hpsa: do not check cmd_alloc return value - it cannnot return NULL
[platform/kernel/linux-rpi.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <scsi/scsi_eh.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
60 #define HPSA_DRIVER_VERSION "3.4.4-1"
61 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
62 #define HPSA "hpsa"
63
64 /* How long to wait for CISS doorbell communication */
65 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
66 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
67 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
68 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
69 #define MAX_IOCTL_CONFIG_WAIT 1000
70
71 /*define how many times we will try a command because of bus resets */
72 #define MAX_CMD_RETRIES 3
73
74 /* Embedded module documentation macros - see modules.h */
75 MODULE_AUTHOR("Hewlett-Packard Company");
76 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
77         HPSA_DRIVER_VERSION);
78 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
79 MODULE_VERSION(HPSA_DRIVER_VERSION);
80 MODULE_LICENSE("GPL");
81
82 static int hpsa_allow_any;
83 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
84 MODULE_PARM_DESC(hpsa_allow_any,
85                 "Allow hpsa driver to access unknown HP Smart Array hardware");
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89         "Use 'simple mode' rather than 'performant mode'");
90
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
133         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
134         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
135         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
136         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
137         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
138         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
139                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
140         {0,}
141 };
142
143 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
144
145 /*  board_id = Subsystem Device ID & Vendor ID
146  *  product = Marketing Name for the board
147  *  access = Address of the struct of function pointers
148  */
149 static struct board_type products[] = {
150         {0x3241103C, "Smart Array P212", &SA5_access},
151         {0x3243103C, "Smart Array P410", &SA5_access},
152         {0x3245103C, "Smart Array P410i", &SA5_access},
153         {0x3247103C, "Smart Array P411", &SA5_access},
154         {0x3249103C, "Smart Array P812", &SA5_access},
155         {0x324A103C, "Smart Array P712m", &SA5_access},
156         {0x324B103C, "Smart Array P711m", &SA5_access},
157         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
158         {0x3350103C, "Smart Array P222", &SA5_access},
159         {0x3351103C, "Smart Array P420", &SA5_access},
160         {0x3352103C, "Smart Array P421", &SA5_access},
161         {0x3353103C, "Smart Array P822", &SA5_access},
162         {0x3354103C, "Smart Array P420i", &SA5_access},
163         {0x3355103C, "Smart Array P220i", &SA5_access},
164         {0x3356103C, "Smart Array P721m", &SA5_access},
165         {0x1921103C, "Smart Array P830i", &SA5_access},
166         {0x1922103C, "Smart Array P430", &SA5_access},
167         {0x1923103C, "Smart Array P431", &SA5_access},
168         {0x1924103C, "Smart Array P830", &SA5_access},
169         {0x1926103C, "Smart Array P731m", &SA5_access},
170         {0x1928103C, "Smart Array P230i", &SA5_access},
171         {0x1929103C, "Smart Array P530", &SA5_access},
172         {0x21BD103C, "Smart Array P244br", &SA5_access},
173         {0x21BE103C, "Smart Array P741m", &SA5_access},
174         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
175         {0x21C0103C, "Smart Array P440ar", &SA5_access},
176         {0x21C1103C, "Smart Array P840ar", &SA5_access},
177         {0x21C2103C, "Smart Array P440", &SA5_access},
178         {0x21C3103C, "Smart Array P441", &SA5_access},
179         {0x21C4103C, "Smart Array", &SA5_access},
180         {0x21C5103C, "Smart Array P841", &SA5_access},
181         {0x21C6103C, "Smart HBA H244br", &SA5_access},
182         {0x21C7103C, "Smart HBA H240", &SA5_access},
183         {0x21C8103C, "Smart HBA H241", &SA5_access},
184         {0x21C9103C, "Smart Array", &SA5_access},
185         {0x21CA103C, "Smart Array P246br", &SA5_access},
186         {0x21CB103C, "Smart Array P840", &SA5_access},
187         {0x21CC103C, "Smart Array", &SA5_access},
188         {0x21CD103C, "Smart Array", &SA5_access},
189         {0x21CE103C, "Smart HBA", &SA5_access},
190         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
191         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
192         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
193         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
194         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
195         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
196 };
197
198 static int number_of_controllers;
199
200 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
201 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
202 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
203
204 #ifdef CONFIG_COMPAT
205 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
206         void __user *arg);
207 #endif
208
209 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
210 static struct CommandList *cmd_alloc(struct ctlr_info *h);
211 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
212         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
213         int cmd_type);
214 static void hpsa_free_cmd_pool(struct ctlr_info *h);
215 #define VPD_PAGE (1 << 8)
216
217 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
218 static void hpsa_scan_start(struct Scsi_Host *);
219 static int hpsa_scan_finished(struct Scsi_Host *sh,
220         unsigned long elapsed_time);
221 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
222
223 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
224 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
225 static int hpsa_slave_alloc(struct scsi_device *sdev);
226 static int hpsa_slave_configure(struct scsi_device *sdev);
227 static void hpsa_slave_destroy(struct scsi_device *sdev);
228
229 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
230 static int check_for_unit_attention(struct ctlr_info *h,
231         struct CommandList *c);
232 static void check_ioctl_unit_attention(struct ctlr_info *h,
233         struct CommandList *c);
234 /* performant mode helper functions */
235 static void calc_bucket_map(int *bucket, int num_buckets,
236         int nsgs, int min_blocks, u32 *bucket_map);
237 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
238 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h);
239 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h);
240 static inline u32 next_command(struct ctlr_info *h, u8 q);
241 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
242                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
243                                u64 *cfg_offset);
244 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
245                                     unsigned long *memory_bar);
246 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
247 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
248                                      int wait_for_ready);
249 static inline void finish_cmd(struct CommandList *c);
250 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
251 #define BOARD_NOT_READY 0
252 #define BOARD_READY 1
253 static void hpsa_drain_accel_commands(struct ctlr_info *h);
254 static void hpsa_flush_cache(struct ctlr_info *h);
255 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
256         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
257         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
258 static void hpsa_command_resubmit_worker(struct work_struct *work);
259 static u32 lockup_detected(struct ctlr_info *h);
260 static int detect_controller_lockup(struct ctlr_info *h);
261
262 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
263 {
264         unsigned long *priv = shost_priv(sdev->host);
265         return (struct ctlr_info *) *priv;
266 }
267
268 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
269 {
270         unsigned long *priv = shost_priv(sh);
271         return (struct ctlr_info *) *priv;
272 }
273
274 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
275 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
276                         u8 *sense_key, u8 *asc, u8 *ascq)
277 {
278         struct scsi_sense_hdr sshdr;
279         bool rc;
280
281         *sense_key = -1;
282         *asc = -1;
283         *ascq = -1;
284
285         if (sense_data_len < 1)
286                 return;
287
288         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
289         if (rc) {
290                 *sense_key = sshdr.sense_key;
291                 *asc = sshdr.asc;
292                 *ascq = sshdr.ascq;
293         }
294 }
295
296 static int check_for_unit_attention(struct ctlr_info *h,
297         struct CommandList *c)
298 {
299         u8 sense_key, asc, ascq;
300         int sense_len;
301
302         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
303                 sense_len = sizeof(c->err_info->SenseInfo);
304         else
305                 sense_len = c->err_info->SenseLen;
306
307         decode_sense_data(c->err_info->SenseInfo, sense_len,
308                                 &sense_key, &asc, &ascq);
309         if (sense_key != UNIT_ATTENTION || asc == -1)
310                 return 0;
311
312         switch (asc) {
313         case STATE_CHANGED:
314                 dev_warn(&h->pdev->dev,
315                         HPSA "%d: a state change detected, command retried\n",
316                         h->ctlr);
317                 break;
318         case LUN_FAILED:
319                 dev_warn(&h->pdev->dev,
320                         HPSA "%d: LUN failure detected\n", h->ctlr);
321                 break;
322         case REPORT_LUNS_CHANGED:
323                 dev_warn(&h->pdev->dev,
324                         HPSA "%d: report LUN data changed\n", h->ctlr);
325         /*
326          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
327          * target (array) devices.
328          */
329                 break;
330         case POWER_OR_RESET:
331                 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
332                         "or device reset detected\n", h->ctlr);
333                 break;
334         case UNIT_ATTENTION_CLEARED:
335                 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
336                     "cleared by another initiator\n", h->ctlr);
337                 break;
338         default:
339                 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
340                         "unit attention detected\n", h->ctlr);
341                 break;
342         }
343         return 1;
344 }
345
346 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
347 {
348         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
349                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
350                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
351                 return 0;
352         dev_warn(&h->pdev->dev, HPSA "device busy");
353         return 1;
354 }
355
356 static u32 lockup_detected(struct ctlr_info *h);
357 static ssize_t host_show_lockup_detected(struct device *dev,
358                 struct device_attribute *attr, char *buf)
359 {
360         int ld;
361         struct ctlr_info *h;
362         struct Scsi_Host *shost = class_to_shost(dev);
363
364         h = shost_to_hba(shost);
365         ld = lockup_detected(h);
366
367         return sprintf(buf, "ld=%d\n", ld);
368 }
369
370 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
371                                          struct device_attribute *attr,
372                                          const char *buf, size_t count)
373 {
374         int status, len;
375         struct ctlr_info *h;
376         struct Scsi_Host *shost = class_to_shost(dev);
377         char tmpbuf[10];
378
379         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
380                 return -EACCES;
381         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
382         strncpy(tmpbuf, buf, len);
383         tmpbuf[len] = '\0';
384         if (sscanf(tmpbuf, "%d", &status) != 1)
385                 return -EINVAL;
386         h = shost_to_hba(shost);
387         h->acciopath_status = !!status;
388         dev_warn(&h->pdev->dev,
389                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
390                 h->acciopath_status ? "enabled" : "disabled");
391         return count;
392 }
393
394 static ssize_t host_store_raid_offload_debug(struct device *dev,
395                                          struct device_attribute *attr,
396                                          const char *buf, size_t count)
397 {
398         int debug_level, len;
399         struct ctlr_info *h;
400         struct Scsi_Host *shost = class_to_shost(dev);
401         char tmpbuf[10];
402
403         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
404                 return -EACCES;
405         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
406         strncpy(tmpbuf, buf, len);
407         tmpbuf[len] = '\0';
408         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
409                 return -EINVAL;
410         if (debug_level < 0)
411                 debug_level = 0;
412         h = shost_to_hba(shost);
413         h->raid_offload_debug = debug_level;
414         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
415                 h->raid_offload_debug);
416         return count;
417 }
418
419 static ssize_t host_store_rescan(struct device *dev,
420                                  struct device_attribute *attr,
421                                  const char *buf, size_t count)
422 {
423         struct ctlr_info *h;
424         struct Scsi_Host *shost = class_to_shost(dev);
425         h = shost_to_hba(shost);
426         hpsa_scan_start(h->scsi_host);
427         return count;
428 }
429
430 static ssize_t host_show_firmware_revision(struct device *dev,
431              struct device_attribute *attr, char *buf)
432 {
433         struct ctlr_info *h;
434         struct Scsi_Host *shost = class_to_shost(dev);
435         unsigned char *fwrev;
436
437         h = shost_to_hba(shost);
438         if (!h->hba_inquiry_data)
439                 return 0;
440         fwrev = &h->hba_inquiry_data[32];
441         return snprintf(buf, 20, "%c%c%c%c\n",
442                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
443 }
444
445 static ssize_t host_show_commands_outstanding(struct device *dev,
446              struct device_attribute *attr, char *buf)
447 {
448         struct Scsi_Host *shost = class_to_shost(dev);
449         struct ctlr_info *h = shost_to_hba(shost);
450
451         return snprintf(buf, 20, "%d\n",
452                         atomic_read(&h->commands_outstanding));
453 }
454
455 static ssize_t host_show_transport_mode(struct device *dev,
456         struct device_attribute *attr, char *buf)
457 {
458         struct ctlr_info *h;
459         struct Scsi_Host *shost = class_to_shost(dev);
460
461         h = shost_to_hba(shost);
462         return snprintf(buf, 20, "%s\n",
463                 h->transMethod & CFGTBL_Trans_Performant ?
464                         "performant" : "simple");
465 }
466
467 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
468         struct device_attribute *attr, char *buf)
469 {
470         struct ctlr_info *h;
471         struct Scsi_Host *shost = class_to_shost(dev);
472
473         h = shost_to_hba(shost);
474         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
475                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
476 }
477
478 /* List of controllers which cannot be hard reset on kexec with reset_devices */
479 static u32 unresettable_controller[] = {
480         0x324a103C, /* Smart Array P712m */
481         0x324b103C, /* Smart Array P711m */
482         0x3223103C, /* Smart Array P800 */
483         0x3234103C, /* Smart Array P400 */
484         0x3235103C, /* Smart Array P400i */
485         0x3211103C, /* Smart Array E200i */
486         0x3212103C, /* Smart Array E200 */
487         0x3213103C, /* Smart Array E200i */
488         0x3214103C, /* Smart Array E200i */
489         0x3215103C, /* Smart Array E200i */
490         0x3237103C, /* Smart Array E500 */
491         0x323D103C, /* Smart Array P700m */
492         0x40800E11, /* Smart Array 5i */
493         0x409C0E11, /* Smart Array 6400 */
494         0x409D0E11, /* Smart Array 6400 EM */
495         0x40700E11, /* Smart Array 5300 */
496         0x40820E11, /* Smart Array 532 */
497         0x40830E11, /* Smart Array 5312 */
498         0x409A0E11, /* Smart Array 641 */
499         0x409B0E11, /* Smart Array 642 */
500         0x40910E11, /* Smart Array 6i */
501 };
502
503 /* List of controllers which cannot even be soft reset */
504 static u32 soft_unresettable_controller[] = {
505         0x40800E11, /* Smart Array 5i */
506         0x40700E11, /* Smart Array 5300 */
507         0x40820E11, /* Smart Array 532 */
508         0x40830E11, /* Smart Array 5312 */
509         0x409A0E11, /* Smart Array 641 */
510         0x409B0E11, /* Smart Array 642 */
511         0x40910E11, /* Smart Array 6i */
512         /* Exclude 640x boards.  These are two pci devices in one slot
513          * which share a battery backed cache module.  One controls the
514          * cache, the other accesses the cache through the one that controls
515          * it.  If we reset the one controlling the cache, the other will
516          * likely not be happy.  Just forbid resetting this conjoined mess.
517          * The 640x isn't really supported by hpsa anyway.
518          */
519         0x409C0E11, /* Smart Array 6400 */
520         0x409D0E11, /* Smart Array 6400 EM */
521 };
522
523 static u32 needs_abort_tags_swizzled[] = {
524         0x323D103C, /* Smart Array P700m */
525         0x324a103C, /* Smart Array P712m */
526         0x324b103C, /* SmartArray P711m */
527 };
528
529 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
530 {
531         int i;
532
533         for (i = 0; i < nelems; i++)
534                 if (a[i] == board_id)
535                         return 1;
536         return 0;
537 }
538
539 static int ctlr_is_hard_resettable(u32 board_id)
540 {
541         return !board_id_in_array(unresettable_controller,
542                         ARRAY_SIZE(unresettable_controller), board_id);
543 }
544
545 static int ctlr_is_soft_resettable(u32 board_id)
546 {
547         return !board_id_in_array(soft_unresettable_controller,
548                         ARRAY_SIZE(soft_unresettable_controller), board_id);
549 }
550
551 static int ctlr_is_resettable(u32 board_id)
552 {
553         return ctlr_is_hard_resettable(board_id) ||
554                 ctlr_is_soft_resettable(board_id);
555 }
556
557 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
558 {
559         return board_id_in_array(needs_abort_tags_swizzled,
560                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
561 }
562
563 static ssize_t host_show_resettable(struct device *dev,
564         struct device_attribute *attr, char *buf)
565 {
566         struct ctlr_info *h;
567         struct Scsi_Host *shost = class_to_shost(dev);
568
569         h = shost_to_hba(shost);
570         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
571 }
572
573 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
574 {
575         return (scsi3addr[3] & 0xC0) == 0x40;
576 }
577
578 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
579         "1(+0)ADM", "UNKNOWN"
580 };
581 #define HPSA_RAID_0     0
582 #define HPSA_RAID_4     1
583 #define HPSA_RAID_1     2       /* also used for RAID 10 */
584 #define HPSA_RAID_5     3       /* also used for RAID 50 */
585 #define HPSA_RAID_51    4
586 #define HPSA_RAID_6     5       /* also used for RAID 60 */
587 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
588 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
589
590 static ssize_t raid_level_show(struct device *dev,
591              struct device_attribute *attr, char *buf)
592 {
593         ssize_t l = 0;
594         unsigned char rlevel;
595         struct ctlr_info *h;
596         struct scsi_device *sdev;
597         struct hpsa_scsi_dev_t *hdev;
598         unsigned long flags;
599
600         sdev = to_scsi_device(dev);
601         h = sdev_to_hba(sdev);
602         spin_lock_irqsave(&h->lock, flags);
603         hdev = sdev->hostdata;
604         if (!hdev) {
605                 spin_unlock_irqrestore(&h->lock, flags);
606                 return -ENODEV;
607         }
608
609         /* Is this even a logical drive? */
610         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
611                 spin_unlock_irqrestore(&h->lock, flags);
612                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
613                 return l;
614         }
615
616         rlevel = hdev->raid_level;
617         spin_unlock_irqrestore(&h->lock, flags);
618         if (rlevel > RAID_UNKNOWN)
619                 rlevel = RAID_UNKNOWN;
620         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
621         return l;
622 }
623
624 static ssize_t lunid_show(struct device *dev,
625              struct device_attribute *attr, char *buf)
626 {
627         struct ctlr_info *h;
628         struct scsi_device *sdev;
629         struct hpsa_scsi_dev_t *hdev;
630         unsigned long flags;
631         unsigned char lunid[8];
632
633         sdev = to_scsi_device(dev);
634         h = sdev_to_hba(sdev);
635         spin_lock_irqsave(&h->lock, flags);
636         hdev = sdev->hostdata;
637         if (!hdev) {
638                 spin_unlock_irqrestore(&h->lock, flags);
639                 return -ENODEV;
640         }
641         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
642         spin_unlock_irqrestore(&h->lock, flags);
643         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
644                 lunid[0], lunid[1], lunid[2], lunid[3],
645                 lunid[4], lunid[5], lunid[6], lunid[7]);
646 }
647
648 static ssize_t unique_id_show(struct device *dev,
649              struct device_attribute *attr, char *buf)
650 {
651         struct ctlr_info *h;
652         struct scsi_device *sdev;
653         struct hpsa_scsi_dev_t *hdev;
654         unsigned long flags;
655         unsigned char sn[16];
656
657         sdev = to_scsi_device(dev);
658         h = sdev_to_hba(sdev);
659         spin_lock_irqsave(&h->lock, flags);
660         hdev = sdev->hostdata;
661         if (!hdev) {
662                 spin_unlock_irqrestore(&h->lock, flags);
663                 return -ENODEV;
664         }
665         memcpy(sn, hdev->device_id, sizeof(sn));
666         spin_unlock_irqrestore(&h->lock, flags);
667         return snprintf(buf, 16 * 2 + 2,
668                         "%02X%02X%02X%02X%02X%02X%02X%02X"
669                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
670                         sn[0], sn[1], sn[2], sn[3],
671                         sn[4], sn[5], sn[6], sn[7],
672                         sn[8], sn[9], sn[10], sn[11],
673                         sn[12], sn[13], sn[14], sn[15]);
674 }
675
676 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
677              struct device_attribute *attr, char *buf)
678 {
679         struct ctlr_info *h;
680         struct scsi_device *sdev;
681         struct hpsa_scsi_dev_t *hdev;
682         unsigned long flags;
683         int offload_enabled;
684
685         sdev = to_scsi_device(dev);
686         h = sdev_to_hba(sdev);
687         spin_lock_irqsave(&h->lock, flags);
688         hdev = sdev->hostdata;
689         if (!hdev) {
690                 spin_unlock_irqrestore(&h->lock, flags);
691                 return -ENODEV;
692         }
693         offload_enabled = hdev->offload_enabled;
694         spin_unlock_irqrestore(&h->lock, flags);
695         return snprintf(buf, 20, "%d\n", offload_enabled);
696 }
697
698 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
699 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
700 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
701 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
702 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
703                         host_show_hp_ssd_smart_path_enabled, NULL);
704 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
705                 host_show_hp_ssd_smart_path_status,
706                 host_store_hp_ssd_smart_path_status);
707 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
708                         host_store_raid_offload_debug);
709 static DEVICE_ATTR(firmware_revision, S_IRUGO,
710         host_show_firmware_revision, NULL);
711 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
712         host_show_commands_outstanding, NULL);
713 static DEVICE_ATTR(transport_mode, S_IRUGO,
714         host_show_transport_mode, NULL);
715 static DEVICE_ATTR(resettable, S_IRUGO,
716         host_show_resettable, NULL);
717 static DEVICE_ATTR(lockup_detected, S_IRUGO,
718         host_show_lockup_detected, NULL);
719
720 static struct device_attribute *hpsa_sdev_attrs[] = {
721         &dev_attr_raid_level,
722         &dev_attr_lunid,
723         &dev_attr_unique_id,
724         &dev_attr_hp_ssd_smart_path_enabled,
725         &dev_attr_lockup_detected,
726         NULL,
727 };
728
729 static struct device_attribute *hpsa_shost_attrs[] = {
730         &dev_attr_rescan,
731         &dev_attr_firmware_revision,
732         &dev_attr_commands_outstanding,
733         &dev_attr_transport_mode,
734         &dev_attr_resettable,
735         &dev_attr_hp_ssd_smart_path_status,
736         &dev_attr_raid_offload_debug,
737         NULL,
738 };
739
740 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
741                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
742
743 static struct scsi_host_template hpsa_driver_template = {
744         .module                 = THIS_MODULE,
745         .name                   = HPSA,
746         .proc_name              = HPSA,
747         .queuecommand           = hpsa_scsi_queue_command,
748         .scan_start             = hpsa_scan_start,
749         .scan_finished          = hpsa_scan_finished,
750         .change_queue_depth     = hpsa_change_queue_depth,
751         .this_id                = -1,
752         .use_clustering         = ENABLE_CLUSTERING,
753         .eh_abort_handler       = hpsa_eh_abort_handler,
754         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
755         .ioctl                  = hpsa_ioctl,
756         .slave_alloc            = hpsa_slave_alloc,
757         .slave_configure        = hpsa_slave_configure,
758         .slave_destroy          = hpsa_slave_destroy,
759 #ifdef CONFIG_COMPAT
760         .compat_ioctl           = hpsa_compat_ioctl,
761 #endif
762         .sdev_attrs = hpsa_sdev_attrs,
763         .shost_attrs = hpsa_shost_attrs,
764         .max_sectors = 8192,
765         .no_write_same = 1,
766 };
767
768 static inline u32 next_command(struct ctlr_info *h, u8 q)
769 {
770         u32 a;
771         struct reply_queue_buffer *rq = &h->reply_queue[q];
772
773         if (h->transMethod & CFGTBL_Trans_io_accel1)
774                 return h->access.command_completed(h, q);
775
776         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
777                 return h->access.command_completed(h, q);
778
779         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
780                 a = rq->head[rq->current_entry];
781                 rq->current_entry++;
782                 atomic_dec(&h->commands_outstanding);
783         } else {
784                 a = FIFO_EMPTY;
785         }
786         /* Check for wraparound */
787         if (rq->current_entry == h->max_commands) {
788                 rq->current_entry = 0;
789                 rq->wraparound ^= 1;
790         }
791         return a;
792 }
793
794 /*
795  * There are some special bits in the bus address of the
796  * command that we have to set for the controller to know
797  * how to process the command:
798  *
799  * Normal performant mode:
800  * bit 0: 1 means performant mode, 0 means simple mode.
801  * bits 1-3 = block fetch table entry
802  * bits 4-6 = command type (== 0)
803  *
804  * ioaccel1 mode:
805  * bit 0 = "performant mode" bit.
806  * bits 1-3 = block fetch table entry
807  * bits 4-6 = command type (== 110)
808  * (command type is needed because ioaccel1 mode
809  * commands are submitted through the same register as normal
810  * mode commands, so this is how the controller knows whether
811  * the command is normal mode or ioaccel1 mode.)
812  *
813  * ioaccel2 mode:
814  * bit 0 = "performant mode" bit.
815  * bits 1-4 = block fetch table entry (note extra bit)
816  * bits 4-6 = not needed, because ioaccel2 mode has
817  * a separate special register for submitting commands.
818  */
819
820 /*
821  * set_performant_mode: Modify the tag for cciss performant
822  * set bit 0 for pull model, bits 3-1 for block fetch
823  * register number
824  */
825 #define DEFAULT_REPLY_QUEUE (-1)
826 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
827                                         int reply_queue)
828 {
829         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
830                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
831                 if (unlikely(!h->msix_vector))
832                         return;
833                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
834                         c->Header.ReplyQueue =
835                                 raw_smp_processor_id() % h->nreply_queues;
836                 else
837                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
838         }
839 }
840
841 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
842                                                 struct CommandList *c,
843                                                 int reply_queue)
844 {
845         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
846
847         /*
848          * Tell the controller to post the reply to the queue for this
849          * processor.  This seems to give the best I/O throughput.
850          */
851         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
852                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
853         else
854                 cp->ReplyQueue = reply_queue % h->nreply_queues;
855         /*
856          * Set the bits in the address sent down to include:
857          *  - performant mode bit (bit 0)
858          *  - pull count (bits 1-3)
859          *  - command type (bits 4-6)
860          */
861         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
862                                         IOACCEL1_BUSADDR_CMDTYPE;
863 }
864
865 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
866                                                 struct CommandList *c,
867                                                 int reply_queue)
868 {
869         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
870
871         /*
872          * Tell the controller to post the reply to the queue for this
873          * processor.  This seems to give the best I/O throughput.
874          */
875         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
876                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
877         else
878                 cp->reply_queue = reply_queue % h->nreply_queues;
879         /*
880          * Set the bits in the address sent down to include:
881          *  - performant mode bit not used in ioaccel mode 2
882          *  - pull count (bits 0-3)
883          *  - command type isn't needed for ioaccel2
884          */
885         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
886 }
887
888 static int is_firmware_flash_cmd(u8 *cdb)
889 {
890         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
891 }
892
893 /*
894  * During firmware flash, the heartbeat register may not update as frequently
895  * as it should.  So we dial down lockup detection during firmware flash. and
896  * dial it back up when firmware flash completes.
897  */
898 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
899 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
900 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
901                 struct CommandList *c)
902 {
903         if (!is_firmware_flash_cmd(c->Request.CDB))
904                 return;
905         atomic_inc(&h->firmware_flash_in_progress);
906         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
907 }
908
909 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
910                 struct CommandList *c)
911 {
912         if (is_firmware_flash_cmd(c->Request.CDB) &&
913                 atomic_dec_and_test(&h->firmware_flash_in_progress))
914                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
915 }
916
917 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
918         struct CommandList *c, int reply_queue)
919 {
920         dial_down_lockup_detection_during_fw_flash(h, c);
921         atomic_inc(&h->commands_outstanding);
922         switch (c->cmd_type) {
923         case CMD_IOACCEL1:
924                 set_ioaccel1_performant_mode(h, c, reply_queue);
925                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
926                 break;
927         case CMD_IOACCEL2:
928                 set_ioaccel2_performant_mode(h, c, reply_queue);
929                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
930                 break;
931         default:
932                 set_performant_mode(h, c, reply_queue);
933                 h->access.submit_command(h, c);
934         }
935 }
936
937 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
938                                         struct CommandList *c)
939 {
940         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
941 }
942
943 static inline int is_hba_lunid(unsigned char scsi3addr[])
944 {
945         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
946 }
947
948 static inline int is_scsi_rev_5(struct ctlr_info *h)
949 {
950         if (!h->hba_inquiry_data)
951                 return 0;
952         if ((h->hba_inquiry_data[2] & 0x07) == 5)
953                 return 1;
954         return 0;
955 }
956
957 static int hpsa_find_target_lun(struct ctlr_info *h,
958         unsigned char scsi3addr[], int bus, int *target, int *lun)
959 {
960         /* finds an unused bus, target, lun for a new physical device
961          * assumes h->devlock is held
962          */
963         int i, found = 0;
964         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
965
966         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
967
968         for (i = 0; i < h->ndevices; i++) {
969                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
970                         __set_bit(h->dev[i]->target, lun_taken);
971         }
972
973         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
974         if (i < HPSA_MAX_DEVICES) {
975                 /* *bus = 1; */
976                 *target = i;
977                 *lun = 0;
978                 found = 1;
979         }
980         return !found;
981 }
982
983 static inline void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
984         struct hpsa_scsi_dev_t *dev, char *description)
985 {
986         dev_printk(level, &h->pdev->dev,
987                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
988                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
989                         description,
990                         scsi_device_type(dev->devtype),
991                         dev->vendor,
992                         dev->model,
993                         dev->raid_level > RAID_UNKNOWN ?
994                                 "RAID-?" : raid_label[dev->raid_level],
995                         dev->offload_config ? '+' : '-',
996                         dev->offload_enabled ? '+' : '-',
997                         dev->expose_state);
998 }
999
1000 /* Add an entry into h->dev[] array. */
1001 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
1002                 struct hpsa_scsi_dev_t *device,
1003                 struct hpsa_scsi_dev_t *added[], int *nadded)
1004 {
1005         /* assumes h->devlock is held */
1006         int n = h->ndevices;
1007         int i;
1008         unsigned char addr1[8], addr2[8];
1009         struct hpsa_scsi_dev_t *sd;
1010
1011         if (n >= HPSA_MAX_DEVICES) {
1012                 dev_err(&h->pdev->dev, "too many devices, some will be "
1013                         "inaccessible.\n");
1014                 return -1;
1015         }
1016
1017         /* physical devices do not have lun or target assigned until now. */
1018         if (device->lun != -1)
1019                 /* Logical device, lun is already assigned. */
1020                 goto lun_assigned;
1021
1022         /* If this device a non-zero lun of a multi-lun device
1023          * byte 4 of the 8-byte LUN addr will contain the logical
1024          * unit no, zero otherwise.
1025          */
1026         if (device->scsi3addr[4] == 0) {
1027                 /* This is not a non-zero lun of a multi-lun device */
1028                 if (hpsa_find_target_lun(h, device->scsi3addr,
1029                         device->bus, &device->target, &device->lun) != 0)
1030                         return -1;
1031                 goto lun_assigned;
1032         }
1033
1034         /* This is a non-zero lun of a multi-lun device.
1035          * Search through our list and find the device which
1036          * has the same 8 byte LUN address, excepting byte 4.
1037          * Assign the same bus and target for this new LUN.
1038          * Use the logical unit number from the firmware.
1039          */
1040         memcpy(addr1, device->scsi3addr, 8);
1041         addr1[4] = 0;
1042         for (i = 0; i < n; i++) {
1043                 sd = h->dev[i];
1044                 memcpy(addr2, sd->scsi3addr, 8);
1045                 addr2[4] = 0;
1046                 /* differ only in byte 4? */
1047                 if (memcmp(addr1, addr2, 8) == 0) {
1048                         device->bus = sd->bus;
1049                         device->target = sd->target;
1050                         device->lun = device->scsi3addr[4];
1051                         break;
1052                 }
1053         }
1054         if (device->lun == -1) {
1055                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1056                         " suspect firmware bug or unsupported hardware "
1057                         "configuration.\n");
1058                         return -1;
1059         }
1060
1061 lun_assigned:
1062
1063         h->dev[n] = device;
1064         h->ndevices++;
1065         added[*nadded] = device;
1066         (*nadded)++;
1067         hpsa_show_dev_msg(KERN_INFO, h, device,
1068                 device->expose_state & HPSA_SCSI_ADD ? "added" : "masked");
1069         device->offload_to_be_enabled = device->offload_enabled;
1070         device->offload_enabled = 0;
1071         return 0;
1072 }
1073
1074 /* Update an entry in h->dev[] array. */
1075 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
1076         int entry, struct hpsa_scsi_dev_t *new_entry)
1077 {
1078         int offload_enabled;
1079         /* assumes h->devlock is held */
1080         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1081
1082         /* Raid level changed. */
1083         h->dev[entry]->raid_level = new_entry->raid_level;
1084
1085         /* Raid offload parameters changed.  Careful about the ordering. */
1086         if (new_entry->offload_config && new_entry->offload_enabled) {
1087                 /*
1088                  * if drive is newly offload_enabled, we want to copy the
1089                  * raid map data first.  If previously offload_enabled and
1090                  * offload_config were set, raid map data had better be
1091                  * the same as it was before.  if raid map data is changed
1092                  * then it had better be the case that
1093                  * h->dev[entry]->offload_enabled is currently 0.
1094                  */
1095                 h->dev[entry]->raid_map = new_entry->raid_map;
1096                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1097         }
1098         if (new_entry->hba_ioaccel_enabled) {
1099                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1100                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1101         }
1102         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1103         h->dev[entry]->offload_config = new_entry->offload_config;
1104         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1105         h->dev[entry]->queue_depth = new_entry->queue_depth;
1106
1107         /*
1108          * We can turn off ioaccel offload now, but need to delay turning
1109          * it on until we can update h->dev[entry]->phys_disk[], but we
1110          * can't do that until all the devices are updated.
1111          */
1112         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1113         if (!new_entry->offload_enabled)
1114                 h->dev[entry]->offload_enabled = 0;
1115
1116         offload_enabled = h->dev[entry]->offload_enabled;
1117         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1118         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1119         h->dev[entry]->offload_enabled = offload_enabled;
1120 }
1121
1122 /* Replace an entry from h->dev[] array. */
1123 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1124         int entry, struct hpsa_scsi_dev_t *new_entry,
1125         struct hpsa_scsi_dev_t *added[], int *nadded,
1126         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1127 {
1128         /* assumes h->devlock is held */
1129         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1130         removed[*nremoved] = h->dev[entry];
1131         (*nremoved)++;
1132
1133         /*
1134          * New physical devices won't have target/lun assigned yet
1135          * so we need to preserve the values in the slot we are replacing.
1136          */
1137         if (new_entry->target == -1) {
1138                 new_entry->target = h->dev[entry]->target;
1139                 new_entry->lun = h->dev[entry]->lun;
1140         }
1141
1142         h->dev[entry] = new_entry;
1143         added[*nadded] = new_entry;
1144         (*nadded)++;
1145         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1146         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1147         new_entry->offload_enabled = 0;
1148 }
1149
1150 /* Remove an entry from h->dev[] array. */
1151 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1152         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1153 {
1154         /* assumes h->devlock is held */
1155         int i;
1156         struct hpsa_scsi_dev_t *sd;
1157
1158         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1159
1160         sd = h->dev[entry];
1161         removed[*nremoved] = h->dev[entry];
1162         (*nremoved)++;
1163
1164         for (i = entry; i < h->ndevices-1; i++)
1165                 h->dev[i] = h->dev[i+1];
1166         h->ndevices--;
1167         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1168 }
1169
1170 #define SCSI3ADDR_EQ(a, b) ( \
1171         (a)[7] == (b)[7] && \
1172         (a)[6] == (b)[6] && \
1173         (a)[5] == (b)[5] && \
1174         (a)[4] == (b)[4] && \
1175         (a)[3] == (b)[3] && \
1176         (a)[2] == (b)[2] && \
1177         (a)[1] == (b)[1] && \
1178         (a)[0] == (b)[0])
1179
1180 static void fixup_botched_add(struct ctlr_info *h,
1181         struct hpsa_scsi_dev_t *added)
1182 {
1183         /* called when scsi_add_device fails in order to re-adjust
1184          * h->dev[] to match the mid layer's view.
1185          */
1186         unsigned long flags;
1187         int i, j;
1188
1189         spin_lock_irqsave(&h->lock, flags);
1190         for (i = 0; i < h->ndevices; i++) {
1191                 if (h->dev[i] == added) {
1192                         for (j = i; j < h->ndevices-1; j++)
1193                                 h->dev[j] = h->dev[j+1];
1194                         h->ndevices--;
1195                         break;
1196                 }
1197         }
1198         spin_unlock_irqrestore(&h->lock, flags);
1199         kfree(added);
1200 }
1201
1202 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1203         struct hpsa_scsi_dev_t *dev2)
1204 {
1205         /* we compare everything except lun and target as these
1206          * are not yet assigned.  Compare parts likely
1207          * to differ first
1208          */
1209         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1210                 sizeof(dev1->scsi3addr)) != 0)
1211                 return 0;
1212         if (memcmp(dev1->device_id, dev2->device_id,
1213                 sizeof(dev1->device_id)) != 0)
1214                 return 0;
1215         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1216                 return 0;
1217         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1218                 return 0;
1219         if (dev1->devtype != dev2->devtype)
1220                 return 0;
1221         if (dev1->bus != dev2->bus)
1222                 return 0;
1223         return 1;
1224 }
1225
1226 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1227         struct hpsa_scsi_dev_t *dev2)
1228 {
1229         /* Device attributes that can change, but don't mean
1230          * that the device is a different device, nor that the OS
1231          * needs to be told anything about the change.
1232          */
1233         if (dev1->raid_level != dev2->raid_level)
1234                 return 1;
1235         if (dev1->offload_config != dev2->offload_config)
1236                 return 1;
1237         if (dev1->offload_enabled != dev2->offload_enabled)
1238                 return 1;
1239         if (dev1->queue_depth != dev2->queue_depth)
1240                 return 1;
1241         return 0;
1242 }
1243
1244 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1245  * and return needle location in *index.  If scsi3addr matches, but not
1246  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1247  * location in *index.
1248  * In the case of a minor device attribute change, such as RAID level, just
1249  * return DEVICE_UPDATED, along with the updated device's location in index.
1250  * If needle not found, return DEVICE_NOT_FOUND.
1251  */
1252 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1253         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1254         int *index)
1255 {
1256         int i;
1257 #define DEVICE_NOT_FOUND 0
1258 #define DEVICE_CHANGED 1
1259 #define DEVICE_SAME 2
1260 #define DEVICE_UPDATED 3
1261         for (i = 0; i < haystack_size; i++) {
1262                 if (haystack[i] == NULL) /* previously removed. */
1263                         continue;
1264                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1265                         *index = i;
1266                         if (device_is_the_same(needle, haystack[i])) {
1267                                 if (device_updated(needle, haystack[i]))
1268                                         return DEVICE_UPDATED;
1269                                 return DEVICE_SAME;
1270                         } else {
1271                                 /* Keep offline devices offline */
1272                                 if (needle->volume_offline)
1273                                         return DEVICE_NOT_FOUND;
1274                                 return DEVICE_CHANGED;
1275                         }
1276                 }
1277         }
1278         *index = -1;
1279         return DEVICE_NOT_FOUND;
1280 }
1281
1282 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1283                                         unsigned char scsi3addr[])
1284 {
1285         struct offline_device_entry *device;
1286         unsigned long flags;
1287
1288         /* Check to see if device is already on the list */
1289         spin_lock_irqsave(&h->offline_device_lock, flags);
1290         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1291                 if (memcmp(device->scsi3addr, scsi3addr,
1292                         sizeof(device->scsi3addr)) == 0) {
1293                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1294                         return;
1295                 }
1296         }
1297         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1298
1299         /* Device is not on the list, add it. */
1300         device = kmalloc(sizeof(*device), GFP_KERNEL);
1301         if (!device) {
1302                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1303                 return;
1304         }
1305         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1306         spin_lock_irqsave(&h->offline_device_lock, flags);
1307         list_add_tail(&device->offline_list, &h->offline_device_list);
1308         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1309 }
1310
1311 /* Print a message explaining various offline volume states */
1312 static void hpsa_show_volume_status(struct ctlr_info *h,
1313         struct hpsa_scsi_dev_t *sd)
1314 {
1315         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1316                 dev_info(&h->pdev->dev,
1317                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1318                         h->scsi_host->host_no,
1319                         sd->bus, sd->target, sd->lun);
1320         switch (sd->volume_offline) {
1321         case HPSA_LV_OK:
1322                 break;
1323         case HPSA_LV_UNDERGOING_ERASE:
1324                 dev_info(&h->pdev->dev,
1325                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1326                         h->scsi_host->host_no,
1327                         sd->bus, sd->target, sd->lun);
1328                 break;
1329         case HPSA_LV_UNDERGOING_RPI:
1330                 dev_info(&h->pdev->dev,
1331                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1332                         h->scsi_host->host_no,
1333                         sd->bus, sd->target, sd->lun);
1334                 break;
1335         case HPSA_LV_PENDING_RPI:
1336                 dev_info(&h->pdev->dev,
1337                                 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1338                                 h->scsi_host->host_no,
1339                                 sd->bus, sd->target, sd->lun);
1340                 break;
1341         case HPSA_LV_ENCRYPTED_NO_KEY:
1342                 dev_info(&h->pdev->dev,
1343                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1344                         h->scsi_host->host_no,
1345                         sd->bus, sd->target, sd->lun);
1346                 break;
1347         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1348                 dev_info(&h->pdev->dev,
1349                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1350                         h->scsi_host->host_no,
1351                         sd->bus, sd->target, sd->lun);
1352                 break;
1353         case HPSA_LV_UNDERGOING_ENCRYPTION:
1354                 dev_info(&h->pdev->dev,
1355                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1356                         h->scsi_host->host_no,
1357                         sd->bus, sd->target, sd->lun);
1358                 break;
1359         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1360                 dev_info(&h->pdev->dev,
1361                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1362                         h->scsi_host->host_no,
1363                         sd->bus, sd->target, sd->lun);
1364                 break;
1365         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1366                 dev_info(&h->pdev->dev,
1367                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1368                         h->scsi_host->host_no,
1369                         sd->bus, sd->target, sd->lun);
1370                 break;
1371         case HPSA_LV_PENDING_ENCRYPTION:
1372                 dev_info(&h->pdev->dev,
1373                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1374                         h->scsi_host->host_no,
1375                         sd->bus, sd->target, sd->lun);
1376                 break;
1377         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1378                 dev_info(&h->pdev->dev,
1379                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1380                         h->scsi_host->host_no,
1381                         sd->bus, sd->target, sd->lun);
1382                 break;
1383         }
1384 }
1385
1386 /*
1387  * Figure the list of physical drive pointers for a logical drive with
1388  * raid offload configured.
1389  */
1390 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1391                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1392                                 struct hpsa_scsi_dev_t *logical_drive)
1393 {
1394         struct raid_map_data *map = &logical_drive->raid_map;
1395         struct raid_map_disk_data *dd = &map->data[0];
1396         int i, j;
1397         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1398                                 le16_to_cpu(map->metadata_disks_per_row);
1399         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1400                                 le16_to_cpu(map->layout_map_count) *
1401                                 total_disks_per_row;
1402         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1403                                 total_disks_per_row;
1404         int qdepth;
1405
1406         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1407                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1408
1409         qdepth = 0;
1410         for (i = 0; i < nraid_map_entries; i++) {
1411                 logical_drive->phys_disk[i] = NULL;
1412                 if (!logical_drive->offload_config)
1413                         continue;
1414                 for (j = 0; j < ndevices; j++) {
1415                         if (dev[j]->devtype != TYPE_DISK)
1416                                 continue;
1417                         if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
1418                                 continue;
1419                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1420                                 continue;
1421
1422                         logical_drive->phys_disk[i] = dev[j];
1423                         if (i < nphys_disk)
1424                                 qdepth = min(h->nr_cmds, qdepth +
1425                                     logical_drive->phys_disk[i]->queue_depth);
1426                         break;
1427                 }
1428
1429                 /*
1430                  * This can happen if a physical drive is removed and
1431                  * the logical drive is degraded.  In that case, the RAID
1432                  * map data will refer to a physical disk which isn't actually
1433                  * present.  And in that case offload_enabled should already
1434                  * be 0, but we'll turn it off here just in case
1435                  */
1436                 if (!logical_drive->phys_disk[i]) {
1437                         logical_drive->offload_enabled = 0;
1438                         logical_drive->offload_to_be_enabled = 0;
1439                         logical_drive->queue_depth = 8;
1440                 }
1441         }
1442         if (nraid_map_entries)
1443                 /*
1444                  * This is correct for reads, too high for full stripe writes,
1445                  * way too high for partial stripe writes
1446                  */
1447                 logical_drive->queue_depth = qdepth;
1448         else
1449                 logical_drive->queue_depth = h->nr_cmds;
1450 }
1451
1452 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1453                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1454 {
1455         int i;
1456
1457         for (i = 0; i < ndevices; i++) {
1458                 if (dev[i]->devtype != TYPE_DISK)
1459                         continue;
1460                 if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
1461                         continue;
1462
1463                 /*
1464                  * If offload is currently enabled, the RAID map and
1465                  * phys_disk[] assignment *better* not be changing
1466                  * and since it isn't changing, we do not need to
1467                  * update it.
1468                  */
1469                 if (dev[i]->offload_enabled)
1470                         continue;
1471
1472                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1473         }
1474 }
1475
1476 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1477         struct hpsa_scsi_dev_t *sd[], int nsds)
1478 {
1479         /* sd contains scsi3 addresses and devtypes, and inquiry
1480          * data.  This function takes what's in sd to be the current
1481          * reality and updates h->dev[] to reflect that reality.
1482          */
1483         int i, entry, device_change, changes = 0;
1484         struct hpsa_scsi_dev_t *csd;
1485         unsigned long flags;
1486         struct hpsa_scsi_dev_t **added, **removed;
1487         int nadded, nremoved;
1488         struct Scsi_Host *sh = NULL;
1489
1490         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1491         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1492
1493         if (!added || !removed) {
1494                 dev_warn(&h->pdev->dev, "out of memory in "
1495                         "adjust_hpsa_scsi_table\n");
1496                 goto free_and_out;
1497         }
1498
1499         spin_lock_irqsave(&h->devlock, flags);
1500
1501         /* find any devices in h->dev[] that are not in
1502          * sd[] and remove them from h->dev[], and for any
1503          * devices which have changed, remove the old device
1504          * info and add the new device info.
1505          * If minor device attributes change, just update
1506          * the existing device structure.
1507          */
1508         i = 0;
1509         nremoved = 0;
1510         nadded = 0;
1511         while (i < h->ndevices) {
1512                 csd = h->dev[i];
1513                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1514                 if (device_change == DEVICE_NOT_FOUND) {
1515                         changes++;
1516                         hpsa_scsi_remove_entry(h, hostno, i,
1517                                 removed, &nremoved);
1518                         continue; /* remove ^^^, hence i not incremented */
1519                 } else if (device_change == DEVICE_CHANGED) {
1520                         changes++;
1521                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1522                                 added, &nadded, removed, &nremoved);
1523                         /* Set it to NULL to prevent it from being freed
1524                          * at the bottom of hpsa_update_scsi_devices()
1525                          */
1526                         sd[entry] = NULL;
1527                 } else if (device_change == DEVICE_UPDATED) {
1528                         hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1529                 }
1530                 i++;
1531         }
1532
1533         /* Now, make sure every device listed in sd[] is also
1534          * listed in h->dev[], adding them if they aren't found
1535          */
1536
1537         for (i = 0; i < nsds; i++) {
1538                 if (!sd[i]) /* if already added above. */
1539                         continue;
1540
1541                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1542                  * as the SCSI mid-layer does not handle such devices well.
1543                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1544                  * at 160Hz, and prevents the system from coming up.
1545                  */
1546                 if (sd[i]->volume_offline) {
1547                         hpsa_show_volume_status(h, sd[i]);
1548                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1549                         continue;
1550                 }
1551
1552                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1553                                         h->ndevices, &entry);
1554                 if (device_change == DEVICE_NOT_FOUND) {
1555                         changes++;
1556                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
1557                                 added, &nadded) != 0)
1558                                 break;
1559                         sd[i] = NULL; /* prevent from being freed later. */
1560                 } else if (device_change == DEVICE_CHANGED) {
1561                         /* should never happen... */
1562                         changes++;
1563                         dev_warn(&h->pdev->dev,
1564                                 "device unexpectedly changed.\n");
1565                         /* but if it does happen, we just ignore that device */
1566                 }
1567         }
1568         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1569
1570         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1571          * any logical drives that need it enabled.
1572          */
1573         for (i = 0; i < h->ndevices; i++)
1574                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1575
1576         spin_unlock_irqrestore(&h->devlock, flags);
1577
1578         /* Monitor devices which are in one of several NOT READY states to be
1579          * brought online later. This must be done without holding h->devlock,
1580          * so don't touch h->dev[]
1581          */
1582         for (i = 0; i < nsds; i++) {
1583                 if (!sd[i]) /* if already added above. */
1584                         continue;
1585                 if (sd[i]->volume_offline)
1586                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1587         }
1588
1589         /* Don't notify scsi mid layer of any changes the first time through
1590          * (or if there are no changes) scsi_scan_host will do it later the
1591          * first time through.
1592          */
1593         if (hostno == -1 || !changes)
1594                 goto free_and_out;
1595
1596         sh = h->scsi_host;
1597         /* Notify scsi mid layer of any removed devices */
1598         for (i = 0; i < nremoved; i++) {
1599                 if (removed[i]->expose_state & HPSA_SCSI_ADD) {
1600                         struct scsi_device *sdev =
1601                                 scsi_device_lookup(sh, removed[i]->bus,
1602                                         removed[i]->target, removed[i]->lun);
1603                         if (sdev != NULL) {
1604                                 scsi_remove_device(sdev);
1605                                 scsi_device_put(sdev);
1606                         } else {
1607                                 /*
1608                                  * We don't expect to get here.
1609                                  * future cmds to this device will get selection
1610                                  * timeout as if the device was gone.
1611                                  */
1612                                 hpsa_show_dev_msg(KERN_WARNING, h, removed[i],
1613                                         "didn't find device for removal.");
1614                         }
1615                 }
1616                 kfree(removed[i]);
1617                 removed[i] = NULL;
1618         }
1619
1620         /* Notify scsi mid layer of any added devices */
1621         for (i = 0; i < nadded; i++) {
1622                 if (!(added[i]->expose_state & HPSA_SCSI_ADD))
1623                         continue;
1624                 if (scsi_add_device(sh, added[i]->bus,
1625                         added[i]->target, added[i]->lun) == 0)
1626                         continue;
1627                 hpsa_show_dev_msg(KERN_WARNING, h, added[i],
1628                                         "addition failed, device not added.");
1629                 /* now we have to remove it from h->dev,
1630                  * since it didn't get added to scsi mid layer
1631                  */
1632                 fixup_botched_add(h, added[i]);
1633         }
1634
1635 free_and_out:
1636         kfree(added);
1637         kfree(removed);
1638 }
1639
1640 /*
1641  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1642  * Assume's h->devlock is held.
1643  */
1644 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1645         int bus, int target, int lun)
1646 {
1647         int i;
1648         struct hpsa_scsi_dev_t *sd;
1649
1650         for (i = 0; i < h->ndevices; i++) {
1651                 sd = h->dev[i];
1652                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1653                         return sd;
1654         }
1655         return NULL;
1656 }
1657
1658 static int hpsa_slave_alloc(struct scsi_device *sdev)
1659 {
1660         struct hpsa_scsi_dev_t *sd;
1661         unsigned long flags;
1662         struct ctlr_info *h;
1663
1664         h = sdev_to_hba(sdev);
1665         spin_lock_irqsave(&h->devlock, flags);
1666         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1667                 sdev_id(sdev), sdev->lun);
1668         if (likely(sd)) {
1669                 atomic_set(&sd->ioaccel_cmds_out, 0);
1670                 sdev->hostdata = (sd->expose_state & HPSA_SCSI_ADD) ? sd : NULL;
1671         } else
1672                 sdev->hostdata = NULL;
1673         spin_unlock_irqrestore(&h->devlock, flags);
1674         return 0;
1675 }
1676
1677 /* configure scsi device based on internal per-device structure */
1678 static int hpsa_slave_configure(struct scsi_device *sdev)
1679 {
1680         struct hpsa_scsi_dev_t *sd;
1681         int queue_depth;
1682
1683         sd = sdev->hostdata;
1684         sdev->no_uld_attach = !sd || !(sd->expose_state & HPSA_ULD_ATTACH);
1685
1686         if (sd)
1687                 queue_depth = sd->queue_depth != 0 ?
1688                         sd->queue_depth : sdev->host->can_queue;
1689         else
1690                 queue_depth = sdev->host->can_queue;
1691
1692         scsi_change_queue_depth(sdev, queue_depth);
1693
1694         return 0;
1695 }
1696
1697 static void hpsa_slave_destroy(struct scsi_device *sdev)
1698 {
1699         /* nothing to do. */
1700 }
1701
1702 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1703 {
1704         int i;
1705
1706         if (!h->ioaccel2_cmd_sg_list)
1707                 return;
1708         for (i = 0; i < h->nr_cmds; i++) {
1709                 kfree(h->ioaccel2_cmd_sg_list[i]);
1710                 h->ioaccel2_cmd_sg_list[i] = NULL;
1711         }
1712         kfree(h->ioaccel2_cmd_sg_list);
1713         h->ioaccel2_cmd_sg_list = NULL;
1714 }
1715
1716 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1717 {
1718         int i;
1719
1720         if (h->chainsize <= 0)
1721                 return 0;
1722
1723         h->ioaccel2_cmd_sg_list =
1724                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
1725                                         GFP_KERNEL);
1726         if (!h->ioaccel2_cmd_sg_list)
1727                 return -ENOMEM;
1728         for (i = 0; i < h->nr_cmds; i++) {
1729                 h->ioaccel2_cmd_sg_list[i] =
1730                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
1731                                         h->maxsgentries, GFP_KERNEL);
1732                 if (!h->ioaccel2_cmd_sg_list[i])
1733                         goto clean;
1734         }
1735         return 0;
1736
1737 clean:
1738         hpsa_free_ioaccel2_sg_chain_blocks(h);
1739         return -ENOMEM;
1740 }
1741
1742 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1743 {
1744         int i;
1745
1746         if (!h->cmd_sg_list)
1747                 return;
1748         for (i = 0; i < h->nr_cmds; i++) {
1749                 kfree(h->cmd_sg_list[i]);
1750                 h->cmd_sg_list[i] = NULL;
1751         }
1752         kfree(h->cmd_sg_list);
1753         h->cmd_sg_list = NULL;
1754 }
1755
1756 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1757 {
1758         int i;
1759
1760         if (h->chainsize <= 0)
1761                 return 0;
1762
1763         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1764                                 GFP_KERNEL);
1765         if (!h->cmd_sg_list) {
1766                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1767                 return -ENOMEM;
1768         }
1769         for (i = 0; i < h->nr_cmds; i++) {
1770                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1771                                                 h->chainsize, GFP_KERNEL);
1772                 if (!h->cmd_sg_list[i]) {
1773                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1774                         goto clean;
1775                 }
1776         }
1777         return 0;
1778
1779 clean:
1780         hpsa_free_sg_chain_blocks(h);
1781         return -ENOMEM;
1782 }
1783
1784 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
1785         struct io_accel2_cmd *cp, struct CommandList *c)
1786 {
1787         struct ioaccel2_sg_element *chain_block;
1788         u64 temp64;
1789         u32 chain_size;
1790
1791         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
1792         chain_size = le32_to_cpu(cp->data_len);
1793         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
1794                                 PCI_DMA_TODEVICE);
1795         if (dma_mapping_error(&h->pdev->dev, temp64)) {
1796                 /* prevent subsequent unmapping */
1797                 cp->sg->address = 0;
1798                 return -1;
1799         }
1800         cp->sg->address = cpu_to_le64(temp64);
1801         return 0;
1802 }
1803
1804 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
1805         struct io_accel2_cmd *cp)
1806 {
1807         struct ioaccel2_sg_element *chain_sg;
1808         u64 temp64;
1809         u32 chain_size;
1810
1811         chain_sg = cp->sg;
1812         temp64 = le64_to_cpu(chain_sg->address);
1813         chain_size = le32_to_cpu(cp->data_len);
1814         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
1815 }
1816
1817 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1818         struct CommandList *c)
1819 {
1820         struct SGDescriptor *chain_sg, *chain_block;
1821         u64 temp64;
1822         u32 chain_len;
1823
1824         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1825         chain_block = h->cmd_sg_list[c->cmdindex];
1826         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1827         chain_len = sizeof(*chain_sg) *
1828                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1829         chain_sg->Len = cpu_to_le32(chain_len);
1830         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1831                                 PCI_DMA_TODEVICE);
1832         if (dma_mapping_error(&h->pdev->dev, temp64)) {
1833                 /* prevent subsequent unmapping */
1834                 chain_sg->Addr = cpu_to_le64(0);
1835                 return -1;
1836         }
1837         chain_sg->Addr = cpu_to_le64(temp64);
1838         return 0;
1839 }
1840
1841 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1842         struct CommandList *c)
1843 {
1844         struct SGDescriptor *chain_sg;
1845
1846         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1847                 return;
1848
1849         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1850         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
1851                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1852 }
1853
1854
1855 /* Decode the various types of errors on ioaccel2 path.
1856  * Return 1 for any error that should generate a RAID path retry.
1857  * Return 0 for errors that don't require a RAID path retry.
1858  */
1859 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1860                                         struct CommandList *c,
1861                                         struct scsi_cmnd *cmd,
1862                                         struct io_accel2_cmd *c2)
1863 {
1864         int data_len;
1865         int retry = 0;
1866         u32 ioaccel2_resid = 0;
1867
1868         switch (c2->error_data.serv_response) {
1869         case IOACCEL2_SERV_RESPONSE_COMPLETE:
1870                 switch (c2->error_data.status) {
1871                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1872                         break;
1873                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1874                         dev_warn(&h->pdev->dev,
1875                                 "%s: task complete with check condition.\n",
1876                                 "HP SSD Smart Path");
1877                         cmd->result |= SAM_STAT_CHECK_CONDITION;
1878                         if (c2->error_data.data_present !=
1879                                         IOACCEL2_SENSE_DATA_PRESENT) {
1880                                 memset(cmd->sense_buffer, 0,
1881                                         SCSI_SENSE_BUFFERSIZE);
1882                                 break;
1883                         }
1884                         /* copy the sense data */
1885                         data_len = c2->error_data.sense_data_len;
1886                         if (data_len > SCSI_SENSE_BUFFERSIZE)
1887                                 data_len = SCSI_SENSE_BUFFERSIZE;
1888                         if (data_len > sizeof(c2->error_data.sense_data_buff))
1889                                 data_len =
1890                                         sizeof(c2->error_data.sense_data_buff);
1891                         memcpy(cmd->sense_buffer,
1892                                 c2->error_data.sense_data_buff, data_len);
1893                         retry = 1;
1894                         break;
1895                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1896                         dev_warn(&h->pdev->dev,
1897                                 "%s: task complete with BUSY status.\n",
1898                                 "HP SSD Smart Path");
1899                         retry = 1;
1900                         break;
1901                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1902                         dev_warn(&h->pdev->dev,
1903                                 "%s: task complete with reservation conflict.\n",
1904                                 "HP SSD Smart Path");
1905                         retry = 1;
1906                         break;
1907                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1908                         retry = 1;
1909                         break;
1910                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1911                         dev_warn(&h->pdev->dev,
1912                                 "%s: task complete with aborted status.\n",
1913                                 "HP SSD Smart Path");
1914                         retry = 1;
1915                         break;
1916                 default:
1917                         dev_warn(&h->pdev->dev,
1918                                 "%s: task complete with unrecognized status: 0x%02x\n",
1919                                 "HP SSD Smart Path", c2->error_data.status);
1920                         retry = 1;
1921                         break;
1922                 }
1923                 break;
1924         case IOACCEL2_SERV_RESPONSE_FAILURE:
1925                 switch (c2->error_data.status) {
1926                 case IOACCEL2_STATUS_SR_IO_ERROR:
1927                 case IOACCEL2_STATUS_SR_IO_ABORTED:
1928                 case IOACCEL2_STATUS_SR_OVERRUN:
1929                         retry = 1;
1930                         break;
1931                 case IOACCEL2_STATUS_SR_UNDERRUN:
1932                         cmd->result = (DID_OK << 16);           /* host byte */
1933                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1934                         ioaccel2_resid = get_unaligned_le32(
1935                                                 &c2->error_data.resid_cnt[0]);
1936                         scsi_set_resid(cmd, ioaccel2_resid);
1937                         break;
1938                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
1939                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
1940                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
1941                         /* We will get an event from ctlr to trigger rescan */
1942                         retry = 1;
1943                         break;
1944                 default:
1945                         retry = 1;
1946                         dev_warn(&h->pdev->dev,
1947                                 "unexpected delivery or target failure, status = 0x%02x\n",
1948                                 c2->error_data.status);
1949                 }
1950                 break;
1951         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1952                 break;
1953         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1954                 break;
1955         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1956                 dev_warn(&h->pdev->dev, "task management function rejected.\n");
1957                 retry = 1;
1958                 break;
1959         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1960                 dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1961                 break;
1962         default:
1963                 dev_warn(&h->pdev->dev,
1964                         "%s: Unrecognized server response: 0x%02x\n",
1965                         "HP SSD Smart Path",
1966                         c2->error_data.serv_response);
1967                 retry = 1;
1968                 break;
1969         }
1970
1971         return retry;   /* retry on raid path? */
1972 }
1973
1974 static void process_ioaccel2_completion(struct ctlr_info *h,
1975                 struct CommandList *c, struct scsi_cmnd *cmd,
1976                 struct hpsa_scsi_dev_t *dev)
1977 {
1978         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1979
1980         /* check for good status */
1981         if (likely(c2->error_data.serv_response == 0 &&
1982                         c2->error_data.status == 0)) {
1983                 cmd_free(h, c);
1984                 cmd->scsi_done(cmd);
1985                 return;
1986         }
1987
1988         /* Any RAID offload error results in retry which will use
1989          * the normal I/O path so the controller can handle whatever's
1990          * wrong.
1991          */
1992         if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1993                 c2->error_data.serv_response ==
1994                         IOACCEL2_SERV_RESPONSE_FAILURE) {
1995                 if (c2->error_data.status ==
1996                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
1997                         dev->offload_enabled = 0;
1998                 goto retry_cmd;
1999         }
2000
2001         if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2002                 goto retry_cmd;
2003
2004         cmd_free(h, c);
2005         cmd->scsi_done(cmd);
2006         return;
2007
2008 retry_cmd:
2009         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2010         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2011 }
2012
2013 /* Returns 0 on success, < 0 otherwise. */
2014 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2015                                         struct CommandList *cp)
2016 {
2017         u8 tmf_status = cp->err_info->ScsiStatus;
2018
2019         switch (tmf_status) {
2020         case CISS_TMF_COMPLETE:
2021                 /*
2022                  * CISS_TMF_COMPLETE never happens, instead,
2023                  * ei->CommandStatus == 0 for this case.
2024                  */
2025         case CISS_TMF_SUCCESS:
2026                 return 0;
2027         case CISS_TMF_INVALID_FRAME:
2028         case CISS_TMF_NOT_SUPPORTED:
2029         case CISS_TMF_FAILED:
2030         case CISS_TMF_WRONG_LUN:
2031         case CISS_TMF_OVERLAPPED_TAG:
2032                 break;
2033         default:
2034                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2035                                 tmf_status);
2036                 break;
2037         }
2038         return -tmf_status;
2039 }
2040
2041 static void complete_scsi_command(struct CommandList *cp)
2042 {
2043         struct scsi_cmnd *cmd;
2044         struct ctlr_info *h;
2045         struct ErrorInfo *ei;
2046         struct hpsa_scsi_dev_t *dev;
2047         struct io_accel2_cmd *c2;
2048
2049         u8 sense_key;
2050         u8 asc;      /* additional sense code */
2051         u8 ascq;     /* additional sense code qualifier */
2052         unsigned long sense_data_size;
2053
2054         ei = cp->err_info;
2055         cmd = cp->scsi_cmd;
2056         h = cp->h;
2057         dev = cmd->device->hostdata;
2058         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2059
2060         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2061         if ((cp->cmd_type == CMD_SCSI) &&
2062                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2063                 hpsa_unmap_sg_chain_block(h, cp);
2064
2065         if ((cp->cmd_type == CMD_IOACCEL2) &&
2066                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2067                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2068
2069         cmd->result = (DID_OK << 16);           /* host byte */
2070         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2071
2072         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2073                 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2074
2075         /*
2076          * We check for lockup status here as it may be set for
2077          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2078          * fail_all_oustanding_cmds()
2079          */
2080         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2081                 /* DID_NO_CONNECT will prevent a retry */
2082                 cmd->result = DID_NO_CONNECT << 16;
2083                 cmd_free(h, cp);
2084                 cmd->scsi_done(cmd);
2085                 return;
2086         }
2087
2088         if (cp->cmd_type == CMD_IOACCEL2)
2089                 return process_ioaccel2_completion(h, cp, cmd, dev);
2090
2091         scsi_set_resid(cmd, ei->ResidualCnt);
2092         if (ei->CommandStatus == 0) {
2093                 if (cp->cmd_type == CMD_IOACCEL1)
2094                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2095                 cmd_free(h, cp);
2096                 cmd->scsi_done(cmd);
2097                 return;
2098         }
2099
2100         /* For I/O accelerator commands, copy over some fields to the normal
2101          * CISS header used below for error handling.
2102          */
2103         if (cp->cmd_type == CMD_IOACCEL1) {
2104                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2105                 cp->Header.SGList = scsi_sg_count(cmd);
2106                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2107                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2108                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2109                 cp->Header.tag = c->tag;
2110                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2111                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2112
2113                 /* Any RAID offload error results in retry which will use
2114                  * the normal I/O path so the controller can handle whatever's
2115                  * wrong.
2116                  */
2117                 if (is_logical_dev_addr_mode(dev->scsi3addr)) {
2118                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2119                                 dev->offload_enabled = 0;
2120                         INIT_WORK(&cp->work, hpsa_command_resubmit_worker);
2121                         queue_work_on(raw_smp_processor_id(),
2122                                         h->resubmit_wq, &cp->work);
2123                         return;
2124                 }
2125         }
2126
2127         /* an error has occurred */
2128         switch (ei->CommandStatus) {
2129
2130         case CMD_TARGET_STATUS:
2131                 cmd->result |= ei->ScsiStatus;
2132                 /* copy the sense data */
2133                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2134                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2135                 else
2136                         sense_data_size = sizeof(ei->SenseInfo);
2137                 if (ei->SenseLen < sense_data_size)
2138                         sense_data_size = ei->SenseLen;
2139                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2140                 if (ei->ScsiStatus)
2141                         decode_sense_data(ei->SenseInfo, sense_data_size,
2142                                 &sense_key, &asc, &ascq);
2143                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2144                         if (sense_key == ABORTED_COMMAND) {
2145                                 cmd->result |= DID_SOFT_ERROR << 16;
2146                                 break;
2147                         }
2148                         break;
2149                 }
2150                 /* Problem was not a check condition
2151                  * Pass it up to the upper layers...
2152                  */
2153                 if (ei->ScsiStatus) {
2154                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2155                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2156                                 "Returning result: 0x%x\n",
2157                                 cp, ei->ScsiStatus,
2158                                 sense_key, asc, ascq,
2159                                 cmd->result);
2160                 } else {  /* scsi status is zero??? How??? */
2161                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2162                                 "Returning no connection.\n", cp),
2163
2164                         /* Ordinarily, this case should never happen,
2165                          * but there is a bug in some released firmware
2166                          * revisions that allows it to happen if, for
2167                          * example, a 4100 backplane loses power and
2168                          * the tape drive is in it.  We assume that
2169                          * it's a fatal error of some kind because we
2170                          * can't show that it wasn't. We will make it
2171                          * look like selection timeout since that is
2172                          * the most common reason for this to occur,
2173                          * and it's severe enough.
2174                          */
2175
2176                         cmd->result = DID_NO_CONNECT << 16;
2177                 }
2178                 break;
2179
2180         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2181                 break;
2182         case CMD_DATA_OVERRUN:
2183                 dev_warn(&h->pdev->dev,
2184                         "CDB %16phN data overrun\n", cp->Request.CDB);
2185                 break;
2186         case CMD_INVALID: {
2187                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2188                 print_cmd(cp); */
2189                 /* We get CMD_INVALID if you address a non-existent device
2190                  * instead of a selection timeout (no response).  You will
2191                  * see this if you yank out a drive, then try to access it.
2192                  * This is kind of a shame because it means that any other
2193                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2194                  * missing target. */
2195                 cmd->result = DID_NO_CONNECT << 16;
2196         }
2197                 break;
2198         case CMD_PROTOCOL_ERR:
2199                 cmd->result = DID_ERROR << 16;
2200                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2201                                 cp->Request.CDB);
2202                 break;
2203         case CMD_HARDWARE_ERR:
2204                 cmd->result = DID_ERROR << 16;
2205                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2206                         cp->Request.CDB);
2207                 break;
2208         case CMD_CONNECTION_LOST:
2209                 cmd->result = DID_ERROR << 16;
2210                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2211                         cp->Request.CDB);
2212                 break;
2213         case CMD_ABORTED:
2214                 cmd->result = DID_ABORT << 16;
2215                 dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2216                                 cp->Request.CDB, ei->ScsiStatus);
2217                 break;
2218         case CMD_ABORT_FAILED:
2219                 cmd->result = DID_ERROR << 16;
2220                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2221                         cp->Request.CDB);
2222                 break;
2223         case CMD_UNSOLICITED_ABORT:
2224                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2225                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2226                         cp->Request.CDB);
2227                 break;
2228         case CMD_TIMEOUT:
2229                 cmd->result = DID_TIME_OUT << 16;
2230                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2231                         cp->Request.CDB);
2232                 break;
2233         case CMD_UNABORTABLE:
2234                 cmd->result = DID_ERROR << 16;
2235                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2236                 break;
2237         case CMD_TMF_STATUS:
2238                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2239                         cmd->result = DID_ERROR << 16;
2240                 break;
2241         case CMD_IOACCEL_DISABLED:
2242                 /* This only handles the direct pass-through case since RAID
2243                  * offload is handled above.  Just attempt a retry.
2244                  */
2245                 cmd->result = DID_SOFT_ERROR << 16;
2246                 dev_warn(&h->pdev->dev,
2247                                 "cp %p had HP SSD Smart Path error\n", cp);
2248                 break;
2249         default:
2250                 cmd->result = DID_ERROR << 16;
2251                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2252                                 cp, ei->CommandStatus);
2253         }
2254         cmd_free(h, cp);
2255         cmd->scsi_done(cmd);
2256 }
2257
2258 static void hpsa_pci_unmap(struct pci_dev *pdev,
2259         struct CommandList *c, int sg_used, int data_direction)
2260 {
2261         int i;
2262
2263         for (i = 0; i < sg_used; i++)
2264                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2265                                 le32_to_cpu(c->SG[i].Len),
2266                                 data_direction);
2267 }
2268
2269 static int hpsa_map_one(struct pci_dev *pdev,
2270                 struct CommandList *cp,
2271                 unsigned char *buf,
2272                 size_t buflen,
2273                 int data_direction)
2274 {
2275         u64 addr64;
2276
2277         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2278                 cp->Header.SGList = 0;
2279                 cp->Header.SGTotal = cpu_to_le16(0);
2280                 return 0;
2281         }
2282
2283         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2284         if (dma_mapping_error(&pdev->dev, addr64)) {
2285                 /* Prevent subsequent unmap of something never mapped */
2286                 cp->Header.SGList = 0;
2287                 cp->Header.SGTotal = cpu_to_le16(0);
2288                 return -1;
2289         }
2290         cp->SG[0].Addr = cpu_to_le64(addr64);
2291         cp->SG[0].Len = cpu_to_le32(buflen);
2292         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2293         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2294         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2295         return 0;
2296 }
2297
2298 #define NO_TIMEOUT ((unsigned long) -1)
2299 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2300 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2301         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2302 {
2303         DECLARE_COMPLETION_ONSTACK(wait);
2304
2305         c->waiting = &wait;
2306         __enqueue_cmd_and_start_io(h, c, reply_queue);
2307         if (timeout_msecs == NO_TIMEOUT) {
2308                 /* TODO: get rid of this no-timeout thing */
2309                 wait_for_completion_io(&wait);
2310                 return IO_OK;
2311         }
2312         if (!wait_for_completion_io_timeout(&wait,
2313                                         msecs_to_jiffies(timeout_msecs))) {
2314                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2315                 return -ETIMEDOUT;
2316         }
2317         return IO_OK;
2318 }
2319
2320 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2321                                    int reply_queue, unsigned long timeout_msecs)
2322 {
2323         if (unlikely(lockup_detected(h))) {
2324                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2325                 return IO_OK;
2326         }
2327         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2328 }
2329
2330 static u32 lockup_detected(struct ctlr_info *h)
2331 {
2332         int cpu;
2333         u32 rc, *lockup_detected;
2334
2335         cpu = get_cpu();
2336         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2337         rc = *lockup_detected;
2338         put_cpu();
2339         return rc;
2340 }
2341
2342 #define MAX_DRIVER_CMD_RETRIES 25
2343 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2344         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2345 {
2346         int backoff_time = 10, retry_count = 0;
2347         int rc;
2348
2349         do {
2350                 memset(c->err_info, 0, sizeof(*c->err_info));
2351                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2352                                                   timeout_msecs);
2353                 if (rc)
2354                         break;
2355                 retry_count++;
2356                 if (retry_count > 3) {
2357                         msleep(backoff_time);
2358                         if (backoff_time < 1000)
2359                                 backoff_time *= 2;
2360                 }
2361         } while ((check_for_unit_attention(h, c) ||
2362                         check_for_busy(h, c)) &&
2363                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2364         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2365         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2366                 rc = -EIO;
2367         return rc;
2368 }
2369
2370 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2371                                 struct CommandList *c)
2372 {
2373         const u8 *cdb = c->Request.CDB;
2374         const u8 *lun = c->Header.LUN.LunAddrBytes;
2375
2376         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2377         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2378                 txt, lun[0], lun[1], lun[2], lun[3],
2379                 lun[4], lun[5], lun[6], lun[7],
2380                 cdb[0], cdb[1], cdb[2], cdb[3],
2381                 cdb[4], cdb[5], cdb[6], cdb[7],
2382                 cdb[8], cdb[9], cdb[10], cdb[11],
2383                 cdb[12], cdb[13], cdb[14], cdb[15]);
2384 }
2385
2386 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2387                         struct CommandList *cp)
2388 {
2389         const struct ErrorInfo *ei = cp->err_info;
2390         struct device *d = &cp->h->pdev->dev;
2391         u8 sense_key, asc, ascq;
2392         int sense_len;
2393
2394         switch (ei->CommandStatus) {
2395         case CMD_TARGET_STATUS:
2396                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2397                         sense_len = sizeof(ei->SenseInfo);
2398                 else
2399                         sense_len = ei->SenseLen;
2400                 decode_sense_data(ei->SenseInfo, sense_len,
2401                                         &sense_key, &asc, &ascq);
2402                 hpsa_print_cmd(h, "SCSI status", cp);
2403                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2404                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2405                                 sense_key, asc, ascq);
2406                 else
2407                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2408                 if (ei->ScsiStatus == 0)
2409                         dev_warn(d, "SCSI status is abnormally zero.  "
2410                         "(probably indicates selection timeout "
2411                         "reported incorrectly due to a known "
2412                         "firmware bug, circa July, 2001.)\n");
2413                 break;
2414         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2415                 break;
2416         case CMD_DATA_OVERRUN:
2417                 hpsa_print_cmd(h, "overrun condition", cp);
2418                 break;
2419         case CMD_INVALID: {
2420                 /* controller unfortunately reports SCSI passthru's
2421                  * to non-existent targets as invalid commands.
2422                  */
2423                 hpsa_print_cmd(h, "invalid command", cp);
2424                 dev_warn(d, "probably means device no longer present\n");
2425                 }
2426                 break;
2427         case CMD_PROTOCOL_ERR:
2428                 hpsa_print_cmd(h, "protocol error", cp);
2429                 break;
2430         case CMD_HARDWARE_ERR:
2431                 hpsa_print_cmd(h, "hardware error", cp);
2432                 break;
2433         case CMD_CONNECTION_LOST:
2434                 hpsa_print_cmd(h, "connection lost", cp);
2435                 break;
2436         case CMD_ABORTED:
2437                 hpsa_print_cmd(h, "aborted", cp);
2438                 break;
2439         case CMD_ABORT_FAILED:
2440                 hpsa_print_cmd(h, "abort failed", cp);
2441                 break;
2442         case CMD_UNSOLICITED_ABORT:
2443                 hpsa_print_cmd(h, "unsolicited abort", cp);
2444                 break;
2445         case CMD_TIMEOUT:
2446                 hpsa_print_cmd(h, "timed out", cp);
2447                 break;
2448         case CMD_UNABORTABLE:
2449                 hpsa_print_cmd(h, "unabortable", cp);
2450                 break;
2451         case CMD_CTLR_LOCKUP:
2452                 hpsa_print_cmd(h, "controller lockup detected", cp);
2453                 break;
2454         default:
2455                 hpsa_print_cmd(h, "unknown status", cp);
2456                 dev_warn(d, "Unknown command status %x\n",
2457                                 ei->CommandStatus);
2458         }
2459 }
2460
2461 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2462                         u16 page, unsigned char *buf,
2463                         unsigned char bufsize)
2464 {
2465         int rc = IO_OK;
2466         struct CommandList *c;
2467         struct ErrorInfo *ei;
2468
2469         c = cmd_alloc(h);
2470
2471         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2472                         page, scsi3addr, TYPE_CMD)) {
2473                 rc = -1;
2474                 goto out;
2475         }
2476         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2477                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2478         if (rc)
2479                 goto out;
2480         ei = c->err_info;
2481         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2482                 hpsa_scsi_interpret_error(h, c);
2483                 rc = -1;
2484         }
2485 out:
2486         cmd_free(h, c);
2487         return rc;
2488 }
2489
2490 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2491                 unsigned char *scsi3addr, unsigned char page,
2492                 struct bmic_controller_parameters *buf, size_t bufsize)
2493 {
2494         int rc = IO_OK;
2495         struct CommandList *c;
2496         struct ErrorInfo *ei;
2497
2498         c = cmd_alloc(h);
2499         if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2500                         page, scsi3addr, TYPE_CMD)) {
2501                 rc = -1;
2502                 goto out;
2503         }
2504         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2505                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2506         if (rc)
2507                 goto out;
2508         ei = c->err_info;
2509         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2510                 hpsa_scsi_interpret_error(h, c);
2511                 rc = -1;
2512         }
2513 out:
2514         cmd_free(h, c);
2515         return rc;
2516 }
2517
2518 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2519         u8 reset_type, int reply_queue)
2520 {
2521         int rc = IO_OK;
2522         struct CommandList *c;
2523         struct ErrorInfo *ei;
2524
2525         c = cmd_alloc(h);
2526
2527
2528         /* fill_cmd can't fail here, no data buffer to map. */
2529         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2530                         scsi3addr, TYPE_MSG);
2531         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2532         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2533         if (rc) {
2534                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2535                 goto out;
2536         }
2537         /* no unmap needed here because no data xfer. */
2538
2539         ei = c->err_info;
2540         if (ei->CommandStatus != 0) {
2541                 hpsa_scsi_interpret_error(h, c);
2542                 rc = -1;
2543         }
2544 out:
2545         cmd_free(h, c);
2546         return rc;
2547 }
2548
2549 static void hpsa_get_raid_level(struct ctlr_info *h,
2550         unsigned char *scsi3addr, unsigned char *raid_level)
2551 {
2552         int rc;
2553         unsigned char *buf;
2554
2555         *raid_level = RAID_UNKNOWN;
2556         buf = kzalloc(64, GFP_KERNEL);
2557         if (!buf)
2558                 return;
2559         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2560         if (rc == 0)
2561                 *raid_level = buf[8];
2562         if (*raid_level > RAID_UNKNOWN)
2563                 *raid_level = RAID_UNKNOWN;
2564         kfree(buf);
2565         return;
2566 }
2567
2568 #define HPSA_MAP_DEBUG
2569 #ifdef HPSA_MAP_DEBUG
2570 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2571                                 struct raid_map_data *map_buff)
2572 {
2573         struct raid_map_disk_data *dd = &map_buff->data[0];
2574         int map, row, col;
2575         u16 map_cnt, row_cnt, disks_per_row;
2576
2577         if (rc != 0)
2578                 return;
2579
2580         /* Show details only if debugging has been activated. */
2581         if (h->raid_offload_debug < 2)
2582                 return;
2583
2584         dev_info(&h->pdev->dev, "structure_size = %u\n",
2585                                 le32_to_cpu(map_buff->structure_size));
2586         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2587                         le32_to_cpu(map_buff->volume_blk_size));
2588         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2589                         le64_to_cpu(map_buff->volume_blk_cnt));
2590         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2591                         map_buff->phys_blk_shift);
2592         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2593                         map_buff->parity_rotation_shift);
2594         dev_info(&h->pdev->dev, "strip_size = %u\n",
2595                         le16_to_cpu(map_buff->strip_size));
2596         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2597                         le64_to_cpu(map_buff->disk_starting_blk));
2598         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2599                         le64_to_cpu(map_buff->disk_blk_cnt));
2600         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2601                         le16_to_cpu(map_buff->data_disks_per_row));
2602         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2603                         le16_to_cpu(map_buff->metadata_disks_per_row));
2604         dev_info(&h->pdev->dev, "row_cnt = %u\n",
2605                         le16_to_cpu(map_buff->row_cnt));
2606         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2607                         le16_to_cpu(map_buff->layout_map_count));
2608         dev_info(&h->pdev->dev, "flags = 0x%x\n",
2609                         le16_to_cpu(map_buff->flags));
2610         dev_info(&h->pdev->dev, "encrypytion = %s\n",
2611                         le16_to_cpu(map_buff->flags) &
2612                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2613         dev_info(&h->pdev->dev, "dekindex = %u\n",
2614                         le16_to_cpu(map_buff->dekindex));
2615         map_cnt = le16_to_cpu(map_buff->layout_map_count);
2616         for (map = 0; map < map_cnt; map++) {
2617                 dev_info(&h->pdev->dev, "Map%u:\n", map);
2618                 row_cnt = le16_to_cpu(map_buff->row_cnt);
2619                 for (row = 0; row < row_cnt; row++) {
2620                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
2621                         disks_per_row =
2622                                 le16_to_cpu(map_buff->data_disks_per_row);
2623                         for (col = 0; col < disks_per_row; col++, dd++)
2624                                 dev_info(&h->pdev->dev,
2625                                         "    D%02u: h=0x%04x xor=%u,%u\n",
2626                                         col, dd->ioaccel_handle,
2627                                         dd->xor_mult[0], dd->xor_mult[1]);
2628                         disks_per_row =
2629                                 le16_to_cpu(map_buff->metadata_disks_per_row);
2630                         for (col = 0; col < disks_per_row; col++, dd++)
2631                                 dev_info(&h->pdev->dev,
2632                                         "    M%02u: h=0x%04x xor=%u,%u\n",
2633                                         col, dd->ioaccel_handle,
2634                                         dd->xor_mult[0], dd->xor_mult[1]);
2635                 }
2636         }
2637 }
2638 #else
2639 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2640                         __attribute__((unused)) int rc,
2641                         __attribute__((unused)) struct raid_map_data *map_buff)
2642 {
2643 }
2644 #endif
2645
2646 static int hpsa_get_raid_map(struct ctlr_info *h,
2647         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2648 {
2649         int rc = 0;
2650         struct CommandList *c;
2651         struct ErrorInfo *ei;
2652
2653         c = cmd_alloc(h);
2654
2655         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2656                         sizeof(this_device->raid_map), 0,
2657                         scsi3addr, TYPE_CMD)) {
2658                 dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2659                 rc = -ENOMEM;
2660                 goto out;
2661         }
2662         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2663                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2664         if (rc)
2665                 goto out;
2666         ei = c->err_info;
2667         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2668                 hpsa_scsi_interpret_error(h, c);
2669                 rc = -1;
2670                 goto out;
2671         }
2672         cmd_free(h, c);
2673
2674         /* @todo in the future, dynamically allocate RAID map memory */
2675         if (le32_to_cpu(this_device->raid_map.structure_size) >
2676                                 sizeof(this_device->raid_map)) {
2677                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2678                 rc = -1;
2679         }
2680         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2681         return rc;
2682 out:
2683         cmd_free(h, c);
2684         return rc;
2685 }
2686
2687 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
2688                 unsigned char scsi3addr[], u16 bmic_device_index,
2689                 struct bmic_identify_physical_device *buf, size_t bufsize)
2690 {
2691         int rc = IO_OK;
2692         struct CommandList *c;
2693         struct ErrorInfo *ei;
2694
2695         c = cmd_alloc(h);
2696         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
2697                 0, RAID_CTLR_LUNID, TYPE_CMD);
2698         if (rc)
2699                 goto out;
2700
2701         c->Request.CDB[2] = bmic_device_index & 0xff;
2702         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
2703
2704         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
2705                                                 NO_TIMEOUT);
2706         ei = c->err_info;
2707         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2708                 hpsa_scsi_interpret_error(h, c);
2709                 rc = -1;
2710         }
2711 out:
2712         cmd_free(h, c);
2713         return rc;
2714 }
2715
2716 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2717         unsigned char scsi3addr[], u8 page)
2718 {
2719         int rc;
2720         int i;
2721         int pages;
2722         unsigned char *buf, bufsize;
2723
2724         buf = kzalloc(256, GFP_KERNEL);
2725         if (!buf)
2726                 return 0;
2727
2728         /* Get the size of the page list first */
2729         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2730                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2731                                 buf, HPSA_VPD_HEADER_SZ);
2732         if (rc != 0)
2733                 goto exit_unsupported;
2734         pages = buf[3];
2735         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2736                 bufsize = pages + HPSA_VPD_HEADER_SZ;
2737         else
2738                 bufsize = 255;
2739
2740         /* Get the whole VPD page list */
2741         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2742                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2743                                 buf, bufsize);
2744         if (rc != 0)
2745                 goto exit_unsupported;
2746
2747         pages = buf[3];
2748         for (i = 1; i <= pages; i++)
2749                 if (buf[3 + i] == page)
2750                         goto exit_supported;
2751 exit_unsupported:
2752         kfree(buf);
2753         return 0;
2754 exit_supported:
2755         kfree(buf);
2756         return 1;
2757 }
2758
2759 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2760         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2761 {
2762         int rc;
2763         unsigned char *buf;
2764         u8 ioaccel_status;
2765
2766         this_device->offload_config = 0;
2767         this_device->offload_enabled = 0;
2768         this_device->offload_to_be_enabled = 0;
2769
2770         buf = kzalloc(64, GFP_KERNEL);
2771         if (!buf)
2772                 return;
2773         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2774                 goto out;
2775         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2776                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2777         if (rc != 0)
2778                 goto out;
2779
2780 #define IOACCEL_STATUS_BYTE 4
2781 #define OFFLOAD_CONFIGURED_BIT 0x01
2782 #define OFFLOAD_ENABLED_BIT 0x02
2783         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2784         this_device->offload_config =
2785                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2786         if (this_device->offload_config) {
2787                 this_device->offload_enabled =
2788                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2789                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
2790                         this_device->offload_enabled = 0;
2791         }
2792         this_device->offload_to_be_enabled = this_device->offload_enabled;
2793 out:
2794         kfree(buf);
2795         return;
2796 }
2797
2798 /* Get the device id from inquiry page 0x83 */
2799 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2800         unsigned char *device_id, int buflen)
2801 {
2802         int rc;
2803         unsigned char *buf;
2804
2805         if (buflen > 16)
2806                 buflen = 16;
2807         buf = kzalloc(64, GFP_KERNEL);
2808         if (!buf)
2809                 return -ENOMEM;
2810         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2811         if (rc == 0)
2812                 memcpy(device_id, &buf[8], buflen);
2813         kfree(buf);
2814         return rc != 0;
2815 }
2816
2817 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2818                 void *buf, int bufsize,
2819                 int extended_response)
2820 {
2821         int rc = IO_OK;
2822         struct CommandList *c;
2823         unsigned char scsi3addr[8];
2824         struct ErrorInfo *ei;
2825
2826         c = cmd_alloc(h);
2827
2828         /* address the controller */
2829         memset(scsi3addr, 0, sizeof(scsi3addr));
2830         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2831                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2832                 rc = -1;
2833                 goto out;
2834         }
2835         if (extended_response)
2836                 c->Request.CDB[1] = extended_response;
2837         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2838                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2839         if (rc)
2840                 goto out;
2841         ei = c->err_info;
2842         if (ei->CommandStatus != 0 &&
2843             ei->CommandStatus != CMD_DATA_UNDERRUN) {
2844                 hpsa_scsi_interpret_error(h, c);
2845                 rc = -1;
2846         } else {
2847                 struct ReportLUNdata *rld = buf;
2848
2849                 if (rld->extended_response_flag != extended_response) {
2850                         dev_err(&h->pdev->dev,
2851                                 "report luns requested format %u, got %u\n",
2852                                 extended_response,
2853                                 rld->extended_response_flag);
2854                         rc = -1;
2855                 }
2856         }
2857 out:
2858         cmd_free(h, c);
2859         return rc;
2860 }
2861
2862 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2863                 struct ReportExtendedLUNdata *buf, int bufsize)
2864 {
2865         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
2866                                                 HPSA_REPORT_PHYS_EXTENDED);
2867 }
2868
2869 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2870                 struct ReportLUNdata *buf, int bufsize)
2871 {
2872         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2873 }
2874
2875 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2876         int bus, int target, int lun)
2877 {
2878         device->bus = bus;
2879         device->target = target;
2880         device->lun = lun;
2881 }
2882
2883 /* Use VPD inquiry to get details of volume status */
2884 static int hpsa_get_volume_status(struct ctlr_info *h,
2885                                         unsigned char scsi3addr[])
2886 {
2887         int rc;
2888         int status;
2889         int size;
2890         unsigned char *buf;
2891
2892         buf = kzalloc(64, GFP_KERNEL);
2893         if (!buf)
2894                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2895
2896         /* Does controller have VPD for logical volume status? */
2897         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2898                 goto exit_failed;
2899
2900         /* Get the size of the VPD return buffer */
2901         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2902                                         buf, HPSA_VPD_HEADER_SZ);
2903         if (rc != 0)
2904                 goto exit_failed;
2905         size = buf[3];
2906
2907         /* Now get the whole VPD buffer */
2908         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2909                                         buf, size + HPSA_VPD_HEADER_SZ);
2910         if (rc != 0)
2911                 goto exit_failed;
2912         status = buf[4]; /* status byte */
2913
2914         kfree(buf);
2915         return status;
2916 exit_failed:
2917         kfree(buf);
2918         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2919 }
2920
2921 /* Determine offline status of a volume.
2922  * Return either:
2923  *  0 (not offline)
2924  *  0xff (offline for unknown reasons)
2925  *  # (integer code indicating one of several NOT READY states
2926  *     describing why a volume is to be kept offline)
2927  */
2928 static int hpsa_volume_offline(struct ctlr_info *h,
2929                                         unsigned char scsi3addr[])
2930 {
2931         struct CommandList *c;
2932         unsigned char *sense;
2933         u8 sense_key, asc, ascq;
2934         int sense_len;
2935         int rc, ldstat = 0;
2936         u16 cmd_status;
2937         u8 scsi_status;
2938 #define ASC_LUN_NOT_READY 0x04
2939 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2940 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2941
2942         c = cmd_alloc(h);
2943
2944         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2945         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
2946         if (rc) {
2947                 cmd_free(h, c);
2948                 return 0;
2949         }
2950         sense = c->err_info->SenseInfo;
2951         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
2952                 sense_len = sizeof(c->err_info->SenseInfo);
2953         else
2954                 sense_len = c->err_info->SenseLen;
2955         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
2956         cmd_status = c->err_info->CommandStatus;
2957         scsi_status = c->err_info->ScsiStatus;
2958         cmd_free(h, c);
2959         /* Is the volume 'not ready'? */
2960         if (cmd_status != CMD_TARGET_STATUS ||
2961                 scsi_status != SAM_STAT_CHECK_CONDITION ||
2962                 sense_key != NOT_READY ||
2963                 asc != ASC_LUN_NOT_READY)  {
2964                 return 0;
2965         }
2966
2967         /* Determine the reason for not ready state */
2968         ldstat = hpsa_get_volume_status(h, scsi3addr);
2969
2970         /* Keep volume offline in certain cases: */
2971         switch (ldstat) {
2972         case HPSA_LV_UNDERGOING_ERASE:
2973         case HPSA_LV_UNDERGOING_RPI:
2974         case HPSA_LV_PENDING_RPI:
2975         case HPSA_LV_ENCRYPTED_NO_KEY:
2976         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2977         case HPSA_LV_UNDERGOING_ENCRYPTION:
2978         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2979         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2980                 return ldstat;
2981         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2982                 /* If VPD status page isn't available,
2983                  * use ASC/ASCQ to determine state
2984                  */
2985                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2986                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2987                         return ldstat;
2988                 break;
2989         default:
2990                 break;
2991         }
2992         return 0;
2993 }
2994
2995 /*
2996  * Find out if a logical device supports aborts by simply trying one.
2997  * Smart Array may claim not to support aborts on logical drives, but
2998  * if a MSA2000 * is connected, the drives on that will be presented
2999  * by the Smart Array as logical drives, and aborts may be sent to
3000  * those devices successfully.  So the simplest way to find out is
3001  * to simply try an abort and see how the device responds.
3002  */
3003 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3004                                         unsigned char *scsi3addr)
3005 {
3006         struct CommandList *c;
3007         struct ErrorInfo *ei;
3008         int rc = 0;
3009
3010         u64 tag = (u64) -1; /* bogus tag */
3011
3012         /* Assume that physical devices support aborts */
3013         if (!is_logical_dev_addr_mode(scsi3addr))
3014                 return 1;
3015
3016         c = cmd_alloc(h);
3017
3018         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3019         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3020         /* no unmap needed here because no data xfer. */
3021         ei = c->err_info;
3022         switch (ei->CommandStatus) {
3023         case CMD_INVALID:
3024                 rc = 0;
3025                 break;
3026         case CMD_UNABORTABLE:
3027         case CMD_ABORT_FAILED:
3028                 rc = 1;
3029                 break;
3030         case CMD_TMF_STATUS:
3031                 rc = hpsa_evaluate_tmf_status(h, c);
3032                 break;
3033         default:
3034                 rc = 0;
3035                 break;
3036         }
3037         cmd_free(h, c);
3038         return rc;
3039 }
3040
3041 static int hpsa_update_device_info(struct ctlr_info *h,
3042         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3043         unsigned char *is_OBDR_device)
3044 {
3045
3046 #define OBDR_SIG_OFFSET 43
3047 #define OBDR_TAPE_SIG "$DR-10"
3048 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3049 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3050
3051         unsigned char *inq_buff;
3052         unsigned char *obdr_sig;
3053
3054         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3055         if (!inq_buff)
3056                 goto bail_out;
3057
3058         /* Do an inquiry to the device to see what it is. */
3059         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3060                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3061                 /* Inquiry failed (msg printed already) */
3062                 dev_err(&h->pdev->dev,
3063                         "hpsa_update_device_info: inquiry failed\n");
3064                 goto bail_out;
3065         }
3066
3067         this_device->devtype = (inq_buff[0] & 0x1f);
3068         memcpy(this_device->scsi3addr, scsi3addr, 8);
3069         memcpy(this_device->vendor, &inq_buff[8],
3070                 sizeof(this_device->vendor));
3071         memcpy(this_device->model, &inq_buff[16],
3072                 sizeof(this_device->model));
3073         memset(this_device->device_id, 0,
3074                 sizeof(this_device->device_id));
3075         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
3076                 sizeof(this_device->device_id));
3077
3078         if (this_device->devtype == TYPE_DISK &&
3079                 is_logical_dev_addr_mode(scsi3addr)) {
3080                 int volume_offline;
3081
3082                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3083                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3084                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3085                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3086                 if (volume_offline < 0 || volume_offline > 0xff)
3087                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3088                 this_device->volume_offline = volume_offline & 0xff;
3089         } else {
3090                 this_device->raid_level = RAID_UNKNOWN;
3091                 this_device->offload_config = 0;
3092                 this_device->offload_enabled = 0;
3093                 this_device->offload_to_be_enabled = 0;
3094                 this_device->hba_ioaccel_enabled = 0;
3095                 this_device->volume_offline = 0;
3096                 this_device->queue_depth = h->nr_cmds;
3097         }
3098
3099         if (is_OBDR_device) {
3100                 /* See if this is a One-Button-Disaster-Recovery device
3101                  * by looking for "$DR-10" at offset 43 in inquiry data.
3102                  */
3103                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3104                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3105                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3106                                                 OBDR_SIG_LEN) == 0);
3107         }
3108         kfree(inq_buff);
3109         return 0;
3110
3111 bail_out:
3112         kfree(inq_buff);
3113         return 1;
3114 }
3115
3116 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3117                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3118 {
3119         unsigned long flags;
3120         int rc, entry;
3121         /*
3122          * See if this device supports aborts.  If we already know
3123          * the device, we already know if it supports aborts, otherwise
3124          * we have to find out if it supports aborts by trying one.
3125          */
3126         spin_lock_irqsave(&h->devlock, flags);
3127         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3128         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3129                 entry >= 0 && entry < h->ndevices) {
3130                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3131                 spin_unlock_irqrestore(&h->devlock, flags);
3132         } else {
3133                 spin_unlock_irqrestore(&h->devlock, flags);
3134                 dev->supports_aborts =
3135                                 hpsa_device_supports_aborts(h, scsi3addr);
3136                 if (dev->supports_aborts < 0)
3137                         dev->supports_aborts = 0;
3138         }
3139 }
3140
3141 static unsigned char *ext_target_model[] = {
3142         "MSA2012",
3143         "MSA2024",
3144         "MSA2312",
3145         "MSA2324",
3146         "P2000 G3 SAS",
3147         "MSA 2040 SAS",
3148         NULL,
3149 };
3150
3151 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
3152 {
3153         int i;
3154
3155         for (i = 0; ext_target_model[i]; i++)
3156                 if (strncmp(device->model, ext_target_model[i],
3157                         strlen(ext_target_model[i])) == 0)
3158                         return 1;
3159         return 0;
3160 }
3161
3162 /* Helper function to assign bus, target, lun mapping of devices.
3163  * Puts non-external target logical volumes on bus 0, external target logical
3164  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
3165  * Logical drive target and lun are assigned at this time, but
3166  * physical device lun and target assignment are deferred (assigned
3167  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3168  */
3169 static void figure_bus_target_lun(struct ctlr_info *h,
3170         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3171 {
3172         u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
3173
3174         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3175                 /* physical device, target and lun filled in later */
3176                 if (is_hba_lunid(lunaddrbytes))
3177                         hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
3178                 else
3179                         /* defer target, lun assignment for physical devices */
3180                         hpsa_set_bus_target_lun(device, 2, -1, -1);
3181                 return;
3182         }
3183         /* It's a logical device */
3184         if (is_ext_target(h, device)) {
3185                 /* external target way, put logicals on bus 1
3186                  * and match target/lun numbers box
3187                  * reports, other smart array, bus 0, target 0, match lunid
3188                  */
3189                 hpsa_set_bus_target_lun(device,
3190                         1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
3191                 return;
3192         }
3193         hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
3194 }
3195
3196 /*
3197  * If there is no lun 0 on a target, linux won't find any devices.
3198  * For the external targets (arrays), we have to manually detect the enclosure
3199  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
3200  * it for some reason.  *tmpdevice is the target we're adding,
3201  * this_device is a pointer into the current element of currentsd[]
3202  * that we're building up in update_scsi_devices(), below.
3203  * lunzerobits is a bitmap that tracks which targets already have a
3204  * lun 0 assigned.
3205  * Returns 1 if an enclosure was added, 0 if not.
3206  */
3207 static int add_ext_target_dev(struct ctlr_info *h,
3208         struct hpsa_scsi_dev_t *tmpdevice,
3209         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
3210         unsigned long lunzerobits[], int *n_ext_target_devs)
3211 {
3212         unsigned char scsi3addr[8];
3213
3214         if (test_bit(tmpdevice->target, lunzerobits))
3215                 return 0; /* There is already a lun 0 on this target. */
3216
3217         if (!is_logical_dev_addr_mode(lunaddrbytes))
3218                 return 0; /* It's the logical targets that may lack lun 0. */
3219
3220         if (!is_ext_target(h, tmpdevice))
3221                 return 0; /* Only external target devices have this problem. */
3222
3223         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
3224                 return 0;
3225
3226         memset(scsi3addr, 0, 8);
3227         scsi3addr[3] = tmpdevice->target;
3228         if (is_hba_lunid(scsi3addr))
3229                 return 0; /* Don't add the RAID controller here. */
3230
3231         if (is_scsi_rev_5(h))
3232                 return 0; /* p1210m doesn't need to do this. */
3233
3234         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
3235                 dev_warn(&h->pdev->dev, "Maximum number of external "
3236                         "target devices exceeded.  Check your hardware "
3237                         "configuration.");
3238                 return 0;
3239         }
3240
3241         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
3242                 return 0;
3243         (*n_ext_target_devs)++;
3244         hpsa_set_bus_target_lun(this_device,
3245                                 tmpdevice->bus, tmpdevice->target, 0);
3246         hpsa_update_device_supports_aborts(h, this_device, scsi3addr);
3247         set_bit(tmpdevice->target, lunzerobits);
3248         return 1;
3249 }
3250
3251 /*
3252  * Get address of physical disk used for an ioaccel2 mode command:
3253  *      1. Extract ioaccel2 handle from the command.
3254  *      2. Find a matching ioaccel2 handle from list of physical disks.
3255  *      3. Return:
3256  *              1 and set scsi3addr to address of matching physical
3257  *              0 if no matching physical disk was found.
3258  */
3259 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3260         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3261 {
3262         struct io_accel2_cmd *c2 =
3263                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3264         unsigned long flags;
3265         int i;
3266
3267         spin_lock_irqsave(&h->devlock, flags);
3268         for (i = 0; i < h->ndevices; i++)
3269                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3270                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
3271                                 sizeof(h->dev[i]->scsi3addr));
3272                         spin_unlock_irqrestore(&h->devlock, flags);
3273                         return 1;
3274                 }
3275         spin_unlock_irqrestore(&h->devlock, flags);
3276         return 0;
3277 }
3278
3279 /*
3280  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3281  * logdev.  The number of luns in physdev and logdev are returned in
3282  * *nphysicals and *nlogicals, respectively.
3283  * Returns 0 on success, -1 otherwise.
3284  */
3285 static int hpsa_gather_lun_info(struct ctlr_info *h,
3286         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3287         struct ReportLUNdata *logdev, u32 *nlogicals)
3288 {
3289         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3290                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3291                 return -1;
3292         }
3293         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3294         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3295                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3296                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3297                 *nphysicals = HPSA_MAX_PHYS_LUN;
3298         }
3299         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3300                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3301                 return -1;
3302         }
3303         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3304         /* Reject Logicals in excess of our max capability. */
3305         if (*nlogicals > HPSA_MAX_LUN) {
3306                 dev_warn(&h->pdev->dev,
3307                         "maximum logical LUNs (%d) exceeded.  "
3308                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
3309                         *nlogicals - HPSA_MAX_LUN);
3310                         *nlogicals = HPSA_MAX_LUN;
3311         }
3312         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3313                 dev_warn(&h->pdev->dev,
3314                         "maximum logical + physical LUNs (%d) exceeded. "
3315                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3316                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3317                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3318         }
3319         return 0;
3320 }
3321
3322 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3323         int i, int nphysicals, int nlogicals,
3324         struct ReportExtendedLUNdata *physdev_list,
3325         struct ReportLUNdata *logdev_list)
3326 {
3327         /* Helper function, figure out where the LUN ID info is coming from
3328          * given index i, lists of physical and logical devices, where in
3329          * the list the raid controller is supposed to appear (first or last)
3330          */
3331
3332         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3333         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3334
3335         if (i == raid_ctlr_position)
3336                 return RAID_CTLR_LUNID;
3337
3338         if (i < logicals_start)
3339                 return &physdev_list->LUN[i -
3340                                 (raid_ctlr_position == 0)].lunid[0];
3341
3342         if (i < last_device)
3343                 return &logdev_list->LUN[i - nphysicals -
3344                         (raid_ctlr_position == 0)][0];
3345         BUG();
3346         return NULL;
3347 }
3348
3349 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
3350 {
3351         int rc;
3352         int hba_mode_enabled;
3353         struct bmic_controller_parameters *ctlr_params;
3354         ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
3355                 GFP_KERNEL);
3356
3357         if (!ctlr_params)
3358                 return -ENOMEM;
3359         rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
3360                 sizeof(struct bmic_controller_parameters));
3361         if (rc) {
3362                 kfree(ctlr_params);
3363                 return rc;
3364         }
3365
3366         hba_mode_enabled =
3367                 ((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
3368         kfree(ctlr_params);
3369         return hba_mode_enabled;
3370 }
3371
3372 /* get physical drive ioaccel handle and queue depth */
3373 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3374                 struct hpsa_scsi_dev_t *dev,
3375                 u8 *lunaddrbytes,
3376                 struct bmic_identify_physical_device *id_phys)
3377 {
3378         int rc;
3379         struct ext_report_lun_entry *rle =
3380                 (struct ext_report_lun_entry *) lunaddrbytes;
3381
3382         dev->ioaccel_handle = rle->ioaccel_handle;
3383         if (PHYS_IOACCEL(lunaddrbytes) && dev->ioaccel_handle)
3384                 dev->hba_ioaccel_enabled = 1;
3385         memset(id_phys, 0, sizeof(*id_phys));
3386         rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
3387                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
3388                         sizeof(*id_phys));
3389         if (!rc)
3390                 /* Reserve space for FW operations */
3391 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3392 #define DRIVE_QUEUE_DEPTH 7
3393                 dev->queue_depth =
3394                         le16_to_cpu(id_phys->current_queue_depth_limit) -
3395                                 DRIVE_CMDS_RESERVED_FOR_FW;
3396         else
3397                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3398         atomic_set(&dev->ioaccel_cmds_out, 0);
3399 }
3400
3401 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
3402 {
3403         /* the idea here is we could get notified
3404          * that some devices have changed, so we do a report
3405          * physical luns and report logical luns cmd, and adjust
3406          * our list of devices accordingly.
3407          *
3408          * The scsi3addr's of devices won't change so long as the
3409          * adapter is not reset.  That means we can rescan and
3410          * tell which devices we already know about, vs. new
3411          * devices, vs.  disappearing devices.
3412          */
3413         struct ReportExtendedLUNdata *physdev_list = NULL;
3414         struct ReportLUNdata *logdev_list = NULL;
3415         struct bmic_identify_physical_device *id_phys = NULL;
3416         u32 nphysicals = 0;
3417         u32 nlogicals = 0;
3418         u32 ndev_allocated = 0;
3419         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3420         int ncurrent = 0;
3421         int i, n_ext_target_devs, ndevs_to_allocate;
3422         int raid_ctlr_position;
3423         int rescan_hba_mode;
3424         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3425
3426         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3427         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3428         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3429         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3430         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3431
3432         if (!currentsd || !physdev_list || !logdev_list ||
3433                 !tmpdevice || !id_phys) {
3434                 dev_err(&h->pdev->dev, "out of memory\n");
3435                 goto out;
3436         }
3437         memset(lunzerobits, 0, sizeof(lunzerobits));
3438
3439         rescan_hba_mode = hpsa_hba_mode_enabled(h);
3440         if (rescan_hba_mode < 0)
3441                 goto out;
3442
3443         if (!h->hba_mode_enabled && rescan_hba_mode)
3444                 dev_warn(&h->pdev->dev, "HBA mode enabled\n");
3445         else if (h->hba_mode_enabled && !rescan_hba_mode)
3446                 dev_warn(&h->pdev->dev, "HBA mode disabled\n");
3447
3448         h->hba_mode_enabled = rescan_hba_mode;
3449
3450         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3451                         logdev_list, &nlogicals))
3452                 goto out;
3453
3454         /* We might see up to the maximum number of logical and physical disks
3455          * plus external target devices, and a device for the local RAID
3456          * controller.
3457          */
3458         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3459
3460         /* Allocate the per device structures */
3461         for (i = 0; i < ndevs_to_allocate; i++) {
3462                 if (i >= HPSA_MAX_DEVICES) {
3463                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3464                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
3465                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
3466                         break;
3467                 }
3468
3469                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3470                 if (!currentsd[i]) {
3471                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3472                                 __FILE__, __LINE__);
3473                         goto out;
3474                 }
3475                 ndev_allocated++;
3476         }
3477
3478         if (is_scsi_rev_5(h))
3479                 raid_ctlr_position = 0;
3480         else
3481                 raid_ctlr_position = nphysicals + nlogicals;
3482
3483         /* adjust our table of devices */
3484         n_ext_target_devs = 0;
3485         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3486                 u8 *lunaddrbytes, is_OBDR = 0;
3487
3488                 /* Figure out where the LUN ID info is coming from */
3489                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3490                         i, nphysicals, nlogicals, physdev_list, logdev_list);
3491
3492                 /* skip masked non-disk devices */
3493                 if (MASKED_DEVICE(lunaddrbytes))
3494                         if (i < nphysicals + (raid_ctlr_position == 0) &&
3495                                 NON_DISK_PHYS_DEV(lunaddrbytes))
3496                                 continue;
3497
3498                 /* Get device type, vendor, model, device id */
3499                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3500                                                         &is_OBDR))
3501                         continue; /* skip it if we can't talk to it. */
3502                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3503                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
3504                 this_device = currentsd[ncurrent];
3505
3506                 /*
3507                  * For external target devices, we have to insert a LUN 0 which
3508                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3509                  * is nonetheless an enclosure device there.  We have to
3510                  * present that otherwise linux won't find anything if
3511                  * there is no lun 0.
3512                  */
3513                 if (add_ext_target_dev(h, tmpdevice, this_device,
3514                                 lunaddrbytes, lunzerobits,
3515                                 &n_ext_target_devs)) {
3516                         ncurrent++;
3517                         this_device = currentsd[ncurrent];
3518                 }
3519
3520                 *this_device = *tmpdevice;
3521
3522                 /* do not expose masked devices */
3523                 if (MASKED_DEVICE(lunaddrbytes) &&
3524                         i < nphysicals + (raid_ctlr_position == 0)) {
3525                         if (h->hba_mode_enabled)
3526                                 dev_warn(&h->pdev->dev,
3527                                         "Masked physical device detected\n");
3528                         this_device->expose_state = HPSA_DO_NOT_EXPOSE;
3529                 } else {
3530                         this_device->expose_state =
3531                                         HPSA_SG_ATTACH | HPSA_ULD_ATTACH;
3532                 }
3533
3534                 switch (this_device->devtype) {
3535                 case TYPE_ROM:
3536                         /* We don't *really* support actual CD-ROM devices,
3537                          * just "One Button Disaster Recovery" tape drive
3538                          * which temporarily pretends to be a CD-ROM drive.
3539                          * So we check that the device is really an OBDR tape
3540                          * device by checking for "$DR-10" in bytes 43-48 of
3541                          * the inquiry data.
3542                          */
3543                         if (is_OBDR)
3544                                 ncurrent++;
3545                         break;
3546                 case TYPE_DISK:
3547                         if (i >= nphysicals) {
3548                                 ncurrent++;
3549                                 break;
3550                         }
3551
3552                         if (h->hba_mode_enabled)
3553                                 /* never use raid mapper in HBA mode */
3554                                 this_device->offload_enabled = 0;
3555                         else if (!(h->transMethod & CFGTBL_Trans_io_accel1 ||
3556                                 h->transMethod & CFGTBL_Trans_io_accel2))
3557                                 break;
3558
3559                         hpsa_get_ioaccel_drive_info(h, this_device,
3560                                                 lunaddrbytes, id_phys);
3561                         atomic_set(&this_device->ioaccel_cmds_out, 0);
3562                         ncurrent++;
3563                         break;
3564                 case TYPE_TAPE:
3565                 case TYPE_MEDIUM_CHANGER:
3566                         ncurrent++;
3567                         break;
3568                 case TYPE_ENCLOSURE:
3569                         if (h->hba_mode_enabled)
3570                                 ncurrent++;
3571                         break;
3572                 case TYPE_RAID:
3573                         /* Only present the Smartarray HBA as a RAID controller.
3574                          * If it's a RAID controller other than the HBA itself
3575                          * (an external RAID controller, MSA500 or similar)
3576                          * don't present it.
3577                          */
3578                         if (!is_hba_lunid(lunaddrbytes))
3579                                 break;
3580                         ncurrent++;
3581                         break;
3582                 default:
3583                         break;
3584                 }
3585                 if (ncurrent >= HPSA_MAX_DEVICES)
3586                         break;
3587         }
3588         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3589 out:
3590         kfree(tmpdevice);
3591         for (i = 0; i < ndev_allocated; i++)
3592                 kfree(currentsd[i]);
3593         kfree(currentsd);
3594         kfree(physdev_list);
3595         kfree(logdev_list);
3596         kfree(id_phys);
3597 }
3598
3599 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
3600                                    struct scatterlist *sg)
3601 {
3602         u64 addr64 = (u64) sg_dma_address(sg);
3603         unsigned int len = sg_dma_len(sg);
3604
3605         desc->Addr = cpu_to_le64(addr64);
3606         desc->Len = cpu_to_le32(len);
3607         desc->Ext = 0;
3608 }
3609
3610 /*
3611  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3612  * dma mapping  and fills in the scatter gather entries of the
3613  * hpsa command, cp.
3614  */
3615 static int hpsa_scatter_gather(struct ctlr_info *h,
3616                 struct CommandList *cp,
3617                 struct scsi_cmnd *cmd)
3618 {
3619         struct scatterlist *sg;
3620         int use_sg, i, sg_index, chained;
3621         struct SGDescriptor *curr_sg;
3622
3623         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3624
3625         use_sg = scsi_dma_map(cmd);
3626         if (use_sg < 0)
3627                 return use_sg;
3628
3629         if (!use_sg)
3630                 goto sglist_finished;
3631
3632         curr_sg = cp->SG;
3633         chained = 0;
3634         sg_index = 0;
3635         scsi_for_each_sg(cmd, sg, use_sg, i) {
3636                 if (i == h->max_cmd_sg_entries - 1 &&
3637                         use_sg > h->max_cmd_sg_entries) {
3638                         chained = 1;
3639                         curr_sg = h->cmd_sg_list[cp->cmdindex];
3640                         sg_index = 0;
3641                 }
3642                 hpsa_set_sg_descriptor(curr_sg, sg);
3643                 curr_sg++;
3644         }
3645
3646         /* Back the pointer up to the last entry and mark it as "last". */
3647         (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3648
3649         if (use_sg + chained > h->maxSG)
3650                 h->maxSG = use_sg + chained;
3651
3652         if (chained) {
3653                 cp->Header.SGList = h->max_cmd_sg_entries;
3654                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3655                 if (hpsa_map_sg_chain_block(h, cp)) {
3656                         scsi_dma_unmap(cmd);
3657                         return -1;
3658                 }
3659                 return 0;
3660         }
3661
3662 sglist_finished:
3663
3664         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3665         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3666         return 0;
3667 }
3668
3669 #define IO_ACCEL_INELIGIBLE (1)
3670 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3671 {
3672         int is_write = 0;
3673         u32 block;
3674         u32 block_cnt;
3675
3676         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3677         switch (cdb[0]) {
3678         case WRITE_6:
3679         case WRITE_12:
3680                 is_write = 1;
3681         case READ_6:
3682         case READ_12:
3683                 if (*cdb_len == 6) {
3684                         block = (((u32) cdb[2]) << 8) | cdb[3];
3685                         block_cnt = cdb[4];
3686                 } else {
3687                         BUG_ON(*cdb_len != 12);
3688                         block = (((u32) cdb[2]) << 24) |
3689                                 (((u32) cdb[3]) << 16) |
3690                                 (((u32) cdb[4]) << 8) |
3691                                 cdb[5];
3692                         block_cnt =
3693                                 (((u32) cdb[6]) << 24) |
3694                                 (((u32) cdb[7]) << 16) |
3695                                 (((u32) cdb[8]) << 8) |
3696                                 cdb[9];
3697                 }
3698                 if (block_cnt > 0xffff)
3699                         return IO_ACCEL_INELIGIBLE;
3700
3701                 cdb[0] = is_write ? WRITE_10 : READ_10;
3702                 cdb[1] = 0;
3703                 cdb[2] = (u8) (block >> 24);
3704                 cdb[3] = (u8) (block >> 16);
3705                 cdb[4] = (u8) (block >> 8);
3706                 cdb[5] = (u8) (block);
3707                 cdb[6] = 0;
3708                 cdb[7] = (u8) (block_cnt >> 8);
3709                 cdb[8] = (u8) (block_cnt);
3710                 cdb[9] = 0;
3711                 *cdb_len = 10;
3712                 break;
3713         }
3714         return 0;
3715 }
3716
3717 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3718         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3719         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3720 {
3721         struct scsi_cmnd *cmd = c->scsi_cmd;
3722         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3723         unsigned int len;
3724         unsigned int total_len = 0;
3725         struct scatterlist *sg;
3726         u64 addr64;
3727         int use_sg, i;
3728         struct SGDescriptor *curr_sg;
3729         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3730
3731         /* TODO: implement chaining support */
3732         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
3733                 atomic_dec(&phys_disk->ioaccel_cmds_out);
3734                 return IO_ACCEL_INELIGIBLE;
3735         }
3736
3737         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3738
3739         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
3740                 atomic_dec(&phys_disk->ioaccel_cmds_out);
3741                 return IO_ACCEL_INELIGIBLE;
3742         }
3743
3744         c->cmd_type = CMD_IOACCEL1;
3745
3746         /* Adjust the DMA address to point to the accelerated command buffer */
3747         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3748                                 (c->cmdindex * sizeof(*cp));
3749         BUG_ON(c->busaddr & 0x0000007F);
3750
3751         use_sg = scsi_dma_map(cmd);
3752         if (use_sg < 0) {
3753                 atomic_dec(&phys_disk->ioaccel_cmds_out);
3754                 return use_sg;
3755         }
3756
3757         if (use_sg) {
3758                 curr_sg = cp->SG;
3759                 scsi_for_each_sg(cmd, sg, use_sg, i) {
3760                         addr64 = (u64) sg_dma_address(sg);
3761                         len  = sg_dma_len(sg);
3762                         total_len += len;
3763                         curr_sg->Addr = cpu_to_le64(addr64);
3764                         curr_sg->Len = cpu_to_le32(len);
3765                         curr_sg->Ext = cpu_to_le32(0);
3766                         curr_sg++;
3767                 }
3768                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3769
3770                 switch (cmd->sc_data_direction) {
3771                 case DMA_TO_DEVICE:
3772                         control |= IOACCEL1_CONTROL_DATA_OUT;
3773                         break;
3774                 case DMA_FROM_DEVICE:
3775                         control |= IOACCEL1_CONTROL_DATA_IN;
3776                         break;
3777                 case DMA_NONE:
3778                         control |= IOACCEL1_CONTROL_NODATAXFER;
3779                         break;
3780                 default:
3781                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3782                         cmd->sc_data_direction);
3783                         BUG();
3784                         break;
3785                 }
3786         } else {
3787                 control |= IOACCEL1_CONTROL_NODATAXFER;
3788         }
3789
3790         c->Header.SGList = use_sg;
3791         /* Fill out the command structure to submit */
3792         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
3793         cp->transfer_len = cpu_to_le32(total_len);
3794         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
3795                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
3796         cp->control = cpu_to_le32(control);
3797         memcpy(cp->CDB, cdb, cdb_len);
3798         memcpy(cp->CISS_LUN, scsi3addr, 8);
3799         /* Tag was already set at init time. */
3800         enqueue_cmd_and_start_io(h, c);
3801         return 0;
3802 }
3803
3804 /*
3805  * Queue a command directly to a device behind the controller using the
3806  * I/O accelerator path.
3807  */
3808 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3809         struct CommandList *c)
3810 {
3811         struct scsi_cmnd *cmd = c->scsi_cmd;
3812         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3813
3814         c->phys_disk = dev;
3815
3816         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3817                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
3818 }
3819
3820 /*
3821  * Set encryption parameters for the ioaccel2 request
3822  */
3823 static void set_encrypt_ioaccel2(struct ctlr_info *h,
3824         struct CommandList *c, struct io_accel2_cmd *cp)
3825 {
3826         struct scsi_cmnd *cmd = c->scsi_cmd;
3827         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3828         struct raid_map_data *map = &dev->raid_map;
3829         u64 first_block;
3830
3831         /* Are we doing encryption on this device */
3832         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
3833                 return;
3834         /* Set the data encryption key index. */
3835         cp->dekindex = map->dekindex;
3836
3837         /* Set the encryption enable flag, encoded into direction field. */
3838         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3839
3840         /* Set encryption tweak values based on logical block address
3841          * If block size is 512, tweak value is LBA.
3842          * For other block sizes, tweak is (LBA * block size)/ 512)
3843          */
3844         switch (cmd->cmnd[0]) {
3845         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3846         case WRITE_6:
3847         case READ_6:
3848                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
3849                 break;
3850         case WRITE_10:
3851         case READ_10:
3852         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3853         case WRITE_12:
3854         case READ_12:
3855                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
3856                 break;
3857         case WRITE_16:
3858         case READ_16:
3859                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
3860                 break;
3861         default:
3862                 dev_err(&h->pdev->dev,
3863                         "ERROR: %s: size (0x%x) not supported for encryption\n",
3864                         __func__, cmd->cmnd[0]);
3865                 BUG();
3866                 break;
3867         }
3868
3869         if (le32_to_cpu(map->volume_blk_size) != 512)
3870                 first_block = first_block *
3871                                 le32_to_cpu(map->volume_blk_size)/512;
3872
3873         cp->tweak_lower = cpu_to_le32(first_block);
3874         cp->tweak_upper = cpu_to_le32(first_block >> 32);
3875 }
3876
3877 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3878         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3879         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3880 {
3881         struct scsi_cmnd *cmd = c->scsi_cmd;
3882         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3883         struct ioaccel2_sg_element *curr_sg;
3884         int use_sg, i;
3885         struct scatterlist *sg;
3886         u64 addr64;
3887         u32 len;
3888         u32 total_len = 0;
3889
3890         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3891
3892         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
3893                 atomic_dec(&phys_disk->ioaccel_cmds_out);
3894                 return IO_ACCEL_INELIGIBLE;
3895         }
3896
3897         c->cmd_type = CMD_IOACCEL2;
3898         /* Adjust the DMA address to point to the accelerated command buffer */
3899         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3900                                 (c->cmdindex * sizeof(*cp));
3901         BUG_ON(c->busaddr & 0x0000007F);
3902
3903         memset(cp, 0, sizeof(*cp));
3904         cp->IU_type = IOACCEL2_IU_TYPE;
3905
3906         use_sg = scsi_dma_map(cmd);
3907         if (use_sg < 0) {
3908                 atomic_dec(&phys_disk->ioaccel_cmds_out);
3909                 return use_sg;
3910         }
3911
3912         if (use_sg) {
3913                 curr_sg = cp->sg;
3914                 if (use_sg > h->ioaccel_maxsg) {
3915                         addr64 = le64_to_cpu(
3916                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
3917                         curr_sg->address = cpu_to_le64(addr64);
3918                         curr_sg->length = 0;
3919                         curr_sg->reserved[0] = 0;
3920                         curr_sg->reserved[1] = 0;
3921                         curr_sg->reserved[2] = 0;
3922                         curr_sg->chain_indicator = 0x80;
3923
3924                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
3925                 }
3926                 scsi_for_each_sg(cmd, sg, use_sg, i) {
3927                         addr64 = (u64) sg_dma_address(sg);
3928                         len  = sg_dma_len(sg);
3929                         total_len += len;
3930                         curr_sg->address = cpu_to_le64(addr64);
3931                         curr_sg->length = cpu_to_le32(len);
3932                         curr_sg->reserved[0] = 0;
3933                         curr_sg->reserved[1] = 0;
3934                         curr_sg->reserved[2] = 0;
3935                         curr_sg->chain_indicator = 0;
3936                         curr_sg++;
3937                 }
3938
3939                 switch (cmd->sc_data_direction) {
3940                 case DMA_TO_DEVICE:
3941                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3942                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
3943                         break;
3944                 case DMA_FROM_DEVICE:
3945                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3946                         cp->direction |= IOACCEL2_DIR_DATA_IN;
3947                         break;
3948                 case DMA_NONE:
3949                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3950                         cp->direction |= IOACCEL2_DIR_NO_DATA;
3951                         break;
3952                 default:
3953                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3954                                 cmd->sc_data_direction);
3955                         BUG();
3956                         break;
3957                 }
3958         } else {
3959                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3960                 cp->direction |= IOACCEL2_DIR_NO_DATA;
3961         }
3962
3963         /* Set encryption parameters, if necessary */
3964         set_encrypt_ioaccel2(h, c, cp);
3965
3966         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
3967         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
3968         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
3969
3970         cp->data_len = cpu_to_le32(total_len);
3971         cp->err_ptr = cpu_to_le64(c->busaddr +
3972                         offsetof(struct io_accel2_cmd, error_data));
3973         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
3974
3975         /* fill in sg elements */
3976         if (use_sg > h->ioaccel_maxsg) {
3977                 cp->sg_count = 1;
3978                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
3979                         atomic_dec(&phys_disk->ioaccel_cmds_out);
3980                         scsi_dma_unmap(cmd);
3981                         return -1;
3982                 }
3983         } else
3984                 cp->sg_count = (u8) use_sg;
3985
3986         enqueue_cmd_and_start_io(h, c);
3987         return 0;
3988 }
3989
3990 /*
3991  * Queue a command to the correct I/O accelerator path.
3992  */
3993 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3994         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3995         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3996 {
3997         /* Try to honor the device's queue depth */
3998         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
3999                                         phys_disk->queue_depth) {
4000                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4001                 return IO_ACCEL_INELIGIBLE;
4002         }
4003         if (h->transMethod & CFGTBL_Trans_io_accel1)
4004                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4005                                                 cdb, cdb_len, scsi3addr,
4006                                                 phys_disk);
4007         else
4008                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4009                                                 cdb, cdb_len, scsi3addr,
4010                                                 phys_disk);
4011 }
4012
4013 static void raid_map_helper(struct raid_map_data *map,
4014                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4015 {
4016         if (offload_to_mirror == 0)  {
4017                 /* use physical disk in the first mirrored group. */
4018                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4019                 return;
4020         }
4021         do {
4022                 /* determine mirror group that *map_index indicates */
4023                 *current_group = *map_index /
4024                         le16_to_cpu(map->data_disks_per_row);
4025                 if (offload_to_mirror == *current_group)
4026                         continue;
4027                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4028                         /* select map index from next group */
4029                         *map_index += le16_to_cpu(map->data_disks_per_row);
4030                         (*current_group)++;
4031                 } else {
4032                         /* select map index from first group */
4033                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4034                         *current_group = 0;
4035                 }
4036         } while (offload_to_mirror != *current_group);
4037 }
4038
4039 /*
4040  * Attempt to perform offload RAID mapping for a logical volume I/O.
4041  */
4042 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4043         struct CommandList *c)
4044 {
4045         struct scsi_cmnd *cmd = c->scsi_cmd;
4046         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4047         struct raid_map_data *map = &dev->raid_map;
4048         struct raid_map_disk_data *dd = &map->data[0];
4049         int is_write = 0;
4050         u32 map_index;
4051         u64 first_block, last_block;
4052         u32 block_cnt;
4053         u32 blocks_per_row;
4054         u64 first_row, last_row;
4055         u32 first_row_offset, last_row_offset;
4056         u32 first_column, last_column;
4057         u64 r0_first_row, r0_last_row;
4058         u32 r5or6_blocks_per_row;
4059         u64 r5or6_first_row, r5or6_last_row;
4060         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4061         u32 r5or6_first_column, r5or6_last_column;
4062         u32 total_disks_per_row;
4063         u32 stripesize;
4064         u32 first_group, last_group, current_group;
4065         u32 map_row;
4066         u32 disk_handle;
4067         u64 disk_block;
4068         u32 disk_block_cnt;
4069         u8 cdb[16];
4070         u8 cdb_len;
4071         u16 strip_size;
4072 #if BITS_PER_LONG == 32
4073         u64 tmpdiv;
4074 #endif
4075         int offload_to_mirror;
4076
4077         /* check for valid opcode, get LBA and block count */
4078         switch (cmd->cmnd[0]) {
4079         case WRITE_6:
4080                 is_write = 1;
4081         case READ_6:
4082                 first_block =
4083                         (((u64) cmd->cmnd[2]) << 8) |
4084                         cmd->cmnd[3];
4085                 block_cnt = cmd->cmnd[4];
4086                 if (block_cnt == 0)
4087                         block_cnt = 256;
4088                 break;
4089         case WRITE_10:
4090                 is_write = 1;
4091         case READ_10:
4092                 first_block =
4093                         (((u64) cmd->cmnd[2]) << 24) |
4094                         (((u64) cmd->cmnd[3]) << 16) |
4095                         (((u64) cmd->cmnd[4]) << 8) |
4096                         cmd->cmnd[5];
4097                 block_cnt =
4098                         (((u32) cmd->cmnd[7]) << 8) |
4099                         cmd->cmnd[8];
4100                 break;
4101         case WRITE_12:
4102                 is_write = 1;
4103         case READ_12:
4104                 first_block =
4105                         (((u64) cmd->cmnd[2]) << 24) |
4106                         (((u64) cmd->cmnd[3]) << 16) |
4107                         (((u64) cmd->cmnd[4]) << 8) |
4108                         cmd->cmnd[5];
4109                 block_cnt =
4110                         (((u32) cmd->cmnd[6]) << 24) |
4111                         (((u32) cmd->cmnd[7]) << 16) |
4112                         (((u32) cmd->cmnd[8]) << 8) |
4113                 cmd->cmnd[9];
4114                 break;
4115         case WRITE_16:
4116                 is_write = 1;
4117         case READ_16:
4118                 first_block =
4119                         (((u64) cmd->cmnd[2]) << 56) |
4120                         (((u64) cmd->cmnd[3]) << 48) |
4121                         (((u64) cmd->cmnd[4]) << 40) |
4122                         (((u64) cmd->cmnd[5]) << 32) |
4123                         (((u64) cmd->cmnd[6]) << 24) |
4124                         (((u64) cmd->cmnd[7]) << 16) |
4125                         (((u64) cmd->cmnd[8]) << 8) |
4126                         cmd->cmnd[9];
4127                 block_cnt =
4128                         (((u32) cmd->cmnd[10]) << 24) |
4129                         (((u32) cmd->cmnd[11]) << 16) |
4130                         (((u32) cmd->cmnd[12]) << 8) |
4131                         cmd->cmnd[13];
4132                 break;
4133         default:
4134                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4135         }
4136         last_block = first_block + block_cnt - 1;
4137
4138         /* check for write to non-RAID-0 */
4139         if (is_write && dev->raid_level != 0)
4140                 return IO_ACCEL_INELIGIBLE;
4141
4142         /* check for invalid block or wraparound */
4143         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4144                 last_block < first_block)
4145                 return IO_ACCEL_INELIGIBLE;
4146
4147         /* calculate stripe information for the request */
4148         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4149                                 le16_to_cpu(map->strip_size);
4150         strip_size = le16_to_cpu(map->strip_size);
4151 #if BITS_PER_LONG == 32
4152         tmpdiv = first_block;
4153         (void) do_div(tmpdiv, blocks_per_row);
4154         first_row = tmpdiv;
4155         tmpdiv = last_block;
4156         (void) do_div(tmpdiv, blocks_per_row);
4157         last_row = tmpdiv;
4158         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4159         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4160         tmpdiv = first_row_offset;
4161         (void) do_div(tmpdiv, strip_size);
4162         first_column = tmpdiv;
4163         tmpdiv = last_row_offset;
4164         (void) do_div(tmpdiv, strip_size);
4165         last_column = tmpdiv;
4166 #else
4167         first_row = first_block / blocks_per_row;
4168         last_row = last_block / blocks_per_row;
4169         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4170         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4171         first_column = first_row_offset / strip_size;
4172         last_column = last_row_offset / strip_size;
4173 #endif
4174
4175         /* if this isn't a single row/column then give to the controller */
4176         if ((first_row != last_row) || (first_column != last_column))
4177                 return IO_ACCEL_INELIGIBLE;
4178
4179         /* proceeding with driver mapping */
4180         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4181                                 le16_to_cpu(map->metadata_disks_per_row);
4182         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4183                                 le16_to_cpu(map->row_cnt);
4184         map_index = (map_row * total_disks_per_row) + first_column;
4185
4186         switch (dev->raid_level) {
4187         case HPSA_RAID_0:
4188                 break; /* nothing special to do */
4189         case HPSA_RAID_1:
4190                 /* Handles load balance across RAID 1 members.
4191                  * (2-drive R1 and R10 with even # of drives.)
4192                  * Appropriate for SSDs, not optimal for HDDs
4193                  */
4194                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4195                 if (dev->offload_to_mirror)
4196                         map_index += le16_to_cpu(map->data_disks_per_row);
4197                 dev->offload_to_mirror = !dev->offload_to_mirror;
4198                 break;
4199         case HPSA_RAID_ADM:
4200                 /* Handles N-way mirrors  (R1-ADM)
4201                  * and R10 with # of drives divisible by 3.)
4202                  */
4203                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4204
4205                 offload_to_mirror = dev->offload_to_mirror;
4206                 raid_map_helper(map, offload_to_mirror,
4207                                 &map_index, &current_group);
4208                 /* set mirror group to use next time */
4209                 offload_to_mirror =
4210                         (offload_to_mirror >=
4211                         le16_to_cpu(map->layout_map_count) - 1)
4212                         ? 0 : offload_to_mirror + 1;
4213                 dev->offload_to_mirror = offload_to_mirror;
4214                 /* Avoid direct use of dev->offload_to_mirror within this
4215                  * function since multiple threads might simultaneously
4216                  * increment it beyond the range of dev->layout_map_count -1.
4217                  */
4218                 break;
4219         case HPSA_RAID_5:
4220         case HPSA_RAID_6:
4221                 if (le16_to_cpu(map->layout_map_count) <= 1)
4222                         break;
4223
4224                 /* Verify first and last block are in same RAID group */
4225                 r5or6_blocks_per_row =
4226                         le16_to_cpu(map->strip_size) *
4227                         le16_to_cpu(map->data_disks_per_row);
4228                 BUG_ON(r5or6_blocks_per_row == 0);
4229                 stripesize = r5or6_blocks_per_row *
4230                         le16_to_cpu(map->layout_map_count);
4231 #if BITS_PER_LONG == 32
4232                 tmpdiv = first_block;
4233                 first_group = do_div(tmpdiv, stripesize);
4234                 tmpdiv = first_group;
4235                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4236                 first_group = tmpdiv;
4237                 tmpdiv = last_block;
4238                 last_group = do_div(tmpdiv, stripesize);
4239                 tmpdiv = last_group;
4240                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4241                 last_group = tmpdiv;
4242 #else
4243                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4244                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4245 #endif
4246                 if (first_group != last_group)
4247                         return IO_ACCEL_INELIGIBLE;
4248
4249                 /* Verify request is in a single row of RAID 5/6 */
4250 #if BITS_PER_LONG == 32
4251                 tmpdiv = first_block;
4252                 (void) do_div(tmpdiv, stripesize);
4253                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4254                 tmpdiv = last_block;
4255                 (void) do_div(tmpdiv, stripesize);
4256                 r5or6_last_row = r0_last_row = tmpdiv;
4257 #else
4258                 first_row = r5or6_first_row = r0_first_row =
4259                                                 first_block / stripesize;
4260                 r5or6_last_row = r0_last_row = last_block / stripesize;
4261 #endif
4262                 if (r5or6_first_row != r5or6_last_row)
4263                         return IO_ACCEL_INELIGIBLE;
4264
4265
4266                 /* Verify request is in a single column */
4267 #if BITS_PER_LONG == 32
4268                 tmpdiv = first_block;
4269                 first_row_offset = do_div(tmpdiv, stripesize);
4270                 tmpdiv = first_row_offset;
4271                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4272                 r5or6_first_row_offset = first_row_offset;
4273                 tmpdiv = last_block;
4274                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4275                 tmpdiv = r5or6_last_row_offset;
4276                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4277                 tmpdiv = r5or6_first_row_offset;
4278                 (void) do_div(tmpdiv, map->strip_size);
4279                 first_column = r5or6_first_column = tmpdiv;
4280                 tmpdiv = r5or6_last_row_offset;
4281                 (void) do_div(tmpdiv, map->strip_size);
4282                 r5or6_last_column = tmpdiv;
4283 #else
4284                 first_row_offset = r5or6_first_row_offset =
4285                         (u32)((first_block % stripesize) %
4286                                                 r5or6_blocks_per_row);
4287
4288                 r5or6_last_row_offset =
4289                         (u32)((last_block % stripesize) %
4290                                                 r5or6_blocks_per_row);
4291
4292                 first_column = r5or6_first_column =
4293                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4294                 r5or6_last_column =
4295                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4296 #endif
4297                 if (r5or6_first_column != r5or6_last_column)
4298                         return IO_ACCEL_INELIGIBLE;
4299
4300                 /* Request is eligible */
4301                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4302                         le16_to_cpu(map->row_cnt);
4303
4304                 map_index = (first_group *
4305                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4306                         (map_row * total_disks_per_row) + first_column;
4307                 break;
4308         default:
4309                 return IO_ACCEL_INELIGIBLE;
4310         }
4311
4312         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4313                 return IO_ACCEL_INELIGIBLE;
4314
4315         c->phys_disk = dev->phys_disk[map_index];
4316
4317         disk_handle = dd[map_index].ioaccel_handle;
4318         disk_block = le64_to_cpu(map->disk_starting_blk) +
4319                         first_row * le16_to_cpu(map->strip_size) +
4320                         (first_row_offset - first_column *
4321                         le16_to_cpu(map->strip_size));
4322         disk_block_cnt = block_cnt;
4323
4324         /* handle differing logical/physical block sizes */
4325         if (map->phys_blk_shift) {
4326                 disk_block <<= map->phys_blk_shift;
4327                 disk_block_cnt <<= map->phys_blk_shift;
4328         }
4329         BUG_ON(disk_block_cnt > 0xffff);
4330
4331         /* build the new CDB for the physical disk I/O */
4332         if (disk_block > 0xffffffff) {
4333                 cdb[0] = is_write ? WRITE_16 : READ_16;
4334                 cdb[1] = 0;
4335                 cdb[2] = (u8) (disk_block >> 56);
4336                 cdb[3] = (u8) (disk_block >> 48);
4337                 cdb[4] = (u8) (disk_block >> 40);
4338                 cdb[5] = (u8) (disk_block >> 32);
4339                 cdb[6] = (u8) (disk_block >> 24);
4340                 cdb[7] = (u8) (disk_block >> 16);
4341                 cdb[8] = (u8) (disk_block >> 8);
4342                 cdb[9] = (u8) (disk_block);
4343                 cdb[10] = (u8) (disk_block_cnt >> 24);
4344                 cdb[11] = (u8) (disk_block_cnt >> 16);
4345                 cdb[12] = (u8) (disk_block_cnt >> 8);
4346                 cdb[13] = (u8) (disk_block_cnt);
4347                 cdb[14] = 0;
4348                 cdb[15] = 0;
4349                 cdb_len = 16;
4350         } else {
4351                 cdb[0] = is_write ? WRITE_10 : READ_10;
4352                 cdb[1] = 0;
4353                 cdb[2] = (u8) (disk_block >> 24);
4354                 cdb[3] = (u8) (disk_block >> 16);
4355                 cdb[4] = (u8) (disk_block >> 8);
4356                 cdb[5] = (u8) (disk_block);
4357                 cdb[6] = 0;
4358                 cdb[7] = (u8) (disk_block_cnt >> 8);
4359                 cdb[8] = (u8) (disk_block_cnt);
4360                 cdb[9] = 0;
4361                 cdb_len = 10;
4362         }
4363         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4364                                                 dev->scsi3addr,
4365                                                 dev->phys_disk[map_index]);
4366 }
4367
4368 /*
4369  * Submit commands down the "normal" RAID stack path
4370  * All callers to hpsa_ciss_submit must check lockup_detected
4371  * beforehand, before (opt.) and after calling cmd_alloc
4372  */
4373 static int hpsa_ciss_submit(struct ctlr_info *h,
4374         struct CommandList *c, struct scsi_cmnd *cmd,
4375         unsigned char scsi3addr[])
4376 {
4377         cmd->host_scribble = (unsigned char *) c;
4378         c->cmd_type = CMD_SCSI;
4379         c->scsi_cmd = cmd;
4380         c->Header.ReplyQueue = 0;  /* unused in simple mode */
4381         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4382         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4383
4384         /* Fill in the request block... */
4385
4386         c->Request.Timeout = 0;
4387         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4388         c->Request.CDBLen = cmd->cmd_len;
4389         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4390         switch (cmd->sc_data_direction) {
4391         case DMA_TO_DEVICE:
4392                 c->Request.type_attr_dir =
4393                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4394                 break;
4395         case DMA_FROM_DEVICE:
4396                 c->Request.type_attr_dir =
4397                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4398                 break;
4399         case DMA_NONE:
4400                 c->Request.type_attr_dir =
4401                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4402                 break;
4403         case DMA_BIDIRECTIONAL:
4404                 /* This can happen if a buggy application does a scsi passthru
4405                  * and sets both inlen and outlen to non-zero. ( see
4406                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4407                  */
4408
4409                 c->Request.type_attr_dir =
4410                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4411                 /* This is technically wrong, and hpsa controllers should
4412                  * reject it with CMD_INVALID, which is the most correct
4413                  * response, but non-fibre backends appear to let it
4414                  * slide by, and give the same results as if this field
4415                  * were set correctly.  Either way is acceptable for
4416                  * our purposes here.
4417                  */
4418
4419                 break;
4420
4421         default:
4422                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4423                         cmd->sc_data_direction);
4424                 BUG();
4425                 break;
4426         }
4427
4428         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4429                 cmd_free(h, c);
4430                 return SCSI_MLQUEUE_HOST_BUSY;
4431         }
4432         enqueue_cmd_and_start_io(h, c);
4433         /* the cmd'll come back via intr handler in complete_scsi_command()  */
4434         return 0;
4435 }
4436
4437 static void hpsa_cmd_init(struct ctlr_info *h, int index,
4438                                 struct CommandList *c)
4439 {
4440         dma_addr_t cmd_dma_handle, err_dma_handle;
4441
4442         /* Zero out all of commandlist except the last field, refcount */
4443         memset(c, 0, offsetof(struct CommandList, refcount));
4444         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
4445         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4446         c->err_info = h->errinfo_pool + index;
4447         memset(c->err_info, 0, sizeof(*c->err_info));
4448         err_dma_handle = h->errinfo_pool_dhandle
4449             + index * sizeof(*c->err_info);
4450         c->cmdindex = index;
4451         c->busaddr = (u32) cmd_dma_handle;
4452         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
4453         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4454         c->h = h;
4455 }
4456
4457 static void hpsa_preinitialize_commands(struct ctlr_info *h)
4458 {
4459         int i;
4460
4461         for (i = 0; i < h->nr_cmds; i++) {
4462                 struct CommandList *c = h->cmd_pool + i;
4463
4464                 hpsa_cmd_init(h, i, c);
4465                 atomic_set(&c->refcount, 0);
4466         }
4467 }
4468
4469 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
4470                                 struct CommandList *c)
4471 {
4472         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4473
4474         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4475         memset(c->err_info, 0, sizeof(*c->err_info));
4476         c->busaddr = (u32) cmd_dma_handle;
4477 }
4478
4479 static int hpsa_ioaccel_submit(struct ctlr_info *h,
4480                 struct CommandList *c, struct scsi_cmnd *cmd,
4481                 unsigned char *scsi3addr)
4482 {
4483         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4484         int rc = IO_ACCEL_INELIGIBLE;
4485
4486         cmd->host_scribble = (unsigned char *) c;
4487
4488         if (dev->offload_enabled) {
4489                 hpsa_cmd_init(h, c->cmdindex, c);
4490                 c->cmd_type = CMD_SCSI;
4491                 c->scsi_cmd = cmd;
4492                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
4493                 if (rc < 0)     /* scsi_dma_map failed. */
4494                         rc = SCSI_MLQUEUE_HOST_BUSY;
4495         } else if (dev->hba_ioaccel_enabled) {
4496                 hpsa_cmd_init(h, c->cmdindex, c);
4497                 c->cmd_type = CMD_SCSI;
4498                 c->scsi_cmd = cmd;
4499                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
4500                 if (rc < 0)     /* scsi_dma_map failed. */
4501                         rc = SCSI_MLQUEUE_HOST_BUSY;
4502         }
4503         return rc;
4504 }
4505
4506 static void hpsa_command_resubmit_worker(struct work_struct *work)
4507 {
4508         struct scsi_cmnd *cmd;
4509         struct hpsa_scsi_dev_t *dev;
4510         struct CommandList *c =
4511                         container_of(work, struct CommandList, work);
4512
4513         cmd = c->scsi_cmd;
4514         dev = cmd->device->hostdata;
4515         if (!dev) {
4516                 cmd->result = DID_NO_CONNECT << 16;
4517                 cmd_free(c->h, c);
4518                 cmd->scsi_done(cmd);
4519                 return;
4520         }
4521         if (c->cmd_type == CMD_IOACCEL2) {
4522                 struct ctlr_info *h = c->h;
4523                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
4524                 int rc;
4525
4526                 if (c2->error_data.serv_response ==
4527                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
4528                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
4529                         if (rc == 0)
4530                                 return;
4531                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4532                                 /*
4533                                  * If we get here, it means dma mapping failed.
4534                                  * Try again via scsi mid layer, which will
4535                                  * then get SCSI_MLQUEUE_HOST_BUSY.
4536                                  */
4537                                 cmd->result = DID_IMM_RETRY << 16;
4538                                 cmd->scsi_done(cmd);
4539                                 cmd_free(h, c); /* FIX-ME:  on merge, change
4540                                                  * to cmd_tagged_free() and
4541                                                  * ultimately to
4542                                                  * hpsa_cmd_free_and_done(). */
4543                                 return;
4544                         }
4545                         /* else, fall thru and resubmit down CISS path */
4546                 }
4547         }
4548         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
4549         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
4550                 /*
4551                  * If we get here, it means dma mapping failed. Try
4552                  * again via scsi mid layer, which will then get
4553                  * SCSI_MLQUEUE_HOST_BUSY.
4554                  *
4555                  * hpsa_ciss_submit will have already freed c
4556                  * if it encountered a dma mapping failure.
4557                  */
4558                 cmd->result = DID_IMM_RETRY << 16;
4559                 cmd->scsi_done(cmd);
4560         }
4561 }
4562
4563 /* Running in struct Scsi_Host->host_lock less mode */
4564 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
4565 {
4566         struct ctlr_info *h;
4567         struct hpsa_scsi_dev_t *dev;
4568         unsigned char scsi3addr[8];
4569         struct CommandList *c;
4570         int rc = 0;
4571
4572         /* Get the ptr to our adapter structure out of cmd->host. */
4573         h = sdev_to_hba(cmd->device);
4574         dev = cmd->device->hostdata;
4575         if (!dev) {
4576                 cmd->result = DID_NO_CONNECT << 16;
4577                 cmd->scsi_done(cmd);
4578                 return 0;
4579         }
4580         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
4581
4582         if (unlikely(lockup_detected(h))) {
4583                 cmd->result = DID_NO_CONNECT << 16;
4584                 cmd->scsi_done(cmd);
4585                 return 0;
4586         }
4587         c = cmd_alloc(h);
4588
4589         if (unlikely(lockup_detected(h))) {
4590                 cmd->result = DID_NO_CONNECT << 16;
4591                 cmd_free(h, c);
4592                 cmd->scsi_done(cmd);
4593                 return 0;
4594         }
4595
4596         /*
4597          * Call alternate submit routine for I/O accelerated commands.
4598          * Retries always go down the normal I/O path.
4599          */
4600         if (likely(cmd->retries == 0 &&
4601                 cmd->request->cmd_type == REQ_TYPE_FS &&
4602                 h->acciopath_status)) {
4603                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
4604                 if (rc == 0)
4605                         return 0;
4606                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4607                         cmd_free(h, c); /* FIX-ME:  on merge, change to
4608                                          * cmd_tagged_free(), and ultimately
4609                                          * to hpsa_cmd_resolve_and_free(). */
4610                         return SCSI_MLQUEUE_HOST_BUSY;
4611                 }
4612         }
4613         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
4614 }
4615
4616 static void hpsa_scan_complete(struct ctlr_info *h)
4617 {
4618         unsigned long flags;
4619
4620         spin_lock_irqsave(&h->scan_lock, flags);
4621         h->scan_finished = 1;
4622         wake_up_all(&h->scan_wait_queue);
4623         spin_unlock_irqrestore(&h->scan_lock, flags);
4624 }
4625
4626 static void hpsa_scan_start(struct Scsi_Host *sh)
4627 {
4628         struct ctlr_info *h = shost_to_hba(sh);
4629         unsigned long flags;
4630
4631         /*
4632          * Don't let rescans be initiated on a controller known to be locked
4633          * up.  If the controller locks up *during* a rescan, that thread is
4634          * probably hosed, but at least we can prevent new rescan threads from
4635          * piling up on a locked up controller.
4636          */
4637         if (unlikely(lockup_detected(h)))
4638                 return hpsa_scan_complete(h);
4639
4640         /* wait until any scan already in progress is finished. */
4641         while (1) {
4642                 spin_lock_irqsave(&h->scan_lock, flags);
4643                 if (h->scan_finished)
4644                         break;
4645                 spin_unlock_irqrestore(&h->scan_lock, flags);
4646                 wait_event(h->scan_wait_queue, h->scan_finished);
4647                 /* Note: We don't need to worry about a race between this
4648                  * thread and driver unload because the midlayer will
4649                  * have incremented the reference count, so unload won't
4650                  * happen if we're in here.
4651                  */
4652         }
4653         h->scan_finished = 0; /* mark scan as in progress */
4654         spin_unlock_irqrestore(&h->scan_lock, flags);
4655
4656         if (unlikely(lockup_detected(h)))
4657                 return hpsa_scan_complete(h);
4658
4659         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4660
4661         hpsa_scan_complete(h);
4662 }
4663
4664 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4665 {
4666         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
4667
4668         if (!logical_drive)
4669                 return -ENODEV;
4670
4671         if (qdepth < 1)
4672                 qdepth = 1;
4673         else if (qdepth > logical_drive->queue_depth)
4674                 qdepth = logical_drive->queue_depth;
4675
4676         return scsi_change_queue_depth(sdev, qdepth);
4677 }
4678
4679 static int hpsa_scan_finished(struct Scsi_Host *sh,
4680         unsigned long elapsed_time)
4681 {
4682         struct ctlr_info *h = shost_to_hba(sh);
4683         unsigned long flags;
4684         int finished;
4685
4686         spin_lock_irqsave(&h->scan_lock, flags);
4687         finished = h->scan_finished;
4688         spin_unlock_irqrestore(&h->scan_lock, flags);
4689         return finished;
4690 }
4691
4692 static void hpsa_unregister_scsi(struct ctlr_info *h)
4693 {
4694         /* we are being forcibly unloaded, and may not refuse. */
4695         scsi_remove_host(h->scsi_host);
4696         scsi_host_put(h->scsi_host);
4697         h->scsi_host = NULL;
4698 }
4699
4700 static int hpsa_register_scsi(struct ctlr_info *h)
4701 {
4702         struct Scsi_Host *sh;
4703         int error;
4704
4705         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4706         if (sh == NULL)
4707                 goto fail;
4708
4709         sh->io_port = 0;
4710         sh->n_io_port = 0;
4711         sh->this_id = -1;
4712         sh->max_channel = 3;
4713         sh->max_cmd_len = MAX_COMMAND_SIZE;
4714         sh->max_lun = HPSA_MAX_LUN;
4715         sh->max_id = HPSA_MAX_LUN;
4716         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
4717         sh->cmd_per_lun = sh->can_queue;
4718         sh->sg_tablesize = h->maxsgentries;
4719         h->scsi_host = sh;
4720         sh->hostdata[0] = (unsigned long) h;
4721         sh->irq = h->intr[h->intr_mode];
4722         sh->unique_id = sh->irq;
4723         error = scsi_add_host(sh, &h->pdev->dev);
4724         if (error)
4725                 goto fail_host_put;
4726         scsi_scan_host(sh);
4727         return 0;
4728
4729  fail_host_put:
4730         dev_err(&h->pdev->dev, "%s: scsi_add_host"
4731                 " failed for controller %d\n", __func__, h->ctlr);
4732         scsi_host_put(sh);
4733         return error;
4734  fail:
4735         dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4736                 " failed for controller %d\n", __func__, h->ctlr);
4737         return -ENOMEM;
4738 }
4739
4740 static int wait_for_device_to_become_ready(struct ctlr_info *h,
4741         unsigned char lunaddr[])
4742 {
4743         int rc;
4744         int count = 0;
4745         int waittime = 1; /* seconds */
4746         struct CommandList *c;
4747
4748         c = cmd_alloc(h);
4749
4750         /* Send test unit ready until device ready, or give up. */
4751         while (count < HPSA_TUR_RETRY_LIMIT) {
4752
4753                 /* Wait for a bit.  do this first, because if we send
4754                  * the TUR right away, the reset will just abort it.
4755                  */
4756                 msleep(1000 * waittime);
4757                 count++;
4758                 rc = 0; /* Device ready. */
4759
4760                 /* Increase wait time with each try, up to a point. */
4761                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4762                         waittime = waittime * 2;
4763
4764                 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4765                 (void) fill_cmd(c, TEST_UNIT_READY, h,
4766                                 NULL, 0, 0, lunaddr, TYPE_CMD);
4767                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
4768                                                 NO_TIMEOUT);
4769                 if (rc)
4770                         goto do_it_again;
4771                 /* no unmap needed here because no data xfer. */
4772
4773                 if (c->err_info->CommandStatus == CMD_SUCCESS)
4774                         break;
4775
4776                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4777                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4778                         (c->err_info->SenseInfo[2] == NO_SENSE ||
4779                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4780                         break;
4781 do_it_again:
4782                 dev_warn(&h->pdev->dev, "waiting %d secs "
4783                         "for device to become ready.\n", waittime);
4784                 rc = 1; /* device not ready. */
4785         }
4786
4787         if (rc)
4788                 dev_warn(&h->pdev->dev, "giving up on device.\n");
4789         else
4790                 dev_warn(&h->pdev->dev, "device is ready.\n");
4791
4792         cmd_free(h, c);
4793         return rc;
4794 }
4795
4796 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
4797  * complaining.  Doing a host- or bus-reset can't do anything good here.
4798  */
4799 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4800 {
4801         int rc;
4802         struct ctlr_info *h;
4803         struct hpsa_scsi_dev_t *dev;
4804
4805         /* find the controller to which the command to be aborted was sent */
4806         h = sdev_to_hba(scsicmd->device);
4807         if (h == NULL) /* paranoia */
4808                 return FAILED;
4809
4810         if (lockup_detected(h))
4811                 return FAILED;
4812
4813         dev = scsicmd->device->hostdata;
4814         if (!dev) {
4815                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4816                         "device lookup failed.\n");
4817                 return FAILED;
4818         }
4819
4820         /* if controller locked up, we can guarantee command won't complete */
4821         if (lockup_detected(h)) {
4822                 dev_warn(&h->pdev->dev,
4823                         "scsi %d:%d:%d:%d RESET FAILED, lockup detected\n",
4824                         h->scsi_host->host_no, dev->bus, dev->target,
4825                         dev->lun);
4826                 return FAILED;
4827         }
4828
4829         /* this reset request might be the result of a lockup; check */
4830         if (detect_controller_lockup(h)) {
4831                 dev_warn(&h->pdev->dev,
4832                          "scsi %d:%d:%d:%d RESET FAILED, new lockup detected\n",
4833                          h->scsi_host->host_no, dev->bus, dev->target,
4834                          dev->lun);
4835                 return FAILED;
4836         }
4837
4838         hpsa_show_dev_msg(KERN_WARNING, h, dev, "resetting");
4839
4840         /* send a reset to the SCSI LUN which the command was sent to */
4841         rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN,
4842                              DEFAULT_REPLY_QUEUE);
4843         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4844                 return SUCCESS;
4845
4846         dev_warn(&h->pdev->dev,
4847                 "scsi %d:%d:%d:%d reset failed\n",
4848                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4849         return FAILED;
4850 }
4851
4852 static void swizzle_abort_tag(u8 *tag)
4853 {
4854         u8 original_tag[8];
4855
4856         memcpy(original_tag, tag, 8);
4857         tag[0] = original_tag[3];
4858         tag[1] = original_tag[2];
4859         tag[2] = original_tag[1];
4860         tag[3] = original_tag[0];
4861         tag[4] = original_tag[7];
4862         tag[5] = original_tag[6];
4863         tag[6] = original_tag[5];
4864         tag[7] = original_tag[4];
4865 }
4866
4867 static void hpsa_get_tag(struct ctlr_info *h,
4868         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
4869 {
4870         u64 tag;
4871         if (c->cmd_type == CMD_IOACCEL1) {
4872                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4873                         &h->ioaccel_cmd_pool[c->cmdindex];
4874                 tag = le64_to_cpu(cm1->tag);
4875                 *tagupper = cpu_to_le32(tag >> 32);
4876                 *taglower = cpu_to_le32(tag);
4877                 return;
4878         }
4879         if (c->cmd_type == CMD_IOACCEL2) {
4880                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4881                         &h->ioaccel2_cmd_pool[c->cmdindex];
4882                 /* upper tag not used in ioaccel2 mode */
4883                 memset(tagupper, 0, sizeof(*tagupper));
4884                 *taglower = cm2->Tag;
4885                 return;
4886         }
4887         tag = le64_to_cpu(c->Header.tag);
4888         *tagupper = cpu_to_le32(tag >> 32);
4889         *taglower = cpu_to_le32(tag);
4890 }
4891
4892 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4893         struct CommandList *abort, int reply_queue)
4894 {
4895         int rc = IO_OK;
4896         struct CommandList *c;
4897         struct ErrorInfo *ei;
4898         __le32 tagupper, taglower;
4899
4900         c = cmd_alloc(h);
4901
4902         /* fill_cmd can't fail here, no buffer to map */
4903         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
4904                 0, 0, scsi3addr, TYPE_MSG);
4905         if (h->needs_abort_tags_swizzled)
4906                 swizzle_abort_tag(&c->Request.CDB[4]);
4907         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
4908         hpsa_get_tag(h, abort, &taglower, &tagupper);
4909         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
4910                 __func__, tagupper, taglower);
4911         /* no unmap needed here because no data xfer. */
4912
4913         ei = c->err_info;
4914         switch (ei->CommandStatus) {
4915         case CMD_SUCCESS:
4916                 break;
4917         case CMD_TMF_STATUS:
4918                 rc = hpsa_evaluate_tmf_status(h, c);
4919                 break;
4920         case CMD_UNABORTABLE: /* Very common, don't make noise. */
4921                 rc = -1;
4922                 break;
4923         default:
4924                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4925                         __func__, tagupper, taglower);
4926                 hpsa_scsi_interpret_error(h, c);
4927                 rc = -1;
4928                 break;
4929         }
4930         cmd_free(h, c);
4931         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4932                 __func__, tagupper, taglower);
4933         return rc;
4934 }
4935
4936 /* ioaccel2 path firmware cannot handle abort task requests.
4937  * Change abort requests to physical target reset, and send to the
4938  * address of the physical disk used for the ioaccel 2 command.
4939  * Return 0 on success (IO_OK)
4940  *       -1 on failure
4941  */
4942
4943 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4944         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
4945 {
4946         int rc = IO_OK;
4947         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4948         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4949         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4950         unsigned char *psa = &phys_scsi3addr[0];
4951
4952         /* Get a pointer to the hpsa logical device. */
4953         scmd = abort->scsi_cmd;
4954         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4955         if (dev == NULL) {
4956                 dev_warn(&h->pdev->dev,
4957                         "Cannot abort: no device pointer for command.\n");
4958                         return -1; /* not abortable */
4959         }
4960
4961         if (h->raid_offload_debug > 0)
4962                 dev_info(&h->pdev->dev,
4963                         "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4964                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4965                         "Reset as abort",
4966                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4967                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4968
4969         if (!dev->offload_enabled) {
4970                 dev_warn(&h->pdev->dev,
4971                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4972                 return -1; /* not abortable */
4973         }
4974
4975         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
4976         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4977                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4978                 return -1; /* not abortable */
4979         }
4980
4981         /* send the reset */
4982         if (h->raid_offload_debug > 0)
4983                 dev_info(&h->pdev->dev,
4984                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4985                         psa[0], psa[1], psa[2], psa[3],
4986                         psa[4], psa[5], psa[6], psa[7]);
4987         rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
4988         if (rc != 0) {
4989                 dev_warn(&h->pdev->dev,
4990                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4991                         psa[0], psa[1], psa[2], psa[3],
4992                         psa[4], psa[5], psa[6], psa[7]);
4993                 return rc; /* failed to reset */
4994         }
4995
4996         /* wait for device to recover */
4997         if (wait_for_device_to_become_ready(h, psa) != 0) {
4998                 dev_warn(&h->pdev->dev,
4999                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5000                         psa[0], psa[1], psa[2], psa[3],
5001                         psa[4], psa[5], psa[6], psa[7]);
5002                 return -1;  /* failed to recover */
5003         }
5004
5005         /* device recovered */
5006         dev_info(&h->pdev->dev,
5007                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5008                 psa[0], psa[1], psa[2], psa[3],
5009                 psa[4], psa[5], psa[6], psa[7]);
5010
5011         return rc; /* success */
5012 }
5013
5014 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5015         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5016 {
5017         /* ioccelerator mode 2 commands should be aborted via the
5018          * accelerated path, since RAID path is unaware of these commands,
5019          * but underlying firmware can't handle abort TMF.
5020          * Change abort to physical device reset.
5021          */
5022         if (abort->cmd_type == CMD_IOACCEL2)
5023                 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5024                                                         abort, reply_queue);
5025         return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5026 }
5027
5028 /* Find out which reply queue a command was meant to return on */
5029 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5030                                         struct CommandList *c)
5031 {
5032         if (c->cmd_type == CMD_IOACCEL2)
5033                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5034         return c->Header.ReplyQueue;
5035 }
5036
5037 /*
5038  * Limit concurrency of abort commands to prevent
5039  * over-subscription of commands
5040  */
5041 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5042 {
5043 #define ABORT_CMD_WAIT_MSECS 5000
5044         return !wait_event_timeout(h->abort_cmd_wait_queue,
5045                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5046                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5047 }
5048
5049 /* Send an abort for the specified command.
5050  *      If the device and controller support it,
5051  *              send a task abort request.
5052  */
5053 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5054 {
5055
5056         int i, rc;
5057         struct ctlr_info *h;
5058         struct hpsa_scsi_dev_t *dev;
5059         struct CommandList *abort; /* pointer to command to be aborted */
5060         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
5061         char msg[256];          /* For debug messaging. */
5062         int ml = 0;
5063         __le32 tagupper, taglower;
5064         int refcount, reply_queue;
5065
5066         if (sc == NULL)
5067                 return FAILED;
5068
5069         if (sc->device == NULL)
5070                 return FAILED;
5071
5072         /* Find the controller of the command to be aborted */
5073         h = sdev_to_hba(sc->device);
5074         if (h == NULL)
5075                 return FAILED;
5076
5077         /* Find the device of the command to be aborted */
5078         dev = sc->device->hostdata;
5079         if (!dev) {
5080                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5081                                 msg);
5082                 return FAILED;
5083         }
5084
5085         /* If controller locked up, we can guarantee command won't complete */
5086         if (lockup_detected(h)) {
5087                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5088                                         "ABORT FAILED, lockup detected");
5089                 return FAILED;
5090         }
5091
5092         /* This is a good time to check if controller lockup has occurred */
5093         if (detect_controller_lockup(h)) {
5094                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5095                                         "ABORT FAILED, new lockup detected");
5096                 return FAILED;
5097         }
5098
5099         /* Check that controller supports some kind of task abort */
5100         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5101                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5102                 return FAILED;
5103
5104         memset(msg, 0, sizeof(msg));
5105         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s",
5106                 h->scsi_host->host_no, sc->device->channel,
5107                 sc->device->id, sc->device->lun,
5108                 "Aborting command");
5109
5110         /* Get SCSI command to be aborted */
5111         abort = (struct CommandList *) sc->host_scribble;
5112         if (abort == NULL) {
5113                 /* This can happen if the command already completed. */
5114                 return SUCCESS;
5115         }
5116         refcount = atomic_inc_return(&abort->refcount);
5117         if (refcount == 1) { /* Command is done already. */
5118                 cmd_free(h, abort);
5119                 return SUCCESS;
5120         }
5121
5122         /* Don't bother trying the abort if we know it won't work. */
5123         if (abort->cmd_type != CMD_IOACCEL2 &&
5124                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5125                 cmd_free(h, abort);
5126                 return FAILED;
5127         }
5128
5129         hpsa_get_tag(h, abort, &taglower, &tagupper);
5130         reply_queue = hpsa_extract_reply_queue(h, abort);
5131         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5132         as  = abort->scsi_cmd;
5133         if (as != NULL)
5134                 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
5135                         as->cmnd[0], as->serial_number);
5136         dev_dbg(&h->pdev->dev, "%s\n", msg);
5137         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5138         /*
5139          * Command is in flight, or possibly already completed
5140          * by the firmware (but not to the scsi mid layer) but we can't
5141          * distinguish which.  Send the abort down.
5142          */
5143         if (wait_for_available_abort_cmd(h)) {
5144                 dev_warn(&h->pdev->dev,
5145                         "Timed out waiting for an abort command to become available.\n");
5146                 cmd_free(h, abort);
5147                 return FAILED;
5148         }
5149         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
5150         atomic_inc(&h->abort_cmds_available);
5151         wake_up_all(&h->abort_cmd_wait_queue);
5152         if (rc != 0) {
5153                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5154                                         "FAILED to abort command");
5155                 cmd_free(h, abort);
5156                 return FAILED;
5157         }
5158         dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
5159
5160         /* If the abort(s) above completed and actually aborted the
5161          * command, then the command to be aborted should already be
5162          * completed.  If not, wait around a bit more to see if they
5163          * manage to complete normally.
5164          */
5165 #define ABORT_COMPLETE_WAIT_SECS 30
5166         for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
5167                 refcount = atomic_read(&abort->refcount);
5168                 if (refcount < 2) {
5169                         cmd_free(h, abort);
5170                         return SUCCESS;
5171                 } else {
5172                         msleep(100);
5173                 }
5174         }
5175         dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
5176                 msg, ABORT_COMPLETE_WAIT_SECS);
5177         cmd_free(h, abort);
5178         return FAILED;
5179 }
5180
5181 /*
5182  * For operations that cannot sleep, a command block is allocated at init,
5183  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5184  * which ones are free or in use.  Lock must be held when calling this.
5185  * cmd_free() is the complement.
5186  * This function never gives up and returns NULL.  If it hangs,
5187  * another thread must call cmd_free() to free some tags.
5188  */
5189
5190 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5191 {
5192         struct CommandList *c;
5193         int refcount, i;
5194         unsigned long offset;
5195
5196         /*
5197          * There is some *extremely* small but non-zero chance that that
5198          * multiple threads could get in here, and one thread could
5199          * be scanning through the list of bits looking for a free
5200          * one, but the free ones are always behind him, and other
5201          * threads sneak in behind him and eat them before he can
5202          * get to them, so that while there is always a free one, a
5203          * very unlucky thread might be starved anyway, never able to
5204          * beat the other threads.  In reality, this happens so
5205          * infrequently as to be indistinguishable from never.
5206          */
5207
5208         offset = h->last_allocation; /* benignly racy */
5209         for (;;) {
5210                 i = find_next_zero_bit(h->cmd_pool_bits, h->nr_cmds, offset);
5211                 if (unlikely(i == h->nr_cmds)) {
5212                         offset = 0;
5213                         continue;
5214                 }
5215                 c = h->cmd_pool + i;
5216                 refcount = atomic_inc_return(&c->refcount);
5217                 if (unlikely(refcount > 1)) {
5218                         cmd_free(h, c); /* already in use */
5219                         offset = (i + 1) % h->nr_cmds;
5220                         continue;
5221                 }
5222                 set_bit(i & (BITS_PER_LONG - 1),
5223                         h->cmd_pool_bits + (i / BITS_PER_LONG));
5224                 break; /* it's ours now. */
5225         }
5226         h->last_allocation = i; /* benignly racy */
5227         hpsa_cmd_partial_init(h, i, c);
5228         return c;
5229 }
5230
5231 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
5232 {
5233         if (atomic_dec_and_test(&c->refcount)) {
5234                 int i;
5235
5236                 i = c - h->cmd_pool;
5237                 clear_bit(i & (BITS_PER_LONG - 1),
5238                           h->cmd_pool_bits + (i / BITS_PER_LONG));
5239         }
5240 }
5241
5242 #ifdef CONFIG_COMPAT
5243
5244 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
5245         void __user *arg)
5246 {
5247         IOCTL32_Command_struct __user *arg32 =
5248             (IOCTL32_Command_struct __user *) arg;
5249         IOCTL_Command_struct arg64;
5250         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
5251         int err;
5252         u32 cp;
5253
5254         memset(&arg64, 0, sizeof(arg64));
5255         err = 0;
5256         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5257                            sizeof(arg64.LUN_info));
5258         err |= copy_from_user(&arg64.Request, &arg32->Request,
5259                            sizeof(arg64.Request));
5260         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5261                            sizeof(arg64.error_info));
5262         err |= get_user(arg64.buf_size, &arg32->buf_size);
5263         err |= get_user(cp, &arg32->buf);
5264         arg64.buf = compat_ptr(cp);
5265         err |= copy_to_user(p, &arg64, sizeof(arg64));
5266
5267         if (err)
5268                 return -EFAULT;
5269
5270         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
5271         if (err)
5272                 return err;
5273         err |= copy_in_user(&arg32->error_info, &p->error_info,
5274                          sizeof(arg32->error_info));
5275         if (err)
5276                 return -EFAULT;
5277         return err;
5278 }
5279
5280 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
5281         int cmd, void __user *arg)
5282 {
5283         BIG_IOCTL32_Command_struct __user *arg32 =
5284             (BIG_IOCTL32_Command_struct __user *) arg;
5285         BIG_IOCTL_Command_struct arg64;
5286         BIG_IOCTL_Command_struct __user *p =
5287             compat_alloc_user_space(sizeof(arg64));
5288         int err;
5289         u32 cp;
5290
5291         memset(&arg64, 0, sizeof(arg64));
5292         err = 0;
5293         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5294                            sizeof(arg64.LUN_info));
5295         err |= copy_from_user(&arg64.Request, &arg32->Request,
5296                            sizeof(arg64.Request));
5297         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5298                            sizeof(arg64.error_info));
5299         err |= get_user(arg64.buf_size, &arg32->buf_size);
5300         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
5301         err |= get_user(cp, &arg32->buf);
5302         arg64.buf = compat_ptr(cp);
5303         err |= copy_to_user(p, &arg64, sizeof(arg64));
5304
5305         if (err)
5306                 return -EFAULT;
5307
5308         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
5309         if (err)
5310                 return err;
5311         err |= copy_in_user(&arg32->error_info, &p->error_info,
5312                          sizeof(arg32->error_info));
5313         if (err)
5314                 return -EFAULT;
5315         return err;
5316 }
5317
5318 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5319 {
5320         switch (cmd) {
5321         case CCISS_GETPCIINFO:
5322         case CCISS_GETINTINFO:
5323         case CCISS_SETINTINFO:
5324         case CCISS_GETNODENAME:
5325         case CCISS_SETNODENAME:
5326         case CCISS_GETHEARTBEAT:
5327         case CCISS_GETBUSTYPES:
5328         case CCISS_GETFIRMVER:
5329         case CCISS_GETDRIVVER:
5330         case CCISS_REVALIDVOLS:
5331         case CCISS_DEREGDISK:
5332         case CCISS_REGNEWDISK:
5333         case CCISS_REGNEWD:
5334         case CCISS_RESCANDISK:
5335         case CCISS_GETLUNINFO:
5336                 return hpsa_ioctl(dev, cmd, arg);
5337
5338         case CCISS_PASSTHRU32:
5339                 return hpsa_ioctl32_passthru(dev, cmd, arg);
5340         case CCISS_BIG_PASSTHRU32:
5341                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
5342
5343         default:
5344                 return -ENOIOCTLCMD;
5345         }
5346 }
5347 #endif
5348
5349 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
5350 {
5351         struct hpsa_pci_info pciinfo;
5352
5353         if (!argp)
5354                 return -EINVAL;
5355         pciinfo.domain = pci_domain_nr(h->pdev->bus);
5356         pciinfo.bus = h->pdev->bus->number;
5357         pciinfo.dev_fn = h->pdev->devfn;
5358         pciinfo.board_id = h->board_id;
5359         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
5360                 return -EFAULT;
5361         return 0;
5362 }
5363
5364 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
5365 {
5366         DriverVer_type DriverVer;
5367         unsigned char vmaj, vmin, vsubmin;
5368         int rc;
5369
5370         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
5371                 &vmaj, &vmin, &vsubmin);
5372         if (rc != 3) {
5373                 dev_info(&h->pdev->dev, "driver version string '%s' "
5374                         "unrecognized.", HPSA_DRIVER_VERSION);
5375                 vmaj = 0;
5376                 vmin = 0;
5377                 vsubmin = 0;
5378         }
5379         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
5380         if (!argp)
5381                 return -EINVAL;
5382         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
5383                 return -EFAULT;
5384         return 0;
5385 }
5386
5387 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5388 {
5389         IOCTL_Command_struct iocommand;
5390         struct CommandList *c;
5391         char *buff = NULL;
5392         u64 temp64;
5393         int rc = 0;
5394
5395         if (!argp)
5396                 return -EINVAL;
5397         if (!capable(CAP_SYS_RAWIO))
5398                 return -EPERM;
5399         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
5400                 return -EFAULT;
5401         if ((iocommand.buf_size < 1) &&
5402             (iocommand.Request.Type.Direction != XFER_NONE)) {
5403                 return -EINVAL;
5404         }
5405         if (iocommand.buf_size > 0) {
5406                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
5407                 if (buff == NULL)
5408                         return -EFAULT;
5409                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
5410                         /* Copy the data into the buffer we created */
5411                         if (copy_from_user(buff, iocommand.buf,
5412                                 iocommand.buf_size)) {
5413                                 rc = -EFAULT;
5414                                 goto out_kfree;
5415                         }
5416                 } else {
5417                         memset(buff, 0, iocommand.buf_size);
5418                 }
5419         }
5420         c = cmd_alloc(h);
5421
5422         /* Fill in the command type */
5423         c->cmd_type = CMD_IOCTL_PEND;
5424         /* Fill in Command Header */
5425         c->Header.ReplyQueue = 0; /* unused in simple mode */
5426         if (iocommand.buf_size > 0) {   /* buffer to fill */
5427                 c->Header.SGList = 1;
5428                 c->Header.SGTotal = cpu_to_le16(1);
5429         } else  { /* no buffers to fill */
5430                 c->Header.SGList = 0;
5431                 c->Header.SGTotal = cpu_to_le16(0);
5432         }
5433         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
5434
5435         /* Fill in Request block */
5436         memcpy(&c->Request, &iocommand.Request,
5437                 sizeof(c->Request));
5438
5439         /* Fill in the scatter gather information */
5440         if (iocommand.buf_size > 0) {
5441                 temp64 = pci_map_single(h->pdev, buff,
5442                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
5443                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
5444                         c->SG[0].Addr = cpu_to_le64(0);
5445                         c->SG[0].Len = cpu_to_le32(0);
5446                         rc = -ENOMEM;
5447                         goto out;
5448                 }
5449                 c->SG[0].Addr = cpu_to_le64(temp64);
5450                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
5451                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
5452         }
5453         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5454         if (iocommand.buf_size > 0)
5455                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
5456         check_ioctl_unit_attention(h, c);
5457         if (rc) {
5458                 rc = -EIO;
5459                 goto out;
5460         }
5461
5462         /* Copy the error information out */
5463         memcpy(&iocommand.error_info, c->err_info,
5464                 sizeof(iocommand.error_info));
5465         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5466                 rc = -EFAULT;
5467                 goto out;
5468         }
5469         if ((iocommand.Request.Type.Direction & XFER_READ) &&
5470                 iocommand.buf_size > 0) {
5471                 /* Copy the data out of the buffer we created */
5472                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
5473                         rc = -EFAULT;
5474                         goto out;
5475                 }
5476         }
5477 out:
5478         cmd_free(h, c);
5479 out_kfree:
5480         kfree(buff);
5481         return rc;
5482 }
5483
5484 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5485 {
5486         BIG_IOCTL_Command_struct *ioc;
5487         struct CommandList *c;
5488         unsigned char **buff = NULL;
5489         int *buff_size = NULL;
5490         u64 temp64;
5491         BYTE sg_used = 0;
5492         int status = 0;
5493         u32 left;
5494         u32 sz;
5495         BYTE __user *data_ptr;
5496
5497         if (!argp)
5498                 return -EINVAL;
5499         if (!capable(CAP_SYS_RAWIO))
5500                 return -EPERM;
5501         ioc = (BIG_IOCTL_Command_struct *)
5502             kmalloc(sizeof(*ioc), GFP_KERNEL);
5503         if (!ioc) {
5504                 status = -ENOMEM;
5505                 goto cleanup1;
5506         }
5507         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
5508                 status = -EFAULT;
5509                 goto cleanup1;
5510         }
5511         if ((ioc->buf_size < 1) &&
5512             (ioc->Request.Type.Direction != XFER_NONE)) {
5513                 status = -EINVAL;
5514                 goto cleanup1;
5515         }
5516         /* Check kmalloc limits  using all SGs */
5517         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
5518                 status = -EINVAL;
5519                 goto cleanup1;
5520         }
5521         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5522                 status = -EINVAL;
5523                 goto cleanup1;
5524         }
5525         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5526         if (!buff) {
5527                 status = -ENOMEM;
5528                 goto cleanup1;
5529         }
5530         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5531         if (!buff_size) {
5532                 status = -ENOMEM;
5533                 goto cleanup1;
5534         }
5535         left = ioc->buf_size;
5536         data_ptr = ioc->buf;
5537         while (left) {
5538                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
5539                 buff_size[sg_used] = sz;
5540                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
5541                 if (buff[sg_used] == NULL) {
5542                         status = -ENOMEM;
5543                         goto cleanup1;
5544                 }
5545                 if (ioc->Request.Type.Direction & XFER_WRITE) {
5546                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
5547                                 status = -EFAULT;
5548                                 goto cleanup1;
5549                         }
5550                 } else
5551                         memset(buff[sg_used], 0, sz);
5552                 left -= sz;
5553                 data_ptr += sz;
5554                 sg_used++;
5555         }
5556         c = cmd_alloc(h);
5557
5558         c->cmd_type = CMD_IOCTL_PEND;
5559         c->Header.ReplyQueue = 0;
5560         c->Header.SGList = (u8) sg_used;
5561         c->Header.SGTotal = cpu_to_le16(sg_used);
5562         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
5563         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
5564         if (ioc->buf_size > 0) {
5565                 int i;
5566                 for (i = 0; i < sg_used; i++) {
5567                         temp64 = pci_map_single(h->pdev, buff[i],
5568                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
5569                         if (dma_mapping_error(&h->pdev->dev,
5570                                                         (dma_addr_t) temp64)) {
5571                                 c->SG[i].Addr = cpu_to_le64(0);
5572                                 c->SG[i].Len = cpu_to_le32(0);
5573                                 hpsa_pci_unmap(h->pdev, c, i,
5574                                         PCI_DMA_BIDIRECTIONAL);
5575                                 status = -ENOMEM;
5576                                 goto cleanup0;
5577                         }
5578                         c->SG[i].Addr = cpu_to_le64(temp64);
5579                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
5580                         c->SG[i].Ext = cpu_to_le32(0);
5581                 }
5582                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
5583         }
5584         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5585         if (sg_used)
5586                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5587         check_ioctl_unit_attention(h, c);
5588         if (status) {
5589                 status = -EIO;
5590                 goto cleanup0;
5591         }
5592
5593         /* Copy the error information out */
5594         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
5595         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
5596                 status = -EFAULT;
5597                 goto cleanup0;
5598         }
5599         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
5600                 int i;
5601
5602                 /* Copy the data out of the buffer we created */
5603                 BYTE __user *ptr = ioc->buf;
5604                 for (i = 0; i < sg_used; i++) {
5605                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
5606                                 status = -EFAULT;
5607                                 goto cleanup0;
5608                         }
5609                         ptr += buff_size[i];
5610                 }
5611         }
5612         status = 0;
5613 cleanup0:
5614         cmd_free(h, c);
5615 cleanup1:
5616         if (buff) {
5617                 int i;
5618
5619                 for (i = 0; i < sg_used; i++)
5620                         kfree(buff[i]);
5621                 kfree(buff);
5622         }
5623         kfree(buff_size);
5624         kfree(ioc);
5625         return status;
5626 }
5627
5628 static void check_ioctl_unit_attention(struct ctlr_info *h,
5629         struct CommandList *c)
5630 {
5631         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5632                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5633                 (void) check_for_unit_attention(h, c);
5634 }
5635
5636 /*
5637  * ioctl
5638  */
5639 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5640 {
5641         struct ctlr_info *h;
5642         void __user *argp = (void __user *)arg;
5643         int rc;
5644
5645         h = sdev_to_hba(dev);
5646
5647         switch (cmd) {
5648         case CCISS_DEREGDISK:
5649         case CCISS_REGNEWDISK:
5650         case CCISS_REGNEWD:
5651                 hpsa_scan_start(h->scsi_host);
5652                 return 0;
5653         case CCISS_GETPCIINFO:
5654                 return hpsa_getpciinfo_ioctl(h, argp);
5655         case CCISS_GETDRIVVER:
5656                 return hpsa_getdrivver_ioctl(h, argp);
5657         case CCISS_PASSTHRU:
5658                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
5659                         return -EAGAIN;
5660                 rc = hpsa_passthru_ioctl(h, argp);
5661                 atomic_inc(&h->passthru_cmds_avail);
5662                 return rc;
5663         case CCISS_BIG_PASSTHRU:
5664                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
5665                         return -EAGAIN;
5666                 rc = hpsa_big_passthru_ioctl(h, argp);
5667                 atomic_inc(&h->passthru_cmds_avail);
5668                 return rc;
5669         default:
5670                 return -ENOTTY;
5671         }
5672 }
5673
5674 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5675                                 u8 reset_type)
5676 {
5677         struct CommandList *c;
5678
5679         c = cmd_alloc(h);
5680
5681         /* fill_cmd can't fail here, no data buffer to map */
5682         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5683                 RAID_CTLR_LUNID, TYPE_MSG);
5684         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5685         c->waiting = NULL;
5686         enqueue_cmd_and_start_io(h, c);
5687         /* Don't wait for completion, the reset won't complete.  Don't free
5688          * the command either.  This is the last command we will send before
5689          * re-initializing everything, so it doesn't matter and won't leak.
5690          */
5691         return;
5692 }
5693
5694 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5695         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5696         int cmd_type)
5697 {
5698         int pci_dir = XFER_NONE;
5699         u64 tag; /* for commands to be aborted */
5700
5701         c->cmd_type = CMD_IOCTL_PEND;
5702         c->Header.ReplyQueue = 0;
5703         if (buff != NULL && size > 0) {
5704                 c->Header.SGList = 1;
5705                 c->Header.SGTotal = cpu_to_le16(1);
5706         } else {
5707                 c->Header.SGList = 0;
5708                 c->Header.SGTotal = cpu_to_le16(0);
5709         }
5710         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5711
5712         if (cmd_type == TYPE_CMD) {
5713                 switch (cmd) {
5714                 case HPSA_INQUIRY:
5715                         /* are we trying to read a vital product page */
5716                         if (page_code & VPD_PAGE) {
5717                                 c->Request.CDB[1] = 0x01;
5718                                 c->Request.CDB[2] = (page_code & 0xff);
5719                         }
5720                         c->Request.CDBLen = 6;
5721                         c->Request.type_attr_dir =
5722                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5723                         c->Request.Timeout = 0;
5724                         c->Request.CDB[0] = HPSA_INQUIRY;
5725                         c->Request.CDB[4] = size & 0xFF;
5726                         break;
5727                 case HPSA_REPORT_LOG:
5728                 case HPSA_REPORT_PHYS:
5729                         /* Talking to controller so It's a physical command
5730                            mode = 00 target = 0.  Nothing to write.
5731                          */
5732                         c->Request.CDBLen = 12;
5733                         c->Request.type_attr_dir =
5734                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5735                         c->Request.Timeout = 0;
5736                         c->Request.CDB[0] = cmd;
5737                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5738                         c->Request.CDB[7] = (size >> 16) & 0xFF;
5739                         c->Request.CDB[8] = (size >> 8) & 0xFF;
5740                         c->Request.CDB[9] = size & 0xFF;
5741                         break;
5742                 case HPSA_CACHE_FLUSH:
5743                         c->Request.CDBLen = 12;
5744                         c->Request.type_attr_dir =
5745                                         TYPE_ATTR_DIR(cmd_type,
5746                                                 ATTR_SIMPLE, XFER_WRITE);
5747                         c->Request.Timeout = 0;
5748                         c->Request.CDB[0] = BMIC_WRITE;
5749                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5750                         c->Request.CDB[7] = (size >> 8) & 0xFF;
5751                         c->Request.CDB[8] = size & 0xFF;
5752                         break;
5753                 case TEST_UNIT_READY:
5754                         c->Request.CDBLen = 6;
5755                         c->Request.type_attr_dir =
5756                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5757                         c->Request.Timeout = 0;
5758                         break;
5759                 case HPSA_GET_RAID_MAP:
5760                         c->Request.CDBLen = 12;
5761                         c->Request.type_attr_dir =
5762                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5763                         c->Request.Timeout = 0;
5764                         c->Request.CDB[0] = HPSA_CISS_READ;
5765                         c->Request.CDB[1] = cmd;
5766                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5767                         c->Request.CDB[7] = (size >> 16) & 0xFF;
5768                         c->Request.CDB[8] = (size >> 8) & 0xFF;
5769                         c->Request.CDB[9] = size & 0xFF;
5770                         break;
5771                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
5772                         c->Request.CDBLen = 10;
5773                         c->Request.type_attr_dir =
5774                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5775                         c->Request.Timeout = 0;
5776                         c->Request.CDB[0] = BMIC_READ;
5777                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5778                         c->Request.CDB[7] = (size >> 16) & 0xFF;
5779                         c->Request.CDB[8] = (size >> 8) & 0xFF;
5780                         break;
5781                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
5782                         c->Request.CDBLen = 10;
5783                         c->Request.type_attr_dir =
5784                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5785                         c->Request.Timeout = 0;
5786                         c->Request.CDB[0] = BMIC_READ;
5787                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
5788                         c->Request.CDB[7] = (size >> 16) & 0xFF;
5789                         c->Request.CDB[8] = (size >> 8) & 0XFF;
5790                         break;
5791                 default:
5792                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5793                         BUG();
5794                         return -1;
5795                 }
5796         } else if (cmd_type == TYPE_MSG) {
5797                 switch (cmd) {
5798
5799                 case  HPSA_DEVICE_RESET_MSG:
5800                         c->Request.CDBLen = 16;
5801                         c->Request.type_attr_dir =
5802                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5803                         c->Request.Timeout = 0; /* Don't time out */
5804                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5805                         c->Request.CDB[0] =  cmd;
5806                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5807                         /* If bytes 4-7 are zero, it means reset the */
5808                         /* LunID device */
5809                         c->Request.CDB[4] = 0x00;
5810                         c->Request.CDB[5] = 0x00;
5811                         c->Request.CDB[6] = 0x00;
5812                         c->Request.CDB[7] = 0x00;
5813                         break;
5814                 case  HPSA_ABORT_MSG:
5815                         memcpy(&tag, buff, sizeof(tag));
5816                         dev_dbg(&h->pdev->dev,
5817                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
5818                                 tag, c->Header.tag);
5819                         c->Request.CDBLen = 16;
5820                         c->Request.type_attr_dir =
5821                                         TYPE_ATTR_DIR(cmd_type,
5822                                                 ATTR_SIMPLE, XFER_WRITE);
5823                         c->Request.Timeout = 0; /* Don't time out */
5824                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5825                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5826                         c->Request.CDB[2] = 0x00; /* reserved */
5827                         c->Request.CDB[3] = 0x00; /* reserved */
5828                         /* Tag to abort goes in CDB[4]-CDB[11] */
5829                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
5830                         c->Request.CDB[12] = 0x00; /* reserved */
5831                         c->Request.CDB[13] = 0x00; /* reserved */
5832                         c->Request.CDB[14] = 0x00; /* reserved */
5833                         c->Request.CDB[15] = 0x00; /* reserved */
5834                 break;
5835                 default:
5836                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
5837                                 cmd);
5838                         BUG();
5839                 }
5840         } else {
5841                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5842                 BUG();
5843         }
5844
5845         switch (GET_DIR(c->Request.type_attr_dir)) {
5846         case XFER_READ:
5847                 pci_dir = PCI_DMA_FROMDEVICE;
5848                 break;
5849         case XFER_WRITE:
5850                 pci_dir = PCI_DMA_TODEVICE;
5851                 break;
5852         case XFER_NONE:
5853                 pci_dir = PCI_DMA_NONE;
5854                 break;
5855         default:
5856                 pci_dir = PCI_DMA_BIDIRECTIONAL;
5857         }
5858         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5859                 return -1;
5860         return 0;
5861 }
5862
5863 /*
5864  * Map (physical) PCI mem into (virtual) kernel space
5865  */
5866 static void __iomem *remap_pci_mem(ulong base, ulong size)
5867 {
5868         ulong page_base = ((ulong) base) & PAGE_MASK;
5869         ulong page_offs = ((ulong) base) - page_base;
5870         void __iomem *page_remapped = ioremap_nocache(page_base,
5871                 page_offs + size);
5872
5873         return page_remapped ? (page_remapped + page_offs) : NULL;
5874 }
5875
5876 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5877 {
5878         return h->access.command_completed(h, q);
5879 }
5880
5881 static inline bool interrupt_pending(struct ctlr_info *h)
5882 {
5883         return h->access.intr_pending(h);
5884 }
5885
5886 static inline long interrupt_not_for_us(struct ctlr_info *h)
5887 {
5888         return (h->access.intr_pending(h) == 0) ||
5889                 (h->interrupts_enabled == 0);
5890 }
5891
5892 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5893         u32 raw_tag)
5894 {
5895         if (unlikely(tag_index >= h->nr_cmds)) {
5896                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5897                 return 1;
5898         }
5899         return 0;
5900 }
5901
5902 static inline void finish_cmd(struct CommandList *c)
5903 {
5904         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5905         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5906                         || c->cmd_type == CMD_IOACCEL2))
5907                 complete_scsi_command(c);
5908         else if (c->cmd_type == CMD_IOCTL_PEND)
5909                 complete(c->waiting);
5910 }
5911
5912
5913 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5914 {
5915 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5916 #define HPSA_SIMPLE_ERROR_BITS 0x03
5917         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5918                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
5919         return tag & ~HPSA_PERF_ERROR_BITS;
5920 }
5921
5922 /* process completion of an indexed ("direct lookup") command */
5923 static inline void process_indexed_cmd(struct ctlr_info *h,
5924         u32 raw_tag)
5925 {
5926         u32 tag_index;
5927         struct CommandList *c;
5928
5929         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
5930         if (!bad_tag(h, tag_index, raw_tag)) {
5931                 c = h->cmd_pool + tag_index;
5932                 finish_cmd(c);
5933         }
5934 }
5935
5936 /* Some controllers, like p400, will give us one interrupt
5937  * after a soft reset, even if we turned interrupts off.
5938  * Only need to check for this in the hpsa_xxx_discard_completions
5939  * functions.
5940  */
5941 static int ignore_bogus_interrupt(struct ctlr_info *h)
5942 {
5943         if (likely(!reset_devices))
5944                 return 0;
5945
5946         if (likely(h->interrupts_enabled))
5947                 return 0;
5948
5949         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5950                 "(known firmware bug.)  Ignoring.\n");
5951
5952         return 1;
5953 }
5954
5955 /*
5956  * Convert &h->q[x] (passed to interrupt handlers) back to h.
5957  * Relies on (h-q[x] == x) being true for x such that
5958  * 0 <= x < MAX_REPLY_QUEUES.
5959  */
5960 static struct ctlr_info *queue_to_hba(u8 *queue)
5961 {
5962         return container_of((queue - *queue), struct ctlr_info, q[0]);
5963 }
5964
5965 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5966 {
5967         struct ctlr_info *h = queue_to_hba(queue);
5968         u8 q = *(u8 *) queue;
5969         u32 raw_tag;
5970
5971         if (ignore_bogus_interrupt(h))
5972                 return IRQ_NONE;
5973
5974         if (interrupt_not_for_us(h))
5975                 return IRQ_NONE;
5976         h->last_intr_timestamp = get_jiffies_64();
5977         while (interrupt_pending(h)) {
5978                 raw_tag = get_next_completion(h, q);
5979                 while (raw_tag != FIFO_EMPTY)
5980                         raw_tag = next_command(h, q);
5981         }
5982         return IRQ_HANDLED;
5983 }
5984
5985 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5986 {
5987         struct ctlr_info *h = queue_to_hba(queue);
5988         u32 raw_tag;
5989         u8 q = *(u8 *) queue;
5990
5991         if (ignore_bogus_interrupt(h))
5992                 return IRQ_NONE;
5993
5994         h->last_intr_timestamp = get_jiffies_64();
5995         raw_tag = get_next_completion(h, q);
5996         while (raw_tag != FIFO_EMPTY)
5997                 raw_tag = next_command(h, q);
5998         return IRQ_HANDLED;
5999 }
6000
6001 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6002 {
6003         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6004         u32 raw_tag;
6005         u8 q = *(u8 *) queue;
6006
6007         if (interrupt_not_for_us(h))
6008                 return IRQ_NONE;
6009         h->last_intr_timestamp = get_jiffies_64();
6010         while (interrupt_pending(h)) {
6011                 raw_tag = get_next_completion(h, q);
6012                 while (raw_tag != FIFO_EMPTY) {
6013                         process_indexed_cmd(h, raw_tag);
6014                         raw_tag = next_command(h, q);
6015                 }
6016         }
6017         return IRQ_HANDLED;
6018 }
6019
6020 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6021 {
6022         struct ctlr_info *h = queue_to_hba(queue);
6023         u32 raw_tag;
6024         u8 q = *(u8 *) queue;
6025
6026         h->last_intr_timestamp = get_jiffies_64();
6027         raw_tag = get_next_completion(h, q);
6028         while (raw_tag != FIFO_EMPTY) {
6029                 process_indexed_cmd(h, raw_tag);
6030                 raw_tag = next_command(h, q);
6031         }
6032         return IRQ_HANDLED;
6033 }
6034
6035 /* Send a message CDB to the firmware. Careful, this only works
6036  * in simple mode, not performant mode due to the tag lookup.
6037  * We only ever use this immediately after a controller reset.
6038  */
6039 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6040                         unsigned char type)
6041 {
6042         struct Command {
6043                 struct CommandListHeader CommandHeader;
6044                 struct RequestBlock Request;
6045                 struct ErrDescriptor ErrorDescriptor;
6046         };
6047         struct Command *cmd;
6048         static const size_t cmd_sz = sizeof(*cmd) +
6049                                         sizeof(cmd->ErrorDescriptor);
6050         dma_addr_t paddr64;
6051         __le32 paddr32;
6052         u32 tag;
6053         void __iomem *vaddr;
6054         int i, err;
6055
6056         vaddr = pci_ioremap_bar(pdev, 0);
6057         if (vaddr == NULL)
6058                 return -ENOMEM;
6059
6060         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6061          * CCISS commands, so they must be allocated from the lower 4GiB of
6062          * memory.
6063          */
6064         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6065         if (err) {
6066                 iounmap(vaddr);
6067                 return err;
6068         }
6069
6070         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6071         if (cmd == NULL) {
6072                 iounmap(vaddr);
6073                 return -ENOMEM;
6074         }
6075
6076         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
6077          * although there's no guarantee, we assume that the address is at
6078          * least 4-byte aligned (most likely, it's page-aligned).
6079          */
6080         paddr32 = cpu_to_le32(paddr64);
6081
6082         cmd->CommandHeader.ReplyQueue = 0;
6083         cmd->CommandHeader.SGList = 0;
6084         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6085         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6086         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6087
6088         cmd->Request.CDBLen = 16;
6089         cmd->Request.type_attr_dir =
6090                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6091         cmd->Request.Timeout = 0; /* Don't time out */
6092         cmd->Request.CDB[0] = opcode;
6093         cmd->Request.CDB[1] = type;
6094         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6095         cmd->ErrorDescriptor.Addr =
6096                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6097         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6098
6099         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6100
6101         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6102                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6103                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6104                         break;
6105                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6106         }
6107
6108         iounmap(vaddr);
6109
6110         /* we leak the DMA buffer here ... no choice since the controller could
6111          *  still complete the command.
6112          */
6113         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6114                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6115                         opcode, type);
6116                 return -ETIMEDOUT;
6117         }
6118
6119         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6120
6121         if (tag & HPSA_ERROR_BIT) {
6122                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6123                         opcode, type);
6124                 return -EIO;
6125         }
6126
6127         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6128                 opcode, type);
6129         return 0;
6130 }
6131
6132 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6133
6134 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6135         void __iomem *vaddr, u32 use_doorbell)
6136 {
6137
6138         if (use_doorbell) {
6139                 /* For everything after the P600, the PCI power state method
6140                  * of resetting the controller doesn't work, so we have this
6141                  * other way using the doorbell register.
6142                  */
6143                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
6144                 writel(use_doorbell, vaddr + SA5_DOORBELL);
6145
6146                 /* PMC hardware guys tell us we need a 10 second delay after
6147                  * doorbell reset and before any attempt to talk to the board
6148                  * at all to ensure that this actually works and doesn't fall
6149                  * over in some weird corner cases.
6150                  */
6151                 msleep(10000);
6152         } else { /* Try to do it the PCI power state way */
6153
6154                 /* Quoting from the Open CISS Specification: "The Power
6155                  * Management Control/Status Register (CSR) controls the power
6156                  * state of the device.  The normal operating state is D0,
6157                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
6158                  * the controller, place the interface device in D3 then to D0,
6159                  * this causes a secondary PCI reset which will reset the
6160                  * controller." */
6161
6162                 int rc = 0;
6163
6164                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6165
6166                 /* enter the D3hot power management state */
6167                 rc = pci_set_power_state(pdev, PCI_D3hot);
6168                 if (rc)
6169                         return rc;
6170
6171                 msleep(500);
6172
6173                 /* enter the D0 power management state */
6174                 rc = pci_set_power_state(pdev, PCI_D0);
6175                 if (rc)
6176                         return rc;
6177
6178                 /*
6179                  * The P600 requires a small delay when changing states.
6180                  * Otherwise we may think the board did not reset and we bail.
6181                  * This for kdump only and is particular to the P600.
6182                  */
6183                 msleep(500);
6184         }
6185         return 0;
6186 }
6187
6188 static void init_driver_version(char *driver_version, int len)
6189 {
6190         memset(driver_version, 0, len);
6191         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
6192 }
6193
6194 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
6195 {
6196         char *driver_version;
6197         int i, size = sizeof(cfgtable->driver_version);
6198
6199         driver_version = kmalloc(size, GFP_KERNEL);
6200         if (!driver_version)
6201                 return -ENOMEM;
6202
6203         init_driver_version(driver_version, size);
6204         for (i = 0; i < size; i++)
6205                 writeb(driver_version[i], &cfgtable->driver_version[i]);
6206         kfree(driver_version);
6207         return 0;
6208 }
6209
6210 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
6211                                           unsigned char *driver_ver)
6212 {
6213         int i;
6214
6215         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
6216                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
6217 }
6218
6219 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
6220 {
6221
6222         char *driver_ver, *old_driver_ver;
6223         int rc, size = sizeof(cfgtable->driver_version);
6224
6225         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
6226         if (!old_driver_ver)
6227                 return -ENOMEM;
6228         driver_ver = old_driver_ver + size;
6229
6230         /* After a reset, the 32 bytes of "driver version" in the cfgtable
6231          * should have been changed, otherwise we know the reset failed.
6232          */
6233         init_driver_version(old_driver_ver, size);
6234         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
6235         rc = !memcmp(driver_ver, old_driver_ver, size);
6236         kfree(old_driver_ver);
6237         return rc;
6238 }
6239 /* This does a hard reset of the controller using PCI power management
6240  * states or the using the doorbell register.
6241  */
6242 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
6243 {
6244         u64 cfg_offset;
6245         u32 cfg_base_addr;
6246         u64 cfg_base_addr_index;
6247         void __iomem *vaddr;
6248         unsigned long paddr;
6249         u32 misc_fw_support;
6250         int rc;
6251         struct CfgTable __iomem *cfgtable;
6252         u32 use_doorbell;
6253         u16 command_register;
6254
6255         /* For controllers as old as the P600, this is very nearly
6256          * the same thing as
6257          *
6258          * pci_save_state(pci_dev);
6259          * pci_set_power_state(pci_dev, PCI_D3hot);
6260          * pci_set_power_state(pci_dev, PCI_D0);
6261          * pci_restore_state(pci_dev);
6262          *
6263          * For controllers newer than the P600, the pci power state
6264          * method of resetting doesn't work so we have another way
6265          * using the doorbell register.
6266          */
6267
6268         if (!ctlr_is_resettable(board_id)) {
6269                 dev_warn(&pdev->dev, "Controller not resettable\n");
6270                 return -ENODEV;
6271         }
6272
6273         /* if controller is soft- but not hard resettable... */
6274         if (!ctlr_is_hard_resettable(board_id))
6275                 return -ENOTSUPP; /* try soft reset later. */
6276
6277         /* Save the PCI command register */
6278         pci_read_config_word(pdev, 4, &command_register);
6279         pci_save_state(pdev);
6280
6281         /* find the first memory BAR, so we can find the cfg table */
6282         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
6283         if (rc)
6284                 return rc;
6285         vaddr = remap_pci_mem(paddr, 0x250);
6286         if (!vaddr)
6287                 return -ENOMEM;
6288
6289         /* find cfgtable in order to check if reset via doorbell is supported */
6290         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
6291                                         &cfg_base_addr_index, &cfg_offset);
6292         if (rc)
6293                 goto unmap_vaddr;
6294         cfgtable = remap_pci_mem(pci_resource_start(pdev,
6295                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
6296         if (!cfgtable) {
6297                 rc = -ENOMEM;
6298                 goto unmap_vaddr;
6299         }
6300         rc = write_driver_ver_to_cfgtable(cfgtable);
6301         if (rc)
6302                 goto unmap_cfgtable;
6303
6304         /* If reset via doorbell register is supported, use that.
6305          * There are two such methods.  Favor the newest method.
6306          */
6307         misc_fw_support = readl(&cfgtable->misc_fw_support);
6308         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
6309         if (use_doorbell) {
6310                 use_doorbell = DOORBELL_CTLR_RESET2;
6311         } else {
6312                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
6313                 if (use_doorbell) {
6314                         dev_warn(&pdev->dev,
6315                                 "Soft reset not supported. Firmware update is required.\n");
6316                         rc = -ENOTSUPP; /* try soft reset */
6317                         goto unmap_cfgtable;
6318                 }
6319         }
6320
6321         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
6322         if (rc)
6323                 goto unmap_cfgtable;
6324
6325         pci_restore_state(pdev);
6326         pci_write_config_word(pdev, 4, command_register);
6327
6328         /* Some devices (notably the HP Smart Array 5i Controller)
6329            need a little pause here */
6330         msleep(HPSA_POST_RESET_PAUSE_MSECS);
6331
6332         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
6333         if (rc) {
6334                 dev_warn(&pdev->dev,
6335                         "Failed waiting for board to become ready after hard reset\n");
6336                 goto unmap_cfgtable;
6337         }
6338
6339         rc = controller_reset_failed(vaddr);
6340         if (rc < 0)
6341                 goto unmap_cfgtable;
6342         if (rc) {
6343                 dev_warn(&pdev->dev, "Unable to successfully reset "
6344                         "controller. Will try soft reset.\n");
6345                 rc = -ENOTSUPP;
6346         } else {
6347                 dev_info(&pdev->dev, "board ready after hard reset.\n");
6348         }
6349
6350 unmap_cfgtable:
6351         iounmap(cfgtable);
6352
6353 unmap_vaddr:
6354         iounmap(vaddr);
6355         return rc;
6356 }
6357
6358 /*
6359  *  We cannot read the structure directly, for portability we must use
6360  *   the io functions.
6361  *   This is for debug only.
6362  */
6363 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
6364 {
6365 #ifdef HPSA_DEBUG
6366         int i;
6367         char temp_name[17];
6368
6369         dev_info(dev, "Controller Configuration information\n");
6370         dev_info(dev, "------------------------------------\n");
6371         for (i = 0; i < 4; i++)
6372                 temp_name[i] = readb(&(tb->Signature[i]));
6373         temp_name[4] = '\0';
6374         dev_info(dev, "   Signature = %s\n", temp_name);
6375         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
6376         dev_info(dev, "   Transport methods supported = 0x%x\n",
6377                readl(&(tb->TransportSupport)));
6378         dev_info(dev, "   Transport methods active = 0x%x\n",
6379                readl(&(tb->TransportActive)));
6380         dev_info(dev, "   Requested transport Method = 0x%x\n",
6381                readl(&(tb->HostWrite.TransportRequest)));
6382         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
6383                readl(&(tb->HostWrite.CoalIntDelay)));
6384         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
6385                readl(&(tb->HostWrite.CoalIntCount)));
6386         dev_info(dev, "   Max outstanding commands = %d\n",
6387                readl(&(tb->CmdsOutMax)));
6388         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
6389         for (i = 0; i < 16; i++)
6390                 temp_name[i] = readb(&(tb->ServerName[i]));
6391         temp_name[16] = '\0';
6392         dev_info(dev, "   Server Name = %s\n", temp_name);
6393         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
6394                 readl(&(tb->HeartBeat)));
6395 #endif                          /* HPSA_DEBUG */
6396 }
6397
6398 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
6399 {
6400         int i, offset, mem_type, bar_type;
6401
6402         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
6403                 return 0;
6404         offset = 0;
6405         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6406                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6407                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6408                         offset += 4;
6409                 else {
6410                         mem_type = pci_resource_flags(pdev, i) &
6411                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
6412                         switch (mem_type) {
6413                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
6414                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
6415                                 offset += 4;    /* 32 bit */
6416                                 break;
6417                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
6418                                 offset += 8;
6419                                 break;
6420                         default:        /* reserved in PCI 2.2 */
6421                                 dev_warn(&pdev->dev,
6422                                        "base address is invalid\n");
6423                                 return -1;
6424                                 break;
6425                         }
6426                 }
6427                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
6428                         return i + 1;
6429         }
6430         return -1;
6431 }
6432
6433 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
6434 {
6435         if (h->msix_vector) {
6436                 if (h->pdev->msix_enabled)
6437                         pci_disable_msix(h->pdev);
6438         } else if (h->msi_vector) {
6439                 if (h->pdev->msi_enabled)
6440                         pci_disable_msi(h->pdev);
6441         }
6442 }
6443
6444 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
6445  * controllers that are capable. If not, we use legacy INTx mode.
6446  */
6447 static void hpsa_interrupt_mode(struct ctlr_info *h)
6448 {
6449 #ifdef CONFIG_PCI_MSI
6450         int err, i;
6451         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
6452
6453         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
6454                 hpsa_msix_entries[i].vector = 0;
6455                 hpsa_msix_entries[i].entry = i;
6456         }
6457
6458         /* Some boards advertise MSI but don't really support it */
6459         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6460             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6461                 goto default_int_mode;
6462         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6463                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
6464                 h->msix_vector = MAX_REPLY_QUEUES;
6465                 if (h->msix_vector > num_online_cpus())
6466                         h->msix_vector = num_online_cpus();
6467                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
6468                                             1, h->msix_vector);
6469                 if (err < 0) {
6470                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
6471                         h->msix_vector = 0;
6472                         goto single_msi_mode;
6473                 } else if (err < h->msix_vector) {
6474                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6475                                "available\n", err);
6476                 }
6477                 h->msix_vector = err;
6478                 for (i = 0; i < h->msix_vector; i++)
6479                         h->intr[i] = hpsa_msix_entries[i].vector;
6480                 return;
6481         }
6482 single_msi_mode:
6483         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6484                 dev_info(&h->pdev->dev, "MSI capable controller\n");
6485                 if (!pci_enable_msi(h->pdev))
6486                         h->msi_vector = 1;
6487                 else
6488                         dev_warn(&h->pdev->dev, "MSI init failed\n");
6489         }
6490 default_int_mode:
6491 #endif                          /* CONFIG_PCI_MSI */
6492         /* if we get here we're going to use the default interrupt mode */
6493         h->intr[h->intr_mode] = h->pdev->irq;
6494 }
6495
6496 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6497 {
6498         int i;
6499         u32 subsystem_vendor_id, subsystem_device_id;
6500
6501         subsystem_vendor_id = pdev->subsystem_vendor;
6502         subsystem_device_id = pdev->subsystem_device;
6503         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6504                     subsystem_vendor_id;
6505
6506         for (i = 0; i < ARRAY_SIZE(products); i++)
6507                 if (*board_id == products[i].board_id)
6508                         return i;
6509
6510         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6511                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6512                 !hpsa_allow_any) {
6513                 dev_warn(&pdev->dev, "unrecognized board ID: "
6514                         "0x%08x, ignoring.\n", *board_id);
6515                         return -ENODEV;
6516         }
6517         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6518 }
6519
6520 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6521                                     unsigned long *memory_bar)
6522 {
6523         int i;
6524
6525         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6526                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6527                         /* addressing mode bits already removed */
6528                         *memory_bar = pci_resource_start(pdev, i);
6529                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6530                                 *memory_bar);
6531                         return 0;
6532                 }
6533         dev_warn(&pdev->dev, "no memory BAR found\n");
6534         return -ENODEV;
6535 }
6536
6537 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6538                                      int wait_for_ready)
6539 {
6540         int i, iterations;
6541         u32 scratchpad;
6542         if (wait_for_ready)
6543                 iterations = HPSA_BOARD_READY_ITERATIONS;
6544         else
6545                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6546
6547         for (i = 0; i < iterations; i++) {
6548                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6549                 if (wait_for_ready) {
6550                         if (scratchpad == HPSA_FIRMWARE_READY)
6551                                 return 0;
6552                 } else {
6553                         if (scratchpad != HPSA_FIRMWARE_READY)
6554                                 return 0;
6555                 }
6556                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6557         }
6558         dev_warn(&pdev->dev, "board not ready, timed out.\n");
6559         return -ENODEV;
6560 }
6561
6562 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6563                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6564                                u64 *cfg_offset)
6565 {
6566         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6567         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6568         *cfg_base_addr &= (u32) 0x0000ffff;
6569         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6570         if (*cfg_base_addr_index == -1) {
6571                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6572                 return -ENODEV;
6573         }
6574         return 0;
6575 }
6576
6577 static void hpsa_free_cfgtables(struct ctlr_info *h)
6578 {
6579         if (h->transtable)
6580                 iounmap(h->transtable);
6581         if (h->cfgtable)
6582                 iounmap(h->cfgtable);
6583 }
6584
6585 /* Find and map CISS config table and transfer table
6586 + * several items must be unmapped (freed) later
6587 + * */
6588 static int hpsa_find_cfgtables(struct ctlr_info *h)
6589 {
6590         u64 cfg_offset;
6591         u32 cfg_base_addr;
6592         u64 cfg_base_addr_index;
6593         u32 trans_offset;
6594         int rc;
6595
6596         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6597                 &cfg_base_addr_index, &cfg_offset);
6598         if (rc)
6599                 return rc;
6600         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6601                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6602         if (!h->cfgtable) {
6603                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
6604                 return -ENOMEM;
6605         }
6606         rc = write_driver_ver_to_cfgtable(h->cfgtable);
6607         if (rc)
6608                 return rc;
6609         /* Find performant mode table. */
6610         trans_offset = readl(&h->cfgtable->TransMethodOffset);
6611         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6612                                 cfg_base_addr_index)+cfg_offset+trans_offset,
6613                                 sizeof(*h->transtable));
6614         if (!h->transtable) {
6615                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
6616                 hpsa_free_cfgtables(h);
6617                 return -ENOMEM;
6618         }
6619         return 0;
6620 }
6621
6622 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6623 {
6624 #define MIN_MAX_COMMANDS 16
6625         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
6626
6627         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
6628
6629         /* Limit commands in memory limited kdump scenario. */
6630         if (reset_devices && h->max_commands > 32)
6631                 h->max_commands = 32;
6632
6633         if (h->max_commands < MIN_MAX_COMMANDS) {
6634                 dev_warn(&h->pdev->dev,
6635                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
6636                         h->max_commands,
6637                         MIN_MAX_COMMANDS);
6638                 h->max_commands = MIN_MAX_COMMANDS;
6639         }
6640 }
6641
6642 /* If the controller reports that the total max sg entries is greater than 512,
6643  * then we know that chained SG blocks work.  (Original smart arrays did not
6644  * support chained SG blocks and would return zero for max sg entries.)
6645  */
6646 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
6647 {
6648         return h->maxsgentries > 512;
6649 }
6650
6651 /* Interrogate the hardware for some limits:
6652  * max commands, max SG elements without chaining, and with chaining,
6653  * SG chain block size, etc.
6654  */
6655 static void hpsa_find_board_params(struct ctlr_info *h)
6656 {
6657         hpsa_get_max_perf_mode_cmds(h);
6658         h->nr_cmds = h->max_commands;
6659         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6660         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6661         if (hpsa_supports_chained_sg_blocks(h)) {
6662                 /* Limit in-command s/g elements to 32 save dma'able memory. */
6663                 h->max_cmd_sg_entries = 32;
6664                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
6665                 h->maxsgentries--; /* save one for chain pointer */
6666         } else {
6667                 /*
6668                  * Original smart arrays supported at most 31 s/g entries
6669                  * embedded inline in the command (trying to use more
6670                  * would lock up the controller)
6671                  */
6672                 h->max_cmd_sg_entries = 31;
6673                 h->maxsgentries = 31; /* default to traditional values */
6674                 h->chainsize = 0;
6675         }
6676
6677         /* Find out what task management functions are supported and cache */
6678         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6679         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6680                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6681         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6682                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6683 }
6684
6685 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6686 {
6687         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6688                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
6689                 return false;
6690         }
6691         return true;
6692 }
6693
6694 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6695 {
6696         u32 driver_support;
6697
6698         driver_support = readl(&(h->cfgtable->driver_support));
6699         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
6700 #ifdef CONFIG_X86
6701         driver_support |= ENABLE_SCSI_PREFETCH;
6702 #endif
6703         driver_support |= ENABLE_UNIT_ATTN;
6704         writel(driver_support, &(h->cfgtable->driver_support));
6705 }
6706
6707 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
6708  * in a prefetch beyond physical memory.
6709  */
6710 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6711 {
6712         u32 dma_prefetch;
6713
6714         if (h->board_id != 0x3225103C)
6715                 return;
6716         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6717         dma_prefetch |= 0x8000;
6718         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6719 }
6720
6721 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6722 {
6723         int i;
6724         u32 doorbell_value;
6725         unsigned long flags;
6726         /* wait until the clear_event_notify bit 6 is cleared by controller. */
6727         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
6728                 spin_lock_irqsave(&h->lock, flags);
6729                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6730                 spin_unlock_irqrestore(&h->lock, flags);
6731                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6732                         goto done;
6733                 /* delay and try again */
6734                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
6735         }
6736         return -ENODEV;
6737 done:
6738         return 0;
6739 }
6740
6741 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6742 {
6743         int i;
6744         u32 doorbell_value;
6745         unsigned long flags;
6746
6747         /* under certain very rare conditions, this can take awhile.
6748          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6749          * as we enter this code.)
6750          */
6751         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
6752                 if (h->remove_in_progress)
6753                         goto done;
6754                 spin_lock_irqsave(&h->lock, flags);
6755                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6756                 spin_unlock_irqrestore(&h->lock, flags);
6757                 if (!(doorbell_value & CFGTBL_ChangeReq))
6758                         goto done;
6759                 /* delay and try again */
6760                 msleep(MODE_CHANGE_WAIT_INTERVAL);
6761         }
6762         return -ENODEV;
6763 done:
6764         return 0;
6765 }
6766
6767 /* return -ENODEV or other reason on error, 0 on success */
6768 static int hpsa_enter_simple_mode(struct ctlr_info *h)
6769 {
6770         u32 trans_support;
6771
6772         trans_support = readl(&(h->cfgtable->TransportSupport));
6773         if (!(trans_support & SIMPLE_MODE))
6774                 return -ENOTSUPP;
6775
6776         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6777
6778         /* Update the field, and then ring the doorbell */
6779         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6780         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6781         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6782         if (hpsa_wait_for_mode_change_ack(h))
6783                 goto error;
6784         print_cfg_table(&h->pdev->dev, h->cfgtable);
6785         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6786                 goto error;
6787         h->transMethod = CFGTBL_Trans_Simple;
6788         return 0;
6789 error:
6790         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
6791         return -ENODEV;
6792 }
6793
6794 /* free items allocated or mapped by hpsa_pci_init */
6795 static void hpsa_free_pci_init(struct ctlr_info *h)
6796 {
6797         hpsa_free_cfgtables(h);                 /* pci_init 4 */
6798         iounmap(h->vaddr);                      /* pci_init 3 */
6799         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
6800         pci_release_regions(h->pdev);           /* pci_init 2 */
6801         pci_disable_device(h->pdev);            /* pci_init 1 */
6802 }
6803
6804 /* several items must be freed later */
6805 static int hpsa_pci_init(struct ctlr_info *h)
6806 {
6807         int prod_index, err;
6808
6809         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6810         if (prod_index < 0)
6811                 return prod_index;
6812         h->product_name = products[prod_index].product_name;
6813         h->access = *(products[prod_index].access);
6814
6815         h->needs_abort_tags_swizzled =
6816                 ctlr_needs_abort_tags_swizzled(h->board_id);
6817
6818         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6819                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6820
6821         err = pci_enable_device(h->pdev);
6822         if (err) {
6823                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
6824                 return err;
6825         }
6826
6827         err = pci_request_regions(h->pdev, HPSA);
6828         if (err) {
6829                 dev_err(&h->pdev->dev,
6830                         "failed to obtain PCI resources\n");
6831                 goto clean1;    /* pci */
6832         }
6833
6834         pci_set_master(h->pdev);
6835
6836         hpsa_interrupt_mode(h);
6837         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6838         if (err)
6839                 goto clean2;    /* intmode+region, pci */
6840         h->vaddr = remap_pci_mem(h->paddr, 0x250);
6841         if (!h->vaddr) {
6842                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
6843                 err = -ENOMEM;
6844                 goto clean2;    /* intmode+region, pci */
6845         }
6846         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6847         if (err)
6848                 goto clean3;    /* vaddr, intmode+region, pci */
6849         err = hpsa_find_cfgtables(h);
6850         if (err)
6851                 goto clean3;    /* vaddr, intmode+region, pci */
6852         hpsa_find_board_params(h);
6853
6854         if (!hpsa_CISS_signature_present(h)) {
6855                 err = -ENODEV;
6856                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
6857         }
6858         hpsa_set_driver_support_bits(h);
6859         hpsa_p600_dma_prefetch_quirk(h);
6860         err = hpsa_enter_simple_mode(h);
6861         if (err)
6862                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
6863         return 0;
6864
6865 clean4: /* cfgtables, vaddr, intmode+region, pci */
6866         hpsa_free_cfgtables(h);
6867 clean3: /* vaddr, intmode+region, pci */
6868         iounmap(h->vaddr);
6869 clean2: /* intmode+region, pci */
6870         hpsa_disable_interrupt_mode(h);
6871         pci_release_regions(h->pdev);
6872 clean1: /* pci */
6873         pci_disable_device(h->pdev);
6874         return err;
6875 }
6876
6877 static void hpsa_hba_inquiry(struct ctlr_info *h)
6878 {
6879         int rc;
6880
6881 #define HBA_INQUIRY_BYTE_COUNT 64
6882         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6883         if (!h->hba_inquiry_data)
6884                 return;
6885         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6886                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6887         if (rc != 0) {
6888                 kfree(h->hba_inquiry_data);
6889                 h->hba_inquiry_data = NULL;
6890         }
6891 }
6892
6893 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
6894 {
6895         int rc, i;
6896         void __iomem *vaddr;
6897
6898         if (!reset_devices)
6899                 return 0;
6900
6901         /* kdump kernel is loading, we don't know in which state is
6902          * the pci interface. The dev->enable_cnt is equal zero
6903          * so we call enable+disable, wait a while and switch it on.
6904          */
6905         rc = pci_enable_device(pdev);
6906         if (rc) {
6907                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
6908                 return -ENODEV;
6909         }
6910         pci_disable_device(pdev);
6911         msleep(260);                    /* a randomly chosen number */
6912         rc = pci_enable_device(pdev);
6913         if (rc) {
6914                 dev_warn(&pdev->dev, "failed to enable device.\n");
6915                 return -ENODEV;
6916         }
6917
6918         pci_set_master(pdev);
6919
6920         vaddr = pci_ioremap_bar(pdev, 0);
6921         if (vaddr == NULL) {
6922                 rc = -ENOMEM;
6923                 goto out_disable;
6924         }
6925         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
6926         iounmap(vaddr);
6927
6928         /* Reset the controller with a PCI power-cycle or via doorbell */
6929         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
6930
6931         /* -ENOTSUPP here means we cannot reset the controller
6932          * but it's already (and still) up and running in
6933          * "performant mode".  Or, it might be 640x, which can't reset
6934          * due to concerns about shared bbwc between 6402/6404 pair.
6935          */
6936         if (rc)
6937                 goto out_disable;
6938
6939         /* Now try to get the controller to respond to a no-op */
6940         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
6941         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6942                 if (hpsa_noop(pdev) == 0)
6943                         break;
6944                 else
6945                         dev_warn(&pdev->dev, "no-op failed%s\n",
6946                                         (i < 11 ? "; re-trying" : ""));
6947         }
6948
6949 out_disable:
6950
6951         pci_disable_device(pdev);
6952         return rc;
6953 }
6954
6955 static void hpsa_free_cmd_pool(struct ctlr_info *h)
6956 {
6957         kfree(h->cmd_pool_bits);
6958         if (h->cmd_pool)
6959                 pci_free_consistent(h->pdev,
6960                                 h->nr_cmds * sizeof(struct CommandList),
6961                                 h->cmd_pool,
6962                                 h->cmd_pool_dhandle);
6963         if (h->errinfo_pool)
6964                 pci_free_consistent(h->pdev,
6965                                 h->nr_cmds * sizeof(struct ErrorInfo),
6966                                 h->errinfo_pool,
6967                                 h->errinfo_pool_dhandle);
6968 }
6969
6970 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
6971 {
6972         h->cmd_pool_bits = kzalloc(
6973                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6974                 sizeof(unsigned long), GFP_KERNEL);
6975         h->cmd_pool = pci_alloc_consistent(h->pdev,
6976                     h->nr_cmds * sizeof(*h->cmd_pool),
6977                     &(h->cmd_pool_dhandle));
6978         h->errinfo_pool = pci_alloc_consistent(h->pdev,
6979                     h->nr_cmds * sizeof(*h->errinfo_pool),
6980                     &(h->errinfo_pool_dhandle));
6981         if ((h->cmd_pool_bits == NULL)
6982             || (h->cmd_pool == NULL)
6983             || (h->errinfo_pool == NULL)) {
6984                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6985                 goto clean_up;
6986         }
6987         hpsa_preinitialize_commands(h);
6988         return 0;
6989 clean_up:
6990         hpsa_free_cmd_pool(h);
6991         return -ENOMEM;
6992 }
6993
6994 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
6995 {
6996         int i, cpu;
6997
6998         cpu = cpumask_first(cpu_online_mask);
6999         for (i = 0; i < h->msix_vector; i++) {
7000                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7001                 cpu = cpumask_next(cpu, cpu_online_mask);
7002         }
7003 }
7004
7005 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7006 static void hpsa_free_irqs(struct ctlr_info *h)
7007 {
7008         int i;
7009
7010         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7011                 /* Single reply queue, only one irq to free */
7012                 i = h->intr_mode;
7013                 irq_set_affinity_hint(h->intr[i], NULL);
7014                 free_irq(h->intr[i], &h->q[i]);
7015                 return;
7016         }
7017
7018         for (i = 0; i < h->msix_vector; i++) {
7019                 irq_set_affinity_hint(h->intr[i], NULL);
7020                 free_irq(h->intr[i], &h->q[i]);
7021         }
7022         for (; i < MAX_REPLY_QUEUES; i++)
7023                 h->q[i] = 0;
7024 }
7025
7026 /* returns 0 on success; cleans up and returns -Enn on error */
7027 static int hpsa_request_irqs(struct ctlr_info *h,
7028         irqreturn_t (*msixhandler)(int, void *),
7029         irqreturn_t (*intxhandler)(int, void *))
7030 {
7031         int rc, i;
7032
7033         /*
7034          * initialize h->q[x] = x so that interrupt handlers know which
7035          * queue to process.
7036          */
7037         for (i = 0; i < MAX_REPLY_QUEUES; i++)
7038                 h->q[i] = (u8) i;
7039
7040         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
7041                 /* If performant mode and MSI-X, use multiple reply queues */
7042                 for (i = 0; i < h->msix_vector; i++) {
7043                         rc = request_irq(h->intr[i], msixhandler,
7044                                         0, h->devname,
7045                                         &h->q[i]);
7046                         if (rc) {
7047                                 int j;
7048
7049                                 dev_err(&h->pdev->dev,
7050                                         "failed to get irq %d for %s\n",
7051                                        h->intr[i], h->devname);
7052                                 for (j = 0; j < i; j++) {
7053                                         free_irq(h->intr[j], &h->q[j]);
7054                                         h->q[j] = 0;
7055                                 }
7056                                 for (; j < MAX_REPLY_QUEUES; j++)
7057                                         h->q[j] = 0;
7058                                 return rc;
7059                         }
7060                 }
7061                 hpsa_irq_affinity_hints(h);
7062         } else {
7063                 /* Use single reply pool */
7064                 if (h->msix_vector > 0 || h->msi_vector) {
7065                         rc = request_irq(h->intr[h->intr_mode],
7066                                 msixhandler, 0, h->devname,
7067                                 &h->q[h->intr_mode]);
7068                 } else {
7069                         rc = request_irq(h->intr[h->intr_mode],
7070                                 intxhandler, IRQF_SHARED, h->devname,
7071                                 &h->q[h->intr_mode]);
7072                 }
7073         }
7074         if (rc) {
7075                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7076                        h->intr[h->intr_mode], h->devname);
7077                 hpsa_free_irqs(h);
7078                 return -ENODEV;
7079         }
7080         return 0;
7081 }
7082
7083 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7084 {
7085         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7086
7087         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7088         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
7089                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7090                 return -1;
7091         }
7092
7093         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7094         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
7095                 dev_warn(&h->pdev->dev, "Board failed to become ready "
7096                         "after soft reset.\n");
7097                 return -1;
7098         }
7099
7100         return 0;
7101 }
7102
7103 static void hpsa_free_reply_queues(struct ctlr_info *h)
7104 {
7105         int i;
7106
7107         for (i = 0; i < h->nreply_queues; i++) {
7108                 if (!h->reply_queue[i].head)
7109                         continue;
7110                 pci_free_consistent(h->pdev,
7111                                         h->reply_queue_size,
7112                                         h->reply_queue[i].head,
7113                                         h->reply_queue[i].busaddr);
7114                 h->reply_queue[i].head = NULL;
7115                 h->reply_queue[i].busaddr = 0;
7116         }
7117 }
7118
7119 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
7120 {
7121         hpsa_free_irqs(h);
7122         hpsa_free_sg_chain_blocks(h);
7123         hpsa_free_cmd_pool(h);
7124         kfree(h->blockFetchTable);              /* perf 2 */
7125         hpsa_free_reply_queues(h);              /* perf 1 */
7126         hpsa_free_ioaccel1_cmd_and_bft(h);      /* perf 1 */
7127         hpsa_free_ioaccel2_cmd_and_bft(h);      /* perf 1 */
7128         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7129         iounmap(h->vaddr);                      /* pci_init 3 */
7130         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7131         pci_disable_device(h->pdev);
7132         pci_release_regions(h->pdev);           /* pci_init 2 */
7133         kfree(h);
7134 }
7135
7136 /* Called when controller lockup detected. */
7137 static void fail_all_outstanding_cmds(struct ctlr_info *h)
7138 {
7139         int i, refcount;
7140         struct CommandList *c;
7141         int failcount = 0;
7142
7143         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7144         for (i = 0; i < h->nr_cmds; i++) {
7145                 c = h->cmd_pool + i;
7146                 refcount = atomic_inc_return(&c->refcount);
7147                 if (refcount > 1) {
7148                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7149                         finish_cmd(c);
7150                         atomic_dec(&h->commands_outstanding);
7151                         failcount++;
7152                 }
7153                 cmd_free(h, c);
7154         }
7155         dev_warn(&h->pdev->dev,
7156                 "failed %d commands in fail_all\n", failcount);
7157 }
7158
7159 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
7160 {
7161         int cpu;
7162
7163         for_each_online_cpu(cpu) {
7164                 u32 *lockup_detected;
7165                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
7166                 *lockup_detected = value;
7167         }
7168         wmb(); /* be sure the per-cpu variables are out to memory */
7169 }
7170
7171 static void controller_lockup_detected(struct ctlr_info *h)
7172 {
7173         unsigned long flags;
7174         u32 lockup_detected;
7175
7176         h->access.set_intr_mask(h, HPSA_INTR_OFF);
7177         spin_lock_irqsave(&h->lock, flags);
7178         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
7179         if (!lockup_detected) {
7180                 /* no heartbeat, but controller gave us a zero. */
7181                 dev_warn(&h->pdev->dev,
7182                         "lockup detected after %d but scratchpad register is zero\n",
7183                         h->heartbeat_sample_interval / HZ);
7184                 lockup_detected = 0xffffffff;
7185         }
7186         set_lockup_detected_for_all_cpus(h, lockup_detected);
7187         spin_unlock_irqrestore(&h->lock, flags);
7188         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
7189                         lockup_detected, h->heartbeat_sample_interval / HZ);
7190         pci_disable_device(h->pdev);
7191         fail_all_outstanding_cmds(h);
7192 }
7193
7194 static int detect_controller_lockup(struct ctlr_info *h)
7195 {
7196         u64 now;
7197         u32 heartbeat;
7198         unsigned long flags;
7199
7200         now = get_jiffies_64();
7201         /* If we've received an interrupt recently, we're ok. */
7202         if (time_after64(h->last_intr_timestamp +
7203                                 (h->heartbeat_sample_interval), now))
7204                 return false;
7205
7206         /*
7207          * If we've already checked the heartbeat recently, we're ok.
7208          * This could happen if someone sends us a signal. We
7209          * otherwise don't care about signals in this thread.
7210          */
7211         if (time_after64(h->last_heartbeat_timestamp +
7212                                 (h->heartbeat_sample_interval), now))
7213                 return false;
7214
7215         /* If heartbeat has not changed since we last looked, we're not ok. */
7216         spin_lock_irqsave(&h->lock, flags);
7217         heartbeat = readl(&h->cfgtable->HeartBeat);
7218         spin_unlock_irqrestore(&h->lock, flags);
7219         if (h->last_heartbeat == heartbeat) {
7220                 controller_lockup_detected(h);
7221                 return true;
7222         }
7223
7224         /* We're ok. */
7225         h->last_heartbeat = heartbeat;
7226         h->last_heartbeat_timestamp = now;
7227         return false;
7228 }
7229
7230 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
7231 {
7232         int i;
7233         char *event_type;
7234
7235         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7236                 return;
7237
7238         /* Ask the controller to clear the events we're handling. */
7239         if ((h->transMethod & (CFGTBL_Trans_io_accel1
7240                         | CFGTBL_Trans_io_accel2)) &&
7241                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
7242                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
7243
7244                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
7245                         event_type = "state change";
7246                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
7247                         event_type = "configuration change";
7248                 /* Stop sending new RAID offload reqs via the IO accelerator */
7249                 scsi_block_requests(h->scsi_host);
7250                 for (i = 0; i < h->ndevices; i++)
7251                         h->dev[i]->offload_enabled = 0;
7252                 hpsa_drain_accel_commands(h);
7253                 /* Set 'accelerator path config change' bit */
7254                 dev_warn(&h->pdev->dev,
7255                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
7256                         h->events, event_type);
7257                 writel(h->events, &(h->cfgtable->clear_event_notify));
7258                 /* Set the "clear event notify field update" bit 6 */
7259                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7260                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
7261                 hpsa_wait_for_clear_event_notify_ack(h);
7262                 scsi_unblock_requests(h->scsi_host);
7263         } else {
7264                 /* Acknowledge controller notification events. */
7265                 writel(h->events, &(h->cfgtable->clear_event_notify));
7266                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7267                 hpsa_wait_for_clear_event_notify_ack(h);
7268 #if 0
7269                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7270                 hpsa_wait_for_mode_change_ack(h);
7271 #endif
7272         }
7273         return;
7274 }
7275
7276 /* Check a register on the controller to see if there are configuration
7277  * changes (added/changed/removed logical drives, etc.) which mean that
7278  * we should rescan the controller for devices.
7279  * Also check flag for driver-initiated rescan.
7280  */
7281 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
7282 {
7283         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7284                 return 0;
7285
7286         h->events = readl(&(h->cfgtable->event_notify));
7287         return h->events & RESCAN_REQUIRED_EVENT_BITS;
7288 }
7289
7290 /*
7291  * Check if any of the offline devices have become ready
7292  */
7293 static int hpsa_offline_devices_ready(struct ctlr_info *h)
7294 {
7295         unsigned long flags;
7296         struct offline_device_entry *d;
7297         struct list_head *this, *tmp;
7298
7299         spin_lock_irqsave(&h->offline_device_lock, flags);
7300         list_for_each_safe(this, tmp, &h->offline_device_list) {
7301                 d = list_entry(this, struct offline_device_entry,
7302                                 offline_list);
7303                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
7304                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
7305                         spin_lock_irqsave(&h->offline_device_lock, flags);
7306                         list_del(&d->offline_list);
7307                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
7308                         return 1;
7309                 }
7310                 spin_lock_irqsave(&h->offline_device_lock, flags);
7311         }
7312         spin_unlock_irqrestore(&h->offline_device_lock, flags);
7313         return 0;
7314 }
7315
7316 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
7317 {
7318         unsigned long flags;
7319         struct ctlr_info *h = container_of(to_delayed_work(work),
7320                                         struct ctlr_info, rescan_ctlr_work);
7321
7322
7323         if (h->remove_in_progress)
7324                 return;
7325
7326         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
7327                 scsi_host_get(h->scsi_host);
7328                 hpsa_ack_ctlr_events(h);
7329                 hpsa_scan_start(h->scsi_host);
7330                 scsi_host_put(h->scsi_host);
7331         }
7332         spin_lock_irqsave(&h->lock, flags);
7333         if (!h->remove_in_progress)
7334                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
7335                                 h->heartbeat_sample_interval);
7336         spin_unlock_irqrestore(&h->lock, flags);
7337 }
7338
7339 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
7340 {
7341         unsigned long flags;
7342         struct ctlr_info *h = container_of(to_delayed_work(work),
7343                                         struct ctlr_info, monitor_ctlr_work);
7344
7345         detect_controller_lockup(h);
7346         if (lockup_detected(h))
7347                 return;
7348
7349         spin_lock_irqsave(&h->lock, flags);
7350         if (!h->remove_in_progress)
7351                 schedule_delayed_work(&h->monitor_ctlr_work,
7352                                 h->heartbeat_sample_interval);
7353         spin_unlock_irqrestore(&h->lock, flags);
7354 }
7355
7356 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
7357                                                 char *name)
7358 {
7359         struct workqueue_struct *wq = NULL;
7360
7361         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
7362         if (!wq)
7363                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
7364
7365         return wq;
7366 }
7367
7368 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7369 {
7370         int dac, rc;
7371         struct ctlr_info *h;
7372         int try_soft_reset = 0;
7373         unsigned long flags;
7374         u32 board_id;
7375
7376         if (number_of_controllers == 0)
7377                 printk(KERN_INFO DRIVER_NAME "\n");
7378
7379         rc = hpsa_lookup_board_id(pdev, &board_id);
7380         if (rc < 0) {
7381                 dev_warn(&pdev->dev, "Board ID not found\n");
7382                 return rc;
7383         }
7384
7385         rc = hpsa_init_reset_devices(pdev, board_id);
7386         if (rc) {
7387                 if (rc != -ENOTSUPP)
7388                         return rc;
7389                 /* If the reset fails in a particular way (it has no way to do
7390                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
7391                  * a soft reset once we get the controller configured up to the
7392                  * point that it can accept a command.
7393                  */
7394                 try_soft_reset = 1;
7395                 rc = 0;
7396         }
7397
7398 reinit_after_soft_reset:
7399
7400         /* Command structures must be aligned on a 32-byte boundary because
7401          * the 5 lower bits of the address are used by the hardware. and by
7402          * the driver.  See comments in hpsa.h for more info.
7403          */
7404         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
7405         h = kzalloc(sizeof(*h), GFP_KERNEL);
7406         if (!h)
7407                 return -ENOMEM;
7408
7409         h->pdev = pdev;
7410         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
7411         INIT_LIST_HEAD(&h->offline_device_list);
7412         spin_lock_init(&h->lock);
7413         spin_lock_init(&h->offline_device_lock);
7414         spin_lock_init(&h->scan_lock);
7415         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
7416         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
7417
7418         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
7419         if (!h->rescan_ctlr_wq) {
7420                 rc = -ENOMEM;
7421                 goto clean1;
7422         }
7423
7424         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
7425         if (!h->resubmit_wq) {
7426                 rc = -ENOMEM;
7427                 goto clean1;
7428         }
7429
7430         /* Allocate and clear per-cpu variable lockup_detected */
7431         h->lockup_detected = alloc_percpu(u32);
7432         if (!h->lockup_detected) {
7433                 rc = -ENOMEM;
7434                 goto clean1;
7435         }
7436         set_lockup_detected_for_all_cpus(h, 0);
7437
7438         rc = hpsa_pci_init(h);
7439         if (rc != 0)
7440                 goto clean1;
7441
7442         sprintf(h->devname, HPSA "%d", number_of_controllers);
7443         h->ctlr = number_of_controllers;
7444         number_of_controllers++;
7445
7446         /* configure PCI DMA stuff */
7447         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
7448         if (rc == 0) {
7449                 dac = 1;
7450         } else {
7451                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
7452                 if (rc == 0) {
7453                         dac = 0;
7454                 } else {
7455                         dev_err(&pdev->dev, "no suitable DMA available\n");
7456                         goto clean2;
7457                 }
7458         }
7459
7460         /* make sure the board interrupts are off */
7461         h->access.set_intr_mask(h, HPSA_INTR_OFF);
7462
7463         if (hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
7464                 goto clean2;
7465         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
7466                h->devname, pdev->device,
7467                h->intr[h->intr_mode], dac ? "" : " not");
7468         rc = hpsa_alloc_cmd_pool(h);
7469         if (rc)
7470                 goto clean2_and_free_irqs;
7471         if (hpsa_allocate_sg_chain_blocks(h))
7472                 goto clean4;
7473         init_waitqueue_head(&h->scan_wait_queue);
7474         init_waitqueue_head(&h->abort_cmd_wait_queue);
7475         h->scan_finished = 1; /* no scan currently in progress */
7476
7477         pci_set_drvdata(pdev, h);
7478         h->ndevices = 0;
7479         h->hba_mode_enabled = 0;
7480         h->scsi_host = NULL;
7481         spin_lock_init(&h->devlock);
7482         hpsa_put_ctlr_into_performant_mode(h);
7483
7484         /* At this point, the controller is ready to take commands.
7485          * Now, if reset_devices and the hard reset didn't work, try
7486          * the soft reset and see if that works.
7487          */
7488         if (try_soft_reset) {
7489
7490                 /* This is kind of gross.  We may or may not get a completion
7491                  * from the soft reset command, and if we do, then the value
7492                  * from the fifo may or may not be valid.  So, we wait 10 secs
7493                  * after the reset throwing away any completions we get during
7494                  * that time.  Unregister the interrupt handler and register
7495                  * fake ones to scoop up any residual completions.
7496                  */
7497                 spin_lock_irqsave(&h->lock, flags);
7498                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7499                 spin_unlock_irqrestore(&h->lock, flags);
7500                 hpsa_free_irqs(h);
7501                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
7502                                         hpsa_intx_discard_completions);
7503                 if (rc) {
7504                         dev_warn(&h->pdev->dev,
7505                                 "Failed to request_irq after soft reset.\n");
7506                         goto clean4;
7507                 }
7508
7509                 rc = hpsa_kdump_soft_reset(h);
7510                 if (rc)
7511                         /* Neither hard nor soft reset worked, we're hosed. */
7512                         goto clean4;
7513
7514                 dev_info(&h->pdev->dev, "Board READY.\n");
7515                 dev_info(&h->pdev->dev,
7516                         "Waiting for stale completions to drain.\n");
7517                 h->access.set_intr_mask(h, HPSA_INTR_ON);
7518                 msleep(10000);
7519                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7520
7521                 rc = controller_reset_failed(h->cfgtable);
7522                 if (rc)
7523                         dev_info(&h->pdev->dev,
7524                                 "Soft reset appears to have failed.\n");
7525
7526                 /* since the controller's reset, we have to go back and re-init
7527                  * everything.  Easiest to just forget what we've done and do it
7528                  * all over again.
7529                  */
7530                 hpsa_undo_allocations_after_kdump_soft_reset(h);
7531                 try_soft_reset = 0;
7532                 if (rc)
7533                         /* don't go to clean4, we already unallocated */
7534                         return -ENODEV;
7535
7536                 goto reinit_after_soft_reset;
7537         }
7538
7539                 /* Enable Accelerated IO path at driver layer */
7540                 h->acciopath_status = 1;
7541
7542
7543         /* Turn the interrupts on so we can service requests */
7544         h->access.set_intr_mask(h, HPSA_INTR_ON);
7545
7546         hpsa_hba_inquiry(h);
7547         rc = hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
7548         if (rc)
7549                 goto clean4;
7550
7551         /* Monitor the controller for firmware lockups */
7552         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
7553         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
7554         schedule_delayed_work(&h->monitor_ctlr_work,
7555                                 h->heartbeat_sample_interval);
7556         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
7557         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
7558                                 h->heartbeat_sample_interval);
7559         return 0;
7560
7561 clean4:
7562         hpsa_free_sg_chain_blocks(h);
7563         hpsa_free_cmd_pool(h);
7564         hpsa_free_ioaccel1_cmd_and_bft(h);
7565         hpsa_free_ioaccel2_cmd_and_bft(h);
7566 clean2_and_free_irqs:
7567         hpsa_free_irqs(h);
7568 clean2:
7569         hpsa_free_pci_init(h);
7570 clean1:
7571         if (h->resubmit_wq)
7572                 destroy_workqueue(h->resubmit_wq);
7573         if (h->rescan_ctlr_wq)
7574                 destroy_workqueue(h->rescan_ctlr_wq);
7575         if (h->lockup_detected)
7576                 free_percpu(h->lockup_detected);
7577         kfree(h);
7578         return rc;
7579 }
7580
7581 static void hpsa_flush_cache(struct ctlr_info *h)
7582 {
7583         char *flush_buf;
7584         struct CommandList *c;
7585         int rc;
7586
7587         /* Don't bother trying to flush the cache if locked up */
7588         /* FIXME not necessary if do_simple_cmd does the check */
7589         if (unlikely(lockup_detected(h)))
7590                 return;
7591         flush_buf = kzalloc(4, GFP_KERNEL);
7592         if (!flush_buf)
7593                 return;
7594
7595         c = cmd_alloc(h);
7596
7597         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7598                 RAID_CTLR_LUNID, TYPE_CMD)) {
7599                 goto out;
7600         }
7601         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
7602                                         PCI_DMA_TODEVICE, NO_TIMEOUT);
7603         if (rc)
7604                 goto out;
7605         if (c->err_info->CommandStatus != 0)
7606 out:
7607                 dev_warn(&h->pdev->dev,
7608                         "error flushing cache on controller\n");
7609         cmd_free(h, c);
7610         kfree(flush_buf);
7611 }
7612
7613 static void hpsa_shutdown(struct pci_dev *pdev)
7614 {
7615         struct ctlr_info *h;
7616
7617         h = pci_get_drvdata(pdev);
7618         /* Turn board interrupts off  and send the flush cache command
7619          * sendcmd will turn off interrupt, and send the flush...
7620          * To write all data in the battery backed cache to disks
7621          */
7622         hpsa_flush_cache(h);
7623         h->access.set_intr_mask(h, HPSA_INTR_OFF);
7624         hpsa_free_irqs(h);
7625         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7626 }
7627
7628 static void hpsa_free_device_info(struct ctlr_info *h)
7629 {
7630         int i;
7631
7632         for (i = 0; i < h->ndevices; i++)
7633                 kfree(h->dev[i]);
7634 }
7635
7636 static void hpsa_remove_one(struct pci_dev *pdev)
7637 {
7638         struct ctlr_info *h;
7639         unsigned long flags;
7640
7641         if (pci_get_drvdata(pdev) == NULL) {
7642                 dev_err(&pdev->dev, "unable to remove device\n");
7643                 return;
7644         }
7645         h = pci_get_drvdata(pdev);
7646
7647         /* Get rid of any controller monitoring work items */
7648         spin_lock_irqsave(&h->lock, flags);
7649         h->remove_in_progress = 1;
7650         spin_unlock_irqrestore(&h->lock, flags);
7651         cancel_delayed_work_sync(&h->monitor_ctlr_work);
7652         cancel_delayed_work_sync(&h->rescan_ctlr_work);
7653         destroy_workqueue(h->rescan_ctlr_wq);
7654         destroy_workqueue(h->resubmit_wq);
7655         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
7656
7657         /* includes hpsa_free_irqs */
7658         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
7659         hpsa_shutdown(pdev);
7660
7661         hpsa_free_device_info(h);
7662         hpsa_free_sg_chain_blocks(h);
7663         kfree(h->blockFetchTable);              /* perf 2 */
7664         hpsa_free_reply_queues(h);              /* perf 1 */
7665         hpsa_free_ioaccel1_cmd_and_bft(h);      /* perf 1 */
7666         hpsa_free_ioaccel2_cmd_and_bft(h);      /* perf 1 */
7667         hpsa_free_cmd_pool(h);                  /* init_one 5 */
7668         kfree(h->hba_inquiry_data);
7669
7670         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
7671         hpsa_free_pci_init(h);
7672
7673         free_percpu(h->lockup_detected);
7674         kfree(h);
7675 }
7676
7677 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7678         __attribute__((unused)) pm_message_t state)
7679 {
7680         return -ENOSYS;
7681 }
7682
7683 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7684 {
7685         return -ENOSYS;
7686 }
7687
7688 static struct pci_driver hpsa_pci_driver = {
7689         .name = HPSA,
7690         .probe = hpsa_init_one,
7691         .remove = hpsa_remove_one,
7692         .id_table = hpsa_pci_device_id, /* id_table */
7693         .shutdown = hpsa_shutdown,
7694         .suspend = hpsa_suspend,
7695         .resume = hpsa_resume,
7696 };
7697
7698 /* Fill in bucket_map[], given nsgs (the max number of
7699  * scatter gather elements supported) and bucket[],
7700  * which is an array of 8 integers.  The bucket[] array
7701  * contains 8 different DMA transfer sizes (in 16
7702  * byte increments) which the controller uses to fetch
7703  * commands.  This function fills in bucket_map[], which
7704  * maps a given number of scatter gather elements to one of
7705  * the 8 DMA transfer sizes.  The point of it is to allow the
7706  * controller to only do as much DMA as needed to fetch the
7707  * command, with the DMA transfer size encoded in the lower
7708  * bits of the command address.
7709  */
7710 static void  calc_bucket_map(int bucket[], int num_buckets,
7711         int nsgs, int min_blocks, u32 *bucket_map)
7712 {
7713         int i, j, b, size;
7714
7715         /* Note, bucket_map must have nsgs+1 entries. */
7716         for (i = 0; i <= nsgs; i++) {
7717                 /* Compute size of a command with i SG entries */
7718                 size = i + min_blocks;
7719                 b = num_buckets; /* Assume the biggest bucket */
7720                 /* Find the bucket that is just big enough */
7721                 for (j = 0; j < num_buckets; j++) {
7722                         if (bucket[j] >= size) {
7723                                 b = j;
7724                                 break;
7725                         }
7726                 }
7727                 /* for a command with i SG entries, use bucket b. */
7728                 bucket_map[i] = b;
7729         }
7730 }
7731
7732 /* return -ENODEV or other reason on error, 0 on success */
7733 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7734 {
7735         int i;
7736         unsigned long register_value;
7737         unsigned long transMethod = CFGTBL_Trans_Performant |
7738                         (trans_support & CFGTBL_Trans_use_short_tags) |
7739                                 CFGTBL_Trans_enable_directed_msix |
7740                         (trans_support & (CFGTBL_Trans_io_accel1 |
7741                                 CFGTBL_Trans_io_accel2));
7742         struct access_method access = SA5_performant_access;
7743
7744         /* This is a bit complicated.  There are 8 registers on
7745          * the controller which we write to to tell it 8 different
7746          * sizes of commands which there may be.  It's a way of
7747          * reducing the DMA done to fetch each command.  Encoded into
7748          * each command's tag are 3 bits which communicate to the controller
7749          * which of the eight sizes that command fits within.  The size of
7750          * each command depends on how many scatter gather entries there are.
7751          * Each SG entry requires 16 bytes.  The eight registers are programmed
7752          * with the number of 16-byte blocks a command of that size requires.
7753          * The smallest command possible requires 5 such 16 byte blocks.
7754          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7755          * blocks.  Note, this only extends to the SG entries contained
7756          * within the command block, and does not extend to chained blocks
7757          * of SG elements.   bft[] contains the eight values we write to
7758          * the registers.  They are not evenly distributed, but have more
7759          * sizes for small commands, and fewer sizes for larger commands.
7760          */
7761         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7762 #define MIN_IOACCEL2_BFT_ENTRY 5
7763 #define HPSA_IOACCEL2_HEADER_SZ 4
7764         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7765                         13, 14, 15, 16, 17, 18, 19,
7766                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7767         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7768         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7769         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7770                                  16 * MIN_IOACCEL2_BFT_ENTRY);
7771         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7772         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7773         /*  5 = 1 s/g entry or 4k
7774          *  6 = 2 s/g entry or 8k
7775          *  8 = 4 s/g entry or 16k
7776          * 10 = 6 s/g entry or 24k
7777          */
7778
7779         /* If the controller supports either ioaccel method then
7780          * we can also use the RAID stack submit path that does not
7781          * perform the superfluous readl() after each command submission.
7782          */
7783         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
7784                 access = SA5_performant_access_no_read;
7785
7786         /* Controller spec: zero out this buffer. */
7787         for (i = 0; i < h->nreply_queues; i++)
7788                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
7789
7790         bft[7] = SG_ENTRIES_IN_CMD + 4;
7791         calc_bucket_map(bft, ARRAY_SIZE(bft),
7792                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7793         for (i = 0; i < 8; i++)
7794                 writel(bft[i], &h->transtable->BlockFetch[i]);
7795
7796         /* size of controller ring buffer */
7797         writel(h->max_commands, &h->transtable->RepQSize);
7798         writel(h->nreply_queues, &h->transtable->RepQCount);
7799         writel(0, &h->transtable->RepQCtrAddrLow32);
7800         writel(0, &h->transtable->RepQCtrAddrHigh32);
7801
7802         for (i = 0; i < h->nreply_queues; i++) {
7803                 writel(0, &h->transtable->RepQAddr[i].upper);
7804                 writel(h->reply_queue[i].busaddr,
7805                         &h->transtable->RepQAddr[i].lower);
7806         }
7807
7808         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7809         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7810         /*
7811          * enable outbound interrupt coalescing in accelerator mode;
7812          */
7813         if (trans_support & CFGTBL_Trans_io_accel1) {
7814                 access = SA5_ioaccel_mode1_access;
7815                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7816                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7817         } else {
7818                 if (trans_support & CFGTBL_Trans_io_accel2) {
7819                         access = SA5_ioaccel_mode2_access;
7820                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7821                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7822                 }
7823         }
7824         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7825         if (hpsa_wait_for_mode_change_ack(h)) {
7826                 dev_err(&h->pdev->dev,
7827                         "performant mode problem - doorbell timeout\n");
7828                 return -ENODEV;
7829         }
7830         register_value = readl(&(h->cfgtable->TransportActive));
7831         if (!(register_value & CFGTBL_Trans_Performant)) {
7832                 dev_err(&h->pdev->dev,
7833                         "performant mode problem - transport not active\n");
7834                 return -ENODEV;
7835         }
7836         /* Change the access methods to the performant access methods */
7837         h->access = access;
7838         h->transMethod = transMethod;
7839
7840         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7841                 (trans_support & CFGTBL_Trans_io_accel2)))
7842                 return 0;
7843
7844         if (trans_support & CFGTBL_Trans_io_accel1) {
7845                 /* Set up I/O accelerator mode */
7846                 for (i = 0; i < h->nreply_queues; i++) {
7847                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7848                         h->reply_queue[i].current_entry =
7849                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7850                 }
7851                 bft[7] = h->ioaccel_maxsg + 8;
7852                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7853                                 h->ioaccel1_blockFetchTable);
7854
7855                 /* initialize all reply queue entries to unused */
7856                 for (i = 0; i < h->nreply_queues; i++)
7857                         memset(h->reply_queue[i].head,
7858                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
7859                                 h->reply_queue_size);
7860
7861                 /* set all the constant fields in the accelerator command
7862                  * frames once at init time to save CPU cycles later.
7863                  */
7864                 for (i = 0; i < h->nr_cmds; i++) {
7865                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7866
7867                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
7868                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
7869                                         (i * sizeof(struct ErrorInfo)));
7870                         cp->err_info_len = sizeof(struct ErrorInfo);
7871                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
7872                         cp->host_context_flags =
7873                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
7874                         cp->timeout_sec = 0;
7875                         cp->ReplyQueue = 0;
7876                         cp->tag =
7877                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
7878                         cp->host_addr =
7879                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
7880                                         (i * sizeof(struct io_accel1_cmd)));
7881                 }
7882         } else if (trans_support & CFGTBL_Trans_io_accel2) {
7883                 u64 cfg_offset, cfg_base_addr_index;
7884                 u32 bft2_offset, cfg_base_addr;
7885                 int rc;
7886
7887                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7888                         &cfg_base_addr_index, &cfg_offset);
7889                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
7890                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
7891                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
7892                                 4, h->ioaccel2_blockFetchTable);
7893                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
7894                 BUILD_BUG_ON(offsetof(struct CfgTable,
7895                                 io_accel_request_size_offset) != 0xb8);
7896                 h->ioaccel2_bft2_regs =
7897                         remap_pci_mem(pci_resource_start(h->pdev,
7898                                         cfg_base_addr_index) +
7899                                         cfg_offset + bft2_offset,
7900                                         ARRAY_SIZE(bft2) *
7901                                         sizeof(*h->ioaccel2_bft2_regs));
7902                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
7903                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7904         }
7905         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7906         if (hpsa_wait_for_mode_change_ack(h)) {
7907                 dev_err(&h->pdev->dev,
7908                         "performant mode problem - enabling ioaccel mode\n");
7909                 return -ENODEV;
7910         }
7911         return 0;
7912 }
7913
7914 /* Free ioaccel1 mode command blocks and block fetch table */
7915 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
7916 {
7917         if (h->ioaccel_cmd_pool)
7918                 pci_free_consistent(h->pdev,
7919                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7920                         h->ioaccel_cmd_pool,
7921                         h->ioaccel_cmd_pool_dhandle);
7922         kfree(h->ioaccel1_blockFetchTable);
7923 }
7924
7925 /* Allocate ioaccel1 mode command blocks and block fetch table */
7926 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
7927 {
7928         h->ioaccel_maxsg =
7929                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7930         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
7931                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
7932
7933         /* Command structures must be aligned on a 128-byte boundary
7934          * because the 7 lower bits of the address are used by the
7935          * hardware.
7936          */
7937         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
7938                         IOACCEL1_COMMANDLIST_ALIGNMENT);
7939         h->ioaccel_cmd_pool =
7940                 pci_alloc_consistent(h->pdev,
7941                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7942                         &(h->ioaccel_cmd_pool_dhandle));
7943
7944         h->ioaccel1_blockFetchTable =
7945                 kmalloc(((h->ioaccel_maxsg + 1) *
7946                                 sizeof(u32)), GFP_KERNEL);
7947
7948         if ((h->ioaccel_cmd_pool == NULL) ||
7949                 (h->ioaccel1_blockFetchTable == NULL))
7950                 goto clean_up;
7951
7952         memset(h->ioaccel_cmd_pool, 0,
7953                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
7954         return 0;
7955
7956 clean_up:
7957         hpsa_free_ioaccel1_cmd_and_bft(h);
7958         return 1;
7959 }
7960
7961 /* Free ioaccel2 mode command blocks and block fetch table */
7962 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
7963 {
7964         hpsa_free_ioaccel2_sg_chain_blocks(h);
7965
7966         if (h->ioaccel2_cmd_pool)
7967                 pci_free_consistent(h->pdev,
7968                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7969                         h->ioaccel2_cmd_pool,
7970                         h->ioaccel2_cmd_pool_dhandle);
7971         kfree(h->ioaccel2_blockFetchTable);
7972 }
7973
7974 /* Allocate ioaccel2 mode command blocks and block fetch table */
7975 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
7976 {
7977         int rc;
7978
7979         /* Allocate ioaccel2 mode command blocks and block fetch table */
7980
7981         h->ioaccel_maxsg =
7982                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7983         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
7984                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
7985
7986         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
7987                         IOACCEL2_COMMANDLIST_ALIGNMENT);
7988         h->ioaccel2_cmd_pool =
7989                 pci_alloc_consistent(h->pdev,
7990                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7991                         &(h->ioaccel2_cmd_pool_dhandle));
7992
7993         h->ioaccel2_blockFetchTable =
7994                 kmalloc(((h->ioaccel_maxsg + 1) *
7995                                 sizeof(u32)), GFP_KERNEL);
7996
7997         if ((h->ioaccel2_cmd_pool == NULL) ||
7998                 (h->ioaccel2_blockFetchTable == NULL)) {
7999                 rc = -ENOMEM;
8000                 goto clean_up;
8001         }
8002
8003         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
8004         if (rc)
8005                 goto clean_up;
8006
8007         memset(h->ioaccel2_cmd_pool, 0,
8008                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
8009         return 0;
8010
8011 clean_up:
8012         hpsa_free_ioaccel2_cmd_and_bft(h);
8013         return rc;
8014 }
8015
8016 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
8017 {
8018         u32 trans_support;
8019         unsigned long transMethod = CFGTBL_Trans_Performant |
8020                                         CFGTBL_Trans_use_short_tags;
8021         int i;
8022
8023         if (hpsa_simple_mode)
8024                 return;
8025
8026         trans_support = readl(&(h->cfgtable->TransportSupport));
8027         if (!(trans_support & PERFORMANT_MODE))
8028                 return;
8029
8030         /* Check for I/O accelerator mode support */
8031         if (trans_support & CFGTBL_Trans_io_accel1) {
8032                 transMethod |= CFGTBL_Trans_io_accel1 |
8033                                 CFGTBL_Trans_enable_directed_msix;
8034                 if (hpsa_alloc_ioaccel1_cmd_and_bft(h))
8035                         goto clean_up;
8036         } else {
8037                 if (trans_support & CFGTBL_Trans_io_accel2) {
8038                                 transMethod |= CFGTBL_Trans_io_accel2 |
8039                                 CFGTBL_Trans_enable_directed_msix;
8040                 if (hpsa_alloc_ioaccel2_cmd_and_bft(h))
8041                         goto clean_up;
8042                 }
8043         }
8044
8045         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
8046         hpsa_get_max_perf_mode_cmds(h);
8047         /* Performant mode ring buffer and supporting data structures */
8048         h->reply_queue_size = h->max_commands * sizeof(u64);
8049
8050         for (i = 0; i < h->nreply_queues; i++) {
8051                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
8052                                                 h->reply_queue_size,
8053                                                 &(h->reply_queue[i].busaddr));
8054                 if (!h->reply_queue[i].head)
8055                         goto clean_up;
8056                 h->reply_queue[i].size = h->max_commands;
8057                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
8058                 h->reply_queue[i].current_entry = 0;
8059         }
8060
8061         /* Need a block fetch table for performant mode */
8062         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
8063                                 sizeof(u32)), GFP_KERNEL);
8064         if (!h->blockFetchTable)
8065                 goto clean_up;
8066
8067         hpsa_enter_performant_mode(h, trans_support);
8068         return;
8069
8070 clean_up:
8071         hpsa_free_reply_queues(h);
8072         kfree(h->blockFetchTable);
8073 }
8074
8075 static int is_accelerated_cmd(struct CommandList *c)
8076 {
8077         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
8078 }
8079
8080 static void hpsa_drain_accel_commands(struct ctlr_info *h)
8081 {
8082         struct CommandList *c = NULL;
8083         int i, accel_cmds_out;
8084         int refcount;
8085
8086         do { /* wait for all outstanding ioaccel commands to drain out */
8087                 accel_cmds_out = 0;
8088                 for (i = 0; i < h->nr_cmds; i++) {
8089                         c = h->cmd_pool + i;
8090                         refcount = atomic_inc_return(&c->refcount);
8091                         if (refcount > 1) /* Command is allocated */
8092                                 accel_cmds_out += is_accelerated_cmd(c);
8093                         cmd_free(h, c);
8094                 }
8095                 if (accel_cmds_out <= 0)
8096                         break;
8097                 msleep(100);
8098         } while (1);
8099 }
8100
8101 /*
8102  *  This is it.  Register the PCI driver information for the cards we control
8103  *  the OS will call our registered routines when it finds one of our cards.
8104  */
8105 static int __init hpsa_init(void)
8106 {
8107         return pci_register_driver(&hpsa_pci_driver);
8108 }
8109
8110 static void __exit hpsa_cleanup(void)
8111 {
8112         pci_unregister_driver(&hpsa_pci_driver);
8113 }
8114
8115 static void __attribute__((unused)) verify_offsets(void)
8116 {
8117 #define VERIFY_OFFSET(member, offset) \
8118         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
8119
8120         VERIFY_OFFSET(structure_size, 0);
8121         VERIFY_OFFSET(volume_blk_size, 4);
8122         VERIFY_OFFSET(volume_blk_cnt, 8);
8123         VERIFY_OFFSET(phys_blk_shift, 16);
8124         VERIFY_OFFSET(parity_rotation_shift, 17);
8125         VERIFY_OFFSET(strip_size, 18);
8126         VERIFY_OFFSET(disk_starting_blk, 20);
8127         VERIFY_OFFSET(disk_blk_cnt, 28);
8128         VERIFY_OFFSET(data_disks_per_row, 36);
8129         VERIFY_OFFSET(metadata_disks_per_row, 38);
8130         VERIFY_OFFSET(row_cnt, 40);
8131         VERIFY_OFFSET(layout_map_count, 42);
8132         VERIFY_OFFSET(flags, 44);
8133         VERIFY_OFFSET(dekindex, 46);
8134         /* VERIFY_OFFSET(reserved, 48 */
8135         VERIFY_OFFSET(data, 64);
8136
8137 #undef VERIFY_OFFSET
8138
8139 #define VERIFY_OFFSET(member, offset) \
8140         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
8141
8142         VERIFY_OFFSET(IU_type, 0);
8143         VERIFY_OFFSET(direction, 1);
8144         VERIFY_OFFSET(reply_queue, 2);
8145         /* VERIFY_OFFSET(reserved1, 3);  */
8146         VERIFY_OFFSET(scsi_nexus, 4);
8147         VERIFY_OFFSET(Tag, 8);
8148         VERIFY_OFFSET(cdb, 16);
8149         VERIFY_OFFSET(cciss_lun, 32);
8150         VERIFY_OFFSET(data_len, 40);
8151         VERIFY_OFFSET(cmd_priority_task_attr, 44);
8152         VERIFY_OFFSET(sg_count, 45);
8153         /* VERIFY_OFFSET(reserved3 */
8154         VERIFY_OFFSET(err_ptr, 48);
8155         VERIFY_OFFSET(err_len, 56);
8156         /* VERIFY_OFFSET(reserved4  */
8157         VERIFY_OFFSET(sg, 64);
8158
8159 #undef VERIFY_OFFSET
8160
8161 #define VERIFY_OFFSET(member, offset) \
8162         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
8163
8164         VERIFY_OFFSET(dev_handle, 0x00);
8165         VERIFY_OFFSET(reserved1, 0x02);
8166         VERIFY_OFFSET(function, 0x03);
8167         VERIFY_OFFSET(reserved2, 0x04);
8168         VERIFY_OFFSET(err_info, 0x0C);
8169         VERIFY_OFFSET(reserved3, 0x10);
8170         VERIFY_OFFSET(err_info_len, 0x12);
8171         VERIFY_OFFSET(reserved4, 0x13);
8172         VERIFY_OFFSET(sgl_offset, 0x14);
8173         VERIFY_OFFSET(reserved5, 0x15);
8174         VERIFY_OFFSET(transfer_len, 0x1C);
8175         VERIFY_OFFSET(reserved6, 0x20);
8176         VERIFY_OFFSET(io_flags, 0x24);
8177         VERIFY_OFFSET(reserved7, 0x26);
8178         VERIFY_OFFSET(LUN, 0x34);
8179         VERIFY_OFFSET(control, 0x3C);
8180         VERIFY_OFFSET(CDB, 0x40);
8181         VERIFY_OFFSET(reserved8, 0x50);
8182         VERIFY_OFFSET(host_context_flags, 0x60);
8183         VERIFY_OFFSET(timeout_sec, 0x62);
8184         VERIFY_OFFSET(ReplyQueue, 0x64);
8185         VERIFY_OFFSET(reserved9, 0x65);
8186         VERIFY_OFFSET(tag, 0x68);
8187         VERIFY_OFFSET(host_addr, 0x70);
8188         VERIFY_OFFSET(CISS_LUN, 0x78);
8189         VERIFY_OFFSET(SG, 0x78 + 8);
8190 #undef VERIFY_OFFSET
8191 }
8192
8193 module_init(hpsa_init);
8194 module_exit(hpsa_cleanup);