[SCSI] hpsa: do not give up retry of driver cmds after only 3 retries
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71         HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79                 "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83         "Use 'simple mode' rather than 'performant mode'");
84
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
102         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
103                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
104         {0,}
105 };
106
107 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
108
109 /*  board_id = Subsystem Device ID & Vendor ID
110  *  product = Marketing Name for the board
111  *  access = Address of the struct of function pointers
112  */
113 static struct board_type products[] = {
114         {0x3241103C, "Smart Array P212", &SA5_access},
115         {0x3243103C, "Smart Array P410", &SA5_access},
116         {0x3245103C, "Smart Array P410i", &SA5_access},
117         {0x3247103C, "Smart Array P411", &SA5_access},
118         {0x3249103C, "Smart Array P812", &SA5_access},
119         {0x324a103C, "Smart Array P712m", &SA5_access},
120         {0x324b103C, "Smart Array P711m", &SA5_access},
121         {0x3350103C, "Smart Array", &SA5_access},
122         {0x3351103C, "Smart Array", &SA5_access},
123         {0x3352103C, "Smart Array", &SA5_access},
124         {0x3353103C, "Smart Array", &SA5_access},
125         {0x3354103C, "Smart Array", &SA5_access},
126         {0x3355103C, "Smart Array", &SA5_access},
127         {0x3356103C, "Smart Array", &SA5_access},
128         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
129 };
130
131 static int number_of_controllers;
132
133 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
134 static spinlock_t lockup_detector_lock;
135 static struct task_struct *hpsa_lockup_detector;
136
137 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
138 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
139 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
140 static void start_io(struct ctlr_info *h);
141
142 #ifdef CONFIG_COMPAT
143 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
144 #endif
145
146 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
147 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
148 static struct CommandList *cmd_alloc(struct ctlr_info *h);
149 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
150 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
151         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
152         int cmd_type);
153
154 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
155 static void hpsa_scan_start(struct Scsi_Host *);
156 static int hpsa_scan_finished(struct Scsi_Host *sh,
157         unsigned long elapsed_time);
158 static int hpsa_change_queue_depth(struct scsi_device *sdev,
159         int qdepth, int reason);
160
161 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
162 static int hpsa_slave_alloc(struct scsi_device *sdev);
163 static void hpsa_slave_destroy(struct scsi_device *sdev);
164
165 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
166 static int check_for_unit_attention(struct ctlr_info *h,
167         struct CommandList *c);
168 static void check_ioctl_unit_attention(struct ctlr_info *h,
169         struct CommandList *c);
170 /* performant mode helper functions */
171 static void calc_bucket_map(int *bucket, int num_buckets,
172         int nsgs, int *bucket_map);
173 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
174 static inline u32 next_command(struct ctlr_info *h);
175 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
176         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
177         u64 *cfg_offset);
178 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
179         unsigned long *memory_bar);
180 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
181 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
182         void __iomem *vaddr, int wait_for_ready);
183 #define BOARD_NOT_READY 0
184 #define BOARD_READY 1
185
186 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
187 {
188         unsigned long *priv = shost_priv(sdev->host);
189         return (struct ctlr_info *) *priv;
190 }
191
192 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
193 {
194         unsigned long *priv = shost_priv(sh);
195         return (struct ctlr_info *) *priv;
196 }
197
198 static int check_for_unit_attention(struct ctlr_info *h,
199         struct CommandList *c)
200 {
201         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
202                 return 0;
203
204         switch (c->err_info->SenseInfo[12]) {
205         case STATE_CHANGED:
206                 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
207                         "detected, command retried\n", h->ctlr);
208                 break;
209         case LUN_FAILED:
210                 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
211                         "detected, action required\n", h->ctlr);
212                 break;
213         case REPORT_LUNS_CHANGED:
214                 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
215                         "changed, action required\n", h->ctlr);
216         /*
217          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
218          * target (array) devices.
219          */
220                 break;
221         case POWER_OR_RESET:
222                 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
223                         "or device reset detected\n", h->ctlr);
224                 break;
225         case UNIT_ATTENTION_CLEARED:
226                 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
227                     "cleared by another initiator\n", h->ctlr);
228                 break;
229         default:
230                 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
231                         "unit attention detected\n", h->ctlr);
232                 break;
233         }
234         return 1;
235 }
236
237 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
238 {
239         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
240                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
241                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
242                 return 0;
243         dev_warn(&h->pdev->dev, HPSA "device busy");
244         return 1;
245 }
246
247 static ssize_t host_store_rescan(struct device *dev,
248                                  struct device_attribute *attr,
249                                  const char *buf, size_t count)
250 {
251         struct ctlr_info *h;
252         struct Scsi_Host *shost = class_to_shost(dev);
253         h = shost_to_hba(shost);
254         hpsa_scan_start(h->scsi_host);
255         return count;
256 }
257
258 static ssize_t host_show_firmware_revision(struct device *dev,
259              struct device_attribute *attr, char *buf)
260 {
261         struct ctlr_info *h;
262         struct Scsi_Host *shost = class_to_shost(dev);
263         unsigned char *fwrev;
264
265         h = shost_to_hba(shost);
266         if (!h->hba_inquiry_data)
267                 return 0;
268         fwrev = &h->hba_inquiry_data[32];
269         return snprintf(buf, 20, "%c%c%c%c\n",
270                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
271 }
272
273 static ssize_t host_show_commands_outstanding(struct device *dev,
274              struct device_attribute *attr, char *buf)
275 {
276         struct Scsi_Host *shost = class_to_shost(dev);
277         struct ctlr_info *h = shost_to_hba(shost);
278
279         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
280 }
281
282 static ssize_t host_show_transport_mode(struct device *dev,
283         struct device_attribute *attr, char *buf)
284 {
285         struct ctlr_info *h;
286         struct Scsi_Host *shost = class_to_shost(dev);
287
288         h = shost_to_hba(shost);
289         return snprintf(buf, 20, "%s\n",
290                 h->transMethod & CFGTBL_Trans_Performant ?
291                         "performant" : "simple");
292 }
293
294 /* List of controllers which cannot be hard reset on kexec with reset_devices */
295 static u32 unresettable_controller[] = {
296         0x324a103C, /* Smart Array P712m */
297         0x324b103C, /* SmartArray P711m */
298         0x3223103C, /* Smart Array P800 */
299         0x3234103C, /* Smart Array P400 */
300         0x3235103C, /* Smart Array P400i */
301         0x3211103C, /* Smart Array E200i */
302         0x3212103C, /* Smart Array E200 */
303         0x3213103C, /* Smart Array E200i */
304         0x3214103C, /* Smart Array E200i */
305         0x3215103C, /* Smart Array E200i */
306         0x3237103C, /* Smart Array E500 */
307         0x323D103C, /* Smart Array P700m */
308         0x40800E11, /* Smart Array 5i */
309         0x409C0E11, /* Smart Array 6400 */
310         0x409D0E11, /* Smart Array 6400 EM */
311         0x40700E11, /* Smart Array 5300 */
312         0x40820E11, /* Smart Array 532 */
313         0x40830E11, /* Smart Array 5312 */
314         0x409A0E11, /* Smart Array 641 */
315         0x409B0E11, /* Smart Array 642 */
316         0x40910E11, /* Smart Array 6i */
317 };
318
319 /* List of controllers which cannot even be soft reset */
320 static u32 soft_unresettable_controller[] = {
321         0x40800E11, /* Smart Array 5i */
322         0x40700E11, /* Smart Array 5300 */
323         0x40820E11, /* Smart Array 532 */
324         0x40830E11, /* Smart Array 5312 */
325         0x409A0E11, /* Smart Array 641 */
326         0x409B0E11, /* Smart Array 642 */
327         0x40910E11, /* Smart Array 6i */
328         /* Exclude 640x boards.  These are two pci devices in one slot
329          * which share a battery backed cache module.  One controls the
330          * cache, the other accesses the cache through the one that controls
331          * it.  If we reset the one controlling the cache, the other will
332          * likely not be happy.  Just forbid resetting this conjoined mess.
333          * The 640x isn't really supported by hpsa anyway.
334          */
335         0x409C0E11, /* Smart Array 6400 */
336         0x409D0E11, /* Smart Array 6400 EM */
337 };
338
339 static int ctlr_is_hard_resettable(u32 board_id)
340 {
341         int i;
342
343         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
344                 if (unresettable_controller[i] == board_id)
345                         return 0;
346         return 1;
347 }
348
349 static int ctlr_is_soft_resettable(u32 board_id)
350 {
351         int i;
352
353         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
354                 if (soft_unresettable_controller[i] == board_id)
355                         return 0;
356         return 1;
357 }
358
359 static int ctlr_is_resettable(u32 board_id)
360 {
361         return ctlr_is_hard_resettable(board_id) ||
362                 ctlr_is_soft_resettable(board_id);
363 }
364
365 static ssize_t host_show_resettable(struct device *dev,
366         struct device_attribute *attr, char *buf)
367 {
368         struct ctlr_info *h;
369         struct Scsi_Host *shost = class_to_shost(dev);
370
371         h = shost_to_hba(shost);
372         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
373 }
374
375 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
376 {
377         return (scsi3addr[3] & 0xC0) == 0x40;
378 }
379
380 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
381         "UNKNOWN"
382 };
383 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
384
385 static ssize_t raid_level_show(struct device *dev,
386              struct device_attribute *attr, char *buf)
387 {
388         ssize_t l = 0;
389         unsigned char rlevel;
390         struct ctlr_info *h;
391         struct scsi_device *sdev;
392         struct hpsa_scsi_dev_t *hdev;
393         unsigned long flags;
394
395         sdev = to_scsi_device(dev);
396         h = sdev_to_hba(sdev);
397         spin_lock_irqsave(&h->lock, flags);
398         hdev = sdev->hostdata;
399         if (!hdev) {
400                 spin_unlock_irqrestore(&h->lock, flags);
401                 return -ENODEV;
402         }
403
404         /* Is this even a logical drive? */
405         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
406                 spin_unlock_irqrestore(&h->lock, flags);
407                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
408                 return l;
409         }
410
411         rlevel = hdev->raid_level;
412         spin_unlock_irqrestore(&h->lock, flags);
413         if (rlevel > RAID_UNKNOWN)
414                 rlevel = RAID_UNKNOWN;
415         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
416         return l;
417 }
418
419 static ssize_t lunid_show(struct device *dev,
420              struct device_attribute *attr, char *buf)
421 {
422         struct ctlr_info *h;
423         struct scsi_device *sdev;
424         struct hpsa_scsi_dev_t *hdev;
425         unsigned long flags;
426         unsigned char lunid[8];
427
428         sdev = to_scsi_device(dev);
429         h = sdev_to_hba(sdev);
430         spin_lock_irqsave(&h->lock, flags);
431         hdev = sdev->hostdata;
432         if (!hdev) {
433                 spin_unlock_irqrestore(&h->lock, flags);
434                 return -ENODEV;
435         }
436         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
437         spin_unlock_irqrestore(&h->lock, flags);
438         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
439                 lunid[0], lunid[1], lunid[2], lunid[3],
440                 lunid[4], lunid[5], lunid[6], lunid[7]);
441 }
442
443 static ssize_t unique_id_show(struct device *dev,
444              struct device_attribute *attr, char *buf)
445 {
446         struct ctlr_info *h;
447         struct scsi_device *sdev;
448         struct hpsa_scsi_dev_t *hdev;
449         unsigned long flags;
450         unsigned char sn[16];
451
452         sdev = to_scsi_device(dev);
453         h = sdev_to_hba(sdev);
454         spin_lock_irqsave(&h->lock, flags);
455         hdev = sdev->hostdata;
456         if (!hdev) {
457                 spin_unlock_irqrestore(&h->lock, flags);
458                 return -ENODEV;
459         }
460         memcpy(sn, hdev->device_id, sizeof(sn));
461         spin_unlock_irqrestore(&h->lock, flags);
462         return snprintf(buf, 16 * 2 + 2,
463                         "%02X%02X%02X%02X%02X%02X%02X%02X"
464                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
465                         sn[0], sn[1], sn[2], sn[3],
466                         sn[4], sn[5], sn[6], sn[7],
467                         sn[8], sn[9], sn[10], sn[11],
468                         sn[12], sn[13], sn[14], sn[15]);
469 }
470
471 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
472 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
473 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
474 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
475 static DEVICE_ATTR(firmware_revision, S_IRUGO,
476         host_show_firmware_revision, NULL);
477 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
478         host_show_commands_outstanding, NULL);
479 static DEVICE_ATTR(transport_mode, S_IRUGO,
480         host_show_transport_mode, NULL);
481 static DEVICE_ATTR(resettable, S_IRUGO,
482         host_show_resettable, NULL);
483
484 static struct device_attribute *hpsa_sdev_attrs[] = {
485         &dev_attr_raid_level,
486         &dev_attr_lunid,
487         &dev_attr_unique_id,
488         NULL,
489 };
490
491 static struct device_attribute *hpsa_shost_attrs[] = {
492         &dev_attr_rescan,
493         &dev_attr_firmware_revision,
494         &dev_attr_commands_outstanding,
495         &dev_attr_transport_mode,
496         &dev_attr_resettable,
497         NULL,
498 };
499
500 static struct scsi_host_template hpsa_driver_template = {
501         .module                 = THIS_MODULE,
502         .name                   = HPSA,
503         .proc_name              = HPSA,
504         .queuecommand           = hpsa_scsi_queue_command,
505         .scan_start             = hpsa_scan_start,
506         .scan_finished          = hpsa_scan_finished,
507         .change_queue_depth     = hpsa_change_queue_depth,
508         .this_id                = -1,
509         .use_clustering         = ENABLE_CLUSTERING,
510         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
511         .ioctl                  = hpsa_ioctl,
512         .slave_alloc            = hpsa_slave_alloc,
513         .slave_destroy          = hpsa_slave_destroy,
514 #ifdef CONFIG_COMPAT
515         .compat_ioctl           = hpsa_compat_ioctl,
516 #endif
517         .sdev_attrs = hpsa_sdev_attrs,
518         .shost_attrs = hpsa_shost_attrs,
519         .max_sectors = 8192,
520 };
521
522
523 /* Enqueuing and dequeuing functions for cmdlists. */
524 static inline void addQ(struct list_head *list, struct CommandList *c)
525 {
526         list_add_tail(&c->list, list);
527 }
528
529 static inline u32 next_command(struct ctlr_info *h)
530 {
531         u32 a;
532
533         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
534                 return h->access.command_completed(h);
535
536         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
537                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
538                 (h->reply_pool_head)++;
539                 h->commands_outstanding--;
540         } else {
541                 a = FIFO_EMPTY;
542         }
543         /* Check for wraparound */
544         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
545                 h->reply_pool_head = h->reply_pool;
546                 h->reply_pool_wraparound ^= 1;
547         }
548         return a;
549 }
550
551 /* set_performant_mode: Modify the tag for cciss performant
552  * set bit 0 for pull model, bits 3-1 for block fetch
553  * register number
554  */
555 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
556 {
557         if (likely(h->transMethod & CFGTBL_Trans_Performant))
558                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
559 }
560
561 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
562         struct CommandList *c)
563 {
564         unsigned long flags;
565
566         set_performant_mode(h, c);
567         spin_lock_irqsave(&h->lock, flags);
568         addQ(&h->reqQ, c);
569         h->Qdepth++;
570         start_io(h);
571         spin_unlock_irqrestore(&h->lock, flags);
572 }
573
574 static inline void removeQ(struct CommandList *c)
575 {
576         if (WARN_ON(list_empty(&c->list)))
577                 return;
578         list_del_init(&c->list);
579 }
580
581 static inline int is_hba_lunid(unsigned char scsi3addr[])
582 {
583         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
584 }
585
586 static inline int is_scsi_rev_5(struct ctlr_info *h)
587 {
588         if (!h->hba_inquiry_data)
589                 return 0;
590         if ((h->hba_inquiry_data[2] & 0x07) == 5)
591                 return 1;
592         return 0;
593 }
594
595 static int hpsa_find_target_lun(struct ctlr_info *h,
596         unsigned char scsi3addr[], int bus, int *target, int *lun)
597 {
598         /* finds an unused bus, target, lun for a new physical device
599          * assumes h->devlock is held
600          */
601         int i, found = 0;
602         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
603
604         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
605
606         for (i = 0; i < h->ndevices; i++) {
607                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
608                         __set_bit(h->dev[i]->target, lun_taken);
609         }
610
611         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
612         if (i < HPSA_MAX_DEVICES) {
613                 /* *bus = 1; */
614                 *target = i;
615                 *lun = 0;
616                 found = 1;
617         }
618         return !found;
619 }
620
621 /* Add an entry into h->dev[] array. */
622 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
623                 struct hpsa_scsi_dev_t *device,
624                 struct hpsa_scsi_dev_t *added[], int *nadded)
625 {
626         /* assumes h->devlock is held */
627         int n = h->ndevices;
628         int i;
629         unsigned char addr1[8], addr2[8];
630         struct hpsa_scsi_dev_t *sd;
631
632         if (n >= HPSA_MAX_DEVICES) {
633                 dev_err(&h->pdev->dev, "too many devices, some will be "
634                         "inaccessible.\n");
635                 return -1;
636         }
637
638         /* physical devices do not have lun or target assigned until now. */
639         if (device->lun != -1)
640                 /* Logical device, lun is already assigned. */
641                 goto lun_assigned;
642
643         /* If this device a non-zero lun of a multi-lun device
644          * byte 4 of the 8-byte LUN addr will contain the logical
645          * unit no, zero otherise.
646          */
647         if (device->scsi3addr[4] == 0) {
648                 /* This is not a non-zero lun of a multi-lun device */
649                 if (hpsa_find_target_lun(h, device->scsi3addr,
650                         device->bus, &device->target, &device->lun) != 0)
651                         return -1;
652                 goto lun_assigned;
653         }
654
655         /* This is a non-zero lun of a multi-lun device.
656          * Search through our list and find the device which
657          * has the same 8 byte LUN address, excepting byte 4.
658          * Assign the same bus and target for this new LUN.
659          * Use the logical unit number from the firmware.
660          */
661         memcpy(addr1, device->scsi3addr, 8);
662         addr1[4] = 0;
663         for (i = 0; i < n; i++) {
664                 sd = h->dev[i];
665                 memcpy(addr2, sd->scsi3addr, 8);
666                 addr2[4] = 0;
667                 /* differ only in byte 4? */
668                 if (memcmp(addr1, addr2, 8) == 0) {
669                         device->bus = sd->bus;
670                         device->target = sd->target;
671                         device->lun = device->scsi3addr[4];
672                         break;
673                 }
674         }
675         if (device->lun == -1) {
676                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
677                         " suspect firmware bug or unsupported hardware "
678                         "configuration.\n");
679                         return -1;
680         }
681
682 lun_assigned:
683
684         h->dev[n] = device;
685         h->ndevices++;
686         added[*nadded] = device;
687         (*nadded)++;
688
689         /* initially, (before registering with scsi layer) we don't
690          * know our hostno and we don't want to print anything first
691          * time anyway (the scsi layer's inquiries will show that info)
692          */
693         /* if (hostno != -1) */
694                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
695                         scsi_device_type(device->devtype), hostno,
696                         device->bus, device->target, device->lun);
697         return 0;
698 }
699
700 /* Update an entry in h->dev[] array. */
701 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
702         int entry, struct hpsa_scsi_dev_t *new_entry)
703 {
704         /* assumes h->devlock is held */
705         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
706
707         /* Raid level changed. */
708         h->dev[entry]->raid_level = new_entry->raid_level;
709         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
710                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
711                 new_entry->target, new_entry->lun);
712 }
713
714 /* Replace an entry from h->dev[] array. */
715 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
716         int entry, struct hpsa_scsi_dev_t *new_entry,
717         struct hpsa_scsi_dev_t *added[], int *nadded,
718         struct hpsa_scsi_dev_t *removed[], int *nremoved)
719 {
720         /* assumes h->devlock is held */
721         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
722         removed[*nremoved] = h->dev[entry];
723         (*nremoved)++;
724
725         /*
726          * New physical devices won't have target/lun assigned yet
727          * so we need to preserve the values in the slot we are replacing.
728          */
729         if (new_entry->target == -1) {
730                 new_entry->target = h->dev[entry]->target;
731                 new_entry->lun = h->dev[entry]->lun;
732         }
733
734         h->dev[entry] = new_entry;
735         added[*nadded] = new_entry;
736         (*nadded)++;
737         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
738                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
739                         new_entry->target, new_entry->lun);
740 }
741
742 /* Remove an entry from h->dev[] array. */
743 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
744         struct hpsa_scsi_dev_t *removed[], int *nremoved)
745 {
746         /* assumes h->devlock is held */
747         int i;
748         struct hpsa_scsi_dev_t *sd;
749
750         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
751
752         sd = h->dev[entry];
753         removed[*nremoved] = h->dev[entry];
754         (*nremoved)++;
755
756         for (i = entry; i < h->ndevices-1; i++)
757                 h->dev[i] = h->dev[i+1];
758         h->ndevices--;
759         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
760                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
761                 sd->lun);
762 }
763
764 #define SCSI3ADDR_EQ(a, b) ( \
765         (a)[7] == (b)[7] && \
766         (a)[6] == (b)[6] && \
767         (a)[5] == (b)[5] && \
768         (a)[4] == (b)[4] && \
769         (a)[3] == (b)[3] && \
770         (a)[2] == (b)[2] && \
771         (a)[1] == (b)[1] && \
772         (a)[0] == (b)[0])
773
774 static void fixup_botched_add(struct ctlr_info *h,
775         struct hpsa_scsi_dev_t *added)
776 {
777         /* called when scsi_add_device fails in order to re-adjust
778          * h->dev[] to match the mid layer's view.
779          */
780         unsigned long flags;
781         int i, j;
782
783         spin_lock_irqsave(&h->lock, flags);
784         for (i = 0; i < h->ndevices; i++) {
785                 if (h->dev[i] == added) {
786                         for (j = i; j < h->ndevices-1; j++)
787                                 h->dev[j] = h->dev[j+1];
788                         h->ndevices--;
789                         break;
790                 }
791         }
792         spin_unlock_irqrestore(&h->lock, flags);
793         kfree(added);
794 }
795
796 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
797         struct hpsa_scsi_dev_t *dev2)
798 {
799         /* we compare everything except lun and target as these
800          * are not yet assigned.  Compare parts likely
801          * to differ first
802          */
803         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
804                 sizeof(dev1->scsi3addr)) != 0)
805                 return 0;
806         if (memcmp(dev1->device_id, dev2->device_id,
807                 sizeof(dev1->device_id)) != 0)
808                 return 0;
809         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
810                 return 0;
811         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
812                 return 0;
813         if (dev1->devtype != dev2->devtype)
814                 return 0;
815         if (dev1->bus != dev2->bus)
816                 return 0;
817         return 1;
818 }
819
820 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
821         struct hpsa_scsi_dev_t *dev2)
822 {
823         /* Device attributes that can change, but don't mean
824          * that the device is a different device, nor that the OS
825          * needs to be told anything about the change.
826          */
827         if (dev1->raid_level != dev2->raid_level)
828                 return 1;
829         return 0;
830 }
831
832 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
833  * and return needle location in *index.  If scsi3addr matches, but not
834  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
835  * location in *index.
836  * In the case of a minor device attribute change, such as RAID level, just
837  * return DEVICE_UPDATED, along with the updated device's location in index.
838  * If needle not found, return DEVICE_NOT_FOUND.
839  */
840 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
841         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
842         int *index)
843 {
844         int i;
845 #define DEVICE_NOT_FOUND 0
846 #define DEVICE_CHANGED 1
847 #define DEVICE_SAME 2
848 #define DEVICE_UPDATED 3
849         for (i = 0; i < haystack_size; i++) {
850                 if (haystack[i] == NULL) /* previously removed. */
851                         continue;
852                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
853                         *index = i;
854                         if (device_is_the_same(needle, haystack[i])) {
855                                 if (device_updated(needle, haystack[i]))
856                                         return DEVICE_UPDATED;
857                                 return DEVICE_SAME;
858                         } else {
859                                 return DEVICE_CHANGED;
860                         }
861                 }
862         }
863         *index = -1;
864         return DEVICE_NOT_FOUND;
865 }
866
867 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
868         struct hpsa_scsi_dev_t *sd[], int nsds)
869 {
870         /* sd contains scsi3 addresses and devtypes, and inquiry
871          * data.  This function takes what's in sd to be the current
872          * reality and updates h->dev[] to reflect that reality.
873          */
874         int i, entry, device_change, changes = 0;
875         struct hpsa_scsi_dev_t *csd;
876         unsigned long flags;
877         struct hpsa_scsi_dev_t **added, **removed;
878         int nadded, nremoved;
879         struct Scsi_Host *sh = NULL;
880
881         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
882         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
883
884         if (!added || !removed) {
885                 dev_warn(&h->pdev->dev, "out of memory in "
886                         "adjust_hpsa_scsi_table\n");
887                 goto free_and_out;
888         }
889
890         spin_lock_irqsave(&h->devlock, flags);
891
892         /* find any devices in h->dev[] that are not in
893          * sd[] and remove them from h->dev[], and for any
894          * devices which have changed, remove the old device
895          * info and add the new device info.
896          * If minor device attributes change, just update
897          * the existing device structure.
898          */
899         i = 0;
900         nremoved = 0;
901         nadded = 0;
902         while (i < h->ndevices) {
903                 csd = h->dev[i];
904                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
905                 if (device_change == DEVICE_NOT_FOUND) {
906                         changes++;
907                         hpsa_scsi_remove_entry(h, hostno, i,
908                                 removed, &nremoved);
909                         continue; /* remove ^^^, hence i not incremented */
910                 } else if (device_change == DEVICE_CHANGED) {
911                         changes++;
912                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
913                                 added, &nadded, removed, &nremoved);
914                         /* Set it to NULL to prevent it from being freed
915                          * at the bottom of hpsa_update_scsi_devices()
916                          */
917                         sd[entry] = NULL;
918                 } else if (device_change == DEVICE_UPDATED) {
919                         hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
920                 }
921                 i++;
922         }
923
924         /* Now, make sure every device listed in sd[] is also
925          * listed in h->dev[], adding them if they aren't found
926          */
927
928         for (i = 0; i < nsds; i++) {
929                 if (!sd[i]) /* if already added above. */
930                         continue;
931                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
932                                         h->ndevices, &entry);
933                 if (device_change == DEVICE_NOT_FOUND) {
934                         changes++;
935                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
936                                 added, &nadded) != 0)
937                                 break;
938                         sd[i] = NULL; /* prevent from being freed later. */
939                 } else if (device_change == DEVICE_CHANGED) {
940                         /* should never happen... */
941                         changes++;
942                         dev_warn(&h->pdev->dev,
943                                 "device unexpectedly changed.\n");
944                         /* but if it does happen, we just ignore that device */
945                 }
946         }
947         spin_unlock_irqrestore(&h->devlock, flags);
948
949         /* Don't notify scsi mid layer of any changes the first time through
950          * (or if there are no changes) scsi_scan_host will do it later the
951          * first time through.
952          */
953         if (hostno == -1 || !changes)
954                 goto free_and_out;
955
956         sh = h->scsi_host;
957         /* Notify scsi mid layer of any removed devices */
958         for (i = 0; i < nremoved; i++) {
959                 struct scsi_device *sdev =
960                         scsi_device_lookup(sh, removed[i]->bus,
961                                 removed[i]->target, removed[i]->lun);
962                 if (sdev != NULL) {
963                         scsi_remove_device(sdev);
964                         scsi_device_put(sdev);
965                 } else {
966                         /* We don't expect to get here.
967                          * future cmds to this device will get selection
968                          * timeout as if the device was gone.
969                          */
970                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
971                                 " for removal.", hostno, removed[i]->bus,
972                                 removed[i]->target, removed[i]->lun);
973                 }
974                 kfree(removed[i]);
975                 removed[i] = NULL;
976         }
977
978         /* Notify scsi mid layer of any added devices */
979         for (i = 0; i < nadded; i++) {
980                 if (scsi_add_device(sh, added[i]->bus,
981                         added[i]->target, added[i]->lun) == 0)
982                         continue;
983                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
984                         "device not added.\n", hostno, added[i]->bus,
985                         added[i]->target, added[i]->lun);
986                 /* now we have to remove it from h->dev,
987                  * since it didn't get added to scsi mid layer
988                  */
989                 fixup_botched_add(h, added[i]);
990         }
991
992 free_and_out:
993         kfree(added);
994         kfree(removed);
995 }
996
997 /*
998  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
999  * Assume's h->devlock is held.
1000  */
1001 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1002         int bus, int target, int lun)
1003 {
1004         int i;
1005         struct hpsa_scsi_dev_t *sd;
1006
1007         for (i = 0; i < h->ndevices; i++) {
1008                 sd = h->dev[i];
1009                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1010                         return sd;
1011         }
1012         return NULL;
1013 }
1014
1015 /* link sdev->hostdata to our per-device structure. */
1016 static int hpsa_slave_alloc(struct scsi_device *sdev)
1017 {
1018         struct hpsa_scsi_dev_t *sd;
1019         unsigned long flags;
1020         struct ctlr_info *h;
1021
1022         h = sdev_to_hba(sdev);
1023         spin_lock_irqsave(&h->devlock, flags);
1024         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1025                 sdev_id(sdev), sdev->lun);
1026         if (sd != NULL)
1027                 sdev->hostdata = sd;
1028         spin_unlock_irqrestore(&h->devlock, flags);
1029         return 0;
1030 }
1031
1032 static void hpsa_slave_destroy(struct scsi_device *sdev)
1033 {
1034         /* nothing to do. */
1035 }
1036
1037 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1038 {
1039         int i;
1040
1041         if (!h->cmd_sg_list)
1042                 return;
1043         for (i = 0; i < h->nr_cmds; i++) {
1044                 kfree(h->cmd_sg_list[i]);
1045                 h->cmd_sg_list[i] = NULL;
1046         }
1047         kfree(h->cmd_sg_list);
1048         h->cmd_sg_list = NULL;
1049 }
1050
1051 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1052 {
1053         int i;
1054
1055         if (h->chainsize <= 0)
1056                 return 0;
1057
1058         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1059                                 GFP_KERNEL);
1060         if (!h->cmd_sg_list)
1061                 return -ENOMEM;
1062         for (i = 0; i < h->nr_cmds; i++) {
1063                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1064                                                 h->chainsize, GFP_KERNEL);
1065                 if (!h->cmd_sg_list[i])
1066                         goto clean;
1067         }
1068         return 0;
1069
1070 clean:
1071         hpsa_free_sg_chain_blocks(h);
1072         return -ENOMEM;
1073 }
1074
1075 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1076         struct CommandList *c)
1077 {
1078         struct SGDescriptor *chain_sg, *chain_block;
1079         u64 temp64;
1080
1081         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1082         chain_block = h->cmd_sg_list[c->cmdindex];
1083         chain_sg->Ext = HPSA_SG_CHAIN;
1084         chain_sg->Len = sizeof(*chain_sg) *
1085                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1086         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1087                                 PCI_DMA_TODEVICE);
1088         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1089         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1090 }
1091
1092 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1093         struct CommandList *c)
1094 {
1095         struct SGDescriptor *chain_sg;
1096         union u64bit temp64;
1097
1098         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1099                 return;
1100
1101         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1102         temp64.val32.lower = chain_sg->Addr.lower;
1103         temp64.val32.upper = chain_sg->Addr.upper;
1104         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1105 }
1106
1107 static void complete_scsi_command(struct CommandList *cp)
1108 {
1109         struct scsi_cmnd *cmd;
1110         struct ctlr_info *h;
1111         struct ErrorInfo *ei;
1112
1113         unsigned char sense_key;
1114         unsigned char asc;      /* additional sense code */
1115         unsigned char ascq;     /* additional sense code qualifier */
1116         unsigned long sense_data_size;
1117
1118         ei = cp->err_info;
1119         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1120         h = cp->h;
1121
1122         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1123         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1124                 hpsa_unmap_sg_chain_block(h, cp);
1125
1126         cmd->result = (DID_OK << 16);           /* host byte */
1127         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1128         cmd->result |= ei->ScsiStatus;
1129
1130         /* copy the sense data whether we need to or not. */
1131         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1132                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1133         else
1134                 sense_data_size = sizeof(ei->SenseInfo);
1135         if (ei->SenseLen < sense_data_size)
1136                 sense_data_size = ei->SenseLen;
1137
1138         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1139         scsi_set_resid(cmd, ei->ResidualCnt);
1140
1141         if (ei->CommandStatus == 0) {
1142                 cmd->scsi_done(cmd);
1143                 cmd_free(h, cp);
1144                 return;
1145         }
1146
1147         /* an error has occurred */
1148         switch (ei->CommandStatus) {
1149
1150         case CMD_TARGET_STATUS:
1151                 if (ei->ScsiStatus) {
1152                         /* Get sense key */
1153                         sense_key = 0xf & ei->SenseInfo[2];
1154                         /* Get additional sense code */
1155                         asc = ei->SenseInfo[12];
1156                         /* Get addition sense code qualifier */
1157                         ascq = ei->SenseInfo[13];
1158                 }
1159
1160                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1161                         if (check_for_unit_attention(h, cp)) {
1162                                 cmd->result = DID_SOFT_ERROR << 16;
1163                                 break;
1164                         }
1165                         if (sense_key == ILLEGAL_REQUEST) {
1166                                 /*
1167                                  * SCSI REPORT_LUNS is commonly unsupported on
1168                                  * Smart Array.  Suppress noisy complaint.
1169                                  */
1170                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1171                                         break;
1172
1173                                 /* If ASC/ASCQ indicate Logical Unit
1174                                  * Not Supported condition,
1175                                  */
1176                                 if ((asc == 0x25) && (ascq == 0x0)) {
1177                                         dev_warn(&h->pdev->dev, "cp %p "
1178                                                 "has check condition\n", cp);
1179                                         break;
1180                                 }
1181                         }
1182
1183                         if (sense_key == NOT_READY) {
1184                                 /* If Sense is Not Ready, Logical Unit
1185                                  * Not ready, Manual Intervention
1186                                  * required
1187                                  */
1188                                 if ((asc == 0x04) && (ascq == 0x03)) {
1189                                         dev_warn(&h->pdev->dev, "cp %p "
1190                                                 "has check condition: unit "
1191                                                 "not ready, manual "
1192                                                 "intervention required\n", cp);
1193                                         break;
1194                                 }
1195                         }
1196                         if (sense_key == ABORTED_COMMAND) {
1197                                 /* Aborted command is retryable */
1198                                 dev_warn(&h->pdev->dev, "cp %p "
1199                                         "has check condition: aborted command: "
1200                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1201                                         cp, asc, ascq);
1202                                 cmd->result = DID_SOFT_ERROR << 16;
1203                                 break;
1204                         }
1205                         /* Must be some other type of check condition */
1206                         dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1207                                         "unknown type: "
1208                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1209                                         "Returning result: 0x%x, "
1210                                         "cmd=[%02x %02x %02x %02x %02x "
1211                                         "%02x %02x %02x %02x %02x %02x "
1212                                         "%02x %02x %02x %02x %02x]\n",
1213                                         cp, sense_key, asc, ascq,
1214                                         cmd->result,
1215                                         cmd->cmnd[0], cmd->cmnd[1],
1216                                         cmd->cmnd[2], cmd->cmnd[3],
1217                                         cmd->cmnd[4], cmd->cmnd[5],
1218                                         cmd->cmnd[6], cmd->cmnd[7],
1219                                         cmd->cmnd[8], cmd->cmnd[9],
1220                                         cmd->cmnd[10], cmd->cmnd[11],
1221                                         cmd->cmnd[12], cmd->cmnd[13],
1222                                         cmd->cmnd[14], cmd->cmnd[15]);
1223                         break;
1224                 }
1225
1226
1227                 /* Problem was not a check condition
1228                  * Pass it up to the upper layers...
1229                  */
1230                 if (ei->ScsiStatus) {
1231                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1232                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1233                                 "Returning result: 0x%x\n",
1234                                 cp, ei->ScsiStatus,
1235                                 sense_key, asc, ascq,
1236                                 cmd->result);
1237                 } else {  /* scsi status is zero??? How??? */
1238                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1239                                 "Returning no connection.\n", cp),
1240
1241                         /* Ordinarily, this case should never happen,
1242                          * but there is a bug in some released firmware
1243                          * revisions that allows it to happen if, for
1244                          * example, a 4100 backplane loses power and
1245                          * the tape drive is in it.  We assume that
1246                          * it's a fatal error of some kind because we
1247                          * can't show that it wasn't. We will make it
1248                          * look like selection timeout since that is
1249                          * the most common reason for this to occur,
1250                          * and it's severe enough.
1251                          */
1252
1253                         cmd->result = DID_NO_CONNECT << 16;
1254                 }
1255                 break;
1256
1257         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1258                 break;
1259         case CMD_DATA_OVERRUN:
1260                 dev_warn(&h->pdev->dev, "cp %p has"
1261                         " completed with data overrun "
1262                         "reported\n", cp);
1263                 break;
1264         case CMD_INVALID: {
1265                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1266                 print_cmd(cp); */
1267                 /* We get CMD_INVALID if you address a non-existent device
1268                  * instead of a selection timeout (no response).  You will
1269                  * see this if you yank out a drive, then try to access it.
1270                  * This is kind of a shame because it means that any other
1271                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1272                  * missing target. */
1273                 cmd->result = DID_NO_CONNECT << 16;
1274         }
1275                 break;
1276         case CMD_PROTOCOL_ERR:
1277                 dev_warn(&h->pdev->dev, "cp %p has "
1278                         "protocol error \n", cp);
1279                 break;
1280         case CMD_HARDWARE_ERR:
1281                 cmd->result = DID_ERROR << 16;
1282                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1283                 break;
1284         case CMD_CONNECTION_LOST:
1285                 cmd->result = DID_ERROR << 16;
1286                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1287                 break;
1288         case CMD_ABORTED:
1289                 cmd->result = DID_ABORT << 16;
1290                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1291                                 cp, ei->ScsiStatus);
1292                 break;
1293         case CMD_ABORT_FAILED:
1294                 cmd->result = DID_ERROR << 16;
1295                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1296                 break;
1297         case CMD_UNSOLICITED_ABORT:
1298                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1299                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1300                         "abort\n", cp);
1301                 break;
1302         case CMD_TIMEOUT:
1303                 cmd->result = DID_TIME_OUT << 16;
1304                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1305                 break;
1306         case CMD_UNABORTABLE:
1307                 cmd->result = DID_ERROR << 16;
1308                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1309                 break;
1310         default:
1311                 cmd->result = DID_ERROR << 16;
1312                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1313                                 cp, ei->CommandStatus);
1314         }
1315         cmd->scsi_done(cmd);
1316         cmd_free(h, cp);
1317 }
1318
1319 static void hpsa_pci_unmap(struct pci_dev *pdev,
1320         struct CommandList *c, int sg_used, int data_direction)
1321 {
1322         int i;
1323         union u64bit addr64;
1324
1325         for (i = 0; i < sg_used; i++) {
1326                 addr64.val32.lower = c->SG[i].Addr.lower;
1327                 addr64.val32.upper = c->SG[i].Addr.upper;
1328                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1329                         data_direction);
1330         }
1331 }
1332
1333 static void hpsa_map_one(struct pci_dev *pdev,
1334                 struct CommandList *cp,
1335                 unsigned char *buf,
1336                 size_t buflen,
1337                 int data_direction)
1338 {
1339         u64 addr64;
1340
1341         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1342                 cp->Header.SGList = 0;
1343                 cp->Header.SGTotal = 0;
1344                 return;
1345         }
1346
1347         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1348         cp->SG[0].Addr.lower =
1349           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1350         cp->SG[0].Addr.upper =
1351           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1352         cp->SG[0].Len = buflen;
1353         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1354         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1355 }
1356
1357 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1358         struct CommandList *c)
1359 {
1360         DECLARE_COMPLETION_ONSTACK(wait);
1361
1362         c->waiting = &wait;
1363         enqueue_cmd_and_start_io(h, c);
1364         wait_for_completion(&wait);
1365 }
1366
1367 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1368         struct CommandList *c)
1369 {
1370         unsigned long flags;
1371
1372         /* If controller lockup detected, fake a hardware error. */
1373         spin_lock_irqsave(&h->lock, flags);
1374         if (unlikely(h->lockup_detected)) {
1375                 spin_unlock_irqrestore(&h->lock, flags);
1376                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1377         } else {
1378                 spin_unlock_irqrestore(&h->lock, flags);
1379                 hpsa_scsi_do_simple_cmd_core(h, c);
1380         }
1381 }
1382
1383 #define MAX_DRIVER_CMD_RETRIES 25
1384 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1385         struct CommandList *c, int data_direction)
1386 {
1387         int backoff_time = 10, retry_count = 0;
1388
1389         do {
1390                 memset(c->err_info, 0, sizeof(*c->err_info));
1391                 hpsa_scsi_do_simple_cmd_core(h, c);
1392                 retry_count++;
1393                 if (retry_count > 3) {
1394                         msleep(backoff_time);
1395                         if (backoff_time < 1000)
1396                                 backoff_time *= 2;
1397                 }
1398         } while ((check_for_unit_attention(h, c) ||
1399                         check_for_busy(h, c)) &&
1400                         retry_count <= MAX_DRIVER_CMD_RETRIES);
1401         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1402 }
1403
1404 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1405 {
1406         struct ErrorInfo *ei;
1407         struct device *d = &cp->h->pdev->dev;
1408
1409         ei = cp->err_info;
1410         switch (ei->CommandStatus) {
1411         case CMD_TARGET_STATUS:
1412                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1413                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1414                                 ei->ScsiStatus);
1415                 if (ei->ScsiStatus == 0)
1416                         dev_warn(d, "SCSI status is abnormally zero.  "
1417                         "(probably indicates selection timeout "
1418                         "reported incorrectly due to a known "
1419                         "firmware bug, circa July, 2001.)\n");
1420                 break;
1421         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1422                         dev_info(d, "UNDERRUN\n");
1423                 break;
1424         case CMD_DATA_OVERRUN:
1425                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1426                 break;
1427         case CMD_INVALID: {
1428                 /* controller unfortunately reports SCSI passthru's
1429                  * to non-existent targets as invalid commands.
1430                  */
1431                 dev_warn(d, "cp %p is reported invalid (probably means "
1432                         "target device no longer present)\n", cp);
1433                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1434                 print_cmd(cp);  */
1435                 }
1436                 break;
1437         case CMD_PROTOCOL_ERR:
1438                 dev_warn(d, "cp %p has protocol error \n", cp);
1439                 break;
1440         case CMD_HARDWARE_ERR:
1441                 /* cmd->result = DID_ERROR << 16; */
1442                 dev_warn(d, "cp %p had hardware error\n", cp);
1443                 break;
1444         case CMD_CONNECTION_LOST:
1445                 dev_warn(d, "cp %p had connection lost\n", cp);
1446                 break;
1447         case CMD_ABORTED:
1448                 dev_warn(d, "cp %p was aborted\n", cp);
1449                 break;
1450         case CMD_ABORT_FAILED:
1451                 dev_warn(d, "cp %p reports abort failed\n", cp);
1452                 break;
1453         case CMD_UNSOLICITED_ABORT:
1454                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1455                 break;
1456         case CMD_TIMEOUT:
1457                 dev_warn(d, "cp %p timed out\n", cp);
1458                 break;
1459         case CMD_UNABORTABLE:
1460                 dev_warn(d, "Command unabortable\n");
1461                 break;
1462         default:
1463                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1464                                 ei->CommandStatus);
1465         }
1466 }
1467
1468 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1469                         unsigned char page, unsigned char *buf,
1470                         unsigned char bufsize)
1471 {
1472         int rc = IO_OK;
1473         struct CommandList *c;
1474         struct ErrorInfo *ei;
1475
1476         c = cmd_special_alloc(h);
1477
1478         if (c == NULL) {                        /* trouble... */
1479                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1480                 return -ENOMEM;
1481         }
1482
1483         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1484         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1485         ei = c->err_info;
1486         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1487                 hpsa_scsi_interpret_error(c);
1488                 rc = -1;
1489         }
1490         cmd_special_free(h, c);
1491         return rc;
1492 }
1493
1494 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1495 {
1496         int rc = IO_OK;
1497         struct CommandList *c;
1498         struct ErrorInfo *ei;
1499
1500         c = cmd_special_alloc(h);
1501
1502         if (c == NULL) {                        /* trouble... */
1503                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1504                 return -ENOMEM;
1505         }
1506
1507         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1508         hpsa_scsi_do_simple_cmd_core(h, c);
1509         /* no unmap needed here because no data xfer. */
1510
1511         ei = c->err_info;
1512         if (ei->CommandStatus != 0) {
1513                 hpsa_scsi_interpret_error(c);
1514                 rc = -1;
1515         }
1516         cmd_special_free(h, c);
1517         return rc;
1518 }
1519
1520 static void hpsa_get_raid_level(struct ctlr_info *h,
1521         unsigned char *scsi3addr, unsigned char *raid_level)
1522 {
1523         int rc;
1524         unsigned char *buf;
1525
1526         *raid_level = RAID_UNKNOWN;
1527         buf = kzalloc(64, GFP_KERNEL);
1528         if (!buf)
1529                 return;
1530         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1531         if (rc == 0)
1532                 *raid_level = buf[8];
1533         if (*raid_level > RAID_UNKNOWN)
1534                 *raid_level = RAID_UNKNOWN;
1535         kfree(buf);
1536         return;
1537 }
1538
1539 /* Get the device id from inquiry page 0x83 */
1540 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1541         unsigned char *device_id, int buflen)
1542 {
1543         int rc;
1544         unsigned char *buf;
1545
1546         if (buflen > 16)
1547                 buflen = 16;
1548         buf = kzalloc(64, GFP_KERNEL);
1549         if (!buf)
1550                 return -1;
1551         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1552         if (rc == 0)
1553                 memcpy(device_id, &buf[8], buflen);
1554         kfree(buf);
1555         return rc != 0;
1556 }
1557
1558 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1559                 struct ReportLUNdata *buf, int bufsize,
1560                 int extended_response)
1561 {
1562         int rc = IO_OK;
1563         struct CommandList *c;
1564         unsigned char scsi3addr[8];
1565         struct ErrorInfo *ei;
1566
1567         c = cmd_special_alloc(h);
1568         if (c == NULL) {                        /* trouble... */
1569                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1570                 return -1;
1571         }
1572         /* address the controller */
1573         memset(scsi3addr, 0, sizeof(scsi3addr));
1574         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1575                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1576         if (extended_response)
1577                 c->Request.CDB[1] = extended_response;
1578         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1579         ei = c->err_info;
1580         if (ei->CommandStatus != 0 &&
1581             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1582                 hpsa_scsi_interpret_error(c);
1583                 rc = -1;
1584         }
1585         cmd_special_free(h, c);
1586         return rc;
1587 }
1588
1589 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1590                 struct ReportLUNdata *buf,
1591                 int bufsize, int extended_response)
1592 {
1593         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1594 }
1595
1596 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1597                 struct ReportLUNdata *buf, int bufsize)
1598 {
1599         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1600 }
1601
1602 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1603         int bus, int target, int lun)
1604 {
1605         device->bus = bus;
1606         device->target = target;
1607         device->lun = lun;
1608 }
1609
1610 static int hpsa_update_device_info(struct ctlr_info *h,
1611         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1612         unsigned char *is_OBDR_device)
1613 {
1614
1615 #define OBDR_SIG_OFFSET 43
1616 #define OBDR_TAPE_SIG "$DR-10"
1617 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1618 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1619
1620         unsigned char *inq_buff;
1621         unsigned char *obdr_sig;
1622
1623         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1624         if (!inq_buff)
1625                 goto bail_out;
1626
1627         /* Do an inquiry to the device to see what it is. */
1628         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1629                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1630                 /* Inquiry failed (msg printed already) */
1631                 dev_err(&h->pdev->dev,
1632                         "hpsa_update_device_info: inquiry failed\n");
1633                 goto bail_out;
1634         }
1635
1636         this_device->devtype = (inq_buff[0] & 0x1f);
1637         memcpy(this_device->scsi3addr, scsi3addr, 8);
1638         memcpy(this_device->vendor, &inq_buff[8],
1639                 sizeof(this_device->vendor));
1640         memcpy(this_device->model, &inq_buff[16],
1641                 sizeof(this_device->model));
1642         memset(this_device->device_id, 0,
1643                 sizeof(this_device->device_id));
1644         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1645                 sizeof(this_device->device_id));
1646
1647         if (this_device->devtype == TYPE_DISK &&
1648                 is_logical_dev_addr_mode(scsi3addr))
1649                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1650         else
1651                 this_device->raid_level = RAID_UNKNOWN;
1652
1653         if (is_OBDR_device) {
1654                 /* See if this is a One-Button-Disaster-Recovery device
1655                  * by looking for "$DR-10" at offset 43 in inquiry data.
1656                  */
1657                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1658                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1659                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
1660                                                 OBDR_SIG_LEN) == 0);
1661         }
1662
1663         kfree(inq_buff);
1664         return 0;
1665
1666 bail_out:
1667         kfree(inq_buff);
1668         return 1;
1669 }
1670
1671 static unsigned char *ext_target_model[] = {
1672         "MSA2012",
1673         "MSA2024",
1674         "MSA2312",
1675         "MSA2324",
1676         "P2000 G3 SAS",
1677         NULL,
1678 };
1679
1680 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1681 {
1682         int i;
1683
1684         for (i = 0; ext_target_model[i]; i++)
1685                 if (strncmp(device->model, ext_target_model[i],
1686                         strlen(ext_target_model[i])) == 0)
1687                         return 1;
1688         return 0;
1689 }
1690
1691 /* Helper function to assign bus, target, lun mapping of devices.
1692  * Puts non-external target logical volumes on bus 0, external target logical
1693  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1694  * Logical drive target and lun are assigned at this time, but
1695  * physical device lun and target assignment are deferred (assigned
1696  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1697  */
1698 static void figure_bus_target_lun(struct ctlr_info *h,
1699         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1700 {
1701         u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1702
1703         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1704                 /* physical device, target and lun filled in later */
1705                 if (is_hba_lunid(lunaddrbytes))
1706                         hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1707                 else
1708                         /* defer target, lun assignment for physical devices */
1709                         hpsa_set_bus_target_lun(device, 2, -1, -1);
1710                 return;
1711         }
1712         /* It's a logical device */
1713         if (is_ext_target(h, device)) {
1714                 /* external target way, put logicals on bus 1
1715                  * and match target/lun numbers box
1716                  * reports, other smart array, bus 0, target 0, match lunid
1717                  */
1718                 hpsa_set_bus_target_lun(device,
1719                         1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1720                 return;
1721         }
1722         hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1723 }
1724
1725 /*
1726  * If there is no lun 0 on a target, linux won't find any devices.
1727  * For the external targets (arrays), we have to manually detect the enclosure
1728  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1729  * it for some reason.  *tmpdevice is the target we're adding,
1730  * this_device is a pointer into the current element of currentsd[]
1731  * that we're building up in update_scsi_devices(), below.
1732  * lunzerobits is a bitmap that tracks which targets already have a
1733  * lun 0 assigned.
1734  * Returns 1 if an enclosure was added, 0 if not.
1735  */
1736 static int add_ext_target_dev(struct ctlr_info *h,
1737         struct hpsa_scsi_dev_t *tmpdevice,
1738         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1739         unsigned long lunzerobits[], int *n_ext_target_devs)
1740 {
1741         unsigned char scsi3addr[8];
1742
1743         if (test_bit(tmpdevice->target, lunzerobits))
1744                 return 0; /* There is already a lun 0 on this target. */
1745
1746         if (!is_logical_dev_addr_mode(lunaddrbytes))
1747                 return 0; /* It's the logical targets that may lack lun 0. */
1748
1749         if (!is_ext_target(h, tmpdevice))
1750                 return 0; /* Only external target devices have this problem. */
1751
1752         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1753                 return 0;
1754
1755         memset(scsi3addr, 0, 8);
1756         scsi3addr[3] = tmpdevice->target;
1757         if (is_hba_lunid(scsi3addr))
1758                 return 0; /* Don't add the RAID controller here. */
1759
1760         if (is_scsi_rev_5(h))
1761                 return 0; /* p1210m doesn't need to do this. */
1762
1763         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1764                 dev_warn(&h->pdev->dev, "Maximum number of external "
1765                         "target devices exceeded.  Check your hardware "
1766                         "configuration.");
1767                 return 0;
1768         }
1769
1770         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1771                 return 0;
1772         (*n_ext_target_devs)++;
1773         hpsa_set_bus_target_lun(this_device,
1774                                 tmpdevice->bus, tmpdevice->target, 0);
1775         set_bit(tmpdevice->target, lunzerobits);
1776         return 1;
1777 }
1778
1779 /*
1780  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1781  * logdev.  The number of luns in physdev and logdev are returned in
1782  * *nphysicals and *nlogicals, respectively.
1783  * Returns 0 on success, -1 otherwise.
1784  */
1785 static int hpsa_gather_lun_info(struct ctlr_info *h,
1786         int reportlunsize,
1787         struct ReportLUNdata *physdev, u32 *nphysicals,
1788         struct ReportLUNdata *logdev, u32 *nlogicals)
1789 {
1790         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1791                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1792                 return -1;
1793         }
1794         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1795         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1796                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1797                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1798                         *nphysicals - HPSA_MAX_PHYS_LUN);
1799                 *nphysicals = HPSA_MAX_PHYS_LUN;
1800         }
1801         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1802                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1803                 return -1;
1804         }
1805         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1806         /* Reject Logicals in excess of our max capability. */
1807         if (*nlogicals > HPSA_MAX_LUN) {
1808                 dev_warn(&h->pdev->dev,
1809                         "maximum logical LUNs (%d) exceeded.  "
1810                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1811                         *nlogicals - HPSA_MAX_LUN);
1812                         *nlogicals = HPSA_MAX_LUN;
1813         }
1814         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1815                 dev_warn(&h->pdev->dev,
1816                         "maximum logical + physical LUNs (%d) exceeded. "
1817                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1818                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1819                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1820         }
1821         return 0;
1822 }
1823
1824 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1825         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1826         struct ReportLUNdata *logdev_list)
1827 {
1828         /* Helper function, figure out where the LUN ID info is coming from
1829          * given index i, lists of physical and logical devices, where in
1830          * the list the raid controller is supposed to appear (first or last)
1831          */
1832
1833         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1834         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1835
1836         if (i == raid_ctlr_position)
1837                 return RAID_CTLR_LUNID;
1838
1839         if (i < logicals_start)
1840                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1841
1842         if (i < last_device)
1843                 return &logdev_list->LUN[i - nphysicals -
1844                         (raid_ctlr_position == 0)][0];
1845         BUG();
1846         return NULL;
1847 }
1848
1849 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1850 {
1851         /* the idea here is we could get notified
1852          * that some devices have changed, so we do a report
1853          * physical luns and report logical luns cmd, and adjust
1854          * our list of devices accordingly.
1855          *
1856          * The scsi3addr's of devices won't change so long as the
1857          * adapter is not reset.  That means we can rescan and
1858          * tell which devices we already know about, vs. new
1859          * devices, vs.  disappearing devices.
1860          */
1861         struct ReportLUNdata *physdev_list = NULL;
1862         struct ReportLUNdata *logdev_list = NULL;
1863         u32 nphysicals = 0;
1864         u32 nlogicals = 0;
1865         u32 ndev_allocated = 0;
1866         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1867         int ncurrent = 0;
1868         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1869         int i, n_ext_target_devs, ndevs_to_allocate;
1870         int raid_ctlr_position;
1871         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1872
1873         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1874         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1875         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1876         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1877
1878         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1879                 dev_err(&h->pdev->dev, "out of memory\n");
1880                 goto out;
1881         }
1882         memset(lunzerobits, 0, sizeof(lunzerobits));
1883
1884         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1885                         logdev_list, &nlogicals))
1886                 goto out;
1887
1888         /* We might see up to the maximum number of logical and physical disks
1889          * plus external target devices, and a device for the local RAID
1890          * controller.
1891          */
1892         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
1893
1894         /* Allocate the per device structures */
1895         for (i = 0; i < ndevs_to_allocate; i++) {
1896                 if (i >= HPSA_MAX_DEVICES) {
1897                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1898                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
1899                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
1900                         break;
1901                 }
1902
1903                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1904                 if (!currentsd[i]) {
1905                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1906                                 __FILE__, __LINE__);
1907                         goto out;
1908                 }
1909                 ndev_allocated++;
1910         }
1911
1912         if (unlikely(is_scsi_rev_5(h)))
1913                 raid_ctlr_position = 0;
1914         else
1915                 raid_ctlr_position = nphysicals + nlogicals;
1916
1917         /* adjust our table of devices */
1918         n_ext_target_devs = 0;
1919         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1920                 u8 *lunaddrbytes, is_OBDR = 0;
1921
1922                 /* Figure out where the LUN ID info is coming from */
1923                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1924                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1925                 /* skip masked physical devices. */
1926                 if (lunaddrbytes[3] & 0xC0 &&
1927                         i < nphysicals + (raid_ctlr_position == 0))
1928                         continue;
1929
1930                 /* Get device type, vendor, model, device id */
1931                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1932                                                         &is_OBDR))
1933                         continue; /* skip it if we can't talk to it. */
1934                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
1935                 this_device = currentsd[ncurrent];
1936
1937                 /*
1938                  * For external target devices, we have to insert a LUN 0 which
1939                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1940                  * is nonetheless an enclosure device there.  We have to
1941                  * present that otherwise linux won't find anything if
1942                  * there is no lun 0.
1943                  */
1944                 if (add_ext_target_dev(h, tmpdevice, this_device,
1945                                 lunaddrbytes, lunzerobits,
1946                                 &n_ext_target_devs)) {
1947                         ncurrent++;
1948                         this_device = currentsd[ncurrent];
1949                 }
1950
1951                 *this_device = *tmpdevice;
1952
1953                 switch (this_device->devtype) {
1954                 case TYPE_ROM:
1955                         /* We don't *really* support actual CD-ROM devices,
1956                          * just "One Button Disaster Recovery" tape drive
1957                          * which temporarily pretends to be a CD-ROM drive.
1958                          * So we check that the device is really an OBDR tape
1959                          * device by checking for "$DR-10" in bytes 43-48 of
1960                          * the inquiry data.
1961                          */
1962                         if (is_OBDR)
1963                                 ncurrent++;
1964                         break;
1965                 case TYPE_DISK:
1966                         if (i < nphysicals)
1967                                 break;
1968                         ncurrent++;
1969                         break;
1970                 case TYPE_TAPE:
1971                 case TYPE_MEDIUM_CHANGER:
1972                         ncurrent++;
1973                         break;
1974                 case TYPE_RAID:
1975                         /* Only present the Smartarray HBA as a RAID controller.
1976                          * If it's a RAID controller other than the HBA itself
1977                          * (an external RAID controller, MSA500 or similar)
1978                          * don't present it.
1979                          */
1980                         if (!is_hba_lunid(lunaddrbytes))
1981                                 break;
1982                         ncurrent++;
1983                         break;
1984                 default:
1985                         break;
1986                 }
1987                 if (ncurrent >= HPSA_MAX_DEVICES)
1988                         break;
1989         }
1990         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1991 out:
1992         kfree(tmpdevice);
1993         for (i = 0; i < ndev_allocated; i++)
1994                 kfree(currentsd[i]);
1995         kfree(currentsd);
1996         kfree(physdev_list);
1997         kfree(logdev_list);
1998 }
1999
2000 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2001  * dma mapping  and fills in the scatter gather entries of the
2002  * hpsa command, cp.
2003  */
2004 static int hpsa_scatter_gather(struct ctlr_info *h,
2005                 struct CommandList *cp,
2006                 struct scsi_cmnd *cmd)
2007 {
2008         unsigned int len;
2009         struct scatterlist *sg;
2010         u64 addr64;
2011         int use_sg, i, sg_index, chained;
2012         struct SGDescriptor *curr_sg;
2013
2014         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2015
2016         use_sg = scsi_dma_map(cmd);
2017         if (use_sg < 0)
2018                 return use_sg;
2019
2020         if (!use_sg)
2021                 goto sglist_finished;
2022
2023         curr_sg = cp->SG;
2024         chained = 0;
2025         sg_index = 0;
2026         scsi_for_each_sg(cmd, sg, use_sg, i) {
2027                 if (i == h->max_cmd_sg_entries - 1 &&
2028                         use_sg > h->max_cmd_sg_entries) {
2029                         chained = 1;
2030                         curr_sg = h->cmd_sg_list[cp->cmdindex];
2031                         sg_index = 0;
2032                 }
2033                 addr64 = (u64) sg_dma_address(sg);
2034                 len  = sg_dma_len(sg);
2035                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2036                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2037                 curr_sg->Len = len;
2038                 curr_sg->Ext = 0;  /* we are not chaining */
2039                 curr_sg++;
2040         }
2041
2042         if (use_sg + chained > h->maxSG)
2043                 h->maxSG = use_sg + chained;
2044
2045         if (chained) {
2046                 cp->Header.SGList = h->max_cmd_sg_entries;
2047                 cp->Header.SGTotal = (u16) (use_sg + 1);
2048                 hpsa_map_sg_chain_block(h, cp);
2049                 return 0;
2050         }
2051
2052 sglist_finished:
2053
2054         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2055         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2056         return 0;
2057 }
2058
2059
2060 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2061         void (*done)(struct scsi_cmnd *))
2062 {
2063         struct ctlr_info *h;
2064         struct hpsa_scsi_dev_t *dev;
2065         unsigned char scsi3addr[8];
2066         struct CommandList *c;
2067         unsigned long flags;
2068
2069         /* Get the ptr to our adapter structure out of cmd->host. */
2070         h = sdev_to_hba(cmd->device);
2071         dev = cmd->device->hostdata;
2072         if (!dev) {
2073                 cmd->result = DID_NO_CONNECT << 16;
2074                 done(cmd);
2075                 return 0;
2076         }
2077         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2078
2079         spin_lock_irqsave(&h->lock, flags);
2080         if (unlikely(h->lockup_detected)) {
2081                 spin_unlock_irqrestore(&h->lock, flags);
2082                 cmd->result = DID_ERROR << 16;
2083                 done(cmd);
2084                 return 0;
2085         }
2086         /* Need a lock as this is being allocated from the pool */
2087         c = cmd_alloc(h);
2088         spin_unlock_irqrestore(&h->lock, flags);
2089         if (c == NULL) {                        /* trouble... */
2090                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2091                 return SCSI_MLQUEUE_HOST_BUSY;
2092         }
2093
2094         /* Fill in the command list header */
2095
2096         cmd->scsi_done = done;    /* save this for use by completion code */
2097
2098         /* save c in case we have to abort it  */
2099         cmd->host_scribble = (unsigned char *) c;
2100
2101         c->cmd_type = CMD_SCSI;
2102         c->scsi_cmd = cmd;
2103         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2104         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2105         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2106         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2107
2108         /* Fill in the request block... */
2109
2110         c->Request.Timeout = 0;
2111         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2112         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2113         c->Request.CDBLen = cmd->cmd_len;
2114         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2115         c->Request.Type.Type = TYPE_CMD;
2116         c->Request.Type.Attribute = ATTR_SIMPLE;
2117         switch (cmd->sc_data_direction) {
2118         case DMA_TO_DEVICE:
2119                 c->Request.Type.Direction = XFER_WRITE;
2120                 break;
2121         case DMA_FROM_DEVICE:
2122                 c->Request.Type.Direction = XFER_READ;
2123                 break;
2124         case DMA_NONE:
2125                 c->Request.Type.Direction = XFER_NONE;
2126                 break;
2127         case DMA_BIDIRECTIONAL:
2128                 /* This can happen if a buggy application does a scsi passthru
2129                  * and sets both inlen and outlen to non-zero. ( see
2130                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2131                  */
2132
2133                 c->Request.Type.Direction = XFER_RSVD;
2134                 /* This is technically wrong, and hpsa controllers should
2135                  * reject it with CMD_INVALID, which is the most correct
2136                  * response, but non-fibre backends appear to let it
2137                  * slide by, and give the same results as if this field
2138                  * were set correctly.  Either way is acceptable for
2139                  * our purposes here.
2140                  */
2141
2142                 break;
2143
2144         default:
2145                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2146                         cmd->sc_data_direction);
2147                 BUG();
2148                 break;
2149         }
2150
2151         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2152                 cmd_free(h, c);
2153                 return SCSI_MLQUEUE_HOST_BUSY;
2154         }
2155         enqueue_cmd_and_start_io(h, c);
2156         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2157         return 0;
2158 }
2159
2160 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2161
2162 static void hpsa_scan_start(struct Scsi_Host *sh)
2163 {
2164         struct ctlr_info *h = shost_to_hba(sh);
2165         unsigned long flags;
2166
2167         /* wait until any scan already in progress is finished. */
2168         while (1) {
2169                 spin_lock_irqsave(&h->scan_lock, flags);
2170                 if (h->scan_finished)
2171                         break;
2172                 spin_unlock_irqrestore(&h->scan_lock, flags);
2173                 wait_event(h->scan_wait_queue, h->scan_finished);
2174                 /* Note: We don't need to worry about a race between this
2175                  * thread and driver unload because the midlayer will
2176                  * have incremented the reference count, so unload won't
2177                  * happen if we're in here.
2178                  */
2179         }
2180         h->scan_finished = 0; /* mark scan as in progress */
2181         spin_unlock_irqrestore(&h->scan_lock, flags);
2182
2183         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2184
2185         spin_lock_irqsave(&h->scan_lock, flags);
2186         h->scan_finished = 1; /* mark scan as finished. */
2187         wake_up_all(&h->scan_wait_queue);
2188         spin_unlock_irqrestore(&h->scan_lock, flags);
2189 }
2190
2191 static int hpsa_scan_finished(struct Scsi_Host *sh,
2192         unsigned long elapsed_time)
2193 {
2194         struct ctlr_info *h = shost_to_hba(sh);
2195         unsigned long flags;
2196         int finished;
2197
2198         spin_lock_irqsave(&h->scan_lock, flags);
2199         finished = h->scan_finished;
2200         spin_unlock_irqrestore(&h->scan_lock, flags);
2201         return finished;
2202 }
2203
2204 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2205         int qdepth, int reason)
2206 {
2207         struct ctlr_info *h = sdev_to_hba(sdev);
2208
2209         if (reason != SCSI_QDEPTH_DEFAULT)
2210                 return -ENOTSUPP;
2211
2212         if (qdepth < 1)
2213                 qdepth = 1;
2214         else
2215                 if (qdepth > h->nr_cmds)
2216                         qdepth = h->nr_cmds;
2217         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2218         return sdev->queue_depth;
2219 }
2220
2221 static void hpsa_unregister_scsi(struct ctlr_info *h)
2222 {
2223         /* we are being forcibly unloaded, and may not refuse. */
2224         scsi_remove_host(h->scsi_host);
2225         scsi_host_put(h->scsi_host);
2226         h->scsi_host = NULL;
2227 }
2228
2229 static int hpsa_register_scsi(struct ctlr_info *h)
2230 {
2231         struct Scsi_Host *sh;
2232         int error;
2233
2234         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2235         if (sh == NULL)
2236                 goto fail;
2237
2238         sh->io_port = 0;
2239         sh->n_io_port = 0;
2240         sh->this_id = -1;
2241         sh->max_channel = 3;
2242         sh->max_cmd_len = MAX_COMMAND_SIZE;
2243         sh->max_lun = HPSA_MAX_LUN;
2244         sh->max_id = HPSA_MAX_LUN;
2245         sh->can_queue = h->nr_cmds;
2246         sh->cmd_per_lun = h->nr_cmds;
2247         sh->sg_tablesize = h->maxsgentries;
2248         h->scsi_host = sh;
2249         sh->hostdata[0] = (unsigned long) h;
2250         sh->irq = h->intr[h->intr_mode];
2251         sh->unique_id = sh->irq;
2252         error = scsi_add_host(sh, &h->pdev->dev);
2253         if (error)
2254                 goto fail_host_put;
2255         scsi_scan_host(sh);
2256         return 0;
2257
2258  fail_host_put:
2259         dev_err(&h->pdev->dev, "%s: scsi_add_host"
2260                 " failed for controller %d\n", __func__, h->ctlr);
2261         scsi_host_put(sh);
2262         return error;
2263  fail:
2264         dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2265                 " failed for controller %d\n", __func__, h->ctlr);
2266         return -ENOMEM;
2267 }
2268
2269 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2270         unsigned char lunaddr[])
2271 {
2272         int rc = 0;
2273         int count = 0;
2274         int waittime = 1; /* seconds */
2275         struct CommandList *c;
2276
2277         c = cmd_special_alloc(h);
2278         if (!c) {
2279                 dev_warn(&h->pdev->dev, "out of memory in "
2280                         "wait_for_device_to_become_ready.\n");
2281                 return IO_ERROR;
2282         }
2283
2284         /* Send test unit ready until device ready, or give up. */
2285         while (count < HPSA_TUR_RETRY_LIMIT) {
2286
2287                 /* Wait for a bit.  do this first, because if we send
2288                  * the TUR right away, the reset will just abort it.
2289                  */
2290                 msleep(1000 * waittime);
2291                 count++;
2292
2293                 /* Increase wait time with each try, up to a point. */
2294                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2295                         waittime = waittime * 2;
2296
2297                 /* Send the Test Unit Ready */
2298                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2299                 hpsa_scsi_do_simple_cmd_core(h, c);
2300                 /* no unmap needed here because no data xfer. */
2301
2302                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2303                         break;
2304
2305                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2306                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2307                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2308                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2309                         break;
2310
2311                 dev_warn(&h->pdev->dev, "waiting %d secs "
2312                         "for device to become ready.\n", waittime);
2313                 rc = 1; /* device not ready. */
2314         }
2315
2316         if (rc)
2317                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2318         else
2319                 dev_warn(&h->pdev->dev, "device is ready.\n");
2320
2321         cmd_special_free(h, c);
2322         return rc;
2323 }
2324
2325 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2326  * complaining.  Doing a host- or bus-reset can't do anything good here.
2327  */
2328 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2329 {
2330         int rc;
2331         struct ctlr_info *h;
2332         struct hpsa_scsi_dev_t *dev;
2333
2334         /* find the controller to which the command to be aborted was sent */
2335         h = sdev_to_hba(scsicmd->device);
2336         if (h == NULL) /* paranoia */
2337                 return FAILED;
2338         dev = scsicmd->device->hostdata;
2339         if (!dev) {
2340                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2341                         "device lookup failed.\n");
2342                 return FAILED;
2343         }
2344         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2345                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2346         /* send a reset to the SCSI LUN which the command was sent to */
2347         rc = hpsa_send_reset(h, dev->scsi3addr);
2348         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2349                 return SUCCESS;
2350
2351         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2352         return FAILED;
2353 }
2354
2355 /*
2356  * For operations that cannot sleep, a command block is allocated at init,
2357  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2358  * which ones are free or in use.  Lock must be held when calling this.
2359  * cmd_free() is the complement.
2360  */
2361 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2362 {
2363         struct CommandList *c;
2364         int i;
2365         union u64bit temp64;
2366         dma_addr_t cmd_dma_handle, err_dma_handle;
2367
2368         do {
2369                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2370                 if (i == h->nr_cmds)
2371                         return NULL;
2372         } while (test_and_set_bit
2373                  (i & (BITS_PER_LONG - 1),
2374                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2375         c = h->cmd_pool + i;
2376         memset(c, 0, sizeof(*c));
2377         cmd_dma_handle = h->cmd_pool_dhandle
2378             + i * sizeof(*c);
2379         c->err_info = h->errinfo_pool + i;
2380         memset(c->err_info, 0, sizeof(*c->err_info));
2381         err_dma_handle = h->errinfo_pool_dhandle
2382             + i * sizeof(*c->err_info);
2383         h->nr_allocs++;
2384
2385         c->cmdindex = i;
2386
2387         INIT_LIST_HEAD(&c->list);
2388         c->busaddr = (u32) cmd_dma_handle;
2389         temp64.val = (u64) err_dma_handle;
2390         c->ErrDesc.Addr.lower = temp64.val32.lower;
2391         c->ErrDesc.Addr.upper = temp64.val32.upper;
2392         c->ErrDesc.Len = sizeof(*c->err_info);
2393
2394         c->h = h;
2395         return c;
2396 }
2397
2398 /* For operations that can wait for kmalloc to possibly sleep,
2399  * this routine can be called. Lock need not be held to call
2400  * cmd_special_alloc. cmd_special_free() is the complement.
2401  */
2402 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2403 {
2404         struct CommandList *c;
2405         union u64bit temp64;
2406         dma_addr_t cmd_dma_handle, err_dma_handle;
2407
2408         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2409         if (c == NULL)
2410                 return NULL;
2411         memset(c, 0, sizeof(*c));
2412
2413         c->cmdindex = -1;
2414
2415         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2416                     &err_dma_handle);
2417
2418         if (c->err_info == NULL) {
2419                 pci_free_consistent(h->pdev,
2420                         sizeof(*c), c, cmd_dma_handle);
2421                 return NULL;
2422         }
2423         memset(c->err_info, 0, sizeof(*c->err_info));
2424
2425         INIT_LIST_HEAD(&c->list);
2426         c->busaddr = (u32) cmd_dma_handle;
2427         temp64.val = (u64) err_dma_handle;
2428         c->ErrDesc.Addr.lower = temp64.val32.lower;
2429         c->ErrDesc.Addr.upper = temp64.val32.upper;
2430         c->ErrDesc.Len = sizeof(*c->err_info);
2431
2432         c->h = h;
2433         return c;
2434 }
2435
2436 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2437 {
2438         int i;
2439
2440         i = c - h->cmd_pool;
2441         clear_bit(i & (BITS_PER_LONG - 1),
2442                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2443         h->nr_frees++;
2444 }
2445
2446 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2447 {
2448         union u64bit temp64;
2449
2450         temp64.val32.lower = c->ErrDesc.Addr.lower;
2451         temp64.val32.upper = c->ErrDesc.Addr.upper;
2452         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2453                             c->err_info, (dma_addr_t) temp64.val);
2454         pci_free_consistent(h->pdev, sizeof(*c),
2455                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2456 }
2457
2458 #ifdef CONFIG_COMPAT
2459
2460 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2461 {
2462         IOCTL32_Command_struct __user *arg32 =
2463             (IOCTL32_Command_struct __user *) arg;
2464         IOCTL_Command_struct arg64;
2465         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2466         int err;
2467         u32 cp;
2468
2469         memset(&arg64, 0, sizeof(arg64));
2470         err = 0;
2471         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2472                            sizeof(arg64.LUN_info));
2473         err |= copy_from_user(&arg64.Request, &arg32->Request,
2474                            sizeof(arg64.Request));
2475         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2476                            sizeof(arg64.error_info));
2477         err |= get_user(arg64.buf_size, &arg32->buf_size);
2478         err |= get_user(cp, &arg32->buf);
2479         arg64.buf = compat_ptr(cp);
2480         err |= copy_to_user(p, &arg64, sizeof(arg64));
2481
2482         if (err)
2483                 return -EFAULT;
2484
2485         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2486         if (err)
2487                 return err;
2488         err |= copy_in_user(&arg32->error_info, &p->error_info,
2489                          sizeof(arg32->error_info));
2490         if (err)
2491                 return -EFAULT;
2492         return err;
2493 }
2494
2495 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2496         int cmd, void *arg)
2497 {
2498         BIG_IOCTL32_Command_struct __user *arg32 =
2499             (BIG_IOCTL32_Command_struct __user *) arg;
2500         BIG_IOCTL_Command_struct arg64;
2501         BIG_IOCTL_Command_struct __user *p =
2502             compat_alloc_user_space(sizeof(arg64));
2503         int err;
2504         u32 cp;
2505
2506         memset(&arg64, 0, sizeof(arg64));
2507         err = 0;
2508         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2509                            sizeof(arg64.LUN_info));
2510         err |= copy_from_user(&arg64.Request, &arg32->Request,
2511                            sizeof(arg64.Request));
2512         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2513                            sizeof(arg64.error_info));
2514         err |= get_user(arg64.buf_size, &arg32->buf_size);
2515         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2516         err |= get_user(cp, &arg32->buf);
2517         arg64.buf = compat_ptr(cp);
2518         err |= copy_to_user(p, &arg64, sizeof(arg64));
2519
2520         if (err)
2521                 return -EFAULT;
2522
2523         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2524         if (err)
2525                 return err;
2526         err |= copy_in_user(&arg32->error_info, &p->error_info,
2527                          sizeof(arg32->error_info));
2528         if (err)
2529                 return -EFAULT;
2530         return err;
2531 }
2532
2533 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2534 {
2535         switch (cmd) {
2536         case CCISS_GETPCIINFO:
2537         case CCISS_GETINTINFO:
2538         case CCISS_SETINTINFO:
2539         case CCISS_GETNODENAME:
2540         case CCISS_SETNODENAME:
2541         case CCISS_GETHEARTBEAT:
2542         case CCISS_GETBUSTYPES:
2543         case CCISS_GETFIRMVER:
2544         case CCISS_GETDRIVVER:
2545         case CCISS_REVALIDVOLS:
2546         case CCISS_DEREGDISK:
2547         case CCISS_REGNEWDISK:
2548         case CCISS_REGNEWD:
2549         case CCISS_RESCANDISK:
2550         case CCISS_GETLUNINFO:
2551                 return hpsa_ioctl(dev, cmd, arg);
2552
2553         case CCISS_PASSTHRU32:
2554                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2555         case CCISS_BIG_PASSTHRU32:
2556                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2557
2558         default:
2559                 return -ENOIOCTLCMD;
2560         }
2561 }
2562 #endif
2563
2564 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2565 {
2566         struct hpsa_pci_info pciinfo;
2567
2568         if (!argp)
2569                 return -EINVAL;
2570         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2571         pciinfo.bus = h->pdev->bus->number;
2572         pciinfo.dev_fn = h->pdev->devfn;
2573         pciinfo.board_id = h->board_id;
2574         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2575                 return -EFAULT;
2576         return 0;
2577 }
2578
2579 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2580 {
2581         DriverVer_type DriverVer;
2582         unsigned char vmaj, vmin, vsubmin;
2583         int rc;
2584
2585         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2586                 &vmaj, &vmin, &vsubmin);
2587         if (rc != 3) {
2588                 dev_info(&h->pdev->dev, "driver version string '%s' "
2589                         "unrecognized.", HPSA_DRIVER_VERSION);
2590                 vmaj = 0;
2591                 vmin = 0;
2592                 vsubmin = 0;
2593         }
2594         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2595         if (!argp)
2596                 return -EINVAL;
2597         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2598                 return -EFAULT;
2599         return 0;
2600 }
2601
2602 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2603 {
2604         IOCTL_Command_struct iocommand;
2605         struct CommandList *c;
2606         char *buff = NULL;
2607         union u64bit temp64;
2608
2609         if (!argp)
2610                 return -EINVAL;
2611         if (!capable(CAP_SYS_RAWIO))
2612                 return -EPERM;
2613         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2614                 return -EFAULT;
2615         if ((iocommand.buf_size < 1) &&
2616             (iocommand.Request.Type.Direction != XFER_NONE)) {
2617                 return -EINVAL;
2618         }
2619         if (iocommand.buf_size > 0) {
2620                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2621                 if (buff == NULL)
2622                         return -EFAULT;
2623                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2624                         /* Copy the data into the buffer we created */
2625                         if (copy_from_user(buff, iocommand.buf,
2626                                 iocommand.buf_size)) {
2627                                 kfree(buff);
2628                                 return -EFAULT;
2629                         }
2630                 } else {
2631                         memset(buff, 0, iocommand.buf_size);
2632                 }
2633         }
2634         c = cmd_special_alloc(h);
2635         if (c == NULL) {
2636                 kfree(buff);
2637                 return -ENOMEM;
2638         }
2639         /* Fill in the command type */
2640         c->cmd_type = CMD_IOCTL_PEND;
2641         /* Fill in Command Header */
2642         c->Header.ReplyQueue = 0; /* unused in simple mode */
2643         if (iocommand.buf_size > 0) {   /* buffer to fill */
2644                 c->Header.SGList = 1;
2645                 c->Header.SGTotal = 1;
2646         } else  { /* no buffers to fill */
2647                 c->Header.SGList = 0;
2648                 c->Header.SGTotal = 0;
2649         }
2650         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2651         /* use the kernel address the cmd block for tag */
2652         c->Header.Tag.lower = c->busaddr;
2653
2654         /* Fill in Request block */
2655         memcpy(&c->Request, &iocommand.Request,
2656                 sizeof(c->Request));
2657
2658         /* Fill in the scatter gather information */
2659         if (iocommand.buf_size > 0) {
2660                 temp64.val = pci_map_single(h->pdev, buff,
2661                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2662                 c->SG[0].Addr.lower = temp64.val32.lower;
2663                 c->SG[0].Addr.upper = temp64.val32.upper;
2664                 c->SG[0].Len = iocommand.buf_size;
2665                 c->SG[0].Ext = 0; /* we are not chaining*/
2666         }
2667         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2668         if (iocommand.buf_size > 0)
2669                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2670         check_ioctl_unit_attention(h, c);
2671
2672         /* Copy the error information out */
2673         memcpy(&iocommand.error_info, c->err_info,
2674                 sizeof(iocommand.error_info));
2675         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2676                 kfree(buff);
2677                 cmd_special_free(h, c);
2678                 return -EFAULT;
2679         }
2680         if (iocommand.Request.Type.Direction == XFER_READ &&
2681                 iocommand.buf_size > 0) {
2682                 /* Copy the data out of the buffer we created */
2683                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2684                         kfree(buff);
2685                         cmd_special_free(h, c);
2686                         return -EFAULT;
2687                 }
2688         }
2689         kfree(buff);
2690         cmd_special_free(h, c);
2691         return 0;
2692 }
2693
2694 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2695 {
2696         BIG_IOCTL_Command_struct *ioc;
2697         struct CommandList *c;
2698         unsigned char **buff = NULL;
2699         int *buff_size = NULL;
2700         union u64bit temp64;
2701         BYTE sg_used = 0;
2702         int status = 0;
2703         int i;
2704         u32 left;
2705         u32 sz;
2706         BYTE __user *data_ptr;
2707
2708         if (!argp)
2709                 return -EINVAL;
2710         if (!capable(CAP_SYS_RAWIO))
2711                 return -EPERM;
2712         ioc = (BIG_IOCTL_Command_struct *)
2713             kmalloc(sizeof(*ioc), GFP_KERNEL);
2714         if (!ioc) {
2715                 status = -ENOMEM;
2716                 goto cleanup1;
2717         }
2718         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2719                 status = -EFAULT;
2720                 goto cleanup1;
2721         }
2722         if ((ioc->buf_size < 1) &&
2723             (ioc->Request.Type.Direction != XFER_NONE)) {
2724                 status = -EINVAL;
2725                 goto cleanup1;
2726         }
2727         /* Check kmalloc limits  using all SGs */
2728         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2729                 status = -EINVAL;
2730                 goto cleanup1;
2731         }
2732         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
2733                 status = -EINVAL;
2734                 goto cleanup1;
2735         }
2736         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
2737         if (!buff) {
2738                 status = -ENOMEM;
2739                 goto cleanup1;
2740         }
2741         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
2742         if (!buff_size) {
2743                 status = -ENOMEM;
2744                 goto cleanup1;
2745         }
2746         left = ioc->buf_size;
2747         data_ptr = ioc->buf;
2748         while (left) {
2749                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2750                 buff_size[sg_used] = sz;
2751                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2752                 if (buff[sg_used] == NULL) {
2753                         status = -ENOMEM;
2754                         goto cleanup1;
2755                 }
2756                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2757                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2758                                 status = -ENOMEM;
2759                                 goto cleanup1;
2760                         }
2761                 } else
2762                         memset(buff[sg_used], 0, sz);
2763                 left -= sz;
2764                 data_ptr += sz;
2765                 sg_used++;
2766         }
2767         c = cmd_special_alloc(h);
2768         if (c == NULL) {
2769                 status = -ENOMEM;
2770                 goto cleanup1;
2771         }
2772         c->cmd_type = CMD_IOCTL_PEND;
2773         c->Header.ReplyQueue = 0;
2774         c->Header.SGList = c->Header.SGTotal = sg_used;
2775         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2776         c->Header.Tag.lower = c->busaddr;
2777         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2778         if (ioc->buf_size > 0) {
2779                 int i;
2780                 for (i = 0; i < sg_used; i++) {
2781                         temp64.val = pci_map_single(h->pdev, buff[i],
2782                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2783                         c->SG[i].Addr.lower = temp64.val32.lower;
2784                         c->SG[i].Addr.upper = temp64.val32.upper;
2785                         c->SG[i].Len = buff_size[i];
2786                         /* we are not chaining */
2787                         c->SG[i].Ext = 0;
2788                 }
2789         }
2790         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2791         if (sg_used)
2792                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2793         check_ioctl_unit_attention(h, c);
2794         /* Copy the error information out */
2795         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2796         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2797                 cmd_special_free(h, c);
2798                 status = -EFAULT;
2799                 goto cleanup1;
2800         }
2801         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2802                 /* Copy the data out of the buffer we created */
2803                 BYTE __user *ptr = ioc->buf;
2804                 for (i = 0; i < sg_used; i++) {
2805                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2806                                 cmd_special_free(h, c);
2807                                 status = -EFAULT;
2808                                 goto cleanup1;
2809                         }
2810                         ptr += buff_size[i];
2811                 }
2812         }
2813         cmd_special_free(h, c);
2814         status = 0;
2815 cleanup1:
2816         if (buff) {
2817                 for (i = 0; i < sg_used; i++)
2818                         kfree(buff[i]);
2819                 kfree(buff);
2820         }
2821         kfree(buff_size);
2822         kfree(ioc);
2823         return status;
2824 }
2825
2826 static void check_ioctl_unit_attention(struct ctlr_info *h,
2827         struct CommandList *c)
2828 {
2829         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2830                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2831                 (void) check_for_unit_attention(h, c);
2832 }
2833 /*
2834  * ioctl
2835  */
2836 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2837 {
2838         struct ctlr_info *h;
2839         void __user *argp = (void __user *)arg;
2840
2841         h = sdev_to_hba(dev);
2842
2843         switch (cmd) {
2844         case CCISS_DEREGDISK:
2845         case CCISS_REGNEWDISK:
2846         case CCISS_REGNEWD:
2847                 hpsa_scan_start(h->scsi_host);
2848                 return 0;
2849         case CCISS_GETPCIINFO:
2850                 return hpsa_getpciinfo_ioctl(h, argp);
2851         case CCISS_GETDRIVVER:
2852                 return hpsa_getdrivver_ioctl(h, argp);
2853         case CCISS_PASSTHRU:
2854                 return hpsa_passthru_ioctl(h, argp);
2855         case CCISS_BIG_PASSTHRU:
2856                 return hpsa_big_passthru_ioctl(h, argp);
2857         default:
2858                 return -ENOTTY;
2859         }
2860 }
2861
2862 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2863         unsigned char *scsi3addr, u8 reset_type)
2864 {
2865         struct CommandList *c;
2866
2867         c = cmd_alloc(h);
2868         if (!c)
2869                 return -ENOMEM;
2870         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2871                 RAID_CTLR_LUNID, TYPE_MSG);
2872         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2873         c->waiting = NULL;
2874         enqueue_cmd_and_start_io(h, c);
2875         /* Don't wait for completion, the reset won't complete.  Don't free
2876          * the command either.  This is the last command we will send before
2877          * re-initializing everything, so it doesn't matter and won't leak.
2878          */
2879         return 0;
2880 }
2881
2882 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2883         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2884         int cmd_type)
2885 {
2886         int pci_dir = XFER_NONE;
2887
2888         c->cmd_type = CMD_IOCTL_PEND;
2889         c->Header.ReplyQueue = 0;
2890         if (buff != NULL && size > 0) {
2891                 c->Header.SGList = 1;
2892                 c->Header.SGTotal = 1;
2893         } else {
2894                 c->Header.SGList = 0;
2895                 c->Header.SGTotal = 0;
2896         }
2897         c->Header.Tag.lower = c->busaddr;
2898         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2899
2900         c->Request.Type.Type = cmd_type;
2901         if (cmd_type == TYPE_CMD) {
2902                 switch (cmd) {
2903                 case HPSA_INQUIRY:
2904                         /* are we trying to read a vital product page */
2905                         if (page_code != 0) {
2906                                 c->Request.CDB[1] = 0x01;
2907                                 c->Request.CDB[2] = page_code;
2908                         }
2909                         c->Request.CDBLen = 6;
2910                         c->Request.Type.Attribute = ATTR_SIMPLE;
2911                         c->Request.Type.Direction = XFER_READ;
2912                         c->Request.Timeout = 0;
2913                         c->Request.CDB[0] = HPSA_INQUIRY;
2914                         c->Request.CDB[4] = size & 0xFF;
2915                         break;
2916                 case HPSA_REPORT_LOG:
2917                 case HPSA_REPORT_PHYS:
2918                         /* Talking to controller so It's a physical command
2919                            mode = 00 target = 0.  Nothing to write.
2920                          */
2921                         c->Request.CDBLen = 12;
2922                         c->Request.Type.Attribute = ATTR_SIMPLE;
2923                         c->Request.Type.Direction = XFER_READ;
2924                         c->Request.Timeout = 0;
2925                         c->Request.CDB[0] = cmd;
2926                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2927                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2928                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2929                         c->Request.CDB[9] = size & 0xFF;
2930                         break;
2931                 case HPSA_CACHE_FLUSH:
2932                         c->Request.CDBLen = 12;
2933                         c->Request.Type.Attribute = ATTR_SIMPLE;
2934                         c->Request.Type.Direction = XFER_WRITE;
2935                         c->Request.Timeout = 0;
2936                         c->Request.CDB[0] = BMIC_WRITE;
2937                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2938                         c->Request.CDB[7] = (size >> 8) & 0xFF;
2939                         c->Request.CDB[8] = size & 0xFF;
2940                         break;
2941                 case TEST_UNIT_READY:
2942                         c->Request.CDBLen = 6;
2943                         c->Request.Type.Attribute = ATTR_SIMPLE;
2944                         c->Request.Type.Direction = XFER_NONE;
2945                         c->Request.Timeout = 0;
2946                         break;
2947                 default:
2948                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2949                         BUG();
2950                         return;
2951                 }
2952         } else if (cmd_type == TYPE_MSG) {
2953                 switch (cmd) {
2954
2955                 case  HPSA_DEVICE_RESET_MSG:
2956                         c->Request.CDBLen = 16;
2957                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2958                         c->Request.Type.Attribute = ATTR_SIMPLE;
2959                         c->Request.Type.Direction = XFER_NONE;
2960                         c->Request.Timeout = 0; /* Don't time out */
2961                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2962                         c->Request.CDB[0] =  cmd;
2963                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2964                         /* If bytes 4-7 are zero, it means reset the */
2965                         /* LunID device */
2966                         c->Request.CDB[4] = 0x00;
2967                         c->Request.CDB[5] = 0x00;
2968                         c->Request.CDB[6] = 0x00;
2969                         c->Request.CDB[7] = 0x00;
2970                 break;
2971
2972                 default:
2973                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2974                                 cmd);
2975                         BUG();
2976                 }
2977         } else {
2978                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2979                 BUG();
2980         }
2981
2982         switch (c->Request.Type.Direction) {
2983         case XFER_READ:
2984                 pci_dir = PCI_DMA_FROMDEVICE;
2985                 break;
2986         case XFER_WRITE:
2987                 pci_dir = PCI_DMA_TODEVICE;
2988                 break;
2989         case XFER_NONE:
2990                 pci_dir = PCI_DMA_NONE;
2991                 break;
2992         default:
2993                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2994         }
2995
2996         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2997
2998         return;
2999 }
3000
3001 /*
3002  * Map (physical) PCI mem into (virtual) kernel space
3003  */
3004 static void __iomem *remap_pci_mem(ulong base, ulong size)
3005 {
3006         ulong page_base = ((ulong) base) & PAGE_MASK;
3007         ulong page_offs = ((ulong) base) - page_base;
3008         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
3009
3010         return page_remapped ? (page_remapped + page_offs) : NULL;
3011 }
3012
3013 /* Takes cmds off the submission queue and sends them to the hardware,
3014  * then puts them on the queue of cmds waiting for completion.
3015  */
3016 static void start_io(struct ctlr_info *h)
3017 {
3018         struct CommandList *c;
3019
3020         while (!list_empty(&h->reqQ)) {
3021                 c = list_entry(h->reqQ.next, struct CommandList, list);
3022                 /* can't do anything if fifo is full */
3023                 if ((h->access.fifo_full(h))) {
3024                         dev_warn(&h->pdev->dev, "fifo full\n");
3025                         break;
3026                 }
3027
3028                 /* Get the first entry from the Request Q */
3029                 removeQ(c);
3030                 h->Qdepth--;
3031
3032                 /* Tell the controller execute command */
3033                 h->access.submit_command(h, c);
3034
3035                 /* Put job onto the completed Q */
3036                 addQ(&h->cmpQ, c);
3037         }
3038 }
3039
3040 static inline unsigned long get_next_completion(struct ctlr_info *h)
3041 {
3042         return h->access.command_completed(h);
3043 }
3044
3045 static inline bool interrupt_pending(struct ctlr_info *h)
3046 {
3047         return h->access.intr_pending(h);
3048 }
3049
3050 static inline long interrupt_not_for_us(struct ctlr_info *h)
3051 {
3052         return (h->access.intr_pending(h) == 0) ||
3053                 (h->interrupts_enabled == 0);
3054 }
3055
3056 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3057         u32 raw_tag)
3058 {
3059         if (unlikely(tag_index >= h->nr_cmds)) {
3060                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3061                 return 1;
3062         }
3063         return 0;
3064 }
3065
3066 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
3067 {
3068         removeQ(c);
3069         if (likely(c->cmd_type == CMD_SCSI))
3070                 complete_scsi_command(c);
3071         else if (c->cmd_type == CMD_IOCTL_PEND)
3072                 complete(c->waiting);
3073 }
3074
3075 static inline u32 hpsa_tag_contains_index(u32 tag)
3076 {
3077         return tag & DIRECT_LOOKUP_BIT;
3078 }
3079
3080 static inline u32 hpsa_tag_to_index(u32 tag)
3081 {
3082         return tag >> DIRECT_LOOKUP_SHIFT;
3083 }
3084
3085
3086 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3087 {
3088 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3089 #define HPSA_SIMPLE_ERROR_BITS 0x03
3090         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3091                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3092         return tag & ~HPSA_PERF_ERROR_BITS;
3093 }
3094
3095 /* process completion of an indexed ("direct lookup") command */
3096 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3097         u32 raw_tag)
3098 {
3099         u32 tag_index;
3100         struct CommandList *c;
3101
3102         tag_index = hpsa_tag_to_index(raw_tag);
3103         if (bad_tag(h, tag_index, raw_tag))
3104                 return next_command(h);
3105         c = h->cmd_pool + tag_index;
3106         finish_cmd(c, raw_tag);
3107         return next_command(h);
3108 }
3109
3110 /* process completion of a non-indexed command */
3111 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3112         u32 raw_tag)
3113 {
3114         u32 tag;
3115         struct CommandList *c = NULL;
3116
3117         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3118         list_for_each_entry(c, &h->cmpQ, list) {
3119                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3120                         finish_cmd(c, raw_tag);
3121                         return next_command(h);
3122                 }
3123         }
3124         bad_tag(h, h->nr_cmds + 1, raw_tag);
3125         return next_command(h);
3126 }
3127
3128 /* Some controllers, like p400, will give us one interrupt
3129  * after a soft reset, even if we turned interrupts off.
3130  * Only need to check for this in the hpsa_xxx_discard_completions
3131  * functions.
3132  */
3133 static int ignore_bogus_interrupt(struct ctlr_info *h)
3134 {
3135         if (likely(!reset_devices))
3136                 return 0;
3137
3138         if (likely(h->interrupts_enabled))
3139                 return 0;
3140
3141         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3142                 "(known firmware bug.)  Ignoring.\n");
3143
3144         return 1;
3145 }
3146
3147 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3148 {
3149         struct ctlr_info *h = dev_id;
3150         unsigned long flags;
3151         u32 raw_tag;
3152
3153         if (ignore_bogus_interrupt(h))
3154                 return IRQ_NONE;
3155
3156         if (interrupt_not_for_us(h))
3157                 return IRQ_NONE;
3158         spin_lock_irqsave(&h->lock, flags);
3159         h->last_intr_timestamp = get_jiffies_64();
3160         while (interrupt_pending(h)) {
3161                 raw_tag = get_next_completion(h);
3162                 while (raw_tag != FIFO_EMPTY)
3163                         raw_tag = next_command(h);
3164         }
3165         spin_unlock_irqrestore(&h->lock, flags);
3166         return IRQ_HANDLED;
3167 }
3168
3169 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3170 {
3171         struct ctlr_info *h = dev_id;
3172         unsigned long flags;
3173         u32 raw_tag;
3174
3175         if (ignore_bogus_interrupt(h))
3176                 return IRQ_NONE;
3177
3178         spin_lock_irqsave(&h->lock, flags);
3179         h->last_intr_timestamp = get_jiffies_64();
3180         raw_tag = get_next_completion(h);
3181         while (raw_tag != FIFO_EMPTY)
3182                 raw_tag = next_command(h);
3183         spin_unlock_irqrestore(&h->lock, flags);
3184         return IRQ_HANDLED;
3185 }
3186
3187 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3188 {
3189         struct ctlr_info *h = dev_id;
3190         unsigned long flags;
3191         u32 raw_tag;
3192
3193         if (interrupt_not_for_us(h))
3194                 return IRQ_NONE;
3195         spin_lock_irqsave(&h->lock, flags);
3196         h->last_intr_timestamp = get_jiffies_64();
3197         while (interrupt_pending(h)) {
3198                 raw_tag = get_next_completion(h);
3199                 while (raw_tag != FIFO_EMPTY) {
3200                         if (hpsa_tag_contains_index(raw_tag))
3201                                 raw_tag = process_indexed_cmd(h, raw_tag);
3202                         else
3203                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
3204                 }
3205         }
3206         spin_unlock_irqrestore(&h->lock, flags);
3207         return IRQ_HANDLED;
3208 }
3209
3210 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3211 {
3212         struct ctlr_info *h = dev_id;
3213         unsigned long flags;
3214         u32 raw_tag;
3215
3216         spin_lock_irqsave(&h->lock, flags);
3217         h->last_intr_timestamp = get_jiffies_64();
3218         raw_tag = get_next_completion(h);
3219         while (raw_tag != FIFO_EMPTY) {
3220                 if (hpsa_tag_contains_index(raw_tag))
3221                         raw_tag = process_indexed_cmd(h, raw_tag);
3222                 else
3223                         raw_tag = process_nonindexed_cmd(h, raw_tag);
3224         }
3225         spin_unlock_irqrestore(&h->lock, flags);
3226         return IRQ_HANDLED;
3227 }
3228
3229 /* Send a message CDB to the firmware. Careful, this only works
3230  * in simple mode, not performant mode due to the tag lookup.
3231  * We only ever use this immediately after a controller reset.
3232  */
3233 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3234                                                 unsigned char type)
3235 {
3236         struct Command {
3237                 struct CommandListHeader CommandHeader;
3238                 struct RequestBlock Request;
3239                 struct ErrDescriptor ErrorDescriptor;
3240         };
3241         struct Command *cmd;
3242         static const size_t cmd_sz = sizeof(*cmd) +
3243                                         sizeof(cmd->ErrorDescriptor);
3244         dma_addr_t paddr64;
3245         uint32_t paddr32, tag;
3246         void __iomem *vaddr;
3247         int i, err;
3248
3249         vaddr = pci_ioremap_bar(pdev, 0);
3250         if (vaddr == NULL)
3251                 return -ENOMEM;
3252
3253         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3254          * CCISS commands, so they must be allocated from the lower 4GiB of
3255          * memory.
3256          */
3257         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3258         if (err) {
3259                 iounmap(vaddr);
3260                 return -ENOMEM;
3261         }
3262
3263         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3264         if (cmd == NULL) {
3265                 iounmap(vaddr);
3266                 return -ENOMEM;
3267         }
3268
3269         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3270          * although there's no guarantee, we assume that the address is at
3271          * least 4-byte aligned (most likely, it's page-aligned).
3272          */
3273         paddr32 = paddr64;
3274
3275         cmd->CommandHeader.ReplyQueue = 0;
3276         cmd->CommandHeader.SGList = 0;
3277         cmd->CommandHeader.SGTotal = 0;
3278         cmd->CommandHeader.Tag.lower = paddr32;
3279         cmd->CommandHeader.Tag.upper = 0;
3280         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3281
3282         cmd->Request.CDBLen = 16;
3283         cmd->Request.Type.Type = TYPE_MSG;
3284         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3285         cmd->Request.Type.Direction = XFER_NONE;
3286         cmd->Request.Timeout = 0; /* Don't time out */
3287         cmd->Request.CDB[0] = opcode;
3288         cmd->Request.CDB[1] = type;
3289         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3290         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3291         cmd->ErrorDescriptor.Addr.upper = 0;
3292         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3293
3294         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3295
3296         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3297                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3298                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3299                         break;
3300                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3301         }
3302
3303         iounmap(vaddr);
3304
3305         /* we leak the DMA buffer here ... no choice since the controller could
3306          *  still complete the command.
3307          */
3308         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3309                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3310                         opcode, type);
3311                 return -ETIMEDOUT;
3312         }
3313
3314         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3315
3316         if (tag & HPSA_ERROR_BIT) {
3317                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3318                         opcode, type);
3319                 return -EIO;
3320         }
3321
3322         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3323                 opcode, type);
3324         return 0;
3325 }
3326
3327 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3328
3329 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3330         void * __iomem vaddr, u32 use_doorbell)
3331 {
3332         u16 pmcsr;
3333         int pos;
3334
3335         if (use_doorbell) {
3336                 /* For everything after the P600, the PCI power state method
3337                  * of resetting the controller doesn't work, so we have this
3338                  * other way using the doorbell register.
3339                  */
3340                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3341                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3342         } else { /* Try to do it the PCI power state way */
3343
3344                 /* Quoting from the Open CISS Specification: "The Power
3345                  * Management Control/Status Register (CSR) controls the power
3346                  * state of the device.  The normal operating state is D0,
3347                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3348                  * the controller, place the interface device in D3 then to D0,
3349                  * this causes a secondary PCI reset which will reset the
3350                  * controller." */
3351
3352                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3353                 if (pos == 0) {
3354                         dev_err(&pdev->dev,
3355                                 "hpsa_reset_controller: "
3356                                 "PCI PM not supported\n");
3357                         return -ENODEV;
3358                 }
3359                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3360                 /* enter the D3hot power management state */
3361                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3362                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3363                 pmcsr |= PCI_D3hot;
3364                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3365
3366                 msleep(500);
3367
3368                 /* enter the D0 power management state */
3369                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3370                 pmcsr |= PCI_D0;
3371                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3372
3373                 /*
3374                  * The P600 requires a small delay when changing states.
3375                  * Otherwise we may think the board did not reset and we bail.
3376                  * This for kdump only and is particular to the P600.
3377                  */
3378                 msleep(500);
3379         }
3380         return 0;
3381 }
3382
3383 static __devinit void init_driver_version(char *driver_version, int len)
3384 {
3385         memset(driver_version, 0, len);
3386         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3387 }
3388
3389 static __devinit int write_driver_ver_to_cfgtable(
3390         struct CfgTable __iomem *cfgtable)
3391 {
3392         char *driver_version;
3393         int i, size = sizeof(cfgtable->driver_version);
3394
3395         driver_version = kmalloc(size, GFP_KERNEL);
3396         if (!driver_version)
3397                 return -ENOMEM;
3398
3399         init_driver_version(driver_version, size);
3400         for (i = 0; i < size; i++)
3401                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3402         kfree(driver_version);
3403         return 0;
3404 }
3405
3406 static __devinit void read_driver_ver_from_cfgtable(
3407         struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3408 {
3409         int i;
3410
3411         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3412                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3413 }
3414
3415 static __devinit int controller_reset_failed(
3416         struct CfgTable __iomem *cfgtable)
3417 {
3418
3419         char *driver_ver, *old_driver_ver;
3420         int rc, size = sizeof(cfgtable->driver_version);
3421
3422         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3423         if (!old_driver_ver)
3424                 return -ENOMEM;
3425         driver_ver = old_driver_ver + size;
3426
3427         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3428          * should have been changed, otherwise we know the reset failed.
3429          */
3430         init_driver_version(old_driver_ver, size);
3431         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3432         rc = !memcmp(driver_ver, old_driver_ver, size);
3433         kfree(old_driver_ver);
3434         return rc;
3435 }
3436 /* This does a hard reset of the controller using PCI power management
3437  * states or the using the doorbell register.
3438  */
3439 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3440 {
3441         u64 cfg_offset;
3442         u32 cfg_base_addr;
3443         u64 cfg_base_addr_index;
3444         void __iomem *vaddr;
3445         unsigned long paddr;
3446         u32 misc_fw_support;
3447         int rc;
3448         struct CfgTable __iomem *cfgtable;
3449         u32 use_doorbell;
3450         u32 board_id;
3451         u16 command_register;
3452
3453         /* For controllers as old as the P600, this is very nearly
3454          * the same thing as
3455          *
3456          * pci_save_state(pci_dev);
3457          * pci_set_power_state(pci_dev, PCI_D3hot);
3458          * pci_set_power_state(pci_dev, PCI_D0);
3459          * pci_restore_state(pci_dev);
3460          *
3461          * For controllers newer than the P600, the pci power state
3462          * method of resetting doesn't work so we have another way
3463          * using the doorbell register.
3464          */
3465
3466         rc = hpsa_lookup_board_id(pdev, &board_id);
3467         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3468                 dev_warn(&pdev->dev, "Not resetting device.\n");
3469                 return -ENODEV;
3470         }
3471
3472         /* if controller is soft- but not hard resettable... */
3473         if (!ctlr_is_hard_resettable(board_id))
3474                 return -ENOTSUPP; /* try soft reset later. */
3475
3476         /* Save the PCI command register */
3477         pci_read_config_word(pdev, 4, &command_register);
3478         /* Turn the board off.  This is so that later pci_restore_state()
3479          * won't turn the board on before the rest of config space is ready.
3480          */
3481         pci_disable_device(pdev);
3482         pci_save_state(pdev);
3483
3484         /* find the first memory BAR, so we can find the cfg table */
3485         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3486         if (rc)
3487                 return rc;
3488         vaddr = remap_pci_mem(paddr, 0x250);
3489         if (!vaddr)
3490                 return -ENOMEM;
3491
3492         /* find cfgtable in order to check if reset via doorbell is supported */
3493         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3494                                         &cfg_base_addr_index, &cfg_offset);
3495         if (rc)
3496                 goto unmap_vaddr;
3497         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3498                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3499         if (!cfgtable) {
3500                 rc = -ENOMEM;
3501                 goto unmap_vaddr;
3502         }
3503         rc = write_driver_ver_to_cfgtable(cfgtable);
3504         if (rc)
3505                 goto unmap_vaddr;
3506
3507         /* If reset via doorbell register is supported, use that.
3508          * There are two such methods.  Favor the newest method.
3509          */
3510         misc_fw_support = readl(&cfgtable->misc_fw_support);
3511         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3512         if (use_doorbell) {
3513                 use_doorbell = DOORBELL_CTLR_RESET2;
3514         } else {
3515                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3516                 if (use_doorbell) {
3517                         dev_warn(&pdev->dev, "Soft reset not supported. "
3518                                 "Firmware update is required.\n");
3519                         rc = -ENOTSUPP; /* try soft reset */
3520                         goto unmap_cfgtable;
3521                 }
3522         }
3523
3524         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3525         if (rc)
3526                 goto unmap_cfgtable;
3527
3528         pci_restore_state(pdev);
3529         rc = pci_enable_device(pdev);
3530         if (rc) {
3531                 dev_warn(&pdev->dev, "failed to enable device.\n");
3532                 goto unmap_cfgtable;
3533         }
3534         pci_write_config_word(pdev, 4, command_register);
3535
3536         /* Some devices (notably the HP Smart Array 5i Controller)
3537            need a little pause here */
3538         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3539
3540         /* Wait for board to become not ready, then ready. */
3541         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3542         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3543         if (rc) {
3544                 dev_warn(&pdev->dev,
3545                         "failed waiting for board to reset."
3546                         " Will try soft reset.\n");
3547                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3548                 goto unmap_cfgtable;
3549         }
3550         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3551         if (rc) {
3552                 dev_warn(&pdev->dev,
3553                         "failed waiting for board to become ready "
3554                         "after hard reset\n");
3555                 goto unmap_cfgtable;
3556         }
3557
3558         rc = controller_reset_failed(vaddr);
3559         if (rc < 0)
3560                 goto unmap_cfgtable;
3561         if (rc) {
3562                 dev_warn(&pdev->dev, "Unable to successfully reset "
3563                         "controller. Will try soft reset.\n");
3564                 rc = -ENOTSUPP;
3565         } else {
3566                 dev_info(&pdev->dev, "board ready after hard reset.\n");
3567         }
3568
3569 unmap_cfgtable:
3570         iounmap(cfgtable);
3571
3572 unmap_vaddr:
3573         iounmap(vaddr);
3574         return rc;
3575 }
3576
3577 /*
3578  *  We cannot read the structure directly, for portability we must use
3579  *   the io functions.
3580  *   This is for debug only.
3581  */
3582 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3583 {
3584 #ifdef HPSA_DEBUG
3585         int i;
3586         char temp_name[17];
3587
3588         dev_info(dev, "Controller Configuration information\n");
3589         dev_info(dev, "------------------------------------\n");
3590         for (i = 0; i < 4; i++)
3591                 temp_name[i] = readb(&(tb->Signature[i]));
3592         temp_name[4] = '\0';
3593         dev_info(dev, "   Signature = %s\n", temp_name);
3594         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3595         dev_info(dev, "   Transport methods supported = 0x%x\n",
3596                readl(&(tb->TransportSupport)));
3597         dev_info(dev, "   Transport methods active = 0x%x\n",
3598                readl(&(tb->TransportActive)));
3599         dev_info(dev, "   Requested transport Method = 0x%x\n",
3600                readl(&(tb->HostWrite.TransportRequest)));
3601         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3602                readl(&(tb->HostWrite.CoalIntDelay)));
3603         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3604                readl(&(tb->HostWrite.CoalIntCount)));
3605         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3606                readl(&(tb->CmdsOutMax)));
3607         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3608         for (i = 0; i < 16; i++)
3609                 temp_name[i] = readb(&(tb->ServerName[i]));
3610         temp_name[16] = '\0';
3611         dev_info(dev, "   Server Name = %s\n", temp_name);
3612         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3613                 readl(&(tb->HeartBeat)));
3614 #endif                          /* HPSA_DEBUG */
3615 }
3616
3617 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3618 {
3619         int i, offset, mem_type, bar_type;
3620
3621         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3622                 return 0;
3623         offset = 0;
3624         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3625                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3626                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3627                         offset += 4;
3628                 else {
3629                         mem_type = pci_resource_flags(pdev, i) &
3630                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3631                         switch (mem_type) {
3632                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3633                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3634                                 offset += 4;    /* 32 bit */
3635                                 break;
3636                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3637                                 offset += 8;
3638                                 break;
3639                         default:        /* reserved in PCI 2.2 */
3640                                 dev_warn(&pdev->dev,
3641                                        "base address is invalid\n");
3642                                 return -1;
3643                                 break;
3644                         }
3645                 }
3646                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3647                         return i + 1;
3648         }
3649         return -1;
3650 }
3651
3652 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3653  * controllers that are capable. If not, we use IO-APIC mode.
3654  */
3655
3656 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3657 {
3658 #ifdef CONFIG_PCI_MSI
3659         int err;
3660         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3661         {0, 2}, {0, 3}
3662         };
3663
3664         /* Some boards advertise MSI but don't really support it */
3665         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3666             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3667                 goto default_int_mode;
3668         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3669                 dev_info(&h->pdev->dev, "MSIX\n");
3670                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3671                 if (!err) {
3672                         h->intr[0] = hpsa_msix_entries[0].vector;
3673                         h->intr[1] = hpsa_msix_entries[1].vector;
3674                         h->intr[2] = hpsa_msix_entries[2].vector;
3675                         h->intr[3] = hpsa_msix_entries[3].vector;
3676                         h->msix_vector = 1;
3677                         return;
3678                 }
3679                 if (err > 0) {
3680                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3681                                "available\n", err);
3682                         goto default_int_mode;
3683                 } else {
3684                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3685                                err);
3686                         goto default_int_mode;
3687                 }
3688         }
3689         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3690                 dev_info(&h->pdev->dev, "MSI\n");
3691                 if (!pci_enable_msi(h->pdev))
3692                         h->msi_vector = 1;
3693                 else
3694                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3695         }
3696 default_int_mode:
3697 #endif                          /* CONFIG_PCI_MSI */
3698         /* if we get here we're going to use the default interrupt mode */
3699         h->intr[h->intr_mode] = h->pdev->irq;
3700 }
3701
3702 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3703 {
3704         int i;
3705         u32 subsystem_vendor_id, subsystem_device_id;
3706
3707         subsystem_vendor_id = pdev->subsystem_vendor;
3708         subsystem_device_id = pdev->subsystem_device;
3709         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3710                     subsystem_vendor_id;
3711
3712         for (i = 0; i < ARRAY_SIZE(products); i++)
3713                 if (*board_id == products[i].board_id)
3714                         return i;
3715
3716         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3717                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3718                 !hpsa_allow_any) {
3719                 dev_warn(&pdev->dev, "unrecognized board ID: "
3720                         "0x%08x, ignoring.\n", *board_id);
3721                         return -ENODEV;
3722         }
3723         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3724 }
3725
3726 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3727         unsigned long *memory_bar)
3728 {
3729         int i;
3730
3731         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3732                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3733                         /* addressing mode bits already removed */
3734                         *memory_bar = pci_resource_start(pdev, i);
3735                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3736                                 *memory_bar);
3737                         return 0;
3738                 }
3739         dev_warn(&pdev->dev, "no memory BAR found\n");
3740         return -ENODEV;
3741 }
3742
3743 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3744         void __iomem *vaddr, int wait_for_ready)
3745 {
3746         int i, iterations;
3747         u32 scratchpad;
3748         if (wait_for_ready)
3749                 iterations = HPSA_BOARD_READY_ITERATIONS;
3750         else
3751                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3752
3753         for (i = 0; i < iterations; i++) {
3754                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3755                 if (wait_for_ready) {
3756                         if (scratchpad == HPSA_FIRMWARE_READY)
3757                                 return 0;
3758                 } else {
3759                         if (scratchpad != HPSA_FIRMWARE_READY)
3760                                 return 0;
3761                 }
3762                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3763         }
3764         dev_warn(&pdev->dev, "board not ready, timed out.\n");
3765         return -ENODEV;
3766 }
3767
3768 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3769         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3770         u64 *cfg_offset)
3771 {
3772         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3773         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3774         *cfg_base_addr &= (u32) 0x0000ffff;
3775         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3776         if (*cfg_base_addr_index == -1) {
3777                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3778                 return -ENODEV;
3779         }
3780         return 0;
3781 }
3782
3783 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3784 {
3785         u64 cfg_offset;
3786         u32 cfg_base_addr;
3787         u64 cfg_base_addr_index;
3788         u32 trans_offset;
3789         int rc;
3790
3791         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3792                 &cfg_base_addr_index, &cfg_offset);
3793         if (rc)
3794                 return rc;
3795         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3796                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3797         if (!h->cfgtable)
3798                 return -ENOMEM;
3799         rc = write_driver_ver_to_cfgtable(h->cfgtable);
3800         if (rc)
3801                 return rc;
3802         /* Find performant mode table. */
3803         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3804         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3805                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3806                                 sizeof(*h->transtable));
3807         if (!h->transtable)
3808                 return -ENOMEM;
3809         return 0;
3810 }
3811
3812 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3813 {
3814         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3815
3816         /* Limit commands in memory limited kdump scenario. */
3817         if (reset_devices && h->max_commands > 32)
3818                 h->max_commands = 32;
3819
3820         if (h->max_commands < 16) {
3821                 dev_warn(&h->pdev->dev, "Controller reports "
3822                         "max supported commands of %d, an obvious lie. "
3823                         "Using 16.  Ensure that firmware is up to date.\n",
3824                         h->max_commands);
3825                 h->max_commands = 16;
3826         }
3827 }
3828
3829 /* Interrogate the hardware for some limits:
3830  * max commands, max SG elements without chaining, and with chaining,
3831  * SG chain block size, etc.
3832  */
3833 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3834 {
3835         hpsa_get_max_perf_mode_cmds(h);
3836         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3837         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3838         /*
3839          * Limit in-command s/g elements to 32 save dma'able memory.
3840          * Howvever spec says if 0, use 31
3841          */
3842         h->max_cmd_sg_entries = 31;
3843         if (h->maxsgentries > 512) {
3844                 h->max_cmd_sg_entries = 32;
3845                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3846                 h->maxsgentries--; /* save one for chain pointer */
3847         } else {
3848                 h->maxsgentries = 31; /* default to traditional values */
3849                 h->chainsize = 0;
3850         }
3851 }
3852
3853 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3854 {
3855         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
3856                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3857                 return false;
3858         }
3859         return true;
3860 }
3861
3862 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3863 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3864 {
3865 #ifdef CONFIG_X86
3866         u32 prefetch;
3867
3868         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3869         prefetch |= 0x100;
3870         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3871 #endif
3872 }
3873
3874 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3875  * in a prefetch beyond physical memory.
3876  */
3877 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3878 {
3879         u32 dma_prefetch;
3880
3881         if (h->board_id != 0x3225103C)
3882                 return;
3883         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3884         dma_prefetch |= 0x8000;
3885         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3886 }
3887
3888 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3889 {
3890         int i;
3891         u32 doorbell_value;
3892         unsigned long flags;
3893
3894         /* under certain very rare conditions, this can take awhile.
3895          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3896          * as we enter this code.)
3897          */
3898         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3899                 spin_lock_irqsave(&h->lock, flags);
3900                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3901                 spin_unlock_irqrestore(&h->lock, flags);
3902                 if (!(doorbell_value & CFGTBL_ChangeReq))
3903                         break;
3904                 /* delay and try again */
3905                 usleep_range(10000, 20000);
3906         }
3907 }
3908
3909 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3910 {
3911         u32 trans_support;
3912
3913         trans_support = readl(&(h->cfgtable->TransportSupport));
3914         if (!(trans_support & SIMPLE_MODE))
3915                 return -ENOTSUPP;
3916
3917         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3918         /* Update the field, and then ring the doorbell */
3919         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3920         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3921         hpsa_wait_for_mode_change_ack(h);
3922         print_cfg_table(&h->pdev->dev, h->cfgtable);
3923         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3924                 dev_warn(&h->pdev->dev,
3925                         "unable to get board into simple mode\n");
3926                 return -ENODEV;
3927         }
3928         h->transMethod = CFGTBL_Trans_Simple;
3929         return 0;
3930 }
3931
3932 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3933 {
3934         int prod_index, err;
3935
3936         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3937         if (prod_index < 0)
3938                 return -ENODEV;
3939         h->product_name = products[prod_index].product_name;
3940         h->access = *(products[prod_index].access);
3941
3942         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
3943                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
3944
3945         err = pci_enable_device(h->pdev);
3946         if (err) {
3947                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3948                 return err;
3949         }
3950
3951         /* Enable bus mastering (pci_disable_device may disable this) */
3952         pci_set_master(h->pdev);
3953
3954         err = pci_request_regions(h->pdev, HPSA);
3955         if (err) {
3956                 dev_err(&h->pdev->dev,
3957                         "cannot obtain PCI resources, aborting\n");
3958                 return err;
3959         }
3960         hpsa_interrupt_mode(h);
3961         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3962         if (err)
3963                 goto err_out_free_res;
3964         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3965         if (!h->vaddr) {
3966                 err = -ENOMEM;
3967                 goto err_out_free_res;
3968         }
3969         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3970         if (err)
3971                 goto err_out_free_res;
3972         err = hpsa_find_cfgtables(h);
3973         if (err)
3974                 goto err_out_free_res;
3975         hpsa_find_board_params(h);
3976
3977         if (!hpsa_CISS_signature_present(h)) {
3978                 err = -ENODEV;
3979                 goto err_out_free_res;
3980         }
3981         hpsa_enable_scsi_prefetch(h);
3982         hpsa_p600_dma_prefetch_quirk(h);
3983         err = hpsa_enter_simple_mode(h);
3984         if (err)
3985                 goto err_out_free_res;
3986         return 0;
3987
3988 err_out_free_res:
3989         if (h->transtable)
3990                 iounmap(h->transtable);
3991         if (h->cfgtable)
3992                 iounmap(h->cfgtable);
3993         if (h->vaddr)
3994                 iounmap(h->vaddr);
3995         pci_disable_device(h->pdev);
3996         pci_release_regions(h->pdev);
3997         return err;
3998 }
3999
4000 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
4001 {
4002         int rc;
4003
4004 #define HBA_INQUIRY_BYTE_COUNT 64
4005         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4006         if (!h->hba_inquiry_data)
4007                 return;
4008         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4009                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4010         if (rc != 0) {
4011                 kfree(h->hba_inquiry_data);
4012                 h->hba_inquiry_data = NULL;
4013         }
4014 }
4015
4016 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
4017 {
4018         int rc, i;
4019
4020         if (!reset_devices)
4021                 return 0;
4022
4023         /* Reset the controller with a PCI power-cycle or via doorbell */
4024         rc = hpsa_kdump_hard_reset_controller(pdev);
4025
4026         /* -ENOTSUPP here means we cannot reset the controller
4027          * but it's already (and still) up and running in
4028          * "performant mode".  Or, it might be 640x, which can't reset
4029          * due to concerns about shared bbwc between 6402/6404 pair.
4030          */
4031         if (rc == -ENOTSUPP)
4032                 return rc; /* just try to do the kdump anyhow. */
4033         if (rc)
4034                 return -ENODEV;
4035
4036         /* Now try to get the controller to respond to a no-op */
4037         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4038         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4039                 if (hpsa_noop(pdev) == 0)
4040                         break;
4041                 else
4042                         dev_warn(&pdev->dev, "no-op failed%s\n",
4043                                         (i < 11 ? "; re-trying" : ""));
4044         }
4045         return 0;
4046 }
4047
4048 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4049 {
4050         h->cmd_pool_bits = kzalloc(
4051                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4052                 sizeof(unsigned long), GFP_KERNEL);
4053         h->cmd_pool = pci_alloc_consistent(h->pdev,
4054                     h->nr_cmds * sizeof(*h->cmd_pool),
4055                     &(h->cmd_pool_dhandle));
4056         h->errinfo_pool = pci_alloc_consistent(h->pdev,
4057                     h->nr_cmds * sizeof(*h->errinfo_pool),
4058                     &(h->errinfo_pool_dhandle));
4059         if ((h->cmd_pool_bits == NULL)
4060             || (h->cmd_pool == NULL)
4061             || (h->errinfo_pool == NULL)) {
4062                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4063                 return -ENOMEM;
4064         }
4065         return 0;
4066 }
4067
4068 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4069 {
4070         kfree(h->cmd_pool_bits);
4071         if (h->cmd_pool)
4072                 pci_free_consistent(h->pdev,
4073                             h->nr_cmds * sizeof(struct CommandList),
4074                             h->cmd_pool, h->cmd_pool_dhandle);
4075         if (h->errinfo_pool)
4076                 pci_free_consistent(h->pdev,
4077                             h->nr_cmds * sizeof(struct ErrorInfo),
4078                             h->errinfo_pool,
4079                             h->errinfo_pool_dhandle);
4080 }
4081
4082 static int hpsa_request_irq(struct ctlr_info *h,
4083         irqreturn_t (*msixhandler)(int, void *),
4084         irqreturn_t (*intxhandler)(int, void *))
4085 {
4086         int rc;
4087
4088         if (h->msix_vector || h->msi_vector)
4089                 rc = request_irq(h->intr[h->intr_mode], msixhandler,
4090                                 0, h->devname, h);
4091         else
4092                 rc = request_irq(h->intr[h->intr_mode], intxhandler,
4093                                 IRQF_SHARED, h->devname, h);
4094         if (rc) {
4095                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4096                        h->intr[h->intr_mode], h->devname);
4097                 return -ENODEV;
4098         }
4099         return 0;
4100 }
4101
4102 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4103 {
4104         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4105                 HPSA_RESET_TYPE_CONTROLLER)) {
4106                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4107                 return -EIO;
4108         }
4109
4110         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4111         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4112                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4113                 return -1;
4114         }
4115
4116         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4117         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4118                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4119                         "after soft reset.\n");
4120                 return -1;
4121         }
4122
4123         return 0;
4124 }
4125
4126 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4127 {
4128         free_irq(h->intr[h->intr_mode], h);
4129 #ifdef CONFIG_PCI_MSI
4130         if (h->msix_vector)
4131                 pci_disable_msix(h->pdev);
4132         else if (h->msi_vector)
4133                 pci_disable_msi(h->pdev);
4134 #endif /* CONFIG_PCI_MSI */
4135         hpsa_free_sg_chain_blocks(h);
4136         hpsa_free_cmd_pool(h);
4137         kfree(h->blockFetchTable);
4138         pci_free_consistent(h->pdev, h->reply_pool_size,
4139                 h->reply_pool, h->reply_pool_dhandle);
4140         if (h->vaddr)
4141                 iounmap(h->vaddr);
4142         if (h->transtable)
4143                 iounmap(h->transtable);
4144         if (h->cfgtable)
4145                 iounmap(h->cfgtable);
4146         pci_release_regions(h->pdev);
4147         kfree(h);
4148 }
4149
4150 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4151 {
4152         assert_spin_locked(&lockup_detector_lock);
4153         if (!hpsa_lockup_detector)
4154                 return;
4155         if (h->lockup_detected)
4156                 return; /* already stopped the lockup detector */
4157         list_del(&h->lockup_list);
4158 }
4159
4160 /* Called when controller lockup detected. */
4161 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4162 {
4163         struct CommandList *c = NULL;
4164
4165         assert_spin_locked(&h->lock);
4166         /* Mark all outstanding commands as failed and complete them. */
4167         while (!list_empty(list)) {
4168                 c = list_entry(list->next, struct CommandList, list);
4169                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4170                 finish_cmd(c, c->Header.Tag.lower);
4171         }
4172 }
4173
4174 static void controller_lockup_detected(struct ctlr_info *h)
4175 {
4176         unsigned long flags;
4177
4178         assert_spin_locked(&lockup_detector_lock);
4179         remove_ctlr_from_lockup_detector_list(h);
4180         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4181         spin_lock_irqsave(&h->lock, flags);
4182         h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4183         spin_unlock_irqrestore(&h->lock, flags);
4184         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4185                         h->lockup_detected);
4186         pci_disable_device(h->pdev);
4187         spin_lock_irqsave(&h->lock, flags);
4188         fail_all_cmds_on_list(h, &h->cmpQ);
4189         fail_all_cmds_on_list(h, &h->reqQ);
4190         spin_unlock_irqrestore(&h->lock, flags);
4191 }
4192
4193 #define HEARTBEAT_SAMPLE_INTERVAL (10 * HZ)
4194 #define HEARTBEAT_CHECK_MINIMUM_INTERVAL (HEARTBEAT_SAMPLE_INTERVAL / 2)
4195
4196 static void detect_controller_lockup(struct ctlr_info *h)
4197 {
4198         u64 now;
4199         u32 heartbeat;
4200         unsigned long flags;
4201
4202         assert_spin_locked(&lockup_detector_lock);
4203         now = get_jiffies_64();
4204         /* If we've received an interrupt recently, we're ok. */
4205         if (time_after64(h->last_intr_timestamp +
4206                                 (HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4207                 return;
4208
4209         /*
4210          * If we've already checked the heartbeat recently, we're ok.
4211          * This could happen if someone sends us a signal. We
4212          * otherwise don't care about signals in this thread.
4213          */
4214         if (time_after64(h->last_heartbeat_timestamp +
4215                                 (HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4216                 return;
4217
4218         /* If heartbeat has not changed since we last looked, we're not ok. */
4219         spin_lock_irqsave(&h->lock, flags);
4220         heartbeat = readl(&h->cfgtable->HeartBeat);
4221         spin_unlock_irqrestore(&h->lock, flags);
4222         if (h->last_heartbeat == heartbeat) {
4223                 controller_lockup_detected(h);
4224                 return;
4225         }
4226
4227         /* We're ok. */
4228         h->last_heartbeat = heartbeat;
4229         h->last_heartbeat_timestamp = now;
4230 }
4231
4232 static int detect_controller_lockup_thread(void *notused)
4233 {
4234         struct ctlr_info *h;
4235         unsigned long flags;
4236
4237         while (1) {
4238                 struct list_head *this, *tmp;
4239
4240                 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4241                 if (kthread_should_stop())
4242                         break;
4243                 spin_lock_irqsave(&lockup_detector_lock, flags);
4244                 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4245                         h = list_entry(this, struct ctlr_info, lockup_list);
4246                         detect_controller_lockup(h);
4247                 }
4248                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4249         }
4250         return 0;
4251 }
4252
4253 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4254 {
4255         unsigned long flags;
4256
4257         spin_lock_irqsave(&lockup_detector_lock, flags);
4258         list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4259         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4260 }
4261
4262 static void start_controller_lockup_detector(struct ctlr_info *h)
4263 {
4264         /* Start the lockup detector thread if not already started */
4265         if (!hpsa_lockup_detector) {
4266                 spin_lock_init(&lockup_detector_lock);
4267                 hpsa_lockup_detector =
4268                         kthread_run(detect_controller_lockup_thread,
4269                                                 NULL, HPSA);
4270         }
4271         if (!hpsa_lockup_detector) {
4272                 dev_warn(&h->pdev->dev,
4273                         "Could not start lockup detector thread\n");
4274                 return;
4275         }
4276         add_ctlr_to_lockup_detector_list(h);
4277 }
4278
4279 static void stop_controller_lockup_detector(struct ctlr_info *h)
4280 {
4281         unsigned long flags;
4282
4283         spin_lock_irqsave(&lockup_detector_lock, flags);
4284         remove_ctlr_from_lockup_detector_list(h);
4285         /* If the list of ctlr's to monitor is empty, stop the thread */
4286         if (list_empty(&hpsa_ctlr_list)) {
4287                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4288                 kthread_stop(hpsa_lockup_detector);
4289                 spin_lock_irqsave(&lockup_detector_lock, flags);
4290                 hpsa_lockup_detector = NULL;
4291         }
4292         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4293 }
4294
4295 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4296                                     const struct pci_device_id *ent)
4297 {
4298         int dac, rc;
4299         struct ctlr_info *h;
4300         int try_soft_reset = 0;
4301         unsigned long flags;
4302
4303         if (number_of_controllers == 0)
4304                 printk(KERN_INFO DRIVER_NAME "\n");
4305
4306         rc = hpsa_init_reset_devices(pdev);
4307         if (rc) {
4308                 if (rc != -ENOTSUPP)
4309                         return rc;
4310                 /* If the reset fails in a particular way (it has no way to do
4311                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4312                  * a soft reset once we get the controller configured up to the
4313                  * point that it can accept a command.
4314                  */
4315                 try_soft_reset = 1;
4316                 rc = 0;
4317         }
4318
4319 reinit_after_soft_reset:
4320
4321         /* Command structures must be aligned on a 32-byte boundary because
4322          * the 5 lower bits of the address are used by the hardware. and by
4323          * the driver.  See comments in hpsa.h for more info.
4324          */
4325 #define COMMANDLIST_ALIGNMENT 32
4326         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4327         h = kzalloc(sizeof(*h), GFP_KERNEL);
4328         if (!h)
4329                 return -ENOMEM;
4330
4331         h->pdev = pdev;
4332         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4333         INIT_LIST_HEAD(&h->cmpQ);
4334         INIT_LIST_HEAD(&h->reqQ);
4335         spin_lock_init(&h->lock);
4336         spin_lock_init(&h->scan_lock);
4337         rc = hpsa_pci_init(h);
4338         if (rc != 0)
4339                 goto clean1;
4340
4341         sprintf(h->devname, HPSA "%d", number_of_controllers);
4342         h->ctlr = number_of_controllers;
4343         number_of_controllers++;
4344
4345         /* configure PCI DMA stuff */
4346         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4347         if (rc == 0) {
4348                 dac = 1;
4349         } else {
4350                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4351                 if (rc == 0) {
4352                         dac = 0;
4353                 } else {
4354                         dev_err(&pdev->dev, "no suitable DMA available\n");
4355                         goto clean1;
4356                 }
4357         }
4358
4359         /* make sure the board interrupts are off */
4360         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4361
4362         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4363                 goto clean2;
4364         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4365                h->devname, pdev->device,
4366                h->intr[h->intr_mode], dac ? "" : " not");
4367         if (hpsa_allocate_cmd_pool(h))
4368                 goto clean4;
4369         if (hpsa_allocate_sg_chain_blocks(h))
4370                 goto clean4;
4371         init_waitqueue_head(&h->scan_wait_queue);
4372         h->scan_finished = 1; /* no scan currently in progress */
4373
4374         pci_set_drvdata(pdev, h);
4375         h->ndevices = 0;
4376         h->scsi_host = NULL;
4377         spin_lock_init(&h->devlock);
4378         hpsa_put_ctlr_into_performant_mode(h);
4379
4380         /* At this point, the controller is ready to take commands.
4381          * Now, if reset_devices and the hard reset didn't work, try
4382          * the soft reset and see if that works.
4383          */
4384         if (try_soft_reset) {
4385
4386                 /* This is kind of gross.  We may or may not get a completion
4387                  * from the soft reset command, and if we do, then the value
4388                  * from the fifo may or may not be valid.  So, we wait 10 secs
4389                  * after the reset throwing away any completions we get during
4390                  * that time.  Unregister the interrupt handler and register
4391                  * fake ones to scoop up any residual completions.
4392                  */
4393                 spin_lock_irqsave(&h->lock, flags);
4394                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4395                 spin_unlock_irqrestore(&h->lock, flags);
4396                 free_irq(h->intr[h->intr_mode], h);
4397                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4398                                         hpsa_intx_discard_completions);
4399                 if (rc) {
4400                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4401                                 "soft reset.\n");
4402                         goto clean4;
4403                 }
4404
4405                 rc = hpsa_kdump_soft_reset(h);
4406                 if (rc)
4407                         /* Neither hard nor soft reset worked, we're hosed. */
4408                         goto clean4;
4409
4410                 dev_info(&h->pdev->dev, "Board READY.\n");
4411                 dev_info(&h->pdev->dev,
4412                         "Waiting for stale completions to drain.\n");
4413                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4414                 msleep(10000);
4415                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4416
4417                 rc = controller_reset_failed(h->cfgtable);
4418                 if (rc)
4419                         dev_info(&h->pdev->dev,
4420                                 "Soft reset appears to have failed.\n");
4421
4422                 /* since the controller's reset, we have to go back and re-init
4423                  * everything.  Easiest to just forget what we've done and do it
4424                  * all over again.
4425                  */
4426                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4427                 try_soft_reset = 0;
4428                 if (rc)
4429                         /* don't go to clean4, we already unallocated */
4430                         return -ENODEV;
4431
4432                 goto reinit_after_soft_reset;
4433         }
4434
4435         /* Turn the interrupts on so we can service requests */
4436         h->access.set_intr_mask(h, HPSA_INTR_ON);
4437
4438         hpsa_hba_inquiry(h);
4439         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4440         start_controller_lockup_detector(h);
4441         return 1;
4442
4443 clean4:
4444         hpsa_free_sg_chain_blocks(h);
4445         hpsa_free_cmd_pool(h);
4446         free_irq(h->intr[h->intr_mode], h);
4447 clean2:
4448 clean1:
4449         kfree(h);
4450         return rc;
4451 }
4452
4453 static void hpsa_flush_cache(struct ctlr_info *h)
4454 {
4455         char *flush_buf;
4456         struct CommandList *c;
4457
4458         flush_buf = kzalloc(4, GFP_KERNEL);
4459         if (!flush_buf)
4460                 return;
4461
4462         c = cmd_special_alloc(h);
4463         if (!c) {
4464                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4465                 goto out_of_memory;
4466         }
4467         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4468                 RAID_CTLR_LUNID, TYPE_CMD);
4469         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4470         if (c->err_info->CommandStatus != 0)
4471                 dev_warn(&h->pdev->dev,
4472                         "error flushing cache on controller\n");
4473         cmd_special_free(h, c);
4474 out_of_memory:
4475         kfree(flush_buf);
4476 }
4477
4478 static void hpsa_shutdown(struct pci_dev *pdev)
4479 {
4480         struct ctlr_info *h;
4481
4482         h = pci_get_drvdata(pdev);
4483         /* Turn board interrupts off  and send the flush cache command
4484          * sendcmd will turn off interrupt, and send the flush...
4485          * To write all data in the battery backed cache to disks
4486          */
4487         hpsa_flush_cache(h);
4488         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4489         free_irq(h->intr[h->intr_mode], h);
4490 #ifdef CONFIG_PCI_MSI
4491         if (h->msix_vector)
4492                 pci_disable_msix(h->pdev);
4493         else if (h->msi_vector)
4494                 pci_disable_msi(h->pdev);
4495 #endif                          /* CONFIG_PCI_MSI */
4496 }
4497
4498 static void __devexit hpsa_free_device_info(struct ctlr_info *h)
4499 {
4500         int i;
4501
4502         for (i = 0; i < h->ndevices; i++)
4503                 kfree(h->dev[i]);
4504 }
4505
4506 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4507 {
4508         struct ctlr_info *h;
4509
4510         if (pci_get_drvdata(pdev) == NULL) {
4511                 dev_err(&pdev->dev, "unable to remove device\n");
4512                 return;
4513         }
4514         h = pci_get_drvdata(pdev);
4515         stop_controller_lockup_detector(h);
4516         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
4517         hpsa_shutdown(pdev);
4518         iounmap(h->vaddr);
4519         iounmap(h->transtable);
4520         iounmap(h->cfgtable);
4521         hpsa_free_device_info(h);
4522         hpsa_free_sg_chain_blocks(h);
4523         pci_free_consistent(h->pdev,
4524                 h->nr_cmds * sizeof(struct CommandList),
4525                 h->cmd_pool, h->cmd_pool_dhandle);
4526         pci_free_consistent(h->pdev,
4527                 h->nr_cmds * sizeof(struct ErrorInfo),
4528                 h->errinfo_pool, h->errinfo_pool_dhandle);
4529         pci_free_consistent(h->pdev, h->reply_pool_size,
4530                 h->reply_pool, h->reply_pool_dhandle);
4531         kfree(h->cmd_pool_bits);
4532         kfree(h->blockFetchTable);
4533         kfree(h->hba_inquiry_data);
4534         pci_disable_device(pdev);
4535         pci_release_regions(pdev);
4536         pci_set_drvdata(pdev, NULL);
4537         kfree(h);
4538 }
4539
4540 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4541         __attribute__((unused)) pm_message_t state)
4542 {
4543         return -ENOSYS;
4544 }
4545
4546 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4547 {
4548         return -ENOSYS;
4549 }
4550
4551 static struct pci_driver hpsa_pci_driver = {
4552         .name = HPSA,
4553         .probe = hpsa_init_one,
4554         .remove = __devexit_p(hpsa_remove_one),
4555         .id_table = hpsa_pci_device_id, /* id_table */
4556         .shutdown = hpsa_shutdown,
4557         .suspend = hpsa_suspend,
4558         .resume = hpsa_resume,
4559 };
4560
4561 /* Fill in bucket_map[], given nsgs (the max number of
4562  * scatter gather elements supported) and bucket[],
4563  * which is an array of 8 integers.  The bucket[] array
4564  * contains 8 different DMA transfer sizes (in 16
4565  * byte increments) which the controller uses to fetch
4566  * commands.  This function fills in bucket_map[], which
4567  * maps a given number of scatter gather elements to one of
4568  * the 8 DMA transfer sizes.  The point of it is to allow the
4569  * controller to only do as much DMA as needed to fetch the
4570  * command, with the DMA transfer size encoded in the lower
4571  * bits of the command address.
4572  */
4573 static void  calc_bucket_map(int bucket[], int num_buckets,
4574         int nsgs, int *bucket_map)
4575 {
4576         int i, j, b, size;
4577
4578         /* even a command with 0 SGs requires 4 blocks */
4579 #define MINIMUM_TRANSFER_BLOCKS 4
4580 #define NUM_BUCKETS 8
4581         /* Note, bucket_map must have nsgs+1 entries. */
4582         for (i = 0; i <= nsgs; i++) {
4583                 /* Compute size of a command with i SG entries */
4584                 size = i + MINIMUM_TRANSFER_BLOCKS;
4585                 b = num_buckets; /* Assume the biggest bucket */
4586                 /* Find the bucket that is just big enough */
4587                 for (j = 0; j < 8; j++) {
4588                         if (bucket[j] >= size) {
4589                                 b = j;
4590                                 break;
4591                         }
4592                 }
4593                 /* for a command with i SG entries, use bucket b. */
4594                 bucket_map[i] = b;
4595         }
4596 }
4597
4598 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4599         u32 use_short_tags)
4600 {
4601         int i;
4602         unsigned long register_value;
4603
4604         /* This is a bit complicated.  There are 8 registers on
4605          * the controller which we write to to tell it 8 different
4606          * sizes of commands which there may be.  It's a way of
4607          * reducing the DMA done to fetch each command.  Encoded into
4608          * each command's tag are 3 bits which communicate to the controller
4609          * which of the eight sizes that command fits within.  The size of
4610          * each command depends on how many scatter gather entries there are.
4611          * Each SG entry requires 16 bytes.  The eight registers are programmed
4612          * with the number of 16-byte blocks a command of that size requires.
4613          * The smallest command possible requires 5 such 16 byte blocks.
4614          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
4615          * blocks.  Note, this only extends to the SG entries contained
4616          * within the command block, and does not extend to chained blocks
4617          * of SG elements.   bft[] contains the eight values we write to
4618          * the registers.  They are not evenly distributed, but have more
4619          * sizes for small commands, and fewer sizes for larger commands.
4620          */
4621         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
4622         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
4623         /*  5 = 1 s/g entry or 4k
4624          *  6 = 2 s/g entry or 8k
4625          *  8 = 4 s/g entry or 16k
4626          * 10 = 6 s/g entry or 24k
4627          */
4628
4629         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4630
4631         /* Controller spec: zero out this buffer. */
4632         memset(h->reply_pool, 0, h->reply_pool_size);
4633         h->reply_pool_head = h->reply_pool;
4634
4635         bft[7] = SG_ENTRIES_IN_CMD + 4;
4636         calc_bucket_map(bft, ARRAY_SIZE(bft),
4637                                 SG_ENTRIES_IN_CMD, h->blockFetchTable);
4638         for (i = 0; i < 8; i++)
4639                 writel(bft[i], &h->transtable->BlockFetch[i]);
4640
4641         /* size of controller ring buffer */
4642         writel(h->max_commands, &h->transtable->RepQSize);
4643         writel(1, &h->transtable->RepQCount);
4644         writel(0, &h->transtable->RepQCtrAddrLow32);
4645         writel(0, &h->transtable->RepQCtrAddrHigh32);
4646         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4647         writel(0, &h->transtable->RepQAddr0High32);
4648         writel(CFGTBL_Trans_Performant | use_short_tags,
4649                 &(h->cfgtable->HostWrite.TransportRequest));
4650         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4651         hpsa_wait_for_mode_change_ack(h);
4652         register_value = readl(&(h->cfgtable->TransportActive));
4653         if (!(register_value & CFGTBL_Trans_Performant)) {
4654                 dev_warn(&h->pdev->dev, "unable to get board into"
4655                                         " performant mode\n");
4656                 return;
4657         }
4658         /* Change the access methods to the performant access methods */
4659         h->access = SA5_performant_access;
4660         h->transMethod = CFGTBL_Trans_Performant;
4661 }
4662
4663 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4664 {
4665         u32 trans_support;
4666
4667         if (hpsa_simple_mode)
4668                 return;
4669
4670         trans_support = readl(&(h->cfgtable->TransportSupport));
4671         if (!(trans_support & PERFORMANT_MODE))
4672                 return;
4673
4674         hpsa_get_max_perf_mode_cmds(h);
4675         /* Performant mode ring buffer and supporting data structures */
4676         h->reply_pool_size = h->max_commands * sizeof(u64);
4677         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4678                                 &(h->reply_pool_dhandle));
4679
4680         /* Need a block fetch table for performant mode */
4681         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
4682                                 sizeof(u32)), GFP_KERNEL);
4683
4684         if ((h->reply_pool == NULL)
4685                 || (h->blockFetchTable == NULL))
4686                 goto clean_up;
4687
4688         hpsa_enter_performant_mode(h,
4689                 trans_support & CFGTBL_Trans_use_short_tags);
4690
4691         return;
4692
4693 clean_up:
4694         if (h->reply_pool)
4695                 pci_free_consistent(h->pdev, h->reply_pool_size,
4696                         h->reply_pool, h->reply_pool_dhandle);
4697         kfree(h->blockFetchTable);
4698 }
4699
4700 /*
4701  *  This is it.  Register the PCI driver information for the cards we control
4702  *  the OS will call our registered routines when it finds one of our cards.
4703  */
4704 static int __init hpsa_init(void)
4705 {
4706         return pci_register_driver(&hpsa_pci_driver);
4707 }
4708
4709 static void __exit hpsa_cleanup(void)
4710 {
4711         pci_unregister_driver(&hpsa_pci_driver);
4712 }
4713
4714 module_init(hpsa_init);
4715 module_exit(hpsa_cleanup);