Input: vmmouse - disable vmmouse before entering suspend mode
[platform/kernel/linux-starfive.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 #include <linux/aer.h>
64
65
66 #include "mpt3sas_base.h"
67
68 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
69
70
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72
73  /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH     30000
75 #define MAX_CHAIN_DEPTH         100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95         " max msix vectors");
96
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100         "irq poll weight (default= one fourth of HBA queue depth)");
101
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104         " enable detection of firmware fault and halt firmware - (default=0)");
105
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109         "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110         "0 - balanced: high iops mode is enabled &\n\t\t"
111         "interrupt coalescing is enabled only on high iops queues,\n\t\t"
112         "1 - iops: high iops mode is disabled &\n\t\t"
113         "interrupt coalescing is enabled on all queues,\n\t\t"
114         "2 - latency: high iops mode is disabled &\n\t\t"
115         "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116         "\t\tdefault - default perf_mode is 'balanced'"
117         );
118
119 static int poll_queues;
120 module_param(poll_queues, int, 0444);
121 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t"
122         "This parameter is effective only if host_tagset_enable=1. &\n\t\t"
123         "when poll_queues are enabled then &\n\t\t"
124         "perf_mode is set to latency mode. &\n\t\t"
125         );
126
127 enum mpt3sas_perf_mode {
128         MPT_PERF_MODE_DEFAULT   = -1,
129         MPT_PERF_MODE_BALANCED  = 0,
130         MPT_PERF_MODE_IOPS      = 1,
131         MPT_PERF_MODE_LATENCY   = 2,
132 };
133
134 static int
135 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
136                 u32 ioc_state, int timeout);
137 static int
138 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
139 static void
140 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
141
142 /**
143  * mpt3sas_base_check_cmd_timeout - Function
144  *              to check timeout and command termination due
145  *              to Host reset.
146  *
147  * @ioc:        per adapter object.
148  * @status:     Status of issued command.
149  * @mpi_request:mf request pointer.
150  * @sz:         size of buffer.
151  *
152  * Return: 1/0 Reset to be done or Not
153  */
154 u8
155 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
156                 u8 status, void *mpi_request, int sz)
157 {
158         u8 issue_reset = 0;
159
160         if (!(status & MPT3_CMD_RESET))
161                 issue_reset = 1;
162
163         ioc_err(ioc, "Command %s\n",
164                 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
165         _debug_dump_mf(mpi_request, sz);
166
167         return issue_reset;
168 }
169
170 /**
171  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
172  * @val: ?
173  * @kp: ?
174  *
175  * Return: ?
176  */
177 static int
178 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
179 {
180         int ret = param_set_int(val, kp);
181         struct MPT3SAS_ADAPTER *ioc;
182
183         if (ret)
184                 return ret;
185
186         /* global ioc spinlock to protect controller list on list operations */
187         pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
188         spin_lock(&gioc_lock);
189         list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
190                 ioc->fwfault_debug = mpt3sas_fwfault_debug;
191         spin_unlock(&gioc_lock);
192         return 0;
193 }
194 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
195         param_get_int, &mpt3sas_fwfault_debug, 0644);
196
197 /**
198  * _base_readl_aero - retry readl for max three times.
199  * @addr: MPT Fusion system interface register address
200  *
201  * Retry the readl() for max three times if it gets zero value
202  * while reading the system interface register.
203  */
204 static inline u32
205 _base_readl_aero(const volatile void __iomem *addr)
206 {
207         u32 i = 0, ret_val;
208
209         do {
210                 ret_val = readl(addr);
211                 i++;
212         } while (ret_val == 0 && i < 3);
213
214         return ret_val;
215 }
216
217 static inline u32
218 _base_readl(const volatile void __iomem *addr)
219 {
220         return readl(addr);
221 }
222
223 /**
224  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
225  *                                in BAR0 space.
226  *
227  * @ioc: per adapter object
228  * @reply: reply message frame(lower 32bit addr)
229  * @index: System request message index.
230  */
231 static void
232 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
233                 u32 index)
234 {
235         /*
236          * 256 is offset within sys register.
237          * 256 offset MPI frame starts. Max MPI frame supported is 32.
238          * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
239          */
240         u16 cmd_credit = ioc->facts.RequestCredit + 1;
241         void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
242                         MPI_FRAME_START_OFFSET +
243                         (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
244
245         writel(reply, reply_free_iomem);
246 }
247
248 /**
249  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
250  *                              to system/BAR0 region.
251  *
252  * @dst_iomem: Pointer to the destination location in BAR0 space.
253  * @src: Pointer to the Source data.
254  * @size: Size of data to be copied.
255  */
256 static void
257 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
258 {
259         int i;
260         u32 *src_virt_mem = (u32 *)src;
261
262         for (i = 0; i < size/4; i++)
263                 writel((u32)src_virt_mem[i],
264                                 (void __iomem *)dst_iomem + (i * 4));
265 }
266
267 /**
268  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
269  *
270  * @dst_iomem: Pointer to the destination location in BAR0 space.
271  * @src: Pointer to the Source data.
272  * @size: Size of data to be copied.
273  */
274 static void
275 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
276 {
277         int i;
278         u32 *src_virt_mem = (u32 *)(src);
279
280         for (i = 0; i < size/4; i++)
281                 writel((u32)src_virt_mem[i],
282                         (void __iomem *)dst_iomem + (i * 4));
283 }
284
285 /**
286  * _base_get_chain - Calculates and Returns virtual chain address
287  *                       for the provided smid in BAR0 space.
288  *
289  * @ioc: per adapter object
290  * @smid: system request message index
291  * @sge_chain_count: Scatter gather chain count.
292  *
293  * Return: the chain address.
294  */
295 static inline void __iomem*
296 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
297                 u8 sge_chain_count)
298 {
299         void __iomem *base_chain, *chain_virt;
300         u16 cmd_credit = ioc->facts.RequestCredit + 1;
301
302         base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
303                 (cmd_credit * ioc->request_sz) +
304                 REPLY_FREE_POOL_SIZE;
305         chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
306                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
307         return chain_virt;
308 }
309
310 /**
311  * _base_get_chain_phys - Calculates and Returns physical address
312  *                      in BAR0 for scatter gather chains, for
313  *                      the provided smid.
314  *
315  * @ioc: per adapter object
316  * @smid: system request message index
317  * @sge_chain_count: Scatter gather chain count.
318  *
319  * Return: Physical chain address.
320  */
321 static inline phys_addr_t
322 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
323                 u8 sge_chain_count)
324 {
325         phys_addr_t base_chain_phys, chain_phys;
326         u16 cmd_credit = ioc->facts.RequestCredit + 1;
327
328         base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
329                 (cmd_credit * ioc->request_sz) +
330                 REPLY_FREE_POOL_SIZE;
331         chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
332                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
333         return chain_phys;
334 }
335
336 /**
337  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
338  *                      buffer address for the provided smid.
339  *                      (Each smid can have 64K starts from 17024)
340  *
341  * @ioc: per adapter object
342  * @smid: system request message index
343  *
344  * Return: Pointer to buffer location in BAR0.
345  */
346
347 static void __iomem *
348 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
349 {
350         u16 cmd_credit = ioc->facts.RequestCredit + 1;
351         // Added extra 1 to reach end of chain.
352         void __iomem *chain_end = _base_get_chain(ioc,
353                         cmd_credit + 1,
354                         ioc->facts.MaxChainDepth);
355         return chain_end + (smid * 64 * 1024);
356 }
357
358 /**
359  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
360  *              Host buffer Physical address for the provided smid.
361  *              (Each smid can have 64K starts from 17024)
362  *
363  * @ioc: per adapter object
364  * @smid: system request message index
365  *
366  * Return: Pointer to buffer location in BAR0.
367  */
368 static phys_addr_t
369 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
370 {
371         u16 cmd_credit = ioc->facts.RequestCredit + 1;
372         phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
373                         cmd_credit + 1,
374                         ioc->facts.MaxChainDepth);
375         return chain_end_phys + (smid * 64 * 1024);
376 }
377
378 /**
379  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
380  *                      lookup list and Provides chain_buffer
381  *                      address for the matching dma address.
382  *                      (Each smid can have 64K starts from 17024)
383  *
384  * @ioc: per adapter object
385  * @chain_buffer_dma: Chain buffer dma address.
386  *
387  * Return: Pointer to chain buffer. Or Null on Failure.
388  */
389 static void *
390 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
391                 dma_addr_t chain_buffer_dma)
392 {
393         u16 index, j;
394         struct chain_tracker *ct;
395
396         for (index = 0; index < ioc->scsiio_depth; index++) {
397                 for (j = 0; j < ioc->chains_needed_per_io; j++) {
398                         ct = &ioc->chain_lookup[index].chains_per_smid[j];
399                         if (ct && ct->chain_buffer_dma == chain_buffer_dma)
400                                 return ct->chain_buffer;
401                 }
402         }
403         ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
404         return NULL;
405 }
406
407 /**
408  * _clone_sg_entries -  MPI EP's scsiio and config requests
409  *                      are handled here. Base function for
410  *                      double buffering, before submitting
411  *                      the requests.
412  *
413  * @ioc: per adapter object.
414  * @mpi_request: mf request pointer.
415  * @smid: system request message index.
416  */
417 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
418                 void *mpi_request, u16 smid)
419 {
420         Mpi2SGESimple32_t *sgel, *sgel_next;
421         u32  sgl_flags, sge_chain_count = 0;
422         bool is_write = false;
423         u16 i = 0;
424         void __iomem *buffer_iomem;
425         phys_addr_t buffer_iomem_phys;
426         void __iomem *buff_ptr;
427         phys_addr_t buff_ptr_phys;
428         void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
429         void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
430         phys_addr_t dst_addr_phys;
431         MPI2RequestHeader_t *request_hdr;
432         struct scsi_cmnd *scmd;
433         struct scatterlist *sg_scmd = NULL;
434         int is_scsiio_req = 0;
435
436         request_hdr = (MPI2RequestHeader_t *) mpi_request;
437
438         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
439                 Mpi25SCSIIORequest_t *scsiio_request =
440                         (Mpi25SCSIIORequest_t *)mpi_request;
441                 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
442                 is_scsiio_req = 1;
443         } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
444                 Mpi2ConfigRequest_t  *config_req =
445                         (Mpi2ConfigRequest_t *)mpi_request;
446                 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
447         } else
448                 return;
449
450         /* From smid we can get scsi_cmd, once we have sg_scmd,
451          * we just need to get sg_virt and sg_next to get virtual
452          * address associated with sgel->Address.
453          */
454
455         if (is_scsiio_req) {
456                 /* Get scsi_cmd using smid */
457                 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
458                 if (scmd == NULL) {
459                         ioc_err(ioc, "scmd is NULL\n");
460                         return;
461                 }
462
463                 /* Get sg_scmd from scmd provided */
464                 sg_scmd = scsi_sglist(scmd);
465         }
466
467         /*
468          * 0 - 255      System register
469          * 256 - 4352   MPI Frame. (This is based on maxCredit 32)
470          * 4352 - 4864  Reply_free pool (512 byte is reserved
471          *              considering maxCredit 32. Reply need extra
472          *              room, for mCPU case kept four times of
473          *              maxCredit).
474          * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
475          *              128 byte size = 12288)
476          * 17152 - x    Host buffer mapped with smid.
477          *              (Each smid can have 64K Max IO.)
478          * BAR0+Last 1K MSIX Addr and Data
479          * Total size in use 2113664 bytes of 4MB BAR0
480          */
481
482         buffer_iomem = _base_get_buffer_bar0(ioc, smid);
483         buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
484
485         buff_ptr = buffer_iomem;
486         buff_ptr_phys = buffer_iomem_phys;
487         WARN_ON(buff_ptr_phys > U32_MAX);
488
489         if (le32_to_cpu(sgel->FlagsLength) &
490                         (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
491                 is_write = true;
492
493         for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
494
495                 sgl_flags =
496                     (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
497
498                 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
499                 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
500                         /*
501                          * Helper function which on passing
502                          * chain_buffer_dma returns chain_buffer. Get
503                          * the virtual address for sgel->Address
504                          */
505                         sgel_next =
506                                 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
507                                                 le32_to_cpu(sgel->Address));
508                         if (sgel_next == NULL)
509                                 return;
510                         /*
511                          * This is coping 128 byte chain
512                          * frame (not a host buffer)
513                          */
514                         dst_chain_addr[sge_chain_count] =
515                                 _base_get_chain(ioc,
516                                         smid, sge_chain_count);
517                         src_chain_addr[sge_chain_count] =
518                                                 (void *) sgel_next;
519                         dst_addr_phys = _base_get_chain_phys(ioc,
520                                                 smid, sge_chain_count);
521                         WARN_ON(dst_addr_phys > U32_MAX);
522                         sgel->Address =
523                                 cpu_to_le32(lower_32_bits(dst_addr_phys));
524                         sgel = sgel_next;
525                         sge_chain_count++;
526                         break;
527                 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
528                         if (is_write) {
529                                 if (is_scsiio_req) {
530                                         _base_clone_to_sys_mem(buff_ptr,
531                                             sg_virt(sg_scmd),
532                                             (le32_to_cpu(sgel->FlagsLength) &
533                                             0x00ffffff));
534                                         /*
535                                          * FIXME: this relies on a a zero
536                                          * PCI mem_offset.
537                                          */
538                                         sgel->Address =
539                                             cpu_to_le32((u32)buff_ptr_phys);
540                                 } else {
541                                         _base_clone_to_sys_mem(buff_ptr,
542                                             ioc->config_vaddr,
543                                             (le32_to_cpu(sgel->FlagsLength) &
544                                             0x00ffffff));
545                                         sgel->Address =
546                                             cpu_to_le32((u32)buff_ptr_phys);
547                                 }
548                         }
549                         buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
550                             0x00ffffff);
551                         buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
552                             0x00ffffff);
553                         if ((le32_to_cpu(sgel->FlagsLength) &
554                             (MPI2_SGE_FLAGS_END_OF_BUFFER
555                                         << MPI2_SGE_FLAGS_SHIFT)))
556                                 goto eob_clone_chain;
557                         else {
558                                 /*
559                                  * Every single element in MPT will have
560                                  * associated sg_next. Better to sanity that
561                                  * sg_next is not NULL, but it will be a bug
562                                  * if it is null.
563                                  */
564                                 if (is_scsiio_req) {
565                                         sg_scmd = sg_next(sg_scmd);
566                                         if (sg_scmd)
567                                                 sgel++;
568                                         else
569                                                 goto eob_clone_chain;
570                                 }
571                         }
572                         break;
573                 }
574         }
575
576 eob_clone_chain:
577         for (i = 0; i < sge_chain_count; i++) {
578                 if (is_scsiio_req)
579                         _base_clone_to_sys_mem(dst_chain_addr[i],
580                                 src_chain_addr[i], ioc->request_sz);
581         }
582 }
583
584 /**
585  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
586  * @arg: input argument, used to derive ioc
587  *
588  * Return:
589  * 0 if controller is removed from pci subsystem.
590  * -1 for other case.
591  */
592 static int mpt3sas_remove_dead_ioc_func(void *arg)
593 {
594         struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
595         struct pci_dev *pdev;
596
597         if (!ioc)
598                 return -1;
599
600         pdev = ioc->pdev;
601         if (!pdev)
602                 return -1;
603         pci_stop_and_remove_bus_device_locked(pdev);
604         return 0;
605 }
606
607 /**
608  * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
609  * @ioc: Per Adapter Object
610  *
611  * Return: nothing.
612  */
613 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
614 {
615         Mpi26IoUnitControlRequest_t *mpi_request;
616         Mpi26IoUnitControlReply_t *mpi_reply;
617         u16 smid;
618         ktime_t current_time;
619         u64 TimeStamp = 0;
620         u8 issue_reset = 0;
621
622         mutex_lock(&ioc->scsih_cmds.mutex);
623         if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
624                 ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
625                 goto out;
626         }
627         ioc->scsih_cmds.status = MPT3_CMD_PENDING;
628         smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
629         if (!smid) {
630                 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
631                 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
632                 goto out;
633         }
634         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
635         ioc->scsih_cmds.smid = smid;
636         memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
637         mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
638         mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
639         mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
640         current_time = ktime_get_real();
641         TimeStamp = ktime_to_ms(current_time);
642         mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32);
643         mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
644         init_completion(&ioc->scsih_cmds.done);
645         ioc->put_smid_default(ioc, smid);
646         dinitprintk(ioc, ioc_info(ioc,
647             "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
648             TimeStamp));
649         wait_for_completion_timeout(&ioc->scsih_cmds.done,
650                 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
651         if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
652                 mpt3sas_check_cmd_timeout(ioc,
653                     ioc->scsih_cmds.status, mpi_request,
654                     sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
655                 goto issue_host_reset;
656         }
657         if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
658                 mpi_reply = ioc->scsih_cmds.reply;
659                 dinitprintk(ioc, ioc_info(ioc,
660                     "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
661                     le16_to_cpu(mpi_reply->IOCStatus),
662                     le32_to_cpu(mpi_reply->IOCLogInfo)));
663         }
664 issue_host_reset:
665         if (issue_reset)
666                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
667         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
668 out:
669         mutex_unlock(&ioc->scsih_cmds.mutex);
670 }
671
672 /**
673  * _base_fault_reset_work - workq handling ioc fault conditions
674  * @work: input argument, used to derive ioc
675  *
676  * Context: sleep.
677  */
678 static void
679 _base_fault_reset_work(struct work_struct *work)
680 {
681         struct MPT3SAS_ADAPTER *ioc =
682             container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
683         unsigned long    flags;
684         u32 doorbell;
685         int rc;
686         struct task_struct *p;
687
688
689         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
690         if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
691                         ioc->pci_error_recovery)
692                 goto rearm_timer;
693         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
694
695         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
696         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
697                 ioc_err(ioc, "SAS host is non-operational !!!!\n");
698
699                 /* It may be possible that EEH recovery can resolve some of
700                  * pci bus failure issues rather removing the dead ioc function
701                  * by considering controller is in a non-operational state. So
702                  * here priority is given to the EEH recovery. If it doesn't
703                  * not resolve this issue, mpt3sas driver will consider this
704                  * controller to non-operational state and remove the dead ioc
705                  * function.
706                  */
707                 if (ioc->non_operational_loop++ < 5) {
708                         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
709                                                          flags);
710                         goto rearm_timer;
711                 }
712
713                 /*
714                  * Call _scsih_flush_pending_cmds callback so that we flush all
715                  * pending commands back to OS. This call is required to avoid
716                  * deadlock at block layer. Dead IOC will fail to do diag reset,
717                  * and this call is safe since dead ioc will never return any
718                  * command back from HW.
719                  */
720                 mpt3sas_base_pause_mq_polling(ioc);
721                 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
722                 /*
723                  * Set remove_host flag early since kernel thread will
724                  * take some time to execute.
725                  */
726                 ioc->remove_host = 1;
727                 /*Remove the Dead Host */
728                 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
729                     "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
730                 if (IS_ERR(p))
731                         ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
732                                 __func__);
733                 else
734                         ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
735                                 __func__);
736                 return; /* don't rearm timer */
737         }
738
739         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
740                 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
741                     ioc->manu_pg11.CoreDumpTOSec :
742                     MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
743
744                 timeout /= (FAULT_POLLING_INTERVAL/1000);
745
746                 if (ioc->ioc_coredump_loop == 0) {
747                         mpt3sas_print_coredump_info(ioc,
748                             doorbell & MPI2_DOORBELL_DATA_MASK);
749                         /* do not accept any IOs and disable the interrupts */
750                         spin_lock_irqsave(
751                             &ioc->ioc_reset_in_progress_lock, flags);
752                         ioc->shost_recovery = 1;
753                         spin_unlock_irqrestore(
754                             &ioc->ioc_reset_in_progress_lock, flags);
755                         mpt3sas_base_mask_interrupts(ioc);
756                         mpt3sas_base_pause_mq_polling(ioc);
757                         _base_clear_outstanding_commands(ioc);
758                 }
759
760                 ioc_info(ioc, "%s: CoreDump loop %d.",
761                     __func__, ioc->ioc_coredump_loop);
762
763                 /* Wait until CoreDump completes or times out */
764                 if (ioc->ioc_coredump_loop++ < timeout) {
765                         spin_lock_irqsave(
766                             &ioc->ioc_reset_in_progress_lock, flags);
767                         goto rearm_timer;
768                 }
769         }
770
771         if (ioc->ioc_coredump_loop) {
772                 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
773                         ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
774                             __func__, ioc->ioc_coredump_loop);
775                 else
776                         ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
777                             __func__, ioc->ioc_coredump_loop);
778                 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
779         }
780         ioc->non_operational_loop = 0;
781         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
782                 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
783                 ioc_warn(ioc, "%s: hard reset: %s\n",
784                          __func__, rc == 0 ? "success" : "failed");
785                 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
786                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
787                         mpt3sas_print_fault_code(ioc, doorbell &
788                             MPI2_DOORBELL_DATA_MASK);
789                 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
790                     MPI2_IOC_STATE_COREDUMP)
791                         mpt3sas_print_coredump_info(ioc, doorbell &
792                             MPI2_DOORBELL_DATA_MASK);
793                 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
794                     MPI2_IOC_STATE_OPERATIONAL)
795                         return; /* don't rearm timer */
796         }
797         ioc->ioc_coredump_loop = 0;
798         if (ioc->time_sync_interval &&
799             ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
800                 ioc->timestamp_update_count = 0;
801                 _base_sync_drv_fw_timestamp(ioc);
802         }
803         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
804  rearm_timer:
805         if (ioc->fault_reset_work_q)
806                 queue_delayed_work(ioc->fault_reset_work_q,
807                     &ioc->fault_reset_work,
808                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
809         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
810 }
811
812 /**
813  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
814  * @ioc: per adapter object
815  *
816  * Context: sleep.
817  */
818 void
819 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
820 {
821         unsigned long    flags;
822
823         if (ioc->fault_reset_work_q)
824                 return;
825
826         ioc->timestamp_update_count = 0;
827         /* initialize fault polling */
828
829         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
830         snprintf(ioc->fault_reset_work_q_name,
831             sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
832             ioc->driver_name, ioc->id);
833         ioc->fault_reset_work_q =
834                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
835         if (!ioc->fault_reset_work_q) {
836                 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
837                 return;
838         }
839         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
840         if (ioc->fault_reset_work_q)
841                 queue_delayed_work(ioc->fault_reset_work_q,
842                     &ioc->fault_reset_work,
843                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
844         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
845 }
846
847 /**
848  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
849  * @ioc: per adapter object
850  *
851  * Context: sleep.
852  */
853 void
854 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
855 {
856         unsigned long flags;
857         struct workqueue_struct *wq;
858
859         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
860         wq = ioc->fault_reset_work_q;
861         ioc->fault_reset_work_q = NULL;
862         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
863         if (wq) {
864                 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
865                         flush_workqueue(wq);
866                 destroy_workqueue(wq);
867         }
868 }
869
870 /**
871  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
872  * @ioc: per adapter object
873  * @fault_code: fault code
874  */
875 void
876 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
877 {
878         ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
879 }
880
881 /**
882  * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
883  * @ioc: per adapter object
884  * @fault_code: fault code
885  *
886  * Return: nothing.
887  */
888 void
889 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
890 {
891         ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
892 }
893
894 /**
895  * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
896  * completes or times out
897  * @ioc: per adapter object
898  * @caller: caller function name
899  *
900  * Return: 0 for success, non-zero for failure.
901  */
902 int
903 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
904                 const char *caller)
905 {
906         u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
907                         ioc->manu_pg11.CoreDumpTOSec :
908                         MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
909
910         int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
911                                         timeout);
912
913         if (ioc_state)
914                 ioc_err(ioc,
915                     "%s: CoreDump timed out. (ioc_state=0x%x)\n",
916                     caller, ioc_state);
917         else
918                 ioc_info(ioc,
919                     "%s: CoreDump completed. (ioc_state=0x%x)\n",
920                     caller, ioc_state);
921
922         return ioc_state;
923 }
924
925 /**
926  * mpt3sas_halt_firmware - halt's mpt controller firmware
927  * @ioc: per adapter object
928  *
929  * For debugging timeout related issues.  Writing 0xCOFFEE00
930  * to the doorbell register will halt controller firmware. With
931  * the purpose to stop both driver and firmware, the enduser can
932  * obtain a ring buffer from controller UART.
933  */
934 void
935 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
936 {
937         u32 doorbell;
938
939         if (!ioc->fwfault_debug)
940                 return;
941
942         dump_stack();
943
944         doorbell = ioc->base_readl(&ioc->chip->Doorbell);
945         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
946                 mpt3sas_print_fault_code(ioc, doorbell &
947                     MPI2_DOORBELL_DATA_MASK);
948         } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
949             MPI2_IOC_STATE_COREDUMP) {
950                 mpt3sas_print_coredump_info(ioc, doorbell &
951                     MPI2_DOORBELL_DATA_MASK);
952         } else {
953                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
954                 ioc_err(ioc, "Firmware is halted due to command timeout\n");
955         }
956
957         if (ioc->fwfault_debug == 2)
958                 for (;;)
959                         ;
960         else
961                 panic("panic in %s\n", __func__);
962 }
963
964 /**
965  * _base_sas_ioc_info - verbose translation of the ioc status
966  * @ioc: per adapter object
967  * @mpi_reply: reply mf payload returned from firmware
968  * @request_hdr: request mf
969  */
970 static void
971 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
972         MPI2RequestHeader_t *request_hdr)
973 {
974         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
975             MPI2_IOCSTATUS_MASK;
976         char *desc = NULL;
977         u16 frame_sz;
978         char *func_str = NULL;
979
980         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
981         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
982             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
983             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
984                 return;
985
986         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
987                 return;
988         /*
989          * Older Firmware version doesn't support driver trigger pages.
990          * So, skip displaying 'config invalid type' type
991          * of error message.
992          */
993         if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
994                 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
995
996                 if ((rqst->ExtPageType ==
997                     MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
998                     !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
999                         return;
1000                 }
1001         }
1002
1003         switch (ioc_status) {
1004
1005 /****************************************************************************
1006 *  Common IOCStatus values for all replies
1007 ****************************************************************************/
1008
1009         case MPI2_IOCSTATUS_INVALID_FUNCTION:
1010                 desc = "invalid function";
1011                 break;
1012         case MPI2_IOCSTATUS_BUSY:
1013                 desc = "busy";
1014                 break;
1015         case MPI2_IOCSTATUS_INVALID_SGL:
1016                 desc = "invalid sgl";
1017                 break;
1018         case MPI2_IOCSTATUS_INTERNAL_ERROR:
1019                 desc = "internal error";
1020                 break;
1021         case MPI2_IOCSTATUS_INVALID_VPID:
1022                 desc = "invalid vpid";
1023                 break;
1024         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1025                 desc = "insufficient resources";
1026                 break;
1027         case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1028                 desc = "insufficient power";
1029                 break;
1030         case MPI2_IOCSTATUS_INVALID_FIELD:
1031                 desc = "invalid field";
1032                 break;
1033         case MPI2_IOCSTATUS_INVALID_STATE:
1034                 desc = "invalid state";
1035                 break;
1036         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1037                 desc = "op state not supported";
1038                 break;
1039
1040 /****************************************************************************
1041 *  Config IOCStatus values
1042 ****************************************************************************/
1043
1044         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1045                 desc = "config invalid action";
1046                 break;
1047         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1048                 desc = "config invalid type";
1049                 break;
1050         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1051                 desc = "config invalid page";
1052                 break;
1053         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1054                 desc = "config invalid data";
1055                 break;
1056         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1057                 desc = "config no defaults";
1058                 break;
1059         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1060                 desc = "config cant commit";
1061                 break;
1062
1063 /****************************************************************************
1064 *  SCSI IO Reply
1065 ****************************************************************************/
1066
1067         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1068         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1069         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1070         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1071         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1072         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1073         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1074         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1075         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1076         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1077         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1078         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1079                 break;
1080
1081 /****************************************************************************
1082 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
1083 ****************************************************************************/
1084
1085         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1086                 desc = "eedp guard error";
1087                 break;
1088         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1089                 desc = "eedp ref tag error";
1090                 break;
1091         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1092                 desc = "eedp app tag error";
1093                 break;
1094
1095 /****************************************************************************
1096 *  SCSI Target values
1097 ****************************************************************************/
1098
1099         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1100                 desc = "target invalid io index";
1101                 break;
1102         case MPI2_IOCSTATUS_TARGET_ABORTED:
1103                 desc = "target aborted";
1104                 break;
1105         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1106                 desc = "target no conn retryable";
1107                 break;
1108         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1109                 desc = "target no connection";
1110                 break;
1111         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1112                 desc = "target xfer count mismatch";
1113                 break;
1114         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1115                 desc = "target data offset error";
1116                 break;
1117         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1118                 desc = "target too much write data";
1119                 break;
1120         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1121                 desc = "target iu too short";
1122                 break;
1123         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1124                 desc = "target ack nak timeout";
1125                 break;
1126         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1127                 desc = "target nak received";
1128                 break;
1129
1130 /****************************************************************************
1131 *  Serial Attached SCSI values
1132 ****************************************************************************/
1133
1134         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1135                 desc = "smp request failed";
1136                 break;
1137         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1138                 desc = "smp data overrun";
1139                 break;
1140
1141 /****************************************************************************
1142 *  Diagnostic Buffer Post / Diagnostic Release values
1143 ****************************************************************************/
1144
1145         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1146                 desc = "diagnostic released";
1147                 break;
1148         default:
1149                 break;
1150         }
1151
1152         if (!desc)
1153                 return;
1154
1155         switch (request_hdr->Function) {
1156         case MPI2_FUNCTION_CONFIG:
1157                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1158                 func_str = "config_page";
1159                 break;
1160         case MPI2_FUNCTION_SCSI_TASK_MGMT:
1161                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1162                 func_str = "task_mgmt";
1163                 break;
1164         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1165                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1166                 func_str = "sas_iounit_ctl";
1167                 break;
1168         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1169                 frame_sz = sizeof(Mpi2SepRequest_t);
1170                 func_str = "enclosure";
1171                 break;
1172         case MPI2_FUNCTION_IOC_INIT:
1173                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
1174                 func_str = "ioc_init";
1175                 break;
1176         case MPI2_FUNCTION_PORT_ENABLE:
1177                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
1178                 func_str = "port_enable";
1179                 break;
1180         case MPI2_FUNCTION_SMP_PASSTHROUGH:
1181                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1182                 func_str = "smp_passthru";
1183                 break;
1184         case MPI2_FUNCTION_NVME_ENCAPSULATED:
1185                 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1186                     ioc->sge_size;
1187                 func_str = "nvme_encapsulated";
1188                 break;
1189         default:
1190                 frame_sz = 32;
1191                 func_str = "unknown";
1192                 break;
1193         }
1194
1195         ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1196                  desc, ioc_status, request_hdr, func_str);
1197
1198         _debug_dump_mf(request_hdr, frame_sz/4);
1199 }
1200
1201 /**
1202  * _base_display_event_data - verbose translation of firmware asyn events
1203  * @ioc: per adapter object
1204  * @mpi_reply: reply mf payload returned from firmware
1205  */
1206 static void
1207 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1208         Mpi2EventNotificationReply_t *mpi_reply)
1209 {
1210         char *desc = NULL;
1211         u16 event;
1212
1213         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1214                 return;
1215
1216         event = le16_to_cpu(mpi_reply->Event);
1217
1218         switch (event) {
1219         case MPI2_EVENT_LOG_DATA:
1220                 desc = "Log Data";
1221                 break;
1222         case MPI2_EVENT_STATE_CHANGE:
1223                 desc = "Status Change";
1224                 break;
1225         case MPI2_EVENT_HARD_RESET_RECEIVED:
1226                 desc = "Hard Reset Received";
1227                 break;
1228         case MPI2_EVENT_EVENT_CHANGE:
1229                 desc = "Event Change";
1230                 break;
1231         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1232                 desc = "Device Status Change";
1233                 break;
1234         case MPI2_EVENT_IR_OPERATION_STATUS:
1235                 if (!ioc->hide_ir_msg)
1236                         desc = "IR Operation Status";
1237                 break;
1238         case MPI2_EVENT_SAS_DISCOVERY:
1239         {
1240                 Mpi2EventDataSasDiscovery_t *event_data =
1241                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1242                 ioc_info(ioc, "Discovery: (%s)",
1243                          event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1244                          "start" : "stop");
1245                 if (event_data->DiscoveryStatus)
1246                         pr_cont(" discovery_status(0x%08x)",
1247                             le32_to_cpu(event_data->DiscoveryStatus));
1248                 pr_cont("\n");
1249                 return;
1250         }
1251         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1252                 desc = "SAS Broadcast Primitive";
1253                 break;
1254         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1255                 desc = "SAS Init Device Status Change";
1256                 break;
1257         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1258                 desc = "SAS Init Table Overflow";
1259                 break;
1260         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1261                 desc = "SAS Topology Change List";
1262                 break;
1263         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1264                 desc = "SAS Enclosure Device Status Change";
1265                 break;
1266         case MPI2_EVENT_IR_VOLUME:
1267                 if (!ioc->hide_ir_msg)
1268                         desc = "IR Volume";
1269                 break;
1270         case MPI2_EVENT_IR_PHYSICAL_DISK:
1271                 if (!ioc->hide_ir_msg)
1272                         desc = "IR Physical Disk";
1273                 break;
1274         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1275                 if (!ioc->hide_ir_msg)
1276                         desc = "IR Configuration Change List";
1277                 break;
1278         case MPI2_EVENT_LOG_ENTRY_ADDED:
1279                 if (!ioc->hide_ir_msg)
1280                         desc = "Log Entry Added";
1281                 break;
1282         case MPI2_EVENT_TEMP_THRESHOLD:
1283                 desc = "Temperature Threshold";
1284                 break;
1285         case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1286                 desc = "Cable Event";
1287                 break;
1288         case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1289                 desc = "SAS Device Discovery Error";
1290                 break;
1291         case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1292                 desc = "PCIE Device Status Change";
1293                 break;
1294         case MPI2_EVENT_PCIE_ENUMERATION:
1295         {
1296                 Mpi26EventDataPCIeEnumeration_t *event_data =
1297                         (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1298                 ioc_info(ioc, "PCIE Enumeration: (%s)",
1299                          event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1300                          "start" : "stop");
1301                 if (event_data->EnumerationStatus)
1302                         pr_cont("enumeration_status(0x%08x)",
1303                                 le32_to_cpu(event_data->EnumerationStatus));
1304                 pr_cont("\n");
1305                 return;
1306         }
1307         case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1308                 desc = "PCIE Topology Change List";
1309                 break;
1310         }
1311
1312         if (!desc)
1313                 return;
1314
1315         ioc_info(ioc, "%s\n", desc);
1316 }
1317
1318 /**
1319  * _base_sas_log_info - verbose translation of firmware log info
1320  * @ioc: per adapter object
1321  * @log_info: log info
1322  */
1323 static void
1324 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1325 {
1326         union loginfo_type {
1327                 u32     loginfo;
1328                 struct {
1329                         u32     subcode:16;
1330                         u32     code:8;
1331                         u32     originator:4;
1332                         u32     bus_type:4;
1333                 } dw;
1334         };
1335         union loginfo_type sas_loginfo;
1336         char *originator_str = NULL;
1337
1338         sas_loginfo.loginfo = log_info;
1339         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1340                 return;
1341
1342         /* each nexus loss loginfo */
1343         if (log_info == 0x31170000)
1344                 return;
1345
1346         /* eat the loginfos associated with task aborts */
1347         if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1348             0x31140000 || log_info == 0x31130000))
1349                 return;
1350
1351         switch (sas_loginfo.dw.originator) {
1352         case 0:
1353                 originator_str = "IOP";
1354                 break;
1355         case 1:
1356                 originator_str = "PL";
1357                 break;
1358         case 2:
1359                 if (!ioc->hide_ir_msg)
1360                         originator_str = "IR";
1361                 else
1362                         originator_str = "WarpDrive";
1363                 break;
1364         }
1365
1366         ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1367                  log_info,
1368                  originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1369 }
1370
1371 /**
1372  * _base_display_reply_info - handle reply descriptors depending on IOC Status
1373  * @ioc: per adapter object
1374  * @smid: system request message index
1375  * @msix_index: MSIX table index supplied by the OS
1376  * @reply: reply message frame (lower 32bit addr)
1377  */
1378 static void
1379 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1380         u32 reply)
1381 {
1382         MPI2DefaultReply_t *mpi_reply;
1383         u16 ioc_status;
1384         u32 loginfo = 0;
1385
1386         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1387         if (unlikely(!mpi_reply)) {
1388                 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1389                         __FILE__, __LINE__, __func__);
1390                 return;
1391         }
1392         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1393
1394         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1395             (ioc->logging_level & MPT_DEBUG_REPLY)) {
1396                 _base_sas_ioc_info(ioc , mpi_reply,
1397                    mpt3sas_base_get_msg_frame(ioc, smid));
1398         }
1399
1400         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1401                 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1402                 _base_sas_log_info(ioc, loginfo);
1403         }
1404
1405         if (ioc_status || loginfo) {
1406                 ioc_status &= MPI2_IOCSTATUS_MASK;
1407                 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1408         }
1409 }
1410
1411 /**
1412  * mpt3sas_base_done - base internal command completion routine
1413  * @ioc: per adapter object
1414  * @smid: system request message index
1415  * @msix_index: MSIX table index supplied by the OS
1416  * @reply: reply message frame(lower 32bit addr)
1417  *
1418  * Return:
1419  * 1 meaning mf should be freed from _base_interrupt
1420  * 0 means the mf is freed from this function.
1421  */
1422 u8
1423 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1424         u32 reply)
1425 {
1426         MPI2DefaultReply_t *mpi_reply;
1427
1428         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1429         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1430                 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1431
1432         if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1433                 return 1;
1434
1435         ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1436         if (mpi_reply) {
1437                 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1438                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1439         }
1440         ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1441
1442         complete(&ioc->base_cmds.done);
1443         return 1;
1444 }
1445
1446 /**
1447  * _base_async_event - main callback handler for firmware asyn events
1448  * @ioc: per adapter object
1449  * @msix_index: MSIX table index supplied by the OS
1450  * @reply: reply message frame(lower 32bit addr)
1451  *
1452  * Return:
1453  * 1 meaning mf should be freed from _base_interrupt
1454  * 0 means the mf is freed from this function.
1455  */
1456 static u8
1457 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1458 {
1459         Mpi2EventNotificationReply_t *mpi_reply;
1460         Mpi2EventAckRequest_t *ack_request;
1461         u16 smid;
1462         struct _event_ack_list *delayed_event_ack;
1463
1464         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1465         if (!mpi_reply)
1466                 return 1;
1467         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1468                 return 1;
1469
1470         _base_display_event_data(ioc, mpi_reply);
1471
1472         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1473                 goto out;
1474         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1475         if (!smid) {
1476                 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1477                                         GFP_ATOMIC);
1478                 if (!delayed_event_ack)
1479                         goto out;
1480                 INIT_LIST_HEAD(&delayed_event_ack->list);
1481                 delayed_event_ack->Event = mpi_reply->Event;
1482                 delayed_event_ack->EventContext = mpi_reply->EventContext;
1483                 list_add_tail(&delayed_event_ack->list,
1484                                 &ioc->delayed_event_ack_list);
1485                 dewtprintk(ioc,
1486                            ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1487                                     le16_to_cpu(mpi_reply->Event)));
1488                 goto out;
1489         }
1490
1491         ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1492         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1493         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1494         ack_request->Event = mpi_reply->Event;
1495         ack_request->EventContext = mpi_reply->EventContext;
1496         ack_request->VF_ID = 0;  /* TODO */
1497         ack_request->VP_ID = 0;
1498         ioc->put_smid_default(ioc, smid);
1499
1500  out:
1501
1502         /* scsih callback handler */
1503         mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1504
1505         /* ctl callback handler */
1506         mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1507
1508         return 1;
1509 }
1510
1511 static struct scsiio_tracker *
1512 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1513 {
1514         struct scsi_cmnd *cmd;
1515
1516         if (WARN_ON(!smid) ||
1517             WARN_ON(smid >= ioc->hi_priority_smid))
1518                 return NULL;
1519
1520         cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1521         if (cmd)
1522                 return scsi_cmd_priv(cmd);
1523
1524         return NULL;
1525 }
1526
1527 /**
1528  * _base_get_cb_idx - obtain the callback index
1529  * @ioc: per adapter object
1530  * @smid: system request message index
1531  *
1532  * Return: callback index.
1533  */
1534 static u8
1535 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1536 {
1537         int i;
1538         u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1539         u8 cb_idx = 0xFF;
1540
1541         if (smid < ioc->hi_priority_smid) {
1542                 struct scsiio_tracker *st;
1543
1544                 if (smid < ctl_smid) {
1545                         st = _get_st_from_smid(ioc, smid);
1546                         if (st)
1547                                 cb_idx = st->cb_idx;
1548                 } else if (smid == ctl_smid)
1549                         cb_idx = ioc->ctl_cb_idx;
1550         } else if (smid < ioc->internal_smid) {
1551                 i = smid - ioc->hi_priority_smid;
1552                 cb_idx = ioc->hpr_lookup[i].cb_idx;
1553         } else if (smid <= ioc->hba_queue_depth) {
1554                 i = smid - ioc->internal_smid;
1555                 cb_idx = ioc->internal_lookup[i].cb_idx;
1556         }
1557         return cb_idx;
1558 }
1559
1560 /**
1561  * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues
1562  *                              when driver is flushing out the IOs.
1563  * @ioc: per adapter object
1564  *
1565  * Pause polling on the mq poll (io uring) queues when driver is flushing
1566  * out the IOs. Otherwise we may see the race condition of completing the same
1567  * IO from two paths.
1568  *
1569  * Returns nothing.
1570  */
1571 void
1572 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1573 {
1574         int iopoll_q_count =
1575             ioc->reply_queue_count - ioc->iopoll_q_start_index;
1576         int qid;
1577
1578         for (qid = 0; qid < iopoll_q_count; qid++)
1579                 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1);
1580
1581         /*
1582          * wait for current poll to complete.
1583          */
1584         for (qid = 0; qid < iopoll_q_count; qid++) {
1585                 while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) {
1586                         cpu_relax();
1587                         udelay(500);
1588                 }
1589         }
1590 }
1591
1592 /**
1593  * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues.
1594  * @ioc: per adapter object
1595  *
1596  * Returns nothing.
1597  */
1598 void
1599 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1600 {
1601         int iopoll_q_count =
1602             ioc->reply_queue_count - ioc->iopoll_q_start_index;
1603         int qid;
1604
1605         for (qid = 0; qid < iopoll_q_count; qid++)
1606                 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0);
1607 }
1608
1609 /**
1610  * mpt3sas_base_mask_interrupts - disable interrupts
1611  * @ioc: per adapter object
1612  *
1613  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1614  */
1615 void
1616 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1617 {
1618         u32 him_register;
1619
1620         ioc->mask_interrupts = 1;
1621         him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1622         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1623         writel(him_register, &ioc->chip->HostInterruptMask);
1624         ioc->base_readl(&ioc->chip->HostInterruptMask);
1625 }
1626
1627 /**
1628  * mpt3sas_base_unmask_interrupts - enable interrupts
1629  * @ioc: per adapter object
1630  *
1631  * Enabling only Reply Interrupts
1632  */
1633 void
1634 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1635 {
1636         u32 him_register;
1637
1638         him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1639         him_register &= ~MPI2_HIM_RIM;
1640         writel(him_register, &ioc->chip->HostInterruptMask);
1641         ioc->mask_interrupts = 0;
1642 }
1643
1644 union reply_descriptor {
1645         u64 word;
1646         struct {
1647                 u32 low;
1648                 u32 high;
1649         } u;
1650 };
1651
1652 static u32 base_mod64(u64 dividend, u32 divisor)
1653 {
1654         u32 remainder;
1655
1656         if (!divisor)
1657                 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1658         remainder = do_div(dividend, divisor);
1659         return remainder;
1660 }
1661
1662 /**
1663  * _base_process_reply_queue - Process reply descriptors from reply
1664  *              descriptor post queue.
1665  * @reply_q: per IRQ's reply queue object.
1666  *
1667  * Return: number of reply descriptors processed from reply
1668  *              descriptor queue.
1669  */
1670 static int
1671 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1672 {
1673         union reply_descriptor rd;
1674         u64 completed_cmds;
1675         u8 request_descript_type;
1676         u16 smid;
1677         u8 cb_idx;
1678         u32 reply;
1679         u8 msix_index = reply_q->msix_index;
1680         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1681         Mpi2ReplyDescriptorsUnion_t *rpf;
1682         u8 rc;
1683
1684         completed_cmds = 0;
1685         if (!atomic_add_unless(&reply_q->busy, 1, 1))
1686                 return completed_cmds;
1687
1688         rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1689         request_descript_type = rpf->Default.ReplyFlags
1690              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1691         if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1692                 atomic_dec(&reply_q->busy);
1693                 return completed_cmds;
1694         }
1695
1696         cb_idx = 0xFF;
1697         do {
1698                 rd.word = le64_to_cpu(rpf->Words);
1699                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1700                         goto out;
1701                 reply = 0;
1702                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1703                 if (request_descript_type ==
1704                     MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1705                     request_descript_type ==
1706                     MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1707                     request_descript_type ==
1708                     MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1709                         cb_idx = _base_get_cb_idx(ioc, smid);
1710                         if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1711                             (likely(mpt_callbacks[cb_idx] != NULL))) {
1712                                 rc = mpt_callbacks[cb_idx](ioc, smid,
1713                                     msix_index, 0);
1714                                 if (rc)
1715                                         mpt3sas_base_free_smid(ioc, smid);
1716                         }
1717                 } else if (request_descript_type ==
1718                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1719                         reply = le32_to_cpu(
1720                             rpf->AddressReply.ReplyFrameAddress);
1721                         if (reply > ioc->reply_dma_max_address ||
1722                             reply < ioc->reply_dma_min_address)
1723                                 reply = 0;
1724                         if (smid) {
1725                                 cb_idx = _base_get_cb_idx(ioc, smid);
1726                                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1727                                     (likely(mpt_callbacks[cb_idx] != NULL))) {
1728                                         rc = mpt_callbacks[cb_idx](ioc, smid,
1729                                             msix_index, reply);
1730                                         if (reply)
1731                                                 _base_display_reply_info(ioc,
1732                                                     smid, msix_index, reply);
1733                                         if (rc)
1734                                                 mpt3sas_base_free_smid(ioc,
1735                                                     smid);
1736                                 }
1737                         } else {
1738                                 _base_async_event(ioc, msix_index, reply);
1739                         }
1740
1741                         /* reply free queue handling */
1742                         if (reply) {
1743                                 ioc->reply_free_host_index =
1744                                     (ioc->reply_free_host_index ==
1745                                     (ioc->reply_free_queue_depth - 1)) ?
1746                                     0 : ioc->reply_free_host_index + 1;
1747                                 ioc->reply_free[ioc->reply_free_host_index] =
1748                                     cpu_to_le32(reply);
1749                                 if (ioc->is_mcpu_endpoint)
1750                                         _base_clone_reply_to_sys_mem(ioc,
1751                                                 reply,
1752                                                 ioc->reply_free_host_index);
1753                                 writel(ioc->reply_free_host_index,
1754                                     &ioc->chip->ReplyFreeHostIndex);
1755                         }
1756                 }
1757
1758                 rpf->Words = cpu_to_le64(ULLONG_MAX);
1759                 reply_q->reply_post_host_index =
1760                     (reply_q->reply_post_host_index ==
1761                     (ioc->reply_post_queue_depth - 1)) ? 0 :
1762                     reply_q->reply_post_host_index + 1;
1763                 request_descript_type =
1764                     reply_q->reply_post_free[reply_q->reply_post_host_index].
1765                     Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1766                 completed_cmds++;
1767                 /* Update the reply post host index after continuously
1768                  * processing the threshold number of Reply Descriptors.
1769                  * So that FW can find enough entries to post the Reply
1770                  * Descriptors in the reply descriptor post queue.
1771                  */
1772                 if (completed_cmds >= ioc->thresh_hold) {
1773                         if (ioc->combined_reply_queue) {
1774                                 writel(reply_q->reply_post_host_index |
1775                                                 ((msix_index  & 7) <<
1776                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1777                                     ioc->replyPostRegisterIndex[msix_index/8]);
1778                         } else {
1779                                 writel(reply_q->reply_post_host_index |
1780                                                 (msix_index <<
1781                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1782                                                 &ioc->chip->ReplyPostHostIndex);
1783                         }
1784                         if (!reply_q->is_iouring_poll_q &&
1785                             !reply_q->irq_poll_scheduled) {
1786                                 reply_q->irq_poll_scheduled = true;
1787                                 irq_poll_sched(&reply_q->irqpoll);
1788                         }
1789                         atomic_dec(&reply_q->busy);
1790                         return completed_cmds;
1791                 }
1792                 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1793                         goto out;
1794                 if (!reply_q->reply_post_host_index)
1795                         rpf = reply_q->reply_post_free;
1796                 else
1797                         rpf++;
1798         } while (1);
1799
1800  out:
1801
1802         if (!completed_cmds) {
1803                 atomic_dec(&reply_q->busy);
1804                 return completed_cmds;
1805         }
1806
1807         if (ioc->is_warpdrive) {
1808                 writel(reply_q->reply_post_host_index,
1809                 ioc->reply_post_host_index[msix_index]);
1810                 atomic_dec(&reply_q->busy);
1811                 return completed_cmds;
1812         }
1813
1814         /* Update Reply Post Host Index.
1815          * For those HBA's which support combined reply queue feature
1816          * 1. Get the correct Supplemental Reply Post Host Index Register.
1817          *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1818          *    Index Register address bank i.e replyPostRegisterIndex[],
1819          * 2. Then update this register with new reply host index value
1820          *    in ReplyPostIndex field and the MSIxIndex field with
1821          *    msix_index value reduced to a value between 0 and 7,
1822          *    using a modulo 8 operation. Since each Supplemental Reply Post
1823          *    Host Index Register supports 8 MSI-X vectors.
1824          *
1825          * For other HBA's just update the Reply Post Host Index register with
1826          * new reply host index value in ReplyPostIndex Field and msix_index
1827          * value in MSIxIndex field.
1828          */
1829         if (ioc->combined_reply_queue)
1830                 writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1831                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1832                         ioc->replyPostRegisterIndex[msix_index/8]);
1833         else
1834                 writel(reply_q->reply_post_host_index | (msix_index <<
1835                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1836                         &ioc->chip->ReplyPostHostIndex);
1837         atomic_dec(&reply_q->busy);
1838         return completed_cmds;
1839 }
1840
1841 /**
1842  * mpt3sas_blk_mq_poll - poll the blk mq poll queue
1843  * @shost: Scsi_Host object
1844  * @queue_num: hw ctx queue number
1845  *
1846  * Return number of entries that has been processed from poll queue.
1847  */
1848 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num)
1849 {
1850         struct MPT3SAS_ADAPTER *ioc =
1851             (struct MPT3SAS_ADAPTER *)shost->hostdata;
1852         struct adapter_reply_queue *reply_q;
1853         int num_entries = 0;
1854         int qid = queue_num - ioc->iopoll_q_start_index;
1855
1856         if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) ||
1857             !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1))
1858                 return 0;
1859
1860         reply_q = ioc->io_uring_poll_queues[qid].reply_q;
1861
1862         num_entries = _base_process_reply_queue(reply_q);
1863         atomic_dec(&ioc->io_uring_poll_queues[qid].busy);
1864
1865         return num_entries;
1866 }
1867
1868 /**
1869  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1870  * @irq: irq number (not used)
1871  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1872  *
1873  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1874  */
1875 static irqreturn_t
1876 _base_interrupt(int irq, void *bus_id)
1877 {
1878         struct adapter_reply_queue *reply_q = bus_id;
1879         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1880
1881         if (ioc->mask_interrupts)
1882                 return IRQ_NONE;
1883         if (reply_q->irq_poll_scheduled)
1884                 return IRQ_HANDLED;
1885         return ((_base_process_reply_queue(reply_q) > 0) ?
1886                         IRQ_HANDLED : IRQ_NONE);
1887 }
1888
1889 /**
1890  * _base_irqpoll - IRQ poll callback handler
1891  * @irqpoll: irq_poll object
1892  * @budget: irq poll weight
1893  *
1894  * Return: number of reply descriptors processed
1895  */
1896 static int
1897 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1898 {
1899         struct adapter_reply_queue *reply_q;
1900         int num_entries = 0;
1901
1902         reply_q = container_of(irqpoll, struct adapter_reply_queue,
1903                         irqpoll);
1904         if (reply_q->irq_line_enable) {
1905                 disable_irq_nosync(reply_q->os_irq);
1906                 reply_q->irq_line_enable = false;
1907         }
1908         num_entries = _base_process_reply_queue(reply_q);
1909         if (num_entries < budget) {
1910                 irq_poll_complete(irqpoll);
1911                 reply_q->irq_poll_scheduled = false;
1912                 reply_q->irq_line_enable = true;
1913                 enable_irq(reply_q->os_irq);
1914                 /*
1915                  * Go for one more round of processing the
1916                  * reply descriptor post queue in case the HBA
1917                  * Firmware has posted some reply descriptors
1918                  * while reenabling the IRQ.
1919                  */
1920                 _base_process_reply_queue(reply_q);
1921         }
1922
1923         return num_entries;
1924 }
1925
1926 /**
1927  * _base_init_irqpolls - initliaze IRQ polls
1928  * @ioc: per adapter object
1929  *
1930  * Return: nothing
1931  */
1932 static void
1933 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1934 {
1935         struct adapter_reply_queue *reply_q, *next;
1936
1937         if (list_empty(&ioc->reply_queue_list))
1938                 return;
1939
1940         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1941                 if (reply_q->is_iouring_poll_q)
1942                         continue;
1943                 irq_poll_init(&reply_q->irqpoll,
1944                         ioc->hba_queue_depth/4, _base_irqpoll);
1945                 reply_q->irq_poll_scheduled = false;
1946                 reply_q->irq_line_enable = true;
1947                 reply_q->os_irq = pci_irq_vector(ioc->pdev,
1948                     reply_q->msix_index);
1949         }
1950 }
1951
1952 /**
1953  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1954  * @ioc: per adapter object
1955  *
1956  * Return: Whether or not MSI/X is enabled.
1957  */
1958 static inline int
1959 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1960 {
1961         return (ioc->facts.IOCCapabilities &
1962             MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1963 }
1964
1965 /**
1966  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1967  * @ioc: per adapter object
1968  * @poll: poll over reply descriptor pools incase interrupt for
1969  *              timed-out SCSI command got delayed
1970  * Context: non-ISR context
1971  *
1972  * Called when a Task Management request has completed.
1973  */
1974 void
1975 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1976 {
1977         struct adapter_reply_queue *reply_q;
1978
1979         /* If MSIX capability is turned off
1980          * then multi-queues are not enabled
1981          */
1982         if (!_base_is_controller_msix_enabled(ioc))
1983                 return;
1984
1985         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1986                 if (ioc->shost_recovery || ioc->remove_host ||
1987                                 ioc->pci_error_recovery)
1988                         return;
1989                 /* TMs are on msix_index == 0 */
1990                 if (reply_q->msix_index == 0)
1991                         continue;
1992
1993                 if (reply_q->is_iouring_poll_q) {
1994                         _base_process_reply_queue(reply_q);
1995                         continue;
1996                 }
1997
1998                 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1999                 if (reply_q->irq_poll_scheduled) {
2000                         /* Calling irq_poll_disable will wait for any pending
2001                          * callbacks to have completed.
2002                          */
2003                         irq_poll_disable(&reply_q->irqpoll);
2004                         irq_poll_enable(&reply_q->irqpoll);
2005                         /* check how the scheduled poll has ended,
2006                          * clean up only if necessary
2007                          */
2008                         if (reply_q->irq_poll_scheduled) {
2009                                 reply_q->irq_poll_scheduled = false;
2010                                 reply_q->irq_line_enable = true;
2011                                 enable_irq(reply_q->os_irq);
2012                         }
2013                 }
2014         }
2015         if (poll)
2016                 _base_process_reply_queue(reply_q);
2017 }
2018
2019 /**
2020  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
2021  * @cb_idx: callback index
2022  */
2023 void
2024 mpt3sas_base_release_callback_handler(u8 cb_idx)
2025 {
2026         mpt_callbacks[cb_idx] = NULL;
2027 }
2028
2029 /**
2030  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
2031  * @cb_func: callback function
2032  *
2033  * Return: Index of @cb_func.
2034  */
2035 u8
2036 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
2037 {
2038         u8 cb_idx;
2039
2040         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
2041                 if (mpt_callbacks[cb_idx] == NULL)
2042                         break;
2043
2044         mpt_callbacks[cb_idx] = cb_func;
2045         return cb_idx;
2046 }
2047
2048 /**
2049  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
2050  */
2051 void
2052 mpt3sas_base_initialize_callback_handler(void)
2053 {
2054         u8 cb_idx;
2055
2056         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
2057                 mpt3sas_base_release_callback_handler(cb_idx);
2058 }
2059
2060
2061 /**
2062  * _base_build_zero_len_sge - build zero length sg entry
2063  * @ioc: per adapter object
2064  * @paddr: virtual address for SGE
2065  *
2066  * Create a zero length scatter gather entry to insure the IOCs hardware has
2067  * something to use if the target device goes brain dead and tries
2068  * to send data even when none is asked for.
2069  */
2070 static void
2071 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2072 {
2073         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
2074             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
2075             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
2076             MPI2_SGE_FLAGS_SHIFT);
2077         ioc->base_add_sg_single(paddr, flags_length, -1);
2078 }
2079
2080 /**
2081  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
2082  * @paddr: virtual address for SGE
2083  * @flags_length: SGE flags and data transfer length
2084  * @dma_addr: Physical address
2085  */
2086 static void
2087 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2088 {
2089         Mpi2SGESimple32_t *sgel = paddr;
2090
2091         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
2092             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2093         sgel->FlagsLength = cpu_to_le32(flags_length);
2094         sgel->Address = cpu_to_le32(dma_addr);
2095 }
2096
2097
2098 /**
2099  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2100  * @paddr: virtual address for SGE
2101  * @flags_length: SGE flags and data transfer length
2102  * @dma_addr: Physical address
2103  */
2104 static void
2105 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2106 {
2107         Mpi2SGESimple64_t *sgel = paddr;
2108
2109         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2110             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2111         sgel->FlagsLength = cpu_to_le32(flags_length);
2112         sgel->Address = cpu_to_le64(dma_addr);
2113 }
2114
2115 /**
2116  * _base_get_chain_buffer_tracker - obtain chain tracker
2117  * @ioc: per adapter object
2118  * @scmd: SCSI commands of the IO request
2119  *
2120  * Return: chain tracker from chain_lookup table using key as
2121  * smid and smid's chain_offset.
2122  */
2123 static struct chain_tracker *
2124 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2125                                struct scsi_cmnd *scmd)
2126 {
2127         struct chain_tracker *chain_req;
2128         struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2129         u16 smid = st->smid;
2130         u8 chain_offset =
2131            atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2132
2133         if (chain_offset == ioc->chains_needed_per_io)
2134                 return NULL;
2135
2136         chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2137         atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2138         return chain_req;
2139 }
2140
2141
2142 /**
2143  * _base_build_sg - build generic sg
2144  * @ioc: per adapter object
2145  * @psge: virtual address for SGE
2146  * @data_out_dma: physical address for WRITES
2147  * @data_out_sz: data xfer size for WRITES
2148  * @data_in_dma: physical address for READS
2149  * @data_in_sz: data xfer size for READS
2150  */
2151 static void
2152 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2153         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2154         size_t data_in_sz)
2155 {
2156         u32 sgl_flags;
2157
2158         if (!data_out_sz && !data_in_sz) {
2159                 _base_build_zero_len_sge(ioc, psge);
2160                 return;
2161         }
2162
2163         if (data_out_sz && data_in_sz) {
2164                 /* WRITE sgel first */
2165                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2166                     MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2167                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2168                 ioc->base_add_sg_single(psge, sgl_flags |
2169                     data_out_sz, data_out_dma);
2170
2171                 /* incr sgel */
2172                 psge += ioc->sge_size;
2173
2174                 /* READ sgel last */
2175                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2176                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2177                     MPI2_SGE_FLAGS_END_OF_LIST);
2178                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2179                 ioc->base_add_sg_single(psge, sgl_flags |
2180                     data_in_sz, data_in_dma);
2181         } else if (data_out_sz) /* WRITE */ {
2182                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2183                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2184                     MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2185                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2186                 ioc->base_add_sg_single(psge, sgl_flags |
2187                     data_out_sz, data_out_dma);
2188         } else if (data_in_sz) /* READ */ {
2189                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2190                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2191                     MPI2_SGE_FLAGS_END_OF_LIST);
2192                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2193                 ioc->base_add_sg_single(psge, sgl_flags |
2194                     data_in_sz, data_in_dma);
2195         }
2196 }
2197
2198 /* IEEE format sgls */
2199
2200 /**
2201  * _base_build_nvme_prp - This function is called for NVMe end devices to build
2202  *                        a native SGL (NVMe PRP).
2203  * @ioc: per adapter object
2204  * @smid: system request message index for getting asscociated SGL
2205  * @nvme_encap_request: the NVMe request msg frame pointer
2206  * @data_out_dma: physical address for WRITES
2207  * @data_out_sz: data xfer size for WRITES
2208  * @data_in_dma: physical address for READS
2209  * @data_in_sz: data xfer size for READS
2210  *
2211  * The native SGL is built starting in the first PRP
2212  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2213  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2214  * used to describe a larger data buffer.  If the data buffer is too large to
2215  * describe using the two PRP entriess inside the NVMe message, then PRP1
2216  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2217  * list located elsewhere in memory to describe the remaining data memory
2218  * segments.  The PRP list will be contiguous.
2219  *
2220  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2221  * consists of a list of PRP entries to describe a number of noncontigous
2222  * physical memory segments as a single memory buffer, just as a SGL does.  Note
2223  * however, that this function is only used by the IOCTL call, so the memory
2224  * given will be guaranteed to be contiguous.  There is no need to translate
2225  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2226  * contiguous space that is one page size each.
2227  *
2228  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2229  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2230  * contains the second PRP element if the memory being described fits within 2
2231  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2232  *
2233  * A PRP list pointer contains the address of a PRP list, structured as a linear
2234  * array of PRP entries.  Each PRP entry in this list describes a segment of
2235  * physical memory.
2236  *
2237  * Each 64-bit PRP entry comprises an address and an offset field.  The address
2238  * always points at the beginning of a 4KB physical memory page, and the offset
2239  * describes where within that 4KB page the memory segment begins.  Only the
2240  * first element in a PRP list may contain a non-zero offset, implying that all
2241  * memory segments following the first begin at the start of a 4KB page.
2242  *
2243  * Each PRP element normally describes 4KB of physical memory, with exceptions
2244  * for the first and last elements in the list.  If the memory being described
2245  * by the list begins at a non-zero offset within the first 4KB page, then the
2246  * first PRP element will contain a non-zero offset indicating where the region
2247  * begins within the 4KB page.  The last memory segment may end before the end
2248  * of the 4KB segment, depending upon the overall size of the memory being
2249  * described by the PRP list.
2250  *
2251  * Since PRP entries lack any indication of size, the overall data buffer length
2252  * is used to determine where the end of the data memory buffer is located, and
2253  * how many PRP entries are required to describe it.
2254  */
2255 static void
2256 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2257         Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2258         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2259         size_t data_in_sz)
2260 {
2261         int             prp_size = NVME_PRP_SIZE;
2262         __le64          *prp_entry, *prp1_entry, *prp2_entry;
2263         __le64          *prp_page;
2264         dma_addr_t      prp_entry_dma, prp_page_dma, dma_addr;
2265         u32             offset, entry_len;
2266         u32             page_mask_result, page_mask;
2267         size_t          length;
2268         struct mpt3sas_nvme_cmd *nvme_cmd =
2269                 (void *)nvme_encap_request->NVMe_Command;
2270
2271         /*
2272          * Not all commands require a data transfer. If no data, just return
2273          * without constructing any PRP.
2274          */
2275         if (!data_in_sz && !data_out_sz)
2276                 return;
2277         prp1_entry = &nvme_cmd->prp1;
2278         prp2_entry = &nvme_cmd->prp2;
2279         prp_entry = prp1_entry;
2280         /*
2281          * For the PRP entries, use the specially allocated buffer of
2282          * contiguous memory.
2283          */
2284         prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2285         prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2286
2287         /*
2288          * Check if we are within 1 entry of a page boundary we don't
2289          * want our first entry to be a PRP List entry.
2290          */
2291         page_mask = ioc->page_size - 1;
2292         page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2293         if (!page_mask_result) {
2294                 /* Bump up to next page boundary. */
2295                 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2296                 prp_page_dma = prp_page_dma + prp_size;
2297         }
2298
2299         /*
2300          * Set PRP physical pointer, which initially points to the current PRP
2301          * DMA memory page.
2302          */
2303         prp_entry_dma = prp_page_dma;
2304
2305         /* Get physical address and length of the data buffer. */
2306         if (data_in_sz) {
2307                 dma_addr = data_in_dma;
2308                 length = data_in_sz;
2309         } else {
2310                 dma_addr = data_out_dma;
2311                 length = data_out_sz;
2312         }
2313
2314         /* Loop while the length is not zero. */
2315         while (length) {
2316                 /*
2317                  * Check if we need to put a list pointer here if we are at
2318                  * page boundary - prp_size (8 bytes).
2319                  */
2320                 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2321                 if (!page_mask_result) {
2322                         /*
2323                          * This is the last entry in a PRP List, so we need to
2324                          * put a PRP list pointer here.  What this does is:
2325                          *   - bump the current memory pointer to the next
2326                          *     address, which will be the next full page.
2327                          *   - set the PRP Entry to point to that page.  This
2328                          *     is now the PRP List pointer.
2329                          *   - bump the PRP Entry pointer the start of the
2330                          *     next page.  Since all of this PRP memory is
2331                          *     contiguous, no need to get a new page - it's
2332                          *     just the next address.
2333                          */
2334                         prp_entry_dma++;
2335                         *prp_entry = cpu_to_le64(prp_entry_dma);
2336                         prp_entry++;
2337                 }
2338
2339                 /* Need to handle if entry will be part of a page. */
2340                 offset = dma_addr & page_mask;
2341                 entry_len = ioc->page_size - offset;
2342
2343                 if (prp_entry == prp1_entry) {
2344                         /*
2345                          * Must fill in the first PRP pointer (PRP1) before
2346                          * moving on.
2347                          */
2348                         *prp1_entry = cpu_to_le64(dma_addr);
2349
2350                         /*
2351                          * Now point to the second PRP entry within the
2352                          * command (PRP2).
2353                          */
2354                         prp_entry = prp2_entry;
2355                 } else if (prp_entry == prp2_entry) {
2356                         /*
2357                          * Should the PRP2 entry be a PRP List pointer or just
2358                          * a regular PRP pointer?  If there is more than one
2359                          * more page of data, must use a PRP List pointer.
2360                          */
2361                         if (length > ioc->page_size) {
2362                                 /*
2363                                  * PRP2 will contain a PRP List pointer because
2364                                  * more PRP's are needed with this command. The
2365                                  * list will start at the beginning of the
2366                                  * contiguous buffer.
2367                                  */
2368                                 *prp2_entry = cpu_to_le64(prp_entry_dma);
2369
2370                                 /*
2371                                  * The next PRP Entry will be the start of the
2372                                  * first PRP List.
2373                                  */
2374                                 prp_entry = prp_page;
2375                         } else {
2376                                 /*
2377                                  * After this, the PRP Entries are complete.
2378                                  * This command uses 2 PRP's and no PRP list.
2379                                  */
2380                                 *prp2_entry = cpu_to_le64(dma_addr);
2381                         }
2382                 } else {
2383                         /*
2384                          * Put entry in list and bump the addresses.
2385                          *
2386                          * After PRP1 and PRP2 are filled in, this will fill in
2387                          * all remaining PRP entries in a PRP List, one per
2388                          * each time through the loop.
2389                          */
2390                         *prp_entry = cpu_to_le64(dma_addr);
2391                         prp_entry++;
2392                         prp_entry_dma++;
2393                 }
2394
2395                 /*
2396                  * Bump the phys address of the command's data buffer by the
2397                  * entry_len.
2398                  */
2399                 dma_addr += entry_len;
2400
2401                 /* Decrement length accounting for last partial page. */
2402                 if (entry_len > length)
2403                         length = 0;
2404                 else
2405                         length -= entry_len;
2406         }
2407 }
2408
2409 /**
2410  * base_make_prp_nvme - Prepare PRPs (Physical Region Page) -
2411  *                      SGLs specific to NVMe drives only
2412  *
2413  * @ioc:                per adapter object
2414  * @scmd:               SCSI command from the mid-layer
2415  * @mpi_request:        mpi request
2416  * @smid:               msg Index
2417  * @sge_count:          scatter gather element count.
2418  *
2419  * Return:              true: PRPs are built
2420  *                      false: IEEE SGLs needs to be built
2421  */
2422 static void
2423 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2424                 struct scsi_cmnd *scmd,
2425                 Mpi25SCSIIORequest_t *mpi_request,
2426                 u16 smid, int sge_count)
2427 {
2428         int sge_len, num_prp_in_chain = 0;
2429         Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2430         __le64 *curr_buff;
2431         dma_addr_t msg_dma, sge_addr, offset;
2432         u32 page_mask, page_mask_result;
2433         struct scatterlist *sg_scmd;
2434         u32 first_prp_len;
2435         int data_len = scsi_bufflen(scmd);
2436         u32 nvme_pg_size;
2437
2438         nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2439         /*
2440          * Nvme has a very convoluted prp format.  One prp is required
2441          * for each page or partial page. Driver need to split up OS sg_list
2442          * entries if it is longer than one page or cross a page
2443          * boundary.  Driver also have to insert a PRP list pointer entry as
2444          * the last entry in each physical page of the PRP list.
2445          *
2446          * NOTE: The first PRP "entry" is actually placed in the first
2447          * SGL entry in the main message as IEEE 64 format.  The 2nd
2448          * entry in the main message is the chain element, and the rest
2449          * of the PRP entries are built in the contiguous pcie buffer.
2450          */
2451         page_mask = nvme_pg_size - 1;
2452
2453         /*
2454          * Native SGL is needed.
2455          * Put a chain element in main message frame that points to the first
2456          * chain buffer.
2457          *
2458          * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2459          *        a native SGL.
2460          */
2461
2462         /* Set main message chain element pointer */
2463         main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2464         /*
2465          * For NVMe the chain element needs to be the 2nd SG entry in the main
2466          * message.
2467          */
2468         main_chain_element = (Mpi25IeeeSgeChain64_t *)
2469                 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2470
2471         /*
2472          * For the PRP entries, use the specially allocated buffer of
2473          * contiguous memory.  Normal chain buffers can't be used
2474          * because each chain buffer would need to be the size of an OS
2475          * page (4k).
2476          */
2477         curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2478         msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2479
2480         main_chain_element->Address = cpu_to_le64(msg_dma);
2481         main_chain_element->NextChainOffset = 0;
2482         main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2483                         MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2484                         MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2485
2486         /* Build first prp, sge need not to be page aligned*/
2487         ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2488         sg_scmd = scsi_sglist(scmd);
2489         sge_addr = sg_dma_address(sg_scmd);
2490         sge_len = sg_dma_len(sg_scmd);
2491
2492         offset = sge_addr & page_mask;
2493         first_prp_len = nvme_pg_size - offset;
2494
2495         ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2496         ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2497
2498         data_len -= first_prp_len;
2499
2500         if (sge_len > first_prp_len) {
2501                 sge_addr += first_prp_len;
2502                 sge_len -= first_prp_len;
2503         } else if (data_len && (sge_len == first_prp_len)) {
2504                 sg_scmd = sg_next(sg_scmd);
2505                 sge_addr = sg_dma_address(sg_scmd);
2506                 sge_len = sg_dma_len(sg_scmd);
2507         }
2508
2509         for (;;) {
2510                 offset = sge_addr & page_mask;
2511
2512                 /* Put PRP pointer due to page boundary*/
2513                 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2514                 if (unlikely(!page_mask_result)) {
2515                         scmd_printk(KERN_NOTICE,
2516                                 scmd, "page boundary curr_buff: 0x%p\n",
2517                                 curr_buff);
2518                         msg_dma += 8;
2519                         *curr_buff = cpu_to_le64(msg_dma);
2520                         curr_buff++;
2521                         num_prp_in_chain++;
2522                 }
2523
2524                 *curr_buff = cpu_to_le64(sge_addr);
2525                 curr_buff++;
2526                 msg_dma += 8;
2527                 num_prp_in_chain++;
2528
2529                 sge_addr += nvme_pg_size;
2530                 sge_len -= nvme_pg_size;
2531                 data_len -= nvme_pg_size;
2532
2533                 if (data_len <= 0)
2534                         break;
2535
2536                 if (sge_len > 0)
2537                         continue;
2538
2539                 sg_scmd = sg_next(sg_scmd);
2540                 sge_addr = sg_dma_address(sg_scmd);
2541                 sge_len = sg_dma_len(sg_scmd);
2542         }
2543
2544         main_chain_element->Length =
2545                 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2546         return;
2547 }
2548
2549 static bool
2550 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2551         struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2552 {
2553         u32 data_length = 0;
2554         bool build_prp = true;
2555
2556         data_length = scsi_bufflen(scmd);
2557         if (pcie_device &&
2558             (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2559                 build_prp = false;
2560                 return build_prp;
2561         }
2562
2563         /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2564          * we built IEEE SGL
2565          */
2566         if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2567                 build_prp = false;
2568
2569         return build_prp;
2570 }
2571
2572 /**
2573  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2574  * determine if the driver needs to build a native SGL.  If so, that native
2575  * SGL is built in the special contiguous buffers allocated especially for
2576  * PCIe SGL creation.  If the driver will not build a native SGL, return
2577  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2578  * supports NVMe.
2579  * @ioc: per adapter object
2580  * @mpi_request: mf request pointer
2581  * @smid: system request message index
2582  * @scmd: scsi command
2583  * @pcie_device: points to the PCIe device's info
2584  *
2585  * Return: 0 if native SGL was built, 1 if no SGL was built
2586  */
2587 static int
2588 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2589         Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2590         struct _pcie_device *pcie_device)
2591 {
2592         int sges_left;
2593
2594         /* Get the SG list pointer and info. */
2595         sges_left = scsi_dma_map(scmd);
2596         if (sges_left < 0) {
2597                 sdev_printk(KERN_ERR, scmd->device,
2598                         "scsi_dma_map failed: request for %d bytes!\n",
2599                         scsi_bufflen(scmd));
2600                 return 1;
2601         }
2602
2603         /* Check if we need to build a native SG list. */
2604         if (!base_is_prp_possible(ioc, pcie_device,
2605                                 scmd, sges_left)) {
2606                 /* We built a native SG list, just return. */
2607                 goto out;
2608         }
2609
2610         /*
2611          * Build native NVMe PRP.
2612          */
2613         base_make_prp_nvme(ioc, scmd, mpi_request,
2614                         smid, sges_left);
2615
2616         return 0;
2617 out:
2618         scsi_dma_unmap(scmd);
2619         return 1;
2620 }
2621
2622 /**
2623  * _base_add_sg_single_ieee - add sg element for IEEE format
2624  * @paddr: virtual address for SGE
2625  * @flags: SGE flags
2626  * @chain_offset: number of 128 byte elements from start of segment
2627  * @length: data transfer length
2628  * @dma_addr: Physical address
2629  */
2630 static void
2631 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2632         dma_addr_t dma_addr)
2633 {
2634         Mpi25IeeeSgeChain64_t *sgel = paddr;
2635
2636         sgel->Flags = flags;
2637         sgel->NextChainOffset = chain_offset;
2638         sgel->Length = cpu_to_le32(length);
2639         sgel->Address = cpu_to_le64(dma_addr);
2640 }
2641
2642 /**
2643  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2644  * @ioc: per adapter object
2645  * @paddr: virtual address for SGE
2646  *
2647  * Create a zero length scatter gather entry to insure the IOCs hardware has
2648  * something to use if the target device goes brain dead and tries
2649  * to send data even when none is asked for.
2650  */
2651 static void
2652 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2653 {
2654         u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2655                 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2656                 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2657
2658         _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2659 }
2660
2661 /**
2662  * _base_build_sg_scmd - main sg creation routine
2663  *              pcie_device is unused here!
2664  * @ioc: per adapter object
2665  * @scmd: scsi command
2666  * @smid: system request message index
2667  * @unused: unused pcie_device pointer
2668  * Context: none.
2669  *
2670  * The main routine that builds scatter gather table from a given
2671  * scsi request sent via the .queuecommand main handler.
2672  *
2673  * Return: 0 success, anything else error
2674  */
2675 static int
2676 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2677         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2678 {
2679         Mpi2SCSIIORequest_t *mpi_request;
2680         dma_addr_t chain_dma;
2681         struct scatterlist *sg_scmd;
2682         void *sg_local, *chain;
2683         u32 chain_offset;
2684         u32 chain_length;
2685         u32 chain_flags;
2686         int sges_left;
2687         u32 sges_in_segment;
2688         u32 sgl_flags;
2689         u32 sgl_flags_last_element;
2690         u32 sgl_flags_end_buffer;
2691         struct chain_tracker *chain_req;
2692
2693         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2694
2695         /* init scatter gather flags */
2696         sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2697         if (scmd->sc_data_direction == DMA_TO_DEVICE)
2698                 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2699         sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2700             << MPI2_SGE_FLAGS_SHIFT;
2701         sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2702             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2703             << MPI2_SGE_FLAGS_SHIFT;
2704         sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2705
2706         sg_scmd = scsi_sglist(scmd);
2707         sges_left = scsi_dma_map(scmd);
2708         if (sges_left < 0) {
2709                 sdev_printk(KERN_ERR, scmd->device,
2710                  "scsi_dma_map failed: request for %d bytes!\n",
2711                  scsi_bufflen(scmd));
2712                 return -ENOMEM;
2713         }
2714
2715         sg_local = &mpi_request->SGL;
2716         sges_in_segment = ioc->max_sges_in_main_message;
2717         if (sges_left <= sges_in_segment)
2718                 goto fill_in_last_segment;
2719
2720         mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2721             (sges_in_segment * ioc->sge_size))/4;
2722
2723         /* fill in main message segment when there is a chain following */
2724         while (sges_in_segment) {
2725                 if (sges_in_segment == 1)
2726                         ioc->base_add_sg_single(sg_local,
2727                             sgl_flags_last_element | sg_dma_len(sg_scmd),
2728                             sg_dma_address(sg_scmd));
2729                 else
2730                         ioc->base_add_sg_single(sg_local, sgl_flags |
2731                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2732                 sg_scmd = sg_next(sg_scmd);
2733                 sg_local += ioc->sge_size;
2734                 sges_left--;
2735                 sges_in_segment--;
2736         }
2737
2738         /* initializing the chain flags and pointers */
2739         chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2740         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2741         if (!chain_req)
2742                 return -1;
2743         chain = chain_req->chain_buffer;
2744         chain_dma = chain_req->chain_buffer_dma;
2745         do {
2746                 sges_in_segment = (sges_left <=
2747                     ioc->max_sges_in_chain_message) ? sges_left :
2748                     ioc->max_sges_in_chain_message;
2749                 chain_offset = (sges_left == sges_in_segment) ?
2750                     0 : (sges_in_segment * ioc->sge_size)/4;
2751                 chain_length = sges_in_segment * ioc->sge_size;
2752                 if (chain_offset) {
2753                         chain_offset = chain_offset <<
2754                             MPI2_SGE_CHAIN_OFFSET_SHIFT;
2755                         chain_length += ioc->sge_size;
2756                 }
2757                 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2758                     chain_length, chain_dma);
2759                 sg_local = chain;
2760                 if (!chain_offset)
2761                         goto fill_in_last_segment;
2762
2763                 /* fill in chain segments */
2764                 while (sges_in_segment) {
2765                         if (sges_in_segment == 1)
2766                                 ioc->base_add_sg_single(sg_local,
2767                                     sgl_flags_last_element |
2768                                     sg_dma_len(sg_scmd),
2769                                     sg_dma_address(sg_scmd));
2770                         else
2771                                 ioc->base_add_sg_single(sg_local, sgl_flags |
2772                                     sg_dma_len(sg_scmd),
2773                                     sg_dma_address(sg_scmd));
2774                         sg_scmd = sg_next(sg_scmd);
2775                         sg_local += ioc->sge_size;
2776                         sges_left--;
2777                         sges_in_segment--;
2778                 }
2779
2780                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2781                 if (!chain_req)
2782                         return -1;
2783                 chain = chain_req->chain_buffer;
2784                 chain_dma = chain_req->chain_buffer_dma;
2785         } while (1);
2786
2787
2788  fill_in_last_segment:
2789
2790         /* fill the last segment */
2791         while (sges_left) {
2792                 if (sges_left == 1)
2793                         ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2794                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2795                 else
2796                         ioc->base_add_sg_single(sg_local, sgl_flags |
2797                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2798                 sg_scmd = sg_next(sg_scmd);
2799                 sg_local += ioc->sge_size;
2800                 sges_left--;
2801         }
2802
2803         return 0;
2804 }
2805
2806 /**
2807  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2808  * @ioc: per adapter object
2809  * @scmd: scsi command
2810  * @smid: system request message index
2811  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2812  * constructed on need.
2813  * Context: none.
2814  *
2815  * The main routine that builds scatter gather table from a given
2816  * scsi request sent via the .queuecommand main handler.
2817  *
2818  * Return: 0 success, anything else error
2819  */
2820 static int
2821 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2822         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2823 {
2824         Mpi25SCSIIORequest_t *mpi_request;
2825         dma_addr_t chain_dma;
2826         struct scatterlist *sg_scmd;
2827         void *sg_local, *chain;
2828         u32 chain_offset;
2829         u32 chain_length;
2830         int sges_left;
2831         u32 sges_in_segment;
2832         u8 simple_sgl_flags;
2833         u8 simple_sgl_flags_last;
2834         u8 chain_sgl_flags;
2835         struct chain_tracker *chain_req;
2836
2837         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2838
2839         /* init scatter gather flags */
2840         simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2841             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2842         simple_sgl_flags_last = simple_sgl_flags |
2843             MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2844         chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2845             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2846
2847         /* Check if we need to build a native SG list. */
2848         if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2849                         smid, scmd, pcie_device) == 0)) {
2850                 /* We built a native SG list, just return. */
2851                 return 0;
2852         }
2853
2854         sg_scmd = scsi_sglist(scmd);
2855         sges_left = scsi_dma_map(scmd);
2856         if (sges_left < 0) {
2857                 sdev_printk(KERN_ERR, scmd->device,
2858                         "scsi_dma_map failed: request for %d bytes!\n",
2859                         scsi_bufflen(scmd));
2860                 return -ENOMEM;
2861         }
2862
2863         sg_local = &mpi_request->SGL;
2864         sges_in_segment = (ioc->request_sz -
2865                    offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2866         if (sges_left <= sges_in_segment)
2867                 goto fill_in_last_segment;
2868
2869         mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2870             (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2871
2872         /* fill in main message segment when there is a chain following */
2873         while (sges_in_segment > 1) {
2874                 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2875                     sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2876                 sg_scmd = sg_next(sg_scmd);
2877                 sg_local += ioc->sge_size_ieee;
2878                 sges_left--;
2879                 sges_in_segment--;
2880         }
2881
2882         /* initializing the pointers */
2883         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2884         if (!chain_req)
2885                 return -1;
2886         chain = chain_req->chain_buffer;
2887         chain_dma = chain_req->chain_buffer_dma;
2888         do {
2889                 sges_in_segment = (sges_left <=
2890                     ioc->max_sges_in_chain_message) ? sges_left :
2891                     ioc->max_sges_in_chain_message;
2892                 chain_offset = (sges_left == sges_in_segment) ?
2893                     0 : sges_in_segment;
2894                 chain_length = sges_in_segment * ioc->sge_size_ieee;
2895                 if (chain_offset)
2896                         chain_length += ioc->sge_size_ieee;
2897                 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2898                     chain_offset, chain_length, chain_dma);
2899
2900                 sg_local = chain;
2901                 if (!chain_offset)
2902                         goto fill_in_last_segment;
2903
2904                 /* fill in chain segments */
2905                 while (sges_in_segment) {
2906                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2907                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2908                         sg_scmd = sg_next(sg_scmd);
2909                         sg_local += ioc->sge_size_ieee;
2910                         sges_left--;
2911                         sges_in_segment--;
2912                 }
2913
2914                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2915                 if (!chain_req)
2916                         return -1;
2917                 chain = chain_req->chain_buffer;
2918                 chain_dma = chain_req->chain_buffer_dma;
2919         } while (1);
2920
2921
2922  fill_in_last_segment:
2923
2924         /* fill the last segment */
2925         while (sges_left > 0) {
2926                 if (sges_left == 1)
2927                         _base_add_sg_single_ieee(sg_local,
2928                             simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2929                             sg_dma_address(sg_scmd));
2930                 else
2931                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2932                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2933                 sg_scmd = sg_next(sg_scmd);
2934                 sg_local += ioc->sge_size_ieee;
2935                 sges_left--;
2936         }
2937
2938         return 0;
2939 }
2940
2941 /**
2942  * _base_build_sg_ieee - build generic sg for IEEE format
2943  * @ioc: per adapter object
2944  * @psge: virtual address for SGE
2945  * @data_out_dma: physical address for WRITES
2946  * @data_out_sz: data xfer size for WRITES
2947  * @data_in_dma: physical address for READS
2948  * @data_in_sz: data xfer size for READS
2949  */
2950 static void
2951 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2952         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2953         size_t data_in_sz)
2954 {
2955         u8 sgl_flags;
2956
2957         if (!data_out_sz && !data_in_sz) {
2958                 _base_build_zero_len_sge_ieee(ioc, psge);
2959                 return;
2960         }
2961
2962         if (data_out_sz && data_in_sz) {
2963                 /* WRITE sgel first */
2964                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2965                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2966                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2967                     data_out_dma);
2968
2969                 /* incr sgel */
2970                 psge += ioc->sge_size_ieee;
2971
2972                 /* READ sgel last */
2973                 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2974                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2975                     data_in_dma);
2976         } else if (data_out_sz) /* WRITE */ {
2977                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2978                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2979                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2980                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2981                     data_out_dma);
2982         } else if (data_in_sz) /* READ */ {
2983                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2984                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2985                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2986                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2987                     data_in_dma);
2988         }
2989 }
2990
2991 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2992
2993 /**
2994  * _base_config_dma_addressing - set dma addressing
2995  * @ioc: per adapter object
2996  * @pdev: PCI device struct
2997  *
2998  * Return: 0 for success, non-zero for failure.
2999  */
3000 static int
3001 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
3002 {
3003         struct sysinfo s;
3004
3005         if (ioc->is_mcpu_endpoint ||
3006             sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma ||
3007             dma_get_required_mask(&pdev->dev) <= 32)
3008                 ioc->dma_mask = 32;
3009         /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
3010         else if (ioc->hba_mpi_version_belonged > MPI2_VERSION)
3011                 ioc->dma_mask = 63;
3012         else
3013                 ioc->dma_mask = 64;
3014
3015         if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)) ||
3016             dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)))
3017                 return -ENODEV;
3018
3019         if (ioc->dma_mask > 32) {
3020                 ioc->base_add_sg_single = &_base_add_sg_single_64;
3021                 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
3022         } else {
3023                 ioc->base_add_sg_single = &_base_add_sg_single_32;
3024                 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
3025         }
3026
3027         si_meminfo(&s);
3028         ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
3029                 ioc->dma_mask, convert_to_kb(s.totalram));
3030
3031         return 0;
3032 }
3033
3034 /**
3035  * _base_check_enable_msix - checks MSIX capabable.
3036  * @ioc: per adapter object
3037  *
3038  * Check to see if card is capable of MSIX, and set number
3039  * of available msix vectors
3040  */
3041 static int
3042 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3043 {
3044         int base;
3045         u16 message_control;
3046
3047         /* Check whether controller SAS2008 B0 controller,
3048          * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
3049          */
3050         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
3051             ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
3052                 return -EINVAL;
3053         }
3054
3055         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
3056         if (!base) {
3057                 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
3058                 return -EINVAL;
3059         }
3060
3061         /* get msix vector count */
3062         /* NUMA_IO not supported for older controllers */
3063         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
3064             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
3065             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
3066             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
3067             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
3068             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
3069             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
3070                 ioc->msix_vector_count = 1;
3071         else {
3072                 pci_read_config_word(ioc->pdev, base + 2, &message_control);
3073                 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
3074         }
3075         dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
3076                                   ioc->msix_vector_count));
3077         return 0;
3078 }
3079
3080 /**
3081  * mpt3sas_base_free_irq - free irq
3082  * @ioc: per adapter object
3083  *
3084  * Freeing respective reply_queue from the list.
3085  */
3086 void
3087 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
3088 {
3089         unsigned int irq;
3090         struct adapter_reply_queue *reply_q, *next;
3091
3092         if (list_empty(&ioc->reply_queue_list))
3093                 return;
3094
3095         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3096                 list_del(&reply_q->list);
3097                 if (reply_q->is_iouring_poll_q) {
3098                         kfree(reply_q);
3099                         continue;
3100                 }
3101
3102                 if (ioc->smp_affinity_enable) {
3103                         irq = pci_irq_vector(ioc->pdev, reply_q->msix_index);
3104                         irq_update_affinity_hint(irq, NULL);
3105                 }
3106                 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3107                          reply_q);
3108                 kfree(reply_q);
3109         }
3110 }
3111
3112 /**
3113  * _base_request_irq - request irq
3114  * @ioc: per adapter object
3115  * @index: msix index into vector table
3116  *
3117  * Inserting respective reply_queue into the list.
3118  */
3119 static int
3120 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3121 {
3122         struct pci_dev *pdev = ioc->pdev;
3123         struct adapter_reply_queue *reply_q;
3124         int r, qid;
3125
3126         reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3127         if (!reply_q) {
3128                 ioc_err(ioc, "unable to allocate memory %zu!\n",
3129                         sizeof(struct adapter_reply_queue));
3130                 return -ENOMEM;
3131         }
3132         reply_q->ioc = ioc;
3133         reply_q->msix_index = index;
3134
3135         atomic_set(&reply_q->busy, 0);
3136
3137         if (index >= ioc->iopoll_q_start_index) {
3138                 qid = index - ioc->iopoll_q_start_index;
3139                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d",
3140                     ioc->driver_name, ioc->id, qid);
3141                 reply_q->is_iouring_poll_q = 1;
3142                 ioc->io_uring_poll_queues[qid].reply_q = reply_q;
3143                 goto out;
3144         }
3145
3146
3147         if (ioc->msix_enable)
3148                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3149                     ioc->driver_name, ioc->id, index);
3150         else
3151                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3152                     ioc->driver_name, ioc->id);
3153         r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3154                         IRQF_SHARED, reply_q->name, reply_q);
3155         if (r) {
3156                 pr_err("%s: unable to allocate interrupt %d!\n",
3157                        reply_q->name, pci_irq_vector(pdev, index));
3158                 kfree(reply_q);
3159                 return -EBUSY;
3160         }
3161 out:
3162         INIT_LIST_HEAD(&reply_q->list);
3163         list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3164         return 0;
3165 }
3166
3167 /**
3168  * _base_assign_reply_queues - assigning msix index for each cpu
3169  * @ioc: per adapter object
3170  *
3171  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3172  */
3173 static void
3174 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3175 {
3176         unsigned int cpu, nr_cpus, nr_msix, index = 0, irq;
3177         struct adapter_reply_queue *reply_q;
3178         int iopoll_q_count = ioc->reply_queue_count -
3179             ioc->iopoll_q_start_index;
3180         const struct cpumask *mask;
3181
3182         if (!_base_is_controller_msix_enabled(ioc))
3183                 return;
3184
3185         if (ioc->msix_load_balance)
3186                 return;
3187
3188         memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3189
3190         nr_cpus = num_online_cpus();
3191         nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3192                                                ioc->facts.MaxMSIxVectors);
3193         if (!nr_msix)
3194                 return;
3195
3196         if (ioc->smp_affinity_enable) {
3197
3198                 /*
3199                  * set irq affinity to local numa node for those irqs
3200                  * corresponding to high iops queues.
3201                  */
3202                 if (ioc->high_iops_queues) {
3203                         mask = cpumask_of_node(dev_to_node(&ioc->pdev->dev));
3204                         for (index = 0; index < ioc->high_iops_queues;
3205                             index++) {
3206                                 irq = pci_irq_vector(ioc->pdev, index);
3207                                 irq_set_affinity_and_hint(irq, mask);
3208                         }
3209                 }
3210
3211                 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3212                         const cpumask_t *mask;
3213
3214                         if (reply_q->msix_index < ioc->high_iops_queues ||
3215                             reply_q->msix_index >= ioc->iopoll_q_start_index)
3216                                 continue;
3217
3218                         mask = pci_irq_get_affinity(ioc->pdev,
3219                             reply_q->msix_index);
3220                         if (!mask) {
3221                                 ioc_warn(ioc, "no affinity for msi %x\n",
3222                                          reply_q->msix_index);
3223                                 goto fall_back;
3224                         }
3225
3226                         for_each_cpu_and(cpu, mask, cpu_online_mask) {
3227                                 if (cpu >= ioc->cpu_msix_table_sz)
3228                                         break;
3229                                 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3230                         }
3231                 }
3232                 return;
3233         }
3234
3235 fall_back:
3236         cpu = cpumask_first(cpu_online_mask);
3237         nr_msix -= (ioc->high_iops_queues - iopoll_q_count);
3238         index = 0;
3239
3240         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3241                 unsigned int i, group = nr_cpus / nr_msix;
3242
3243                 if (reply_q->msix_index < ioc->high_iops_queues ||
3244                     reply_q->msix_index >= ioc->iopoll_q_start_index)
3245                         continue;
3246
3247                 if (cpu >= nr_cpus)
3248                         break;
3249
3250                 if (index < nr_cpus % nr_msix)
3251                         group++;
3252
3253                 for (i = 0 ; i < group ; i++) {
3254                         ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3255                         cpu = cpumask_next(cpu, cpu_online_mask);
3256                 }
3257                 index++;
3258         }
3259 }
3260
3261 /**
3262  * _base_check_and_enable_high_iops_queues - enable high iops mode
3263  * @ioc: per adapter object
3264  * @hba_msix_vector_count: msix vectors supported by HBA
3265  *
3266  * Enable high iops queues only if
3267  *  - HBA is a SEA/AERO controller and
3268  *  - MSI-Xs vector supported by the HBA is 128 and
3269  *  - total CPU count in the system >=16 and
3270  *  - loaded driver with default max_msix_vectors module parameter and
3271  *  - system booted in non kdump mode
3272  *
3273  * Return: nothing.
3274  */
3275 static void
3276 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3277                 int hba_msix_vector_count)
3278 {
3279         u16 lnksta, speed;
3280
3281         /*
3282          * Disable high iops queues if io uring poll queues are enabled.
3283          */
3284         if (perf_mode == MPT_PERF_MODE_IOPS ||
3285             perf_mode == MPT_PERF_MODE_LATENCY ||
3286             ioc->io_uring_poll_queues) {
3287                 ioc->high_iops_queues = 0;
3288                 return;
3289         }
3290
3291         if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3292
3293                 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3294                 speed = lnksta & PCI_EXP_LNKSTA_CLS;
3295
3296                 if (speed < 0x4) {
3297                         ioc->high_iops_queues = 0;
3298                         return;
3299                 }
3300         }
3301
3302         if (!reset_devices && ioc->is_aero_ioc &&
3303             hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3304             num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3305             max_msix_vectors == -1)
3306                 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3307         else
3308                 ioc->high_iops_queues = 0;
3309 }
3310
3311 /**
3312  * mpt3sas_base_disable_msix - disables msix
3313  * @ioc: per adapter object
3314  *
3315  */
3316 void
3317 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3318 {
3319         if (!ioc->msix_enable)
3320                 return;
3321         pci_free_irq_vectors(ioc->pdev);
3322         ioc->msix_enable = 0;
3323         kfree(ioc->io_uring_poll_queues);
3324 }
3325
3326 /**
3327  * _base_alloc_irq_vectors - allocate msix vectors
3328  * @ioc: per adapter object
3329  *
3330  */
3331 static int
3332 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3333 {
3334         int i, irq_flags = PCI_IRQ_MSIX;
3335         struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3336         struct irq_affinity *descp = &desc;
3337         /*
3338          * Don't allocate msix vectors for poll_queues.
3339          * msix_vectors is always within a range of FW supported reply queue.
3340          */
3341         int nr_msix_vectors = ioc->iopoll_q_start_index;
3342
3343
3344         if (ioc->smp_affinity_enable)
3345                 irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
3346         else
3347                 descp = NULL;
3348
3349         ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues,
3350             ioc->reply_queue_count, nr_msix_vectors);
3351
3352         i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3353             ioc->high_iops_queues,
3354             nr_msix_vectors, irq_flags, descp);
3355
3356         return i;
3357 }
3358
3359 /**
3360  * _base_enable_msix - enables msix, failback to io_apic
3361  * @ioc: per adapter object
3362  *
3363  */
3364 static int
3365 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3366 {
3367         int r;
3368         int i, local_max_msix_vectors;
3369         u8 try_msix = 0;
3370         int iopoll_q_count = 0;
3371
3372         ioc->msix_load_balance = false;
3373
3374         if (msix_disable == -1 || msix_disable == 0)
3375                 try_msix = 1;
3376
3377         if (!try_msix)
3378                 goto try_ioapic;
3379
3380         if (_base_check_enable_msix(ioc) != 0)
3381                 goto try_ioapic;
3382
3383         ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3384         pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3385                 ioc->cpu_count, max_msix_vectors);
3386
3387         ioc->reply_queue_count =
3388                 min_t(int, ioc->cpu_count, ioc->msix_vector_count);
3389
3390         if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3391                 local_max_msix_vectors = (reset_devices) ? 1 : 8;
3392         else
3393                 local_max_msix_vectors = max_msix_vectors;
3394
3395         if (local_max_msix_vectors == 0)
3396                 goto try_ioapic;
3397
3398         /*
3399          * Enable msix_load_balance only if combined reply queue mode is
3400          * disabled on SAS3 & above generation HBA devices.
3401          */
3402         if (!ioc->combined_reply_queue &&
3403             ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3404                 ioc_info(ioc,
3405                     "combined ReplyQueue is off, Enabling msix load balance\n");
3406                 ioc->msix_load_balance = true;
3407         }
3408
3409         /*
3410          * smp affinity setting is not need when msix load balance
3411          * is enabled.
3412          */
3413         if (ioc->msix_load_balance)
3414                 ioc->smp_affinity_enable = 0;
3415
3416         if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1)
3417                 ioc->shost->host_tagset = 0;
3418
3419         /*
3420          * Enable io uring poll queues only if host_tagset is enabled.
3421          */
3422         if (ioc->shost->host_tagset)
3423                 iopoll_q_count = poll_queues;
3424
3425         if (iopoll_q_count) {
3426                 ioc->io_uring_poll_queues = kcalloc(iopoll_q_count,
3427                     sizeof(struct io_uring_poll_queue), GFP_KERNEL);
3428                 if (!ioc->io_uring_poll_queues)
3429                         iopoll_q_count = 0;
3430         }
3431
3432         if (ioc->is_aero_ioc)
3433                 _base_check_and_enable_high_iops_queues(ioc,
3434                     ioc->msix_vector_count);
3435
3436         /*
3437          * Add high iops queues count to reply queue count if high iops queues
3438          * are enabled.
3439          */
3440         ioc->reply_queue_count = min_t(int,
3441             ioc->reply_queue_count + ioc->high_iops_queues,
3442             ioc->msix_vector_count);
3443
3444         /*
3445          * Adjust the reply queue count incase reply queue count
3446          * exceeds the user provided MSIx vectors count.
3447          */
3448         if (local_max_msix_vectors > 0)
3449                 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3450                     ioc->reply_queue_count);
3451         /*
3452          * Add io uring poll queues count to reply queues count
3453          * if io uring is enabled in driver.
3454          */
3455         if (iopoll_q_count) {
3456                 if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS))
3457                         iopoll_q_count = 0;
3458                 ioc->reply_queue_count = min_t(int,
3459                     ioc->reply_queue_count + iopoll_q_count,
3460                     ioc->msix_vector_count);
3461         }
3462
3463         /*
3464          * Starting index of io uring poll queues in reply queue list.
3465          */
3466         ioc->iopoll_q_start_index =
3467             ioc->reply_queue_count - iopoll_q_count;
3468
3469         r = _base_alloc_irq_vectors(ioc);
3470         if (r < 0) {
3471                 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3472                 goto try_ioapic;
3473         }
3474
3475         /*
3476          * Adjust the reply queue count if the allocated
3477          * MSIx vectors is less then the requested number
3478          * of MSIx vectors.
3479          */
3480         if (r < ioc->iopoll_q_start_index) {
3481                 ioc->reply_queue_count = r + iopoll_q_count;
3482                 ioc->iopoll_q_start_index =
3483                     ioc->reply_queue_count - iopoll_q_count;
3484         }
3485
3486         ioc->msix_enable = 1;
3487         for (i = 0; i < ioc->reply_queue_count; i++) {
3488                 r = _base_request_irq(ioc, i);
3489                 if (r) {
3490                         mpt3sas_base_free_irq(ioc);
3491                         mpt3sas_base_disable_msix(ioc);
3492                         goto try_ioapic;
3493                 }
3494         }
3495
3496         ioc_info(ioc, "High IOPs queues : %s\n",
3497                         ioc->high_iops_queues ? "enabled" : "disabled");
3498
3499         return 0;
3500
3501 /* failback to io_apic interrupt routing */
3502  try_ioapic:
3503         ioc->high_iops_queues = 0;
3504         ioc_info(ioc, "High IOPs queues : disabled\n");
3505         ioc->reply_queue_count = 1;
3506         ioc->iopoll_q_start_index = ioc->reply_queue_count - 0;
3507         r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3508         if (r < 0) {
3509                 dfailprintk(ioc,
3510                             ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3511                                      r));
3512         } else
3513                 r = _base_request_irq(ioc, 0);
3514
3515         return r;
3516 }
3517
3518 /**
3519  * mpt3sas_base_unmap_resources - free controller resources
3520  * @ioc: per adapter object
3521  */
3522 static void
3523 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3524 {
3525         struct pci_dev *pdev = ioc->pdev;
3526
3527         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3528
3529         mpt3sas_base_free_irq(ioc);
3530         mpt3sas_base_disable_msix(ioc);
3531
3532         kfree(ioc->replyPostRegisterIndex);
3533         ioc->replyPostRegisterIndex = NULL;
3534
3535
3536         if (ioc->chip_phys) {
3537                 iounmap(ioc->chip);
3538                 ioc->chip_phys = 0;
3539         }
3540
3541         if (pci_is_enabled(pdev)) {
3542                 pci_release_selected_regions(ioc->pdev, ioc->bars);
3543                 pci_disable_pcie_error_reporting(pdev);
3544                 pci_disable_device(pdev);
3545         }
3546 }
3547
3548 static int
3549 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3550
3551 /**
3552  * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state
3553  *     and if it is in fault state then issue diag reset.
3554  * @ioc: per adapter object
3555  *
3556  * Return: 0 for success, non-zero for failure.
3557  */
3558 int
3559 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3560 {
3561         u32 ioc_state;
3562         int rc = -EFAULT;
3563
3564         dinitprintk(ioc, pr_info("%s\n", __func__));
3565         if (ioc->pci_error_recovery)
3566                 return 0;
3567         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3568         dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3569
3570         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3571                 mpt3sas_print_fault_code(ioc, ioc_state &
3572                     MPI2_DOORBELL_DATA_MASK);
3573                 mpt3sas_base_mask_interrupts(ioc);
3574                 rc = _base_diag_reset(ioc);
3575         } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3576             MPI2_IOC_STATE_COREDUMP) {
3577                 mpt3sas_print_coredump_info(ioc, ioc_state &
3578                      MPI2_DOORBELL_DATA_MASK);
3579                 mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3580                 mpt3sas_base_mask_interrupts(ioc);
3581                 rc = _base_diag_reset(ioc);
3582         }
3583
3584         return rc;
3585 }
3586
3587 /**
3588  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3589  * @ioc: per adapter object
3590  *
3591  * Return: 0 for success, non-zero for failure.
3592  */
3593 int
3594 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3595 {
3596         struct pci_dev *pdev = ioc->pdev;
3597         u32 memap_sz;
3598         u32 pio_sz;
3599         int i, r = 0, rc;
3600         u64 pio_chip = 0;
3601         phys_addr_t chip_phys = 0;
3602         struct adapter_reply_queue *reply_q;
3603         int iopoll_q_count = 0;
3604
3605         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3606
3607         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3608         if (pci_enable_device_mem(pdev)) {
3609                 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3610                 ioc->bars = 0;
3611                 return -ENODEV;
3612         }
3613
3614
3615         if (pci_request_selected_regions(pdev, ioc->bars,
3616             ioc->driver_name)) {
3617                 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3618                 ioc->bars = 0;
3619                 r = -ENODEV;
3620                 goto out_fail;
3621         }
3622
3623 /* AER (Advanced Error Reporting) hooks */
3624         pci_enable_pcie_error_reporting(pdev);
3625
3626         pci_set_master(pdev);
3627
3628
3629         if (_base_config_dma_addressing(ioc, pdev) != 0) {
3630                 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3631                 r = -ENODEV;
3632                 goto out_fail;
3633         }
3634
3635         for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3636              (!memap_sz || !pio_sz); i++) {
3637                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3638                         if (pio_sz)
3639                                 continue;
3640                         pio_chip = (u64)pci_resource_start(pdev, i);
3641                         pio_sz = pci_resource_len(pdev, i);
3642                 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3643                         if (memap_sz)
3644                                 continue;
3645                         ioc->chip_phys = pci_resource_start(pdev, i);
3646                         chip_phys = ioc->chip_phys;
3647                         memap_sz = pci_resource_len(pdev, i);
3648                         ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3649                 }
3650         }
3651
3652         if (ioc->chip == NULL) {
3653                 ioc_err(ioc,
3654                     "unable to map adapter memory! or resource not found\n");
3655                 r = -EINVAL;
3656                 goto out_fail;
3657         }
3658
3659         mpt3sas_base_mask_interrupts(ioc);
3660
3661         r = _base_get_ioc_facts(ioc);
3662         if (r) {
3663                 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
3664                 if (rc || (_base_get_ioc_facts(ioc)))
3665                         goto out_fail;
3666         }
3667
3668         if (!ioc->rdpq_array_enable_assigned) {
3669                 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3670                 ioc->rdpq_array_enable_assigned = 1;
3671         }
3672
3673         r = _base_enable_msix(ioc);
3674         if (r)
3675                 goto out_fail;
3676
3677         iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index;
3678         for (i = 0; i < iopoll_q_count; i++) {
3679                 atomic_set(&ioc->io_uring_poll_queues[i].busy, 0);
3680                 atomic_set(&ioc->io_uring_poll_queues[i].pause, 0);
3681         }
3682
3683         if (!ioc->is_driver_loading)
3684                 _base_init_irqpolls(ioc);
3685         /* Use the Combined reply queue feature only for SAS3 C0 & higher
3686          * revision HBAs and also only when reply queue count is greater than 8
3687          */
3688         if (ioc->combined_reply_queue) {
3689                 /* Determine the Supplemental Reply Post Host Index Registers
3690                  * Addresse. Supplemental Reply Post Host Index Registers
3691                  * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3692                  * each register is at offset bytes of
3693                  * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3694                  */
3695                 ioc->replyPostRegisterIndex = kcalloc(
3696                      ioc->combined_reply_index_count,
3697                      sizeof(resource_size_t *), GFP_KERNEL);
3698                 if (!ioc->replyPostRegisterIndex) {
3699                         ioc_err(ioc,
3700                             "allocation for replyPostRegisterIndex failed!\n");
3701                         r = -ENOMEM;
3702                         goto out_fail;
3703                 }
3704
3705                 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3706                         ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3707                              ((u8 __force *)&ioc->chip->Doorbell +
3708                              MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3709                              (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3710                 }
3711         }
3712
3713         if (ioc->is_warpdrive) {
3714                 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3715                     &ioc->chip->ReplyPostHostIndex;
3716
3717                 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3718                         ioc->reply_post_host_index[i] =
3719                         (resource_size_t __iomem *)
3720                         ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3721                         * 4)));
3722         }
3723
3724         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3725                 if (reply_q->msix_index >= ioc->iopoll_q_start_index) {
3726                         pr_info("%s: enabled: index: %d\n",
3727                             reply_q->name, reply_q->msix_index);
3728                         continue;
3729                 }
3730
3731                 pr_info("%s: %s enabled: IRQ %d\n",
3732                         reply_q->name,
3733                         ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3734                         pci_irq_vector(ioc->pdev, reply_q->msix_index));
3735         }
3736
3737         ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3738                  &chip_phys, ioc->chip, memap_sz);
3739         ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3740                  (unsigned long long)pio_chip, pio_sz);
3741
3742         /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3743         pci_save_state(pdev);
3744         return 0;
3745
3746  out_fail:
3747         mpt3sas_base_unmap_resources(ioc);
3748         return r;
3749 }
3750
3751 /**
3752  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3753  * @ioc: per adapter object
3754  * @smid: system request message index(smid zero is invalid)
3755  *
3756  * Return: virt pointer to message frame.
3757  */
3758 void *
3759 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3760 {
3761         return (void *)(ioc->request + (smid * ioc->request_sz));
3762 }
3763
3764 /**
3765  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3766  * @ioc: per adapter object
3767  * @smid: system request message index
3768  *
3769  * Return: virt pointer to sense buffer.
3770  */
3771 void *
3772 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3773 {
3774         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3775 }
3776
3777 /**
3778  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3779  * @ioc: per adapter object
3780  * @smid: system request message index
3781  *
3782  * Return: phys pointer to the low 32bit address of the sense buffer.
3783  */
3784 __le32
3785 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3786 {
3787         return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3788             SCSI_SENSE_BUFFERSIZE));
3789 }
3790
3791 /**
3792  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3793  * @ioc: per adapter object
3794  * @smid: system request message index
3795  *
3796  * Return: virt pointer to a PCIe SGL.
3797  */
3798 void *
3799 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3800 {
3801         return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3802 }
3803
3804 /**
3805  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3806  * @ioc: per adapter object
3807  * @smid: system request message index
3808  *
3809  * Return: phys pointer to the address of the PCIe buffer.
3810  */
3811 dma_addr_t
3812 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3813 {
3814         return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3815 }
3816
3817 /**
3818  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3819  * @ioc: per adapter object
3820  * @phys_addr: lower 32 physical addr of the reply
3821  *
3822  * Converts 32bit lower physical addr into a virt address.
3823  */
3824 void *
3825 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3826 {
3827         if (!phys_addr)
3828                 return NULL;
3829         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3830 }
3831
3832 /**
3833  * _base_get_msix_index - get the msix index
3834  * @ioc: per adapter object
3835  * @scmd: scsi_cmnd object
3836  *
3837  * Return: msix index of general reply queues,
3838  * i.e. reply queue on which IO request's reply
3839  * should be posted by the HBA firmware.
3840  */
3841 static inline u8
3842 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3843         struct scsi_cmnd *scmd)
3844 {
3845         /* Enables reply_queue load balancing */
3846         if (ioc->msix_load_balance)
3847                 return ioc->reply_queue_count ?
3848                     base_mod64(atomic64_add_return(1,
3849                     &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3850
3851         if (scmd && ioc->shost->nr_hw_queues > 1) {
3852                 u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3853
3854                 return blk_mq_unique_tag_to_hwq(tag) +
3855                         ioc->high_iops_queues;
3856         }
3857
3858         return ioc->cpu_msix_table[raw_smp_processor_id()];
3859 }
3860
3861 /**
3862  * _base_get_high_iops_msix_index - get the msix index of
3863  *                              high iops queues
3864  * @ioc: per adapter object
3865  * @scmd: scsi_cmnd object
3866  *
3867  * Return: msix index of high iops reply queues.
3868  * i.e. high iops reply queue on which IO request's
3869  * reply should be posted by the HBA firmware.
3870  */
3871 static inline u8
3872 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3873         struct scsi_cmnd *scmd)
3874 {
3875         /**
3876          * Round robin the IO interrupts among the high iops
3877          * reply queues in terms of batch count 16 when outstanding
3878          * IOs on the target device is >=8.
3879          */
3880
3881         if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3882                 return base_mod64((
3883                     atomic64_add_return(1, &ioc->high_iops_outstanding) /
3884                     MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3885                     MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3886
3887         return _base_get_msix_index(ioc, scmd);
3888 }
3889
3890 /**
3891  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3892  * @ioc: per adapter object
3893  * @cb_idx: callback index
3894  *
3895  * Return: smid (zero is invalid)
3896  */
3897 u16
3898 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3899 {
3900         unsigned long flags;
3901         struct request_tracker *request;
3902         u16 smid;
3903
3904         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3905         if (list_empty(&ioc->internal_free_list)) {
3906                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3907                 ioc_err(ioc, "%s: smid not available\n", __func__);
3908                 return 0;
3909         }
3910
3911         request = list_entry(ioc->internal_free_list.next,
3912             struct request_tracker, tracker_list);
3913         request->cb_idx = cb_idx;
3914         smid = request->smid;
3915         list_del(&request->tracker_list);
3916         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3917         return smid;
3918 }
3919
3920 /**
3921  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3922  * @ioc: per adapter object
3923  * @cb_idx: callback index
3924  * @scmd: pointer to scsi command object
3925  *
3926  * Return: smid (zero is invalid)
3927  */
3928 u16
3929 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3930         struct scsi_cmnd *scmd)
3931 {
3932         struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3933         u16 smid;
3934         u32 tag, unique_tag;
3935
3936         unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3937         tag = blk_mq_unique_tag_to_tag(unique_tag);
3938
3939         /*
3940          * Store hw queue number corresponding to the tag.
3941          * This hw queue number is used later to determine
3942          * the unique_tag using the logic below. This unique_tag
3943          * is used to retrieve the scmd pointer corresponding
3944          * to tag using scsi_host_find_tag() API.
3945          *
3946          * tag = smid - 1;
3947          * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag;
3948          */
3949         ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag);
3950
3951         smid = tag + 1;
3952         request->cb_idx = cb_idx;
3953         request->smid = smid;
3954         request->scmd = scmd;
3955         INIT_LIST_HEAD(&request->chain_list);
3956         return smid;
3957 }
3958
3959 /**
3960  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3961  * @ioc: per adapter object
3962  * @cb_idx: callback index
3963  *
3964  * Return: smid (zero is invalid)
3965  */
3966 u16
3967 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3968 {
3969         unsigned long flags;
3970         struct request_tracker *request;
3971         u16 smid;
3972
3973         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3974         if (list_empty(&ioc->hpr_free_list)) {
3975                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3976                 return 0;
3977         }
3978
3979         request = list_entry(ioc->hpr_free_list.next,
3980             struct request_tracker, tracker_list);
3981         request->cb_idx = cb_idx;
3982         smid = request->smid;
3983         list_del(&request->tracker_list);
3984         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3985         return smid;
3986 }
3987
3988 static void
3989 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3990 {
3991         /*
3992          * See _wait_for_commands_to_complete() call with regards to this code.
3993          */
3994         if (ioc->shost_recovery && ioc->pending_io_count) {
3995                 ioc->pending_io_count = scsi_host_busy(ioc->shost);
3996                 if (ioc->pending_io_count == 0)
3997                         wake_up(&ioc->reset_wq);
3998         }
3999 }
4000
4001 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
4002                            struct scsiio_tracker *st)
4003 {
4004         if (WARN_ON(st->smid == 0))
4005                 return;
4006         st->cb_idx = 0xFF;
4007         st->direct_io = 0;
4008         st->scmd = NULL;
4009         atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
4010         st->smid = 0;
4011 }
4012
4013 /**
4014  * mpt3sas_base_free_smid - put smid back on free_list
4015  * @ioc: per adapter object
4016  * @smid: system request message index
4017  */
4018 void
4019 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4020 {
4021         unsigned long flags;
4022         int i;
4023
4024         if (smid < ioc->hi_priority_smid) {
4025                 struct scsiio_tracker *st;
4026                 void *request;
4027
4028                 st = _get_st_from_smid(ioc, smid);
4029                 if (!st) {
4030                         _base_recovery_check(ioc);
4031                         return;
4032                 }
4033
4034                 /* Clear MPI request frame */
4035                 request = mpt3sas_base_get_msg_frame(ioc, smid);
4036                 memset(request, 0, ioc->request_sz);
4037
4038                 mpt3sas_base_clear_st(ioc, st);
4039                 _base_recovery_check(ioc);
4040                 ioc->io_queue_num[smid - 1] = 0;
4041                 return;
4042         }
4043
4044         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4045         if (smid < ioc->internal_smid) {
4046                 /* hi-priority */
4047                 i = smid - ioc->hi_priority_smid;
4048                 ioc->hpr_lookup[i].cb_idx = 0xFF;
4049                 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
4050         } else if (smid <= ioc->hba_queue_depth) {
4051                 /* internal queue */
4052                 i = smid - ioc->internal_smid;
4053                 ioc->internal_lookup[i].cb_idx = 0xFF;
4054                 list_add(&ioc->internal_lookup[i].tracker_list,
4055                     &ioc->internal_free_list);
4056         }
4057         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4058 }
4059
4060 /**
4061  * _base_mpi_ep_writeq - 32 bit write to MMIO
4062  * @b: data payload
4063  * @addr: address in MMIO space
4064  * @writeq_lock: spin lock
4065  *
4066  * This special handling for MPI EP to take care of 32 bit
4067  * environment where its not quarenteed to send the entire word
4068  * in one transfer.
4069  */
4070 static inline void
4071 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
4072                                         spinlock_t *writeq_lock)
4073 {
4074         unsigned long flags;
4075
4076         spin_lock_irqsave(writeq_lock, flags);
4077         __raw_writel((u32)(b), addr);
4078         __raw_writel((u32)(b >> 32), (addr + 4));
4079         spin_unlock_irqrestore(writeq_lock, flags);
4080 }
4081
4082 /**
4083  * _base_writeq - 64 bit write to MMIO
4084  * @b: data payload
4085  * @addr: address in MMIO space
4086  * @writeq_lock: spin lock
4087  *
4088  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
4089  * care of 32 bit environment where its not quarenteed to send the entire word
4090  * in one transfer.
4091  */
4092 #if defined(writeq) && defined(CONFIG_64BIT)
4093 static inline void
4094 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4095 {
4096         wmb();
4097         __raw_writeq(b, addr);
4098         barrier();
4099 }
4100 #else
4101 static inline void
4102 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4103 {
4104         _base_mpi_ep_writeq(b, addr, writeq_lock);
4105 }
4106 #endif
4107
4108 /**
4109  * _base_set_and_get_msix_index - get the msix index and assign to msix_io
4110  *                                variable of scsi tracker
4111  * @ioc: per adapter object
4112  * @smid: system request message index
4113  *
4114  * Return: msix index.
4115  */
4116 static u8
4117 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4118 {
4119         struct scsiio_tracker *st = NULL;
4120
4121         if (smid < ioc->hi_priority_smid)
4122                 st = _get_st_from_smid(ioc, smid);
4123
4124         if (st == NULL)
4125                 return  _base_get_msix_index(ioc, NULL);
4126
4127         st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
4128         return st->msix_io;
4129 }
4130
4131 /**
4132  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
4133  * @ioc: per adapter object
4134  * @smid: system request message index
4135  * @handle: device handle
4136  */
4137 static void
4138 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
4139         u16 smid, u16 handle)
4140 {
4141         Mpi2RequestDescriptorUnion_t descriptor;
4142         u64 *request = (u64 *)&descriptor;
4143         void *mpi_req_iomem;
4144         __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4145
4146         _clone_sg_entries(ioc, (void *) mfp, smid);
4147         mpi_req_iomem = (void __force *)ioc->chip +
4148                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4149         _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4150                                         ioc->request_sz);
4151         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4152         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4153         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4154         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4155         descriptor.SCSIIO.LMID = 0;
4156         _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4157             &ioc->scsi_lookup_lock);
4158 }
4159
4160 /**
4161  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
4162  * @ioc: per adapter object
4163  * @smid: system request message index
4164  * @handle: device handle
4165  */
4166 static void
4167 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
4168 {
4169         Mpi2RequestDescriptorUnion_t descriptor;
4170         u64 *request = (u64 *)&descriptor;
4171
4172
4173         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4174         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4175         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4176         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4177         descriptor.SCSIIO.LMID = 0;
4178         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4179             &ioc->scsi_lookup_lock);
4180 }
4181
4182 /**
4183  * _base_put_smid_fast_path - send fast path request to firmware
4184  * @ioc: per adapter object
4185  * @smid: system request message index
4186  * @handle: device handle
4187  */
4188 static void
4189 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4190         u16 handle)
4191 {
4192         Mpi2RequestDescriptorUnion_t descriptor;
4193         u64 *request = (u64 *)&descriptor;
4194
4195         descriptor.SCSIIO.RequestFlags =
4196             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4197         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4198         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4199         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4200         descriptor.SCSIIO.LMID = 0;
4201         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4202             &ioc->scsi_lookup_lock);
4203 }
4204
4205 /**
4206  * _base_put_smid_hi_priority - send Task Management request to firmware
4207  * @ioc: per adapter object
4208  * @smid: system request message index
4209  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4210  */
4211 static void
4212 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4213         u16 msix_task)
4214 {
4215         Mpi2RequestDescriptorUnion_t descriptor;
4216         void *mpi_req_iomem;
4217         u64 *request;
4218
4219         if (ioc->is_mcpu_endpoint) {
4220                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4221
4222                 /* TBD 256 is offset within sys register. */
4223                 mpi_req_iomem = (void __force *)ioc->chip
4224                                         + MPI_FRAME_START_OFFSET
4225                                         + (smid * ioc->request_sz);
4226                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4227                                                         ioc->request_sz);
4228         }
4229
4230         request = (u64 *)&descriptor;
4231
4232         descriptor.HighPriority.RequestFlags =
4233             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4234         descriptor.HighPriority.MSIxIndex =  msix_task;
4235         descriptor.HighPriority.SMID = cpu_to_le16(smid);
4236         descriptor.HighPriority.LMID = 0;
4237         descriptor.HighPriority.Reserved1 = 0;
4238         if (ioc->is_mcpu_endpoint)
4239                 _base_mpi_ep_writeq(*request,
4240                                 &ioc->chip->RequestDescriptorPostLow,
4241                                 &ioc->scsi_lookup_lock);
4242         else
4243                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4244                     &ioc->scsi_lookup_lock);
4245 }
4246
4247 /**
4248  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4249  *  firmware
4250  * @ioc: per adapter object
4251  * @smid: system request message index
4252  */
4253 void
4254 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4255 {
4256         Mpi2RequestDescriptorUnion_t descriptor;
4257         u64 *request = (u64 *)&descriptor;
4258
4259         descriptor.Default.RequestFlags =
4260                 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4261         descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
4262         descriptor.Default.SMID = cpu_to_le16(smid);
4263         descriptor.Default.LMID = 0;
4264         descriptor.Default.DescriptorTypeDependent = 0;
4265         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4266             &ioc->scsi_lookup_lock);
4267 }
4268
4269 /**
4270  * _base_put_smid_default - Default, primarily used for config pages
4271  * @ioc: per adapter object
4272  * @smid: system request message index
4273  */
4274 static void
4275 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4276 {
4277         Mpi2RequestDescriptorUnion_t descriptor;
4278         void *mpi_req_iomem;
4279         u64 *request;
4280
4281         if (ioc->is_mcpu_endpoint) {
4282                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4283
4284                 _clone_sg_entries(ioc, (void *) mfp, smid);
4285                 /* TBD 256 is offset within sys register */
4286                 mpi_req_iomem = (void __force *)ioc->chip +
4287                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4288                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4289                                                         ioc->request_sz);
4290         }
4291         request = (u64 *)&descriptor;
4292         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4293         descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4294         descriptor.Default.SMID = cpu_to_le16(smid);
4295         descriptor.Default.LMID = 0;
4296         descriptor.Default.DescriptorTypeDependent = 0;
4297         if (ioc->is_mcpu_endpoint)
4298                 _base_mpi_ep_writeq(*request,
4299                                 &ioc->chip->RequestDescriptorPostLow,
4300                                 &ioc->scsi_lookup_lock);
4301         else
4302                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4303                                 &ioc->scsi_lookup_lock);
4304 }
4305
4306 /**
4307  * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4308  *   Atomic Request Descriptor
4309  * @ioc: per adapter object
4310  * @smid: system request message index
4311  * @handle: device handle, unused in this function, for function type match
4312  *
4313  * Return: nothing.
4314  */
4315 static void
4316 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4317         u16 handle)
4318 {
4319         Mpi26AtomicRequestDescriptor_t descriptor;
4320         u32 *request = (u32 *)&descriptor;
4321
4322         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4323         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4324         descriptor.SMID = cpu_to_le16(smid);
4325
4326         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4327 }
4328
4329 /**
4330  * _base_put_smid_fast_path_atomic - send fast path request to firmware
4331  * using Atomic Request Descriptor
4332  * @ioc: per adapter object
4333  * @smid: system request message index
4334  * @handle: device handle, unused in this function, for function type match
4335  * Return: nothing
4336  */
4337 static void
4338 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4339         u16 handle)
4340 {
4341         Mpi26AtomicRequestDescriptor_t descriptor;
4342         u32 *request = (u32 *)&descriptor;
4343
4344         descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4345         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4346         descriptor.SMID = cpu_to_le16(smid);
4347
4348         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4349 }
4350
4351 /**
4352  * _base_put_smid_hi_priority_atomic - send Task Management request to
4353  * firmware using Atomic Request Descriptor
4354  * @ioc: per adapter object
4355  * @smid: system request message index
4356  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4357  *
4358  * Return: nothing.
4359  */
4360 static void
4361 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4362         u16 msix_task)
4363 {
4364         Mpi26AtomicRequestDescriptor_t descriptor;
4365         u32 *request = (u32 *)&descriptor;
4366
4367         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4368         descriptor.MSIxIndex = msix_task;
4369         descriptor.SMID = cpu_to_le16(smid);
4370
4371         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4372 }
4373
4374 /**
4375  * _base_put_smid_default_atomic - Default, primarily used for config pages
4376  * use Atomic Request Descriptor
4377  * @ioc: per adapter object
4378  * @smid: system request message index
4379  *
4380  * Return: nothing.
4381  */
4382 static void
4383 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4384 {
4385         Mpi26AtomicRequestDescriptor_t descriptor;
4386         u32 *request = (u32 *)&descriptor;
4387
4388         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4389         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4390         descriptor.SMID = cpu_to_le16(smid);
4391
4392         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4393 }
4394
4395 /**
4396  * _base_display_OEMs_branding - Display branding string
4397  * @ioc: per adapter object
4398  */
4399 static void
4400 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4401 {
4402         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4403                 return;
4404
4405         switch (ioc->pdev->subsystem_vendor) {
4406         case PCI_VENDOR_ID_INTEL:
4407                 switch (ioc->pdev->device) {
4408                 case MPI2_MFGPAGE_DEVID_SAS2008:
4409                         switch (ioc->pdev->subsystem_device) {
4410                         case MPT2SAS_INTEL_RMS2LL080_SSDID:
4411                                 ioc_info(ioc, "%s\n",
4412                                          MPT2SAS_INTEL_RMS2LL080_BRANDING);
4413                                 break;
4414                         case MPT2SAS_INTEL_RMS2LL040_SSDID:
4415                                 ioc_info(ioc, "%s\n",
4416                                          MPT2SAS_INTEL_RMS2LL040_BRANDING);
4417                                 break;
4418                         case MPT2SAS_INTEL_SSD910_SSDID:
4419                                 ioc_info(ioc, "%s\n",
4420                                          MPT2SAS_INTEL_SSD910_BRANDING);
4421                                 break;
4422                         default:
4423                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4424                                          ioc->pdev->subsystem_device);
4425                                 break;
4426                         }
4427                         break;
4428                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4429                         switch (ioc->pdev->subsystem_device) {
4430                         case MPT2SAS_INTEL_RS25GB008_SSDID:
4431                                 ioc_info(ioc, "%s\n",
4432                                          MPT2SAS_INTEL_RS25GB008_BRANDING);
4433                                 break;
4434                         case MPT2SAS_INTEL_RMS25JB080_SSDID:
4435                                 ioc_info(ioc, "%s\n",
4436                                          MPT2SAS_INTEL_RMS25JB080_BRANDING);
4437                                 break;
4438                         case MPT2SAS_INTEL_RMS25JB040_SSDID:
4439                                 ioc_info(ioc, "%s\n",
4440                                          MPT2SAS_INTEL_RMS25JB040_BRANDING);
4441                                 break;
4442                         case MPT2SAS_INTEL_RMS25KB080_SSDID:
4443                                 ioc_info(ioc, "%s\n",
4444                                          MPT2SAS_INTEL_RMS25KB080_BRANDING);
4445                                 break;
4446                         case MPT2SAS_INTEL_RMS25KB040_SSDID:
4447                                 ioc_info(ioc, "%s\n",
4448                                          MPT2SAS_INTEL_RMS25KB040_BRANDING);
4449                                 break;
4450                         case MPT2SAS_INTEL_RMS25LB040_SSDID:
4451                                 ioc_info(ioc, "%s\n",
4452                                          MPT2SAS_INTEL_RMS25LB040_BRANDING);
4453                                 break;
4454                         case MPT2SAS_INTEL_RMS25LB080_SSDID:
4455                                 ioc_info(ioc, "%s\n",
4456                                          MPT2SAS_INTEL_RMS25LB080_BRANDING);
4457                                 break;
4458                         default:
4459                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4460                                          ioc->pdev->subsystem_device);
4461                                 break;
4462                         }
4463                         break;
4464                 case MPI25_MFGPAGE_DEVID_SAS3008:
4465                         switch (ioc->pdev->subsystem_device) {
4466                         case MPT3SAS_INTEL_RMS3JC080_SSDID:
4467                                 ioc_info(ioc, "%s\n",
4468                                          MPT3SAS_INTEL_RMS3JC080_BRANDING);
4469                                 break;
4470
4471                         case MPT3SAS_INTEL_RS3GC008_SSDID:
4472                                 ioc_info(ioc, "%s\n",
4473                                          MPT3SAS_INTEL_RS3GC008_BRANDING);
4474                                 break;
4475                         case MPT3SAS_INTEL_RS3FC044_SSDID:
4476                                 ioc_info(ioc, "%s\n",
4477                                          MPT3SAS_INTEL_RS3FC044_BRANDING);
4478                                 break;
4479                         case MPT3SAS_INTEL_RS3UC080_SSDID:
4480                                 ioc_info(ioc, "%s\n",
4481                                          MPT3SAS_INTEL_RS3UC080_BRANDING);
4482                                 break;
4483                         default:
4484                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4485                                          ioc->pdev->subsystem_device);
4486                                 break;
4487                         }
4488                         break;
4489                 default:
4490                         ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4491                                  ioc->pdev->subsystem_device);
4492                         break;
4493                 }
4494                 break;
4495         case PCI_VENDOR_ID_DELL:
4496                 switch (ioc->pdev->device) {
4497                 case MPI2_MFGPAGE_DEVID_SAS2008:
4498                         switch (ioc->pdev->subsystem_device) {
4499                         case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4500                                 ioc_info(ioc, "%s\n",
4501                                          MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4502                                 break;
4503                         case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4504                                 ioc_info(ioc, "%s\n",
4505                                          MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4506                                 break;
4507                         case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4508                                 ioc_info(ioc, "%s\n",
4509                                          MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4510                                 break;
4511                         case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4512                                 ioc_info(ioc, "%s\n",
4513                                          MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4514                                 break;
4515                         case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4516                                 ioc_info(ioc, "%s\n",
4517                                          MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4518                                 break;
4519                         case MPT2SAS_DELL_PERC_H200_SSDID:
4520                                 ioc_info(ioc, "%s\n",
4521                                          MPT2SAS_DELL_PERC_H200_BRANDING);
4522                                 break;
4523                         case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4524                                 ioc_info(ioc, "%s\n",
4525                                          MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4526                                 break;
4527                         default:
4528                                 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4529                                          ioc->pdev->subsystem_device);
4530                                 break;
4531                         }
4532                         break;
4533                 case MPI25_MFGPAGE_DEVID_SAS3008:
4534                         switch (ioc->pdev->subsystem_device) {
4535                         case MPT3SAS_DELL_12G_HBA_SSDID:
4536                                 ioc_info(ioc, "%s\n",
4537                                          MPT3SAS_DELL_12G_HBA_BRANDING);
4538                                 break;
4539                         default:
4540                                 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4541                                          ioc->pdev->subsystem_device);
4542                                 break;
4543                         }
4544                         break;
4545                 default:
4546                         ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4547                                  ioc->pdev->subsystem_device);
4548                         break;
4549                 }
4550                 break;
4551         case PCI_VENDOR_ID_CISCO:
4552                 switch (ioc->pdev->device) {
4553                 case MPI25_MFGPAGE_DEVID_SAS3008:
4554                         switch (ioc->pdev->subsystem_device) {
4555                         case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4556                                 ioc_info(ioc, "%s\n",
4557                                          MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4558                                 break;
4559                         case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4560                                 ioc_info(ioc, "%s\n",
4561                                          MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4562                                 break;
4563                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4564                                 ioc_info(ioc, "%s\n",
4565                                          MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4566                                 break;
4567                         default:
4568                                 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4569                                          ioc->pdev->subsystem_device);
4570                                 break;
4571                         }
4572                         break;
4573                 case MPI25_MFGPAGE_DEVID_SAS3108_1:
4574                         switch (ioc->pdev->subsystem_device) {
4575                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4576                                 ioc_info(ioc, "%s\n",
4577                                          MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4578                                 break;
4579                         case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4580                                 ioc_info(ioc, "%s\n",
4581                                          MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4582                                 break;
4583                         default:
4584                                 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4585                                          ioc->pdev->subsystem_device);
4586                                 break;
4587                         }
4588                         break;
4589                 default:
4590                         ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4591                                  ioc->pdev->subsystem_device);
4592                         break;
4593                 }
4594                 break;
4595         case MPT2SAS_HP_3PAR_SSVID:
4596                 switch (ioc->pdev->device) {
4597                 case MPI2_MFGPAGE_DEVID_SAS2004:
4598                         switch (ioc->pdev->subsystem_device) {
4599                         case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4600                                 ioc_info(ioc, "%s\n",
4601                                          MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4602                                 break;
4603                         default:
4604                                 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4605                                          ioc->pdev->subsystem_device);
4606                                 break;
4607                         }
4608                         break;
4609                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4610                         switch (ioc->pdev->subsystem_device) {
4611                         case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4612                                 ioc_info(ioc, "%s\n",
4613                                          MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4614                                 break;
4615                         case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4616                                 ioc_info(ioc, "%s\n",
4617                                          MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4618                                 break;
4619                         case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4620                                 ioc_info(ioc, "%s\n",
4621                                          MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4622                                 break;
4623                         case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4624                                 ioc_info(ioc, "%s\n",
4625                                          MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4626                                 break;
4627                         default:
4628                                 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4629                                          ioc->pdev->subsystem_device);
4630                                 break;
4631                         }
4632                         break;
4633                 default:
4634                         ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4635                                  ioc->pdev->subsystem_device);
4636                         break;
4637                 }
4638                 break;
4639         default:
4640                 break;
4641         }
4642 }
4643
4644 /**
4645  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4646  *                              version from FW Image Header.
4647  * @ioc: per adapter object
4648  *
4649  * Return: 0 for success, non-zero for failure.
4650  */
4651         static int
4652 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4653 {
4654         Mpi2FWImageHeader_t *fw_img_hdr;
4655         Mpi26ComponentImageHeader_t *cmp_img_hdr;
4656         Mpi25FWUploadRequest_t *mpi_request;
4657         Mpi2FWUploadReply_t mpi_reply;
4658         int r = 0, issue_diag_reset = 0;
4659         u32  package_version = 0;
4660         void *fwpkg_data = NULL;
4661         dma_addr_t fwpkg_data_dma;
4662         u16 smid, ioc_status;
4663         size_t data_length;
4664
4665         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4666
4667         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4668                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
4669                 return -EAGAIN;
4670         }
4671
4672         data_length = sizeof(Mpi2FWImageHeader_t);
4673         fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4674                         &fwpkg_data_dma, GFP_KERNEL);
4675         if (!fwpkg_data) {
4676                 ioc_err(ioc,
4677                     "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4678                         __FILE__, __LINE__, __func__);
4679                 return -ENOMEM;
4680         }
4681
4682         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4683         if (!smid) {
4684                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4685                 r = -EAGAIN;
4686                 goto out;
4687         }
4688
4689         ioc->base_cmds.status = MPT3_CMD_PENDING;
4690         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4691         ioc->base_cmds.smid = smid;
4692         memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4693         mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4694         mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4695         mpi_request->ImageSize = cpu_to_le32(data_length);
4696         ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4697                         data_length);
4698         init_completion(&ioc->base_cmds.done);
4699         ioc->put_smid_default(ioc, smid);
4700         /* Wait for 15 seconds */
4701         wait_for_completion_timeout(&ioc->base_cmds.done,
4702                         FW_IMG_HDR_READ_TIMEOUT*HZ);
4703         ioc_info(ioc, "%s: complete\n", __func__);
4704         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4705                 ioc_err(ioc, "%s: timeout\n", __func__);
4706                 _debug_dump_mf(mpi_request,
4707                                 sizeof(Mpi25FWUploadRequest_t)/4);
4708                 issue_diag_reset = 1;
4709         } else {
4710                 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4711                 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4712                         memcpy(&mpi_reply, ioc->base_cmds.reply,
4713                                         sizeof(Mpi2FWUploadReply_t));
4714                         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4715                                                 MPI2_IOCSTATUS_MASK;
4716                         if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4717                                 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4718                                 if (le32_to_cpu(fw_img_hdr->Signature) ==
4719                                     MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4720                                         cmp_img_hdr =
4721                                             (Mpi26ComponentImageHeader_t *)
4722                                             (fwpkg_data);
4723                                         package_version =
4724                                             le32_to_cpu(
4725                                             cmp_img_hdr->ApplicationSpecific);
4726                                 } else
4727                                         package_version =
4728                                             le32_to_cpu(
4729                                             fw_img_hdr->PackageVersion.Word);
4730                                 if (package_version)
4731                                         ioc_info(ioc,
4732                                         "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4733                                         ((package_version) & 0xFF000000) >> 24,
4734                                         ((package_version) & 0x00FF0000) >> 16,
4735                                         ((package_version) & 0x0000FF00) >> 8,
4736                                         (package_version) & 0x000000FF);
4737                         } else {
4738                                 _debug_dump_mf(&mpi_reply,
4739                                                 sizeof(Mpi2FWUploadReply_t)/4);
4740                         }
4741                 }
4742         }
4743         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4744 out:
4745         if (fwpkg_data)
4746                 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4747                                 fwpkg_data_dma);
4748         if (issue_diag_reset) {
4749                 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
4750                         return -EFAULT;
4751                 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
4752                         return -EFAULT;
4753                 r = -EAGAIN;
4754         }
4755         return r;
4756 }
4757
4758 /**
4759  * _base_display_ioc_capabilities - Display IOC's capabilities.
4760  * @ioc: per adapter object
4761  */
4762 static void
4763 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4764 {
4765         int i = 0;
4766         char desc[16];
4767         u32 iounit_pg1_flags;
4768         u32 bios_version;
4769
4770         bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4771         strncpy(desc, ioc->manu_pg0.ChipName, 16);
4772         ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4773                  desc,
4774                  (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4775                  (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4776                  (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4777                  ioc->facts.FWVersion.Word & 0x000000FF,
4778                  ioc->pdev->revision,
4779                  (bios_version & 0xFF000000) >> 24,
4780                  (bios_version & 0x00FF0000) >> 16,
4781                  (bios_version & 0x0000FF00) >> 8,
4782                  bios_version & 0x000000FF);
4783
4784         _base_display_OEMs_branding(ioc);
4785
4786         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4787                 pr_info("%sNVMe", i ? "," : "");
4788                 i++;
4789         }
4790
4791         ioc_info(ioc, "Protocol=(");
4792
4793         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4794                 pr_cont("Initiator");
4795                 i++;
4796         }
4797
4798         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4799                 pr_cont("%sTarget", i ? "," : "");
4800                 i++;
4801         }
4802
4803         i = 0;
4804         pr_cont("), Capabilities=(");
4805
4806         if (!ioc->hide_ir_msg) {
4807                 if (ioc->facts.IOCCapabilities &
4808                     MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4809                         pr_cont("Raid");
4810                         i++;
4811                 }
4812         }
4813
4814         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4815                 pr_cont("%sTLR", i ? "," : "");
4816                 i++;
4817         }
4818
4819         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4820                 pr_cont("%sMulticast", i ? "," : "");
4821                 i++;
4822         }
4823
4824         if (ioc->facts.IOCCapabilities &
4825             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4826                 pr_cont("%sBIDI Target", i ? "," : "");
4827                 i++;
4828         }
4829
4830         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4831                 pr_cont("%sEEDP", i ? "," : "");
4832                 i++;
4833         }
4834
4835         if (ioc->facts.IOCCapabilities &
4836             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4837                 pr_cont("%sSnapshot Buffer", i ? "," : "");
4838                 i++;
4839         }
4840
4841         if (ioc->facts.IOCCapabilities &
4842             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4843                 pr_cont("%sDiag Trace Buffer", i ? "," : "");
4844                 i++;
4845         }
4846
4847         if (ioc->facts.IOCCapabilities &
4848             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4849                 pr_cont("%sDiag Extended Buffer", i ? "," : "");
4850                 i++;
4851         }
4852
4853         if (ioc->facts.IOCCapabilities &
4854             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4855                 pr_cont("%sTask Set Full", i ? "," : "");
4856                 i++;
4857         }
4858
4859         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4860         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4861                 pr_cont("%sNCQ", i ? "," : "");
4862                 i++;
4863         }
4864
4865         pr_cont(")\n");
4866 }
4867
4868 /**
4869  * mpt3sas_base_update_missing_delay - change the missing delay timers
4870  * @ioc: per adapter object
4871  * @device_missing_delay: amount of time till device is reported missing
4872  * @io_missing_delay: interval IO is returned when there is a missing device
4873  *
4874  * Passed on the command line, this function will modify the device missing
4875  * delay, as well as the io missing delay. This should be called at driver
4876  * load time.
4877  */
4878 void
4879 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4880         u16 device_missing_delay, u8 io_missing_delay)
4881 {
4882         u16 dmd, dmd_new, dmd_orignal;
4883         u8 io_missing_delay_original;
4884         u16 sz;
4885         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4886         Mpi2ConfigReply_t mpi_reply;
4887         u8 num_phys = 0;
4888         u16 ioc_status;
4889
4890         mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4891         if (!num_phys)
4892                 return;
4893
4894         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4895             sizeof(Mpi2SasIOUnit1PhyData_t));
4896         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4897         if (!sas_iounit_pg1) {
4898                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4899                         __FILE__, __LINE__, __func__);
4900                 goto out;
4901         }
4902         if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4903             sas_iounit_pg1, sz))) {
4904                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4905                         __FILE__, __LINE__, __func__);
4906                 goto out;
4907         }
4908         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4909             MPI2_IOCSTATUS_MASK;
4910         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4911                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4912                         __FILE__, __LINE__, __func__);
4913                 goto out;
4914         }
4915
4916         /* device missing delay */
4917         dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4918         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4919                 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4920         else
4921                 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4922         dmd_orignal = dmd;
4923         if (device_missing_delay > 0x7F) {
4924                 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4925                     device_missing_delay;
4926                 dmd = dmd / 16;
4927                 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4928         } else
4929                 dmd = device_missing_delay;
4930         sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4931
4932         /* io missing delay */
4933         io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4934         sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4935
4936         if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4937             sz)) {
4938                 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4939                         dmd_new = (dmd &
4940                             MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4941                 else
4942                         dmd_new =
4943                     dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4944                 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4945                          dmd_orignal, dmd_new);
4946                 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4947                          io_missing_delay_original,
4948                          io_missing_delay);
4949                 ioc->device_missing_delay = dmd_new;
4950                 ioc->io_missing_delay = io_missing_delay;
4951         }
4952
4953 out:
4954         kfree(sas_iounit_pg1);
4955 }
4956
4957 /**
4958  * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4959  *    according to performance mode.
4960  * @ioc : per adapter object
4961  *
4962  * Return: zero on success; otherwise return EAGAIN error code asking the
4963  * caller to retry.
4964  */
4965 static int
4966 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4967 {
4968         Mpi2IOCPage1_t ioc_pg1;
4969         Mpi2ConfigReply_t mpi_reply;
4970         int rc;
4971
4972         rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4973         if (rc)
4974                 return rc;
4975         memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4976
4977         switch (perf_mode) {
4978         case MPT_PERF_MODE_DEFAULT:
4979         case MPT_PERF_MODE_BALANCED:
4980                 if (ioc->high_iops_queues) {
4981                         ioc_info(ioc,
4982                                 "Enable interrupt coalescing only for first\t"
4983                                 "%d reply queues\n",
4984                                 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4985                         /*
4986                          * If 31st bit is zero then interrupt coalescing is
4987                          * enabled for all reply descriptor post queues.
4988                          * If 31st bit is set to one then user can
4989                          * enable/disable interrupt coalescing on per reply
4990                          * descriptor post queue group(8) basis. So to enable
4991                          * interrupt coalescing only on first reply descriptor
4992                          * post queue group 31st bit and zero th bit is enabled.
4993                          */
4994                         ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4995                             ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4996                         rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4997                         if (rc)
4998                                 return rc;
4999                         ioc_info(ioc, "performance mode: balanced\n");
5000                         return 0;
5001                 }
5002                 fallthrough;
5003         case MPT_PERF_MODE_LATENCY:
5004                 /*
5005                  * Enable interrupt coalescing on all reply queues
5006                  * with timeout value 0xA
5007                  */
5008                 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
5009                 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5010                 ioc_pg1.ProductSpecific = 0;
5011                 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5012                 if (rc)
5013                         return rc;
5014                 ioc_info(ioc, "performance mode: latency\n");
5015                 break;
5016         case MPT_PERF_MODE_IOPS:
5017                 /*
5018                  * Enable interrupt coalescing on all reply queues.
5019                  */
5020                 ioc_info(ioc,
5021                     "performance mode: iops with coalescing timeout: 0x%x\n",
5022                     le32_to_cpu(ioc_pg1.CoalescingTimeout));
5023                 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5024                 ioc_pg1.ProductSpecific = 0;
5025                 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5026                 if (rc)
5027                         return rc;
5028                 break;
5029         }
5030         return 0;
5031 }
5032
5033 /**
5034  * _base_get_event_diag_triggers - get event diag trigger values from
5035  *                              persistent pages
5036  * @ioc : per adapter object
5037  *
5038  * Return: nothing.
5039  */
5040 static int
5041 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5042 {
5043         Mpi26DriverTriggerPage2_t trigger_pg2;
5044         struct SL_WH_EVENT_TRIGGER_T *event_tg;
5045         MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg;
5046         Mpi2ConfigReply_t mpi_reply;
5047         int r = 0, i = 0;
5048         u16 count = 0;
5049         u16 ioc_status;
5050
5051         r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
5052             &trigger_pg2);
5053         if (r)
5054                 return r;
5055
5056         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5057             MPI2_IOCSTATUS_MASK;
5058         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5059                 dinitprintk(ioc,
5060                     ioc_err(ioc,
5061                     "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
5062                    __func__, ioc_status));
5063                 return 0;
5064         }
5065
5066         if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
5067                 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
5068                 count = min_t(u16, NUM_VALID_ENTRIES, count);
5069                 ioc->diag_trigger_event.ValidEntries = count;
5070
5071                 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
5072                 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
5073                 for (i = 0; i < count; i++) {
5074                         event_tg->EventValue = le16_to_cpu(
5075                             mpi_event_tg->MPIEventCode);
5076                         event_tg->LogEntryQualifier = le16_to_cpu(
5077                             mpi_event_tg->MPIEventCodeSpecific);
5078                         event_tg++;
5079                         mpi_event_tg++;
5080                 }
5081         }
5082         return 0;
5083 }
5084
5085 /**
5086  * _base_get_scsi_diag_triggers - get scsi diag trigger values from
5087  *                              persistent pages
5088  * @ioc : per adapter object
5089  *
5090  * Return: 0 on success; otherwise return failure status.
5091  */
5092 static int
5093 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5094 {
5095         Mpi26DriverTriggerPage3_t trigger_pg3;
5096         struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
5097         MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg;
5098         Mpi2ConfigReply_t mpi_reply;
5099         int r = 0, i = 0;
5100         u16 count = 0;
5101         u16 ioc_status;
5102
5103         r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
5104             &trigger_pg3);
5105         if (r)
5106                 return r;
5107
5108         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5109             MPI2_IOCSTATUS_MASK;
5110         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5111                 dinitprintk(ioc,
5112                     ioc_err(ioc,
5113                     "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
5114                     __func__, ioc_status));
5115                 return 0;
5116         }
5117
5118         if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
5119                 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
5120                 count = min_t(u16, NUM_VALID_ENTRIES, count);
5121                 ioc->diag_trigger_scsi.ValidEntries = count;
5122
5123                 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
5124                 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
5125                 for (i = 0; i < count; i++) {
5126                         scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
5127                         scsi_tg->ASC = mpi_scsi_tg->ASC;
5128                         scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
5129
5130                         scsi_tg++;
5131                         mpi_scsi_tg++;
5132                 }
5133         }
5134         return 0;
5135 }
5136
5137 /**
5138  * _base_get_mpi_diag_triggers - get mpi diag trigger values from
5139  *                              persistent pages
5140  * @ioc : per adapter object
5141  *
5142  * Return: 0 on success; otherwise return failure status.
5143  */
5144 static int
5145 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5146 {
5147         Mpi26DriverTriggerPage4_t trigger_pg4;
5148         struct SL_WH_MPI_TRIGGER_T *status_tg;
5149         MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg;
5150         Mpi2ConfigReply_t mpi_reply;
5151         int r = 0, i = 0;
5152         u16 count = 0;
5153         u16 ioc_status;
5154
5155         r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
5156             &trigger_pg4);
5157         if (r)
5158                 return r;
5159
5160         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5161             MPI2_IOCSTATUS_MASK;
5162         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5163                 dinitprintk(ioc,
5164                     ioc_err(ioc,
5165                     "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
5166                     __func__, ioc_status));
5167                 return 0;
5168         }
5169
5170         if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
5171                 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
5172                 count = min_t(u16, NUM_VALID_ENTRIES, count);
5173                 ioc->diag_trigger_mpi.ValidEntries = count;
5174
5175                 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
5176                 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
5177
5178                 for (i = 0; i < count; i++) {
5179                         status_tg->IOCStatus = le16_to_cpu(
5180                             mpi_status_tg->IOCStatus);
5181                         status_tg->IocLogInfo = le32_to_cpu(
5182                             mpi_status_tg->LogInfo);
5183
5184                         status_tg++;
5185                         mpi_status_tg++;
5186                 }
5187         }
5188         return 0;
5189 }
5190
5191 /**
5192  * _base_get_master_diag_triggers - get master diag trigger values from
5193  *                              persistent pages
5194  * @ioc : per adapter object
5195  *
5196  * Return: nothing.
5197  */
5198 static int
5199 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5200 {
5201         Mpi26DriverTriggerPage1_t trigger_pg1;
5202         Mpi2ConfigReply_t mpi_reply;
5203         int r;
5204         u16 ioc_status;
5205
5206         r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
5207             &trigger_pg1);
5208         if (r)
5209                 return r;
5210
5211         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5212             MPI2_IOCSTATUS_MASK;
5213         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5214                 dinitprintk(ioc,
5215                     ioc_err(ioc,
5216                     "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
5217                    __func__, ioc_status));
5218                 return 0;
5219         }
5220
5221         if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
5222                 ioc->diag_trigger_master.MasterData |=
5223                     le32_to_cpu(
5224                     trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
5225         return 0;
5226 }
5227
5228 /**
5229  * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5230  *                                      driver trigger pages or not
5231  * @ioc : per adapter object
5232  * @trigger_flags : address where trigger page0's TriggerFlags value is copied
5233  *
5234  * Return: trigger flags mask if HBA FW supports driver trigger pages;
5235  * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or
5236  * return EAGAIN if diag reset occurred due to FW fault and asking the
5237  * caller to retry the command.
5238  *
5239  */
5240 static int
5241 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags)
5242 {
5243         Mpi26DriverTriggerPage0_t trigger_pg0;
5244         int r = 0;
5245         Mpi2ConfigReply_t mpi_reply;
5246         u16 ioc_status;
5247
5248         r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5249             &trigger_pg0);
5250         if (r)
5251                 return r;
5252
5253         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5254             MPI2_IOCSTATUS_MASK;
5255         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5256                 return -EFAULT;
5257
5258         *trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags);
5259         return 0;
5260 }
5261
5262 /**
5263  * _base_get_diag_triggers - Retrieve diag trigger values from
5264  *                              persistent pages.
5265  * @ioc : per adapter object
5266  *
5267  * Return: zero on success; otherwise return EAGAIN error codes
5268  * asking the caller to retry.
5269  */
5270 static int
5271 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5272 {
5273         int trigger_flags;
5274         int r;
5275
5276         /*
5277          * Default setting of master trigger.
5278          */
5279         ioc->diag_trigger_master.MasterData =
5280             (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5281
5282         r = _base_check_for_trigger_pages_support(ioc, &trigger_flags);
5283         if (r) {
5284                 if (r == -EAGAIN)
5285                         return r;
5286                 /*
5287                  * Don't go for error handling when FW doesn't support
5288                  * driver trigger pages.
5289                  */
5290                 return 0;
5291         }
5292
5293         ioc->supports_trigger_pages = 1;
5294
5295         /*
5296          * Retrieve master diag trigger values from driver trigger pg1
5297          * if master trigger bit enabled in TriggerFlags.
5298          */
5299         if ((u16)trigger_flags &
5300             MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) {
5301                 r = _base_get_master_diag_triggers(ioc);
5302                 if (r)
5303                         return r;
5304         }
5305
5306         /*
5307          * Retrieve event diag trigger values from driver trigger pg2
5308          * if event trigger bit enabled in TriggerFlags.
5309          */
5310         if ((u16)trigger_flags &
5311             MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) {
5312                 r = _base_get_event_diag_triggers(ioc);
5313                 if (r)
5314                         return r;
5315         }
5316
5317         /*
5318          * Retrieve scsi diag trigger values from driver trigger pg3
5319          * if scsi trigger bit enabled in TriggerFlags.
5320          */
5321         if ((u16)trigger_flags &
5322             MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) {
5323                 r = _base_get_scsi_diag_triggers(ioc);
5324                 if (r)
5325                         return r;
5326         }
5327         /*
5328          * Retrieve mpi error diag trigger values from driver trigger pg4
5329          * if loginfo trigger bit enabled in TriggerFlags.
5330          */
5331         if ((u16)trigger_flags &
5332             MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) {
5333                 r = _base_get_mpi_diag_triggers(ioc);
5334                 if (r)
5335                         return r;
5336         }
5337         return 0;
5338 }
5339
5340 /**
5341  * _base_update_diag_trigger_pages - Update the driver trigger pages after
5342  *                      online FW update, in case updated FW supports driver
5343  *                      trigger pages.
5344  * @ioc : per adapter object
5345  *
5346  * Return: nothing.
5347  */
5348 static void
5349 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5350 {
5351
5352         if (ioc->diag_trigger_master.MasterData)
5353                 mpt3sas_config_update_driver_trigger_pg1(ioc,
5354                     &ioc->diag_trigger_master, 1);
5355
5356         if (ioc->diag_trigger_event.ValidEntries)
5357                 mpt3sas_config_update_driver_trigger_pg2(ioc,
5358                     &ioc->diag_trigger_event, 1);
5359
5360         if (ioc->diag_trigger_scsi.ValidEntries)
5361                 mpt3sas_config_update_driver_trigger_pg3(ioc,
5362                     &ioc->diag_trigger_scsi, 1);
5363
5364         if (ioc->diag_trigger_mpi.ValidEntries)
5365                 mpt3sas_config_update_driver_trigger_pg4(ioc,
5366                     &ioc->diag_trigger_mpi, 1);
5367 }
5368
5369 /**
5370  * _base_assign_fw_reported_qd  - Get FW reported QD for SAS/SATA devices.
5371  *                              - On failure set default QD values.
5372  * @ioc : per adapter object
5373  *
5374  * Returns 0 for success, non-zero for failure.
5375  *
5376  */
5377 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc)
5378 {
5379         Mpi2ConfigReply_t mpi_reply;
5380         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
5381         Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1;
5382         int sz;
5383         int rc = 0;
5384
5385         ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5386         ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5387         ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH;
5388         ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH;
5389         if (!ioc->is_gen35_ioc)
5390                 goto out;
5391         /* sas iounit page 1 */
5392         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData);
5393         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
5394         if (!sas_iounit_pg1) {
5395                 pr_err("%s: failure at %s:%d/%s()!\n",
5396                     ioc->name, __FILE__, __LINE__, __func__);
5397                 return rc;
5398         }
5399         rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
5400             sas_iounit_pg1, sz);
5401         if (rc) {
5402                 pr_err("%s: failure at %s:%d/%s()!\n",
5403                     ioc->name, __FILE__, __LINE__, __func__);
5404                 goto out;
5405         }
5406         ioc->max_wideport_qd =
5407             (le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth)) ?
5408             le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth) :
5409             MPT3SAS_SAS_QUEUE_DEPTH;
5410         ioc->max_narrowport_qd =
5411             (le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth)) ?
5412             le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth) :
5413             MPT3SAS_SAS_QUEUE_DEPTH;
5414         ioc->max_sata_qd = (sas_iounit_pg1->SATAMaxQDepth) ?
5415             sas_iounit_pg1->SATAMaxQDepth : MPT3SAS_SATA_QUEUE_DEPTH;
5416         /* pcie iounit page 1 */
5417         rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply,
5418             &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t));
5419         if (rc) {
5420                 pr_err("%s: failure at %s:%d/%s()!\n",
5421                     ioc->name, __FILE__, __LINE__, __func__);
5422                 goto out;
5423         }
5424         ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ?
5425             (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) :
5426             MPT3SAS_NVME_QUEUE_DEPTH;
5427 out:
5428         dinitprintk(ioc, pr_err(
5429             "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n",
5430             ioc->max_wideport_qd, ioc->max_narrowport_qd,
5431             ioc->max_sata_qd, ioc->max_nvme_qd));
5432         kfree(sas_iounit_pg1);
5433         return rc;
5434 }
5435
5436 /**
5437  * _base_static_config_pages - static start of day config pages
5438  * @ioc: per adapter object
5439  */
5440 static int
5441 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5442 {
5443         Mpi2ConfigReply_t mpi_reply;
5444         u32 iounit_pg1_flags;
5445         int tg_flags = 0;
5446         int rc;
5447         ioc->nvme_abort_timeout = 30;
5448
5449         rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply,
5450             &ioc->manu_pg0);
5451         if (rc)
5452                 return rc;
5453         if (ioc->ir_firmware) {
5454                 rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5455                     &ioc->manu_pg10);
5456                 if (rc)
5457                         return rc;
5458         }
5459         /*
5460          * Ensure correct T10 PI operation if vendor left EEDPTagMode
5461          * flag unset in NVDATA.
5462          */
5463         rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply,
5464             &ioc->manu_pg11);
5465         if (rc)
5466                 return rc;
5467         if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5468                 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5469                     ioc->name);
5470                 ioc->manu_pg11.EEDPTagMode &= ~0x3;
5471                 ioc->manu_pg11.EEDPTagMode |= 0x1;
5472                 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5473                     &ioc->manu_pg11);
5474         }
5475         if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5476                 ioc->tm_custom_handling = 1;
5477         else {
5478                 ioc->tm_custom_handling = 0;
5479                 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5480                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5481                 else if (ioc->manu_pg11.NVMeAbortTO >
5482                                         NVME_TASK_ABORT_MAX_TIMEOUT)
5483                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5484                 else
5485                         ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5486         }
5487         ioc->time_sync_interval =
5488             ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5489         if (ioc->time_sync_interval) {
5490                 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5491                         ioc->time_sync_interval =
5492                             ioc->time_sync_interval * SECONDS_PER_HOUR;
5493                 else
5494                         ioc->time_sync_interval =
5495                             ioc->time_sync_interval * SECONDS_PER_MIN;
5496                 dinitprintk(ioc, ioc_info(ioc,
5497                     "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5498                     ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5499                     MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5500         } else {
5501                 if (ioc->is_gen35_ioc)
5502                         ioc_warn(ioc,
5503                             "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5504         }
5505         rc = _base_assign_fw_reported_qd(ioc);
5506         if (rc)
5507                 return rc;
5508         rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5509         if (rc)
5510                 return rc;
5511         rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5512         if (rc)
5513                 return rc;
5514         rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5515         if (rc)
5516                 return rc;
5517         rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5518         if (rc)
5519                 return rc;
5520         rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5521         if (rc)
5522                 return rc;
5523         rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
5524         if (rc)
5525                 return rc;
5526         _base_display_ioc_capabilities(ioc);
5527
5528         /*
5529          * Enable task_set_full handling in iounit_pg1 when the
5530          * facts capabilities indicate that its supported.
5531          */
5532         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5533         if ((ioc->facts.IOCCapabilities &
5534             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5535                 iounit_pg1_flags &=
5536                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5537         else
5538                 iounit_pg1_flags |=
5539                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5540         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5541         rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5542         if (rc)
5543                 return rc;
5544
5545         if (ioc->iounit_pg8.NumSensors)
5546                 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
5547         if (ioc->is_aero_ioc) {
5548                 rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5549                 if (rc)
5550                         return rc;
5551         }
5552         if (ioc->is_gen35_ioc) {
5553                 if (ioc->is_driver_loading) {
5554                         rc = _base_get_diag_triggers(ioc);
5555                         if (rc)
5556                                 return rc;
5557                 } else {
5558                         /*
5559                          * In case of online HBA FW update operation,
5560                          * check whether updated FW supports the driver trigger
5561                          * pages or not.
5562                          * - If previous FW has not supported driver trigger
5563                          *   pages and newer FW supports them then update these
5564                          *   pages with current diag trigger values.
5565                          * - If previous FW has supported driver trigger pages
5566                          *   and new FW doesn't support them then disable
5567                          *   support_trigger_pages flag.
5568                          */
5569                         _base_check_for_trigger_pages_support(ioc, &tg_flags);
5570                         if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5571                                 _base_update_diag_trigger_pages(ioc);
5572                         else if (ioc->supports_trigger_pages &&
5573                             tg_flags == -EFAULT)
5574                                 ioc->supports_trigger_pages = 0;
5575                 }
5576         }
5577         return 0;
5578 }
5579
5580 /**
5581  * mpt3sas_free_enclosure_list - release memory
5582  * @ioc: per adapter object
5583  *
5584  * Free memory allocated during enclosure add.
5585  */
5586 void
5587 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5588 {
5589         struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5590
5591         /* Free enclosure list */
5592         list_for_each_entry_safe(enclosure_dev,
5593                         enclosure_dev_next, &ioc->enclosure_list, list) {
5594                 list_del(&enclosure_dev->list);
5595                 kfree(enclosure_dev);
5596         }
5597 }
5598
5599 /**
5600  * _base_release_memory_pools - release memory
5601  * @ioc: per adapter object
5602  *
5603  * Free memory allocated from _base_allocate_memory_pools.
5604  */
5605 static void
5606 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5607 {
5608         int i = 0;
5609         int j = 0;
5610         int dma_alloc_count = 0;
5611         struct chain_tracker *ct;
5612         int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5613
5614         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5615
5616         if (ioc->request) {
5617                 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5618                     ioc->request,  ioc->request_dma);
5619                 dexitprintk(ioc,
5620                             ioc_info(ioc, "request_pool(0x%p): free\n",
5621                                      ioc->request));
5622                 ioc->request = NULL;
5623         }
5624
5625         if (ioc->sense) {
5626                 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5627                 dma_pool_destroy(ioc->sense_dma_pool);
5628                 dexitprintk(ioc,
5629                             ioc_info(ioc, "sense_pool(0x%p): free\n",
5630                                      ioc->sense));
5631                 ioc->sense = NULL;
5632         }
5633
5634         if (ioc->reply) {
5635                 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5636                 dma_pool_destroy(ioc->reply_dma_pool);
5637                 dexitprintk(ioc,
5638                             ioc_info(ioc, "reply_pool(0x%p): free\n",
5639                                      ioc->reply));
5640                 ioc->reply = NULL;
5641         }
5642
5643         if (ioc->reply_free) {
5644                 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5645                     ioc->reply_free_dma);
5646                 dma_pool_destroy(ioc->reply_free_dma_pool);
5647                 dexitprintk(ioc,
5648                             ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5649                                      ioc->reply_free));
5650                 ioc->reply_free = NULL;
5651         }
5652
5653         if (ioc->reply_post) {
5654                 dma_alloc_count = DIV_ROUND_UP(count,
5655                                 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5656                 for (i = 0; i < count; i++) {
5657                         if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5658                             && dma_alloc_count) {
5659                                 if (ioc->reply_post[i].reply_post_free) {
5660                                         dma_pool_free(
5661                                             ioc->reply_post_free_dma_pool,
5662                                             ioc->reply_post[i].reply_post_free,
5663                                         ioc->reply_post[i].reply_post_free_dma);
5664                                         dexitprintk(ioc, ioc_info(ioc,
5665                                            "reply_post_free_pool(0x%p): free\n",
5666                                            ioc->reply_post[i].reply_post_free));
5667                                         ioc->reply_post[i].reply_post_free =
5668                                                                         NULL;
5669                                 }
5670                                 --dma_alloc_count;
5671                         }
5672                 }
5673                 dma_pool_destroy(ioc->reply_post_free_dma_pool);
5674                 if (ioc->reply_post_free_array &&
5675                         ioc->rdpq_array_enable) {
5676                         dma_pool_free(ioc->reply_post_free_array_dma_pool,
5677                             ioc->reply_post_free_array,
5678                             ioc->reply_post_free_array_dma);
5679                         ioc->reply_post_free_array = NULL;
5680                 }
5681                 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5682                 kfree(ioc->reply_post);
5683         }
5684
5685         if (ioc->pcie_sgl_dma_pool) {
5686                 for (i = 0; i < ioc->scsiio_depth; i++) {
5687                         dma_pool_free(ioc->pcie_sgl_dma_pool,
5688                                         ioc->pcie_sg_lookup[i].pcie_sgl,
5689                                         ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5690                         ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
5691                 }
5692                 dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5693         }
5694         if (ioc->config_page) {
5695                 dexitprintk(ioc,
5696                             ioc_info(ioc, "config_page(0x%p): free\n",
5697                                      ioc->config_page));
5698                 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5699                     ioc->config_page, ioc->config_page_dma);
5700         }
5701
5702         kfree(ioc->hpr_lookup);
5703         ioc->hpr_lookup = NULL;
5704         kfree(ioc->internal_lookup);
5705         ioc->internal_lookup = NULL;
5706         if (ioc->chain_lookup) {
5707                 for (i = 0; i < ioc->scsiio_depth; i++) {
5708                         for (j = ioc->chains_per_prp_buffer;
5709                             j < ioc->chains_needed_per_io; j++) {
5710                                 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5711                                 if (ct && ct->chain_buffer)
5712                                         dma_pool_free(ioc->chain_dma_pool,
5713                                                 ct->chain_buffer,
5714                                                 ct->chain_buffer_dma);
5715                         }
5716                         kfree(ioc->chain_lookup[i].chains_per_smid);
5717                 }
5718                 dma_pool_destroy(ioc->chain_dma_pool);
5719                 kfree(ioc->chain_lookup);
5720                 ioc->chain_lookup = NULL;
5721         }
5722
5723         kfree(ioc->io_queue_num);
5724         ioc->io_queue_num = NULL;
5725 }
5726
5727 /**
5728  * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5729  *      having same upper 32bits in their base memory address.
5730  * @reply_pool_start_address: Base address of a reply queue set
5731  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5732  *
5733  * Return: 1 if reply queues in a set have a same upper 32bits in their base
5734  * memory address, else 0.
5735  */
5736
5737 static int
5738 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz)
5739 {
5740         long reply_pool_end_address;
5741
5742         reply_pool_end_address = reply_pool_start_address + pool_sz;
5743
5744         if (upper_32_bits(reply_pool_start_address) ==
5745                 upper_32_bits(reply_pool_end_address))
5746                 return 1;
5747         else
5748                 return 0;
5749 }
5750
5751 /**
5752  * _base_reduce_hba_queue_depth- Retry with reduced queue depth
5753  * @ioc: Adapter object
5754  *
5755  * Return: 0 for success, non-zero for failure.
5756  **/
5757 static inline int
5758 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
5759 {
5760         int reduce_sz = 64;
5761
5762         if ((ioc->hba_queue_depth - reduce_sz) >
5763             (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5764                 ioc->hba_queue_depth -= reduce_sz;
5765                 return 0;
5766         } else
5767                 return -ENOMEM;
5768 }
5769
5770 /**
5771  * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5772  *                      for pcie sgl pools.
5773  * @ioc: Adapter object
5774  * @sz: DMA Pool size
5775  *
5776  * Return: 0 for success, non-zero for failure.
5777  */
5778
5779 static int
5780 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5781 {
5782         int i = 0, j = 0;
5783         struct chain_tracker *ct;
5784
5785         ioc->pcie_sgl_dma_pool =
5786             dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5787             ioc->page_size, 0);
5788         if (!ioc->pcie_sgl_dma_pool) {
5789                 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5790                 return -ENOMEM;
5791         }
5792
5793         ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5794         ioc->chains_per_prp_buffer =
5795             min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5796         for (i = 0; i < ioc->scsiio_depth; i++) {
5797                 ioc->pcie_sg_lookup[i].pcie_sgl =
5798                     dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5799                     &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5800                 if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5801                         ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5802                         return -EAGAIN;
5803                 }
5804
5805                 if (!mpt3sas_check_same_4gb_region(
5806                     (long)ioc->pcie_sg_lookup[i].pcie_sgl, sz)) {
5807                         ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5808                             ioc->pcie_sg_lookup[i].pcie_sgl,
5809                             (unsigned long long)
5810                             ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5811                         ioc->use_32bit_dma = true;
5812                         return -EAGAIN;
5813                 }
5814
5815                 for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5816                         ct = &ioc->chain_lookup[i].chains_per_smid[j];
5817                         ct->chain_buffer =
5818                             ioc->pcie_sg_lookup[i].pcie_sgl +
5819                             (j * ioc->chain_segment_sz);
5820                         ct->chain_buffer_dma =
5821                             ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5822                             (j * ioc->chain_segment_sz);
5823                 }
5824         }
5825         dinitprintk(ioc, ioc_info(ioc,
5826             "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5827             ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
5828         dinitprintk(ioc, ioc_info(ioc,
5829             "Number of chains can fit in a PRP page(%d)\n",
5830             ioc->chains_per_prp_buffer));
5831         return 0;
5832 }
5833
5834 /**
5835  * _base_allocate_chain_dma_pool - Allocating DMA'able memory
5836  *                      for chain dma pool.
5837  * @ioc: Adapter object
5838  * @sz: DMA Pool size
5839  *
5840  * Return: 0 for success, non-zero for failure.
5841  */
5842 static int
5843 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5844 {
5845         int i = 0, j = 0;
5846         struct chain_tracker *ctr;
5847
5848         ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5849             ioc->chain_segment_sz, 16, 0);
5850         if (!ioc->chain_dma_pool)
5851                 return -ENOMEM;
5852
5853         for (i = 0; i < ioc->scsiio_depth; i++) {
5854                 for (j = ioc->chains_per_prp_buffer;
5855                     j < ioc->chains_needed_per_io; j++) {
5856                         ctr = &ioc->chain_lookup[i].chains_per_smid[j];
5857                         ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool,
5858                             GFP_KERNEL, &ctr->chain_buffer_dma);
5859                         if (!ctr->chain_buffer)
5860                                 return -EAGAIN;
5861                         if (!mpt3sas_check_same_4gb_region((long)
5862                             ctr->chain_buffer, ioc->chain_segment_sz)) {
5863                                 ioc_err(ioc,
5864                                     "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n",
5865                                     ctr->chain_buffer,
5866                                     (unsigned long long)ctr->chain_buffer_dma);
5867                                 ioc->use_32bit_dma = true;
5868                                 return -EAGAIN;
5869                         }
5870                 }
5871         }
5872         dinitprintk(ioc, ioc_info(ioc,
5873             "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n",
5874             ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
5875             (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
5876             ioc->chain_segment_sz))/1024));
5877         return 0;
5878 }
5879
5880 /**
5881  * _base_allocate_sense_dma_pool - Allocating DMA'able memory
5882  *                      for sense dma pool.
5883  * @ioc: Adapter object
5884  * @sz: DMA Pool size
5885  * Return: 0 for success, non-zero for failure.
5886  */
5887 static int
5888 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5889 {
5890         ioc->sense_dma_pool =
5891             dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0);
5892         if (!ioc->sense_dma_pool)
5893                 return -ENOMEM;
5894         ioc->sense = dma_pool_alloc(ioc->sense_dma_pool,
5895             GFP_KERNEL, &ioc->sense_dma);
5896         if (!ioc->sense)
5897                 return -EAGAIN;
5898         if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) {
5899                 dinitprintk(ioc, pr_err(
5900                     "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n",
5901                     ioc->sense, (unsigned long long) ioc->sense_dma));
5902                 ioc->use_32bit_dma = true;
5903                 return -EAGAIN;
5904         }
5905         ioc_info(ioc,
5906             "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
5907             ioc->sense, (unsigned long long)ioc->sense_dma,
5908             ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
5909         return 0;
5910 }
5911
5912 /**
5913  * _base_allocate_reply_pool - Allocating DMA'able memory
5914  *                      for reply pool.
5915  * @ioc: Adapter object
5916  * @sz: DMA Pool size
5917  * Return: 0 for success, non-zero for failure.
5918  */
5919 static int
5920 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5921 {
5922         /* reply pool, 4 byte align */
5923         ioc->reply_dma_pool = dma_pool_create("reply pool",
5924             &ioc->pdev->dev, sz, 4, 0);
5925         if (!ioc->reply_dma_pool)
5926                 return -ENOMEM;
5927         ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5928             &ioc->reply_dma);
5929         if (!ioc->reply)
5930                 return -EAGAIN;
5931         if (!mpt3sas_check_same_4gb_region((long)ioc->reply_free, sz)) {
5932                 dinitprintk(ioc, pr_err(
5933                     "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n",
5934                     ioc->reply, (unsigned long long) ioc->reply_dma));
5935                 ioc->use_32bit_dma = true;
5936                 return -EAGAIN;
5937         }
5938         ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5939         ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5940         ioc_info(ioc,
5941             "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5942             ioc->reply, (unsigned long long)ioc->reply_dma,
5943             ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
5944         return 0;
5945 }
5946
5947 /**
5948  * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
5949  *                      for reply free dma pool.
5950  * @ioc: Adapter object
5951  * @sz: DMA Pool size
5952  * Return: 0 for success, non-zero for failure.
5953  */
5954 static int
5955 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5956 {
5957         /* reply free queue, 16 byte align */
5958         ioc->reply_free_dma_pool = dma_pool_create(
5959             "reply_free pool", &ioc->pdev->dev, sz, 16, 0);
5960         if (!ioc->reply_free_dma_pool)
5961                 return -ENOMEM;
5962         ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool,
5963             GFP_KERNEL, &ioc->reply_free_dma);
5964         if (!ioc->reply_free)
5965                 return -EAGAIN;
5966         if (!mpt3sas_check_same_4gb_region((long)ioc->reply_free, sz)) {
5967                 dinitprintk(ioc,
5968                     pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
5969                     ioc->reply_free, (unsigned long long) ioc->reply_free_dma));
5970                 ioc->use_32bit_dma = true;
5971                 return -EAGAIN;
5972         }
5973         memset(ioc->reply_free, 0, sz);
5974         dinitprintk(ioc, ioc_info(ioc,
5975             "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5976             ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
5977         dinitprintk(ioc, ioc_info(ioc,
5978             "reply_free_dma (0x%llx)\n",
5979             (unsigned long long)ioc->reply_free_dma));
5980         return 0;
5981 }
5982
5983 /**
5984  * _base_allocate_reply_post_free_array - Allocating DMA'able memory
5985  *                      for reply post free array.
5986  * @ioc: Adapter object
5987  * @reply_post_free_array_sz: DMA Pool size
5988  * Return: 0 for success, non-zero for failure.
5989  */
5990
5991 static int
5992 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
5993         u32 reply_post_free_array_sz)
5994 {
5995         ioc->reply_post_free_array_dma_pool =
5996             dma_pool_create("reply_post_free_array pool",
5997             &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5998         if (!ioc->reply_post_free_array_dma_pool)
5999                 return -ENOMEM;
6000         ioc->reply_post_free_array =
6001             dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
6002             GFP_KERNEL, &ioc->reply_post_free_array_dma);
6003         if (!ioc->reply_post_free_array)
6004                 return -EAGAIN;
6005         if (!mpt3sas_check_same_4gb_region((long)ioc->reply_post_free_array,
6006             reply_post_free_array_sz)) {
6007                 dinitprintk(ioc, pr_err(
6008                     "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6009                     ioc->reply_free,
6010                     (unsigned long long) ioc->reply_free_dma));
6011                 ioc->use_32bit_dma = true;
6012                 return -EAGAIN;
6013         }
6014         return 0;
6015 }
6016 /**
6017  * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
6018  *                     for reply queues.
6019  * @ioc: per adapter object
6020  * @sz: DMA Pool size
6021  * Return: 0 for success, non-zero for failure.
6022  */
6023 static int
6024 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
6025 {
6026         int i = 0;
6027         u32 dma_alloc_count = 0;
6028         int reply_post_free_sz = ioc->reply_post_queue_depth *
6029                 sizeof(Mpi2DefaultReplyDescriptor_t);
6030         int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
6031
6032         ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
6033                         GFP_KERNEL);
6034         if (!ioc->reply_post)
6035                 return -ENOMEM;
6036         /*
6037          *  For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
6038          *  VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
6039          *  be within 4GB boundary i.e reply queues in a set must have same
6040          *  upper 32-bits in their memory address. so here driver is allocating
6041          *  the DMA'able memory for reply queues according.
6042          *  Driver uses limitation of
6043          *  VENTURA_SERIES to manage INVADER_SERIES as well.
6044          */
6045         dma_alloc_count = DIV_ROUND_UP(count,
6046                                 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
6047         ioc->reply_post_free_dma_pool =
6048                 dma_pool_create("reply_post_free pool",
6049                     &ioc->pdev->dev, sz, 16, 0);
6050         if (!ioc->reply_post_free_dma_pool)
6051                 return -ENOMEM;
6052         for (i = 0; i < count; i++) {
6053                 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
6054                         ioc->reply_post[i].reply_post_free =
6055                             dma_pool_zalloc(ioc->reply_post_free_dma_pool,
6056                                 GFP_KERNEL,
6057                                 &ioc->reply_post[i].reply_post_free_dma);
6058                         if (!ioc->reply_post[i].reply_post_free)
6059                                 return -ENOMEM;
6060                         /*
6061                          * Each set of RDPQ pool must satisfy 4gb boundary
6062                          * restriction.
6063                          * 1) Check if allocated resources for RDPQ pool are in
6064                          *      the same 4GB range.
6065                          * 2) If #1 is true, continue with 64 bit DMA.
6066                          * 3) If #1 is false, return 1. which means free all the
6067                          * resources and set DMA mask to 32 and allocate.
6068                          */
6069                         if (!mpt3sas_check_same_4gb_region(
6070                                 (long)ioc->reply_post[i].reply_post_free, sz)) {
6071                                 dinitprintk(ioc,
6072                                     ioc_err(ioc, "bad Replypost free pool(0x%p)"
6073                                     "reply_post_free_dma = (0x%llx)\n",
6074                                     ioc->reply_post[i].reply_post_free,
6075                                     (unsigned long long)
6076                                     ioc->reply_post[i].reply_post_free_dma));
6077                                 return -EAGAIN;
6078                         }
6079                         dma_alloc_count--;
6080
6081                 } else {
6082                         ioc->reply_post[i].reply_post_free =
6083                             (Mpi2ReplyDescriptorsUnion_t *)
6084                             ((long)ioc->reply_post[i-1].reply_post_free
6085                             + reply_post_free_sz);
6086                         ioc->reply_post[i].reply_post_free_dma =
6087                             (dma_addr_t)
6088                             (ioc->reply_post[i-1].reply_post_free_dma +
6089                             reply_post_free_sz);
6090                 }
6091         }
6092         return 0;
6093 }
6094
6095 /**
6096  * _base_allocate_memory_pools - allocate start of day memory pools
6097  * @ioc: per adapter object
6098  *
6099  * Return: 0 success, anything else error.
6100  */
6101 static int
6102 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
6103 {
6104         struct mpt3sas_facts *facts;
6105         u16 max_sge_elements;
6106         u16 chains_needed_per_io;
6107         u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
6108         u32 retry_sz;
6109         u32 rdpq_sz = 0, sense_sz = 0;
6110         u16 max_request_credit, nvme_blocks_needed;
6111         unsigned short sg_tablesize;
6112         u16 sge_size;
6113         int i;
6114         int ret = 0, rc = 0;
6115
6116         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6117
6118
6119         retry_sz = 0;
6120         facts = &ioc->facts;
6121
6122         /* command line tunables for max sgl entries */
6123         if (max_sgl_entries != -1)
6124                 sg_tablesize = max_sgl_entries;
6125         else {
6126                 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
6127                         sg_tablesize = MPT2SAS_SG_DEPTH;
6128                 else
6129                         sg_tablesize = MPT3SAS_SG_DEPTH;
6130         }
6131
6132         /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
6133         if (reset_devices)
6134                 sg_tablesize = min_t(unsigned short, sg_tablesize,
6135                    MPT_KDUMP_MIN_PHYS_SEGMENTS);
6136
6137         if (ioc->is_mcpu_endpoint)
6138                 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6139         else {
6140                 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
6141                         sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6142                 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
6143                         sg_tablesize = min_t(unsigned short, sg_tablesize,
6144                                         SG_MAX_SEGMENTS);
6145                         ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
6146                                  sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
6147                 }
6148                 ioc->shost->sg_tablesize = sg_tablesize;
6149         }
6150
6151         ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
6152                 (facts->RequestCredit / 4));
6153         if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
6154                 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
6155                                 INTERNAL_SCSIIO_CMDS_COUNT)) {
6156                         ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
6157                                 facts->RequestCredit);
6158                         return -ENOMEM;
6159                 }
6160                 ioc->internal_depth = 10;
6161         }
6162
6163         ioc->hi_priority_depth = ioc->internal_depth - (5);
6164         /* command line tunables  for max controller queue depth */
6165         if (max_queue_depth != -1 && max_queue_depth != 0) {
6166                 max_request_credit = min_t(u16, max_queue_depth +
6167                         ioc->internal_depth, facts->RequestCredit);
6168                 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
6169                         max_request_credit =  MAX_HBA_QUEUE_DEPTH;
6170         } else if (reset_devices)
6171                 max_request_credit = min_t(u16, facts->RequestCredit,
6172                     (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
6173         else
6174                 max_request_credit = min_t(u16, facts->RequestCredit,
6175                     MAX_HBA_QUEUE_DEPTH);
6176
6177         /* Firmware maintains additional facts->HighPriorityCredit number of
6178          * credits for HiPriprity Request messages, so hba queue depth will be
6179          * sum of max_request_credit and high priority queue depth.
6180          */
6181         ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
6182
6183         /* request frame size */
6184         ioc->request_sz = facts->IOCRequestFrameSize * 4;
6185
6186         /* reply frame size */
6187         ioc->reply_sz = facts->ReplyFrameSize * 4;
6188
6189         /* chain segment size */
6190         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6191                 if (facts->IOCMaxChainSegmentSize)
6192                         ioc->chain_segment_sz =
6193                                         facts->IOCMaxChainSegmentSize *
6194                                         MAX_CHAIN_ELEMT_SZ;
6195                 else
6196                 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
6197                         ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
6198                                                     MAX_CHAIN_ELEMT_SZ;
6199         } else
6200                 ioc->chain_segment_sz = ioc->request_sz;
6201
6202         /* calculate the max scatter element size */
6203         sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
6204
6205  retry_allocation:
6206         total_sz = 0;
6207         /* calculate number of sg elements left over in the 1st frame */
6208         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
6209             sizeof(Mpi2SGEIOUnion_t)) + sge_size);
6210         ioc->max_sges_in_main_message = max_sge_elements/sge_size;
6211
6212         /* now do the same for a chain buffer */
6213         max_sge_elements = ioc->chain_segment_sz - sge_size;
6214         ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
6215
6216         /*
6217          *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
6218          */
6219         chains_needed_per_io = ((ioc->shost->sg_tablesize -
6220            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
6221             + 1;
6222         if (chains_needed_per_io > facts->MaxChainDepth) {
6223                 chains_needed_per_io = facts->MaxChainDepth;
6224                 ioc->shost->sg_tablesize = min_t(u16,
6225                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
6226                 * chains_needed_per_io), ioc->shost->sg_tablesize);
6227         }
6228         ioc->chains_needed_per_io = chains_needed_per_io;
6229
6230         /* reply free queue sizing - taking into account for 64 FW events */
6231         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6232
6233         /* mCPU manage single counters for simplicity */
6234         if (ioc->is_mcpu_endpoint)
6235                 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
6236         else {
6237                 /* calculate reply descriptor post queue depth */
6238                 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
6239                         ioc->reply_free_queue_depth +  1;
6240                 /* align the reply post queue on the next 16 count boundary */
6241                 if (ioc->reply_post_queue_depth % 16)
6242                         ioc->reply_post_queue_depth += 16 -
6243                                 (ioc->reply_post_queue_depth % 16);
6244         }
6245
6246         if (ioc->reply_post_queue_depth >
6247             facts->MaxReplyDescriptorPostQueueDepth) {
6248                 ioc->reply_post_queue_depth =
6249                                 facts->MaxReplyDescriptorPostQueueDepth -
6250                     (facts->MaxReplyDescriptorPostQueueDepth % 16);
6251                 ioc->hba_queue_depth =
6252                                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
6253                 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6254         }
6255
6256         ioc_info(ioc,
6257             "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
6258             "sge_per_io(%d), chains_per_io(%d)\n",
6259             ioc->max_sges_in_main_message,
6260             ioc->max_sges_in_chain_message,
6261             ioc->shost->sg_tablesize,
6262             ioc->chains_needed_per_io);
6263
6264         /* reply post queue, 16 byte align */
6265         reply_post_free_sz = ioc->reply_post_queue_depth *
6266             sizeof(Mpi2DefaultReplyDescriptor_t);
6267         rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
6268         if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
6269             || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK))
6270                 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
6271         ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
6272         if (ret == -EAGAIN) {
6273                 /*
6274                  * Free allocated bad RDPQ memory pools.
6275                  * Change dma coherent mask to 32 bit and reallocate RDPQ
6276                  */
6277                 _base_release_memory_pools(ioc);
6278                 ioc->use_32bit_dma = true;
6279                 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6280                         ioc_err(ioc,
6281                             "32 DMA mask failed %s\n", pci_name(ioc->pdev));
6282                         return -ENODEV;
6283                 }
6284                 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
6285                         return -ENOMEM;
6286         } else if (ret == -ENOMEM)
6287                 return -ENOMEM;
6288         total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
6289             DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
6290         ioc->scsiio_depth = ioc->hba_queue_depth -
6291             ioc->hi_priority_depth - ioc->internal_depth;
6292
6293         /* set the scsi host can_queue depth
6294          * with some internal commands that could be outstanding
6295          */
6296         ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
6297         dinitprintk(ioc,
6298                     ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
6299                              ioc->shost->can_queue));
6300
6301         /* contiguous pool for request and chains, 16 byte align, one extra "
6302          * "frame for smid=0
6303          */
6304         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
6305         sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
6306
6307         /* hi-priority queue */
6308         sz += (ioc->hi_priority_depth * ioc->request_sz);
6309
6310         /* internal queue */
6311         sz += (ioc->internal_depth * ioc->request_sz);
6312
6313         ioc->request_dma_sz = sz;
6314         ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
6315                         &ioc->request_dma, GFP_KERNEL);
6316         if (!ioc->request) {
6317                 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
6318                         ioc->hba_queue_depth, ioc->chains_needed_per_io,
6319                         ioc->request_sz, sz / 1024);
6320                 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
6321                         goto out;
6322                 retry_sz = 64;
6323                 ioc->hba_queue_depth -= retry_sz;
6324                 _base_release_memory_pools(ioc);
6325                 goto retry_allocation;
6326         }
6327
6328         if (retry_sz)
6329                 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
6330                         ioc->hba_queue_depth, ioc->chains_needed_per_io,
6331                         ioc->request_sz, sz / 1024);
6332
6333         /* hi-priority queue */
6334         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
6335             ioc->request_sz);
6336         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
6337             ioc->request_sz);
6338
6339         /* internal queue */
6340         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
6341             ioc->request_sz);
6342         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
6343             ioc->request_sz);
6344
6345         ioc_info(ioc,
6346             "request pool(0x%p) - dma(0x%llx): "
6347             "depth(%d), frame_size(%d), pool_size(%d kB)\n",
6348             ioc->request, (unsigned long long) ioc->request_dma,
6349             ioc->hba_queue_depth, ioc->request_sz,
6350             (ioc->hba_queue_depth * ioc->request_sz) / 1024);
6351
6352         total_sz += sz;
6353
6354         dinitprintk(ioc,
6355                     ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
6356                              ioc->request, ioc->scsiio_depth));
6357
6358         ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
6359         sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
6360         ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
6361         if (!ioc->chain_lookup) {
6362                 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
6363                 goto out;
6364         }
6365
6366         sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
6367         for (i = 0; i < ioc->scsiio_depth; i++) {
6368                 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
6369                 if (!ioc->chain_lookup[i].chains_per_smid) {
6370                         ioc_err(ioc, "chain_lookup: kzalloc failed\n");
6371                         goto out;
6372                 }
6373         }
6374
6375         /* initialize hi-priority queue smid's */
6376         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
6377             sizeof(struct request_tracker), GFP_KERNEL);
6378         if (!ioc->hpr_lookup) {
6379                 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
6380                 goto out;
6381         }
6382         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
6383         dinitprintk(ioc,
6384                     ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
6385                              ioc->hi_priority,
6386                              ioc->hi_priority_depth, ioc->hi_priority_smid));
6387
6388         /* initialize internal queue smid's */
6389         ioc->internal_lookup = kcalloc(ioc->internal_depth,
6390             sizeof(struct request_tracker), GFP_KERNEL);
6391         if (!ioc->internal_lookup) {
6392                 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
6393                 goto out;
6394         }
6395         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
6396         dinitprintk(ioc,
6397                     ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
6398                              ioc->internal,
6399                              ioc->internal_depth, ioc->internal_smid));
6400
6401         ioc->io_queue_num = kcalloc(ioc->scsiio_depth,
6402             sizeof(u16), GFP_KERNEL);
6403         if (!ioc->io_queue_num)
6404                 goto out;
6405         /*
6406          * The number of NVMe page sized blocks needed is:
6407          *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
6408          * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
6409          * that is placed in the main message frame.  8 is the size of each PRP
6410          * entry or PRP list pointer entry.  8 is subtracted from page_size
6411          * because of the PRP list pointer entry at the end of a page, so this
6412          * is not counted as a PRP entry.  The 1 added page is a round up.
6413          *
6414          * To avoid allocation failures due to the amount of memory that could
6415          * be required for NVMe PRP's, only each set of NVMe blocks will be
6416          * contiguous, so a new set is allocated for each possible I/O.
6417          */
6418
6419         ioc->chains_per_prp_buffer = 0;
6420         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
6421                 nvme_blocks_needed =
6422                         (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
6423                 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
6424                 nvme_blocks_needed++;
6425
6426                 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
6427                 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
6428                 if (!ioc->pcie_sg_lookup) {
6429                         ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
6430                         goto out;
6431                 }
6432                 sz = nvme_blocks_needed * ioc->page_size;
6433                 rc = _base_allocate_pcie_sgl_pool(ioc, sz);
6434                 if (rc == -ENOMEM)
6435                         return -ENOMEM;
6436                 else if (rc == -EAGAIN)
6437                         goto try_32bit_dma;
6438                 total_sz += sz * ioc->scsiio_depth;
6439         }
6440
6441         rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz);
6442         if (rc == -ENOMEM)
6443                 return -ENOMEM;
6444         else if (rc == -EAGAIN)
6445                 goto try_32bit_dma;
6446         total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io -
6447                 ioc->chains_per_prp_buffer) * ioc->scsiio_depth);
6448         dinitprintk(ioc,
6449             ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
6450             ioc->chain_depth, ioc->chain_segment_sz,
6451             (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
6452         /* sense buffers, 4 byte align */
6453         sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
6454         rc = _base_allocate_sense_dma_pool(ioc, sense_sz);
6455         if (rc  == -ENOMEM)
6456                 return -ENOMEM;
6457         else if (rc == -EAGAIN)
6458                 goto try_32bit_dma;
6459         total_sz += sense_sz;
6460         ioc_info(ioc,
6461             "sense pool(0x%p)- dma(0x%llx): depth(%d),"
6462             "element_size(%d), pool_size(%d kB)\n",
6463             ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
6464             SCSI_SENSE_BUFFERSIZE, sz / 1024);
6465         /* reply pool, 4 byte align */
6466         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
6467         rc = _base_allocate_reply_pool(ioc, sz);
6468         if (rc == -ENOMEM)
6469                 return -ENOMEM;
6470         else if (rc == -EAGAIN)
6471                 goto try_32bit_dma;
6472         total_sz += sz;
6473
6474         /* reply free queue, 16 byte align */
6475         sz = ioc->reply_free_queue_depth * 4;
6476         rc = _base_allocate_reply_free_dma_pool(ioc, sz);
6477         if (rc  == -ENOMEM)
6478                 return -ENOMEM;
6479         else if (rc == -EAGAIN)
6480                 goto try_32bit_dma;
6481         dinitprintk(ioc,
6482                     ioc_info(ioc, "reply_free_dma (0x%llx)\n",
6483                              (unsigned long long)ioc->reply_free_dma));
6484         total_sz += sz;
6485         if (ioc->rdpq_array_enable) {
6486                 reply_post_free_array_sz = ioc->reply_queue_count *
6487                     sizeof(Mpi2IOCInitRDPQArrayEntry);
6488                 rc = _base_allocate_reply_post_free_array(ioc,
6489                     reply_post_free_array_sz);
6490                 if (rc == -ENOMEM)
6491                         return -ENOMEM;
6492                 else if (rc == -EAGAIN)
6493                         goto try_32bit_dma;
6494         }
6495         ioc->config_page_sz = 512;
6496         ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
6497                         ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
6498         if (!ioc->config_page) {
6499                 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
6500                 goto out;
6501         }
6502
6503         ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
6504             ioc->config_page, (unsigned long long)ioc->config_page_dma,
6505             ioc->config_page_sz);
6506         total_sz += ioc->config_page_sz;
6507
6508         ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6509                  total_sz / 1024);
6510         ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6511                  ioc->shost->can_queue, facts->RequestCredit);
6512         ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6513                  ioc->shost->sg_tablesize);
6514         return 0;
6515
6516 try_32bit_dma:
6517         _base_release_memory_pools(ioc);
6518         if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
6519                 /* Change dma coherent mask to 32 bit and reallocate */
6520                 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6521                         pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
6522                             pci_name(ioc->pdev));
6523                         return -ENODEV;
6524                 }
6525         } else if (_base_reduce_hba_queue_depth(ioc) != 0)
6526                 return -ENOMEM;
6527         goto retry_allocation;
6528
6529  out:
6530         return -ENOMEM;
6531 }
6532
6533 /**
6534  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6535  * @ioc: Pointer to MPT_ADAPTER structure
6536  * @cooked: Request raw or cooked IOC state
6537  *
6538  * Return: all IOC Doorbell register bits if cooked==0, else just the
6539  * Doorbell bits in MPI_IOC_STATE_MASK.
6540  */
6541 u32
6542 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6543 {
6544         u32 s, sc;
6545
6546         s = ioc->base_readl(&ioc->chip->Doorbell);
6547         sc = s & MPI2_IOC_STATE_MASK;
6548         return cooked ? sc : s;
6549 }
6550
6551 /**
6552  * _base_wait_on_iocstate - waiting on a particular ioc state
6553  * @ioc: ?
6554  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6555  * @timeout: timeout in second
6556  *
6557  * Return: 0 for success, non-zero for failure.
6558  */
6559 static int
6560 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6561 {
6562         u32 count, cntdn;
6563         u32 current_state;
6564
6565         count = 0;
6566         cntdn = 1000 * timeout;
6567         do {
6568                 current_state = mpt3sas_base_get_iocstate(ioc, 1);
6569                 if (current_state == ioc_state)
6570                         return 0;
6571                 if (count && current_state == MPI2_IOC_STATE_FAULT)
6572                         break;
6573                 if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6574                         break;
6575
6576                 usleep_range(1000, 1500);
6577                 count++;
6578         } while (--cntdn);
6579
6580         return current_state;
6581 }
6582
6583 /**
6584  * _base_dump_reg_set - This function will print hexdump of register set.
6585  * @ioc: per adapter object
6586  *
6587  * Return: nothing.
6588  */
6589 static inline void
6590 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6591 {
6592         unsigned int i, sz = 256;
6593         u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6594
6595         ioc_info(ioc, "System Register set:\n");
6596         for (i = 0; i < (sz / sizeof(u32)); i++)
6597                 pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
6598 }
6599
6600 /**
6601  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6602  * a write to the doorbell)
6603  * @ioc: per adapter object
6604  * @timeout: timeout in seconds
6605  *
6606  * Return: 0 for success, non-zero for failure.
6607  *
6608  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6609  */
6610
6611 static int
6612 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6613 {
6614         u32 cntdn, count;
6615         u32 int_status;
6616
6617         count = 0;
6618         cntdn = 1000 * timeout;
6619         do {
6620                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6621                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6622                         dhsprintk(ioc,
6623                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6624                                            __func__, count, timeout));
6625                         return 0;
6626                 }
6627
6628                 usleep_range(1000, 1500);
6629                 count++;
6630         } while (--cntdn);
6631
6632         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6633                 __func__, count, int_status);
6634         return -EFAULT;
6635 }
6636
6637 static int
6638 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6639 {
6640         u32 cntdn, count;
6641         u32 int_status;
6642
6643         count = 0;
6644         cntdn = 2000 * timeout;
6645         do {
6646                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6647                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6648                         dhsprintk(ioc,
6649                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6650                                            __func__, count, timeout));
6651                         return 0;
6652                 }
6653
6654                 udelay(500);
6655                 count++;
6656         } while (--cntdn);
6657
6658         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6659                 __func__, count, int_status);
6660         return -EFAULT;
6661
6662 }
6663
6664 /**
6665  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6666  * @ioc: per adapter object
6667  * @timeout: timeout in second
6668  *
6669  * Return: 0 for success, non-zero for failure.
6670  *
6671  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6672  * doorbell.
6673  */
6674 static int
6675 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6676 {
6677         u32 cntdn, count;
6678         u32 int_status;
6679         u32 doorbell;
6680
6681         count = 0;
6682         cntdn = 1000 * timeout;
6683         do {
6684                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6685                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6686                         dhsprintk(ioc,
6687                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6688                                            __func__, count, timeout));
6689                         return 0;
6690                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6691                         doorbell = ioc->base_readl(&ioc->chip->Doorbell);
6692                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
6693                             MPI2_IOC_STATE_FAULT) {
6694                                 mpt3sas_print_fault_code(ioc, doorbell);
6695                                 return -EFAULT;
6696                         }
6697                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
6698                             MPI2_IOC_STATE_COREDUMP) {
6699                                 mpt3sas_print_coredump_info(ioc, doorbell);
6700                                 return -EFAULT;
6701                         }
6702                 } else if (int_status == 0xFFFFFFFF)
6703                         goto out;
6704
6705                 usleep_range(1000, 1500);
6706                 count++;
6707         } while (--cntdn);
6708
6709  out:
6710         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6711                 __func__, count, int_status);
6712         return -EFAULT;
6713 }
6714
6715 /**
6716  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6717  * @ioc: per adapter object
6718  * @timeout: timeout in second
6719  *
6720  * Return: 0 for success, non-zero for failure.
6721  */
6722 static int
6723 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6724 {
6725         u32 cntdn, count;
6726         u32 doorbell_reg;
6727
6728         count = 0;
6729         cntdn = 1000 * timeout;
6730         do {
6731                 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
6732                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6733                         dhsprintk(ioc,
6734                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6735                                            __func__, count, timeout));
6736                         return 0;
6737                 }
6738
6739                 usleep_range(1000, 1500);
6740                 count++;
6741         } while (--cntdn);
6742
6743         ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6744                 __func__, count, doorbell_reg);
6745         return -EFAULT;
6746 }
6747
6748 /**
6749  * _base_send_ioc_reset - send doorbell reset
6750  * @ioc: per adapter object
6751  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6752  * @timeout: timeout in second
6753  *
6754  * Return: 0 for success, non-zero for failure.
6755  */
6756 static int
6757 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6758 {
6759         u32 ioc_state;
6760         int r = 0;
6761         unsigned long flags;
6762
6763         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6764                 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6765                 return -EFAULT;
6766         }
6767
6768         if (!(ioc->facts.IOCCapabilities &
6769            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6770                 return -EFAULT;
6771
6772         ioc_info(ioc, "sending message unit reset !!\n");
6773
6774         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6775             &ioc->chip->Doorbell);
6776         if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6777                 r = -EFAULT;
6778                 goto out;
6779         }
6780
6781         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6782         if (ioc_state) {
6783                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6784                         __func__, ioc_state);
6785                 r = -EFAULT;
6786                 goto out;
6787         }
6788  out:
6789         if (r != 0) {
6790                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6791                 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6792                 /*
6793                  * Wait for IOC state CoreDump to clear only during
6794                  * HBA initialization & release time.
6795                  */
6796                 if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6797                     MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6798                     ioc->fault_reset_work_q == NULL)) {
6799                         spin_unlock_irqrestore(
6800                             &ioc->ioc_reset_in_progress_lock, flags);
6801                         mpt3sas_print_coredump_info(ioc, ioc_state);
6802                         mpt3sas_base_wait_for_coredump_completion(ioc,
6803                             __func__);
6804                         spin_lock_irqsave(
6805                             &ioc->ioc_reset_in_progress_lock, flags);
6806                 }
6807                 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6808         }
6809         ioc_info(ioc, "message unit reset: %s\n",
6810                  r == 0 ? "SUCCESS" : "FAILED");
6811         return r;
6812 }
6813
6814 /**
6815  * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6816  * @ioc: per adapter object
6817  * @timeout: timeout in seconds
6818  *
6819  * Return: Waits up to timeout seconds for the IOC to
6820  * become operational. Returns 0 if IOC is present
6821  * and operational; otherwise returns %-EFAULT.
6822  */
6823
6824 int
6825 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
6826 {
6827         int wait_state_count = 0;
6828         u32 ioc_state;
6829
6830         do {
6831                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
6832                 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
6833                         break;
6834
6835                 /*
6836                  * Watchdog thread will be started after IOC Initialization, so
6837                  * no need to wait here for IOC state to become operational
6838                  * when IOC Initialization is on. Instead the driver will
6839                  * return ETIME status, so that calling function can issue
6840                  * diag reset operation and retry the command.
6841                  */
6842                 if (ioc->is_driver_loading)
6843                         return -ETIME;
6844
6845                 ssleep(1);
6846                 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
6847                                 __func__, ++wait_state_count);
6848         } while (--timeout);
6849         if (!timeout) {
6850                 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
6851                 return -EFAULT;
6852         }
6853         if (wait_state_count)
6854                 ioc_info(ioc, "ioc is operational\n");
6855         return 0;
6856 }
6857
6858 /**
6859  * _base_handshake_req_reply_wait - send request thru doorbell interface
6860  * @ioc: per adapter object
6861  * @request_bytes: request length
6862  * @request: pointer having request payload
6863  * @reply_bytes: reply length
6864  * @reply: pointer to reply payload
6865  * @timeout: timeout in second
6866  *
6867  * Return: 0 for success, non-zero for failure.
6868  */
6869 static int
6870 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
6871         u32 *request, int reply_bytes, u16 *reply, int timeout)
6872 {
6873         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
6874         int i;
6875         u8 failed;
6876         __le32 *mfp;
6877
6878         /* make sure doorbell is not in use */
6879         if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
6880                 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
6881                 return -EFAULT;
6882         }
6883
6884         /* clear pending doorbell interrupts from previous state changes */
6885         if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
6886             MPI2_HIS_IOC2SYS_DB_STATUS)
6887                 writel(0, &ioc->chip->HostInterruptStatus);
6888
6889         /* send message to ioc */
6890         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
6891             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
6892             &ioc->chip->Doorbell);
6893
6894         if ((_base_spin_on_doorbell_int(ioc, 5))) {
6895                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6896                         __LINE__);
6897                 return -EFAULT;
6898         }
6899         writel(0, &ioc->chip->HostInterruptStatus);
6900
6901         if ((_base_wait_for_doorbell_ack(ioc, 5))) {
6902                 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
6903                         __LINE__);
6904                 return -EFAULT;
6905         }
6906
6907         /* send message 32-bits at a time */
6908         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
6909                 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
6910                 if ((_base_wait_for_doorbell_ack(ioc, 5)))
6911                         failed = 1;
6912         }
6913
6914         if (failed) {
6915                 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
6916                         __LINE__);
6917                 return -EFAULT;
6918         }
6919
6920         /* now wait for the reply */
6921         if ((_base_wait_for_doorbell_int(ioc, timeout))) {
6922                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6923                         __LINE__);
6924                 return -EFAULT;
6925         }
6926
6927         /* read the first two 16-bits, it gives the total length of the reply */
6928         reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
6929             & MPI2_DOORBELL_DATA_MASK);
6930         writel(0, &ioc->chip->HostInterruptStatus);
6931         if ((_base_wait_for_doorbell_int(ioc, 5))) {
6932                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6933                         __LINE__);
6934                 return -EFAULT;
6935         }
6936         reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
6937             & MPI2_DOORBELL_DATA_MASK);
6938         writel(0, &ioc->chip->HostInterruptStatus);
6939
6940         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
6941                 if ((_base_wait_for_doorbell_int(ioc, 5))) {
6942                         ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6943                                 __LINE__);
6944                         return -EFAULT;
6945                 }
6946                 if (i >=  reply_bytes/2) /* overflow case */
6947                         ioc->base_readl(&ioc->chip->Doorbell);
6948                 else
6949                         reply[i] = le16_to_cpu(
6950                             ioc->base_readl(&ioc->chip->Doorbell)
6951                             & MPI2_DOORBELL_DATA_MASK);
6952                 writel(0, &ioc->chip->HostInterruptStatus);
6953         }
6954
6955         _base_wait_for_doorbell_int(ioc, 5);
6956         if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
6957                 dhsprintk(ioc,
6958                           ioc_info(ioc, "doorbell is in use (line=%d)\n",
6959                                    __LINE__));
6960         }
6961         writel(0, &ioc->chip->HostInterruptStatus);
6962
6963         if (ioc->logging_level & MPT_DEBUG_INIT) {
6964                 mfp = (__le32 *)reply;
6965                 pr_info("\toffset:data\n");
6966                 for (i = 0; i < reply_bytes/4; i++)
6967                         ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6968                             le32_to_cpu(mfp[i]));
6969         }
6970         return 0;
6971 }
6972
6973 /**
6974  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
6975  * @ioc: per adapter object
6976  * @mpi_reply: the reply payload from FW
6977  * @mpi_request: the request payload sent to FW
6978  *
6979  * The SAS IO Unit Control Request message allows the host to perform low-level
6980  * operations, such as resets on the PHYs of the IO Unit, also allows the host
6981  * to obtain the IOC assigned device handles for a device if it has other
6982  * identifying information about the device, in addition allows the host to
6983  * remove IOC resources associated with the device.
6984  *
6985  * Return: 0 for success, non-zero for failure.
6986  */
6987 int
6988 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
6989         Mpi2SasIoUnitControlReply_t *mpi_reply,
6990         Mpi2SasIoUnitControlRequest_t *mpi_request)
6991 {
6992         u16 smid;
6993         u8 issue_reset = 0;
6994         int rc;
6995         void *request;
6996
6997         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6998
6999         mutex_lock(&ioc->base_cmds.mutex);
7000
7001         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7002                 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7003                 rc = -EAGAIN;
7004                 goto out;
7005         }
7006
7007         rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7008         if (rc)
7009                 goto out;
7010
7011         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7012         if (!smid) {
7013                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7014                 rc = -EAGAIN;
7015                 goto out;
7016         }
7017
7018         rc = 0;
7019         ioc->base_cmds.status = MPT3_CMD_PENDING;
7020         request = mpt3sas_base_get_msg_frame(ioc, smid);
7021         ioc->base_cmds.smid = smid;
7022         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
7023         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7024             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
7025                 ioc->ioc_link_reset_in_progress = 1;
7026         init_completion(&ioc->base_cmds.done);
7027         ioc->put_smid_default(ioc, smid);
7028         wait_for_completion_timeout(&ioc->base_cmds.done,
7029             msecs_to_jiffies(10000));
7030         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7031             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
7032             ioc->ioc_link_reset_in_progress)
7033                 ioc->ioc_link_reset_in_progress = 0;
7034         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7035                 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
7036                     mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
7037                     issue_reset);
7038                 goto issue_host_reset;
7039         }
7040         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7041                 memcpy(mpi_reply, ioc->base_cmds.reply,
7042                     sizeof(Mpi2SasIoUnitControlReply_t));
7043         else
7044                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
7045         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7046         goto out;
7047
7048  issue_host_reset:
7049         if (issue_reset)
7050                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7051         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7052         rc = -EFAULT;
7053  out:
7054         mutex_unlock(&ioc->base_cmds.mutex);
7055         return rc;
7056 }
7057
7058 /**
7059  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
7060  * @ioc: per adapter object
7061  * @mpi_reply: the reply payload from FW
7062  * @mpi_request: the request payload sent to FW
7063  *
7064  * The SCSI Enclosure Processor request message causes the IOC to
7065  * communicate with SES devices to control LED status signals.
7066  *
7067  * Return: 0 for success, non-zero for failure.
7068  */
7069 int
7070 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
7071         Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
7072 {
7073         u16 smid;
7074         u8 issue_reset = 0;
7075         int rc;
7076         void *request;
7077
7078         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7079
7080         mutex_lock(&ioc->base_cmds.mutex);
7081
7082         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7083                 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7084                 rc = -EAGAIN;
7085                 goto out;
7086         }
7087
7088         rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7089         if (rc)
7090                 goto out;
7091
7092         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7093         if (!smid) {
7094                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7095                 rc = -EAGAIN;
7096                 goto out;
7097         }
7098
7099         rc = 0;
7100         ioc->base_cmds.status = MPT3_CMD_PENDING;
7101         request = mpt3sas_base_get_msg_frame(ioc, smid);
7102         ioc->base_cmds.smid = smid;
7103         memset(request, 0, ioc->request_sz);
7104         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
7105         init_completion(&ioc->base_cmds.done);
7106         ioc->put_smid_default(ioc, smid);
7107         wait_for_completion_timeout(&ioc->base_cmds.done,
7108             msecs_to_jiffies(10000));
7109         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7110                 mpt3sas_check_cmd_timeout(ioc,
7111                     ioc->base_cmds.status, mpi_request,
7112                     sizeof(Mpi2SepRequest_t)/4, issue_reset);
7113                 goto issue_host_reset;
7114         }
7115         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7116                 memcpy(mpi_reply, ioc->base_cmds.reply,
7117                     sizeof(Mpi2SepReply_t));
7118         else
7119                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
7120         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7121         goto out;
7122
7123  issue_host_reset:
7124         if (issue_reset)
7125                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7126         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7127         rc = -EFAULT;
7128  out:
7129         mutex_unlock(&ioc->base_cmds.mutex);
7130         return rc;
7131 }
7132
7133 /**
7134  * _base_get_port_facts - obtain port facts reply and save in ioc
7135  * @ioc: per adapter object
7136  * @port: ?
7137  *
7138  * Return: 0 for success, non-zero for failure.
7139  */
7140 static int
7141 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
7142 {
7143         Mpi2PortFactsRequest_t mpi_request;
7144         Mpi2PortFactsReply_t mpi_reply;
7145         struct mpt3sas_port_facts *pfacts;
7146         int mpi_reply_sz, mpi_request_sz, r;
7147
7148         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7149
7150         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
7151         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
7152         memset(&mpi_request, 0, mpi_request_sz);
7153         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
7154         mpi_request.PortNumber = port;
7155         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7156             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7157
7158         if (r != 0) {
7159                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7160                 return r;
7161         }
7162
7163         pfacts = &ioc->pfacts[port];
7164         memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
7165         pfacts->PortNumber = mpi_reply.PortNumber;
7166         pfacts->VP_ID = mpi_reply.VP_ID;
7167         pfacts->VF_ID = mpi_reply.VF_ID;
7168         pfacts->MaxPostedCmdBuffers =
7169             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
7170
7171         return 0;
7172 }
7173
7174 /**
7175  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
7176  * @ioc: per adapter object
7177  * @timeout:
7178  *
7179  * Return: 0 for success, non-zero for failure.
7180  */
7181 static int
7182 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
7183 {
7184         u32 ioc_state;
7185         int rc;
7186
7187         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7188
7189         if (ioc->pci_error_recovery) {
7190                 dfailprintk(ioc,
7191                             ioc_info(ioc, "%s: host in pci error recovery\n",
7192                                      __func__));
7193                 return -EFAULT;
7194         }
7195
7196         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7197         dhsprintk(ioc,
7198                   ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7199                            __func__, ioc_state));
7200
7201         if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
7202             (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7203                 return 0;
7204
7205         if (ioc_state & MPI2_DOORBELL_USED) {
7206                 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
7207                 goto issue_diag_reset;
7208         }
7209
7210         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7211                 mpt3sas_print_fault_code(ioc, ioc_state &
7212                     MPI2_DOORBELL_DATA_MASK);
7213                 goto issue_diag_reset;
7214         } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
7215             MPI2_IOC_STATE_COREDUMP) {
7216                 ioc_info(ioc,
7217                     "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
7218                     __func__, ioc_state);
7219                 return -EFAULT;
7220         }
7221
7222         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
7223         if (ioc_state) {
7224                 dfailprintk(ioc,
7225                             ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7226                                      __func__, ioc_state));
7227                 return -EFAULT;
7228         }
7229
7230  issue_diag_reset:
7231         rc = _base_diag_reset(ioc);
7232         return rc;
7233 }
7234
7235 /**
7236  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
7237  * @ioc: per adapter object
7238  *
7239  * Return: 0 for success, non-zero for failure.
7240  */
7241 static int
7242 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
7243 {
7244         Mpi2IOCFactsRequest_t mpi_request;
7245         Mpi2IOCFactsReply_t mpi_reply;
7246         struct mpt3sas_facts *facts;
7247         int mpi_reply_sz, mpi_request_sz, r;
7248
7249         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7250
7251         r = _base_wait_for_iocstate(ioc, 10);
7252         if (r) {
7253                 dfailprintk(ioc,
7254                             ioc_info(ioc, "%s: failed getting to correct state\n",
7255                                      __func__));
7256                 return r;
7257         }
7258         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
7259         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
7260         memset(&mpi_request, 0, mpi_request_sz);
7261         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
7262         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7263             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7264
7265         if (r != 0) {
7266                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7267                 return r;
7268         }
7269
7270         facts = &ioc->facts;
7271         memset(facts, 0, sizeof(struct mpt3sas_facts));
7272         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
7273         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
7274         facts->VP_ID = mpi_reply.VP_ID;
7275         facts->VF_ID = mpi_reply.VF_ID;
7276         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
7277         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
7278         facts->WhoInit = mpi_reply.WhoInit;
7279         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
7280         facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
7281         if (ioc->msix_enable && (facts->MaxMSIxVectors <=
7282             MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
7283                 ioc->combined_reply_queue = 0;
7284         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
7285         facts->MaxReplyDescriptorPostQueueDepth =
7286             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
7287         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
7288         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
7289         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
7290                 ioc->ir_firmware = 1;
7291         if ((facts->IOCCapabilities &
7292               MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
7293                 ioc->rdpq_array_capable = 1;
7294         if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
7295             && ioc->is_aero_ioc)
7296                 ioc->atomic_desc_capable = 1;
7297         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
7298         facts->IOCRequestFrameSize =
7299             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
7300         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7301                 facts->IOCMaxChainSegmentSize =
7302                         le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
7303         }
7304         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
7305         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
7306         ioc->shost->max_id = -1;
7307         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
7308         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
7309         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
7310         facts->HighPriorityCredit =
7311             le16_to_cpu(mpi_reply.HighPriorityCredit);
7312         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
7313         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
7314         facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
7315
7316         /*
7317          * Get the Page Size from IOC Facts. If it's 0, default to 4k.
7318          */
7319         ioc->page_size = 1 << facts->CurrentHostPageSize;
7320         if (ioc->page_size == 1) {
7321                 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
7322                 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
7323         }
7324         dinitprintk(ioc,
7325                     ioc_info(ioc, "CurrentHostPageSize(%d)\n",
7326                              facts->CurrentHostPageSize));
7327
7328         dinitprintk(ioc,
7329                     ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
7330                              facts->RequestCredit, facts->MaxChainDepth));
7331         dinitprintk(ioc,
7332                     ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
7333                              facts->IOCRequestFrameSize * 4,
7334                              facts->ReplyFrameSize * 4));
7335         return 0;
7336 }
7337
7338 /**
7339  * _base_send_ioc_init - send ioc_init to firmware
7340  * @ioc: per adapter object
7341  *
7342  * Return: 0 for success, non-zero for failure.
7343  */
7344 static int
7345 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
7346 {
7347         Mpi2IOCInitRequest_t mpi_request;
7348         Mpi2IOCInitReply_t mpi_reply;
7349         int i, r = 0;
7350         ktime_t current_time;
7351         u16 ioc_status;
7352         u32 reply_post_free_array_sz = 0;
7353
7354         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7355
7356         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
7357         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
7358         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
7359         mpi_request.VF_ID = 0; /* TODO */
7360         mpi_request.VP_ID = 0;
7361         mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
7362         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
7363         mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
7364
7365         if (_base_is_controller_msix_enabled(ioc))
7366                 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
7367         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
7368         mpi_request.ReplyDescriptorPostQueueDepth =
7369             cpu_to_le16(ioc->reply_post_queue_depth);
7370         mpi_request.ReplyFreeQueueDepth =
7371             cpu_to_le16(ioc->reply_free_queue_depth);
7372
7373         mpi_request.SenseBufferAddressHigh =
7374             cpu_to_le32((u64)ioc->sense_dma >> 32);
7375         mpi_request.SystemReplyAddressHigh =
7376             cpu_to_le32((u64)ioc->reply_dma >> 32);
7377         mpi_request.SystemRequestFrameBaseAddress =
7378             cpu_to_le64((u64)ioc->request_dma);
7379         mpi_request.ReplyFreeQueueAddress =
7380             cpu_to_le64((u64)ioc->reply_free_dma);
7381
7382         if (ioc->rdpq_array_enable) {
7383                 reply_post_free_array_sz = ioc->reply_queue_count *
7384                     sizeof(Mpi2IOCInitRDPQArrayEntry);
7385                 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
7386                 for (i = 0; i < ioc->reply_queue_count; i++)
7387                         ioc->reply_post_free_array[i].RDPQBaseAddress =
7388                             cpu_to_le64(
7389                                 (u64)ioc->reply_post[i].reply_post_free_dma);
7390                 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
7391                 mpi_request.ReplyDescriptorPostQueueAddress =
7392                     cpu_to_le64((u64)ioc->reply_post_free_array_dma);
7393         } else {
7394                 mpi_request.ReplyDescriptorPostQueueAddress =
7395                     cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
7396         }
7397
7398         /*
7399          * Set the flag to enable CoreDump state feature in IOC firmware.
7400          */
7401         mpi_request.ConfigurationFlags |=
7402             cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
7403
7404         /* This time stamp specifies number of milliseconds
7405          * since epoch ~ midnight January 1, 1970.
7406          */
7407         current_time = ktime_get_real();
7408         mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
7409
7410         if (ioc->logging_level & MPT_DEBUG_INIT) {
7411                 __le32 *mfp;
7412                 int i;
7413
7414                 mfp = (__le32 *)&mpi_request;
7415                 ioc_info(ioc, "\toffset:data\n");
7416                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
7417                         ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7418                             le32_to_cpu(mfp[i]));
7419         }
7420
7421         r = _base_handshake_req_reply_wait(ioc,
7422             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
7423             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
7424
7425         if (r != 0) {
7426                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7427                 return r;
7428         }
7429
7430         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
7431         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
7432             mpi_reply.IOCLogInfo) {
7433                 ioc_err(ioc, "%s: failed\n", __func__);
7434                 r = -EIO;
7435         }
7436
7437         /* Reset TimeSync Counter*/
7438         ioc->timestamp_update_count = 0;
7439         return r;
7440 }
7441
7442 /**
7443  * mpt3sas_port_enable_done - command completion routine for port enable
7444  * @ioc: per adapter object
7445  * @smid: system request message index
7446  * @msix_index: MSIX table index supplied by the OS
7447  * @reply: reply message frame(lower 32bit addr)
7448  *
7449  * Return: 1 meaning mf should be freed from _base_interrupt
7450  *          0 means the mf is freed from this function.
7451  */
7452 u8
7453 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
7454         u32 reply)
7455 {
7456         MPI2DefaultReply_t *mpi_reply;
7457         u16 ioc_status;
7458
7459         if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
7460                 return 1;
7461
7462         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
7463         if (!mpi_reply)
7464                 return 1;
7465
7466         if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
7467                 return 1;
7468
7469         ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
7470         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
7471         ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
7472         memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
7473         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7474         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
7475                 ioc->port_enable_failed = 1;
7476
7477         if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) {
7478                 ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC;
7479                 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
7480                         mpt3sas_port_enable_complete(ioc);
7481                         return 1;
7482                 } else {
7483                         ioc->start_scan_failed = ioc_status;
7484                         ioc->start_scan = 0;
7485                         return 1;
7486                 }
7487         }
7488         complete(&ioc->port_enable_cmds.done);
7489         return 1;
7490 }
7491
7492 /**
7493  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
7494  * @ioc: per adapter object
7495  *
7496  * Return: 0 for success, non-zero for failure.
7497  */
7498 static int
7499 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
7500 {
7501         Mpi2PortEnableRequest_t *mpi_request;
7502         Mpi2PortEnableReply_t *mpi_reply;
7503         int r = 0;
7504         u16 smid;
7505         u16 ioc_status;
7506
7507         ioc_info(ioc, "sending port enable !!\n");
7508
7509         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7510                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7511                 return -EAGAIN;
7512         }
7513
7514         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7515         if (!smid) {
7516                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7517                 return -EAGAIN;
7518         }
7519
7520         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7521         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7522         ioc->port_enable_cmds.smid = smid;
7523         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7524         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7525
7526         init_completion(&ioc->port_enable_cmds.done);
7527         ioc->put_smid_default(ioc, smid);
7528         wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
7529         if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
7530                 ioc_err(ioc, "%s: timeout\n", __func__);
7531                 _debug_dump_mf(mpi_request,
7532                     sizeof(Mpi2PortEnableRequest_t)/4);
7533                 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7534                         r = -EFAULT;
7535                 else
7536                         r = -ETIME;
7537                 goto out;
7538         }
7539
7540         mpi_reply = ioc->port_enable_cmds.reply;
7541         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7542         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7543                 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7544                         __func__, ioc_status);
7545                 r = -EFAULT;
7546                 goto out;
7547         }
7548
7549  out:
7550         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7551         ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7552         return r;
7553 }
7554
7555 /**
7556  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7557  * @ioc: per adapter object
7558  *
7559  * Return: 0 for success, non-zero for failure.
7560  */
7561 int
7562 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7563 {
7564         Mpi2PortEnableRequest_t *mpi_request;
7565         u16 smid;
7566
7567         ioc_info(ioc, "sending port enable !!\n");
7568
7569         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7570                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7571                 return -EAGAIN;
7572         }
7573
7574         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7575         if (!smid) {
7576                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7577                 return -EAGAIN;
7578         }
7579         ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED;
7580         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7581         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC;
7582         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7583         ioc->port_enable_cmds.smid = smid;
7584         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7585         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7586
7587         ioc->put_smid_default(ioc, smid);
7588         return 0;
7589 }
7590
7591 /**
7592  * _base_determine_wait_on_discovery - desposition
7593  * @ioc: per adapter object
7594  *
7595  * Decide whether to wait on discovery to complete. Used to either
7596  * locate boot device, or report volumes ahead of physical devices.
7597  *
7598  * Return: 1 for wait, 0 for don't wait.
7599  */
7600 static int
7601 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7602 {
7603         /* We wait for discovery to complete if IR firmware is loaded.
7604          * The sas topology events arrive before PD events, so we need time to
7605          * turn on the bit in ioc->pd_handles to indicate PD
7606          * Also, it maybe required to report Volumes ahead of physical
7607          * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7608          */
7609         if (ioc->ir_firmware)
7610                 return 1;
7611
7612         /* if no Bios, then we don't need to wait */
7613         if (!ioc->bios_pg3.BiosVersion)
7614                 return 0;
7615
7616         /* Bios is present, then we drop down here.
7617          *
7618          * If there any entries in the Bios Page 2, then we wait
7619          * for discovery to complete.
7620          */
7621
7622         /* Current Boot Device */
7623         if ((ioc->bios_pg2.CurrentBootDeviceForm &
7624             MPI2_BIOSPAGE2_FORM_MASK) ==
7625             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7626         /* Request Boot Device */
7627            (ioc->bios_pg2.ReqBootDeviceForm &
7628             MPI2_BIOSPAGE2_FORM_MASK) ==
7629             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7630         /* Alternate Request Boot Device */
7631            (ioc->bios_pg2.ReqAltBootDeviceForm &
7632             MPI2_BIOSPAGE2_FORM_MASK) ==
7633             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7634                 return 0;
7635
7636         return 1;
7637 }
7638
7639 /**
7640  * _base_unmask_events - turn on notification for this event
7641  * @ioc: per adapter object
7642  * @event: firmware event
7643  *
7644  * The mask is stored in ioc->event_masks.
7645  */
7646 static void
7647 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7648 {
7649         u32 desired_event;
7650
7651         if (event >= 128)
7652                 return;
7653
7654         desired_event = (1 << (event % 32));
7655
7656         if (event < 32)
7657                 ioc->event_masks[0] &= ~desired_event;
7658         else if (event < 64)
7659                 ioc->event_masks[1] &= ~desired_event;
7660         else if (event < 96)
7661                 ioc->event_masks[2] &= ~desired_event;
7662         else if (event < 128)
7663                 ioc->event_masks[3] &= ~desired_event;
7664 }
7665
7666 /**
7667  * _base_event_notification - send event notification
7668  * @ioc: per adapter object
7669  *
7670  * Return: 0 for success, non-zero for failure.
7671  */
7672 static int
7673 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7674 {
7675         Mpi2EventNotificationRequest_t *mpi_request;
7676         u16 smid;
7677         int r = 0;
7678         int i, issue_diag_reset = 0;
7679
7680         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7681
7682         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7683                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7684                 return -EAGAIN;
7685         }
7686
7687         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7688         if (!smid) {
7689                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7690                 return -EAGAIN;
7691         }
7692         ioc->base_cmds.status = MPT3_CMD_PENDING;
7693         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7694         ioc->base_cmds.smid = smid;
7695         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7696         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7697         mpi_request->VF_ID = 0; /* TODO */
7698         mpi_request->VP_ID = 0;
7699         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7700                 mpi_request->EventMasks[i] =
7701                     cpu_to_le32(ioc->event_masks[i]);
7702         init_completion(&ioc->base_cmds.done);
7703         ioc->put_smid_default(ioc, smid);
7704         wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7705         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7706                 ioc_err(ioc, "%s: timeout\n", __func__);
7707                 _debug_dump_mf(mpi_request,
7708                     sizeof(Mpi2EventNotificationRequest_t)/4);
7709                 if (ioc->base_cmds.status & MPT3_CMD_RESET)
7710                         r = -EFAULT;
7711                 else
7712                         issue_diag_reset = 1;
7713
7714         } else
7715                 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7716         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7717
7718         if (issue_diag_reset) {
7719                 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
7720                         return -EFAULT;
7721                 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
7722                         return -EFAULT;
7723                 r = -EAGAIN;
7724         }
7725         return r;
7726 }
7727
7728 /**
7729  * mpt3sas_base_validate_event_type - validating event types
7730  * @ioc: per adapter object
7731  * @event_type: firmware event
7732  *
7733  * This will turn on firmware event notification when application
7734  * ask for that event. We don't mask events that are already enabled.
7735  */
7736 void
7737 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7738 {
7739         int i, j;
7740         u32 event_mask, desired_event;
7741         u8 send_update_to_fw;
7742
7743         for (i = 0, send_update_to_fw = 0; i <
7744             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7745                 event_mask = ~event_type[i];
7746                 desired_event = 1;
7747                 for (j = 0; j < 32; j++) {
7748                         if (!(event_mask & desired_event) &&
7749                             (ioc->event_masks[i] & desired_event)) {
7750                                 ioc->event_masks[i] &= ~desired_event;
7751                                 send_update_to_fw = 1;
7752                         }
7753                         desired_event = (desired_event << 1);
7754                 }
7755         }
7756
7757         if (!send_update_to_fw)
7758                 return;
7759
7760         mutex_lock(&ioc->base_cmds.mutex);
7761         _base_event_notification(ioc);
7762         mutex_unlock(&ioc->base_cmds.mutex);
7763 }
7764
7765 /**
7766  * _base_diag_reset - the "big hammer" start of day reset
7767  * @ioc: per adapter object
7768  *
7769  * Return: 0 for success, non-zero for failure.
7770  */
7771 static int
7772 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
7773 {
7774         u32 host_diagnostic;
7775         u32 ioc_state;
7776         u32 count;
7777         u32 hcb_size;
7778
7779         ioc_info(ioc, "sending diag reset !!\n");
7780
7781         pci_cfg_access_lock(ioc->pdev);
7782
7783         drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
7784
7785         count = 0;
7786         do {
7787                 /* Write magic sequence to WriteSequence register
7788                  * Loop until in diagnostic mode
7789                  */
7790                 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7791                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7792                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7793                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7794                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7795                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7796                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7797                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7798
7799                 /* wait 100 msec */
7800                 msleep(100);
7801
7802                 if (count++ > 20) {
7803                         ioc_info(ioc,
7804                             "Stop writing magic sequence after 20 retries\n");
7805                         _base_dump_reg_set(ioc);
7806                         goto out;
7807                 }
7808
7809                 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7810                 drsprintk(ioc,
7811                           ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7812                                    count, host_diagnostic));
7813
7814         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7815
7816         hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
7817
7818         drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
7819         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
7820              &ioc->chip->HostDiagnostic);
7821
7822         /*This delay allows the chip PCIe hardware time to finish reset tasks*/
7823         msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
7824
7825         /* Approximately 300 second max wait */
7826         for (count = 0; count < (300000000 /
7827                 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
7828
7829                 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7830
7831                 if (host_diagnostic == 0xFFFFFFFF) {
7832                         ioc_info(ioc,
7833                             "Invalid host diagnostic register value\n");
7834                         _base_dump_reg_set(ioc);
7835                         goto out;
7836                 }
7837                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
7838                         break;
7839
7840                 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
7841         }
7842
7843         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
7844
7845                 drsprintk(ioc,
7846                           ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
7847                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
7848                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
7849                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
7850
7851                 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
7852                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
7853                     &ioc->chip->HCBSize);
7854         }
7855
7856         drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
7857         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
7858             &ioc->chip->HostDiagnostic);
7859
7860         drsprintk(ioc,
7861                   ioc_info(ioc, "disable writes to the diagnostic register\n"));
7862         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7863
7864         drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
7865         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
7866         if (ioc_state) {
7867                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7868                         __func__, ioc_state);
7869                 _base_dump_reg_set(ioc);
7870                 goto out;
7871         }
7872
7873         pci_cfg_access_unlock(ioc->pdev);
7874         ioc_info(ioc, "diag reset: SUCCESS\n");
7875         return 0;
7876
7877  out:
7878         pci_cfg_access_unlock(ioc->pdev);
7879         ioc_err(ioc, "diag reset: FAILED\n");
7880         return -EFAULT;
7881 }
7882
7883 /**
7884  * mpt3sas_base_make_ioc_ready - put controller in READY state
7885  * @ioc: per adapter object
7886  * @type: FORCE_BIG_HAMMER or SOFT_RESET
7887  *
7888  * Return: 0 for success, non-zero for failure.
7889  */
7890 int
7891 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
7892 {
7893         u32 ioc_state;
7894         int rc;
7895         int count;
7896
7897         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7898
7899         if (ioc->pci_error_recovery)
7900                 return 0;
7901
7902         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7903         dhsprintk(ioc,
7904                   ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7905                            __func__, ioc_state));
7906
7907         /* if in RESET state, it should move to READY state shortly */
7908         count = 0;
7909         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
7910                 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
7911                     MPI2_IOC_STATE_READY) {
7912                         if (count++ == 10) {
7913                                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7914                                         __func__, ioc_state);
7915                                 return -EFAULT;
7916                         }
7917                         ssleep(1);
7918                         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7919                 }
7920         }
7921
7922         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
7923                 return 0;
7924
7925         if (ioc_state & MPI2_DOORBELL_USED) {
7926                 ioc_info(ioc, "unexpected doorbell active!\n");
7927                 goto issue_diag_reset;
7928         }
7929
7930         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7931                 mpt3sas_print_fault_code(ioc, ioc_state &
7932                     MPI2_DOORBELL_DATA_MASK);
7933                 goto issue_diag_reset;
7934         }
7935
7936         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
7937                 /*
7938                  * if host reset is invoked while watch dog thread is waiting
7939                  * for IOC state to be changed to Fault state then driver has
7940                  * to wait here for CoreDump state to clear otherwise reset
7941                  * will be issued to the FW and FW move the IOC state to
7942                  * reset state without copying the FW logs to coredump region.
7943                  */
7944                 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
7945                         mpt3sas_print_coredump_info(ioc, ioc_state &
7946                             MPI2_DOORBELL_DATA_MASK);
7947                         mpt3sas_base_wait_for_coredump_completion(ioc,
7948                             __func__);
7949                 }
7950                 goto issue_diag_reset;
7951         }
7952
7953         if (type == FORCE_BIG_HAMMER)
7954                 goto issue_diag_reset;
7955
7956         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7957                 if (!(_base_send_ioc_reset(ioc,
7958                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
7959                         return 0;
7960         }
7961
7962  issue_diag_reset:
7963         rc = _base_diag_reset(ioc);
7964         return rc;
7965 }
7966
7967 /**
7968  * _base_make_ioc_operational - put controller in OPERATIONAL state
7969  * @ioc: per adapter object
7970  *
7971  * Return: 0 for success, non-zero for failure.
7972  */
7973 static int
7974 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
7975 {
7976         int r, i, index, rc;
7977         unsigned long   flags;
7978         u32 reply_address;
7979         u16 smid;
7980         struct _tr_list *delayed_tr, *delayed_tr_next;
7981         struct _sc_list *delayed_sc, *delayed_sc_next;
7982         struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
7983         u8 hide_flag;
7984         struct adapter_reply_queue *reply_q;
7985         Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
7986
7987         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7988
7989         /* clean the delayed target reset list */
7990         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7991             &ioc->delayed_tr_list, list) {
7992                 list_del(&delayed_tr->list);
7993                 kfree(delayed_tr);
7994         }
7995
7996
7997         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7998             &ioc->delayed_tr_volume_list, list) {
7999                 list_del(&delayed_tr->list);
8000                 kfree(delayed_tr);
8001         }
8002
8003         list_for_each_entry_safe(delayed_sc, delayed_sc_next,
8004             &ioc->delayed_sc_list, list) {
8005                 list_del(&delayed_sc->list);
8006                 kfree(delayed_sc);
8007         }
8008
8009         list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
8010             &ioc->delayed_event_ack_list, list) {
8011                 list_del(&delayed_event_ack->list);
8012                 kfree(delayed_event_ack);
8013         }
8014
8015         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
8016
8017         /* hi-priority queue */
8018         INIT_LIST_HEAD(&ioc->hpr_free_list);
8019         smid = ioc->hi_priority_smid;
8020         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
8021                 ioc->hpr_lookup[i].cb_idx = 0xFF;
8022                 ioc->hpr_lookup[i].smid = smid;
8023                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
8024                     &ioc->hpr_free_list);
8025         }
8026
8027         /* internal queue */
8028         INIT_LIST_HEAD(&ioc->internal_free_list);
8029         smid = ioc->internal_smid;
8030         for (i = 0; i < ioc->internal_depth; i++, smid++) {
8031                 ioc->internal_lookup[i].cb_idx = 0xFF;
8032                 ioc->internal_lookup[i].smid = smid;
8033                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
8034                     &ioc->internal_free_list);
8035         }
8036
8037         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
8038
8039         /* initialize Reply Free Queue */
8040         for (i = 0, reply_address = (u32)ioc->reply_dma ;
8041             i < ioc->reply_free_queue_depth ; i++, reply_address +=
8042             ioc->reply_sz) {
8043                 ioc->reply_free[i] = cpu_to_le32(reply_address);
8044                 if (ioc->is_mcpu_endpoint)
8045                         _base_clone_reply_to_sys_mem(ioc,
8046                                         reply_address, i);
8047         }
8048
8049         /* initialize reply queues */
8050         if (ioc->is_driver_loading)
8051                 _base_assign_reply_queues(ioc);
8052
8053         /* initialize Reply Post Free Queue */
8054         index = 0;
8055         reply_post_free_contig = ioc->reply_post[0].reply_post_free;
8056         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8057                 /*
8058                  * If RDPQ is enabled, switch to the next allocation.
8059                  * Otherwise advance within the contiguous region.
8060                  */
8061                 if (ioc->rdpq_array_enable) {
8062                         reply_q->reply_post_free =
8063                                 ioc->reply_post[index++].reply_post_free;
8064                 } else {
8065                         reply_q->reply_post_free = reply_post_free_contig;
8066                         reply_post_free_contig += ioc->reply_post_queue_depth;
8067                 }
8068
8069                 reply_q->reply_post_host_index = 0;
8070                 for (i = 0; i < ioc->reply_post_queue_depth; i++)
8071                         reply_q->reply_post_free[i].Words =
8072                             cpu_to_le64(ULLONG_MAX);
8073                 if (!_base_is_controller_msix_enabled(ioc))
8074                         goto skip_init_reply_post_free_queue;
8075         }
8076  skip_init_reply_post_free_queue:
8077
8078         r = _base_send_ioc_init(ioc);
8079         if (r) {
8080                 /*
8081                  * No need to check IOC state for fault state & issue
8082                  * diag reset during host reset. This check is need
8083                  * only during driver load time.
8084                  */
8085                 if (!ioc->is_driver_loading)
8086                         return r;
8087
8088                 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8089                 if (rc || (_base_send_ioc_init(ioc)))
8090                         return r;
8091         }
8092
8093         /* initialize reply free host index */
8094         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
8095         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
8096
8097         /* initialize reply post host index */
8098         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8099                 if (ioc->combined_reply_queue)
8100                         writel((reply_q->msix_index & 7)<<
8101                            MPI2_RPHI_MSIX_INDEX_SHIFT,
8102                            ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
8103                 else
8104                         writel(reply_q->msix_index <<
8105                                 MPI2_RPHI_MSIX_INDEX_SHIFT,
8106                                 &ioc->chip->ReplyPostHostIndex);
8107
8108                 if (!_base_is_controller_msix_enabled(ioc))
8109                         goto skip_init_reply_post_host_index;
8110         }
8111
8112  skip_init_reply_post_host_index:
8113
8114         mpt3sas_base_unmask_interrupts(ioc);
8115
8116         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
8117                 r = _base_display_fwpkg_version(ioc);
8118                 if (r)
8119                         return r;
8120         }
8121
8122         r = _base_static_config_pages(ioc);
8123         if (r)
8124                 return r;
8125
8126         r = _base_event_notification(ioc);
8127         if (r)
8128                 return r;
8129
8130         if (!ioc->shost_recovery) {
8131
8132                 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
8133                     == 0x80) {
8134                         hide_flag = (u8) (
8135                             le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
8136                             MFG_PAGE10_HIDE_SSDS_MASK);
8137                         if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
8138                                 ioc->mfg_pg10_hide_flag = hide_flag;
8139                 }
8140
8141                 ioc->wait_for_discovery_to_complete =
8142                     _base_determine_wait_on_discovery(ioc);
8143
8144                 return r; /* scan_start and scan_finished support */
8145         }
8146
8147         r = _base_send_port_enable(ioc);
8148         if (r)
8149                 return r;
8150
8151         return r;
8152 }
8153
8154 /**
8155  * mpt3sas_base_free_resources - free resources controller resources
8156  * @ioc: per adapter object
8157  */
8158 void
8159 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
8160 {
8161         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8162
8163         /* synchronizing freeing resource with pci_access_mutex lock */
8164         mutex_lock(&ioc->pci_access_mutex);
8165         if (ioc->chip_phys && ioc->chip) {
8166                 mpt3sas_base_mask_interrupts(ioc);
8167                 ioc->shost_recovery = 1;
8168                 mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8169                 ioc->shost_recovery = 0;
8170         }
8171
8172         mpt3sas_base_unmap_resources(ioc);
8173         mutex_unlock(&ioc->pci_access_mutex);
8174         return;
8175 }
8176
8177 /**
8178  * mpt3sas_base_attach - attach controller instance
8179  * @ioc: per adapter object
8180  *
8181  * Return: 0 for success, non-zero for failure.
8182  */
8183 int
8184 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
8185 {
8186         int r, i, rc;
8187         int cpu_id, last_cpu_id = 0;
8188
8189         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8190
8191         /* setup cpu_msix_table */
8192         ioc->cpu_count = num_online_cpus();
8193         for_each_online_cpu(cpu_id)
8194                 last_cpu_id = cpu_id;
8195         ioc->cpu_msix_table_sz = last_cpu_id + 1;
8196         ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
8197         ioc->reply_queue_count = 1;
8198         if (!ioc->cpu_msix_table) {
8199                 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
8200                 r = -ENOMEM;
8201                 goto out_free_resources;
8202         }
8203
8204         if (ioc->is_warpdrive) {
8205                 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
8206                     sizeof(resource_size_t *), GFP_KERNEL);
8207                 if (!ioc->reply_post_host_index) {
8208                         ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
8209                         r = -ENOMEM;
8210                         goto out_free_resources;
8211                 }
8212         }
8213
8214         ioc->smp_affinity_enable = smp_affinity_enable;
8215
8216         ioc->rdpq_array_enable_assigned = 0;
8217         ioc->use_32bit_dma = false;
8218         ioc->dma_mask = 64;
8219         if (ioc->is_aero_ioc)
8220                 ioc->base_readl = &_base_readl_aero;
8221         else
8222                 ioc->base_readl = &_base_readl;
8223         r = mpt3sas_base_map_resources(ioc);
8224         if (r)
8225                 goto out_free_resources;
8226
8227         pci_set_drvdata(ioc->pdev, ioc->shost);
8228         r = _base_get_ioc_facts(ioc);
8229         if (r) {
8230                 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8231                 if (rc || (_base_get_ioc_facts(ioc)))
8232                         goto out_free_resources;
8233         }
8234
8235         switch (ioc->hba_mpi_version_belonged) {
8236         case MPI2_VERSION:
8237                 ioc->build_sg_scmd = &_base_build_sg_scmd;
8238                 ioc->build_sg = &_base_build_sg;
8239                 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
8240                 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8241                 break;
8242         case MPI25_VERSION:
8243         case MPI26_VERSION:
8244                 /*
8245                  * In SAS3.0,
8246                  * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
8247                  * Target Status - all require the IEEE formatted scatter gather
8248                  * elements.
8249                  */
8250                 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
8251                 ioc->build_sg = &_base_build_sg_ieee;
8252                 ioc->build_nvme_prp = &_base_build_nvme_prp;
8253                 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
8254                 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
8255                 if (ioc->high_iops_queues)
8256                         ioc->get_msix_index_for_smlio =
8257                                         &_base_get_high_iops_msix_index;
8258                 else
8259                         ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8260                 break;
8261         }
8262         if (ioc->atomic_desc_capable) {
8263                 ioc->put_smid_default = &_base_put_smid_default_atomic;
8264                 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
8265                 ioc->put_smid_fast_path =
8266                                 &_base_put_smid_fast_path_atomic;
8267                 ioc->put_smid_hi_priority =
8268                                 &_base_put_smid_hi_priority_atomic;
8269         } else {
8270                 ioc->put_smid_default = &_base_put_smid_default;
8271                 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
8272                 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
8273                 if (ioc->is_mcpu_endpoint)
8274                         ioc->put_smid_scsi_io =
8275                                 &_base_put_smid_mpi_ep_scsi_io;
8276                 else
8277                         ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
8278         }
8279         /*
8280          * These function pointers for other requests that don't
8281          * the require IEEE scatter gather elements.
8282          *
8283          * For example Configuration Pages and SAS IOUNIT Control don't.
8284          */
8285         ioc->build_sg_mpi = &_base_build_sg;
8286         ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
8287
8288         r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8289         if (r)
8290                 goto out_free_resources;
8291
8292         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
8293             sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
8294         if (!ioc->pfacts) {
8295                 r = -ENOMEM;
8296                 goto out_free_resources;
8297         }
8298
8299         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
8300                 r = _base_get_port_facts(ioc, i);
8301                 if (r) {
8302                         rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8303                         if (rc || (_base_get_port_facts(ioc, i)))
8304                                 goto out_free_resources;
8305                 }
8306         }
8307
8308         r = _base_allocate_memory_pools(ioc);
8309         if (r)
8310                 goto out_free_resources;
8311
8312         if (irqpoll_weight > 0)
8313                 ioc->thresh_hold = irqpoll_weight;
8314         else
8315                 ioc->thresh_hold = ioc->hba_queue_depth/4;
8316
8317         _base_init_irqpolls(ioc);
8318         init_waitqueue_head(&ioc->reset_wq);
8319
8320         /* allocate memory pd handle bitmask list */
8321         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8322         if (ioc->facts.MaxDevHandle % 8)
8323                 ioc->pd_handles_sz++;
8324         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
8325             GFP_KERNEL);
8326         if (!ioc->pd_handles) {
8327                 r = -ENOMEM;
8328                 goto out_free_resources;
8329         }
8330         ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
8331             GFP_KERNEL);
8332         if (!ioc->blocking_handles) {
8333                 r = -ENOMEM;
8334                 goto out_free_resources;
8335         }
8336
8337         /* allocate memory for pending OS device add list */
8338         ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
8339         if (ioc->facts.MaxDevHandle % 8)
8340                 ioc->pend_os_device_add_sz++;
8341         ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
8342             GFP_KERNEL);
8343         if (!ioc->pend_os_device_add) {
8344                 r = -ENOMEM;
8345                 goto out_free_resources;
8346         }
8347
8348         ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
8349         ioc->device_remove_in_progress =
8350                 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
8351         if (!ioc->device_remove_in_progress) {
8352                 r = -ENOMEM;
8353                 goto out_free_resources;
8354         }
8355
8356         ioc->fwfault_debug = mpt3sas_fwfault_debug;
8357
8358         /* base internal command bits */
8359         mutex_init(&ioc->base_cmds.mutex);
8360         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8361         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
8362
8363         /* port_enable command bits */
8364         ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8365         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
8366
8367         /* transport internal command bits */
8368         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8369         ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
8370         mutex_init(&ioc->transport_cmds.mutex);
8371
8372         /* scsih internal command bits */
8373         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8374         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
8375         mutex_init(&ioc->scsih_cmds.mutex);
8376
8377         /* task management internal command bits */
8378         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8379         ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
8380         mutex_init(&ioc->tm_cmds.mutex);
8381
8382         /* config page internal command bits */
8383         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8384         ioc->config_cmds.status = MPT3_CMD_NOT_USED;
8385         mutex_init(&ioc->config_cmds.mutex);
8386
8387         /* ctl module internal command bits */
8388         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8389         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
8390         ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
8391         mutex_init(&ioc->ctl_cmds.mutex);
8392
8393         if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
8394             !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
8395             !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
8396             !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
8397                 r = -ENOMEM;
8398                 goto out_free_resources;
8399         }
8400
8401         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
8402                 ioc->event_masks[i] = -1;
8403
8404         /* here we enable the events we care about */
8405         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
8406         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
8407         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
8408         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
8409         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
8410         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
8411         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
8412         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
8413         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
8414         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
8415         _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
8416         _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
8417         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
8418         if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
8419                 if (ioc->is_gen35_ioc) {
8420                         _base_unmask_events(ioc,
8421                                 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
8422                         _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
8423                         _base_unmask_events(ioc,
8424                                 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
8425                 }
8426         }
8427         r = _base_make_ioc_operational(ioc);
8428         if (r == -EAGAIN) {
8429                 r = _base_make_ioc_operational(ioc);
8430                 if (r)
8431                         goto out_free_resources;
8432         }
8433
8434         /*
8435          * Copy current copy of IOCFacts in prev_fw_facts
8436          * and it will be used during online firmware upgrade.
8437          */
8438         memcpy(&ioc->prev_fw_facts, &ioc->facts,
8439             sizeof(struct mpt3sas_facts));
8440
8441         ioc->non_operational_loop = 0;
8442         ioc->ioc_coredump_loop = 0;
8443         ioc->got_task_abort_from_ioctl = 0;
8444         return 0;
8445
8446  out_free_resources:
8447
8448         ioc->remove_host = 1;
8449
8450         mpt3sas_base_free_resources(ioc);
8451         _base_release_memory_pools(ioc);
8452         pci_set_drvdata(ioc->pdev, NULL);
8453         kfree(ioc->cpu_msix_table);
8454         if (ioc->is_warpdrive)
8455                 kfree(ioc->reply_post_host_index);
8456         kfree(ioc->pd_handles);
8457         kfree(ioc->blocking_handles);
8458         kfree(ioc->device_remove_in_progress);
8459         kfree(ioc->pend_os_device_add);
8460         kfree(ioc->tm_cmds.reply);
8461         kfree(ioc->transport_cmds.reply);
8462         kfree(ioc->scsih_cmds.reply);
8463         kfree(ioc->config_cmds.reply);
8464         kfree(ioc->base_cmds.reply);
8465         kfree(ioc->port_enable_cmds.reply);
8466         kfree(ioc->ctl_cmds.reply);
8467         kfree(ioc->ctl_cmds.sense);
8468         kfree(ioc->pfacts);
8469         ioc->ctl_cmds.reply = NULL;
8470         ioc->base_cmds.reply = NULL;
8471         ioc->tm_cmds.reply = NULL;
8472         ioc->scsih_cmds.reply = NULL;
8473         ioc->transport_cmds.reply = NULL;
8474         ioc->config_cmds.reply = NULL;
8475         ioc->pfacts = NULL;
8476         return r;
8477 }
8478
8479
8480 /**
8481  * mpt3sas_base_detach - remove controller instance
8482  * @ioc: per adapter object
8483  */
8484 void
8485 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
8486 {
8487         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8488
8489         mpt3sas_base_stop_watchdog(ioc);
8490         mpt3sas_base_free_resources(ioc);
8491         _base_release_memory_pools(ioc);
8492         mpt3sas_free_enclosure_list(ioc);
8493         pci_set_drvdata(ioc->pdev, NULL);
8494         kfree(ioc->cpu_msix_table);
8495         if (ioc->is_warpdrive)
8496                 kfree(ioc->reply_post_host_index);
8497         kfree(ioc->pd_handles);
8498         kfree(ioc->blocking_handles);
8499         kfree(ioc->device_remove_in_progress);
8500         kfree(ioc->pend_os_device_add);
8501         kfree(ioc->pfacts);
8502         kfree(ioc->ctl_cmds.reply);
8503         kfree(ioc->ctl_cmds.sense);
8504         kfree(ioc->base_cmds.reply);
8505         kfree(ioc->port_enable_cmds.reply);
8506         kfree(ioc->tm_cmds.reply);
8507         kfree(ioc->transport_cmds.reply);
8508         kfree(ioc->scsih_cmds.reply);
8509         kfree(ioc->config_cmds.reply);
8510 }
8511
8512 /**
8513  * _base_pre_reset_handler - pre reset handler
8514  * @ioc: per adapter object
8515  */
8516 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
8517 {
8518         mpt3sas_scsih_pre_reset_handler(ioc);
8519         mpt3sas_ctl_pre_reset_handler(ioc);
8520         dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
8521 }
8522
8523 /**
8524  * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
8525  * @ioc: per adapter object
8526  */
8527 static void
8528 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
8529 {
8530         dtmprintk(ioc,
8531             ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
8532         if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
8533                 ioc->transport_cmds.status |= MPT3_CMD_RESET;
8534                 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
8535                 complete(&ioc->transport_cmds.done);
8536         }
8537         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
8538                 ioc->base_cmds.status |= MPT3_CMD_RESET;
8539                 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
8540                 complete(&ioc->base_cmds.done);
8541         }
8542         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
8543                 ioc->port_enable_failed = 1;
8544                 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
8545                 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
8546                 if (ioc->is_driver_loading) {
8547                         ioc->start_scan_failed =
8548                                 MPI2_IOCSTATUS_INTERNAL_ERROR;
8549                         ioc->start_scan = 0;
8550                 } else {
8551                         complete(&ioc->port_enable_cmds.done);
8552                 }
8553         }
8554         if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
8555                 ioc->config_cmds.status |= MPT3_CMD_RESET;
8556                 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8557                 ioc->config_cmds.smid = USHRT_MAX;
8558                 complete(&ioc->config_cmds.done);
8559         }
8560 }
8561
8562 /**
8563  * _base_clear_outstanding_commands - clear all outstanding commands
8564  * @ioc: per adapter object
8565  */
8566 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8567 {
8568         mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8569         mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8570         _base_clear_outstanding_mpt_commands(ioc);
8571 }
8572
8573 /**
8574  * _base_reset_done_handler - reset done handler
8575  * @ioc: per adapter object
8576  */
8577 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8578 {
8579         mpt3sas_scsih_reset_done_handler(ioc);
8580         mpt3sas_ctl_reset_done_handler(ioc);
8581         dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8582 }
8583
8584 /**
8585  * mpt3sas_wait_for_commands_to_complete - reset controller
8586  * @ioc: Pointer to MPT_ADAPTER structure
8587  *
8588  * This function is waiting 10s for all pending commands to complete
8589  * prior to putting controller in reset.
8590  */
8591 void
8592 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8593 {
8594         u32 ioc_state;
8595
8596         ioc->pending_io_count = 0;
8597
8598         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8599         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8600                 return;
8601
8602         /* pending command count */
8603         ioc->pending_io_count = scsi_host_busy(ioc->shost);
8604
8605         if (!ioc->pending_io_count)
8606                 return;
8607
8608         /* wait for pending commands to complete */
8609         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8610 }
8611
8612 /**
8613  * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8614  *     attributes during online firmware upgrade and update the corresponding
8615  *     IOC variables accordingly.
8616  *
8617  * @ioc: Pointer to MPT_ADAPTER structure
8618  */
8619 static int
8620 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8621 {
8622         u16 pd_handles_sz;
8623         void *pd_handles = NULL, *blocking_handles = NULL;
8624         void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8625         struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8626
8627         if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8628                 pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8629                 if (ioc->facts.MaxDevHandle % 8)
8630                         pd_handles_sz++;
8631
8632                 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8633                     GFP_KERNEL);
8634                 if (!pd_handles) {
8635                         ioc_info(ioc,
8636                             "Unable to allocate the memory for pd_handles of sz: %d\n",
8637                             pd_handles_sz);
8638                         return -ENOMEM;
8639                 }
8640                 memset(pd_handles + ioc->pd_handles_sz, 0,
8641                     (pd_handles_sz - ioc->pd_handles_sz));
8642                 ioc->pd_handles = pd_handles;
8643
8644                 blocking_handles = krealloc(ioc->blocking_handles,
8645                     pd_handles_sz, GFP_KERNEL);
8646                 if (!blocking_handles) {
8647                         ioc_info(ioc,
8648                             "Unable to allocate the memory for "
8649                             "blocking_handles of sz: %d\n",
8650                             pd_handles_sz);
8651                         return -ENOMEM;
8652                 }
8653                 memset(blocking_handles + ioc->pd_handles_sz, 0,
8654                     (pd_handles_sz - ioc->pd_handles_sz));
8655                 ioc->blocking_handles = blocking_handles;
8656                 ioc->pd_handles_sz = pd_handles_sz;
8657
8658                 pend_os_device_add = krealloc(ioc->pend_os_device_add,
8659                     pd_handles_sz, GFP_KERNEL);
8660                 if (!pend_os_device_add) {
8661                         ioc_info(ioc,
8662                             "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8663                             pd_handles_sz);
8664                         return -ENOMEM;
8665                 }
8666                 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8667                     (pd_handles_sz - ioc->pend_os_device_add_sz));
8668                 ioc->pend_os_device_add = pend_os_device_add;
8669                 ioc->pend_os_device_add_sz = pd_handles_sz;
8670
8671                 device_remove_in_progress = krealloc(
8672                     ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8673                 if (!device_remove_in_progress) {
8674                         ioc_info(ioc,
8675                             "Unable to allocate the memory for "
8676                             "device_remove_in_progress of sz: %d\n "
8677                             , pd_handles_sz);
8678                         return -ENOMEM;
8679                 }
8680                 memset(device_remove_in_progress +
8681                     ioc->device_remove_in_progress_sz, 0,
8682                     (pd_handles_sz - ioc->device_remove_in_progress_sz));
8683                 ioc->device_remove_in_progress = device_remove_in_progress;
8684                 ioc->device_remove_in_progress_sz = pd_handles_sz;
8685         }
8686
8687         memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8688         return 0;
8689 }
8690
8691 /**
8692  * mpt3sas_base_hard_reset_handler - reset controller
8693  * @ioc: Pointer to MPT_ADAPTER structure
8694  * @type: FORCE_BIG_HAMMER or SOFT_RESET
8695  *
8696  * Return: 0 for success, non-zero for failure.
8697  */
8698 int
8699 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8700         enum reset_type type)
8701 {
8702         int r;
8703         unsigned long flags;
8704         u32 ioc_state;
8705         u8 is_fault = 0, is_trigger = 0;
8706
8707         dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8708
8709         if (ioc->pci_error_recovery) {
8710                 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8711                 r = 0;
8712                 goto out_unlocked;
8713         }
8714
8715         if (mpt3sas_fwfault_debug)
8716                 mpt3sas_halt_firmware(ioc);
8717
8718         /* wait for an active reset in progress to complete */
8719         mutex_lock(&ioc->reset_in_progress_mutex);
8720
8721         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8722         ioc->shost_recovery = 1;
8723         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8724
8725         if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8726             MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8727             (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8728             MPT3_DIAG_BUFFER_IS_RELEASED))) {
8729                 is_trigger = 1;
8730                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8731                 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8732                     (ioc_state & MPI2_IOC_STATE_MASK) ==
8733                     MPI2_IOC_STATE_COREDUMP) {
8734                         is_fault = 1;
8735                         ioc->htb_rel.trigger_info_dwords[1] =
8736                             (ioc_state & MPI2_DOORBELL_DATA_MASK);
8737                 }
8738         }
8739         _base_pre_reset_handler(ioc);
8740         mpt3sas_wait_for_commands_to_complete(ioc);
8741         mpt3sas_base_mask_interrupts(ioc);
8742         mpt3sas_base_pause_mq_polling(ioc);
8743         r = mpt3sas_base_make_ioc_ready(ioc, type);
8744         if (r)
8745                 goto out;
8746         _base_clear_outstanding_commands(ioc);
8747
8748         /* If this hard reset is called while port enable is active, then
8749          * there is no reason to call make_ioc_operational
8750          */
8751         if (ioc->is_driver_loading && ioc->port_enable_failed) {
8752                 ioc->remove_host = 1;
8753                 r = -EFAULT;
8754                 goto out;
8755         }
8756         r = _base_get_ioc_facts(ioc);
8757         if (r)
8758                 goto out;
8759
8760         r = _base_check_ioc_facts_changes(ioc);
8761         if (r) {
8762                 ioc_info(ioc,
8763                     "Some of the parameters got changed in this new firmware"
8764                     " image and it requires system reboot\n");
8765                 goto out;
8766         }
8767         if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8768                 panic("%s: Issue occurred with flashing controller firmware."
8769                       "Please reboot the system and ensure that the correct"
8770                       " firmware version is running\n", ioc->name);
8771
8772         r = _base_make_ioc_operational(ioc);
8773         if (!r)
8774                 _base_reset_done_handler(ioc);
8775
8776  out:
8777         ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
8778
8779         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8780         ioc->shost_recovery = 0;
8781         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8782         ioc->ioc_reset_count++;
8783         mutex_unlock(&ioc->reset_in_progress_mutex);
8784         mpt3sas_base_resume_mq_polling(ioc);
8785
8786  out_unlocked:
8787         if ((r == 0) && is_trigger) {
8788                 if (is_fault)
8789                         mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
8790                 else
8791                         mpt3sas_trigger_master(ioc,
8792                             MASTER_TRIGGER_ADAPTER_RESET);
8793         }
8794         dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
8795         return r;
8796 }