Merge tag 'trace-fixes-v3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/rosted...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / scsi / in2000.c
1 /*
2  *    in2000.c -  Linux device driver for the
3  *                Always IN2000 ISA SCSI card.
4  *
5  * Copyright (c) 1996 John Shifflett, GeoLog Consulting
6  *    john@geolog.com
7  *    jshiffle@netcom.com
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2, or (at your option)
12  * any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  *
25  * Drew Eckhardt's excellent 'Generic NCR5380' sources provided
26  * much of the inspiration and some of the code for this driver.
27  * The Linux IN2000 driver distributed in the Linux kernels through
28  * version 1.2.13 was an extremely valuable reference on the arcane
29  * (and still mysterious) workings of the IN2000's fifo. It also
30  * is where I lifted in2000_biosparam(), the gist of the card
31  * detection scheme, and other bits of code. Many thanks to the
32  * talented and courageous people who wrote, contributed to, and
33  * maintained that driver (including Brad McLean, Shaun Savage,
34  * Bill Earnest, Larry Doolittle, Roger Sunshine, John Luckey,
35  * Matt Postiff, Peter Lu, zerucha@shell.portal.com, and Eric
36  * Youngdale). I should also mention the driver written by
37  * Hamish Macdonald for the (GASP!) Amiga A2091 card, included
38  * in the Linux-m68k distribution; it gave me a good initial
39  * understanding of the proper way to run a WD33c93 chip, and I
40  * ended up stealing lots of code from it.
41  *
42  * _This_ driver is (I feel) an improvement over the old one in
43  * several respects:
44  *    -  All problems relating to the data size of a SCSI request are
45  *          gone (as far as I know). The old driver couldn't handle
46  *          swapping to partitions because that involved 4k blocks, nor
47  *          could it deal with the st.c tape driver unmodified, because
48  *          that usually involved 4k - 32k blocks. The old driver never
49  *          quite got away from a morbid dependence on 2k block sizes -
50  *          which of course is the size of the card's fifo.
51  *
52  *    -  Target Disconnection/Reconnection is now supported. Any
53  *          system with more than one device active on the SCSI bus
54  *          will benefit from this. The driver defaults to what I'm
55  *          calling 'adaptive disconnect' - meaning that each command
56  *          is evaluated individually as to whether or not it should
57  *          be run with the option to disconnect/reselect (if the
58  *          device chooses), or as a "SCSI-bus-hog".
59  *
60  *    -  Synchronous data transfers are now supported. Because there
61  *          are a few devices (and many improperly terminated systems)
62  *          that choke when doing sync, the default is sync DISABLED
63  *          for all devices. This faster protocol can (and should!)
64  *          be enabled on selected devices via the command-line.
65  *
66  *    -  Runtime operating parameters can now be specified through
67  *       either the LILO or the 'insmod' command line. For LILO do:
68  *          "in2000=blah,blah,blah"
69  *       and with insmod go like:
70  *          "insmod /usr/src/linux/modules/in2000.o setup_strings=blah,blah"
71  *       The defaults should be good for most people. See the comment
72  *       for 'setup_strings' below for more details.
73  *
74  *    -  The old driver relied exclusively on what the Western Digital
75  *          docs call "Combination Level 2 Commands", which are a great
76  *          idea in that the CPU is relieved of a lot of interrupt
77  *          overhead. However, by accepting a certain (user-settable)
78  *          amount of additional interrupts, this driver achieves
79  *          better control over the SCSI bus, and data transfers are
80  *          almost as fast while being much easier to define, track,
81  *          and debug.
82  *
83  *    -  You can force detection of a card whose BIOS has been disabled.
84  *
85  *    -  Multiple IN2000 cards might almost be supported. I've tried to
86  *       keep it in mind, but have no way to test...
87  *
88  *
89  * TODO:
90  *       tagged queuing. multiple cards.
91  *
92  *
93  * NOTE:
94  *       When using this or any other SCSI driver as a module, you'll
95  *       find that with the stock kernel, at most _two_ SCSI hard
96  *       drives will be linked into the device list (ie, usable).
97  *       If your IN2000 card has more than 2 disks on its bus, you
98  *       might want to change the define of 'SD_EXTRA_DEVS' in the
99  *       'hosts.h' file from 2 to whatever is appropriate. It took
100  *       me a while to track down this surprisingly obscure and
101  *       undocumented little "feature".
102  *
103  *
104  * People with bug reports, wish-lists, complaints, comments,
105  * or improvements are asked to pah-leeez email me (John Shifflett)
106  * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get
107  * this thing into as good a shape as possible, and I'm positive
108  * there are lots of lurking bugs and "Stupid Places".
109  *
110  * Updated for Linux 2.5 by Alan Cox <alan@lxorguk.ukuu.org.uk>
111  *      - Using new_eh handler
112  *      - Hopefully got all the locking right again
113  *      See "FIXME" notes for items that could do with more work
114  */
115
116 #include <linux/module.h>
117 #include <linux/blkdev.h>
118 #include <linux/interrupt.h>
119 #include <linux/string.h>
120 #include <linux/delay.h>
121 #include <linux/proc_fs.h>
122 #include <linux/ioport.h>
123 #include <linux/stat.h>
124
125 #include <asm/io.h>
126
127 #include "scsi.h"
128 #include <scsi/scsi_host.h>
129
130 #define IN2000_VERSION    "1.33-2.5"
131 #define IN2000_DATE       "2002/11/03"
132
133 #include "in2000.h"
134
135
136 /*
137  * 'setup_strings' is a single string used to pass operating parameters and
138  * settings from the kernel/module command-line to the driver. 'setup_args[]'
139  * is an array of strings that define the compile-time default values for
140  * these settings. If Linux boots with a LILO or insmod command-line, those
141  * settings are combined with 'setup_args[]'. Note that LILO command-lines
142  * are prefixed with "in2000=" while insmod uses a "setup_strings=" prefix.
143  * The driver recognizes the following keywords (lower case required) and
144  * arguments:
145  *
146  * -  ioport:addr    -Where addr is IO address of a (usually ROM-less) card.
147  * -  noreset        -No optional args. Prevents SCSI bus reset at boot time.
148  * -  nosync:x       -x is a bitmask where the 1st 7 bits correspond with
149  *                    the 7 possible SCSI devices (bit 0 for device #0, etc).
150  *                    Set a bit to PREVENT sync negotiation on that device.
151  *                    The driver default is sync DISABLED on all devices.
152  * -  period:ns      -ns is the minimum # of nanoseconds in a SCSI data transfer
153  *                    period. Default is 500; acceptable values are 250 - 1000.
154  * -  disconnect:x   -x = 0 to never allow disconnects, 2 to always allow them.
155  *                    x = 1 does 'adaptive' disconnects, which is the default
156  *                    and generally the best choice.
157  * -  debug:x        -If 'DEBUGGING_ON' is defined, x is a bitmask that causes
158  *                    various types of debug output to printed - see the DB_xxx
159  *                    defines in in2000.h
160  * -  proc:x         -If 'PROC_INTERFACE' is defined, x is a bitmask that
161  *                    determines how the /proc interface works and what it
162  *                    does - see the PR_xxx defines in in2000.h
163  *
164  * Syntax Notes:
165  * -  Numeric arguments can be decimal or the '0x' form of hex notation. There
166  *    _must_ be a colon between a keyword and its numeric argument, with no
167  *    spaces.
168  * -  Keywords are separated by commas, no spaces, in the standard kernel
169  *    command-line manner.
170  * -  A keyword in the 'nth' comma-separated command-line member will overwrite
171  *    the 'nth' element of setup_args[]. A blank command-line member (in
172  *    other words, a comma with no preceding keyword) will _not_ overwrite
173  *    the corresponding setup_args[] element.
174  *
175  * A few LILO examples (for insmod, use 'setup_strings' instead of 'in2000'):
176  * -  in2000=ioport:0x220,noreset
177  * -  in2000=period:250,disconnect:2,nosync:0x03
178  * -  in2000=debug:0x1e
179  * -  in2000=proc:3
180  */
181
182 /* Normally, no defaults are specified... */
183 static char *setup_args[] = { "", "", "", "", "", "", "", "", "" };
184
185 /* filled in by 'insmod' */
186 static char *setup_strings;
187
188 module_param(setup_strings, charp, 0);
189
190 static inline uchar read_3393(struct IN2000_hostdata *hostdata, uchar reg_num)
191 {
192         write1_io(reg_num, IO_WD_ADDR);
193         return read1_io(IO_WD_DATA);
194 }
195
196
197 #define READ_AUX_STAT() read1_io(IO_WD_ASR)
198
199
200 static inline void write_3393(struct IN2000_hostdata *hostdata, uchar reg_num, uchar value)
201 {
202         write1_io(reg_num, IO_WD_ADDR);
203         write1_io(value, IO_WD_DATA);
204 }
205
206
207 static inline void write_3393_cmd(struct IN2000_hostdata *hostdata, uchar cmd)
208 {
209 /*   while (READ_AUX_STAT() & ASR_CIP)
210       printk("|");*/
211         write1_io(WD_COMMAND, IO_WD_ADDR);
212         write1_io(cmd, IO_WD_DATA);
213 }
214
215
216 static uchar read_1_byte(struct IN2000_hostdata *hostdata)
217 {
218         uchar asr, x = 0;
219
220         write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
221         write_3393_cmd(hostdata, WD_CMD_TRANS_INFO | 0x80);
222         do {
223                 asr = READ_AUX_STAT();
224                 if (asr & ASR_DBR)
225                         x = read_3393(hostdata, WD_DATA);
226         } while (!(asr & ASR_INT));
227         return x;
228 }
229
230
231 static void write_3393_count(struct IN2000_hostdata *hostdata, unsigned long value)
232 {
233         write1_io(WD_TRANSFER_COUNT_MSB, IO_WD_ADDR);
234         write1_io((value >> 16), IO_WD_DATA);
235         write1_io((value >> 8), IO_WD_DATA);
236         write1_io(value, IO_WD_DATA);
237 }
238
239
240 static unsigned long read_3393_count(struct IN2000_hostdata *hostdata)
241 {
242         unsigned long value;
243
244         write1_io(WD_TRANSFER_COUNT_MSB, IO_WD_ADDR);
245         value = read1_io(IO_WD_DATA) << 16;
246         value |= read1_io(IO_WD_DATA) << 8;
247         value |= read1_io(IO_WD_DATA);
248         return value;
249 }
250
251
252 /* The 33c93 needs to be told which direction a command transfers its
253  * data; we use this function to figure it out. Returns true if there
254  * will be a DATA_OUT phase with this command, false otherwise.
255  * (Thanks to Joerg Dorchain for the research and suggestion.)
256  */
257 static int is_dir_out(Scsi_Cmnd * cmd)
258 {
259         switch (cmd->cmnd[0]) {
260         case WRITE_6:
261         case WRITE_10:
262         case WRITE_12:
263         case WRITE_LONG:
264         case WRITE_SAME:
265         case WRITE_BUFFER:
266         case WRITE_VERIFY:
267         case WRITE_VERIFY_12:
268         case COMPARE:
269         case COPY:
270         case COPY_VERIFY:
271         case SEARCH_EQUAL:
272         case SEARCH_HIGH:
273         case SEARCH_LOW:
274         case SEARCH_EQUAL_12:
275         case SEARCH_HIGH_12:
276         case SEARCH_LOW_12:
277         case FORMAT_UNIT:
278         case REASSIGN_BLOCKS:
279         case RESERVE:
280         case MODE_SELECT:
281         case MODE_SELECT_10:
282         case LOG_SELECT:
283         case SEND_DIAGNOSTIC:
284         case CHANGE_DEFINITION:
285         case UPDATE_BLOCK:
286         case SET_WINDOW:
287         case MEDIUM_SCAN:
288         case SEND_VOLUME_TAG:
289         case 0xea:
290                 return 1;
291         default:
292                 return 0;
293         }
294 }
295
296
297
298 static struct sx_period sx_table[] = {
299         {1, 0x20},
300         {252, 0x20},
301         {376, 0x30},
302         {500, 0x40},
303         {624, 0x50},
304         {752, 0x60},
305         {876, 0x70},
306         {1000, 0x00},
307         {0, 0}
308 };
309
310 static int round_period(unsigned int period)
311 {
312         int x;
313
314         for (x = 1; sx_table[x].period_ns; x++) {
315                 if ((period <= sx_table[x - 0].period_ns) && (period > sx_table[x - 1].period_ns)) {
316                         return x;
317                 }
318         }
319         return 7;
320 }
321
322 static uchar calc_sync_xfer(unsigned int period, unsigned int offset)
323 {
324         uchar result;
325
326         period *= 4;            /* convert SDTR code to ns */
327         result = sx_table[round_period(period)].reg_value;
328         result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF;
329         return result;
330 }
331
332
333
334 static void in2000_execute(struct Scsi_Host *instance);
335
336 static int in2000_queuecommand_lck(Scsi_Cmnd * cmd, void (*done) (Scsi_Cmnd *))
337 {
338         struct Scsi_Host *instance;
339         struct IN2000_hostdata *hostdata;
340         Scsi_Cmnd *tmp;
341
342         instance = cmd->device->host;
343         hostdata = (struct IN2000_hostdata *) instance->hostdata;
344
345         DB(DB_QUEUE_COMMAND, scmd_printk(KERN_DEBUG, cmd, "Q-%02x(", cmd->cmnd[0]))
346
347 /* Set up a few fields in the Scsi_Cmnd structure for our own use:
348  *  - host_scribble is the pointer to the next cmd in the input queue
349  *  - scsi_done points to the routine we call when a cmd is finished
350  *  - result is what you'd expect
351  */
352             cmd->host_scribble = NULL;
353         cmd->scsi_done = done;
354         cmd->result = 0;
355
356 /* We use the Scsi_Pointer structure that's included with each command
357  * as a scratchpad (as it's intended to be used!). The handy thing about
358  * the SCp.xxx fields is that they're always associated with a given
359  * cmd, and are preserved across disconnect-reselect. This means we
360  * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages
361  * if we keep all the critical pointers and counters in SCp:
362  *  - SCp.ptr is the pointer into the RAM buffer
363  *  - SCp.this_residual is the size of that buffer
364  *  - SCp.buffer points to the current scatter-gather buffer
365  *  - SCp.buffers_residual tells us how many S.G. buffers there are
366  *  - SCp.have_data_in helps keep track of >2048 byte transfers
367  *  - SCp.sent_command is not used
368  *  - SCp.phase records this command's SRCID_ER bit setting
369  */
370
371         if (scsi_bufflen(cmd)) {
372                 cmd->SCp.buffer = scsi_sglist(cmd);
373                 cmd->SCp.buffers_residual = scsi_sg_count(cmd) - 1;
374                 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
375                 cmd->SCp.this_residual = cmd->SCp.buffer->length;
376         } else {
377                 cmd->SCp.buffer = NULL;
378                 cmd->SCp.buffers_residual = 0;
379                 cmd->SCp.ptr = NULL;
380                 cmd->SCp.this_residual = 0;
381         }
382         cmd->SCp.have_data_in = 0;
383
384 /* We don't set SCp.phase here - that's done in in2000_execute() */
385
386 /* WD docs state that at the conclusion of a "LEVEL2" command, the
387  * status byte can be retrieved from the LUN register. Apparently,
388  * this is the case only for *uninterrupted* LEVEL2 commands! If
389  * there are any unexpected phases entered, even if they are 100%
390  * legal (different devices may choose to do things differently),
391  * the LEVEL2 command sequence is exited. This often occurs prior
392  * to receiving the status byte, in which case the driver does a
393  * status phase interrupt and gets the status byte on its own.
394  * While such a command can then be "resumed" (ie restarted to
395  * finish up as a LEVEL2 command), the LUN register will NOT be
396  * a valid status byte at the command's conclusion, and we must
397  * use the byte obtained during the earlier interrupt. Here, we
398  * preset SCp.Status to an illegal value (0xff) so that when
399  * this command finally completes, we can tell where the actual
400  * status byte is stored.
401  */
402
403         cmd->SCp.Status = ILLEGAL_STATUS_BYTE;
404
405 /* We need to disable interrupts before messing with the input
406  * queue and calling in2000_execute().
407  */
408
409         /*
410          * Add the cmd to the end of 'input_Q'. Note that REQUEST_SENSE
411          * commands are added to the head of the queue so that the desired
412          * sense data is not lost before REQUEST_SENSE executes.
413          */
414
415         if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) {
416                 cmd->host_scribble = (uchar *) hostdata->input_Q;
417                 hostdata->input_Q = cmd;
418         } else {                /* find the end of the queue */
419                 for (tmp = (Scsi_Cmnd *) hostdata->input_Q; tmp->host_scribble; tmp = (Scsi_Cmnd *) tmp->host_scribble);
420                 tmp->host_scribble = (uchar *) cmd;
421         }
422
423 /* We know that there's at least one command in 'input_Q' now.
424  * Go see if any of them are runnable!
425  */
426
427         in2000_execute(cmd->device->host);
428
429         DB(DB_QUEUE_COMMAND, printk(")Q "))
430             return 0;
431 }
432
433 static DEF_SCSI_QCMD(in2000_queuecommand)
434
435
436
437 /*
438  * This routine attempts to start a scsi command. If the host_card is
439  * already connected, we give up immediately. Otherwise, look through
440  * the input_Q, using the first command we find that's intended
441  * for a currently non-busy target/lun.
442  * Note that this function is always called with interrupts already
443  * disabled (either from in2000_queuecommand() or in2000_intr()).
444  */
445 static void in2000_execute(struct Scsi_Host *instance)
446 {
447         struct IN2000_hostdata *hostdata;
448         Scsi_Cmnd *cmd, *prev;
449         int i;
450         unsigned short *sp;
451         unsigned short f;
452         unsigned short flushbuf[16];
453
454
455         hostdata = (struct IN2000_hostdata *) instance->hostdata;
456
457         DB(DB_EXECUTE, printk("EX("))
458
459             if (hostdata->selecting || hostdata->connected) {
460
461                 DB(DB_EXECUTE, printk(")EX-0 "))
462
463                     return;
464         }
465
466         /*
467          * Search through the input_Q for a command destined
468          * for an idle target/lun.
469          */
470
471         cmd = (Scsi_Cmnd *) hostdata->input_Q;
472         prev = NULL;
473         while (cmd) {
474                 if (!(hostdata->busy[cmd->device->id] & (1 << cmd->device->lun)))
475                         break;
476                 prev = cmd;
477                 cmd = (Scsi_Cmnd *) cmd->host_scribble;
478         }
479
480         /* quit if queue empty or all possible targets are busy */
481
482         if (!cmd) {
483
484                 DB(DB_EXECUTE, printk(")EX-1 "))
485
486                     return;
487         }
488
489         /*  remove command from queue */
490
491         if (prev)
492                 prev->host_scribble = cmd->host_scribble;
493         else
494                 hostdata->input_Q = (Scsi_Cmnd *) cmd->host_scribble;
495
496 #ifdef PROC_STATISTICS
497         hostdata->cmd_cnt[cmd->device->id]++;
498 #endif
499
500 /*
501  * Start the selection process
502  */
503
504         if (is_dir_out(cmd))
505                 write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id);
506         else
507                 write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD);
508
509 /* Now we need to figure out whether or not this command is a good
510  * candidate for disconnect/reselect. We guess to the best of our
511  * ability, based on a set of hierarchical rules. When several
512  * devices are operating simultaneously, disconnects are usually
513  * an advantage. In a single device system, or if only 1 device
514  * is being accessed, transfers usually go faster if disconnects
515  * are not allowed:
516  *
517  * + Commands should NEVER disconnect if hostdata->disconnect =
518  *   DIS_NEVER (this holds for tape drives also), and ALWAYS
519  *   disconnect if hostdata->disconnect = DIS_ALWAYS.
520  * + Tape drive commands should always be allowed to disconnect.
521  * + Disconnect should be allowed if disconnected_Q isn't empty.
522  * + Commands should NOT disconnect if input_Q is empty.
523  * + Disconnect should be allowed if there are commands in input_Q
524  *   for a different target/lun. In this case, the other commands
525  *   should be made disconnect-able, if not already.
526  *
527  * I know, I know - this code would flunk me out of any
528  * "C Programming 101" class ever offered. But it's easy
529  * to change around and experiment with for now.
530  */
531
532         cmd->SCp.phase = 0;     /* assume no disconnect */
533         if (hostdata->disconnect == DIS_NEVER)
534                 goto no;
535         if (hostdata->disconnect == DIS_ALWAYS)
536                 goto yes;
537         if (cmd->device->type == 1)     /* tape drive? */
538                 goto yes;
539         if (hostdata->disconnected_Q)   /* other commands disconnected? */
540                 goto yes;
541         if (!(hostdata->input_Q))       /* input_Q empty? */
542                 goto no;
543         for (prev = (Scsi_Cmnd *) hostdata->input_Q; prev; prev = (Scsi_Cmnd *) prev->host_scribble) {
544                 if ((prev->device->id != cmd->device->id) || (prev->device->lun != cmd->device->lun)) {
545                         for (prev = (Scsi_Cmnd *) hostdata->input_Q; prev; prev = (Scsi_Cmnd *) prev->host_scribble)
546                                 prev->SCp.phase = 1;
547                         goto yes;
548                 }
549         }
550         goto no;
551
552       yes:
553         cmd->SCp.phase = 1;
554
555 #ifdef PROC_STATISTICS
556         hostdata->disc_allowed_cnt[cmd->device->id]++;
557 #endif
558
559       no:
560         write_3393(hostdata, WD_SOURCE_ID, ((cmd->SCp.phase) ? SRCID_ER : 0));
561
562         write_3393(hostdata, WD_TARGET_LUN, cmd->device->lun);
563         write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, hostdata->sync_xfer[cmd->device->id]);
564         hostdata->busy[cmd->device->id] |= (1 << cmd->device->lun);
565
566         if ((hostdata->level2 <= L2_NONE) || (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) {
567
568                 /*
569                  * Do a 'Select-With-ATN' command. This will end with
570                  * one of the following interrupts:
571                  *    CSR_RESEL_AM:  failure - can try again later.
572                  *    CSR_TIMEOUT:   failure - give up.
573                  *    CSR_SELECT:    success - proceed.
574                  */
575
576                 hostdata->selecting = cmd;
577
578 /* Every target has its own synchronous transfer setting, kept in
579  * the sync_xfer array, and a corresponding status byte in sync_stat[].
580  * Each target's sync_stat[] entry is initialized to SS_UNSET, and its
581  * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET
582  * means that the parameters are undetermined as yet, and that we
583  * need to send an SDTR message to this device after selection is
584  * complete. We set SS_FIRST to tell the interrupt routine to do so,
585  * unless we don't want to even _try_ synchronous transfers: In this
586  * case we set SS_SET to make the defaults final.
587  */
588                 if (hostdata->sync_stat[cmd->device->id] == SS_UNSET) {
589                         if (hostdata->sync_off & (1 << cmd->device->id))
590                                 hostdata->sync_stat[cmd->device->id] = SS_SET;
591                         else
592                                 hostdata->sync_stat[cmd->device->id] = SS_FIRST;
593                 }
594                 hostdata->state = S_SELECTING;
595                 write_3393_count(hostdata, 0);  /* this guarantees a DATA_PHASE interrupt */
596                 write_3393_cmd(hostdata, WD_CMD_SEL_ATN);
597         }
598
599         else {
600
601                 /*
602                  * Do a 'Select-With-ATN-Xfer' command. This will end with
603                  * one of the following interrupts:
604                  *    CSR_RESEL_AM:  failure - can try again later.
605                  *    CSR_TIMEOUT:   failure - give up.
606                  *    anything else: success - proceed.
607                  */
608
609                 hostdata->connected = cmd;
610                 write_3393(hostdata, WD_COMMAND_PHASE, 0);
611
612                 /* copy command_descriptor_block into WD chip
613                  * (take advantage of auto-incrementing)
614                  */
615
616                 write1_io(WD_CDB_1, IO_WD_ADDR);
617                 for (i = 0; i < cmd->cmd_len; i++)
618                         write1_io(cmd->cmnd[i], IO_WD_DATA);
619
620                 /* The wd33c93 only knows about Group 0, 1, and 5 commands when
621                  * it's doing a 'select-and-transfer'. To be safe, we write the
622                  * size of the CDB into the OWN_ID register for every case. This
623                  * way there won't be problems with vendor-unique, audio, etc.
624                  */
625
626                 write_3393(hostdata, WD_OWN_ID, cmd->cmd_len);
627
628                 /* When doing a non-disconnect command, we can save ourselves a DATA
629                  * phase interrupt later by setting everything up now. With writes we
630                  * need to pre-fill the fifo; if there's room for the 32 flush bytes,
631                  * put them in there too - that'll avoid a fifo interrupt. Reads are
632                  * somewhat simpler.
633                  * KLUDGE NOTE: It seems that you can't completely fill the fifo here:
634                  * This results in the IO_FIFO_COUNT register rolling over to zero,
635                  * and apparently the gate array logic sees this as empty, not full,
636                  * so the 3393 chip is never signalled to start reading from the
637                  * fifo. Or maybe it's seen as a permanent fifo interrupt condition.
638                  * Regardless, we fix this by temporarily pretending that the fifo
639                  * is 16 bytes smaller. (I see now that the old driver has a comment
640                  * about "don't fill completely" in an analogous place - must be the
641                  * same deal.) This results in CDROM, swap partitions, and tape drives
642                  * needing an extra interrupt per write command - I think we can live
643                  * with that!
644                  */
645
646                 if (!(cmd->SCp.phase)) {
647                         write_3393_count(hostdata, cmd->SCp.this_residual);
648                         write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_BUS);
649                         write1_io(0, IO_FIFO_WRITE);    /* clear fifo counter, write mode */
650
651                         if (is_dir_out(cmd)) {
652                                 hostdata->fifo = FI_FIFO_WRITING;
653                                 if ((i = cmd->SCp.this_residual) > (IN2000_FIFO_SIZE - 16))
654                                         i = IN2000_FIFO_SIZE - 16;
655                                 cmd->SCp.have_data_in = i;      /* this much data in fifo */
656                                 i >>= 1;        /* Gulp. Assuming modulo 2. */
657                                 sp = (unsigned short *) cmd->SCp.ptr;
658                                 f = hostdata->io_base + IO_FIFO;
659
660 #ifdef FAST_WRITE_IO
661
662                                 FAST_WRITE2_IO();
663 #else
664                                 while (i--)
665                                         write2_io(*sp++, IO_FIFO);
666
667 #endif
668
669                                 /* Is there room for the flush bytes? */
670
671                                 if (cmd->SCp.have_data_in <= ((IN2000_FIFO_SIZE - 16) - 32)) {
672                                         sp = flushbuf;
673                                         i = 16;
674
675 #ifdef FAST_WRITE_IO
676
677                                         FAST_WRITE2_IO();
678 #else
679                                         while (i--)
680                                                 write2_io(0, IO_FIFO);
681
682 #endif
683
684                                 }
685                         }
686
687                         else {
688                                 write1_io(0, IO_FIFO_READ);     /* put fifo in read mode */
689                                 hostdata->fifo = FI_FIFO_READING;
690                                 cmd->SCp.have_data_in = 0;      /* nothing transferred yet */
691                         }
692
693                 } else {
694                         write_3393_count(hostdata, 0);  /* this guarantees a DATA_PHASE interrupt */
695                 }
696                 hostdata->state = S_RUNNING_LEVEL2;
697                 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
698         }
699
700         /*
701          * Since the SCSI bus can handle only 1 connection at a time,
702          * we get out of here now. If the selection fails, or when
703          * the command disconnects, we'll come back to this routine
704          * to search the input_Q again...
705          */
706
707         DB(DB_EXECUTE, printk("%s)EX-2 ", (cmd->SCp.phase) ? "d:" : ""))
708
709 }
710
711
712
713 static void transfer_pio(uchar * buf, int cnt, int data_in_dir, struct IN2000_hostdata *hostdata)
714 {
715         uchar asr;
716
717         DB(DB_TRANSFER, printk("(%p,%d,%s)", buf, cnt, data_in_dir ? "in" : "out"))
718
719             write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
720         write_3393_count(hostdata, cnt);
721         write_3393_cmd(hostdata, WD_CMD_TRANS_INFO);
722         if (data_in_dir) {
723                 do {
724                         asr = READ_AUX_STAT();
725                         if (asr & ASR_DBR)
726                                 *buf++ = read_3393(hostdata, WD_DATA);
727                 } while (!(asr & ASR_INT));
728         } else {
729                 do {
730                         asr = READ_AUX_STAT();
731                         if (asr & ASR_DBR)
732                                 write_3393(hostdata, WD_DATA, *buf++);
733                 } while (!(asr & ASR_INT));
734         }
735
736         /* Note: we are returning with the interrupt UN-cleared.
737          * Since (presumably) an entire I/O operation has
738          * completed, the bus phase is probably different, and
739          * the interrupt routine will discover this when it
740          * responds to the uncleared int.
741          */
742
743 }
744
745
746
747 static void transfer_bytes(Scsi_Cmnd * cmd, int data_in_dir)
748 {
749         struct IN2000_hostdata *hostdata;
750         unsigned short *sp;
751         unsigned short f;
752         int i;
753
754         hostdata = (struct IN2000_hostdata *) cmd->device->host->hostdata;
755
756 /* Normally, you'd expect 'this_residual' to be non-zero here.
757  * In a series of scatter-gather transfers, however, this
758  * routine will usually be called with 'this_residual' equal
759  * to 0 and 'buffers_residual' non-zero. This means that a
760  * previous transfer completed, clearing 'this_residual', and
761  * now we need to setup the next scatter-gather buffer as the
762  * source or destination for THIS transfer.
763  */
764         if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) {
765                 ++cmd->SCp.buffer;
766                 --cmd->SCp.buffers_residual;
767                 cmd->SCp.this_residual = cmd->SCp.buffer->length;
768                 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
769         }
770
771 /* Set up hardware registers */
772
773         write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, hostdata->sync_xfer[cmd->device->id]);
774         write_3393_count(hostdata, cmd->SCp.this_residual);
775         write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_BUS);
776         write1_io(0, IO_FIFO_WRITE);    /* zero counter, assume write */
777
778 /* Reading is easy. Just issue the command and return - we'll
779  * get an interrupt later when we have actual data to worry about.
780  */
781
782         if (data_in_dir) {
783                 write1_io(0, IO_FIFO_READ);
784                 if ((hostdata->level2 >= L2_DATA) || (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
785                         write_3393(hostdata, WD_COMMAND_PHASE, 0x45);
786                         write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
787                         hostdata->state = S_RUNNING_LEVEL2;
788                 } else
789                         write_3393_cmd(hostdata, WD_CMD_TRANS_INFO);
790                 hostdata->fifo = FI_FIFO_READING;
791                 cmd->SCp.have_data_in = 0;
792                 return;
793         }
794
795 /* Writing is more involved - we'll start the WD chip and write as
796  * much data to the fifo as we can right now. Later interrupts will
797  * write any bytes that don't make it at this stage.
798  */
799
800         if ((hostdata->level2 >= L2_DATA) || (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
801                 write_3393(hostdata, WD_COMMAND_PHASE, 0x45);
802                 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
803                 hostdata->state = S_RUNNING_LEVEL2;
804         } else
805                 write_3393_cmd(hostdata, WD_CMD_TRANS_INFO);
806         hostdata->fifo = FI_FIFO_WRITING;
807         sp = (unsigned short *) cmd->SCp.ptr;
808
809         if ((i = cmd->SCp.this_residual) > IN2000_FIFO_SIZE)
810                 i = IN2000_FIFO_SIZE;
811         cmd->SCp.have_data_in = i;
812         i >>= 1;                /* Gulp. We assume this_residual is modulo 2 */
813         f = hostdata->io_base + IO_FIFO;
814
815 #ifdef FAST_WRITE_IO
816
817         FAST_WRITE2_IO();
818 #else
819         while (i--)
820                 write2_io(*sp++, IO_FIFO);
821
822 #endif
823
824 }
825
826
827 /* We need to use spin_lock_irqsave() & spin_unlock_irqrestore() in this
828  * function in order to work in an SMP environment. (I'd be surprised
829  * if the driver is ever used by anyone on a real multi-CPU motherboard,
830  * but it _does_ need to be able to compile and run in an SMP kernel.)
831  */
832
833 static irqreturn_t in2000_intr(int irqnum, void *dev_id)
834 {
835         struct Scsi_Host *instance = dev_id;
836         struct IN2000_hostdata *hostdata;
837         Scsi_Cmnd *patch, *cmd;
838         uchar asr, sr, phs, id, lun, *ucp, msg;
839         int i, j;
840         unsigned long length;
841         unsigned short *sp;
842         unsigned short f;
843         unsigned long flags;
844
845         hostdata = (struct IN2000_hostdata *) instance->hostdata;
846
847 /* Get the spin_lock and disable further ints, for SMP */
848
849         spin_lock_irqsave(instance->host_lock, flags);
850
851 #ifdef PROC_STATISTICS
852         hostdata->int_cnt++;
853 #endif
854
855 /* The IN2000 card has 2 interrupt sources OR'ed onto its IRQ line - the
856  * WD3393 chip and the 2k fifo (which is actually a dual-port RAM combined
857  * with a big logic array, so it's a little different than what you might
858  * expect). As far as I know, there's no reason that BOTH can't be active
859  * at the same time, but there's a problem: while we can read the 3393
860  * to tell if _it_ wants an interrupt, I don't know of a way to ask the
861  * fifo the same question. The best we can do is check the 3393 and if
862  * it _isn't_ the source of the interrupt, then we can be pretty sure
863  * that the fifo is the culprit.
864  *  UPDATE: I have it on good authority (Bill Earnest) that bit 0 of the
865  *          IO_FIFO_COUNT register mirrors the fifo interrupt state. I
866  *          assume that bit clear means interrupt active. As it turns
867  *          out, the driver really doesn't need to check for this after
868  *          all, so my remarks above about a 'problem' can safely be
869  *          ignored. The way the logic is set up, there's no advantage
870  *          (that I can see) to worrying about it.
871  *
872  * It seems that the fifo interrupt signal is negated when we extract
873  * bytes during read or write bytes during write.
874  *  - fifo will interrupt when data is moving from it to the 3393, and
875  *    there are 31 (or less?) bytes left to go. This is sort of short-
876  *    sighted: what if you don't WANT to do more? In any case, our
877  *    response is to push more into the fifo - either actual data or
878  *    dummy bytes if need be. Note that we apparently have to write at
879  *    least 32 additional bytes to the fifo after an interrupt in order
880  *    to get it to release the ones it was holding on to - writing fewer
881  *    than 32 will result in another fifo int.
882  *  UPDATE: Again, info from Bill Earnest makes this more understandable:
883  *          32 bytes = two counts of the fifo counter register. He tells
884  *          me that the fifo interrupt is a non-latching signal derived
885  *          from a straightforward boolean interpretation of the 7
886  *          highest bits of the fifo counter and the fifo-read/fifo-write
887  *          state. Who'd a thought?
888  */
889
890         write1_io(0, IO_LED_ON);
891         asr = READ_AUX_STAT();
892         if (!(asr & ASR_INT)) { /* no WD33c93 interrupt? */
893
894 /* Ok. This is definitely a FIFO-only interrupt.
895  *
896  * If FI_FIFO_READING is set, there are up to 2048 bytes waiting to be read,
897  * maybe more to come from the SCSI bus. Read as many as we can out of the
898  * fifo and into memory at the location of SCp.ptr[SCp.have_data_in], and
899  * update have_data_in afterwards.
900  *
901  * If we have FI_FIFO_WRITING, the FIFO has almost run out of bytes to move
902  * into the WD3393 chip (I think the interrupt happens when there are 31
903  * bytes left, but it may be fewer...). The 3393 is still waiting, so we
904  * shove some more into the fifo, which gets things moving again. If the
905  * original SCSI command specified more than 2048 bytes, there may still
906  * be some of that data left: fine - use it (from SCp.ptr[SCp.have_data_in]).
907  * Don't forget to update have_data_in. If we've already written out the
908  * entire buffer, feed 32 dummy bytes to the fifo - they're needed to
909  * push out the remaining real data.
910  *    (Big thanks to Bill Earnest for getting me out of the mud in here.)
911  */
912
913                 cmd = (Scsi_Cmnd *) hostdata->connected;        /* assume we're connected */
914                 CHECK_NULL(cmd, "fifo_int")
915
916                     if (hostdata->fifo == FI_FIFO_READING) {
917
918                         DB(DB_FIFO, printk("{R:%02x} ", read1_io(IO_FIFO_COUNT)))
919
920                             sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
921                         i = read1_io(IO_FIFO_COUNT) & 0xfe;
922                         i <<= 2;        /* # of words waiting in the fifo */
923                         f = hostdata->io_base + IO_FIFO;
924
925 #ifdef FAST_READ_IO
926
927                         FAST_READ2_IO();
928 #else
929                         while (i--)
930                                 *sp++ = read2_io(IO_FIFO);
931
932 #endif
933
934                         i = sp - (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
935                         i <<= 1;
936                         cmd->SCp.have_data_in += i;
937                 }
938
939                 else if (hostdata->fifo == FI_FIFO_WRITING) {
940
941                         DB(DB_FIFO, printk("{W:%02x} ", read1_io(IO_FIFO_COUNT)))
942
943 /* If all bytes have been written to the fifo, flush out the stragglers.
944  * Note that while writing 16 dummy words seems arbitrary, we don't
945  * have another choice that I can see. What we really want is to read
946  * the 3393 transfer count register (that would tell us how many bytes
947  * needed flushing), but the TRANSFER_INFO command hasn't completed
948  * yet (not enough bytes!) and that register won't be accessible. So,
949  * we use 16 words - a number obtained through trial and error.
950  *  UPDATE: Bill says this is exactly what Always does, so there.
951  *          More thanks due him for help in this section.
952  */
953                             if (cmd->SCp.this_residual == cmd->SCp.have_data_in) {
954                                 i = 16;
955                                 while (i--)     /* write 32 dummy bytes */
956                                         write2_io(0, IO_FIFO);
957                         }
958
959 /* If there are still bytes left in the SCSI buffer, write as many as we
960  * can out to the fifo.
961  */
962
963                         else {
964                                 sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
965                                 i = cmd->SCp.this_residual - cmd->SCp.have_data_in;     /* bytes yet to go */
966                                 j = read1_io(IO_FIFO_COUNT) & 0xfe;
967                                 j <<= 2;        /* how many words the fifo has room for */
968                                 if ((j << 1) > i)
969                                         j = (i >> 1);
970                                 while (j--)
971                                         write2_io(*sp++, IO_FIFO);
972
973                                 i = sp - (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
974                                 i <<= 1;
975                                 cmd->SCp.have_data_in += i;
976                         }
977                 }
978
979                 else {
980                         printk("*** Spurious FIFO interrupt ***");
981                 }
982
983                 write1_io(0, IO_LED_OFF);
984
985 /* release the SMP spin_lock and restore irq state */
986                 spin_unlock_irqrestore(instance->host_lock, flags);
987                 return IRQ_HANDLED;
988         }
989
990 /* This interrupt was triggered by the WD33c93 chip. The fifo interrupt
991  * may also be asserted, but we don't bother to check it: we get more
992  * detailed info from FIFO_READING and FIFO_WRITING (see below).
993  */
994
995         cmd = (Scsi_Cmnd *) hostdata->connected;        /* assume we're connected */
996         sr = read_3393(hostdata, WD_SCSI_STATUS);       /* clear the interrupt */
997         phs = read_3393(hostdata, WD_COMMAND_PHASE);
998
999         if (!cmd && (sr != CSR_RESEL_AM && sr != CSR_TIMEOUT && sr != CSR_SELECT)) {
1000                 printk("\nNR:wd-intr-1\n");
1001                 write1_io(0, IO_LED_OFF);
1002
1003 /* release the SMP spin_lock and restore irq state */
1004                 spin_unlock_irqrestore(instance->host_lock, flags);
1005                 return IRQ_HANDLED;
1006         }
1007
1008         DB(DB_INTR, printk("{%02x:%02x-", asr, sr))
1009
1010 /* After starting a FIFO-based transfer, the next _WD3393_ interrupt is
1011  * guaranteed to be in response to the completion of the transfer.
1012  * If we were reading, there's probably data in the fifo that needs
1013  * to be copied into RAM - do that here. Also, we have to update
1014  * 'this_residual' and 'ptr' based on the contents of the
1015  * TRANSFER_COUNT register, in case the device decided to do an
1016  * intermediate disconnect (a device may do this if it has to
1017  * do a seek,  or just to be nice and let other devices have
1018  * some bus time during long transfers).
1019  * After doing whatever is necessary with the fifo, we go on and
1020  * service the WD3393 interrupt normally.
1021  */
1022             if (hostdata->fifo == FI_FIFO_READING) {
1023
1024 /* buffer index = start-of-buffer + #-of-bytes-already-read */
1025
1026                 sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
1027
1028 /* bytes remaining in fifo = (total-wanted - #-not-got) - #-already-read */
1029
1030                 i = (cmd->SCp.this_residual - read_3393_count(hostdata)) - cmd->SCp.have_data_in;
1031                 i >>= 1;        /* Gulp. We assume this will always be modulo 2 */
1032                 f = hostdata->io_base + IO_FIFO;
1033
1034 #ifdef FAST_READ_IO
1035
1036                 FAST_READ2_IO();
1037 #else
1038                 while (i--)
1039                         *sp++ = read2_io(IO_FIFO);
1040
1041 #endif
1042
1043                 hostdata->fifo = FI_FIFO_UNUSED;
1044                 length = cmd->SCp.this_residual;
1045                 cmd->SCp.this_residual = read_3393_count(hostdata);
1046                 cmd->SCp.ptr += (length - cmd->SCp.this_residual);
1047
1048                 DB(DB_TRANSFER, printk("(%p,%d)", cmd->SCp.ptr, cmd->SCp.this_residual))
1049
1050         }
1051
1052         else if (hostdata->fifo == FI_FIFO_WRITING) {
1053                 hostdata->fifo = FI_FIFO_UNUSED;
1054                 length = cmd->SCp.this_residual;
1055                 cmd->SCp.this_residual = read_3393_count(hostdata);
1056                 cmd->SCp.ptr += (length - cmd->SCp.this_residual);
1057
1058                 DB(DB_TRANSFER, printk("(%p,%d)", cmd->SCp.ptr, cmd->SCp.this_residual))
1059
1060         }
1061
1062 /* Respond to the specific WD3393 interrupt - there are quite a few! */
1063
1064         switch (sr) {
1065
1066         case CSR_TIMEOUT:
1067                 DB(DB_INTR, printk("TIMEOUT"))
1068
1069                     if (hostdata->state == S_RUNNING_LEVEL2)
1070                         hostdata->connected = NULL;
1071                 else {
1072                         cmd = (Scsi_Cmnd *) hostdata->selecting;        /* get a valid cmd */
1073                         CHECK_NULL(cmd, "csr_timeout")
1074                             hostdata->selecting = NULL;
1075                 }
1076
1077                 cmd->result = DID_NO_CONNECT << 16;
1078                 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1079                 hostdata->state = S_UNCONNECTED;
1080                 cmd->scsi_done(cmd);
1081
1082 /* We are not connected to a target - check to see if there
1083  * are commands waiting to be executed.
1084  */
1085
1086                 in2000_execute(instance);
1087                 break;
1088
1089
1090 /* Note: this interrupt should not occur in a LEVEL2 command */
1091
1092         case CSR_SELECT:
1093                 DB(DB_INTR, printk("SELECT"))
1094                     hostdata->connected = cmd = (Scsi_Cmnd *) hostdata->selecting;
1095                 CHECK_NULL(cmd, "csr_select")
1096                     hostdata->selecting = NULL;
1097
1098                 /* construct an IDENTIFY message with correct disconnect bit */
1099
1100                 hostdata->outgoing_msg[0] = (0x80 | 0x00 | cmd->device->lun);
1101                 if (cmd->SCp.phase)
1102                         hostdata->outgoing_msg[0] |= 0x40;
1103
1104                 if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) {
1105 #ifdef SYNC_DEBUG
1106                         printk(" sending SDTR ");
1107 #endif
1108
1109                         hostdata->sync_stat[cmd->device->id] = SS_WAITING;
1110
1111                         /* tack on a 2nd message to ask about synchronous transfers */
1112
1113                         hostdata->outgoing_msg[1] = EXTENDED_MESSAGE;
1114                         hostdata->outgoing_msg[2] = 3;
1115                         hostdata->outgoing_msg[3] = EXTENDED_SDTR;
1116                         hostdata->outgoing_msg[4] = OPTIMUM_SX_PER / 4;
1117                         hostdata->outgoing_msg[5] = OPTIMUM_SX_OFF;
1118                         hostdata->outgoing_len = 6;
1119                 } else
1120                         hostdata->outgoing_len = 1;
1121
1122                 hostdata->state = S_CONNECTED;
1123                 break;
1124
1125
1126         case CSR_XFER_DONE | PHS_DATA_IN:
1127         case CSR_UNEXP | PHS_DATA_IN:
1128         case CSR_SRV_REQ | PHS_DATA_IN:
1129                 DB(DB_INTR, printk("IN-%d.%d", cmd->SCp.this_residual, cmd->SCp.buffers_residual))
1130                     transfer_bytes(cmd, DATA_IN_DIR);
1131                 if (hostdata->state != S_RUNNING_LEVEL2)
1132                         hostdata->state = S_CONNECTED;
1133                 break;
1134
1135
1136         case CSR_XFER_DONE | PHS_DATA_OUT:
1137         case CSR_UNEXP | PHS_DATA_OUT:
1138         case CSR_SRV_REQ | PHS_DATA_OUT:
1139                 DB(DB_INTR, printk("OUT-%d.%d", cmd->SCp.this_residual, cmd->SCp.buffers_residual))
1140                     transfer_bytes(cmd, DATA_OUT_DIR);
1141                 if (hostdata->state != S_RUNNING_LEVEL2)
1142                         hostdata->state = S_CONNECTED;
1143                 break;
1144
1145
1146 /* Note: this interrupt should not occur in a LEVEL2 command */
1147
1148         case CSR_XFER_DONE | PHS_COMMAND:
1149         case CSR_UNEXP | PHS_COMMAND:
1150         case CSR_SRV_REQ | PHS_COMMAND:
1151                 DB(DB_INTR, printk("CMND-%02x", cmd->cmnd[0]))
1152                     transfer_pio(cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR, hostdata);
1153                 hostdata->state = S_CONNECTED;
1154                 break;
1155
1156
1157         case CSR_XFER_DONE | PHS_STATUS:
1158         case CSR_UNEXP | PHS_STATUS:
1159         case CSR_SRV_REQ | PHS_STATUS:
1160                 DB(DB_INTR, printk("STATUS="))
1161
1162                     cmd->SCp.Status = read_1_byte(hostdata);
1163                 DB(DB_INTR, printk("%02x", cmd->SCp.Status))
1164                     if (hostdata->level2 >= L2_BASIC) {
1165                         sr = read_3393(hostdata, WD_SCSI_STATUS);       /* clear interrupt */
1166                         hostdata->state = S_RUNNING_LEVEL2;
1167                         write_3393(hostdata, WD_COMMAND_PHASE, 0x50);
1168                         write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
1169                 } else {
1170                         hostdata->state = S_CONNECTED;
1171                 }
1172                 break;
1173
1174
1175         case CSR_XFER_DONE | PHS_MESS_IN:
1176         case CSR_UNEXP | PHS_MESS_IN:
1177         case CSR_SRV_REQ | PHS_MESS_IN:
1178                 DB(DB_INTR, printk("MSG_IN="))
1179
1180                     msg = read_1_byte(hostdata);
1181                 sr = read_3393(hostdata, WD_SCSI_STATUS);       /* clear interrupt */
1182
1183                 hostdata->incoming_msg[hostdata->incoming_ptr] = msg;
1184                 if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE)
1185                         msg = EXTENDED_MESSAGE;
1186                 else
1187                         hostdata->incoming_ptr = 0;
1188
1189                 cmd->SCp.Message = msg;
1190                 switch (msg) {
1191
1192                 case COMMAND_COMPLETE:
1193                         DB(DB_INTR, printk("CCMP"))
1194                             write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1195                         hostdata->state = S_PRE_CMP_DISC;
1196                         break;
1197
1198                 case SAVE_POINTERS:
1199                         DB(DB_INTR, printk("SDP"))
1200                             write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1201                         hostdata->state = S_CONNECTED;
1202                         break;
1203
1204                 case RESTORE_POINTERS:
1205                         DB(DB_INTR, printk("RDP"))
1206                             if (hostdata->level2 >= L2_BASIC) {
1207                                 write_3393(hostdata, WD_COMMAND_PHASE, 0x45);
1208                                 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
1209                                 hostdata->state = S_RUNNING_LEVEL2;
1210                         } else {
1211                                 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1212                                 hostdata->state = S_CONNECTED;
1213                         }
1214                         break;
1215
1216                 case DISCONNECT:
1217                         DB(DB_INTR, printk("DIS"))
1218                             cmd->device->disconnect = 1;
1219                         write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1220                         hostdata->state = S_PRE_TMP_DISC;
1221                         break;
1222
1223                 case MESSAGE_REJECT:
1224                         DB(DB_INTR, printk("REJ"))
1225 #ifdef SYNC_DEBUG
1226                             printk("-REJ-");
1227 #endif
1228                         if (hostdata->sync_stat[cmd->device->id] == SS_WAITING)
1229                                 hostdata->sync_stat[cmd->device->id] = SS_SET;
1230                         write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1231                         hostdata->state = S_CONNECTED;
1232                         break;
1233
1234                 case EXTENDED_MESSAGE:
1235                         DB(DB_INTR, printk("EXT"))
1236
1237                             ucp = hostdata->incoming_msg;
1238
1239 #ifdef SYNC_DEBUG
1240                         printk("%02x", ucp[hostdata->incoming_ptr]);
1241 #endif
1242                         /* Is this the last byte of the extended message? */
1243
1244                         if ((hostdata->incoming_ptr >= 2) && (hostdata->incoming_ptr == (ucp[1] + 1))) {
1245
1246                                 switch (ucp[2]) {       /* what's the EXTENDED code? */
1247                                 case EXTENDED_SDTR:
1248                                         id = calc_sync_xfer(ucp[3], ucp[4]);
1249                                         if (hostdata->sync_stat[cmd->device->id] != SS_WAITING) {
1250
1251 /* A device has sent an unsolicited SDTR message; rather than go
1252  * through the effort of decoding it and then figuring out what
1253  * our reply should be, we're just gonna say that we have a
1254  * synchronous fifo depth of 0. This will result in asynchronous
1255  * transfers - not ideal but so much easier.
1256  * Actually, this is OK because it assures us that if we don't
1257  * specifically ask for sync transfers, we won't do any.
1258  */
1259
1260                                                 write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN);    /* want MESS_OUT */
1261                                                 hostdata->outgoing_msg[0] = EXTENDED_MESSAGE;
1262                                                 hostdata->outgoing_msg[1] = 3;
1263                                                 hostdata->outgoing_msg[2] = EXTENDED_SDTR;
1264                                                 hostdata->outgoing_msg[3] = hostdata->default_sx_per / 4;
1265                                                 hostdata->outgoing_msg[4] = 0;
1266                                                 hostdata->outgoing_len = 5;
1267                                                 hostdata->sync_xfer[cmd->device->id] = calc_sync_xfer(hostdata->default_sx_per / 4, 0);
1268                                         } else {
1269                                                 hostdata->sync_xfer[cmd->device->id] = id;
1270                                         }
1271 #ifdef SYNC_DEBUG
1272                                         printk("sync_xfer=%02x", hostdata->sync_xfer[cmd->device->id]);
1273 #endif
1274                                         hostdata->sync_stat[cmd->device->id] = SS_SET;
1275                                         write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1276                                         hostdata->state = S_CONNECTED;
1277                                         break;
1278                                 case EXTENDED_WDTR:
1279                                         write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN);    /* want MESS_OUT */
1280                                         printk("sending WDTR ");
1281                                         hostdata->outgoing_msg[0] = EXTENDED_MESSAGE;
1282                                         hostdata->outgoing_msg[1] = 2;
1283                                         hostdata->outgoing_msg[2] = EXTENDED_WDTR;
1284                                         hostdata->outgoing_msg[3] = 0;  /* 8 bit transfer width */
1285                                         hostdata->outgoing_len = 4;
1286                                         write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1287                                         hostdata->state = S_CONNECTED;
1288                                         break;
1289                                 default:
1290                                         write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN);    /* want MESS_OUT */
1291                                         printk("Rejecting Unknown Extended Message(%02x). ", ucp[2]);
1292                                         hostdata->outgoing_msg[0] = MESSAGE_REJECT;
1293                                         hostdata->outgoing_len = 1;
1294                                         write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1295                                         hostdata->state = S_CONNECTED;
1296                                         break;
1297                                 }
1298                                 hostdata->incoming_ptr = 0;
1299                         }
1300
1301                         /* We need to read more MESS_IN bytes for the extended message */
1302
1303                         else {
1304                                 hostdata->incoming_ptr++;
1305                                 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1306                                 hostdata->state = S_CONNECTED;
1307                         }
1308                         break;
1309
1310                 default:
1311                         printk("Rejecting Unknown Message(%02x) ", msg);
1312                         write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN);    /* want MESS_OUT */
1313                         hostdata->outgoing_msg[0] = MESSAGE_REJECT;
1314                         hostdata->outgoing_len = 1;
1315                         write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1316                         hostdata->state = S_CONNECTED;
1317                 }
1318                 break;
1319
1320
1321 /* Note: this interrupt will occur only after a LEVEL2 command */
1322
1323         case CSR_SEL_XFER_DONE:
1324
1325 /* Make sure that reselection is enabled at this point - it may
1326  * have been turned off for the command that just completed.
1327  */
1328
1329                 write_3393(hostdata, WD_SOURCE_ID, SRCID_ER);
1330                 if (phs == 0x60) {
1331                         DB(DB_INTR, printk("SX-DONE"))
1332                             cmd->SCp.Message = COMMAND_COMPLETE;
1333                         lun = read_3393(hostdata, WD_TARGET_LUN);
1334                         DB(DB_INTR, printk(":%d.%d", cmd->SCp.Status, lun))
1335                             hostdata->connected = NULL;
1336                         hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1337                         hostdata->state = S_UNCONNECTED;
1338                         if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE)
1339                                 cmd->SCp.Status = lun;
1340                         if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1341                                 cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1342                         else
1343                                 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1344                         cmd->scsi_done(cmd);
1345
1346 /* We are no longer connected to a target - check to see if
1347  * there are commands waiting to be executed.
1348  */
1349
1350                         in2000_execute(instance);
1351                 } else {
1352                         printk("%02x:%02x:%02x: Unknown SEL_XFER_DONE phase!!---", asr, sr, phs);
1353                 }
1354                 break;
1355
1356
1357 /* Note: this interrupt will occur only after a LEVEL2 command */
1358
1359         case CSR_SDP:
1360                 DB(DB_INTR, printk("SDP"))
1361                     hostdata->state = S_RUNNING_LEVEL2;
1362                 write_3393(hostdata, WD_COMMAND_PHASE, 0x41);
1363                 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
1364                 break;
1365
1366
1367         case CSR_XFER_DONE | PHS_MESS_OUT:
1368         case CSR_UNEXP | PHS_MESS_OUT:
1369         case CSR_SRV_REQ | PHS_MESS_OUT:
1370                 DB(DB_INTR, printk("MSG_OUT="))
1371
1372 /* To get here, we've probably requested MESSAGE_OUT and have
1373  * already put the correct bytes in outgoing_msg[] and filled
1374  * in outgoing_len. We simply send them out to the SCSI bus.
1375  * Sometimes we get MESSAGE_OUT phase when we're not expecting
1376  * it - like when our SDTR message is rejected by a target. Some
1377  * targets send the REJECT before receiving all of the extended
1378  * message, and then seem to go back to MESSAGE_OUT for a byte
1379  * or two. Not sure why, or if I'm doing something wrong to
1380  * cause this to happen. Regardless, it seems that sending
1381  * NOP messages in these situations results in no harm and
1382  * makes everyone happy.
1383  */
1384                     if (hostdata->outgoing_len == 0) {
1385                         hostdata->outgoing_len = 1;
1386                         hostdata->outgoing_msg[0] = NOP;
1387                 }
1388                 transfer_pio(hostdata->outgoing_msg, hostdata->outgoing_len, DATA_OUT_DIR, hostdata);
1389                 DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0]))
1390                     hostdata->outgoing_len = 0;
1391                 hostdata->state = S_CONNECTED;
1392                 break;
1393
1394
1395         case CSR_UNEXP_DISC:
1396
1397 /* I think I've seen this after a request-sense that was in response
1398  * to an error condition, but not sure. We certainly need to do
1399  * something when we get this interrupt - the question is 'what?'.
1400  * Let's think positively, and assume some command has finished
1401  * in a legal manner (like a command that provokes a request-sense),
1402  * so we treat it as a normal command-complete-disconnect.
1403  */
1404
1405
1406 /* Make sure that reselection is enabled at this point - it may
1407  * have been turned off for the command that just completed.
1408  */
1409
1410                 write_3393(hostdata, WD_SOURCE_ID, SRCID_ER);
1411                 if (cmd == NULL) {
1412                         printk(" - Already disconnected! ");
1413                         hostdata->state = S_UNCONNECTED;
1414
1415 /* release the SMP spin_lock and restore irq state */
1416                         spin_unlock_irqrestore(instance->host_lock, flags);
1417                         return IRQ_HANDLED;
1418                 }
1419                 DB(DB_INTR, printk("UNEXP_DISC"))
1420                     hostdata->connected = NULL;
1421                 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1422                 hostdata->state = S_UNCONNECTED;
1423                 if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1424                         cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1425                 else
1426                         cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1427                 cmd->scsi_done(cmd);
1428
1429 /* We are no longer connected to a target - check to see if
1430  * there are commands waiting to be executed.
1431  */
1432
1433                 in2000_execute(instance);
1434                 break;
1435
1436
1437         case CSR_DISC:
1438
1439 /* Make sure that reselection is enabled at this point - it may
1440  * have been turned off for the command that just completed.
1441  */
1442
1443                 write_3393(hostdata, WD_SOURCE_ID, SRCID_ER);
1444                 DB(DB_INTR, printk("DISC"))
1445                     if (cmd == NULL) {
1446                         printk(" - Already disconnected! ");
1447                         hostdata->state = S_UNCONNECTED;
1448                 }
1449                 switch (hostdata->state) {
1450                 case S_PRE_CMP_DISC:
1451                         hostdata->connected = NULL;
1452                         hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1453                         hostdata->state = S_UNCONNECTED;
1454                         DB(DB_INTR, printk(":%d", cmd->SCp.Status))
1455                             if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1456                                 cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1457                         else
1458                                 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1459                         cmd->scsi_done(cmd);
1460                         break;
1461                 case S_PRE_TMP_DISC:
1462                 case S_RUNNING_LEVEL2:
1463                         cmd->host_scribble = (uchar *) hostdata->disconnected_Q;
1464                         hostdata->disconnected_Q = cmd;
1465                         hostdata->connected = NULL;
1466                         hostdata->state = S_UNCONNECTED;
1467
1468 #ifdef PROC_STATISTICS
1469                         hostdata->disc_done_cnt[cmd->device->id]++;
1470 #endif
1471
1472                         break;
1473                 default:
1474                         printk("*** Unexpected DISCONNECT interrupt! ***");
1475                         hostdata->state = S_UNCONNECTED;
1476                 }
1477
1478 /* We are no longer connected to a target - check to see if
1479  * there are commands waiting to be executed.
1480  */
1481
1482                 in2000_execute(instance);
1483                 break;
1484
1485
1486         case CSR_RESEL_AM:
1487                 DB(DB_INTR, printk("RESEL"))
1488
1489                     /* First we have to make sure this reselection didn't */
1490                     /* happen during Arbitration/Selection of some other device. */
1491                     /* If yes, put losing command back on top of input_Q. */
1492                     if (hostdata->level2 <= L2_NONE) {
1493
1494                         if (hostdata->selecting) {
1495                                 cmd = (Scsi_Cmnd *) hostdata->selecting;
1496                                 hostdata->selecting = NULL;
1497                                 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1498                                 cmd->host_scribble = (uchar *) hostdata->input_Q;
1499                                 hostdata->input_Q = cmd;
1500                         }
1501                 }
1502
1503                 else {
1504
1505                         if (cmd) {
1506                                 if (phs == 0x00) {
1507                                         hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1508                                         cmd->host_scribble = (uchar *) hostdata->input_Q;
1509                                         hostdata->input_Q = cmd;
1510                                 } else {
1511                                         printk("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---", asr, sr, phs);
1512                                         while (1)
1513                                                 printk("\r");
1514                                 }
1515                         }
1516
1517                 }
1518
1519                 /* OK - find out which device reselected us. */
1520
1521                 id = read_3393(hostdata, WD_SOURCE_ID);
1522                 id &= SRCID_MASK;
1523
1524                 /* and extract the lun from the ID message. (Note that we don't
1525                  * bother to check for a valid message here - I guess this is
1526                  * not the right way to go, but....)
1527                  */
1528
1529                 lun = read_3393(hostdata, WD_DATA);
1530                 if (hostdata->level2 < L2_RESELECT)
1531                         write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1532                 lun &= 7;
1533
1534                 /* Now we look for the command that's reconnecting. */
1535
1536                 cmd = (Scsi_Cmnd *) hostdata->disconnected_Q;
1537                 patch = NULL;
1538                 while (cmd) {
1539                         if (id == cmd->device->id && lun == cmd->device->lun)
1540                                 break;
1541                         patch = cmd;
1542                         cmd = (Scsi_Cmnd *) cmd->host_scribble;
1543                 }
1544
1545                 /* Hmm. Couldn't find a valid command.... What to do? */
1546
1547                 if (!cmd) {
1548                         printk("---TROUBLE: target %d.%d not in disconnect queue---", id, lun);
1549                         break;
1550                 }
1551
1552                 /* Ok, found the command - now start it up again. */
1553
1554                 if (patch)
1555                         patch->host_scribble = cmd->host_scribble;
1556                 else
1557                         hostdata->disconnected_Q = (Scsi_Cmnd *) cmd->host_scribble;
1558                 hostdata->connected = cmd;
1559
1560                 /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]'
1561                  * because these things are preserved over a disconnect.
1562                  * But we DO need to fix the DPD bit so it's correct for this command.
1563                  */
1564
1565                 if (is_dir_out(cmd))
1566                         write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id);
1567                 else
1568                         write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD);
1569                 if (hostdata->level2 >= L2_RESELECT) {
1570                         write_3393_count(hostdata, 0);  /* we want a DATA_PHASE interrupt */
1571                         write_3393(hostdata, WD_COMMAND_PHASE, 0x45);
1572                         write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
1573                         hostdata->state = S_RUNNING_LEVEL2;
1574                 } else
1575                         hostdata->state = S_CONNECTED;
1576
1577                     break;
1578
1579         default:
1580                 printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs);
1581         }
1582
1583         write1_io(0, IO_LED_OFF);
1584
1585         DB(DB_INTR, printk("} "))
1586
1587 /* release the SMP spin_lock and restore irq state */
1588             spin_unlock_irqrestore(instance->host_lock, flags);
1589         return IRQ_HANDLED;
1590 }
1591
1592
1593
1594 #define RESET_CARD         0
1595 #define RESET_CARD_AND_BUS 1
1596 #define B_FLAG 0x80
1597
1598 /*
1599  *      Caller must hold instance lock!
1600  */
1601
1602 static int reset_hardware(struct Scsi_Host *instance, int type)
1603 {
1604         struct IN2000_hostdata *hostdata;
1605         int qt, x;
1606
1607         hostdata = (struct IN2000_hostdata *) instance->hostdata;
1608
1609         write1_io(0, IO_LED_ON);
1610         if (type == RESET_CARD_AND_BUS) {
1611                 write1_io(0, IO_CARD_RESET);
1612                 x = read1_io(IO_HARDWARE);
1613         }
1614         x = read_3393(hostdata, WD_SCSI_STATUS);        /* clear any WD intrpt */
1615         write_3393(hostdata, WD_OWN_ID, instance->this_id | OWNID_EAF | OWNID_RAF | OWNID_FS_8);
1616         write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1617         write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, calc_sync_xfer(hostdata->default_sx_per / 4, DEFAULT_SX_OFF));
1618
1619         write1_io(0, IO_FIFO_WRITE);    /* clear fifo counter */
1620         write1_io(0, IO_FIFO_READ);     /* start fifo out in read mode */
1621         write_3393(hostdata, WD_COMMAND, WD_CMD_RESET);
1622         /* FIXME: timeout ?? */
1623         while (!(READ_AUX_STAT() & ASR_INT))
1624                 cpu_relax();    /* wait for RESET to complete */
1625
1626         x = read_3393(hostdata, WD_SCSI_STATUS);        /* clear interrupt */
1627
1628         write_3393(hostdata, WD_QUEUE_TAG, 0xa5);       /* any random number */
1629         qt = read_3393(hostdata, WD_QUEUE_TAG);
1630         if (qt == 0xa5) {
1631                 x |= B_FLAG;
1632                 write_3393(hostdata, WD_QUEUE_TAG, 0);
1633         }
1634         write_3393(hostdata, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE);
1635         write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1636         write1_io(0, IO_LED_OFF);
1637         return x;
1638 }
1639
1640
1641
1642 static int in2000_bus_reset(Scsi_Cmnd * cmd)
1643 {
1644         struct Scsi_Host *instance;
1645         struct IN2000_hostdata *hostdata;
1646         int x;
1647         unsigned long flags;
1648
1649         instance = cmd->device->host;
1650         hostdata = (struct IN2000_hostdata *) instance->hostdata;
1651
1652         printk(KERN_WARNING "scsi%d: Reset. ", instance->host_no);
1653
1654         spin_lock_irqsave(instance->host_lock, flags);
1655
1656         /* do scsi-reset here */
1657         reset_hardware(instance, RESET_CARD_AND_BUS);
1658         for (x = 0; x < 8; x++) {
1659                 hostdata->busy[x] = 0;
1660                 hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF);
1661                 hostdata->sync_stat[x] = SS_UNSET;      /* using default sync values */
1662         }
1663         hostdata->input_Q = NULL;
1664         hostdata->selecting = NULL;
1665         hostdata->connected = NULL;
1666         hostdata->disconnected_Q = NULL;
1667         hostdata->state = S_UNCONNECTED;
1668         hostdata->fifo = FI_FIFO_UNUSED;
1669         hostdata->incoming_ptr = 0;
1670         hostdata->outgoing_len = 0;
1671
1672         cmd->result = DID_RESET << 16;
1673
1674         spin_unlock_irqrestore(instance->host_lock, flags);
1675         return SUCCESS;
1676 }
1677
1678 static int __in2000_abort(Scsi_Cmnd * cmd)
1679 {
1680         struct Scsi_Host *instance;
1681         struct IN2000_hostdata *hostdata;
1682         Scsi_Cmnd *tmp, *prev;
1683         uchar sr, asr;
1684         unsigned long timeout;
1685
1686         instance = cmd->device->host;
1687         hostdata = (struct IN2000_hostdata *) instance->hostdata;
1688
1689         printk(KERN_DEBUG "scsi%d: Abort-", instance->host_no);
1690         printk("(asr=%02x,count=%ld,resid=%d,buf_resid=%d,have_data=%d,FC=%02x)- ", READ_AUX_STAT(), read_3393_count(hostdata), cmd->SCp.this_residual, cmd->SCp.buffers_residual, cmd->SCp.have_data_in, read1_io(IO_FIFO_COUNT));
1691
1692 /*
1693  * Case 1 : If the command hasn't been issued yet, we simply remove it
1694  *     from the inout_Q.
1695  */
1696
1697         tmp = (Scsi_Cmnd *) hostdata->input_Q;
1698         prev = NULL;
1699         while (tmp) {
1700                 if (tmp == cmd) {
1701                         if (prev)
1702                                 prev->host_scribble = cmd->host_scribble;
1703                         cmd->host_scribble = NULL;
1704                         cmd->result = DID_ABORT << 16;
1705                         printk(KERN_WARNING "scsi%d: Abort - removing command from input_Q. ", instance->host_no);
1706                         cmd->scsi_done(cmd);
1707                         return SUCCESS;
1708                 }
1709                 prev = tmp;
1710                 tmp = (Scsi_Cmnd *) tmp->host_scribble;
1711         }
1712
1713 /*
1714  * Case 2 : If the command is connected, we're going to fail the abort
1715  *     and let the high level SCSI driver retry at a later time or
1716  *     issue a reset.
1717  *
1718  *     Timeouts, and therefore aborted commands, will be highly unlikely
1719  *     and handling them cleanly in this situation would make the common
1720  *     case of noresets less efficient, and would pollute our code.  So,
1721  *     we fail.
1722  */
1723
1724         if (hostdata->connected == cmd) {
1725
1726                 printk(KERN_WARNING "scsi%d: Aborting connected command - ", instance->host_no);
1727
1728                 printk("sending wd33c93 ABORT command - ");
1729                 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1730                 write_3393_cmd(hostdata, WD_CMD_ABORT);
1731
1732 /* Now we have to attempt to flush out the FIFO... */
1733
1734                 printk("flushing fifo - ");
1735                 timeout = 1000000;
1736                 do {
1737                         asr = READ_AUX_STAT();
1738                         if (asr & ASR_DBR)
1739                                 read_3393(hostdata, WD_DATA);
1740                 } while (!(asr & ASR_INT) && timeout-- > 0);
1741                 sr = read_3393(hostdata, WD_SCSI_STATUS);
1742                 printk("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ", asr, sr, read_3393_count(hostdata), timeout);
1743
1744                 /*
1745                  * Abort command processed.
1746                  * Still connected.
1747                  * We must disconnect.
1748                  */
1749
1750                 printk("sending wd33c93 DISCONNECT command - ");
1751                 write_3393_cmd(hostdata, WD_CMD_DISCONNECT);
1752
1753                 timeout = 1000000;
1754                 asr = READ_AUX_STAT();
1755                 while ((asr & ASR_CIP) && timeout-- > 0)
1756                         asr = READ_AUX_STAT();
1757                 sr = read_3393(hostdata, WD_SCSI_STATUS);
1758                 printk("asr=%02x, sr=%02x.", asr, sr);
1759
1760                 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1761                 hostdata->connected = NULL;
1762                 hostdata->state = S_UNCONNECTED;
1763                 cmd->result = DID_ABORT << 16;
1764                 cmd->scsi_done(cmd);
1765
1766                 in2000_execute(instance);
1767
1768                 return SUCCESS;
1769         }
1770
1771 /*
1772  * Case 3: If the command is currently disconnected from the bus,
1773  * we're not going to expend much effort here: Let's just return
1774  * an ABORT_SNOOZE and hope for the best...
1775  */
1776
1777         for (tmp = (Scsi_Cmnd *) hostdata->disconnected_Q; tmp; tmp = (Scsi_Cmnd *) tmp->host_scribble)
1778                 if (cmd == tmp) {
1779                         printk(KERN_DEBUG "scsi%d: unable to abort disconnected command.\n", instance->host_no);
1780                         return FAILED;
1781                 }
1782
1783 /*
1784  * Case 4 : If we reached this point, the command was not found in any of
1785  *     the queues.
1786  *
1787  * We probably reached this point because of an unlikely race condition
1788  * between the command completing successfully and the abortion code,
1789  * so we won't panic, but we will notify the user in case something really
1790  * broke.
1791  */
1792
1793         in2000_execute(instance);
1794
1795         printk("scsi%d: warning : SCSI command probably completed successfully" "         before abortion. ", instance->host_no);
1796         return SUCCESS;
1797 }
1798
1799 static int in2000_abort(Scsi_Cmnd * cmd)
1800 {
1801         int rc;
1802
1803         spin_lock_irq(cmd->device->host->host_lock);
1804         rc = __in2000_abort(cmd);
1805         spin_unlock_irq(cmd->device->host->host_lock);
1806
1807         return rc;
1808 }
1809
1810
1811 #define MAX_IN2000_HOSTS 3
1812 #define MAX_SETUP_ARGS ARRAY_SIZE(setup_args)
1813 #define SETUP_BUFFER_SIZE 200
1814 static char setup_buffer[SETUP_BUFFER_SIZE];
1815 static char setup_used[MAX_SETUP_ARGS];
1816 static int done_setup = 0;
1817
1818 static void __init in2000_setup(char *str, int *ints)
1819 {
1820         int i;
1821         char *p1, *p2;
1822
1823         strlcpy(setup_buffer, str, SETUP_BUFFER_SIZE);
1824         p1 = setup_buffer;
1825         i = 0;
1826         while (*p1 && (i < MAX_SETUP_ARGS)) {
1827                 p2 = strchr(p1, ',');
1828                 if (p2) {
1829                         *p2 = '\0';
1830                         if (p1 != p2)
1831                                 setup_args[i] = p1;
1832                         p1 = p2 + 1;
1833                         i++;
1834                 } else {
1835                         setup_args[i] = p1;
1836                         break;
1837                 }
1838         }
1839         for (i = 0; i < MAX_SETUP_ARGS; i++)
1840                 setup_used[i] = 0;
1841         done_setup = 1;
1842 }
1843
1844
1845 /* check_setup_args() returns index if key found, 0 if not
1846  */
1847
1848 static int __init check_setup_args(char *key, int *val, char *buf)
1849 {
1850         int x;
1851         char *cp;
1852
1853         for (x = 0; x < MAX_SETUP_ARGS; x++) {
1854                 if (setup_used[x])
1855                         continue;
1856                 if (!strncmp(setup_args[x], key, strlen(key)))
1857                         break;
1858         }
1859         if (x == MAX_SETUP_ARGS)
1860                 return 0;
1861         setup_used[x] = 1;
1862         cp = setup_args[x] + strlen(key);
1863         *val = -1;
1864         if (*cp != ':')
1865                 return ++x;
1866         cp++;
1867         if ((*cp >= '0') && (*cp <= '9')) {
1868                 *val = simple_strtoul(cp, NULL, 0);
1869         }
1870         return ++x;
1871 }
1872
1873
1874
1875 /* The "correct" (ie portable) way to access memory-mapped hardware
1876  * such as the IN2000 EPROM and dip switch is through the use of
1877  * special macros declared in 'asm/io.h'. We use readb() and readl()
1878  * when reading from the card's BIOS area in in2000_detect().
1879  */
1880 static u32 bios_tab[] in2000__INITDATA = {
1881         0xc8000,
1882         0xd0000,
1883         0xd8000,
1884         0
1885 };
1886
1887 static unsigned short base_tab[] in2000__INITDATA = {
1888         0x220,
1889         0x200,
1890         0x110,
1891         0x100,
1892 };
1893
1894 static int int_tab[] in2000__INITDATA = {
1895         15,
1896         14,
1897         11,
1898         10
1899 };
1900
1901 static int probe_bios(u32 addr, u32 *s1, uchar *switches)
1902 {
1903         void __iomem *p = ioremap(addr, 0x34);
1904         if (!p)
1905                 return 0;
1906         *s1 = readl(p + 0x10);
1907         if (*s1 == 0x41564f4e || readl(p + 0x30) == 0x61776c41) {
1908                 /* Read the switch image that's mapped into EPROM space */
1909                 *switches = ~readb(p + 0x20);
1910                 iounmap(p);
1911                 return 1;
1912         }
1913         iounmap(p);
1914         return 0;
1915 }
1916
1917 static int __init in2000_detect(struct scsi_host_template * tpnt)
1918 {
1919         struct Scsi_Host *instance;
1920         struct IN2000_hostdata *hostdata;
1921         int detect_count;
1922         int bios;
1923         int x;
1924         unsigned short base;
1925         uchar switches;
1926         uchar hrev;
1927         unsigned long flags;
1928         int val;
1929         char buf[32];
1930
1931 /* Thanks to help from Bill Earnest, probing for IN2000 cards is a
1932  * pretty straightforward and fool-proof operation. There are 3
1933  * possible locations for the IN2000 EPROM in memory space - if we
1934  * find a BIOS signature, we can read the dip switch settings from
1935  * the byte at BIOS+32 (shadowed in by logic on the card). From 2
1936  * of the switch bits we get the card's address in IO space. There's
1937  * an image of the dip switch there, also, so we have a way to back-
1938  * check that this really is an IN2000 card. Very nifty. Use the
1939  * 'ioport:xx' command-line parameter if your BIOS EPROM is absent
1940  * or disabled.
1941  */
1942
1943         if (!done_setup && setup_strings)
1944                 in2000_setup(setup_strings, NULL);
1945
1946         detect_count = 0;
1947         for (bios = 0; bios_tab[bios]; bios++) {
1948                 u32 s1 = 0;
1949                 if (check_setup_args("ioport", &val, buf)) {
1950                         base = val;
1951                         switches = ~inb(base + IO_SWITCHES) & 0xff;
1952                         printk("Forcing IN2000 detection at IOport 0x%x ", base);
1953                         bios = 2;
1954                 }
1955 /*
1956  * There have been a couple of BIOS versions with different layouts
1957  * for the obvious ID strings. We look for the 2 most common ones and
1958  * hope that they cover all the cases...
1959  */
1960                 else if (probe_bios(bios_tab[bios], &s1, &switches)) {
1961                         printk("Found IN2000 BIOS at 0x%x ", (unsigned int) bios_tab[bios]);
1962
1963 /* Find out where the IO space is */
1964
1965                         x = switches & (SW_ADDR0 | SW_ADDR1);
1966                         base = base_tab[x];
1967
1968 /* Check for the IN2000 signature in IO space. */
1969
1970                         x = ~inb(base + IO_SWITCHES) & 0xff;
1971                         if (x != switches) {
1972                                 printk("Bad IO signature: %02x vs %02x.\n", x, switches);
1973                                 continue;
1974                         }
1975                 } else
1976                         continue;
1977
1978 /* OK. We have a base address for the IO ports - run a few safety checks */
1979
1980                 if (!(switches & SW_BIT7)) {    /* I _think_ all cards do this */
1981                         printk("There is no IN-2000 SCSI card at IOport 0x%03x!\n", base);
1982                         continue;
1983                 }
1984
1985 /* Let's assume any hardware version will work, although the driver
1986  * has only been tested on 0x21, 0x22, 0x25, 0x26, and 0x27. We'll
1987  * print out the rev number for reference later, but accept them all.
1988  */
1989
1990                 hrev = inb(base + IO_HARDWARE);
1991
1992                 /* Bit 2 tells us if interrupts are disabled */
1993                 if (switches & SW_DISINT) {
1994                         printk("The IN-2000 SCSI card at IOport 0x%03x ", base);
1995                         printk("is not configured for interrupt operation!\n");
1996                         printk("This driver requires an interrupt: cancelling detection.\n");
1997                         continue;
1998                 }
1999
2000 /* Ok. We accept that there's an IN2000 at ioaddr 'base'. Now
2001  * initialize it.
2002  */
2003
2004                 tpnt->proc_name = "in2000";
2005                 instance = scsi_register(tpnt, sizeof(struct IN2000_hostdata));
2006                 if (instance == NULL)
2007                         continue;
2008                 detect_count++;
2009                 hostdata = (struct IN2000_hostdata *) instance->hostdata;
2010                 instance->io_port = hostdata->io_base = base;
2011                 hostdata->dip_switch = switches;
2012                 hostdata->hrev = hrev;
2013
2014                 write1_io(0, IO_FIFO_WRITE);    /* clear fifo counter */
2015                 write1_io(0, IO_FIFO_READ);     /* start fifo out in read mode */
2016                 write1_io(0, IO_INTR_MASK);     /* allow all ints */
2017                 x = int_tab[(switches & (SW_INT0 | SW_INT1)) >> SW_INT_SHIFT];
2018                 if (request_irq(x, in2000_intr, IRQF_DISABLED, "in2000", instance)) {
2019                         printk("in2000_detect: Unable to allocate IRQ.\n");
2020                         detect_count--;
2021                         continue;
2022                 }
2023                 instance->irq = x;
2024                 instance->n_io_port = 13;
2025                 request_region(base, 13, "in2000");     /* lock in this IO space for our use */
2026
2027                 for (x = 0; x < 8; x++) {
2028                         hostdata->busy[x] = 0;
2029                         hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF);
2030                         hostdata->sync_stat[x] = SS_UNSET;      /* using default sync values */
2031 #ifdef PROC_STATISTICS
2032                         hostdata->cmd_cnt[x] = 0;
2033                         hostdata->disc_allowed_cnt[x] = 0;
2034                         hostdata->disc_done_cnt[x] = 0;
2035 #endif
2036                 }
2037                 hostdata->input_Q = NULL;
2038                 hostdata->selecting = NULL;
2039                 hostdata->connected = NULL;
2040                 hostdata->disconnected_Q = NULL;
2041                 hostdata->state = S_UNCONNECTED;
2042                 hostdata->fifo = FI_FIFO_UNUSED;
2043                 hostdata->level2 = L2_BASIC;
2044                 hostdata->disconnect = DIS_ADAPTIVE;
2045                 hostdata->args = DEBUG_DEFAULTS;
2046                 hostdata->incoming_ptr = 0;
2047                 hostdata->outgoing_len = 0;
2048                 hostdata->default_sx_per = DEFAULT_SX_PER;
2049
2050 /* Older BIOS's had a 'sync on/off' switch - use its setting */
2051
2052                 if (s1 == 0x41564f4e && (switches & SW_SYNC_DOS5))
2053                         hostdata->sync_off = 0x00;      /* sync defaults to on */
2054                 else
2055                         hostdata->sync_off = 0xff;      /* sync defaults to off */
2056
2057 #ifdef PROC_INTERFACE
2058                 hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS | PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP;
2059 #ifdef PROC_STATISTICS
2060                 hostdata->int_cnt = 0;
2061 #endif
2062 #endif
2063
2064                 if (check_setup_args("nosync", &val, buf))
2065                         hostdata->sync_off = val;
2066
2067                 if (check_setup_args("period", &val, buf))
2068                         hostdata->default_sx_per = sx_table[round_period((unsigned int) val)].period_ns;
2069
2070                 if (check_setup_args("disconnect", &val, buf)) {
2071                         if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS))
2072                                 hostdata->disconnect = val;
2073                         else
2074                                 hostdata->disconnect = DIS_ADAPTIVE;
2075                 }
2076
2077                 if (check_setup_args("noreset", &val, buf))
2078                         hostdata->args ^= A_NO_SCSI_RESET;
2079
2080                 if (check_setup_args("level2", &val, buf))
2081                         hostdata->level2 = val;
2082
2083                 if (check_setup_args("debug", &val, buf))
2084                         hostdata->args = (val & DB_MASK);
2085
2086 #ifdef PROC_INTERFACE
2087                 if (check_setup_args("proc", &val, buf))
2088                         hostdata->proc = val;
2089 #endif
2090
2091
2092                 /* FIXME: not strictly needed I think but the called code expects
2093                    to be locked */
2094                 spin_lock_irqsave(instance->host_lock, flags);
2095                 x = reset_hardware(instance, (hostdata->args & A_NO_SCSI_RESET) ? RESET_CARD : RESET_CARD_AND_BUS);
2096                 spin_unlock_irqrestore(instance->host_lock, flags);
2097
2098                 hostdata->microcode = read_3393(hostdata, WD_CDB_1);
2099                 if (x & 0x01) {
2100                         if (x & B_FLAG)
2101                                 hostdata->chip = C_WD33C93B;
2102                         else
2103                                 hostdata->chip = C_WD33C93A;
2104                 } else
2105                         hostdata->chip = C_WD33C93;
2106
2107                 printk("dip_switch=%02x irq=%d ioport=%02x floppy=%s sync/DOS5=%s ", (switches & 0x7f), instance->irq, hostdata->io_base, (switches & SW_FLOPPY) ? "Yes" : "No", (switches & SW_SYNC_DOS5) ? "Yes" : "No");
2108                 printk("hardware_ver=%02x chip=%s microcode=%02x\n", hrev, (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip == C_WD33C93A) ? "WD33c93A" : (hostdata->chip == C_WD33C93B) ? "WD33c93B" : "unknown", hostdata->microcode);
2109 #ifdef DEBUGGING_ON
2110                 printk("setup_args = ");
2111                 for (x = 0; x < MAX_SETUP_ARGS; x++)
2112                         printk("%s,", setup_args[x]);
2113                 printk("\n");
2114 #endif
2115                 if (hostdata->sync_off == 0xff)
2116                         printk("Sync-transfer DISABLED on all devices: ENABLE from command-line\n");
2117                 printk("IN2000 driver version %s - %s\n", IN2000_VERSION, IN2000_DATE);
2118         }
2119
2120         return detect_count;
2121 }
2122
2123 static int in2000_release(struct Scsi_Host *shost)
2124 {
2125         if (shost->irq)
2126                 free_irq(shost->irq, shost);
2127         if (shost->io_port && shost->n_io_port)
2128                 release_region(shost->io_port, shost->n_io_port);
2129         return 0;
2130 }
2131
2132 /* NOTE: I lifted this function straight out of the old driver,
2133  *       and have not tested it. Presumably it does what it's
2134  *       supposed to do...
2135  */
2136
2137 static int in2000_biosparam(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int *iinfo)
2138 {
2139         int size;
2140
2141         size = capacity;
2142         iinfo[0] = 64;
2143         iinfo[1] = 32;
2144         iinfo[2] = size >> 11;
2145
2146 /* This should approximate the large drive handling that the DOS ASPI manager
2147    uses.  Drives very near the boundaries may not be handled correctly (i.e.
2148    near 2.0 Gb and 4.0 Gb) */
2149
2150         if (iinfo[2] > 1024) {
2151                 iinfo[0] = 64;
2152                 iinfo[1] = 63;
2153                 iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]);
2154         }
2155         if (iinfo[2] > 1024) {
2156                 iinfo[0] = 128;
2157                 iinfo[1] = 63;
2158                 iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]);
2159         }
2160         if (iinfo[2] > 1024) {
2161                 iinfo[0] = 255;
2162                 iinfo[1] = 63;
2163                 iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]);
2164         }
2165         return 0;
2166 }
2167
2168
2169 static int in2000_write_info(struct Scsi_Host *instance, char *buf, int len)
2170 {
2171
2172 #ifdef PROC_INTERFACE
2173
2174         char *bp;
2175         struct IN2000_hostdata *hd;
2176         int x, i;
2177
2178         hd = (struct IN2000_hostdata *) instance->hostdata;
2179
2180         buf[len] = '\0';
2181         bp = buf;
2182         if (!strncmp(bp, "debug:", 6)) {
2183                 bp += 6;
2184                 hd->args = simple_strtoul(bp, NULL, 0) & DB_MASK;
2185         } else if (!strncmp(bp, "disconnect:", 11)) {
2186                 bp += 11;
2187                 x = simple_strtoul(bp, NULL, 0);
2188                 if (x < DIS_NEVER || x > DIS_ALWAYS)
2189                         x = DIS_ADAPTIVE;
2190                 hd->disconnect = x;
2191         } else if (!strncmp(bp, "period:", 7)) {
2192                 bp += 7;
2193                 x = simple_strtoul(bp, NULL, 0);
2194                 hd->default_sx_per = sx_table[round_period((unsigned int) x)].period_ns;
2195         } else if (!strncmp(bp, "resync:", 7)) {
2196                 bp += 7;
2197                 x = simple_strtoul(bp, NULL, 0);
2198                 for (i = 0; i < 7; i++)
2199                         if (x & (1 << i))
2200                                 hd->sync_stat[i] = SS_UNSET;
2201         } else if (!strncmp(bp, "proc:", 5)) {
2202                 bp += 5;
2203                 hd->proc = simple_strtoul(bp, NULL, 0);
2204         } else if (!strncmp(bp, "level2:", 7)) {
2205                 bp += 7;
2206                 hd->level2 = simple_strtoul(bp, NULL, 0);
2207         }
2208 #endif
2209         return len;
2210 }
2211
2212 static int in2000_show_info(struct seq_file *m, struct Scsi_Host *instance)
2213 {
2214
2215 #ifdef PROC_INTERFACE
2216         unsigned long flags;
2217         struct IN2000_hostdata *hd;
2218         Scsi_Cmnd *cmd;
2219         int x;
2220
2221         hd = (struct IN2000_hostdata *) instance->hostdata;
2222
2223         spin_lock_irqsave(instance->host_lock, flags);
2224         if (hd->proc & PR_VERSION)
2225                 seq_printf(m, "\nVersion %s - %s.", IN2000_VERSION, IN2000_DATE);
2226
2227         if (hd->proc & PR_INFO) {
2228                 seq_printf(m, "\ndip_switch=%02x: irq=%d io=%02x floppy=%s sync/DOS5=%s", (hd->dip_switch & 0x7f), instance->irq, hd->io_base, (hd->dip_switch & 0x40) ? "Yes" : "No", (hd->dip_switch & 0x20) ? "Yes" : "No");
2229                 seq_printf(m, "\nsync_xfer[] =       ");
2230                 for (x = 0; x < 7; x++)
2231                         seq_printf(m, "\t%02x", hd->sync_xfer[x]);
2232                 seq_printf(m, "\nsync_stat[] =       ");
2233                 for (x = 0; x < 7; x++)
2234                         seq_printf(m, "\t%02x", hd->sync_stat[x]);
2235         }
2236 #ifdef PROC_STATISTICS
2237         if (hd->proc & PR_STATISTICS) {
2238                 seq_printf(m, "\ncommands issued:    ");
2239                 for (x = 0; x < 7; x++)
2240                         seq_printf(m, "\t%ld", hd->cmd_cnt[x]);
2241                 seq_printf(m, "\ndisconnects allowed:");
2242                 for (x = 0; x < 7; x++)
2243                         seq_printf(m, "\t%ld", hd->disc_allowed_cnt[x]);
2244                 seq_printf(m, "\ndisconnects done:   ");
2245                 for (x = 0; x < 7; x++)
2246                         seq_printf(m, "\t%ld", hd->disc_done_cnt[x]);
2247                 seq_printf(m, "\ninterrupts:      \t%ld", hd->int_cnt);
2248         }
2249 #endif
2250         if (hd->proc & PR_CONNECTED) {
2251                 seq_printf(m, "\nconnected:     ");
2252                 if (hd->connected) {
2253                         cmd = (Scsi_Cmnd *) hd->connected;
2254                         seq_printf(m, " %d:%d(%02x)", cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2255                 }
2256         }
2257         if (hd->proc & PR_INPUTQ) {
2258                 seq_printf(m, "\ninput_Q:       ");
2259                 cmd = (Scsi_Cmnd *) hd->input_Q;
2260                 while (cmd) {
2261                         seq_printf(m, " %d:%d(%02x)", cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2262                         cmd = (Scsi_Cmnd *) cmd->host_scribble;
2263                 }
2264         }
2265         if (hd->proc & PR_DISCQ) {
2266                 seq_printf(m, "\ndisconnected_Q:");
2267                 cmd = (Scsi_Cmnd *) hd->disconnected_Q;
2268                 while (cmd) {
2269                         seq_printf(m, " %d:%d(%02x)", cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2270                         cmd = (Scsi_Cmnd *) cmd->host_scribble;
2271                 }
2272         }
2273         if (hd->proc & PR_TEST) {
2274                 ;               /* insert your own custom function here */
2275         }
2276         seq_printf(m, "\n");
2277         spin_unlock_irqrestore(instance->host_lock, flags);
2278 #endif                          /* PROC_INTERFACE */
2279         return 0;
2280 }
2281
2282 MODULE_LICENSE("GPL");
2283
2284
2285 static struct scsi_host_template driver_template = {
2286         .proc_name                      = "in2000",
2287         .write_info                     = in2000_write_info,
2288         .show_info                      = in2000_show_info,
2289         .name                           = "Always IN2000",
2290         .detect                         = in2000_detect, 
2291         .release                        = in2000_release,
2292         .queuecommand                   = in2000_queuecommand,
2293         .eh_abort_handler               = in2000_abort,
2294         .eh_bus_reset_handler           = in2000_bus_reset,
2295         .bios_param                     = in2000_biosparam, 
2296         .can_queue                      = IN2000_CAN_Q,
2297         .this_id                        = IN2000_HOST_ID,
2298         .sg_tablesize                   = IN2000_SG,
2299         .cmd_per_lun                    = IN2000_CPL,
2300         .use_clustering                 = DISABLE_CLUSTERING,
2301 };
2302 #include "scsi_module.c"