGS_SHIFT;
2705         sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2706
2707         sg_scmd = scsi_sglist(scmd);
2708         sges_left = scsi_dma_map(scmd);
2709         if (sges_left < 0) {
2710                 sdev_printk(KERN_ERR, scmd->device,
2711                  "scsi_dma_map failed: request for %d bytes!\n",
2712                  scsi_bufflen(scmd));
2713                 return -ENOMEM;
2714         }
2715
2716         sg_local = &mpi_request->SGL;
2717         sges_in_segment = ioc->max_sges_in_main_message;
2718         if (sges_left <= sges_in_segment)
2719                 goto fill_in_last_segment;
2720
2721         mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2722             (sges_in_segment * ioc->sge_size))/4;
2723
2724         /* fill in main message segment when there is a chain following */
2725         while (sges_in_segment) {
2726                 if (sges_in_segment == 1)
2727                         ioc->base_add_sg_single(sg_local,
2728                             sgl_flags_last_element | sg_dma_len(sg_scmd),
2729                             sg_dma_address(sg_scmd));
2730                 else
2731                         ioc->base_add_sg_single(sg_local, sgl_flags |
2732                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2733                 sg_scmd = sg_next(sg_scmd);
2734                 sg_local += ioc->sge_size;
2735                 sges_left--;
2736                 sges_in_segment--;
2737         }
2738
2739         /* initializing the chain flags and pointers */
2740         chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2741         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2742         if (!chain_req)
2743                 return -1;
2744         chain = chain_req->chain_buffer;
2745         chain_dma = chain_req->chain_buffer_dma;
2746         do {
2747                 sges_in_segment = (sges_left <=
2748                     ioc->max_sges_in_chain_message) ? sges_left :
2749                     ioc->max_sges_in_chain_message;
2750                 chain_offset = (sges_left == sges_in_segment) ?
2751                     0 : (sges_in_segment * ioc->sge_size)/4;
2752                 chain_length = sges_in_segment * ioc->sge_size;
2753                 if (chain_offset) {
2754                         chain_offset = chain_offset <<
2755                             MPI2_SGE_CHAIN_OFFSET_SHIFT;
2756                         chain_length += ioc->sge_size;
2757                 }
2758                 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2759                     chain_length, chain_dma);
2760                 sg_local = chain;
2761                 if (!chain_offset)
2762                         goto fill_in_last_segment;
2763
2764                 /* fill in chain segments */
2765                 while (sges_in_segment) {
2766                         if (sges_in_segment == 1)
2767                                 ioc->base_add_sg_single(sg_local,
2768                                     sgl_flags_last_element |
2769                                     sg_dma_len(sg_scmd),
2770                                     sg_dma_address(sg_scmd));
2771                         else
2772                                 ioc->base_add_sg_single(sg_local, sgl_flags |
2773                                     sg_dma_len(sg_scmd),
2774                                     sg_dma_address(sg_scmd));
2775                         sg_scmd = sg_next(sg_scmd);
2776                         sg_local += ioc->sge_size;
2777                         sges_left--;
2778                         sges_in_segment--;
2779                 }
2780
2781                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2782                 if (!chain_req)
2783                         return -1;
2784                 chain = chain_req->chain_buffer;
2785                 chain_dma = chain_req->chain_buffer_dma;
2786         } while (1);
2787
2788
2789  fill_in_last_segment:
2790
2791         /* fill the last segment */
2792         while (sges_left) {
2793                 if (sges_left == 1)
2794                         ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2795                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2796                 else
2797                         ioc->base_add_sg_single(sg_local, sgl_flags |
2798                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2799                 sg_scmd = sg_next(sg_scmd);
2800                 sg_local += ioc->sge_size;
2801                 sges_left--;
2802         }
2803
2804         return 0;
2805 }
2806
2807 /**
2808  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2809  * @ioc: per adapter object
2810  * @scmd: scsi command
2811  * @smid: system request message index
2812  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2813  * constructed on need.
2814  * Context: none.
2815  *
2816  * The main routine that builds scatter gather table from a given
2817  * scsi request sent via the .queuecommand main handler.
2818  *
2819  * Return: 0 success, anything else error
2820  */
2821 static int
2822 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2823         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2824 {
2825         Mpi25SCSIIORequest_t *mpi_request;
2826         dma_addr_t chain_dma;
2827         struct scatterlist *sg_scmd;
2828         void *sg_local, *chain;
2829         u32 chain_offset;
2830         u32 chain_length;
2831         int sges_left;
2832         u32 sges_in_segment;
2833         u8 simple_sgl_flags;
2834         u8 simple_sgl_flags_last;
2835         u8 chain_sgl_flags;
2836         struct chain_tracker *chain_req;
2837
2838         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2839
2840         /* init scatter gather flags */
2841         simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2842             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2843         simple_sgl_flags_last = simple_sgl_flags |
2844             MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2845         chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2846             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2847
2848         /* Check if we need to build a native SG list. */
2849         if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2850                         smid, scmd, pcie_device) == 0)) {
2851                 /* We built a native SG list, just return. */
2852                 return 0;
2853         }
2854
2855         sg_scmd = scsi_sglist(scmd);
2856         sges_left = scsi_dma_map(scmd);
2857         if (sges_left < 0) {
2858                 sdev_printk(KERN_ERR, scmd->device,
2859                         "scsi_dma_map failed: request for %d bytes!\n",
2860                         scsi_bufflen(scmd));
2861                 return -ENOMEM;
2862         }
2863
2864         sg_local = &mpi_request->SGL;
2865         sges_in_segment = (ioc->request_sz -
2866                    offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2867         if (sges_left <= sges_in_segment)
2868                 goto fill_in_last_segment;
2869
2870         mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2871             (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2872
2873         /* fill in main message segment when there is a chain following */
2874         while (sges_in_segment > 1) {
2875                 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2876                     sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2877                 sg_scmd = sg_next(sg_scmd);
2878                 sg_local += ioc->sge_size_ieee;
2879                 sges_left--;
2880                 sges_in_segment--;
2881         }
2882
2883         /* initializing the pointers */
2884         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2885         if (!chain_req)
2886                 return -1;
2887         chain = chain_req->chain_buffer;
2888         chain_dma = chain_req->chain_buffer_dma;
2889         do {
2890                 sges_in_segment = (sges_left <=
2891                     ioc->max_sges_in_chain_message) ? sges_left :
2892                     ioc->max_sges_in_chain_message;
2893                 chain_offset = (sges_left == sges_in_segment) ?
2894                     0 : sges_in_segment;
2895                 chain_length = sges_in_segment * ioc->sge_size_ieee;
2896                 if (chain_offset)
2897                         chain_length += ioc->sge_size_ieee;
2898                 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2899                     chain_offset, chain_length, chain_dma);
2900
2901                 sg_local = chain;
2902                 if (!chain_offset)
2903                         goto fill_in_last_segment;
2904
2905                 /* fill in chain segments */
2906                 while (sges_in_segment) {
2907                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2908                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2909                         sg_scmd = sg_next(sg_scmd);
2910                         sg_local += ioc->sge_size_ieee;
2911                         sges_left--;
2912                         sges_in_segment--;
2913                 }
2914
2915                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2916                 if (!chain_req)
2917                         return -1;
2918                 chain = chain_req->chain_buffer;
2919                 chain_dma = chain_req->chain_buffer_dma;
2920         } while (1);
2921
2922
2923  fill_in_last_segment:
2924
2925         /* fill the last segment */
2926         while (sges_left > 0) {
2927                 if (sges_left == 1)
2928                         _base_add_sg_single_ieee(sg_local,
2929                             simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2930                             sg_dma_address(sg_scmd));
2931                 else
2932                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2933                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2934                 sg_scmd = sg_next(sg_scmd);
2935                 sg_local += ioc->sge_size_ieee;
2936                 sges_left--;
2937         }
2938
2939         return 0;
2940 }
2941
2942 /**
2943  * _base_build_sg_ieee - build generic sg for IEEE format
2944  * @ioc: per adapter object
2945  * @psge: virtual address for SGE
2946  * @data_out_dma: physical address for WRITES
2947  * @data_out_sz: data xfer size for WRITES
2948  * @data_in_dma: physical address for READS
2949  * @data_in_sz: data xfer size for READS
2950  */
2951 static void
2952 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2953         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2954         size_t data_in_sz)
2955 {
2956         u8 sgl_flags;
2957
2958         if (!data_out_sz && !data_in_sz) {
2959                 _base_build_zero_len_sge_ieee(ioc, psge);
2960                 return;
2961         }
2962
2963         if (data_out_sz && data_in_sz) {
2964                 /* WRITE sgel first */
2965                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2966                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2967                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2968                     data_out_dma);
2969
2970                 /* incr sgel */
2971                 psge += ioc->sge_size_ieee;
2972
2973                 /* READ sgel last */
2974                 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2975                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2976                     data_in_dma);
2977         } else if (data_out_sz) /* WRITE */ {
2978                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2979                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2980                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2981                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2982                     data_out_dma);
2983         } else if (data_in_sz) /* READ */ {
2984                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2985                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2986                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2987                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2988                     data_in_dma);
2989         }
2990 }
2991
2992 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2993
2994 /**
2995  * _base_config_dma_addressing - set dma addressing
2996  * @ioc: per adapter object
2997  * @pdev: PCI device struct
2998  *
2999  * Return: 0 for success, non-zero for failure.
3000  */
3001 static int
3002 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
3003 {
3004         struct sysinfo s;
3005
3006         if (ioc->is_mcpu_endpoint ||
3007             sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma ||
3008             dma_get_required_mask(&pdev->dev) <= 32)
3009                 ioc->dma_mask = 32;
3010         /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
3011         else if (ioc->hba_mpi_version_belonged > MPI2_VERSION)
3012                 ioc->dma_mask = 63;
3013         else
3014                 ioc->dma_mask = 64;
3015
3016         if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)) ||
3017             dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)))
3018                 return -ENODEV;
3019
3020         if (ioc->dma_mask > 32) {
3021                 ioc->base_add_sg_single = &_base_add_sg_single_64;
3022                 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
3023         } else {
3024                 ioc->base_add_sg_single = &_base_add_sg_single_32;
3025                 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
3026         }
3027
3028         si_meminfo(&s);
3029         ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
3030                 ioc->dma_mask, convert_to_kb(s.totalram));
3031
3032         return 0;
3033 }
3034
3035 /**
3036  * _base_check_enable_msix - checks MSIX capabable.
3037  * @ioc: per adapter object
3038  *
3039  * Check to see if card is capable of MSIX, and set number
3040  * of available msix vectors
3041  */
3042 static int
3043 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3044 {
3045         int base;
3046         u16 message_control;
3047
3048         /* Check whether controller SAS2008 B0 controller,
3049          * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
3050          */
3051         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
3052             ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
3053                 return -EINVAL;
3054         }
3055
3056         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
3057         if (!base) {
3058                 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
3059                 return -EINVAL;
3060         }
3061
3062         /* get msix vector count */
3063         /* NUMA_IO not supported for older controllers */
3064         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
3065             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
3066             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
3067             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
3068             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
3069             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
3070             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
3071                 ioc->msix_vector_count = 1;
3072         else {
3073                 pci_read_config_word(ioc->pdev, base + 2, &message_control);
3074                 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
3075         }
3076         dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
3077                                   ioc->msix_vector_count));
3078         return 0;
3079 }
3080
3081 /**
3082  * mpt3sas_base_free_irq - free irq
3083  * @ioc: per adapter object
3084  *
3085  * Freeing respective reply_queue from the list.
3086  */
3087 void
3088 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
3089 {
3090         unsigned int irq;
3091         struct adapter_reply_queue *reply_q, *next;
3092
3093         if (list_empty(&ioc->reply_queue_list))
3094                 return;
3095
3096         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3097                 list_del(&reply_q->list);
3098                 if (reply_q->is_iouring_poll_q) {
3099                         kfree(reply_q);
3100                         continue;
3101                 }
3102
3103                 if (ioc->smp_affinity_enable) {
3104                         irq = pci_irq_vector(ioc->pdev, reply_q->msix_index);
3105                         irq_update_affinity_hint(irq, NULL);
3106                 }
3107                 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3108                          reply_q);
3109                 kfree(reply_q);
3110         }
3111 }
3112
3113 /**
3114  * _base_request_irq - request irq
3115  * @ioc: per adapter object
3116  * @index: msix index into vector table
3117  *
3118  * Inserting respective reply_queue into the list.
3119  */
3120 static int
3121 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3122 {
3123         struct pci_dev *pdev = ioc->pdev;
3124         struct adapter_reply_queue *reply_q;
3125         int r, qid;
3126
3127         reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3128         if (!reply_q) {
3129                 ioc_err(ioc, "unable to allocate memory %zu!\n",
3130                         sizeof(struct adapter_reply_queue));
3131                 return -ENOMEM;
3132         }
3133         reply_q->ioc = ioc;
3134         reply_q->msix_index = index;
3135
3136         atomic_set(&reply_q->busy, 0);
3137
3138         if (index >= ioc->iopoll_q_start_index) {
3139                 qid = index - ioc->iopoll_q_start_index;
3140                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d",
3141                     ioc->driver_name, ioc->id, qid);
3142                 reply_q->is_iouring_poll_q = 1;
3143                 ioc->io_uring_poll_queues[qid].reply_q = reply_q;
3144                 goto out;
3145         }
3146
3147
3148         if (ioc->msix_enable)
3149                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3150                     ioc->driver_name, ioc->id, index);
3151         else
3152                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3153                     ioc->driver_name, ioc->id);
3154         r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3155                         IRQF_SHARED, reply_q->name, reply_q);
3156         if (r) {
3157                 pr_err("%s: unable to allocate interrupt %d!\n",
3158                        reply_q->name, pci_irq_vector(pdev, index));
3159                 kfree(reply_q);
3160                 return -EBUSY;
3161         }
3162 out:
3163         INIT_LIST_HEAD(&reply_q->list);
3164         list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3165         return 0;
3166 }
3167
3168 /**
3169  * _base_assign_reply_queues - assigning msix index for each cpu
3170  * @ioc: per adapter object
3171  *
3172  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3173  */
3174 static void
3175 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3176 {
3177         unsigned int cpu, nr_cpus, nr_msix, index = 0, irq;
3178         struct adapter_reply_queue *reply_q;
3179         int iopoll_q_count = ioc->reply_queue_count -
3180             ioc->iopoll_q_start_index;
3181         const struct cpumask *mask;
3182
3183         if (!_base_is_controller_msix_enabled(ioc))
3184                 return;
3185
3186         if (ioc->msix_load_balance)
3187                 return;
3188
3189         memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3190
3191         nr_cpus = num_online_cpus();
3192         nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3193                                                ioc->facts.MaxMSIxVectors);
3194         if (!nr_msix)
3195                 return;
3196
3197         if (ioc->smp_affinity_enable) {
3198
3199                 /*
3200                  * set irq affinity to local numa node for those irqs
3201                  * corresponding to high iops queues.
3202                  */
3203                 if (ioc->high_iops_queues) {
3204                         mask = cpumask_of_node(dev_to_node(&ioc->pdev->dev));
3205                         for (index = 0; index < ioc->high_iops_queues;
3206                             index++) {
3207                                 irq = pci_irq_vector(ioc->pdev, index);
3208                                 irq_set_affinity_and_hint(irq, mask);
3209                         }
3210                 }
3211
3212                 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3213                         const cpumask_t *mask;
3214
3215                         if (reply_q->msix_index < ioc->high_iops_queues ||
3216                             reply_q->msix_index >= ioc->iopoll_q_start_index)
3217                                 continue;
3218
3219                         mask = pci_irq_get_affinity(ioc->pdev,
3220                             reply_q->msix_index);
3221                         if (!mask) {
3222                                 ioc_warn(ioc, "no affinity for msi %x\n",
3223                                          reply_q->msix_index);
3224                                 goto fall_back;
3225                         }
3226
3227                         for_each_cpu_and(cpu, mask, cpu_online_mask) {
3228                                 if (cpu >= ioc->cpu_msix_table_sz)
3229                                         break;
3230                                 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3231                         }
3232                 }
3233                 return;
3234         }
3235
3236 fall_back:
3237         cpu = cpumask_first(cpu_online_mask);
3238         nr_msix -= (ioc->high_iops_queues - iopoll_q_count);
3239         index = 0;
3240
3241         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3242                 unsigned int i, group = nr_cpus / nr_msix;
3243
3244                 if (reply_q->msix_index < ioc->high_iops_queues ||
3245                     reply_q->msix_index >= ioc->iopoll_q_start_index)
3246                         continue;
3247
3248                 if (cpu >= nr_cpus)
3249                         break;
3250
3251                 if (index < nr_cpus % nr_msix)
3252                         group++;
3253
3254                 for (i = 0 ; i < group ; i++) {
3255                         ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3256                         cpu = cpumask_next(cpu, cpu_online_mask);
3257                 }
3258                 index++;
3259         }
3260 }
3261
3262 /**
3263  * _base_check_and_enable_high_iops_queues - enable high iops mode
3264  * @ioc: per adapter object
3265  * @hba_msix_vector_count: msix vectors supported by HBA
3266  *
3267  * Enable high iops queues only if
3268  *  - HBA is a SEA/AERO controller and
3269  *  - MSI-Xs vector supported by the HBA is 128 and
3270  *  - total CPU count in the system >=16 and
3271  *  - loaded driver with default max_msix_vectors module parameter and
3272  *  - system booted in non kdump mode
3273  *
3274  * Return: nothing.
3275  */
3276 static void
3277 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3278                 int hba_msix_vector_count)
3279 {
3280         u16 lnksta, speed;
3281
3282         /*
3283          * Disable high iops queues if io uring poll queues are enabled.
3284          */
3285         if (perf_mode == MPT_PERF_MODE_IOPS ||
3286             perf_mode == MPT_PERF_MODE_LATENCY ||
3287             ioc->io_uring_poll_queues) {
3288                 ioc->high_iops_queues = 0;
3289                 return;
3290         }
3291
3292         if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3293
3294                 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3295                 speed = lnksta & PCI_EXP_LNKSTA_CLS;
3296
3297                 if (speed < 0x4) {
3298                         ioc->high_iops_queues = 0;
3299                         return;
3300                 }
3301         }
3302
3303         if (!reset_devices && ioc->is_aero_ioc &&
3304             hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3305             num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3306             max_msix_vectors == -1)
3307                 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3308         else
3309                 ioc->high_iops_queues = 0;
3310 }
3311
3312 /**
3313  * mpt3sas_base_disable_msix - disables msix
3314  * @ioc: per adapter object
3315  *
3316  */
3317 void
3318 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3319 {
3320         if (!ioc->msix_enable)
3321                 return;
3322         pci_free_irq_vectors(ioc->pdev);
3323         ioc->msix_enable = 0;
3324         kfree(ioc->io_uring_poll_queues);
3325 }
3326
3327 /**
3328  * _base_alloc_irq_vectors - allocate msix vectors
3329  * @ioc: per adapter object
3330  *
3331  */
3332 static int
3333 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3334 {
3335         int i, irq_flags = PCI_IRQ_MSIX;
3336         struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3337         struct irq_affinity *descp = &desc;
3338         /*
3339          * Don't allocate msix vectors for poll_queues.
3340          * msix_vectors is always within a range of FW supported reply queue.
3341          */
3342         int nr_msix_vectors = ioc->iopoll_q_start_index;
3343
3344
3345         if (ioc->smp_affinity_enable)
3346                 irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
3347         else
3348                 descp = NULL;
3349
3350         ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues,
3351             ioc->reply_queue_count, nr_msix_vectors);
3352
3353         i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3354             ioc->high_iops_queues,
3355             nr_msix_vectors, irq_flags, descp);
3356
3357         return i;
3358 }
3359
3360 /**
3361  * _base_enable_msix - enables msix, failback to io_apic
3362  * @ioc: per adapter object
3363  *
3364  */
3365 static int
3366 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3367 {
3368         int r;
3369         int i, local_max_msix_vectors;
3370         u8 try_msix = 0;
3371         int iopoll_q_count = 0;
3372
3373         ioc->msix_load_balance = false;
3374
3375         if (msix_disable == -1 || msix_disable == 0)
3376                 try_msix = 1;
3377
3378         if (!try_msix)
3379                 goto try_ioapic;
3380
3381         if (_base_check_enable_msix(ioc) != 0)
3382                 goto try_ioapic;
3383
3384         ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3385         pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3386                 ioc->cpu_count, max_msix_vectors);
3387
3388         ioc->reply_queue_count =
3389                 min_t(int, ioc->cpu_count, ioc->msix_vector_count);
3390
3391         if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3392                 local_max_msix_vectors = (reset_devices) ? 1 : 8;
3393         else
3394                 local_max_msix_vectors = max_msix_vectors;
3395
3396         if (local_max_msix_vectors == 0)
3397                 goto try_ioapic;
3398
3399         /*
3400          * Enable msix_load_balance only if combined reply queue mode is
3401          * disabled on SAS3 & above generation HBA devices.
3402          */
3403         if (!ioc->combined_reply_queue &&
3404             ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3405                 ioc_info(ioc,
3406                     "combined ReplyQueue is off, Enabling msix load balance\n");
3407                 ioc->msix_load_balance = true;
3408         }
3409
3410         /*
3411          * smp affinity setting is not need when msix load balance
3412          * is enabled.
3413          */
3414         if (ioc->msix_load_balance)
3415                 ioc->smp_affinity_enable = 0;
3416
3417         if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1)
3418                 ioc->shost->host_tagset = 0;
3419
3420         /*
3421          * Enable io uring poll queues only if host_tagset is enabled.
3422          */
3423         if (ioc->shost->host_tagset)
3424                 iopoll_q_count = poll_queues;
3425
3426         if (iopoll_q_count) {
3427                 ioc->io_uring_poll_queues = kcalloc(iopoll_q_count,
3428                     sizeof(struct io_uring_poll_queue), GFP_KERNEL);
3429                 if (!ioc->io_uring_poll_queues)
3430                         iopoll_q_count = 0;
3431         }
3432
3433         if (ioc->is_aero_ioc)
3434                 _base_check_and_enable_high_iops_queues(ioc,
3435                     ioc->msix_vector_count);
3436
3437         /*
3438          * Add high iops queues count to reply queue count if high iops queues
3439          * are enabled.
3440          */
3441         ioc->reply_queue_count = min_t(int,
3442             ioc->reply_queue_count + ioc->high_iops_queues,
3443             ioc->msix_vector_count);
3444
3445         /*
3446          * Adjust the reply queue count incase reply queue count
3447          * exceeds the user provided MSIx vectors count.
3448          */
3449         if (local_max_msix_vectors > 0)
3450                 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3451                     ioc->reply_queue_count);
3452         /*
3453          * Add io uring poll queues count to reply queues count
3454          * if io uring is enabled in driver.
3455          */
3456         if (iopoll_q_count) {
3457                 if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS))
3458                         iopoll_q_count = 0;
3459                 ioc->reply_queue_count = min_t(int,
3460                     ioc->reply_queue_count + iopoll_q_count,
3461                     ioc->msix_vector_count);
3462         }
3463
3464         /*
3465          * Starting index of io uring poll queues in reply queue list.
3466          */
3467         ioc->iopoll_q_start_index =
3468             ioc->reply_queue_count - iopoll_q_count;
3469
3470         r = _base_alloc_irq_vectors(ioc);
3471         if (r < 0) {
3472                 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3473                 goto try_ioapic;
3474         }
3475
3476         /*
3477          * Adjust the reply queue count if the allocated
3478          * MSIx vectors is less then the requested number
3479          * of MSIx vectors.
3480          */
3481         if (r < ioc->iopoll_q_start_index) {
3482                 ioc->reply_queue_count = r + iopoll_q_count;
3483                 ioc->iopoll_q_start_index =
3484                     ioc->reply_queue_count - iopoll_q_count;
3485         }
3486
3487         ioc->msix_enable = 1;
3488         for (i = 0; i < ioc->reply_queue_count; i++) {
3489                 r = _base_request_irq(ioc, i);
3490                 if (r) {
3491                         mpt3sas_base_free_irq(ioc);
3492                         mpt3sas_base_disable_msix(ioc);
3493                         goto try_ioapic;
3494                 }
3495         }
3496
3497         ioc_info(ioc, "High IOPs queues : %s\n",
3498                         ioc->high_iops_queues ? "enabled" : "disabled");
3499
3500         return 0;
3501
3502 /* failback to io_apic interrupt routing */
3503  try_ioapic:
3504         ioc->high_iops_queues = 0;
3505         ioc_info(ioc, "High IOPs queues : disabled\n");
3506         ioc->reply_queue_count = 1;
3507         ioc->iopoll_q_start_index = ioc->reply_queue_count - 0;
3508         r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3509         if (r < 0) {
3510                 dfailprintk(ioc,
3511                             ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3512                                      r));
3513         } else
3514                 r = _base_request_irq(ioc, 0);
3515
3516         return r;
3517 }
3518
3519 /**
3520  * mpt3sas_base_unmap_resources - free controller resources
3521  * @ioc: per adapter object
3522  */
3523 static void
3524 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3525 {
3526         struct pci_dev *pdev = ioc->pdev;
3527
3528         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3529
3530         mpt3sas_base_free_irq(ioc);
3531         mpt3sas_base_disable_msix(ioc);
3532
3533         kfree(ioc->replyPostRegisterIndex);
3534         ioc->replyPostRegisterIndex = NULL;
3535
3536
3537         if (ioc->chip_phys) {
3538                 iounmap(ioc->chip);
3539                 ioc->chip_phys = 0;
3540         }
3541
3542         if (pci_is_enabled(pdev)) {
3543                 pci_release_selected_regions(ioc->pdev, ioc->bars);
3544                 pci_disable_pcie_error_reporting(pdev);
3545                 pci_disable_device(pdev);
3546         }
3547 }
3548
3549 static int
3550 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3551
3552 /**
3553  * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state
3554  *     and if it is in fault state then issue diag reset.
3555  * @ioc: per adapter object
3556  *
3557  * Return: 0 for success, non-zero for failure.
3558  */
3559 int
3560 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3561 {
3562         u32 ioc_state;
3563         int rc = -EFAULT;
3564
3565         dinitprintk(ioc, pr_info("%s\n", __func__));
3566         if (ioc->pci_error_recovery)
3567                 return 0;
3568         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3569         dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3570
3571         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3572                 mpt3sas_print_fault_code(ioc, ioc_state &
3573                     MPI2_DOORBELL_DATA_MASK);
3574                 mpt3sas_base_mask_interrupts(ioc);
3575                 rc = _base_diag_reset(ioc);
3576         } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3577             MPI2_IOC_STATE_COREDUMP) {
3578                 mpt3sas_print_coredump_info(ioc, ioc_state &
3579                      MPI2_DOORBELL_DATA_MASK);
3580                 mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3581                 mpt3sas_base_mask_interrupts(ioc);
3582                 rc = _base_diag_reset(ioc);
3583         }
3584
3585         return rc;
3586 }
3587
3588 /**
3589  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3590  * @ioc: per adapter object
3591  *
3592  * Return: 0 for success, non-zero for failure.
3593  */
3594 int
3595 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3596 {
3597         struct pci_dev *pdev = ioc->pdev;
3598         u32 memap_sz;
3599         u32 pio_sz;
3600         int i, r = 0, rc;
3601         u64 pio_chip = 0;
3602         phys_addr_t chip_phys = 0;
3603         struct adapter_reply_queue *reply_q;
3604         int iopoll_q_count = 0;
3605
3606         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3607
3608         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3609         if (pci_enable_device_mem(pdev)) {
3610                 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3611                 ioc->bars = 0;
3612                 return -ENODEV;
3613         }
3614
3615
3616         if (pci_request_selected_regions(pdev, ioc->bars,
3617             ioc->driver_name)) {
3618                 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3619                 ioc->bars = 0;
3620                 r = -ENODEV;
3621                 goto out_fail;
3622         }
3623
3624 /* AER (Advanced Error Reporting) hooks */
3625         pci_enable_pcie_error_reporting(pdev);
3626
3627         pci_set_master(pdev);
3628
3629
3630         if (_base_config_dma_addressing(ioc, pdev) != 0) {
3631                 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3632                 r = -ENODEV;
3633                 goto out_fail;
3634         }
3635
3636         for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3637              (!memap_sz || !pio_sz); i++) {
3638                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3639                         if (pio_sz)
3640                                 continue;
3641                         pio_chip = (u64)pci_resource_start(pdev, i);
3642                         pio_sz = pci_resource_len(pdev, i);
3643                 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3644                         if (memap_sz)
3645                                 continue;
3646                         ioc->chip_phys = pci_resource_start(pdev, i);
3647                         chip_phys = ioc->chip_phys;
3648                         memap_sz = pci_resource_len(pdev, i);
3649                         ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3650                 }
3651         }
3652
3653         if (ioc->chip == NULL) {
3654                 ioc_err(ioc,
3655                     "unable to map adapter memory! or resource not found\n");
3656                 r = -EINVAL;
3657                 goto out_fail;
3658         }
3659
3660         mpt3sas_base_mask_interrupts(ioc);
3661
3662         r = _base_get_ioc_facts(ioc);
3663         if (r) {
3664                 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
3665                 if (rc || (_base_get_ioc_facts(ioc)))
3666                         goto out_fail;
3667         }
3668
3669         if (!ioc->rdpq_array_enable_assigned) {
3670                 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3671                 ioc->rdpq_array_enable_assigned = 1;
3672         }
3673
3674         r = _base_enable_msix(ioc);
3675         if (r)
3676                 goto out_fail;
3677
3678         iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index;
3679         for (i = 0; i < iopoll_q_count; i++) {
3680                 atomic_set(&ioc->io_uring_poll_queues[i].busy, 0);
3681                 atomic_set(&ioc->io_uring_poll_queues[i].pause, 0);
3682         }
3683
3684         if (!ioc->is_driver_loading)
3685                 _base_init_irqpolls(ioc);
3686         /* Use the Combined reply queue feature only for SAS3 C0 & higher
3687          * revision HBAs and also only when reply queue count is greater than 8
3688          */
3689         if (ioc->combined_reply_queue) {
3690                 /* Determine the Supplemental Reply Post Host Index Registers
3691                  * Addresse. Supplemental Reply Post Host Index Registers
3692                  * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3693                  * each register is at offset bytes of
3694                  * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3695                  */
3696                 ioc->replyPostRegisterIndex = kcalloc(
3697                      ioc->combined_reply_index_count,
3698                      sizeof(resource_size_t *), GFP_KERNEL);
3699                 if (!ioc->replyPostRegisterIndex) {
3700                         ioc_err(ioc,
3701                             "allocation for replyPostRegisterIndex failed!\n");
3702                         r = -ENOMEM;
3703                         goto out_fail;
3704                 }
3705
3706                 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3707                         ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3708                              ((u8 __force *)&ioc->chip->Doorbell +
3709                              MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3710                              (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3711                 }
3712         }
3713
3714         if (ioc->is_warpdrive) {
3715                 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3716                     &ioc->chip->ReplyPostHostIndex;
3717
3718                 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3719                         ioc->reply_post_host_index[i] =
3720                         (resource_size_t __iomem *)
3721                         ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3722                         * 4)));
3723         }
3724
3725         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3726                 if (reply_q->msix_index >= ioc->iopoll_q_start_index) {
3727                         pr_info("%s: enabled: index: %d\n",
3728                             reply_q->name, reply_q->msix_index);
3729                         continue;
3730                 }
3731
3732                 pr_info("%s: %s enabled: IRQ %d\n",
3733                         reply_q->name,
3734                         ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3735                         pci_irq_vector(ioc->pdev, reply_q->msix_index));
3736         }
3737
3738         ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3739                  &chip_phys, ioc->chip, memap_sz);
3740         ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3741                  (unsigned long long)pio_chip, pio_sz);
3742
3743         /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3744         pci_save_state(pdev);
3745         return 0;
3746
3747  out_fail:
3748         mpt3sas_base_unmap_resources(ioc);
3749         return r;
3750 }
3751
3752 /**
3753  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3754  * @ioc: per adapter object
3755  * @smid: system request message index(smid zero is invalid)
3756  *
3757  * Return: virt pointer to message frame.
3758  */
3759 void *
3760 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3761 {
3762         return (void *)(ioc->request + (smid * ioc->request_sz));
3763 }
3764
3765 /**
3766  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3767  * @ioc: per adapter object
3768  * @smid: system request message index
3769  *
3770  * Return: virt pointer to sense buffer.
3771  */
3772 void *
3773 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3774 {
3775         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3776 }
3777
3778 /**
3779  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3780  * @ioc: per adapter object
3781  * @smid: system request message index
3782  *
3783  * Return: phys pointer to the low 32bit address of the sense buffer.
3784  */
3785 __le32
3786 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3787 {
3788         return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3789             SCSI_SENSE_BUFFERSIZE));
3790 }
3791
3792 /**
3793  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3794  * @ioc: per adapter object
3795  * @smid: system request message index
3796  *
3797  * Return: virt pointer to a PCIe SGL.
3798  */
3799 void *
3800 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3801 {
3802         return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3803 }
3804
3805 /**
3806  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3807  * @ioc: per adapter object
3808  * @smid: system request message index
3809  *
3810  * Return: phys pointer to the address of the PCIe buffer.
3811  */
3812 dma_addr_t
3813 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3814 {
3815         return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3816 }
3817
3818 /**
3819  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3820  * @ioc: per adapter object
3821  * @phys_addr: lower 32 physical addr of the reply
3822  *
3823  * Converts 32bit lower physical addr into a virt address.
3824  */
3825 void *
3826 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3827 {
3828         if (!phys_addr)
3829                 return NULL;
3830         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3831 }
3832
3833 /**
3834  * _base_get_msix_index - get the msix index
3835  * @ioc: per adapter object
3836  * @scmd: scsi_cmnd object
3837  *
3838  * Return: msix index of general reply queues,
3839  * i.e. reply queue on which IO request's reply
3840  * should be posted by the HBA firmware.
3841  */
3842 static inline u8
3843 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3844         struct scsi_cmnd *scmd)
3845 {
3846         /* Enables reply_queue load balancing */
3847         if (ioc->msix_load_balance)
3848                 return ioc->reply_queue_count ?
3849                     base_mod64(atomic64_add_return(1,
3850                     &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3851
3852         if (scmd && ioc->shost->nr_hw_queues > 1) {
3853                 u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3854
3855                 return blk_mq_unique_tag_to_hwq(tag) +
3856                         ioc->high_iops_queues;
3857         }
3858
3859         return ioc->cpu_msix_table[raw_smp_processor_id()];
3860 }
3861
3862 /**
3863  * _base_get_high_iops_msix_index - get the msix index of
3864  *                              high iops queues
3865  * @ioc: per adapter object
3866  * @scmd: scsi_cmnd object
3867  *
3868  * Return: msix index of high iops reply queues.
3869  * i.e. high iops reply queue on which IO request's
3870  * reply should be posted by the HBA firmware.
3871  */
3872 static inline u8
3873 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3874         struct scsi_cmnd *scmd)
3875 {
3876         /**
3877          * Round robin the IO interrupts among the high iops
3878          * reply queues in terms of batch count 16 when outstanding
3879          * IOs on the target device is >=8.
3880          */
3881
3882         if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3883                 return base_mod64((
3884                     atomic64_add_return(1, &ioc->high_iops_outstanding) /
3885                     MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3886                     MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3887
3888         return _base_get_msix_index(ioc, scmd);
3889 }
3890
3891 /**
3892  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3893  * @ioc: per adapter object
3894  * @cb_idx: callback index
3895  *
3896  * Return: smid (zero is invalid)
3897  */
3898 u16
3899 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3900 {
3901         unsigned long flags;
3902         struct request_tracker *request;
3903         u16 smid;
3904
3905         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3906         if (list_empty(&ioc->internal_free_list)) {
3907                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3908                 ioc_err(ioc, "%s: smid not available\n", __func__);
3909                 return 0;
3910         }
3911
3912         request = list_entry(ioc->internal_free_list.next,
3913             struct request_tracker, tracker_list);
3914         request->cb_idx = cb_idx;
3915         smid = request->smid;
3916         list_del(&request->tracker_list);
3917         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3918         return smid;
3919 }
3920
3921 /**
3922  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3923  * @ioc: per adapter object
3924  * @cb_idx: callback index
3925  * @scmd: pointer to scsi command object
3926  *
3927  * Return: smid (zero is invalid)
3928  */
3929 u16
3930 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3931         struct scsi_cmnd *scmd)
3932 {
3933         struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3934         u16 smid;
3935         u32 tag, unique_tag;
3936
3937         unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3938         tag = blk_mq_unique_tag_to_tag(unique_tag);
3939
3940         /*
3941          * Store hw queue number corresponding to the tag.
3942          * This hw queue number is used later to determine
3943          * the unique_tag using the logic below. This unique_tag
3944          * is used to retrieve the scmd pointer corresponding
3945          * to tag using scsi_host_find_tag() API.
3946          *
3947          * tag = smid - 1;
3948          * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag;
3949          */
3950         ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag);
3951
3952         smid = tag + 1;
3953         request->cb_idx = cb_idx;
3954         request->smid = smid;
3955         request->scmd = scmd;
3956         INIT_LIST_HEAD(&request->chain_list);
3957         return smid;
3958 }
3959
3960 /**
3961  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3962  * @ioc: per adapter object
3963  * @cb_idx: callback index
3964  *
3965  * Return: smid (zero is invalid)
3966  */
3967 u16
3968 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3969 {
3970         unsigned long flags;
3971         struct request_tracker *request;
3972         u16 smid;
3973
3974         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3975         if (list_empty(&ioc->hpr_free_list)) {
3976                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3977                 return 0;
3978         }
3979
3980         request = list_entry(ioc->hpr_free_list.next,
3981             struct request_tracker, tracker_list);
3982         request->cb_idx = cb_idx;
3983         smid = request->smid;
3984         list_del(&request->tracker_list);
3985         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3986         return smid;
3987 }
3988
3989 static void
3990 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3991 {
3992         /*
3993          * See _wait_for_commands_to_complete() call with regards to this code.
3994          */
3995         if (ioc->shost_recovery && ioc->pending_io_count) {
3996                 ioc->pending_io_count = scsi_host_busy(ioc->shost);
3997                 if (ioc->pending_io_count == 0)
3998                         wake_up(&ioc->reset_wq);
3999         }
4000 }
4001
4002 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
4003                            struct scsiio_tracker *st)
4004 {
4005         if (WARN_ON(st->smid == 0))
4006                 return;
4007         st->cb_idx = 0xFF;
4008         st->direct_io = 0;
4009         st->scmd = NULL;
4010         atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
4011         st->smid = 0;
4012 }
4013
4014 /**
4015  * mpt3sas_base_free_smid - put smid back on free_list
4016  * @ioc: per adapter object
4017  * @smid: system request message index
4018  */
4019 void
4020 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4021 {
4022         unsigned long flags;
4023         int i;
4024
4025         if (smid < ioc->hi_priority_smid) {
4026                 struct scsiio_tracker *st;
4027                 void *request;
4028
4029                 st = _get_st_from_smid(ioc, smid);
4030                 if (!st) {
4031                         _base_recovery_check(ioc);
4032                         return;
4033                 }
4034
4035                 /* Clear MPI request frame */
4036                 request = mpt3sas_base_get_msg_frame(ioc, smid);
4037                 memset(request, 0, ioc->request_sz);
4038
4039                 mpt3sas_base_clear_st(ioc, st);
4040                 _base_recovery_check(ioc);
4041                 ioc->io_queue_num[smid - 1] = 0;
4042                 return;
4043         }
4044
4045         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4046         if (smid < ioc->internal_smid) {
4047                 /* hi-priority */
4048                 i = smid - ioc->hi_priority_smid;
4049                 ioc->hpr_lookup[i].cb_idx = 0xFF;
4050                 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
4051         } else if (smid <= ioc->hba_queue_depth) {
4052                 /* internal queue */
4053                 i = smid - ioc->internal_smid;
4054                 ioc->internal_lookup[i].cb_idx = 0xFF;
4055                 list_add(&ioc->internal_lookup[i].tracker_list,
4056                     &ioc->internal_free_list);
4057         }
4058         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4059 }
4060
4061 /**
4062  * _base_mpi_ep_writeq - 32 bit write to MMIO
4063  * @b: data payload
4064  * @addr: address in MMIO space
4065  * @writeq_lock: spin lock
4066  *
4067  * This special handling for MPI EP to take care of 32 bit
4068  * environment where its not quarenteed to send the entire word
4069  * in one transfer.
4070  */
4071 static inline void
4072 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
4073                                         spinlock_t *writeq_lock)
4074 {
4075         unsigned long flags;
4076
4077         spin_lock_irqsave(writeq_lock, flags);
4078         __raw_writel((u32)(b), addr);
4079         __raw_writel((u32)(b >> 32), (addr + 4));
4080         spin_unlock_irqrestore(writeq_lock, flags);
4081 }
4082
4083 /**
4084  * _base_writeq - 64 bit write to MMIO
4085  * @b: data payload
4086  * @addr: address in MMIO space
4087  * @writeq_lock: spin lock
4088  *
4089  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
4090  * care of 32 bit environment where its not quarenteed to send the entire word
4091  * in one transfer.
4092  */
4093 #if defined(writeq) && defined(CONFIG_64BIT)
4094 static inline void
4095 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4096 {
4097         wmb();
4098         __raw_writeq(b, addr);
4099         barrier();
4100 }
4101 #else
4102 static inline void
4103 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4104 {
4105         _base_mpi_ep_writeq(b, addr, writeq_lock);
4106 }
4107 #endif
4108
4109 /**
4110  * _base_set_and_get_msix_index - get the msix index and assign to msix_io
4111  *                                variable of scsi tracker
4112  * @ioc: per adapter object
4113  * @smid: system request message index
4114  *
4115  * Return: msix index.
4116  */
4117 static u8
4118 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4119 {
4120         struct scsiio_tracker *st = NULL;
4121
4122         if (smid < ioc->hi_priority_smid)
4123                 st = _get_st_from_smid(ioc, smid);
4124
4125         if (st == NULL)
4126                 return  _base_get_msix_index(ioc, NULL);
4127
4128         st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
4129         return st->msix_io;
4130 }
4131
4132 /**
4133  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
4134  * @ioc: per adapter object
4135  * @smid: system request message index
4136  * @handle: device handle
4137  */
4138 static void
4139 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
4140         u16 smid, u16 handle)
4141 {
4142         Mpi2RequestDescriptorUnion_t descriptor;
4143         u64 *request = (u64 *)&descriptor;
4144         void *mpi_req_iomem;
4145         __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4146
4147         _clone_sg_entries(ioc, (void *) mfp, smid);
4148         mpi_req_iomem = (void __force *)ioc->chip +
4149                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4150         _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4151                                         ioc->request_sz);
4152         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4153         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4154         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4155         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4156         descriptor.SCSIIO.LMID = 0;
4157         _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4158             &ioc->scsi_lookup_lock);
4159 }
4160
4161 /**
4162  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
4163  * @ioc: per adapter object
4164  * @smid: system request message index
4165  * @handle: device handle
4166  */
4167 static void
4168 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
4169 {
4170         Mpi2RequestDescriptorUnion_t descriptor;
4171         u64 *request = (u64 *)&descriptor;
4172
4173
4174         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4175         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4176         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4177         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4178         descriptor.SCSIIO.LMID = 0;
4179         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4180             &ioc->scsi_lookup_lock);
4181 }
4182
4183 /**
4184  * _base_put_smid_fast_path - send fast path request to firmware
4185  * @ioc: per adapter object
4186  * @smid: system request message index
4187  * @handle: device handle
4188  */
4189 static void
4190 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4191         u16 handle)
4192 {
4193         Mpi2RequestDescriptorUnion_t descriptor;
4194         u64 *request = (u64 *)&descriptor;
4195
4196         descriptor.SCSIIO.RequestFlags =
4197             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4198         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4199         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4200         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4201         descriptor.SCSIIO.LMID = 0;
4202         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4203             &ioc->scsi_lookup_lock);
4204 }
4205
4206 /**
4207  * _base_put_smid_hi_priority - send Task Management request to firmware
4208  * @ioc: per adapter object
4209  * @smid: system request message index
4210  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4211  */
4212 static void
4213 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4214         u16 msix_task)
4215 {
4216         Mpi2RequestDescriptorUnion_t descriptor;
4217         void *mpi_req_iomem;
4218         u64 *request;
4219
4220         if (ioc->is_mcpu_endpoint) {
4221                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4222
4223                 /* TBD 256 is offset within sys register. */
4224                 mpi_req_iomem = (void __force *)ioc->chip
4225                                         + MPI_FRAME_START_OFFSET
4226                                         + (smid * ioc->request_sz);
4227                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4228                                                         ioc->request_sz);
4229         }
4230
4231         request = (u64 *)&descriptor;
4232
4233         descriptor.HighPriority.RequestFlags =
4234             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4235         descriptor.HighPriority.MSIxIndex =  msix_task;
4236         descriptor.HighPriority.SMID = cpu_to_le16(smid);
4237         descriptor.HighPriority.LMID = 0;
4238         descriptor.HighPriority.Reserved1 = 0;
4239         if (ioc->is_mcpu_endpoint)
4240                 _base_mpi_ep_writeq(*request,
4241                                 &ioc->chip->RequestDescriptorPostLow,
4242                                 &ioc->scsi_lookup_lock);
4243         else
4244                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4245                     &ioc->scsi_lookup_lock);
4246 }
4247
4248 /**
4249  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4250  *  firmware
4251  * @ioc: per adapter object
4252  * @smid: system request message index
4253  */
4254 void
4255 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4256 {
4257         Mpi2RequestDescriptorUnion_t descriptor;
4258         u64 *request = (u64 *)&descriptor;
4259
4260         descriptor.Default.RequestFlags =
4261                 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4262         descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
4263         descriptor.Default.SMID = cpu_to_le16(smid);
4264         descriptor.Default.LMID = 0;
4265         descriptor.Default.DescriptorTypeDependent = 0;
4266         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4267             &ioc->scsi_lookup_lock);
4268 }
4269
4270 /**
4271  * _base_put_smid_default - Default, primarily used for config pages
4272  * @ioc: per adapter object
4273  * @smid: system request message index
4274  */
4275 static void
4276 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4277 {
4278         Mpi2RequestDescriptorUnion_t descriptor;
4279         void *mpi_req_iomem;
4280         u64 *request;
4281
4282         if (ioc->is_mcpu_endpoint) {
4283                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4284
4285                 _clone_sg_entries(ioc, (void *) mfp, smid);
4286                 /* TBD 256 is offset within sys register */
4287                 mpi_req_iomem = (void __force *)ioc->chip +
4288                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4289                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4290                                                         ioc->request_sz);
4291         }
4292         request = (u64 *)&descriptor;
4293         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4294         descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4295         descriptor.Default.SMID = cpu_to_le16(smid);
4296         descriptor.Default.LMID = 0;
4297         descriptor.Default.DescriptorTypeDependent = 0;
4298         if (ioc->is_mcpu_endpoint)
4299                 _base_mpi_ep_writeq(*request,
4300                                 &ioc->chip->RequestDescriptorPostLow,
4301                                 &ioc->scsi_lookup_lock);
4302         else
4303                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4304                                 &ioc->scsi_lookup_lock);
4305 }
4306
4307 /**
4308  * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4309  *   Atomic Request Descriptor
4310  * @ioc: per adapter object
4311  * @smid: system request message index
4312  * @handle: device handle, unused in this function, for function type match
4313  *
4314  * Return: nothing.
4315  */
4316 static void
4317 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4318         u16 handle)
4319 {
4320         Mpi26AtomicRequestDescriptor_t descriptor;
4321         u32 *request = (u32 *)&descriptor;
4322
4323         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4324         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4325         descriptor.SMID = cpu_to_le16(smid);
4326
4327         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4328 }
4329
4330 /**
4331  * _base_put_smid_fast_path_atomic - send fast path request to firmware
4332  * using Atomic Request Descriptor
4333  * @ioc: per adapter object
4334  * @smid: system request message index
4335  * @handle: device handle, unused in this function, for function type match
4336  * Return: nothing
4337  */
4338 static void
4339 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4340         u16 handle)
4341 {
4342         Mpi26AtomicRequestDescriptor_t descriptor;
4343         u32 *request = (u32 *)&descriptor;
4344
4345         descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4346         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4347         descriptor.SMID = cpu_to_le16(smid);
4348
4349         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4350 }
4351
4352 /**
4353  * _base_put_smid_hi_priority_atomic - send Task Management request to
4354  * firmware using Atomic Request Descriptor
4355  * @ioc: per adapter object
4356  * @smid: system request message index
4357  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4358  *
4359  * Return: nothing.
4360  */
4361 static void
4362 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4363         u16 msix_task)
4364 {
4365         Mpi26AtomicRequestDescriptor_t descriptor;
4366         u32 *request = (u32 *)&descriptor;
4367
4368         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4369         descriptor.MSIxIndex = msix_task;
4370         descriptor.SMID = cpu_to_le16(smid);
4371
4372         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4373 }
4374
4375 /**
4376  * _base_put_smid_default_atomic - Default, primarily used for config pages
4377  * use Atomic Request Descriptor
4378  * @ioc: per adapter object
4379  * @smid: system request message index
4380  *
4381  * Return: nothing.
4382  */
4383 static void
4384 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4385 {
4386         Mpi26AtomicRequestDescriptor_t descriptor;
4387         u32 *request = (u32 *)&descriptor;
4388
4389         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4390         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4391         descriptor.SMID = cpu_to_le16(smid);
4392
4393         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4394 }
4395
4396 /**
4397  * _base_display_OEMs_branding - Display branding string
4398  * @ioc: per adapter object
4399  */
4400 static void
4401 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4402 {
4403         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4404                 return;
4405
4406         switch (ioc->pdev->subsystem_vendor) {
4407         case PCI_VENDOR_ID_INTEL:
4408                 switch (ioc->pdev->device) {
4409                 case MPI2_MFGPAGE_DEVID_SAS2008:
4410                         switch (ioc->pdev->subsystem_device) {
4411                         case MPT2SAS_INTEL_RMS2LL080_SSDID:
4412                                 ioc_info(ioc, "%s\n",
4413                                          MPT2SAS_INTEL_RMS2LL080_BRANDING);
4414                                 break;
4415                         case MPT2SAS_INTEL_RMS2LL040_SSDID:
4416                                 ioc_info(ioc, "%s\n",
4417                                          MPT2SAS_INTEL_RMS2LL040_BRANDING);
4418                                 break;
4419                         case MPT2SAS_INTEL_SSD910_SSDID:
4420                                 ioc_info(ioc, "%s\n",
4421                                          MPT2SAS_INTEL_SSD910_BRANDING);
4422                                 break;
4423                         default:
4424                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4425                                          ioc->pdev->subsystem_device);
4426                                 break;
4427                         }
4428                         break;
4429                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4430                         switch (ioc->pdev->subsystem_device) {
4431                         case MPT2SAS_INTEL_RS25GB008_SSDID:
4432                                 ioc_info(ioc, "%s\n",
4433                                          MPT2SAS_INTEL_RS25GB008_BRANDING);
4434                                 break;
4435                         case MPT2SAS_INTEL_RMS25JB080_SSDID:
4436                                 ioc_info(ioc, "%s\n",
4437                                          MPT2SAS_INTEL_RMS25JB080_BRANDING);
4438                                 break;
4439                         case MPT2SAS_INTEL_RMS25JB040_SSDID:
4440                                 ioc_info(ioc, "%s\n",
4441                                          MPT2SAS_INTEL_RMS25JB040_BRANDING);
4442                                 break;
4443                         case MPT2SAS_INTEL_RMS25KB080_SSDID:
4444                                 ioc_info(ioc, "%s\n",
4445                                          MPT2SAS_INTEL_RMS25KB080_BRANDING);
4446                                 break;
4447                         case MPT2SAS_INTEL_RMS25KB040_SSDID:
4448                                 ioc_info(ioc, "%s\n",
4449                                          MPT2SAS_INTEL_RMS25KB040_BRANDING);
4450                                 break;
4451                         case MPT2SAS_INTEL_RMS25LB040_SSDID:
4452                                 ioc_info(ioc, "%s\n",
4453                                          MPT2SAS_INTEL_RMS25LB040_BRANDING);
4454                                 break;
4455                         case MPT2SAS_INTEL_RMS25LB080_SSDID:
4456                                 ioc_info(ioc, "%s\n",
4457                                          MPT2SAS_INTEL_RMS25LB080_BRANDING);
4458                                 break;
4459                         default:
4460                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4461                                          ioc->pdev->subsystem_device);
4462                                 break;
4463                         }
4464                         break;
4465                 case MPI25_MFGPAGE_DEVID_SAS3008:
4466                         switch (ioc->pdev->subsystem_device) {
4467                         case MPT3SAS_INTEL_RMS3JC080_SSDID:
4468                                 ioc_info(ioc, "%s\n",
4469                                          MPT3SAS_INTEL_RMS3JC080_BRANDING);
4470                                 break;
4471
4472                         case MPT3SAS_INTEL_RS3GC008_SSDID:
4473                                 ioc_info(ioc, "%s\n",
4474                                          MPT3SAS_INTEL_RS3GC008_BRANDING);
4475                                 break;
4476                         case MPT3SAS_INTEL_RS3FC044_SSDID:
4477                                 ioc_info(ioc, "%s\n",
4478                                          MPT3SAS_INTEL_RS3FC044_BRANDING);
4479                                 break;
4480                         case MPT3SAS_INTEL_RS3UC080_SSDID:
4481                                 ioc_info(ioc, "%s\n",
4482                                          MPT3SAS_INTEL_RS3UC080_BRANDING);
4483                                 break;
4484                         default:
4485                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4486                                          ioc->pdev->subsystem_device);
4487                                 break;
4488                         }
4489                         break;
4490                 default:
4491                         ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4492                                  ioc->pdev->subsystem_device);
4493                         break;
4494                 }
4495                 break;
4496         case PCI_VENDOR_ID_DELL:
4497                 switch (ioc->pdev->device) {
4498                 case MPI2_MFGPAGE_DEVID_SAS2008:
4499                         switch (ioc->pdev->subsystem_device) {
4500                         case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4501                                 ioc_info(ioc, "%s\n",
4502                                          MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4503                                 break;
4504                         case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4505                                 ioc_info(ioc, "%s\n",
4506                                          MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4507                                 break;
4508                         case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4509                                 ioc_info(ioc, "%s\n",
4510                                          MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4511                                 break;
4512                         case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4513                                 ioc_info(ioc, "%s\n",
4514                                          MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4515                                 break;
4516                         case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4517                                 ioc_info(ioc, "%s\n",
4518                                          MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4519                                 break;
4520                         case MPT2SAS_DELL_PERC_H200_SSDID:
4521                                 ioc_info(ioc, "%s\n",
4522                                          MPT2SAS_DELL_PERC_H200_BRANDING);
4523                                 break;
4524                         case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4525                                 ioc_info(ioc, "%s\n",
4526                                          MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4527                                 break;
4528                         default:
4529                                 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4530                                          ioc->pdev->subsystem_device);
4531                                 break;
4532                         }
4533                         break;
4534                 case MPI25_MFGPAGE_DEVID_SAS3008:
4535                         switch (ioc->pdev->subsystem_device) {
4536                         case MPT3SAS_DELL_12G_HBA_SSDID:
4537                                 ioc_info(ioc, "%s\n",
4538                                          MPT3SAS_DELL_12G_HBA_BRANDING);
4539                                 break;
4540                         default:
4541                                 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4542                                          ioc->pdev->subsystem_device);
4543                                 break;
4544                         }
4545                         break;
4546                 default:
4547                         ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4548                                  ioc->pdev->subsystem_device);
4549                         break;
4550                 }
4551                 break;
4552         case PCI_VENDOR_ID_CISCO:
4553                 switch (ioc->pdev->device) {
4554                 case MPI25_MFGPAGE_DEVID_SAS3008:
4555                         switch (ioc->pdev->subsystem_device) {
4556                         case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4557                                 ioc_info(ioc, "%s\n",
4558                                          MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4559                                 break;
4560                         case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4561                                 ioc_info(ioc, "%s\n",
4562                                          MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4563                                 break;
4564                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4565                                 ioc_info(ioc, "%s\n",
4566                                          MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4567                                 break;
4568                         default:
4569                                 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4570                                          ioc->pdev->subsystem_device);
4571                                 break;
4572                         }
4573                         break;
4574                 case MPI25_MFGPAGE_DEVID_SAS3108_1:
4575                         switch (ioc->pdev->subsystem_device) {
4576                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4577                                 ioc_info(ioc, "%s\n",
4578                                          MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4579                                 break;
4580                         case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4581                                 ioc_info(ioc, "%s\n",
4582                                          MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4583                                 break;
4584                         default:
4585                                 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4586                                          ioc->pdev->subsystem_device);
4587                                 break;
4588                         }
4589                         break;
4590                 default:
4591                         ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4592                                  ioc->pdev->subsystem_device);
4593                         break;
4594                 }
4595                 break;
4596         case MPT2SAS_HP_3PAR_SSVID:
4597                 switch (ioc->pdev->device) {
4598                 case MPI2_MFGPAGE_DEVID_SAS2004:
4599                         switch (ioc->pdev->subsystem_device) {
4600                         case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4601                                 ioc_info(ioc, "%s\n",
4602                                          MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4603                                 break;
4604                         default:
4605                                 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4606                                          ioc->pdev->subsystem_device);
4607                                 break;
4608                         }
4609                         break;
4610                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4611                         switch (ioc->pdev->subsystem_device) {
4612                         case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4613                                 ioc_info(ioc, "%s\n",
4614                                          MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4615                                 break;
4616                         case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4617                                 ioc_info(ioc, "%s\n",
4618                                          MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4619                                 break;
4620                         case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4621                                 ioc_info(ioc, "%s\n",
4622                                          MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4623                                 break;
4624                         case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4625                                 ioc_info(ioc, "%s\n",
4626                                          MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4627                                 break;
4628                         default:
4629                                 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4630                                          ioc->pdev->subsystem_device);
4631                                 break;
4632                         }
4633                         break;
4634                 default:
4635                         ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4636                                  ioc->pdev->subsystem_device);
4637                         break;
4638                 }
4639                 break;
4640         default:
4641                 break;
4642         }
4643 }
4644
4645 /**
4646  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4647  *                              version from FW Image Header.
4648  * @ioc: per adapter object
4649  *
4650  * Return: 0 for success, non-zero for failure.
4651  */
4652         static int
4653 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4654 {
4655         Mpi2FWImageHeader_t *fw_img_hdr;
4656         Mpi26ComponentImageHeader_t *cmp_img_hdr;
4657         Mpi25FWUploadRequest_t *mpi_request;
4658         Mpi2FWUploadReply_t mpi_reply;
4659         int r = 0, issue_diag_reset = 0;
4660         u32  package_version = 0;
4661         void *fwpkg_data = NULL;
4662         dma_addr_t fwpkg_data_dma;
4663         u16 smid, ioc_status;
4664         size_t data_length;
4665
4666         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4667
4668         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4669                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
4670                 return -EAGAIN;
4671         }
4672
4673         data_length = sizeof(Mpi2FWImageHeader_t);
4674         fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4675                         &fwpkg_data_dma, GFP_KERNEL);
4676         if (!fwpkg_data) {
4677                 ioc_err(ioc,
4678                     "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4679                         __FILE__, __LINE__, __func__);
4680                 return -ENOMEM;
4681         }
4682
4683         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4684         if (!smid) {
4685                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4686                 r = -EAGAIN;
4687                 goto out;
4688         }
4689
4690         ioc->base_cmds.status = MPT3_CMD_PENDING;
4691         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4692         ioc->base_cmds.smid = smid;
4693         memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4694         mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4695         mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4696         mpi_request->ImageSize = cpu_to_le32(data_length);
4697         ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4698                         data_length);
4699         init_completion(&ioc->base_cmds.done);
4700         ioc->put_smid_default(ioc, smid);
4701         /* Wait for 15 seconds */
4702         wait_for_completion_timeout(&ioc->base_cmds.done,
4703                         FW_IMG_HDR_READ_TIMEOUT*HZ);
4704         ioc_info(ioc, "%s: complete\n", __func__);
4705         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4706                 ioc_err(ioc, "%s: timeout\n", __func__);
4707                 _debug_dump_mf(mpi_request,
4708                                 sizeof(Mpi25FWUploadRequest_t)/4);
4709                 issue_diag_reset = 1;
4710         } else {
4711                 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4712                 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4713                         memcpy(&mpi_reply, ioc->base_cmds.reply,
4714                                         sizeof(Mpi2FWUploadReply_t));
4715                         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4716                                                 MPI2_IOCSTATUS_MASK;
4717                         if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4718                                 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4719                                 if (le32_to_cpu(fw_img_hdr->Signature) ==
4720                                     MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4721                                         cmp_img_hdr =
4722                                             (Mpi26ComponentImageHeader_t *)
4723                                             (fwpkg_data);
4724                                         package_version =
4725                                             le32_to_cpu(
4726                                             cmp_img_hdr->ApplicationSpecific);
4727                                 } else
4728                                         package_version =
4729                                             le32_to_cpu(
4730                                             fw_img_hdr->PackageVersion.Word);
4731                                 if (package_version)
4732                                         ioc_info(ioc,
4733                                         "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4734                                         ((package_version) & 0xFF000000) >> 24,
4735                                         ((package_version) & 0x00FF0000) >> 16,
4736                                         ((package_version) & 0x0000FF00) >> 8,
4737                                         (package_version) & 0x000000FF);
4738                         } else {
4739                                 _debug_dump_mf(&mpi_reply,
4740                                                 sizeof(Mpi2FWUploadReply_t)/4);
4741                         }
4742                 }
4743         }
4744         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4745 out:
4746         if (fwpkg_data)
4747                 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4748                                 fwpkg_data_dma);
4749         if (issue_diag_reset) {
4750                 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
4751                         return -EFAULT;
4752                 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
4753                         return -EFAULT;
4754                 r = -EAGAIN;
4755         }
4756         return r;
4757 }
4758
4759 /**
4760  * _base_display_ioc_capabilities - Display IOC's capabilities.
4761  * @ioc: per adapter object
4762  */
4763 static void
4764 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4765 {
4766         int i = 0;
4767         char desc[16];
4768         u32 iounit_pg1_flags;
4769         u32 bios_version;
4770
4771         bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4772         strncpy(desc, ioc->manu_pg0.ChipName, 16);
4773         ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4774                  desc,
4775                  (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4776                  (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4777                  (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4778                  ioc->facts.FWVersion.Word & 0x000000FF,
4779                  ioc->pdev->revision,
4780                  (bios_version & 0xFF000000) >> 24,
4781                  (bios_version & 0x00FF0000) >> 16,
4782                  (bios_version & 0x0000FF00) >> 8,
4783                  bios_version & 0x000000FF);
4784
4785         _base_display_OEMs_branding(ioc);
4786
4787         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4788                 pr_info("%sNVMe", i ? "," : "");
4789                 i++;
4790         }
4791
4792         ioc_info(ioc, "Protocol=(");
4793
4794         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4795                 pr_cont("Initiator");
4796                 i++;
4797         }
4798
4799         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4800                 pr_cont("%sTarget", i ? "," : "");
4801                 i++;
4802         }
4803
4804         i = 0;
4805         pr_cont("), Capabilities=(");
4806
4807         if (!ioc->hide_ir_msg) {
4808                 if (ioc->facts.IOCCapabilities &
4809                     MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4810                         pr_cont("Raid");
4811                         i++;
4812                 }
4813         }
4814
4815         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4816                 pr_cont("%sTLR", i ? "," : "");
4817                 i++;
4818         }
4819
4820         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4821                 pr_cont("%sMulticast", i ? "," : "");
4822                 i++;
4823         }
4824
4825         if (ioc->facts.IOCCapabilities &
4826             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4827                 pr_cont("%sBIDI Target", i ? "," : "");
4828                 i++;
4829         }
4830
4831         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4832                 pr_cont("%sEEDP", i ? "," : "");
4833                 i++;
4834         }
4835
4836         if (ioc->facts.IOCCapabilities &
4837             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4838                 pr_cont("%sSnapshot Buffer", i ? "," : "");
4839                 i++;
4840         }
4841
4842         if (ioc->facts.IOCCapabilities &
4843             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4844                 pr_cont("%sDiag Trace Buffer", i ? "," : "");
4845                 i++;
4846         }
4847
4848         if (ioc->facts.IOCCapabilities &
4849             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4850                 pr_cont("%sDiag Extended Buffer", i ? "," : "");
4851                 i++;
4852         }
4853
4854         if (ioc->facts.IOCCapabilities &
4855             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4856                 pr_cont("%sTask Set Full", i ? "," : "");
4857                 i++;
4858         }
4859
4860         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4861         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4862                 pr_cont("%sNCQ", i ? "," : "");
4863                 i++;
4864         }
4865
4866         pr_cont(")\n");
4867 }
4868
4869 /**
4870  * mpt3sas_base_update_missing_delay - change the missing delay timers
4871  * @ioc: per adapter object
4872  * @device_missing_delay: amount of time till device is reported missing
4873  * @io_missing_delay: interval IO is returned when there is a missing device
4874  *
4875  * Passed on the command line, this function will modify the device missing
4876  * delay, as well as the io missing delay. This should be called at driver
4877  * load time.
4878  */
4879 void
4880 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4881         u16 device_missing_delay, u8 io_missing_delay)
4882 {
4883         u16 dmd, dmd_new, dmd_orignal;
4884         u8 io_missing_delay_original;
4885         u16 sz;
4886         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4887         Mpi2ConfigReply_t mpi_reply;
4888         u8 num_phys = 0;
4889         u16 ioc_status;
4890
4891         mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4892         if (!num_phys)
4893                 return;
4894
4895         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4896             sizeof(Mpi2SasIOUnit1PhyData_t));
4897         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4898         if (!sas_iounit_pg1) {
4899                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4900                         __FILE__, __LINE__, __func__);
4901                 goto out;
4902         }
4903         if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4904             sas_iounit_pg1, sz))) {
4905                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4906                         __FILE__, __LINE__, __func__);
4907                 goto out;
4908         }
4909         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4910             MPI2_IOCSTATUS_MASK;
4911         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4912                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4913                         __FILE__, __LINE__, __func__);
4914                 goto out;
4915         }
4916
4917         /* device missing delay */
4918         dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4919         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4920                 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4921         else
4922                 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4923         dmd_orignal = dmd;
4924         if (device_missing_delay > 0x7F) {
4925                 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4926                     device_missing_delay;
4927                 dmd = dmd / 16;
4928                 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4929         } else
4930                 dmd = device_missing_delay;
4931         sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4932
4933         /* io missing delay */
4934         io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4935         sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4936
4937         if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4938             sz)) {
4939                 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4940                         dmd_new = (dmd &
4941                             MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4942                 else
4943                         dmd_new =
4944                     dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4945                 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4946                          dmd_orignal, dmd_new);
4947                 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4948                          io_missing_delay_original,
4949                          io_missing_delay);
4950                 ioc->device_missing_delay = dmd_new;
4951                 ioc->io_missing_delay = io_missing_delay;
4952         }
4953
4954 out:
4955         kfree(sas_iounit_pg1);
4956 }
4957
4958 /**
4959  * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4960  *    according to performance mode.
4961  * @ioc : per adapter object
4962  *
4963  * Return: zero on success; otherwise return EAGAIN error code asking the
4964  * caller to retry.
4965  */
4966 static int
4967 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4968 {
4969         Mpi2IOCPage1_t ioc_pg1;
4970         Mpi2ConfigReply_t mpi_reply;
4971         int rc;
4972
4973         rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4974         if (rc)
4975                 return rc;
4976         memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4977
4978         switch (perf_mode) {
4979         case MPT_PERF_MODE_DEFAULT:
4980         case MPT_PERF_MODE_BALANCED:
4981                 if (ioc->high_iops_queues) {
4982                         ioc_info(ioc,
4983                                 "Enable interrupt coalescing only for first\t"
4984                                 "%d reply queues\n",
4985                                 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4986                         /*
4987                          * If 31st bit is zero then interrupt coalescing is
4988                          * enabled for all reply descriptor post queues.
4989                          * If 31st bit is set to one then user can
4990                          * enable/disable interrupt coalescing on per reply
4991                          * descriptor post queue group(8) basis. So to enable
4992                          * interrupt coalescing only on first reply descriptor
4993                          * post queue group 31st bit and zero th bit is enabled.
4994                          */
4995                         ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4996                             ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4997                         rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4998                         if (rc)
4999                                 return rc;
5000                         ioc_info(ioc, "performance mode: balanced\n");
5001                         return 0;
5002                 }
5003                 fallthrough;
5004         case MPT_PERF_MODE_LATENCY:
5005                 /*
5006                  * Enable interrupt coalescing on all reply queues
5007                  * with timeout value 0xA
5008                  */
5009                 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
5010                 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5011                 ioc_pg1.ProductSpecific = 0;
5012                 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5013                 if (rc)
5014                         return rc;
5015                 ioc_info(ioc, "performance mode: latency\n");
5016                 break;
5017         case MPT_PERF_MODE_IOPS:
5018                 /*
5019                  * Enable interrupt coalescing on all reply queues.
5020                  */
5021                 ioc_info(ioc,
5022                     "performance mode: iops with coalescing timeout: 0x%x\n",
5023                     le32_to_cpu(ioc_pg1.CoalescingTimeout));
5024                 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5025                 ioc_pg1.ProductSpecific = 0;
5026                 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5027                 if (rc)
5028                         return rc;
5029                 break;
5030         }
5031         return 0;
5032 }
5033
5034 /**
5035  * _base_get_event_diag_triggers - get event diag trigger values from
5036  *                              persistent pages
5037  * @ioc : per adapter object
5038  *
5039  * Return: nothing.
5040  */
5041 static int
5042 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5043 {
5044         Mpi26DriverTriggerPage2_t trigger_pg2;
5045         struct SL_WH_EVENT_TRIGGER_T *event_tg;
5046         MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg;
5047         Mpi2ConfigReply_t mpi_reply;
5048         int r = 0, i = 0;
5049         u16 count = 0;
5050         u16 ioc_status;
5051
5052         r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
5053             &trigger_pg2);
5054         if (r)
5055                 return r;
5056
5057         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5058             MPI2_IOCSTATUS_MASK;
5059         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5060                 dinitprintk(ioc,
5061                     ioc_err(ioc,
5062                     "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
5063                    __func__, ioc_status));
5064                 return 0;
5065         }
5066
5067         if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
5068                 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
5069                 count = min_t(u16, NUM_VALID_ENTRIES, count);
5070                 ioc->diag_trigger_event.ValidEntries = count;
5071
5072                 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
5073                 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
5074                 for (i = 0; i < count; i++) {
5075                         event_tg->EventValue = le16_to_cpu(
5076                             mpi_event_tg->MPIEventCode);
5077                         event_tg->LogEntryQualifier = le16_to_cpu(
5078                             mpi_event_tg->MPIEventCodeSpecific);
5079                         event_tg++;
5080                         mpi_event_tg++;
5081                 }
5082         }
5083         return 0;
5084 }
5085
5086 /**
5087  * _base_get_scsi_diag_triggers - get scsi diag trigger values from
5088  *                              persistent pages
5089  * @ioc : per adapter object
5090  *
5091  * Return: 0 on success; otherwise return failure status.
5092  */
5093 static int
5094 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5095 {
5096         Mpi26DriverTriggerPage3_t trigger_pg3;
5097         struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
5098         MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg;
5099         Mpi2ConfigReply_t mpi_reply;
5100         int r = 0, i = 0;
5101         u16 count = 0;
5102         u16 ioc_status;
5103
5104         r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
5105             &trigger_pg3);
5106         if (r)
5107                 return r;
5108
5109         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5110             MPI2_IOCSTATUS_MASK;
5111         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5112                 dinitprintk(ioc,
5113                     ioc_err(ioc,
5114                     "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
5115                     __func__, ioc_status));
5116                 return 0;
5117         }
5118
5119         if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
5120                 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
5121                 count = min_t(u16, NUM_VALID_ENTRIES, count);
5122                 ioc->diag_trigger_scsi.ValidEntries = count;
5123
5124                 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
5125                 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
5126                 for (i = 0; i < count; i++) {
5127                         scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
5128                         scsi_tg->ASC = mpi_scsi_tg->ASC;
5129                         scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
5130
5131                         scsi_tg++;
5132                         mpi_scsi_tg++;
5133                 }
5134         }
5135         return 0;
5136 }
5137
5138 /**
5139  * _base_get_mpi_diag_triggers - get mpi diag trigger values from
5140  *                              persistent pages
5141  * @ioc : per adapter object
5142  *
5143  * Return: 0 on success; otherwise return failure status.
5144  */
5145 static int
5146 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5147 {
5148         Mpi26DriverTriggerPage4_t trigger_pg4;
5149         struct SL_WH_MPI_TRIGGER_T *status_tg;
5150         MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg;
5151         Mpi2ConfigReply_t mpi_reply;
5152         int r = 0, i = 0;
5153         u16 count = 0;
5154         u16 ioc_status;
5155
5156         r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
5157             &trigger_pg4);
5158         if (r)
5159                 return r;
5160
5161         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5162             MPI2_IOCSTATUS_MASK;
5163         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5164                 dinitprintk(ioc,
5165                     ioc_err(ioc,
5166                     "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
5167                     __func__, ioc_status));
5168                 return 0;
5169         }
5170
5171         if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
5172                 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
5173                 count = min_t(u16, NUM_VALID_ENTRIES, count);
5174                 ioc->diag_trigger_mpi.ValidEntries = count;
5175
5176                 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
5177                 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
5178
5179                 for (i = 0; i < count; i++) {
5180                         status_tg->IOCStatus = le16_to_cpu(
5181                             mpi_status_tg->IOCStatus);
5182                         status_tg->IocLogInfo = le32_to_cpu(
5183                             mpi_status_tg->LogInfo);
5184
5185                         status_tg++;
5186                         mpi_status_tg++;
5187                 }
5188         }
5189         return 0;
5190 }
5191
5192 /**
5193  * _base_get_master_diag_triggers - get master diag trigger values from
5194  *                              persistent pages
5195  * @ioc : per adapter object
5196  *
5197  * Return: nothing.
5198  */
5199 static int
5200 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5201 {
5202         Mpi26DriverTriggerPage1_t trigger_pg1;
5203         Mpi2ConfigReply_t mpi_reply;
5204         int r;
5205         u16 ioc_status;
5206
5207         r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
5208             &trigger_pg1);
5209         if (r)
5210                 return r;
5211
5212         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5213             MPI2_IOCSTATUS_MASK;
5214         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5215                 dinitprintk(ioc,
5216                     ioc_err(ioc,
5217                     "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
5218                    __func__, ioc_status));
5219                 return 0;
5220         }
5221
5222         if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
5223                 ioc->diag_trigger_master.MasterData |=
5224                     le32_to_cpu(
5225                     trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
5226         return 0;
5227 }
5228
5229 /**
5230  * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5231  *                                      driver trigger pages or not
5232  * @ioc : per adapter object
5233  * @trigger_flags : address where trigger page0's TriggerFlags value is copied
5234  *
5235  * Return: trigger flags mask if HBA FW supports driver trigger pages;
5236  * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or
5237  * return EAGAIN if diag reset occurred due to FW fault and asking the
5238  * caller to retry the command.
5239  *
5240  */
5241 static int
5242 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags)
5243 {
5244         Mpi26DriverTriggerPage0_t trigger_pg0;
5245         int r = 0;
5246         Mpi2ConfigReply_t mpi_reply;
5247         u16 ioc_status;
5248
5249         r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5250             &trigger_pg0);
5251         if (r)
5252                 return r;
5253
5254         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5255             MPI2_IOCSTATUS_MASK;
5256         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5257                 return -EFAULT;
5258
5259         *trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags);
5260         return 0;
5261 }
5262
5263 /**
5264  * _base_get_diag_triggers - Retrieve diag trigger values from
5265  *                              persistent pages.
5266  * @ioc : per adapter object
5267  *
5268  * Return: zero on success; otherwise return EAGAIN error codes
5269  * asking the caller to retry.
5270  */
5271 static int
5272 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5273 {
5274         int trigger_flags;
5275         int r;
5276
5277         /*
5278          * Default setting of master trigger.
5279          */
5280         ioc->diag_trigger_master.MasterData =
5281             (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5282
5283         r = _base_check_for_trigger_pages_support(ioc, &trigger_flags);
5284         if (r) {
5285                 if (r == -EAGAIN)
5286                         return r;
5287                 /*
5288                  * Don't go for error handling when FW doesn't support
5289                  * driver trigger pages.
5290                  */
5291                 return 0;
5292         }
5293
5294         ioc->supports_trigger_pages = 1;
5295
5296         /*
5297          * Retrieve master diag trigger values from driver trigger pg1
5298          * if master trigger bit enabled in TriggerFlags.
5299          */
5300         if ((u16)trigger_flags &
5301             MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) {
5302                 r = _base_get_master_diag_triggers(ioc);
5303                 if (r)
5304                         return r;
5305         }
5306
5307         /*
5308          * Retrieve event diag trigger values from driver trigger pg2
5309          * if event trigger bit enabled in TriggerFlags.
5310          */
5311         if ((u16)trigger_flags &
5312             MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) {
5313                 r = _base_get_event_diag_triggers(ioc);
5314                 if (r)
5315                         return r;
5316         }
5317
5318         /*
5319          * Retrieve scsi diag trigger values from driver trigger pg3
5320          * if scsi trigger bit enabled in TriggerFlags.
5321          */
5322         if ((u16)trigger_flags &
5323             MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) {
5324                 r = _base_get_scsi_diag_triggers(ioc);
5325                 if (r)
5326                         return r;
5327         }
5328         /*
5329          * Retrieve mpi error diag trigger values from driver trigger pg4
5330          * if loginfo trigger bit enabled in TriggerFlags.
5331          */
5332         if ((u16)trigger_flags &
5333             MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) {
5334                 r = _base_get_mpi_diag_triggers(ioc);
5335                 if (r)
5336                         return r;
5337         }
5338         return 0;
5339 }
5340
5341 /**
5342  * _base_update_diag_trigger_pages - Update the driver trigger pages after
5343  *                      online FW update, in case updated FW supports driver
5344  *                      trigger pages.
5345  * @ioc : per adapter object
5346  *
5347  * Return: nothing.
5348  */
5349 static void
5350 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5351 {
5352
5353         if (ioc->diag_trigger_master.MasterData)
5354                 mpt3sas_config_update_driver_trigger_pg1(ioc,
5355                     &ioc->diag_trigger_master, 1);
5356
5357         if (ioc->diag_trigger_event.ValidEntries)
5358                 mpt3sas_config_update_driver_trigger_pg2(ioc,
5359                     &ioc->diag_trigger_event, 1);
5360
5361         if (ioc->diag_trigger_scsi.ValidEntries)
5362                 mpt3sas_config_update_driver_trigger_pg3(ioc,
5363                     &ioc->diag_trigger_scsi, 1);
5364
5365         if (ioc->diag_trigger_mpi.ValidEntries)
5366                 mpt3sas_config_update_driver_trigger_pg4(ioc,
5367                     &ioc->diag_trigger_mpi, 1);
5368 }
5369
5370 /**
5371  * _base_assign_fw_reported_qd  - Get FW reported QD for SAS/SATA devices.
5372  *                              - On failure set default QD values.
5373  * @ioc : per adapter object
5374  *
5375  * Returns 0 for success, non-zero for failure.
5376  *
5377  */
5378 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc)
5379 {
5380         Mpi2ConfigReply_t mpi_reply;
5381         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
5382         Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1;
5383         int sz;
5384         int rc = 0;
5385
5386         ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5387         ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5388         ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH;
5389         ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH;
5390         if (!ioc->is_gen35_ioc)
5391                 goto out;
5392         /* sas iounit page 1 */
5393         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData);
5394         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
5395         if (!sas_iounit_pg1) {
5396                 pr_err("%s: failure at %s:%d/%s()!\n",
5397                     ioc->name, __FILE__, __LINE__, __func__);
5398                 return rc;
5399         }
5400         rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
5401             sas_iounit_pg1, sz);
5402         if (rc) {
5403                 pr_err("%s: failure at %s:%d/%s()!\n",
5404                     ioc->name, __FILE__, __LINE__, __func__);
5405                 goto out;
5406         }
5407         ioc->max_wideport_qd =
5408             (le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth)) ?
5409             le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth) :
5410             MPT3SAS_SAS_QUEUE_DEPTH;
5411         ioc->max_narrowport_qd =
5412             (le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth)) ?
5413             le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth) :
5414             MPT3SAS_SAS_QUEUE_DEPTH;
5415         ioc->max_sata_qd = (sas_iounit_pg1->SATAMaxQDepth) ?
5416             sas_iounit_pg1->SATAMaxQDepth : MPT3SAS_SATA_QUEUE_DEPTH;
5417         /* pcie iounit page 1 */
5418         rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply,
5419             &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t));
5420         if (rc) {
5421                 pr_err("%s: failure at %s:%d/%s()!\n",
5422                     ioc->name, __FILE__, __LINE__, __func__);
5423                 goto out;
5424         }
5425         ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ?
5426             (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) :
5427             MPT3SAS_NVME_QUEUE_DEPTH;
5428 out:
5429         dinitprintk(ioc, pr_err(
5430             "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n",
5431             ioc->max_wideport_qd, ioc->max_narrowport_qd,
5432             ioc->max_sata_qd, ioc->max_nvme_qd));
5433         kfree(sas_iounit_pg1);
5434         return rc;
5435 }
5436
5437 /**
5438  * _base_static_config_pages - static start of day config pages
5439  * @ioc: per adapter object
5440  */
5441 static int
5442 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5443 {
5444         Mpi2ConfigReply_t mpi_reply;
5445         u32 iounit_pg1_flags;
5446         int tg_flags = 0;
5447         int rc;
5448         ioc->nvme_abort_timeout = 30;
5449
5450         rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply,
5451             &ioc->manu_pg0);
5452         if (rc)
5453                 return rc;
5454         if (ioc->ir_firmware) {
5455                 rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5456                     &ioc->manu_pg10);
5457                 if (rc)
5458                         return rc;
5459         }
5460         /*
5461          * Ensure correct T10 PI operation if vendor left EEDPTagMode
5462          * flag unset in NVDATA.
5463          */
5464         rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply,
5465             &ioc->manu_pg11);
5466         if (rc)
5467                 return rc;
5468         if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5469                 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5470                     ioc->name);
5471                 ioc->manu_pg11.EEDPTagMode &= ~0x3;
5472                 ioc->manu_pg11.EEDPTagMode |= 0x1;
5473                 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5474                     &ioc->manu_pg11);
5475         }
5476         if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5477                 ioc->tm_custom_handling = 1;
5478         else {
5479                 ioc->tm_custom_handling = 0;
5480                 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5481                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5482                 else if (ioc->manu_pg11.NVMeAbortTO >
5483                                         NVME_TASK_ABORT_MAX_TIMEOUT)
5484                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5485                 else
5486                         ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5487         }
5488         ioc->time_sync_interval =
5489             ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5490         if (ioc->time_sync_interval) {
5491                 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5492                         ioc->time_sync_interval =
5493                             ioc->time_sync_interval * SECONDS_PER_HOUR;
5494                 else
5495                         ioc->time_sync_interval =
5496                             ioc->time_sync_interval * SECONDS_PER_MIN;
5497                 dinitprintk(ioc, ioc_info(ioc,
5498                     "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5499                     ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5500                     MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5501         } else {
5502                 if (ioc->is_gen35_ioc)
5503                         ioc_warn(ioc,
5504                             "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5505         }
5506         rc = _base_assign_fw_reported_qd(ioc);
5507         if (rc)
5508                 return rc;
5509         rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5510         if (rc)
5511                 return rc;
5512         rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5513         if (rc)
5514                 return rc;
5515         rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5516         if (rc)
5517                 return rc;
5518         rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5519         if (rc)
5520                 return rc;
5521         rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5522         if (rc)
5523                 return rc;
5524         rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
5525         if (rc)
5526                 return rc;
5527         _base_display_ioc_capabilities(ioc);
5528
5529         /*
5530          * Enable task_set_full handling in iounit_pg1 when the
5531          * facts capabilities indicate that its supported.
5532          */
5533         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5534         if ((ioc->facts.IOCCapabilities &
5535             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5536                 iounit_pg1_flags &=
5537                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5538         else
5539                 iounit_pg1_flags |=
5540                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5541         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5542         rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5543         if (rc)
5544                 return rc;
5545
5546         if (ioc->iounit_pg8.NumSensors)
5547                 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
5548         if (ioc->is_aero_ioc) {
5549                 rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5550                 if (rc)
5551                         return rc;
5552         }
5553         if (ioc->is_gen35_ioc) {
5554                 if (ioc->is_driver_loading) {
5555                         rc = _base_get_diag_triggers(ioc);
5556                         if (rc)
5557                                 return rc;
5558                 } else {
5559                         /*
5560                          * In case of online HBA FW update operation,
5561                          * check whether updated FW supports the driver trigger
5562                          * pages or not.
5563                          * - If previous FW has not supported driver trigger
5564                          *   pages and newer FW supports them then update these
5565                          *   pages with current diag trigger values.
5566                          * - If previous FW has supported driver trigger pages
5567                          *   and new FW doesn't support them then disable
5568                          *   support_trigger_pages flag.
5569                          */
5570                         _base_check_for_trigger_pages_support(ioc, &tg_flags);
5571                         if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5572                                 _base_update_diag_trigger_pages(ioc);
5573                         else if (ioc->supports_trigger_pages &&
5574                             tg_flags == -EFAULT)
5575                                 ioc->supports_trigger_pages = 0;
5576                 }
5577         }
5578         return 0;
5579 }
5580
5581 /**
5582  * mpt3sas_free_enclosure_list - release memory
5583  * @ioc: per adapter object
5584  *
5585  * Free memory allocated during enclosure add.
5586  */
5587 void
5588 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5589 {
5590         struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5591
5592         /* Free enclosure list */
5593         list_for_each_entry_safe(enclosure_dev,
5594                         enclosure_dev_next, &ioc->enclosure_list, list) {
5595                 list_del(&enclosure_dev->list);
5596                 kfree(enclosure_dev);
5597         }
5598 }
5599
5600 /**
5601  * _base_release_memory_pools - release memory
5602  * @ioc: per adapter object
5603  *
5604  * Free memory allocated from _base_allocate_memory_pools.
5605  */
5606 static void
5607 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5608 {
5609         int i = 0;
5610         int j = 0;
5611         int dma_alloc_count = 0;
5612         struct chain_tracker *ct;
5613         int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5614
5615         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5616
5617         if (ioc->request) {
5618                 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5619                     ioc->request,  ioc->request_dma);
5620                 dexitprintk(ioc,
5621                             ioc_info(ioc, "request_pool(0x%p): free\n",
5622                                      ioc->request));
5623                 ioc->request = NULL;
5624         }
5625
5626         if (ioc->sense) {
5627                 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5628                 dma_pool_destroy(ioc->sense_dma_pool);
5629                 dexitprintk(ioc,
5630                             ioc_info(ioc, "sense_pool(0x%p): free\n",
5631                                      ioc->sense));
5632                 ioc->sense = NULL;
5633         }
5634
5635         if (ioc->reply) {
5636                 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5637                 dma_pool_destroy(ioc->reply_dma_pool);
5638                 dexitprintk(ioc,
5639                             ioc_info(ioc, "reply_pool(0x%p): free\n",
5640                                      ioc->reply));
5641                 ioc->reply = NULL;
5642         }
5643
5644         if (ioc->reply_free) {
5645                 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5646                     ioc->reply_free_dma);
5647                 dma_pool_destroy(ioc->reply_free_dma_pool);
5648                 dexitprintk(ioc,
5649                             ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5650                                      ioc->reply_free));
5651                 ioc->reply_free = NULL;
5652         }
5653
5654         if (ioc->reply_post) {
5655                 dma_alloc_count = DIV_ROUND_UP(count,
5656                                 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5657                 for (i = 0; i < count; i++) {
5658                         if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5659                             && dma_alloc_count) {
5660                                 if (ioc->reply_post[i].reply_post_free) {
5661                                         dma_pool_free(
5662                                             ioc->reply_post_free_dma_pool,
5663                                             ioc->reply_post[i].reply_post_free,
5664                                         ioc->reply_post[i].reply_post_free_dma);
5665                                         dexitprintk(ioc, ioc_info(ioc,
5666                                            "reply_post_free_pool(0x%p): free\n",
5667                                            ioc->reply_post[i].reply_post_free));
5668                                         ioc->reply_post[i].reply_post_free =
5669                                                                         NULL;
5670                                 }
5671                                 --dma_alloc_count;
5672                         }
5673                 }
5674                 dma_pool_destroy(ioc->reply_post_free_dma_pool);
5675                 if (ioc->reply_post_free_array &&
5676                         ioc->rdpq_array_enable) {
5677                         dma_pool_free(ioc->reply_post_free_array_dma_pool,
5678                             ioc->reply_post_free_array,
5679                             ioc->reply_post_free_array_dma);
5680                         ioc->reply_post_free_array = NULL;
5681                 }
5682                 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5683                 kfree(ioc->reply_post);
5684         }
5685
5686         if (ioc->pcie_sgl_dma_pool) {
5687                 for (i = 0; i < ioc->scsiio_depth; i++) {
5688                         dma_pool_free(ioc->pcie_sgl_dma_pool,
5689                                         ioc->pcie_sg_lookup[i].pcie_sgl,
5690                                         ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5691                         ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
5692                 }
5693                 dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5694         }
5695         if (ioc->config_page) {
5696                 dexitprintk(ioc,
5697                             ioc_info(ioc, "config_page(0x%p): free\n",
5698                                      ioc->config_page));
5699                 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5700                     ioc->config_page, ioc->config_page_dma);
5701         }
5702
5703         kfree(ioc->hpr_lookup);
5704         ioc->hpr_lookup = NULL;
5705         kfree(ioc->internal_lookup);
5706         ioc->internal_lookup = NULL;
5707         if (ioc->chain_lookup) {
5708                 for (i = 0; i < ioc->scsiio_depth; i++) {
5709                         for (j = ioc->chains_per_prp_buffer;
5710                             j < ioc->chains_needed_per_io; j++) {
5711                                 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5712                                 if (ct && ct->chain_buffer)
5713                                         dma_pool_free(ioc->chain_dma_pool,
5714                                                 ct->chain_buffer,
5715                                                 ct->chain_buffer_dma);
5716                         }
5717                         kfree(ioc->chain_lookup[i].chains_per_smid);
5718                 }
5719                 dma_pool_destroy(ioc->chain_dma_pool);
5720                 kfree(ioc->chain_lookup);
5721                 ioc->chain_lookup = NULL;
5722         }
5723
5724         kfree(ioc->io_queue_num);
5725         ioc->io_queue_num = NULL;
5726 }
5727
5728 /**
5729  * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5730  *      having same upper 32bits in their base memory address.
5731  * @reply_pool_start_address: Base address of a reply queue set
5732  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5733  *
5734  * Return: 1 if reply queues in a set have a same upper 32bits in their base
5735  * memory address, else 0.
5736  */
5737
5738 static int
5739 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz)
5740 {
5741         long reply_pool_end_address;
5742
5743         reply_pool_end_address = reply_pool_start_address + pool_sz;
5744
5745         if (upper_32_bits(reply_pool_start_address) ==
5746                 upper_32_bits(reply_pool_end_address))
5747                 return 1;
5748         else
5749                 return 0;
5750 }
5751
5752 /**
5753  * _base_reduce_hba_queue_depth- Retry with reduced queue depth
5754  * @ioc: Adapter object
5755  *
5756  * Return: 0 for success, non-zero for failure.
5757  **/
5758 static inline int
5759 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
5760 {
5761         int reduce_sz = 64;
5762
5763         if ((ioc->hba_queue_depth - reduce_sz) >
5764             (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5765                 ioc->hba_queue_depth -= reduce_sz;
5766                 return 0;
5767         } else
5768                 return -ENOMEM;
5769 }
5770
5771 /**
5772  * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5773  *                      for pcie sgl pools.
5774  * @ioc: Adapter object
5775  * @sz: DMA Pool size
5776  *
5777  * Return: 0 for success, non-zero for failure.
5778  */
5779
5780 static int
5781 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5782 {
5783         int i = 0, j = 0;
5784         struct chain_tracker *ct;
5785
5786         ioc->pcie_sgl_dma_pool =
5787             dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5788             ioc->page_size, 0);
5789         if (!ioc->pcie_sgl_dma_pool) {
5790                 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5791                 return -ENOMEM;
5792         }
5793
5794         ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5795         ioc->chains_per_prp_buffer =
5796             min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5797         for (i = 0; i < ioc->scsiio_depth; i++) {
5798                 ioc->pcie_sg_lookup[i].pcie_sgl =
5799                     dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5800                     &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5801                 if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5802                         ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5803                         return -EAGAIN;
5804                 }
5805
5806                 if (!mpt3sas_check_same_4gb_region(
5807                     (long)ioc->pcie_sg_lookup[i].pcie_sgl, sz)) {
5808                         ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5809                             ioc->pcie_sg_lookup[i].pcie_sgl,
5810                             (unsigned long long)
5811                             ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5812                         ioc->use_32bit_dma = true;
5813                         return -EAGAIN;
5814                 }
5815
5816                 for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5817                         ct = &ioc->chain_lookup[i].chains_per_smid[j];
5818                         ct->chain_buffer =
5819                             ioc->pcie_sg_lookup[i].pcie_sgl +
5820                             (j * ioc->chain_segment_sz);
5821                         ct->chain_buffer_dma =
5822                             ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5823                             (j * ioc->chain_segment_sz);
5824                 }
5825         }
5826         dinitprintk(ioc, ioc_info(ioc,
5827             "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5828             ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
5829         dinitprintk(ioc, ioc_info(ioc,
5830             "Number of chains can fit in a PRP page(%d)\n",
5831             ioc->chains_per_prp_buffer));
5832         return 0;
5833 }
5834
5835 /**
5836  * _base_allocate_chain_dma_pool - Allocating DMA'able memory
5837  *                      for chain dma pool.
5838  * @ioc: Adapter object
5839  * @sz: DMA Pool size
5840  *
5841  * Return: 0 for success, non-zero for failure.
5842  */
5843 static int
5844 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5845 {
5846         int i = 0, j = 0;
5847         struct chain_tracker *ctr;
5848
5849         ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5850             ioc->chain_segment_sz, 16, 0);
5851         if (!ioc->chain_dma_pool)
5852                 return -ENOMEM;
5853
5854         for (i = 0; i < ioc->scsiio_depth; i++) {
5855                 for (j = ioc->chains_per_prp_buffer;
5856                     j < ioc->chains_needed_per_io; j++) {
5857                         ctr = &ioc->chain_lookup[i].chains_per_smid[j];
5858                         ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool,
5859                             GFP_KERNEL, &ctr->chain_buffer_dma);
5860                         if (!ctr->chain_buffer)
5861                                 return -EAGAIN;
5862                         if (!mpt3sas_check_same_4gb_region((long)
5863                             ctr->chain_buffer, ioc->chain_segment_sz)) {
5864                                 ioc_err(ioc,
5865                                     "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n",
5866                                     ctr->chain_buffer,
5867                                     (unsigned long long)ctr->chain_buffer_dma);
5868                                 ioc->use_32bit_dma = true;
5869                                 return -EAGAIN;
5870                         }
5871                 }
5872         }
5873         dinitprintk(ioc, ioc_info(ioc,
5874             "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n",
5875             ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
5876             (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
5877             ioc->chain_segment_sz))/1024));
5878         return 0;
5879 }
5880
5881 /**
5882  * _base_allocate_sense_dma_pool - Allocating DMA'able memory
5883  *                      for sense dma pool.
5884  * @ioc: Adapter object
5885  * @sz: DMA Pool size
5886  * Return: 0 for success, non-zero for failure.
5887  */
5888 static int
5889 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5890 {
5891         ioc->sense_dma_pool =
5892             dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0);
5893         if (!ioc->sense_dma_pool)
5894                 return -ENOMEM;
5895         ioc->sense = dma_pool_alloc(ioc->sense_dma_pool,
5896             GFP_KERNEL, &ioc->sense_dma);
5897         if (!ioc->sense)
5898                 return -EAGAIN;
5899         if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) {
5900                 dinitprintk(ioc, pr_err(
5901                     "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n",
5902                     ioc->sense, (unsigned long long) ioc->sense_dma));
5903                 ioc->use_32bit_dma = true;
5904                 return -EAGAIN;
5905         }
5906         ioc_info(ioc,
5907             "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
5908             ioc->sense, (unsigned long long)ioc->sense_dma,
5909             ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
5910         return 0;
5911 }
5912
5913 /**
5914  * _base_allocate_reply_pool - Allocating DMA'able memory
5915  *                      for reply pool.
5916  * @ioc: Adapter object
5917  * @sz: DMA Pool size
5918  * Return: 0 for success, non-zero for failure.
5919  */
5920 static int
5921 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5922 {
5923         /* reply pool, 4 byte align */
5924         ioc->reply_dma_pool = dma_pool_create("reply pool",
5925             &ioc->pdev->dev, sz, 4, 0);
5926         if (!ioc->reply_dma_pool)
5927                 return -ENOMEM;
5928         ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5929             &ioc->reply_dma);
5930         if (!ioc->reply)
5931                 return -EAGAIN;
5932         if (!mpt3sas_check_same_4gb_region((long)ioc->reply_free, sz)) {
5933                 dinitprintk(ioc, pr_err(
5934                     "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n",
5935                     ioc->reply, (unsigned long long) ioc->reply_dma));
5936                 ioc->use_32bit_dma = true;
5937                 return -EAGAIN;
5938         }
5939         ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5940         ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5941         ioc_info(ioc,
5942             "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5943             ioc->reply, (unsigned long long)ioc->reply_dma,
5944             ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
5945         return 0;
5946 }
5947
5948 /**
5949  * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
5950  *                      for reply free dma pool.
5951  * @ioc: Adapter object
5952  * @sz: DMA Pool size
5953  * Return: 0 for success, non-zero for failure.
5954  */
5955 static int
5956 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5957 {
5958         /* reply free queue, 16 byte align */
5959         ioc->reply_free_dma_pool = dma_pool_create(
5960             "reply_free pool", &ioc->pdev->dev, sz, 16, 0);
5961         if (!ioc->reply_free_dma_pool)
5962                 return -ENOMEM;
5963         ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool,
5964             GFP_KERNEL, &ioc->reply_free_dma);
5965         if (!ioc->reply_free)
5966                 return -EAGAIN;
5967         if (!mpt3sas_check_same_4gb_region((long)ioc->reply_free, sz)) {
5968                 dinitprintk(ioc,
5969                     pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
5970                     ioc->reply_free, (unsigned long long) ioc->reply_free_dma));
5971                 ioc->use_32bit_dma = true;
5972                 return -EAGAIN;
5973         }
5974         memset(ioc->reply_free, 0, sz);
5975         dinitprintk(ioc, ioc_info(ioc,
5976             "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5977             ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
5978         dinitprintk(ioc, ioc_info(ioc,
5979             "reply_free_dma (0x%llx)\n",
5980             (unsigned long long)ioc->reply_free_dma));
5981         return 0;
5982 }
5983
5984 /**
5985  * _base_allocate_reply_post_free_array - Allocating DMA'able memory
5986  *                      for reply post free array.
5987  * @ioc: Adapter object
5988  * @reply_post_free_array_sz: DMA Pool size
5989  * Return: 0 for success, non-zero for failure.
5990  */
5991
5992 static int
5993 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
5994         u32 reply_post_free_array_sz)
5995 {
5996         ioc->reply_post_free_array_dma_pool =
5997             dma_pool_create("reply_post_free_array pool",
5998             &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5999         if (!ioc->reply_post_free_array_dma_pool)
6000                 return -ENOMEM;
6001         ioc->reply_post_free_array =
6002             dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
6003             GFP_KERNEL, &ioc->reply_post_free_array_dma);
6004         if (!ioc->reply_post_free_array)
6005                 return -EAGAIN;
6006         if (!mpt3sas_check_same_4gb_region((long)ioc->reply_post_free_array,
6007             reply_post_free_array_sz)) {
6008                 dinitprintk(ioc, pr_err(
6009                     "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6010                     ioc->reply_free,
6011                     (unsigned long long) ioc->reply_free_dma));
6012                 ioc->use_32bit_dma = true;
6013                 return -EAGAIN;
6014         }
6015         return 0;
6016 }
6017 /**
6018  * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
6019  *                     for reply queues.
6020  * @ioc: per adapter object
6021  * @sz: DMA Pool size
6022  * Return: 0 for success, non-zero for failure.
6023  */
6024 static int
6025 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
6026 {
6027         int i = 0;
6028         u32 dma_alloc_count = 0;
6029         int reply_post_free_sz = ioc->reply_post_queue_depth *
6030                 sizeof(Mpi2DefaultReplyDescriptor_t);
6031         int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
6032
6033         ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
6034                         GFP_KERNEL);
6035         if (!ioc->reply_post)
6036                 return -ENOMEM;
6037         /*
6038          *  For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
6039          *  VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
6040          *  be within 4GB boundary i.e reply queues in a set must have same
6041          *  upper 32-bits in their memory address. so here driver is allocating
6042          *  the DMA'able memory for reply queues according.
6043          *  Driver uses limitation of
6044          *  VENTURA_SERIES to manage INVADER_SERIES as well.
6045          */
6046         dma_alloc_count = DIV_ROUND_UP(count,
6047                                 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
6048         ioc->reply_post_free_dma_pool =
6049                 dma_pool_create("reply_post_free pool",
6050                     &ioc->pdev->dev, sz, 16, 0);
6051         if (!ioc->reply_post_free_dma_pool)
6052                 return -ENOMEM;
6053         for (i = 0; i < count; i++) {
6054                 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
6055                         ioc->reply_post[i].reply_post_free =
6056                             dma_pool_zalloc(ioc->reply_post_free_dma_pool,
6057                                 GFP_KERNEL,
6058                                 &ioc->reply_post[i].reply_post_free_dma);
6059                         if (!ioc->reply_post[i].reply_post_free)
6060                                 return -ENOMEM;
6061                         /*
6062                          * Each set of RDPQ pool must satisfy 4gb boundary
6063                          * restriction.
6064                          * 1) Check if allocated resources for RDPQ pool are in
6065                          *      the same 4GB range.
6066                          * 2) If #1 is true, continue with 64 bit DMA.
6067                          * 3) If #1 is false, return 1. which means free all the
6068                          * resources and set DMA mask to 32 and allocate.
6069                          */
6070                         if (!mpt3sas_check_same_4gb_region(
6071                                 (long)ioc->reply_post[i].reply_post_free, sz)) {
6072                                 dinitprintk(ioc,
6073                                     ioc_err(ioc, "bad Replypost free pool(0x%p)"
6074                                     "reply_post_free_dma = (0x%llx)\n",
6075                                     ioc->reply_post[i].reply_post_free,
6076                                     (unsigned long long)
6077                                     ioc->reply_post[i].reply_post_free_dma));
6078                                 return -EAGAIN;
6079                         }
6080                         dma_alloc_count--;
6081
6082                 } else {
6083                         ioc->reply_post[i].reply_post_free =
6084                             (Mpi2ReplyDescriptorsUnion_t *)
6085                             ((long)ioc->reply_post[i-1].reply_post_free
6086                             + reply_post_free_sz);
6087                         ioc->reply_post[i].reply_post_free_dma =
6088                             (dma_addr_t)
6089                             (ioc->reply_post[i-1].reply_post_free_dma +
6090                             reply_post_free_sz);
6091                 }
6092         }
6093         return 0;
6094 }
6095
6096 /**
6097  * _base_allocate_memory_pools - allocate start of day memory pools
6098  * @ioc: per adapter object
6099  *
6100  * Return: 0 success, anything else error.
6101  */
6102 static int
6103 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
6104 {
6105         struct mpt3sas_facts *facts;
6106         u16 max_sge_elements;
6107         u16 chains_needed_per_io;
6108         u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
6109         u32 retry_sz;
6110         u32 rdpq_sz = 0, sense_sz = 0;
6111         u16 max_request_credit, nvme_blocks_needed;
6112         unsigned short sg_tablesize;
6113         u16 sge_size;
6114         int i;
6115         int ret = 0, rc = 0;
6116
6117         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6118
6119
6120         retry_sz = 0;
6121         facts = &ioc->facts;
6122
6123         /* command line tunables for max sgl entries */
6124         if (max_sgl_entries != -1)
6125                 sg_tablesize = max_sgl_entries;
6126         else {
6127                 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
6128                         sg_tablesize = MPT2SAS_SG_DEPTH;
6129                 else
6130                         sg_tablesize = MPT3SAS_SG_DEPTH;
6131         }
6132
6133         /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
6134         if (reset_devices)
6135                 sg_tablesize = min_t(unsigned short, sg_tablesize,
6136                    MPT_KDUMP_MIN_PHYS_SEGMENTS);
6137
6138         if (ioc->is_mcpu_endpoint)
6139                 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6140         else {
6141                 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
6142                         sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6143                 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
6144                         sg_tablesize = min_t(unsigned short, sg_tablesize,
6145                                         SG_MAX_SEGMENTS);
6146                         ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
6147                                  sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
6148                 }
6149                 ioc->shost->sg_tablesize = sg_tablesize;
6150         }
6151
6152         ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
6153                 (facts->RequestCredit / 4));
6154         if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
6155                 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
6156                                 INTERNAL_SCSIIO_CMDS_COUNT)) {
6157                         ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
6158                                 facts->RequestCredit);
6159                         return -ENOMEM;
6160                 }
6161                 ioc->internal_depth = 10;
6162         }
6163
6164         ioc->hi_priority_depth = ioc->internal_depth - (5);
6165         /* command line tunables  for max controller queue depth */
6166         if (max_queue_depth != -1 && max_queue_depth != 0) {
6167                 max_request_credit = min_t(u16, max_queue_depth +
6168                         ioc->internal_depth, facts->RequestCredit);
6169                 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
6170                         max_request_credit =  MAX_HBA_QUEUE_DEPTH;
6171         } else if (reset_devices)
6172                 max_request_credit = min_t(u16, facts->RequestCredit,
6173                     (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
6174         else
6175                 max_request_credit = min_t(u16, facts->RequestCredit,
6176                     MAX_HBA_QUEUE_DEPTH);
6177
6178         /* Firmware maintains additional facts->HighPriorityCredit number of
6179          * credits for HiPriprity Request messages, so hba queue depth will be
6180          * sum of max_request_credit and high priority queue depth.
6181          */
6182         ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
6183
6184         /* request frame size */
6185         ioc->request_sz = facts->IOCRequestFrameSize * 4;
6186
6187         /* reply frame size */
6188         ioc->reply_sz = facts->ReplyFrameSize * 4;
6189
6190         /* chain segment size */
6191         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6192                 if (facts->IOCMaxChainSegmentSize)
6193                         ioc->chain_segment_sz =
6194                                         facts->IOCMaxChainSegmentSize *
6195                                         MAX_CHAIN_ELEMT_SZ;
6196                 else
6197                 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
6198                         ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
6199                                                     MAX_CHAIN_ELEMT_SZ;
6200         } else
6201                 ioc->chain_segment_sz = ioc->request_sz;
6202
6203         /* calculate the max scatter element size */
6204         sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
6205
6206  retry_allocation:
6207         total_sz = 0;
6208         /* calculate number of sg elements left over in the 1st frame */
6209         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
6210             sizeof(Mpi2SGEIOUnion_t)) + sge_size);
6211         ioc->max_sges_in_main_message = max_sge_elements/sge_size;
6212
6213         /* now do the same for a chain buffer */
6214         max_sge_elements = ioc->chain_segment_sz - sge_size;
6215         ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
6216
6217         /*
6218          *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
6219          */
6220         chains_needed_per_io = ((ioc->shost->sg_tablesize -
6221            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
6222             + 1;
6223         if (chains_needed_per_io > facts->MaxChainDepth) {
6224                 chains_needed_per_io = facts->MaxChainDepth;
6225                 ioc->shost->sg_tablesize = min_t(u16,
6226                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
6227                 * chains_needed_per_io), ioc->shost->sg_tablesize);
6228         }
6229         ioc->chains_needed_per_io = chains_needed_per_io;
6230
6231         /* reply free queue sizing - taking into account for 64 FW events */
6232         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6233
6234         /* mCPU manage single counters for simplicity */
6235         if (ioc->is_mcpu_endpoint)
6236                 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
6237         else {
6238                 /* calculate reply descriptor post queue depth */
6239                 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
6240                         ioc->reply_free_queue_depth +  1;
6241                 /* align the reply post queue on the next 16 count boundary */
6242                 if (ioc->reply_post_queue_depth % 16)
6243                         ioc->reply_post_queue_depth += 16 -
6244                                 (ioc->reply_post_queue_depth % 16);
6245         }
6246
6247         if (ioc->reply_post_queue_depth >
6248             facts->MaxReplyDescriptorPostQueueDepth) {
6249                 ioc->reply_post_queue_depth =
6250                                 facts->MaxReplyDescriptorPostQueueDepth -
6251                     (facts->MaxReplyDescriptorPostQueueDepth % 16);
6252                 ioc->hba_queue_depth =
6253                                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
6254                 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6255         }
6256
6257         ioc_info(ioc,
6258             "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
6259             "sge_per_io(%d), chains_per_io(%d)\n",
6260             ioc->max_sges_in_main_message,
6261             ioc->max_sges_in_chain_message,
6262             ioc->shost->sg_tablesize,
6263             ioc->chains_needed_per_io);
6264
6265         /* reply post queue, 16 byte align */
6266         reply_post_free_sz = ioc->reply_post_queue_depth *
6267             sizeof(Mpi2DefaultReplyDescriptor_t);
6268         rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
6269         if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
6270             || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK))
6271                 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
6272         ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
6273         if (ret == -EAGAIN) {
6274                 /*
6275                  * Free allocated bad RDPQ memory pools.
6276                  * Change dma coherent mask to 32 bit and reallocate RDPQ
6277                  */
6278                 _base_release_memory_pools(ioc);
6279                 ioc->use_32bit_dma = true;
6280                 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6281                         ioc_err(ioc,
6282                             "32 DMA mask failed %s\n", pci_name(ioc->pdev));
6283                         return -ENODEV;
6284                 }
6285                 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
6286                         return -ENOMEM;
6287         } else if (ret == -ENOMEM)
6288                 return -ENOMEM;
6289         total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
6290             DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
6291         ioc->scsiio_depth = ioc->hba_queue_depth -
6292             ioc->hi_priority_depth - ioc->internal_depth;
6293
6294         /* set the scsi host can_queue depth
6295          * with some internal commands that could be outstanding
6296          */
6297         ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
6298         dinitprintk(ioc,
6299                     ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
6300                              ioc->shost->can_queue));
6301
6302         /* contiguous pool for request and chains, 16 byte align, one extra "
6303          * "frame for smid=0
6304          */
6305         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
6306         sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
6307
6308         /* hi-priority queue */
6309         sz += (ioc->hi_priority_depth * ioc->request_sz);
6310
6311         /* internal queue */
6312         sz += (ioc->internal_depth * ioc->request_sz);
6313
6314         ioc->request_dma_sz = sz;
6315         ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
6316                         &ioc->request_dma, GFP_KERNEL);
6317         if (!ioc->request) {
6318                 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
6319                         ioc->hba_queue_depth, ioc->chains_needed_per_io,
6320                         ioc->request_sz, sz / 1024);
6321                 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
6322                         goto out;
6323                 retry_sz = 64;
6324                 ioc->hba_queue_depth -= retry_sz;
6325                 _base_release_memory_pools(ioc);
6326                 goto retry_allocation;
6327         }
6328
6329         if (retry_sz)
6330                 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
6331                         ioc->hba_queue_depth, ioc->chains_needed_per_io,
6332                         ioc->request_sz, sz / 1024);
6333
6334         /* hi-priority queue */
6335         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
6336             ioc->request_sz);
6337         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
6338             ioc->request_sz);
6339
6340         /* internal queue */
6341         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
6342             ioc->request_sz);
6343         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
6344             ioc->request_sz);
6345
6346         ioc_info(ioc,
6347             "request pool(0x%p) - dma(0x%llx): "
6348             "depth(%d), frame_size(%d), pool_size(%d kB)\n",
6349             ioc->request, (unsigned long long) ioc->request_dma,
6350             ioc->hba_queue_depth, ioc->request_sz,
6351             (ioc->hba_queue_depth * ioc->request_sz) / 1024);
6352
6353         total_sz += sz;
6354
6355         dinitprintk(ioc,
6356                     ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
6357                              ioc->request, ioc->scsiio_depth));
6358
6359         ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
6360         sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
6361         ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
6362         if (!ioc->chain_lookup) {
6363                 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
6364                 goto out;
6365         }
6366
6367         sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
6368         for (i = 0; i < ioc->scsiio_depth; i++) {
6369                 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
6370                 if (!ioc->chain_lookup[i].chains_per_smid) {
6371                         ioc_err(ioc, "chain_lookup: kzalloc failed\n");
6372                         goto out;
6373                 }
6374         }
6375
6376         /* initialize hi-priority queue smid's */
6377         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
6378             sizeof(struct request_tracker), GFP_KERNEL);
6379         if (!ioc->hpr_lookup) {
6380                 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
6381                 goto out;
6382         }
6383         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
6384         dinitprintk(ioc,
6385                     ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
6386                              ioc->hi_priority,
6387                              ioc->hi_priority_depth, ioc->hi_priority_smid));
6388
6389         /* initialize internal queue smid's */
6390         ioc->internal_lookup = kcalloc(ioc->internal_depth,
6391             sizeof(struct request_tracker), GFP_KERNEL);
6392         if (!ioc->internal_lookup) {
6393                 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
6394                 goto out;
6395         }
6396         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
6397         dinitprintk(ioc,
6398                     ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
6399                              ioc->internal,
6400                              ioc->internal_depth, ioc->internal_smid));
6401
6402         ioc->io_queue_num = kcalloc(ioc->scsiio_depth,
6403             sizeof(u16), GFP_KERNEL);
6404         if (!ioc->io_queue_num)
6405                 goto out;
6406         /*
6407          * The number of NVMe page sized blocks needed is:
6408          *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
6409          * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
6410          * that is placed in the main message frame.  8 is the size of each PRP
6411          * entry or PRP list pointer entry.  8 is subtracted from page_size
6412          * because of the PRP list pointer entry at the end of a page, so this
6413          * is not counted as a PRP entry.  The 1 added page is a round up.
6414          *
6415          * To avoid allocation failures due to the amount of memory that could
6416          * be required for NVMe PRP's, only each set of NVMe blocks will be
6417          * contiguous, so a new set is allocated for each possible I/O.
6418          */
6419
6420         ioc->chains_per_prp_buffer = 0;
6421         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
6422                 nvme_blocks_needed =
6423                         (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
6424                 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
6425                 nvme_blocks_needed++;
6426
6427                 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
6428                 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
6429                 if (!ioc->pcie_sg_lookup) {
6430                         ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
6431                         goto out;
6432                 }
6433                 sz = nvme_blocks_needed * ioc->page_size;
6434                 rc = _base_allocate_pcie_sgl_pool(ioc, sz);
6435                 if (rc == -ENOMEM)
6436                         return -ENOMEM;
6437                 else if (rc == -EAGAIN)
6438                         goto try_32bit_dma;
6439                 total_sz += sz * ioc->scsiio_depth;
6440         }
6441
6442         rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz);
6443         if (rc == -ENOMEM)
6444                 return -ENOMEM;
6445         else if (rc == -EAGAIN)
6446                 goto try_32bit_dma;
6447         total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io -
6448                 ioc->chains_per_prp_buffer) * ioc->scsiio_depth);
6449         dinitprintk(ioc,
6450             ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
6451             ioc->chain_depth, ioc->chain_segment_sz,
6452             (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
6453         /* sense buffers, 4 byte align */
6454         sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
6455         rc = _base_allocate_sense_dma_pool(ioc, sense_sz);
6456         if (rc  == -ENOMEM)
6457                 return -ENOMEM;
6458         else if (rc == -EAGAIN)
6459                 goto try_32bit_dma;
6460         total_sz += sense_sz;
6461         ioc_info(ioc,
6462             "sense pool(0x%p)- dma(0x%llx): depth(%d),"
6463             "element_size(%d), pool_size(%d kB)\n",
6464             ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
6465             SCSI_SENSE_BUFFERSIZE, sz / 1024);
6466         /* reply pool, 4 byte align */
6467         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
6468         rc = _base_allocate_reply_pool(ioc, sz);
6469         if (rc == -ENOMEM)
6470                 return -ENOMEM;
6471         else if (rc == -EAGAIN)
6472                 goto try_32bit_dma;
6473         total_sz += sz;
6474
6475         /* reply free queue, 16 byte align */
6476         sz = ioc->reply_free_queue_depth * 4;
6477         rc = _base_allocate_reply_free_dma_pool(ioc, sz);
6478         if (rc  == -ENOMEM)
6479                 return -ENOMEM;
6480         else if (rc == -EAGAIN)
6481                 goto try_32bit_dma;
6482         dinitprintk(ioc,
6483                     ioc_info(ioc, "reply_free_dma (0x%llx)\n",
6484                              (unsigned long long)ioc->reply_free_dma));
6485         total_sz += sz;
6486         if (ioc->rdpq_array_enable) {
6487                 reply_post_free_array_sz = ioc->reply_queue_count *
6488                     sizeof(Mpi2IOCInitRDPQArrayEntry);
6489                 rc = _base_allocate_reply_post_free_array(ioc,
6490                     reply_post_free_array_sz);
6491                 if (rc == -ENOMEM)
6492                         return -ENOMEM;
6493                 else if (rc == -EAGAIN)
6494                         goto try_32bit_dma;
6495         }
6496         ioc->config_page_sz = 512;
6497         ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
6498                         ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
6499         if (!ioc->config_page) {
6500                 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
6501                 goto out;
6502         }
6503
6504         ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
6505             ioc->config_page, (unsigned long long)ioc->config_page_dma,
6506             ioc->config_page_sz);
6507         total_sz += ioc->config_page_sz;
6508
6509         ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6510                  total_sz / 1024);
6511         ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6512                  ioc->shost->can_queue, facts->RequestCredit);
6513         ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6514                  ioc->shost->sg_tablesize);
6515         return 0;
6516
6517 try_32bit_dma:
6518         _base_release_memory_pools(ioc);
6519         if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
6520                 /* Change dma coherent mask to 32 bit and reallocate */
6521                 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6522                         pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
6523                             pci_name(ioc->pdev));
6524                         return -ENODEV;
6525                 }
6526         } else if (_base_reduce_hba_queue_depth(ioc) != 0)
6527                 return -ENOMEM;
6528         goto retry_allocation;
6529
6530  out:
6531         return -ENOMEM;
6532 }
6533
6534 /**
6535  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6536  * @ioc: Pointer to MPT_ADAPTER structure
6537  * @cooked: Request raw or cooked IOC state
6538  *
6539  * Return: all IOC Doorbell register bits if cooked==0, else just the
6540  * Doorbell bits in MPI_IOC_STATE_MASK.
6541  */
6542 u32
6543 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6544 {
6545         u32 s, sc;
6546
6547         s = ioc->base_readl(&ioc->chip->Doorbell);
6548         sc = s & MPI2_IOC_STATE_MASK;
6549         return cooked ? sc : s;
6550 }
6551
6552 /**
6553  * _base_wait_on_iocstate - waiting on a particular ioc state
6554  * @ioc: ?
6555  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6556  * @timeout: timeout in second
6557  *
6558  * Return: 0 for success, non-zero for failure.
6559  */
6560 static int
6561 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6562 {
6563         u32 count, cntdn;
6564         u32 current_state;
6565
6566         count = 0;
6567         cntdn = 1000 * timeout;
6568         do {
6569                 current_state = mpt3sas_base_get_iocstate(ioc, 1);
6570                 if (current_state == ioc_state)
6571                         return 0;
6572                 if (count && current_state == MPI2_IOC_STATE_FAULT)
6573                         break;
6574                 if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6575                         break;
6576
6577                 usleep_range(1000, 1500);
6578                 count++;
6579         } while (--cntdn);
6580
6581         return current_state;
6582 }
6583
6584 /**
6585  * _base_dump_reg_set - This function will print hexdump of register set.
6586  * @ioc: per adapter object
6587  *
6588  * Return: nothing.
6589  */
6590 static inline void
6591 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6592 {
6593         unsigned int i, sz = 256;
6594         u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6595
6596         ioc_info(ioc, "System Register set:\n");
6597         for (i = 0; i < (sz / sizeof(u32)); i++)
6598                 pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
6599 }
6600
6601 /**
6602  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6603  * a write to the doorbell)
6604  * @ioc: per adapter object
6605  * @timeout: timeout in seconds
6606  *
6607  * Return: 0 for success, non-zero for failure.
6608  *
6609  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6610  */
6611
6612 static int
6613 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6614 {
6615         u32 cntdn, count;
6616         u32 int_status;
6617
6618         count = 0;
6619         cntdn = 1000 * timeout;
6620         do {
6621                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6622                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6623                         dhsprintk(ioc,
6624                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6625                                            __func__, count, timeout));
6626                         return 0;
6627                 }
6628
6629                 usleep_range(1000, 1500);
6630                 count++;
6631         } while (--cntdn);
6632
6633         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6634                 __func__, count, int_status);
6635         return -EFAULT;
6636 }
6637
6638 static int
6639 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6640 {
6641         u32 cntdn, count;
6642         u32 int_status;
6643
6644         count = 0;
6645         cntdn = 2000 * timeout;
6646         do {
6647                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6648                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6649                         dhsprintk(ioc,
6650                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6651                                            __func__, count, timeout));
6652                         return 0;
6653                 }
6654
6655                 udelay(500);
6656                 count++;
6657         } while (--cntdn);
6658
6659         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6660                 __func__, count, int_status);
6661         return -EFAULT;
6662
6663 }
6664
6665 /**
6666  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6667  * @ioc: per adapter object
6668  * @timeout: timeout in second
6669  *
6670  * Return: 0 for success, non-zero for failure.
6671  *
6672  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6673  * doorbell.
6674  */
6675 static int
6676 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6677 {
6678         u32 cntdn, count;
6679         u32 int_status;
6680         u32 doorbell;
6681
6682         count = 0;
6683         cntdn = 1000 * timeout;
6684         do {
6685                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6686                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6687                         dhsprintk(ioc,
6688                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6689                                            __func__, count, timeout));
6690                         return 0;
6691                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6692                         doorbell = ioc->base_readl(&ioc->chip->Doorbell);
6693                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
6694                             MPI2_IOC_STATE_FAULT) {
6695                                 mpt3sas_print_fault_code(ioc, doorbell);
6696                                 return -EFAULT;
6697                         }
6698                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
6699                             MPI2_IOC_STATE_COREDUMP) {
6700                                 mpt3sas_print_coredump_info(ioc, doorbell);
6701                                 return -EFAULT;
6702                         }
6703                 } else if (int_status == 0xFFFFFFFF)
6704                         goto out;
6705
6706                 usleep_range(1000, 1500);
6707                 count++;
6708         } while (--cntdn);
6709
6710  out:
6711         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6712                 __func__, count, int_status);
6713         return -EFAULT;
6714 }
6715
6716 /**
6717  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6718  * @ioc: per adapter object
6719  * @timeout: timeout in second
6720  *
6721  * Return: 0 for success, non-zero for failure.
6722  */
6723 static int
6724 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6725 {
6726         u32 cntdn, count;
6727         u32 doorbell_reg;
6728
6729         count = 0;
6730         cntdn = 1000 * timeout;
6731         do {
6732                 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
6733                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6734                         dhsprintk(ioc,
6735                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6736                                            __func__, count, timeout));
6737                         return 0;
6738                 }
6739
6740                 usleep_range(1000, 1500);
6741                 count++;
6742         } while (--cntdn);
6743
6744         ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6745                 __func__, count, doorbell_reg);
6746         return -EFAULT;
6747 }
6748
6749 /**
6750  * _base_send_ioc_reset - send doorbell reset
6751  * @ioc: per adapter object
6752  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6753  * @timeout: timeout in second
6754  *
6755  * Return: 0 for success, non-zero for failure.
6756  */
6757 static int
6758 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6759 {
6760         u32 ioc_state;
6761         int r = 0;
6762         unsigned long flags;
6763
6764         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6765                 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6766                 return -EFAULT;
6767         }
6768
6769         if (!(ioc->facts.IOCCapabilities &
6770            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6771                 return -EFAULT;
6772
6773         ioc_info(ioc, "sending message unit reset !!\n");
6774
6775         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6776             &ioc->chip->Doorbell);
6777         if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6778                 r = -EFAULT;
6779                 goto out;
6780         }
6781
6782         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6783         if (ioc_state) {
6784                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6785                         __func__, ioc_state);
6786                 r = -EFAULT;
6787                 goto out;
6788         }
6789  out:
6790         if (r != 0) {
6791                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6792                 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6793                 /*
6794                  * Wait for IOC state CoreDump to clear only during
6795                  * HBA initialization & release time.
6796                  */
6797                 if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6798                     MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6799                     ioc->fault_reset_work_q == NULL)) {
6800                         spin_unlock_irqrestore(
6801                             &ioc->ioc_reset_in_progress_lock, flags);
6802                         mpt3sas_print_coredump_info(ioc, ioc_state);
6803                         mpt3sas_base_wait_for_coredump_completion(ioc,
6804                             __func__);
6805                         spin_lock_irqsave(
6806                             &ioc->ioc_reset_in_progress_lock, flags);
6807                 }
6808                 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6809         }
6810         ioc_info(ioc, "message unit reset: %s\n",
6811                  r == 0 ? "SUCCESS" : "FAILED");
6812         return r;
6813 }
6814
6815 /**
6816  * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6817  * @ioc: per adapter object
6818  * @timeout: timeout in seconds
6819  *
6820  * Return: Waits up to timeout seconds for the IOC to
6821  * become operational. Returns 0 if IOC is present
6822  * and operational; otherwise returns %-EFAULT.
6823  */
6824
6825 int
6826 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
6827 {
6828         int wait_state_count = 0;
6829         u32 ioc_state;
6830
6831         do {
6832                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
6833                 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
6834                         break;
6835
6836                 /*
6837                  * Watchdog thread will be started after IOC Initialization, so
6838                  * no need to wait here for IOC state to become operational
6839                  * when IOC Initialization is on. Instead the driver will
6840                  * return ETIME status, so that calling function can issue
6841                  * diag reset operation and retry the command.
6842                  */
6843                 if (ioc->is_driver_loading)
6844                         return -ETIME;
6845
6846                 ssleep(1);
6847                 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
6848                                 __func__, ++wait_state_count);
6849         } while (--timeout);
6850         if (!timeout) {
6851                 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
6852                 return -EFAULT;
6853         }
6854         if (wait_state_count)
6855                 ioc_info(ioc, "ioc is operational\n");
6856         return 0;
6857 }
6858
6859 /**
6860  * _base_handshake_req_reply_wait - send request thru doorbell interface
6861  * @ioc: per adapter object
6862  * @request_bytes: request length
6863  * @request: pointer having request payload
6864  * @reply_bytes: reply length
6865  * @reply: pointer to reply payload
6866  * @timeout: timeout in second
6867  *
6868  * Return: 0 for success, non-zero for failure.
6869  */
6870 static int
6871 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
6872         u32 *request, int reply_bytes, u16 *reply, int timeout)
6873 {
6874         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
6875         int i;
6876         u8 failed;
6877         __le32 *mfp;
6878
6879         /* make sure doorbell is not in use */
6880         if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
6881                 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
6882                 return -EFAULT;
6883         }
6884
6885         /* clear pending doorbell interrupts from previous state changes */
6886         if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
6887             MPI2_HIS_IOC2SYS_DB_STATUS)
6888                 writel(0, &ioc->chip->HostInterruptStatus);
6889
6890         /* send message to ioc */
6891         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
6892             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
6893             &ioc->chip->Doorbell);
6894
6895         if ((_base_spin_on_doorbell_int(ioc, 5))) {
6896                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6897                         __LINE__);
6898                 return -EFAULT;
6899         }
6900         writel(0, &ioc->chip->HostInterruptStatus);
6901
6902         if ((_base_wait_for_doorbell_ack(ioc, 5))) {
6903                 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
6904                         __LINE__);
6905                 return -EFAULT;
6906         }
6907
6908         /* send message 32-bits at a time */
6909         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
6910                 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
6911                 if ((_base_wait_for_doorbell_ack(ioc, 5)))
6912                         failed = 1;
6913         }
6914
6915         if (failed) {
6916                 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
6917                         __LINE__);
6918                 return -EFAULT;
6919         }
6920
6921         /* now wait for the reply */
6922         if ((_base_wait_for_doorbell_int(ioc, timeout))) {
6923                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6924                         __LINE__);
6925                 return -EFAULT;
6926         }
6927
6928         /* read the first two 16-bits, it gives the total length of the reply */
6929         reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
6930             & MPI2_DOORBELL_DATA_MASK);
6931         writel(0, &ioc->chip->HostInterruptStatus);
6932         if ((_base_wait_for_doorbell_int(ioc, 5))) {
6933                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6934                         __LINE__);
6935                 return -EFAULT;
6936         }
6937         reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
6938             & MPI2_DOORBELL_DATA_MASK);
6939         writel(0, &ioc->chip->HostInterruptStatus);
6940
6941         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
6942                 if ((_base_wait_for_doorbell_int(ioc, 5))) {
6943                         ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6944                                 __LINE__);
6945                         return -EFAULT;
6946                 }
6947                 if (i >=  reply_bytes/2) /* overflow case */
6948                         ioc->base_readl(&ioc->chip->Doorbell);
6949                 else
6950                         reply[i] = le16_to_cpu(
6951                             ioc->base_readl(&ioc->chip->Doorbell)
6952                             & MPI2_DOORBELL_DATA_MASK);
6953                 writel(0, &ioc->chip->HostInterruptStatus);
6954         }
6955
6956         _base_wait_for_doorbell_int(ioc, 5);
6957         if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
6958                 dhsprintk(ioc,
6959                           ioc_info(ioc, "doorbell is in use (line=%d)\n",
6960                                    __LINE__));
6961         }
6962         writel(0, &ioc->chip->HostInterruptStatus);
6963
6964         if (ioc->logging_level & MPT_DEBUG_INIT) {
6965                 mfp = (__le32 *)reply;
6966                 pr_info("\toffset:data\n");
6967                 for (i = 0; i < reply_bytes/4; i++)
6968                         ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6969                             le32_to_cpu(mfp[i]));
6970         }
6971         return 0;
6972 }
6973
6974 /**
6975  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
6976  * @ioc: per adapter object
6977  * @mpi_reply: the reply payload from FW
6978  * @mpi_request: the request payload sent to FW
6979  *
6980  * The SAS IO Unit Control Request message allows the host to perform low-level
6981  * operations, such as resets on the PHYs of the IO Unit, also allows the host
6982  * to obtain the IOC assigned device handles for a device if it has other
6983  * identifying information about the device, in addition allows the host to
6984  * remove IOC resources associated with the device.
6985  *
6986  * Return: 0 for success, non-zero for failure.
6987  */
6988 int
6989 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
6990         Mpi2SasIoUnitControlReply_t *mpi_reply,
6991         Mpi2SasIoUnitControlRequest_t *mpi_request)
6992 {
6993         u16 smid;
6994         u8 issue_reset = 0;
6995         int rc;
6996         void *request;
6997
6998         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6999
7000         mutex_lock(&ioc->base_cmds.mutex);
7001
7002         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7003                 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7004                 rc = -EAGAIN;
7005                 goto out;
7006         }
7007
7008         rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7009         if (rc)
7010                 goto out;
7011
7012         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7013         if (!smid) {
7014                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7015                 rc = -EAGAIN;
7016                 goto out;
7017         }
7018
7019         rc = 0;
7020         ioc->base_cmds.status = MPT3_CMD_PENDING;
7021         request = mpt3sas_base_get_msg_frame(ioc, smid);
7022         ioc->base_cmds.smid = smid;
7023         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
7024         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7025             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
7026                 ioc->ioc_link_reset_in_progress = 1;
7027         init_completion(&ioc->base_cmds.done);
7028         ioc->put_smid_default(ioc, smid);
7029         wait_for_completion_timeout(&ioc->base_cmds.done,
7030             msecs_to_jiffies(10000));
7031         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7032             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
7033             ioc->ioc_link_reset_in_progress)
7034                 ioc->ioc_link_reset_in_progress = 0;
7035         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7036                 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
7037                     mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
7038                     issue_reset);
7039                 goto issue_host_reset;
7040         }
7041         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7042                 memcpy(mpi_reply, ioc->base_cmds.reply,
7043                     sizeof(Mpi2SasIoUnitControlReply_t));
7044         else
7045                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
7046         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7047         goto out;
7048
7049  issue_host_reset:
7050         if (issue_reset)
7051                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7052         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7053         rc = -EFAULT;
7054  out:
7055         mutex_unlock(&ioc->base_cmds.mutex);
7056         return rc;
7057 }
7058
7059 /**
7060  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
7061  * @ioc: per adapter object
7062  * @mpi_reply: the reply payload from FW
7063  * @mpi_request: the request payload sent to FW
7064  *
7065  * The SCSI Enclosure Processor request message causes the IOC to
7066  * communicate with SES devices to control LED status signals.
7067  *
7068  * Return: 0 for success, non-zero for failure.
7069  */
7070 int
7071 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
7072         Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
7073 {
7074         u16 smid;
7075         u8 issue_reset = 0;
7076         int rc;
7077         void *request;
7078
7079         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7080
7081         mutex_lock(&ioc->base_cmds.mutex);
7082
7083         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7084                 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7085                 rc = -EAGAIN;
7086                 goto out;
7087         }
7088
7089         rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7090         if (rc)
7091                 goto out;
7092
7093         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7094         if (!smid) {
7095                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7096                 rc = -EAGAIN;
7097                 goto out;
7098         }
7099
7100         rc = 0;
7101         ioc->base_cmds.status = MPT3_CMD_PENDING;
7102         request = mpt3sas_base_get_msg_frame(ioc, smid);
7103         ioc->base_cmds.smid = smid;
7104         memset(request, 0, ioc->request_sz);
7105         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
7106         init_completion(&ioc->base_cmds.done);
7107         ioc->put_smid_default(ioc, smid);
7108         wait_for_completion_timeout(&ioc->base_cmds.done,
7109             msecs_to_jiffies(10000));
7110         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7111                 mpt3sas_check_cmd_timeout(ioc,
7112                     ioc->base_cmds.status, mpi_request,
7113                     sizeof(Mpi2SepRequest_t)/4, issue_reset);
7114                 goto issue_host_reset;
7115         }
7116         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7117                 memcpy(mpi_reply, ioc->base_cmds.reply,
7118                     sizeof(Mpi2SepReply_t));
7119         else
7120                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
7121         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7122         goto out;
7123
7124  issue_host_reset:
7125         if (issue_reset)
7126                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7127         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7128         rc = -EFAULT;
7129  out:
7130         mutex_unlock(&ioc->base_cmds.mutex);
7131         return rc;
7132 }
7133
7134 /**
7135  * _base_get_port_facts - obtain port facts reply and save in ioc
7136  * @ioc: per adapter object
7137  * @port: ?
7138  *
7139  * Return: 0 for success, non-zero for failure.
7140  */
7141 static int
7142 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
7143 {
7144         Mpi2PortFactsRequest_t mpi_request;
7145         Mpi2PortFactsReply_t mpi_reply;
7146         struct mpt3sas_port_facts *pfacts;
7147         int mpi_reply_sz, mpi_request_sz, r;
7148
7149         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7150
7151         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
7152         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
7153         memset(&mpi_request, 0, mpi_request_sz);
7154         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
7155         mpi_request.PortNumber = port;
7156         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7157             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7158
7159         if (r != 0) {
7160                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7161                 return r;
7162         }
7163
7164         pfacts = &ioc->pfacts[port];
7165         memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
7166         pfacts->PortNumber = mpi_reply.PortNumber;
7167         pfacts->VP_ID = mpi_reply.VP_ID;
7168         pfacts->VF_ID = mpi_reply.VF_ID;
7169         pfacts->MaxPostedCmdBuffers =
7170             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
7171
7172         return 0;
7173 }
7174
7175 /**
7176  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
7177  * @ioc: per adapter object
7178  * @timeout:
7179  *
7180  * Return: 0 for success, non-zero for failure.
7181  */
7182 static int
7183 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
7184 {
7185         u32 ioc_state;
7186         int rc;
7187
7188         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7189
7190         if (ioc->pci_error_recovery) {
7191                 dfailprintk(ioc,
7192                             ioc_info(ioc, "%s: host in pci error recovery\n",
7193                                      __func__));
7194                 return -EFAULT;
7195         }
7196
7197         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7198         dhsprintk(ioc,
7199                   ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7200                            __func__, ioc_state));
7201
7202         if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
7203             (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7204                 return 0;
7205
7206         if (ioc_state & MPI2_DOORBELL_USED) {
7207                 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
7208                 goto issue_diag_reset;
7209         }
7210
7211         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7212                 mpt3sas_print_fault_code(ioc, ioc_state &
7213                     MPI2_DOORBELL_DATA_MASK);
7214                 goto issue_diag_reset;
7215         } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
7216             MPI2_IOC_STATE_COREDUMP) {
7217                 ioc_info(ioc,
7218                     "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
7219                     __func__, ioc_state);
7220                 return -EFAULT;
7221         }
7222
7223         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
7224         if (ioc_state) {
7225                 dfailprintk(ioc,
7226                             ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7227                                      __func__, ioc_state));
7228                 return -EFAULT;
7229         }
7230
7231  issue_diag_reset:
7232         rc = _base_diag_reset(ioc);
7233         return rc;
7234 }
7235
7236 /**
7237  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
7238  * @ioc: per adapter object
7239  *
7240  * Return: 0 for success, non-zero for failure.
7241  */
7242 static int
7243 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
7244 {
7245         Mpi2IOCFactsRequest_t mpi_request;
7246         Mpi2IOCFactsReply_t mpi_reply;
7247         struct mpt3sas_facts *facts;
7248         int mpi_reply_sz, mpi_request_sz, r;
7249
7250         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7251
7252         r = _base_wait_for_iocstate(ioc, 10);
7253         if (r) {
7254                 dfailprintk(ioc,
7255                             ioc_info(ioc, "%s: failed getting to correct state\n",
7256                                      __func__));
7257                 return r;
7258         }
7259         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
7260         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
7261         memset(&mpi_request, 0, mpi_request_sz);
7262         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
7263         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7264             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7265
7266         if (r != 0) {
7267                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7268                 return r;
7269         }
7270
7271         facts = &ioc->facts;
7272         memset(facts, 0, sizeof(struct mpt3sas_facts));
7273         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
7274         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
7275         facts->VP_ID = mpi_reply.VP_ID;
7276         facts->VF_ID = mpi_reply.VF_ID;
7277         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
7278         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
7279         facts->WhoInit = mpi_reply.WhoInit;
7280         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
7281         facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
7282         if (ioc->msix_enable && (facts->MaxMSIxVectors <=
7283             MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
7284                 ioc->combined_reply_queue = 0;
7285         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
7286         facts->MaxReplyDescriptorPostQueueDepth =
7287             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
7288         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
7289         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
7290         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
7291                 ioc->ir_firmware = 1;
7292         if ((facts->IOCCapabilities &
7293               MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
7294                 ioc->rdpq_array_capable = 1;
7295         if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
7296             && ioc->is_aero_ioc)
7297                 ioc->atomic_desc_capable = 1;
7298         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
7299         facts->IOCRequestFrameSize =
7300             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
7301         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7302                 facts->IOCMaxChainSegmentSize =
7303                         le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
7304         }
7305         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
7306         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
7307         ioc->shost->max_id = -1;
7308         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
7309         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
7310         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
7311         facts->HighPriorityCredit =
7312             le16_to_cpu(mpi_reply.HighPriorityCredit);
7313         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
7314         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
7315         facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
7316
7317         /*
7318          * Get the Page Size from IOC Facts. If it's 0, default to 4k.
7319          */
7320         ioc->page_size = 1 << facts->CurrentHostPageSize;
7321         if (ioc->page_size == 1) {
7322                 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
7323                 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
7324         }
7325         dinitprintk(ioc,
7326                     ioc_info(ioc, "CurrentHostPageSize(%d)\n",
7327                              facts->CurrentHostPageSize));
7328
7329         dinitprintk(ioc,
7330                     ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
7331                              facts->RequestCredit, facts->MaxChainDepth));
7332         dinitprintk(ioc,
7333                     ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
7334                              facts->IOCRequestFrameSize * 4,
7335                              facts->ReplyFrameSize * 4));
7336         return 0;
7337 }
7338
7339 /**
7340  * _base_send_ioc_init - send ioc_init to firmware
7341  * @ioc: per adapter object
7342  *
7343  * Return: 0 for success, non-zero for failure.
7344  */
7345 static int
7346 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
7347 {
7348         Mpi2IOCInitRequest_t mpi_request;
7349         Mpi2IOCInitReply_t mpi_reply;
7350         int i, r = 0;
7351         ktime_t current_time;
7352         u16 ioc_status;
7353         u32 reply_post_free_array_sz = 0;
7354
7355         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7356
7357         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
7358         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
7359         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
7360         mpi_request.VF_ID = 0; /* TODO */
7361         mpi_request.VP_ID = 0;
7362         mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
7363         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
7364         mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
7365
7366         if (_base_is_controller_msix_enabled(ioc))
7367                 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
7368         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
7369         mpi_request.ReplyDescriptorPostQueueDepth =
7370             cpu_to_le16(ioc->reply_post_queue_depth);
7371         mpi_request.ReplyFreeQueueDepth =
7372             cpu_to_le16(ioc->reply_free_queue_depth);
7373
7374         mpi_request.SenseBufferAddressHigh =
7375             cpu_to_le32((u64)ioc->sense_dma >> 32);
7376         mpi_request.SystemReplyAddressHigh =
7377             cpu_to_le32((u64)ioc->reply_dma >> 32);
7378         mpi_request.SystemRequestFrameBaseAddress =
7379             cpu_to_le64((u64)ioc->request_dma);
7380         mpi_request.ReplyFreeQueueAddress =
7381             cpu_to_le64((u64)ioc->reply_free_dma);
7382
7383         if (ioc->rdpq_array_enable) {
7384                 reply_post_free_array_sz = ioc->reply_queue_count *
7385                     sizeof(Mpi2IOCInitRDPQArrayEntry);
7386                 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
7387                 for (i = 0; i < ioc->reply_queue_count; i++)
7388                         ioc->reply_post_free_array[i].RDPQBaseAddress =
7389                             cpu_to_le64(
7390                                 (u64)ioc->reply_post[i].reply_post_free_dma);
7391                 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
7392                 mpi_request.ReplyDescriptorPostQueueAddress =
7393                     cpu_to_le64((u64)ioc->reply_post_free_array_dma);
7394         } else {
7395                 mpi_request.ReplyDescriptorPostQueueAddress =
7396                     cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
7397         }
7398
7399         /*
7400          * Set the flag to enable CoreDump state feature in IOC firmware.
7401          */
7402         mpi_request.ConfigurationFlags |=
7403             cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
7404
7405         /* This time stamp specifies number of milliseconds
7406          * since epoch ~ midnight January 1, 1970.
7407          */
7408         current_time = ktime_get_real();
7409         mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
7410
7411         if (ioc->logging_level & MPT_DEBUG_INIT) {
7412                 __le32 *mfp;
7413                 int i;
7414
7415                 mfp = (__le32 *)&mpi_request;
7416                 ioc_info(ioc, "\toffset:data\n");
7417                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
7418                         ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7419                             le32_to_cpu(mfp[i]));
7420         }
7421
7422         r = _base_handshake_req_reply_wait(ioc,
7423             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
7424             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
7425
7426         if (r != 0) {
7427                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7428                 return r;
7429         }
7430
7431         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
7432         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
7433             mpi_reply.IOCLogInfo) {
7434                 ioc_err(ioc, "%s: failed\n", __func__);
7435                 r = -EIO;
7436         }
7437
7438         /* Reset TimeSync Counter*/
7439         ioc->timestamp_update_count = 0;
7440         return r;
7441 }
7442
7443 /**
7444  * mpt3sas_port_enable_done - command completion routine for port enable
7445  * @ioc: per adapter object
7446  * @smid: system request message index
7447  * @msix_index: MSIX table index supplied by the OS
7448  * @reply: reply message frame(lower 32bit addr)
7449  *
7450  * Return: 1 meaning mf should be freed from _base_interrupt
7451  *          0 means the mf is freed from this function.
7452  */
7453 u8
7454 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
7455         u32 reply)
7456 {
7457         MPI2DefaultReply_t *mpi_reply;
7458         u16 ioc_status;
7459
7460         if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
7461                 return 1;
7462
7463         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
7464         if (!mpi_reply)
7465                 return 1;
7466
7467         if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
7468                 return 1;
7469
7470         ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
7471         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
7472         ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
7473         memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
7474         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7475         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
7476                 ioc->port_enable_failed = 1;
7477
7478         if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) {
7479                 ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC;
7480                 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
7481                         mpt3sas_port_enable_complete(ioc);
7482                         return 1;
7483                 } else {
7484                         ioc->start_scan_failed = ioc_status;
7485                         ioc->start_scan = 0;
7486                         return 1;
7487                 }
7488         }
7489         complete(&ioc->port_enable_cmds.done);
7490         return 1;
7491 }
7492
7493 /**
7494  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
7495  * @ioc: per adapter object
7496  *
7497  * Return: 0 for success, non-zero for failure.
7498  */
7499 static int
7500 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
7501 {
7502         Mpi2PortEnableRequest_t *mpi_request;
7503         Mpi2PortEnableReply_t *mpi_reply;
7504         int r = 0;
7505         u16 smid;
7506         u16 ioc_status;
7507
7508         ioc_info(ioc, "sending port enable !!\n");
7509
7510         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7511                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7512                 return -EAGAIN;
7513         }
7514
7515         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7516         if (!smid) {
7517                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7518                 return -EAGAIN;
7519         }
7520
7521         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7522         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7523         ioc->port_enable_cmds.smid = smid;
7524         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7525         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7526
7527         init_completion(&ioc->port_enable_cmds.done);
7528         ioc->put_smid_default(ioc, smid);
7529         wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
7530         if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
7531                 ioc_err(ioc, "%s: timeout\n", __func__);
7532                 _debug_dump_mf(mpi_request,
7533                     sizeof(Mpi2PortEnableRequest_t)/4);
7534                 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7535                         r = -EFAULT;
7536                 else
7537                         r = -ETIME;
7538                 goto out;
7539         }
7540
7541         mpi_reply = ioc->port_enable_cmds.reply;
7542         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7543         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7544                 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7545                         __func__, ioc_status);
7546                 r = -EFAULT;
7547                 goto out;
7548         }
7549
7550  out:
7551         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7552         ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7553         return r;
7554 }
7555
7556 /**
7557  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7558  * @ioc: per adapter object
7559  *
7560  * Return: 0 for success, non-zero for failure.
7561  */
7562 int
7563 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7564 {
7565         Mpi2PortEnableRequest_t *mpi_request;
7566         u16 smid;
7567
7568         ioc_info(ioc, "sending port enable !!\n");
7569
7570         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7571                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7572                 return -EAGAIN;
7573         }
7574
7575         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7576         if (!smid) {
7577                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7578                 return -EAGAIN;
7579         }
7580         ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED;
7581         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7582         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC;
7583         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7584         ioc->port_enable_cmds.smid = smid;
7585         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7586         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7587
7588         ioc->put_smid_default(ioc, smid);
7589         return 0;
7590 }
7591
7592 /**
7593  * _base_determine_wait_on_discovery - desposition
7594  * @ioc: per adapter object
7595  *
7596  * Decide whether to wait on discovery to complete. Used to either
7597  * locate boot device, or report volumes ahead of physical devices.
7598  *
7599  * Return: 1 for wait, 0 for don't wait.
7600  */
7601 static int
7602 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7603 {
7604         /* We wait for discovery to complete if IR firmware is loaded.
7605          * The sas topology events arrive before PD events, so we need time to
7606          * turn on the bit in ioc->pd_handles to indicate PD
7607          * Also, it maybe required to report Volumes ahead of physical
7608          * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7609          */
7610         if (ioc->ir_firmware)
7611                 return 1;
7612
7613         /* if no Bios, then we don't need to wait */
7614         if (!ioc->bios_pg3.BiosVersion)
7615                 return 0;
7616
7617         /* Bios is present, then we drop down here.
7618          *
7619          * If there any entries in the Bios Page 2, then we wait
7620          * for discovery to complete.
7621          */
7622
7623         /* Current Boot Device */
7624         if ((ioc->bios_pg2.CurrentBootDeviceForm &
7625             MPI2_BIOSPAGE2_FORM_MASK) ==
7626             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7627         /* Request Boot Device */
7628            (ioc->bios_pg2.ReqBootDeviceForm &
7629             MPI2_BIOSPAGE2_FORM_MASK) ==
7630             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7631         /* Alternate Request Boot Device */
7632            (ioc->bios_pg2.ReqAltBootDeviceForm &
7633             MPI2_BIOSPAGE2_FORM_MASK) ==
7634             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7635                 return 0;
7636
7637         return 1;
7638 }
7639
7640 /**
7641  * _base_unmask_events - turn on notification for this event
7642  * @ioc: per adapter object
7643  * @event: firmware event
7644  *
7645  * The mask is stored in ioc->event_masks.
7646  */
7647 static void
7648 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7649 {
7650         u32 desired_event;
7651
7652         if (event >= 128)
7653                 return;
7654
7655         desired_event = (1 << (event % 32));
7656
7657         if (event < 32)
7658                 ioc->event_masks[0] &= ~desired_event;
7659         else if (event < 64)
7660                 ioc->event_masks[1] &= ~desired_event;
7661         else if (event < 96)
7662                 ioc->event_masks[2] &= ~desired_event;
7663         else if (event < 128)
7664                 ioc->event_masks[3] &= ~desired_event;
7665 }
7666
7667 /**
7668  * _base_event_notification - send event notification
7669  * @ioc: per adapter object
7670  *
7671  * Return: 0 for success, non-zero for failure.
7672  */
7673 static int
7674 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7675 {
7676         Mpi2EventNotificationRequest_t *mpi_request;
7677         u16 smid;
7678         int r = 0;
7679         int i, issue_diag_reset = 0;
7680
7681         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7682
7683         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7684                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7685                 return -EAGAIN;
7686         }
7687
7688         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7689         if (!smid) {
7690                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7691                 return -EAGAIN;
7692         }
7693         ioc->base_cmds.status = MPT3_CMD_PENDING;
7694         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7695         ioc->base_cmds.smid = smid;
7696         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7697         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7698         mpi_request->VF_ID = 0; /* TODO */
7699         mpi_request->VP_ID = 0;
7700         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7701                 mpi_request->EventMasks[i] =
7702                     cpu_to_le32(ioc->event_masks[i]);
7703         init_completion(&ioc->base_cmds.done);
7704         ioc->put_smid_default(ioc, smid);
7705         wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7706         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7707                 ioc_err(ioc, "%s: timeout\n", __func__);
7708                 _debug_dump_mf(mpi_request,
7709                     sizeof(Mpi2EventNotificationRequest_t)/4);
7710                 if (ioc->base_cmds.status & MPT3_CMD_RESET)
7711                         r = -EFAULT;
7712                 else
7713                         issue_diag_reset = 1;
7714
7715         } else
7716                 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7717         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7718
7719         if (issue_diag_reset) {
7720                 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
7721                         return -EFAULT;
7722                 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
7723                         return -EFAULT;
7724                 r = -EAGAIN;
7725         }
7726         return r;
7727 }
7728
7729 /**
7730  * mpt3sas_base_validate_event_type - validating event types
7731  * @ioc: per adapter object
7732  * @event_type: firmware event
7733  *
7734  * This will turn on firmware event notification when application
7735  * ask for that event. We don't mask events that are already enabled.
7736  */
7737 void
7738 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7739 {
7740         int i, j;
7741         u32 event_mask, desired_event;
7742         u8 send_update_to_fw;
7743
7744         for (i = 0, send_update_to_fw = 0; i <
7745             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7746                 event_mask = ~event_type[i];
7747                 desired_event = 1;
7748                 for (j = 0; j < 32; j++) {
7749                         if (!(event_mask & desired_event) &&
7750                             (ioc->event_masks[i] & desired_event)) {
7751                                 ioc->event_masks[i] &= ~desired_event;
7752                                 send_update_to_fw = 1;
7753                         }
7754                         desired_event = (desired_event << 1);
7755                 }
7756         }
7757
7758         if (!send_update_to_fw)
7759                 return;
7760
7761         mutex_lock(&ioc->base_cmds.mutex);
7762         _base_event_notification(ioc);
7763         mutex_unlock(&ioc->base_cmds.mutex);
7764 }
7765
7766 /**
7767  * _base_diag_reset - the "big hammer" start of day reset
7768  * @ioc: per adapter object
7769  *
7770  * Return: 0 for success, non-zero for failure.
7771  */
7772 static int
7773 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
7774 {
7775         u32 host_diagnostic;
7776         u32 ioc_state;
7777         u32 count;
7778         u32 hcb_size;
7779
7780         ioc_info(ioc, "sending diag reset !!\n");
7781
7782         pci_cfg_access_lock(ioc->pdev);
7783
7784         drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
7785
7786         count = 0;
7787         do {
7788                 /* Write magic sequence to WriteSequence register
7789                  * Loop until in diagnostic mode
7790                  */
7791                 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7792                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7793                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7794                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7795                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7796                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7797                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7798                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7799
7800                 /* wait 100 msec */
7801                 msleep(100);
7802
7803                 if (count++ > 20) {
7804                         ioc_info(ioc,
7805                             "Stop writing magic sequence after 20 retries\n");
7806                         _base_dump_reg_set(ioc);
7807                         goto out;
7808                 }
7809
7810                 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7811                 drsprintk(ioc,
7812                           ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7813                                    count, host_diagnostic));
7814
7815         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7816
7817         hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
7818
7819         drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
7820         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
7821              &ioc->chip->HostDiagnostic);
7822
7823         /*This delay allows the chip PCIe hardware time to finish reset tasks*/
7824         msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
7825
7826         /* Approximately 300 second max wait */
7827         for (count = 0; count < (300000000 /
7828                 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
7829
7830                 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7831
7832                 if (host_diagnostic == 0xFFFFFFFF) {
7833                         ioc_info(ioc,
7834                             "Invalid host diagnostic register value\n");
7835                         _base_dump_reg_set(ioc);
7836                         goto out;
7837                 }
7838                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
7839                         break;
7840
7841                 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
7842         }
7843
7844         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
7845
7846                 drsprintk(ioc,
7847                           ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
7848                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
7849                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
7850                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
7851
7852                 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
7853                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
7854                     &ioc->chip->HCBSize);
7855         }
7856
7857         drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
7858         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
7859             &ioc->chip->HostDiagnostic);
7860
7861         drsprintk(ioc,
7862                   ioc_info(ioc, "disable writes to the diagnostic register\n"));
7863         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7864
7865         drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
7866         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
7867         if (ioc_state) {
7868                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7869                         __func__, ioc_state);
7870                 _base_dump_reg_set(ioc);
7871                 goto out;
7872         }
7873
7874         pci_cfg_access_unlock(ioc->pdev);
7875         ioc_info(ioc, "diag reset: SUCCESS\n");
7876         return 0;
7877
7878  out:
7879         pci_cfg_access_unlock(ioc->pdev);
7880         ioc_err(ioc, "diag reset: FAILED\n");
7881         return -EFAULT;
7882 }
7883
7884 /**
7885  * mpt3sas_base_make_ioc_ready - put controller in READY state
7886  * @ioc: per adapter object
7887  * @type: FORCE_BIG_HAMMER or SOFT_RESET
7888  *
7889  * Return: 0 for success, non-zero for failure.
7890  */
7891 int
7892 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
7893 {
7894         u32 ioc_state;
7895         int rc;
7896         int count;
7897
7898         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7899
7900         if (ioc->pci_error_recovery)
7901                 return 0;
7902
7903         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7904         dhsprintk(ioc,
7905                   ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7906                            __func__, ioc_state));
7907
7908         /* if in RESET state, it should move to READY state shortly */
7909         count = 0;
7910         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
7911                 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
7912                     MPI2_IOC_STATE_READY) {
7913                         if (count++ == 10) {
7914                                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7915                                         __func__, ioc_state);
7916                                 return -EFAULT;
7917                         }
7918                         ssleep(1);
7919                         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7920                 }
7921         }
7922
7923         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
7924                 return 0;
7925
7926         if (ioc_state & MPI2_DOORBELL_USED) {
7927                 ioc_info(ioc, "unexpected doorbell active!\n");
7928                 goto issue_diag_reset;
7929         }
7930
7931         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7932                 mpt3sas_print_fault_code(ioc, ioc_state &
7933                     MPI2_DOORBELL_DATA_MASK);
7934                 goto issue_diag_reset;
7935         }
7936
7937         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
7938                 /*
7939                  * if host reset is invoked while watch dog thread is waiting
7940                  * for IOC state to be changed to Fault state then driver has
7941                  * to wait here for CoreDump state to clear otherwise reset
7942                  * will be issued to the FW and FW move the IOC state to
7943                  * reset state without copying the FW logs to coredump region.
7944                  */
7945                 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
7946                         mpt3sas_print_coredump_info(ioc, ioc_state &
7947                             MPI2_DOORBELL_DATA_MASK);
7948                         mpt3sas_base_wait_for_coredump_completion(ioc,
7949                             __func__);
7950                 }
7951                 goto issue_diag_reset;
7952         }
7953
7954         if (type == FORCE_BIG_HAMMER)
7955                 goto issue_diag_reset;
7956
7957         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7958                 if (!(_base_send_ioc_reset(ioc,
7959                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
7960                         return 0;
7961         }
7962
7963  issue_diag_reset:
7964         rc = _base_diag_reset(ioc);
7965         return rc;
7966 }
7967
7968 /**
7969  * _base_make_ioc_operational - put controller in OPERATIONAL state
7970  * @ioc: per adapter object
7971  *
7972  * Return: 0 for success, non-zero for failure.
7973  */
7974 static int
7975 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
7976 {
7977         int r, i, index, rc;
7978         unsigned long   flags;
7979         u32 reply_address;
7980         u16 smid;
7981         struct _tr_list *delayed_tr, *delayed_tr_next;
7982         struct _sc_list *delayed_sc, *delayed_sc_next;
7983         struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
7984         u8 hide_flag;
7985         struct adapter_reply_queue *reply_q;
7986         Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
7987
7988         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7989
7990         /* clean the delayed target reset list */
7991         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7992             &ioc->delayed_tr_list, list) {
7993                 list_del(&delayed_tr->list);
7994                 kfree(delayed_tr);
7995         }
7996
7997
7998         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7999             &ioc->delayed_tr_volume_list, list) {
8000                 list_del(&delayed_tr->list);
8001                 kfree(delayed_tr);
8002         }
8003
8004         list_for_each_entry_safe(delayed_sc, delayed_sc_next,
8005             &ioc->delayed_sc_list, list) {
8006                 list_del(&delayed_sc->list);
8007                 kfree(delayed_sc);
8008         }
8009
8010         list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
8011             &ioc->delayed_event_ack_list, list) {
8012                 list_del(&delayed_event_ack->list);
8013                 kfree(delayed_event_ack);
8014         }
8015
8016         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
8017
8018         /* hi-priority queue */
8019         INIT_LIST_HEAD(&ioc->hpr_free_list);
8020         smid = ioc->hi_priority_smid;
8021         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
8022                 ioc->hpr_lookup[i].cb_idx = 0xFF;
8023                 ioc->hpr_lookup[i].smid = smid;
8024                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
8025                     &ioc->hpr_free_list);
8026         }
8027
8028         /* internal queue */
8029         INIT_LIST_HEAD(&ioc->internal_free_list);
8030         smid = ioc->internal_smid;
8031         for (i = 0; i < ioc->internal_depth; i++, smid++) {
8032                 ioc->internal_lookup[i].cb_idx = 0xFF;
8033                 ioc->internal_lookup[i].smid = smid;
8034                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
8035                     &ioc->internal_free_list);
8036         }
8037
8038         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
8039
8040         /* initialize Reply Free Queue */
8041         for (i = 0, reply_address = (u32)ioc->reply_dma ;
8042             i < ioc->reply_free_queue_depth ; i++, reply_address +=
8043             ioc->reply_sz) {
8044                 ioc->reply_free[i] = cpu_to_le32(reply_address);
8045                 if (ioc->is_mcpu_endpoint)
8046                         _base_clone_reply_to_sys_mem(ioc,
8047                                         reply_address, i);
8048         }
8049
8050         /* initialize reply queues */
8051         if (ioc->is_driver_loading)
8052                 _base_assign_reply_queues(ioc);
8053
8054         /* initialize Reply Post Free Queue */
8055         index = 0;
8056         reply_post_free_contig = ioc->reply_post[0].reply_post_free;
8057         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8058                 /*
8059                  * If RDPQ is enabled, switch to the next allocation.
8060                  * Otherwise advance within the contiguous region.
8061                  */
8062                 if (ioc->rdpq_array_enable) {
8063                         reply_q->reply_post_free =
8064                                 ioc->reply_post[index++].reply_post_free;
8065                 } else {
8066                         reply_q->reply_post_free = reply_post_free_contig;
8067                         reply_post_free_contig += ioc->reply_post_queue_depth;
8068                 }
8069
8070                 reply_q->reply_post_host_index = 0;
8071                 for (i = 0; i < ioc->reply_post_queue_depth; i++)
8072                         reply_q->reply_post_free[i].Words =
8073                             cpu_to_le64(ULLONG_MAX);
8074                 if (!_base_is_controller_msix_enabled(ioc))
8075                         goto skip_init_reply_post_free_queue;
8076         }
8077  skip_init_reply_post_free_queue:
8078
8079         r = _base_send_ioc_init(ioc);
8080         if (r) {
8081                 /*
8082                  * No need to check IOC state for fault state & issue
8083                  * diag reset during host reset. This check is need
8084                  * only during driver load time.
8085                  */
8086                 if (!ioc->is_driver_loading)
8087                         return r;
8088
8089                 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8090                 if (rc || (_base_send_ioc_init(ioc)))
8091                         return r;
8092         }
8093
8094         /* initialize reply free host index */
8095         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
8096         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
8097
8098         /* initialize reply post host index */
8099         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8100                 if (ioc->combined_reply_queue)
8101                         writel((reply_q->msix_index & 7)<<
8102                            MPI2_RPHI_MSIX_INDEX_SHIFT,
8103                            ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
8104                 else
8105                         writel(reply_q->msix_index <<
8106                                 MPI2_RPHI_MSIX_INDEX_SHIFT,
8107                                 &ioc->chip->ReplyPostHostIndex);
8108
8109                 if (!_base_is_controller_msix_enabled(ioc))
8110                         goto skip_init_reply_post_host_index;
8111         }
8112
8113  skip_init_reply_post_host_index:
8114
8115         mpt3sas_base_unmask_interrupts(ioc);
8116
8117         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
8118                 r = _base_display_fwpkg_version(ioc);
8119                 if (r)
8120                         return r;
8121         }
8122
8123         r = _base_static_config_pages(ioc);
8124         if (r)
8125                 return r;
8126
8127         r = _base_event_notification(ioc);
8128         if (r)
8129                 return r;
8130
8131         if (!ioc->shost_recovery) {
8132
8133                 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
8134                     == 0x80) {
8135                         hide_flag = (u8) (
8136                             le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
8137                             MFG_PAGE10_HIDE_SSDS_MASK);
8138                         if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
8139                                 ioc->mfg_pg10_hide_flag = hide_flag;
8140                 }
8141
8142                 ioc->wait_for_discovery_to_complete =
8143                     _base_determine_wait_on_discovery(ioc);
8144
8145                 return r; /* scan_start and scan_finished support */
8146         }
8147
8148         r = _base_send_port_enable(ioc);
8149         if (r)
8150                 return r;
8151
8152         return r;
8153 }
8154
8155 /**
8156  * mpt3sas_base_free_resources - free resources controller resources
8157  * @ioc: per adapter object
8158  */
8159 void
8160 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
8161 {
8162         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8163
8164         /* synchronizing freeing resource with pci_access_mutex lock */
8165         mutex_lock(&ioc->pci_access_mutex);
8166         if (ioc->chip_phys && ioc->chip) {
8167                 mpt3sas_base_mask_interrupts(ioc);
8168                 ioc->shost_recovery = 1;
8169                 mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8170                 ioc->shost_recovery = 0;
8171         }
8172
8173         mpt3sas_base_unmap_resources(ioc);
8174         mutex_unlock(&ioc->pci_access_mutex);
8175         return;
8176 }
8177
8178 /**
8179  * mpt3sas_base_attach - attach controller instance
8180  * @ioc: per adapter object
8181  *
8182  * Return: 0 for success, non-zero for failure.
8183  */
8184 int
8185 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
8186 {
8187         int r, i, rc;
8188         int cpu_id, last_cpu_id = 0;
8189
8190         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8191
8192         /* setup cpu_msix_table */
8193         ioc->cpu_count = num_online_cpus();
8194         for_each_online_cpu(cpu_id)
8195                 last_cpu_id = cpu_id;
8196         ioc->cpu_msix_table_sz = last_cpu_id + 1;
8197         ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
8198         ioc->reply_queue_count = 1;
8199         if (!ioc->cpu_msix_table) {
8200                 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
8201                 r = -ENOMEM;
8202                 goto out_free_resources;
8203         }
8204
8205         if (ioc->is_warpdrive) {
8206                 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
8207                     sizeof(resource_size_t *), GFP_KERNEL);
8208                 if (!ioc->reply_post_host_index) {
8209                         ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
8210                         r = -ENOMEM;
8211                         goto out_free_resources;
8212                 }
8213         }
8214
8215         ioc->smp_affinity_enable = smp_affinity_enable;
8216
8217         ioc->rdpq_array_enable_assigned = 0;
8218         ioc->use_32bit_dma = false;
8219         ioc->dma_mask = 64;
8220         if (ioc->is_aero_ioc)
8221                 ioc->base_readl = &_base_readl_aero;
8222         else
8223                 ioc->base_readl = &_base_readl;
8224         r = mpt3sas_base_map_resources(ioc);
8225         if (r)
8226                 goto out_free_resources;
8227
8228         pci_set_drvdata(ioc->pdev, ioc->shost);
8229         r = _base_get_ioc_facts(ioc);
8230         if (r) {
8231                 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8232                 if (rc || (_base_get_ioc_facts(ioc)))
8233                         goto out_free_resources;
8234         }
8235
8236         switch (ioc->hba_mpi_version_belonged) {
8237         case MPI2_VERSION:
8238                 ioc->build_sg_scmd = &_base_build_sg_scmd;
8239                 ioc->build_sg = &_base_build_sg;
8240                 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
8241                 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8242                 break;
8243         case MPI25_VERSION:
8244         case MPI26_VERSION:
8245                 /*
8246                  * In SAS3.0,
8247                  * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
8248                  * Target Status - all require the IEEE formatted scatter gather
8249                  * elements.
8250                  */
8251                 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
8252                 ioc->build_sg = &_base_build_sg_ieee;
8253                 ioc->build_nvme_prp = &_base_build_nvme_prp;
8254                 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
8255                 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
8256                 if (ioc->high_iops_queues)
8257                         ioc->get_msix_index_for_smlio =
8258                                         &_base_get_high_iops_msix_index;
8259                 else
8260                         ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8261                 break;
8262         }
8263         if (ioc->atomic_desc_capable) {
8264                 ioc->put_smid_default = &_base_put_smid_default_atomic;
8265                 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
8266                 ioc->put_smid_fast_path =
8267                                 &_base_put_smid_fast_path_atomic;
8268                 ioc->put_smid_hi_priority =
8269                                 &_base_put_smid_hi_priority_atomic;
8270         } else {
8271                 ioc->put_smid_default = &_base_put_smid_default;
8272                 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
8273                 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
8274                 if (ioc->is_mcpu_endpoint)
8275                         ioc->put_smid_scsi_io =
8276                                 &_base_put_smid_mpi_ep_scsi_io;
8277                 else
8278                         ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
8279         }
8280         /*
8281          * These function pointers for other requests that don't
8282          * the require IEEE scatter gather elements.
8283          *
8284          * For example Configuration Pages and SAS IOUNIT Control don't.
8285          */
8286         ioc->build_sg_mpi = &_base_build_sg;
8287         ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
8288
8289         r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8290         if (r)
8291                 goto out_free_resources;
8292
8293         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
8294             sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
8295         if (!ioc->pfacts) {
8296                 r = -ENOMEM;
8297                 goto out_free_resources;
8298         }
8299
8300         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
8301                 r = _base_get_port_facts(ioc, i);
8302                 if (r) {
8303                         rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8304                         if (rc || (_base_get_port_facts(ioc, i)))
8305                                 goto out_free_resources;
8306                 }
8307         }
8308
8309         r = _base_allocate_memory_pools(ioc);
8310         if (r)
8311                 goto out_free_resources;
8312
8313         if (irqpoll_weight > 0)
8314                 ioc->thresh_hold = irqpoll_weight;
8315         else
8316                 ioc->thresh_hold = ioc->hba_queue_depth/4;
8317
8318         _base_init_irqpolls(ioc);
8319         init_waitqueue_head(&ioc->reset_wq);
8320
8321         /* allocate memory pd handle bitmask list */
8322         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8323         if (ioc->facts.MaxDevHandle % 8)
8324                 ioc->pd_handles_sz++;
8325         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
8326             GFP_KERNEL);
8327         if (!ioc->pd_handles) {
8328                 r = -ENOMEM;
8329                 goto out_free_resources;
8330         }
8331         ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
8332             GFP_KERNEL);
8333         if (!ioc->blocking_handles) {
8334                 r = -ENOMEM;
8335                 goto out_free_resources;
8336         }
8337
8338         /* allocate memory for pending OS device add list */
8339         ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
8340         if (ioc->facts.MaxDevHandle % 8)
8341                 ioc->pend_os_device_add_sz++;
8342         ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
8343             GFP_KERNEL);
8344         if (!ioc->pend_os_device_add) {
8345                 r = -ENOMEM;
8346                 goto out_free_resources;
8347         }
8348
8349         ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
8350         ioc->device_remove_in_progress =
8351                 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
8352         if (!ioc->device_remove_in_progress) {
8353                 r = -ENOMEM;
8354                 goto out_free_resources;
8355         }
8356
8357         ioc->fwfault_debug = mpt3sas_fwfault_debug;
8358
8359         /* base internal command bits */
8360         mutex_init(&ioc->base_cmds.mutex);
8361         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8362         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
8363
8364         /* port_enable command bits */
8365         ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8366         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
8367
8368         /* transport internal command bits */
8369         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8370         ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
8371         mutex_init(&ioc->transport_cmds.mutex);
8372
8373         /* scsih internal command bits */
8374         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8375         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
8376         mutex_init(&ioc->scsih_cmds.mutex);
8377
8378         /* task management internal command bits */
8379         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8380         ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
8381         mutex_init(&ioc->tm_cmds.mutex);
8382
8383         /* config page internal command bits */
8384         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8385         ioc->config_cmds.status = MPT3_CMD_NOT_USED;
8386         mutex_init(&ioc->config_cmds.mutex);
8387
8388         /* ctl module internal command bits */
8389         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8390         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
8391         ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
8392         mutex_init(&ioc->ctl_cmds.mutex);
8393
8394         if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
8395             !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
8396             !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
8397             !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
8398                 r = -ENOMEM;
8399                 goto out_free_resources;
8400         }
8401
8402         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
8403                 ioc->event_masks[i] = -1;
8404
8405         /* here we enable the events we care about */
8406         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
8407         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
8408         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
8409         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
8410         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
8411         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
8412         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
8413         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
8414         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
8415         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
8416         _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
8417         _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
8418         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
8419         if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
8420                 if (ioc->is_gen35_ioc) {
8421                         _base_unmask_events(ioc,
8422                                 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
8423                         _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
8424                         _base_unmask_events(ioc,
8425                                 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
8426                 }
8427         }
8428         r = _base_make_ioc_operational(ioc);
8429         if (r == -EAGAIN) {
8430                 r = _base_make_ioc_operational(ioc);
8431                 if (r)
8432                         goto out_free_resources;
8433         }
8434
8435         /*
8436          * Copy current copy of IOCFacts in prev_fw_facts
8437          * and it will be used during online firmware upgrade.
8438          */
8439         memcpy(&ioc->prev_fw_facts, &ioc->facts,
8440             sizeof(struct mpt3sas_facts));
8441
8442         ioc->non_operational_loop = 0;
8443         ioc->ioc_coredump_loop = 0;
8444         ioc->got_task_abort_from_ioctl = 0;
8445         return 0;
8446
8447  out_free_resources:
8448
8449         ioc->remove_host = 1;
8450
8451         mpt3sas_base_free_resources(ioc);
8452         _base_release_memory_pools(ioc);
8453         pci_set_drvdata(ioc->pdev, NULL);
8454         kfree(ioc->cpu_msix_table);
8455         if (ioc->is_warpdrive)
8456                 kfree(ioc->reply_post_host_index);
8457         kfree(ioc->pd_handles);
8458         kfree(ioc->blocking_handles);
8459         kfree(ioc->device_remove_in_progress);
8460         kfree(ioc->pend_os_device_add);
8461         kfree(ioc->tm_cmds.reply);
8462         kfree(ioc->transport_cmds.reply);
8463         kfree(ioc->scsih_cmds.reply);
8464         kfree(ioc->config_cmds.reply);
8465         kfree(ioc->base_cmds.reply);
8466         kfree(ioc->port_enable_cmds.reply);
8467         kfree(ioc->ctl_cmds.reply);
8468         kfree(ioc->ctl_cmds.sense);
8469         kfree(ioc->pfacts);
8470         ioc->ctl_cmds.reply = NULL;
8471         ioc->base_cmds.reply = NULL;
8472         ioc->tm_cmds.reply = NULL;
8473         ioc->scsih_cmds.reply = NULL;
8474         ioc->transport_cmds.reply = NULL;
8475         ioc->config_cmds.reply = NULL;
8476         ioc->pfacts = NULL;
8477         return r;
8478 }
8479
8480
8481 /**
8482  * mpt3sas_base_detach - remove controller instance
8483  * @ioc: per adapter object
8484  */
8485 void
8486 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
8487 {
8488         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8489
8490         mpt3sas_base_stop_watchdog(ioc);
8491         mpt3sas_base_free_resources(ioc);
8492         _base_release_memory_pools(ioc);
8493         mpt3sas_free_enclosure_list(ioc);
8494         pci_set_drvdata(ioc->pdev, NULL);
8495         kfree(ioc->cpu_msix_table);
8496         if (ioc->is_warpdrive)
8497                 kfree(ioc->reply_post_host_index);
8498         kfree(ioc->pd_handles);
8499         kfree(ioc->blocking_handles);
8500         kfree(ioc->device_remove_in_progress);
8501         kfree(ioc->pend_os_device_add);
8502         kfree(ioc->pfacts);
8503         kfree(ioc->ctl_cmds.reply);
8504         kfree(ioc->ctl_cmds.sense);
8505         kfree(ioc->base_cmds.reply);
8506         kfree(ioc->port_enable_cmds.reply);
8507         kfree(ioc->tm_cmds.reply);
8508         kfree(ioc->transport_cmds.reply);
8509         kfree(ioc->scsih_cmds.reply);
8510         kfree(ioc->config_cmds.reply);
8511 }
8512
8513 /**
8514  * _base_pre_reset_handler - pre reset handler
8515  * @ioc: per adapter object
8516  */
8517 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
8518 {
8519         mpt3sas_scsih_pre_reset_handler(ioc);
8520         mpt3sas_ctl_pre_reset_handler(ioc);
8521         dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
8522 }
8523
8524 /**
8525  * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
8526  * @ioc: per adapter object
8527  */
8528 static void
8529 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
8530 {
8531         dtmprintk(ioc,
8532             ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
8533         if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
8534                 ioc->transport_cmds.status |= MPT3_CMD_RESET;
8535                 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
8536                 complete(&ioc->transport_cmds.done);
8537         }
8538         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
8539                 ioc->base_cmds.status |= MPT3_CMD_RESET;
8540                 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
8541                 complete(&ioc->base_cmds.done);
8542         }
8543         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
8544                 ioc->port_enable_failed = 1;
8545                 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
8546                 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
8547                 if (ioc->is_driver_loading) {
8548                         ioc->start_scan_failed =
8549                                 MPI2_IOCSTATUS_INTERNAL_ERROR;
8550                         ioc->start_scan = 0;
8551                 } else {
8552                         complete(&ioc->port_enable_cmds.done);
8553                 }
8554         }
8555         if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
8556                 ioc->config_cmds.status |= MPT3_CMD_RESET;
8557                 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8558                 ioc->config_cmds.smid = USHRT_MAX;
8559                 complete(&ioc->config_cmds.done);
8560         }
8561 }
8562
8563 /**
8564  * _base_clear_outstanding_commands - clear all outstanding commands
8565  * @ioc: per adapter object
8566  */
8567 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8568 {
8569         mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8570         mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8571         _base_clear_outstanding_mpt_commands(ioc);
8572 }
8573
8574 /**
8575  * _base_reset_done_handler - reset done handler
8576  * @ioc: per adapter object
8577  */
8578 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8579 {
8580         mpt3sas_scsih_reset_done_handler(ioc);
8581         mpt3sas_ctl_reset_done_handler(ioc);
8582         dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8583 }
8584
8585 /**
8586  * mpt3sas_wait_for_commands_to_complete - reset controller
8587  * @ioc: Pointer to MPT_ADAPTER structure
8588  *
8589  * This function is waiting 10s for all pending commands to complete
8590  * prior to putting controller in reset.
8591  */
8592 void
8593 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8594 {
8595         u32 ioc_state;
8596
8597         ioc->pending_io_count = 0;
8598
8599         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8600         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8601                 return;
8602
8603         /* pending command count */
8604         ioc->pending_io_count = scsi_host_busy(ioc->shost);
8605
8606         if (!ioc->pending_io_count)
8607                 return;
8608
8609         /* wait for pending commands to complete */
8610         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8611 }
8612
8613 /**
8614  * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8615  *     attributes during online firmware upgrade and update the corresponding
8616  *     IOC variables accordingly.
8617  *
8618  * @ioc: Pointer to MPT_ADAPTER structure
8619  */
8620 static int
8621 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8622 {
8623         u16 pd_handles_sz;
8624         void *pd_handles = NULL, *blocking_handles = NULL;
8625         void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8626         struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8627
8628         if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8629                 pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8630                 if (ioc->facts.MaxDevHandle % 8)
8631                         pd_handles_sz++;
8632
8633                 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8634                     GFP_KERNEL);
8635                 if (!pd_handles) {
8636                         ioc_info(ioc,
8637                             "Unable to allocate the memory for pd_handles of sz: %d\n",
8638                             pd_handles_sz);
8639                         return -ENOMEM;
8640                 }
8641                 memset(pd_handles + ioc->pd_handles_sz, 0,
8642                     (pd_handles_sz - ioc->pd_handles_sz));
8643                 ioc->pd_handles = pd_handles;
8644
8645                 blocking_handles = krealloc(ioc->blocking_handles,
8646                     pd_handles_sz, GFP_KERNEL);
8647                 if (!blocking_handles) {
8648                         ioc_info(ioc,
8649                             "Unable to allocate the memory for "
8650                             "blocking_handles of sz: %d\n",
8651                             pd_handles_sz);
8652                         return -ENOMEM;
8653                 }
8654                 memset(blocking_handles + ioc->pd_handles_sz, 0,
8655                     (pd_handles_sz - ioc->pd_handles_sz));
8656                 ioc->blocking_handles = blocking_handles;
8657                 ioc->pd_handles_sz = pd_handles_sz;
8658
8659                 pend_os_device_add = krealloc(ioc->pend_os_device_add,
8660                     pd_handles_sz, GFP_KERNEL);
8661                 if (!pend_os_device_add) {
8662                         ioc_info(ioc,
8663                             "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8664                             pd_handles_sz);
8665                         return -ENOMEM;
8666                 }
8667                 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8668                     (pd_handles_sz - ioc->pend_os_device_add_sz));
8669                 ioc->pend_os_device_add = pend_os_device_add;
8670                 ioc->pend_os_device_add_sz = pd_handles_sz;
8671
8672                 device_remove_in_progress = krealloc(
8673                     ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8674                 if (!device_remove_in_progress) {
8675                         ioc_info(ioc,
8676                             "Unable to allocate the memory for "
8677                             "device_remove_in_progress of sz: %d\n "
8678                             , pd_handles_sz);
8679                         return -ENOMEM;
8680                 }
8681                 memset(device_remove_in_progress +
8682                     ioc->device_remove_in_progress_sz, 0,
8683                     (pd_handles_sz - ioc->device_remove_in_progress_sz));
8684                 ioc->device_remove_in_progress = device_remove_in_progress;
8685                 ioc->device_remove_in_progress_sz = pd_handles_sz;
8686         }
8687
8688         memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8689         return 0;
8690 }
8691
8692 /**
8693  * mpt3sas_base_hard_reset_handler - reset controller
8694  * @ioc: Pointer to MPT_ADAPTER structure
8695  * @type: FORCE_BIG_HAMMER or SOFT_RESET
8696  *
8697  * Return: 0 for success, non-zero for failure.
8698  */
8699 int
8700 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8701         enum reset_type type)
8702 {
8703         int r;
8704         unsigned long flags;
8705         u32 ioc_state;
8706         u8 is_fault = 0, is_trigger = 0;
8707
8708         dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8709
8710         if (ioc->pci_error_recovery) {
8711                 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8712                 r = 0;
8713                 goto out_unlocked;
8714         }
8715
8716         if (mpt3sas_fwfault_debug)
8717                 mpt3sas_halt_firmware(ioc);
8718
8719         /* wait for an active reset in progress to complete */
8720         mutex_lock(&ioc->reset_in_progress_mutex);
8721
8722         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8723         ioc->shost_recovery = 1;
8724         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8725
8726         if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8727             MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8728             (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8729             MPT3_DIAG_BUFFER_IS_RELEASED))) {
8730                 is_trigger = 1;
8731                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8732                 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8733                     (ioc_state & MPI2_IOC_STATE_MASK) ==
8734                     MPI2_IOC_STATE_COREDUMP) {
8735                         is_fault = 1;
8736                         ioc->htb_rel.trigger_info_dwords[1] =
8737                             (ioc_state & MPI2_DOORBELL_DATA_MASK);
8738                 }
8739         }
8740         _base_pre_reset_handler(ioc);
8741         mpt3sas_wait_for_commands_to_complete(ioc);
8742         mpt3sas_base_mask_interrupts(ioc);
8743         mpt3sas_base_pause_mq_polling(ioc);
8744         r = mpt3sas_base_make_ioc_ready(ioc, type);
8745         if (r)
8746                 goto out;
8747         _base_clear_outstanding_commands(ioc);
8748
8749         /* If this hard reset is called while port enable is active, then
8750          * there is no reason to call make_ioc_operational
8751          */
8752         if (ioc->is_driver_loading && ioc->port_enable_failed) {
8753                 ioc->remove_host = 1;
8754                 r = -EFAULT;
8755                 goto out;
8756         }
8757         r = _base_get_ioc_facts(ioc);
8758         if (r)
8759                 goto out;
8760
8761         r = _base_check_ioc_facts_changes(ioc);
8762         if (r) {
8763                 ioc_info(ioc,
8764                     "Some of the parameters got changed in this new firmware"
8765                     " image and it requires system reboot\n");
8766                 goto out;
8767         }
8768         if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8769                 panic("%s: Issue occurred with flashing controller firmware."
8770                       "Please reboot the system and ensure that the correct"
8771                       " firmware version is running\n", ioc->name);
8772
8773         r = _base_make_ioc_operational(ioc);
8774         if (!r)
8775                 _base_reset_done_handler(ioc);
8776
8777  out:
8778         ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
8779
8780         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8781         ioc->shost_recovery = 0;
8782         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8783         ioc->ioc_reset_count++;
8784         mutex_unlock(&ioc->reset_in_progress_mutex);
8785         mpt3sas_base_resume_mq_polling(ioc);
8786
8787  out_unlocked:
8788         if ((r == 0) && is_trigger) {
8789                 if (is_fault)
8790                         mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
8791                 else
8792                         mpt3sas_trigger_master(ioc,
8793                             MASTER_TRIGGER_ADAPTER_RESET);
8794         }
8795         dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
8796         return r;
8797 }