Merge branch 'x86-reboot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "3.4.0-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71         HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79                 "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83         "Use 'simple mode' rather than 'performant mode'");
84
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x334D},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1920},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1925},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
124         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
125                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
126         {0,}
127 };
128
129 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
130
131 /*  board_id = Subsystem Device ID & Vendor ID
132  *  product = Marketing Name for the board
133  *  access = Address of the struct of function pointers
134  */
135 static struct board_type products[] = {
136         {0x3241103C, "Smart Array P212", &SA5_access},
137         {0x3243103C, "Smart Array P410", &SA5_access},
138         {0x3245103C, "Smart Array P410i", &SA5_access},
139         {0x3247103C, "Smart Array P411", &SA5_access},
140         {0x3249103C, "Smart Array P812", &SA5_access},
141         {0x324A103C, "Smart Array P712m", &SA5_access},
142         {0x324B103C, "Smart Array P711m", &SA5_access},
143         {0x3350103C, "Smart Array P222", &SA5_access},
144         {0x3351103C, "Smart Array P420", &SA5_access},
145         {0x3352103C, "Smart Array P421", &SA5_access},
146         {0x3353103C, "Smart Array P822", &SA5_access},
147         {0x334D103C, "Smart Array P822se", &SA5_access},
148         {0x3354103C, "Smart Array P420i", &SA5_access},
149         {0x3355103C, "Smart Array P220i", &SA5_access},
150         {0x3356103C, "Smart Array P721m", &SA5_access},
151         {0x1921103C, "Smart Array P830i", &SA5_access},
152         {0x1922103C, "Smart Array P430", &SA5_access},
153         {0x1923103C, "Smart Array P431", &SA5_access},
154         {0x1924103C, "Smart Array P830", &SA5_access},
155         {0x1926103C, "Smart Array P731m", &SA5_access},
156         {0x1928103C, "Smart Array P230i", &SA5_access},
157         {0x1929103C, "Smart Array P530", &SA5_access},
158         {0x21BD103C, "Smart Array", &SA5_access},
159         {0x21BE103C, "Smart Array", &SA5_access},
160         {0x21BF103C, "Smart Array", &SA5_access},
161         {0x21C0103C, "Smart Array", &SA5_access},
162         {0x21C1103C, "Smart Array", &SA5_access},
163         {0x21C2103C, "Smart Array", &SA5_access},
164         {0x21C3103C, "Smart Array", &SA5_access},
165         {0x21C4103C, "Smart Array", &SA5_access},
166         {0x21C5103C, "Smart Array", &SA5_access},
167         {0x21C7103C, "Smart Array", &SA5_access},
168         {0x21C8103C, "Smart Array", &SA5_access},
169         {0x21C9103C, "Smart Array", &SA5_access},
170         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
171 };
172
173 static int number_of_controllers;
174
175 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
176 static spinlock_t lockup_detector_lock;
177 static struct task_struct *hpsa_lockup_detector;
178
179 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
180 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
181 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
182 static void start_io(struct ctlr_info *h);
183
184 #ifdef CONFIG_COMPAT
185 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
186 #endif
187
188 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
189 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
190 static struct CommandList *cmd_alloc(struct ctlr_info *h);
191 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
192 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
193         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
194         int cmd_type);
195
196 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
197 static void hpsa_scan_start(struct Scsi_Host *);
198 static int hpsa_scan_finished(struct Scsi_Host *sh,
199         unsigned long elapsed_time);
200 static int hpsa_change_queue_depth(struct scsi_device *sdev,
201         int qdepth, int reason);
202
203 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
204 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
205 static int hpsa_slave_alloc(struct scsi_device *sdev);
206 static void hpsa_slave_destroy(struct scsi_device *sdev);
207
208 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
209 static int check_for_unit_attention(struct ctlr_info *h,
210         struct CommandList *c);
211 static void check_ioctl_unit_attention(struct ctlr_info *h,
212         struct CommandList *c);
213 /* performant mode helper functions */
214 static void calc_bucket_map(int *bucket, int num_buckets,
215         int nsgs, int *bucket_map);
216 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
217 static inline u32 next_command(struct ctlr_info *h, u8 q);
218 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
219                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
220                                u64 *cfg_offset);
221 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
222                                     unsigned long *memory_bar);
223 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
224 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
225                                      int wait_for_ready);
226 static inline void finish_cmd(struct CommandList *c);
227 #define BOARD_NOT_READY 0
228 #define BOARD_READY 1
229
230 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
231 {
232         unsigned long *priv = shost_priv(sdev->host);
233         return (struct ctlr_info *) *priv;
234 }
235
236 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
237 {
238         unsigned long *priv = shost_priv(sh);
239         return (struct ctlr_info *) *priv;
240 }
241
242 static int check_for_unit_attention(struct ctlr_info *h,
243         struct CommandList *c)
244 {
245         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
246                 return 0;
247
248         switch (c->err_info->SenseInfo[12]) {
249         case STATE_CHANGED:
250                 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
251                         "detected, command retried\n", h->ctlr);
252                 break;
253         case LUN_FAILED:
254                 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
255                         "detected, action required\n", h->ctlr);
256                 break;
257         case REPORT_LUNS_CHANGED:
258                 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
259                         "changed, action required\n", h->ctlr);
260         /*
261          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
262          * target (array) devices.
263          */
264                 break;
265         case POWER_OR_RESET:
266                 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
267                         "or device reset detected\n", h->ctlr);
268                 break;
269         case UNIT_ATTENTION_CLEARED:
270                 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
271                     "cleared by another initiator\n", h->ctlr);
272                 break;
273         default:
274                 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
275                         "unit attention detected\n", h->ctlr);
276                 break;
277         }
278         return 1;
279 }
280
281 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
282 {
283         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
284                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
285                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
286                 return 0;
287         dev_warn(&h->pdev->dev, HPSA "device busy");
288         return 1;
289 }
290
291 static ssize_t host_store_rescan(struct device *dev,
292                                  struct device_attribute *attr,
293                                  const char *buf, size_t count)
294 {
295         struct ctlr_info *h;
296         struct Scsi_Host *shost = class_to_shost(dev);
297         h = shost_to_hba(shost);
298         hpsa_scan_start(h->scsi_host);
299         return count;
300 }
301
302 static ssize_t host_show_firmware_revision(struct device *dev,
303              struct device_attribute *attr, char *buf)
304 {
305         struct ctlr_info *h;
306         struct Scsi_Host *shost = class_to_shost(dev);
307         unsigned char *fwrev;
308
309         h = shost_to_hba(shost);
310         if (!h->hba_inquiry_data)
311                 return 0;
312         fwrev = &h->hba_inquiry_data[32];
313         return snprintf(buf, 20, "%c%c%c%c\n",
314                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
315 }
316
317 static ssize_t host_show_commands_outstanding(struct device *dev,
318              struct device_attribute *attr, char *buf)
319 {
320         struct Scsi_Host *shost = class_to_shost(dev);
321         struct ctlr_info *h = shost_to_hba(shost);
322
323         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
324 }
325
326 static ssize_t host_show_transport_mode(struct device *dev,
327         struct device_attribute *attr, char *buf)
328 {
329         struct ctlr_info *h;
330         struct Scsi_Host *shost = class_to_shost(dev);
331
332         h = shost_to_hba(shost);
333         return snprintf(buf, 20, "%s\n",
334                 h->transMethod & CFGTBL_Trans_Performant ?
335                         "performant" : "simple");
336 }
337
338 /* List of controllers which cannot be hard reset on kexec with reset_devices */
339 static u32 unresettable_controller[] = {
340         0x324a103C, /* Smart Array P712m */
341         0x324b103C, /* SmartArray P711m */
342         0x3223103C, /* Smart Array P800 */
343         0x3234103C, /* Smart Array P400 */
344         0x3235103C, /* Smart Array P400i */
345         0x3211103C, /* Smart Array E200i */
346         0x3212103C, /* Smart Array E200 */
347         0x3213103C, /* Smart Array E200i */
348         0x3214103C, /* Smart Array E200i */
349         0x3215103C, /* Smart Array E200i */
350         0x3237103C, /* Smart Array E500 */
351         0x323D103C, /* Smart Array P700m */
352         0x40800E11, /* Smart Array 5i */
353         0x409C0E11, /* Smart Array 6400 */
354         0x409D0E11, /* Smart Array 6400 EM */
355         0x40700E11, /* Smart Array 5300 */
356         0x40820E11, /* Smart Array 532 */
357         0x40830E11, /* Smart Array 5312 */
358         0x409A0E11, /* Smart Array 641 */
359         0x409B0E11, /* Smart Array 642 */
360         0x40910E11, /* Smart Array 6i */
361 };
362
363 /* List of controllers which cannot even be soft reset */
364 static u32 soft_unresettable_controller[] = {
365         0x40800E11, /* Smart Array 5i */
366         0x40700E11, /* Smart Array 5300 */
367         0x40820E11, /* Smart Array 532 */
368         0x40830E11, /* Smart Array 5312 */
369         0x409A0E11, /* Smart Array 641 */
370         0x409B0E11, /* Smart Array 642 */
371         0x40910E11, /* Smart Array 6i */
372         /* Exclude 640x boards.  These are two pci devices in one slot
373          * which share a battery backed cache module.  One controls the
374          * cache, the other accesses the cache through the one that controls
375          * it.  If we reset the one controlling the cache, the other will
376          * likely not be happy.  Just forbid resetting this conjoined mess.
377          * The 640x isn't really supported by hpsa anyway.
378          */
379         0x409C0E11, /* Smart Array 6400 */
380         0x409D0E11, /* Smart Array 6400 EM */
381 };
382
383 static int ctlr_is_hard_resettable(u32 board_id)
384 {
385         int i;
386
387         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
388                 if (unresettable_controller[i] == board_id)
389                         return 0;
390         return 1;
391 }
392
393 static int ctlr_is_soft_resettable(u32 board_id)
394 {
395         int i;
396
397         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
398                 if (soft_unresettable_controller[i] == board_id)
399                         return 0;
400         return 1;
401 }
402
403 static int ctlr_is_resettable(u32 board_id)
404 {
405         return ctlr_is_hard_resettable(board_id) ||
406                 ctlr_is_soft_resettable(board_id);
407 }
408
409 static ssize_t host_show_resettable(struct device *dev,
410         struct device_attribute *attr, char *buf)
411 {
412         struct ctlr_info *h;
413         struct Scsi_Host *shost = class_to_shost(dev);
414
415         h = shost_to_hba(shost);
416         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
417 }
418
419 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
420 {
421         return (scsi3addr[3] & 0xC0) == 0x40;
422 }
423
424 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
425         "1(ADM)", "UNKNOWN"
426 };
427 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
428
429 static ssize_t raid_level_show(struct device *dev,
430              struct device_attribute *attr, char *buf)
431 {
432         ssize_t l = 0;
433         unsigned char rlevel;
434         struct ctlr_info *h;
435         struct scsi_device *sdev;
436         struct hpsa_scsi_dev_t *hdev;
437         unsigned long flags;
438
439         sdev = to_scsi_device(dev);
440         h = sdev_to_hba(sdev);
441         spin_lock_irqsave(&h->lock, flags);
442         hdev = sdev->hostdata;
443         if (!hdev) {
444                 spin_unlock_irqrestore(&h->lock, flags);
445                 return -ENODEV;
446         }
447
448         /* Is this even a logical drive? */
449         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
450                 spin_unlock_irqrestore(&h->lock, flags);
451                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
452                 return l;
453         }
454
455         rlevel = hdev->raid_level;
456         spin_unlock_irqrestore(&h->lock, flags);
457         if (rlevel > RAID_UNKNOWN)
458                 rlevel = RAID_UNKNOWN;
459         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
460         return l;
461 }
462
463 static ssize_t lunid_show(struct device *dev,
464              struct device_attribute *attr, char *buf)
465 {
466         struct ctlr_info *h;
467         struct scsi_device *sdev;
468         struct hpsa_scsi_dev_t *hdev;
469         unsigned long flags;
470         unsigned char lunid[8];
471
472         sdev = to_scsi_device(dev);
473         h = sdev_to_hba(sdev);
474         spin_lock_irqsave(&h->lock, flags);
475         hdev = sdev->hostdata;
476         if (!hdev) {
477                 spin_unlock_irqrestore(&h->lock, flags);
478                 return -ENODEV;
479         }
480         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
481         spin_unlock_irqrestore(&h->lock, flags);
482         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
483                 lunid[0], lunid[1], lunid[2], lunid[3],
484                 lunid[4], lunid[5], lunid[6], lunid[7]);
485 }
486
487 static ssize_t unique_id_show(struct device *dev,
488              struct device_attribute *attr, char *buf)
489 {
490         struct ctlr_info *h;
491         struct scsi_device *sdev;
492         struct hpsa_scsi_dev_t *hdev;
493         unsigned long flags;
494         unsigned char sn[16];
495
496         sdev = to_scsi_device(dev);
497         h = sdev_to_hba(sdev);
498         spin_lock_irqsave(&h->lock, flags);
499         hdev = sdev->hostdata;
500         if (!hdev) {
501                 spin_unlock_irqrestore(&h->lock, flags);
502                 return -ENODEV;
503         }
504         memcpy(sn, hdev->device_id, sizeof(sn));
505         spin_unlock_irqrestore(&h->lock, flags);
506         return snprintf(buf, 16 * 2 + 2,
507                         "%02X%02X%02X%02X%02X%02X%02X%02X"
508                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
509                         sn[0], sn[1], sn[2], sn[3],
510                         sn[4], sn[5], sn[6], sn[7],
511                         sn[8], sn[9], sn[10], sn[11],
512                         sn[12], sn[13], sn[14], sn[15]);
513 }
514
515 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
516 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
517 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
518 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
519 static DEVICE_ATTR(firmware_revision, S_IRUGO,
520         host_show_firmware_revision, NULL);
521 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
522         host_show_commands_outstanding, NULL);
523 static DEVICE_ATTR(transport_mode, S_IRUGO,
524         host_show_transport_mode, NULL);
525 static DEVICE_ATTR(resettable, S_IRUGO,
526         host_show_resettable, NULL);
527
528 static struct device_attribute *hpsa_sdev_attrs[] = {
529         &dev_attr_raid_level,
530         &dev_attr_lunid,
531         &dev_attr_unique_id,
532         NULL,
533 };
534
535 static struct device_attribute *hpsa_shost_attrs[] = {
536         &dev_attr_rescan,
537         &dev_attr_firmware_revision,
538         &dev_attr_commands_outstanding,
539         &dev_attr_transport_mode,
540         &dev_attr_resettable,
541         NULL,
542 };
543
544 static struct scsi_host_template hpsa_driver_template = {
545         .module                 = THIS_MODULE,
546         .name                   = HPSA,
547         .proc_name              = HPSA,
548         .queuecommand           = hpsa_scsi_queue_command,
549         .scan_start             = hpsa_scan_start,
550         .scan_finished          = hpsa_scan_finished,
551         .change_queue_depth     = hpsa_change_queue_depth,
552         .this_id                = -1,
553         .use_clustering         = ENABLE_CLUSTERING,
554         .eh_abort_handler       = hpsa_eh_abort_handler,
555         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
556         .ioctl                  = hpsa_ioctl,
557         .slave_alloc            = hpsa_slave_alloc,
558         .slave_destroy          = hpsa_slave_destroy,
559 #ifdef CONFIG_COMPAT
560         .compat_ioctl           = hpsa_compat_ioctl,
561 #endif
562         .sdev_attrs = hpsa_sdev_attrs,
563         .shost_attrs = hpsa_shost_attrs,
564         .max_sectors = 8192,
565 };
566
567
568 /* Enqueuing and dequeuing functions for cmdlists. */
569 static inline void addQ(struct list_head *list, struct CommandList *c)
570 {
571         list_add_tail(&c->list, list);
572 }
573
574 static inline u32 next_command(struct ctlr_info *h, u8 q)
575 {
576         u32 a;
577         struct reply_pool *rq = &h->reply_queue[q];
578         unsigned long flags;
579
580         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
581                 return h->access.command_completed(h, q);
582
583         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
584                 a = rq->head[rq->current_entry];
585                 rq->current_entry++;
586                 spin_lock_irqsave(&h->lock, flags);
587                 h->commands_outstanding--;
588                 spin_unlock_irqrestore(&h->lock, flags);
589         } else {
590                 a = FIFO_EMPTY;
591         }
592         /* Check for wraparound */
593         if (rq->current_entry == h->max_commands) {
594                 rq->current_entry = 0;
595                 rq->wraparound ^= 1;
596         }
597         return a;
598 }
599
600 /* set_performant_mode: Modify the tag for cciss performant
601  * set bit 0 for pull model, bits 3-1 for block fetch
602  * register number
603  */
604 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
605 {
606         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
607                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
608                 if (likely(h->msix_vector))
609                         c->Header.ReplyQueue =
610                                 raw_smp_processor_id() % h->nreply_queues;
611         }
612 }
613
614 static int is_firmware_flash_cmd(u8 *cdb)
615 {
616         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
617 }
618
619 /*
620  * During firmware flash, the heartbeat register may not update as frequently
621  * as it should.  So we dial down lockup detection during firmware flash. and
622  * dial it back up when firmware flash completes.
623  */
624 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
625 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
626 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
627                 struct CommandList *c)
628 {
629         if (!is_firmware_flash_cmd(c->Request.CDB))
630                 return;
631         atomic_inc(&h->firmware_flash_in_progress);
632         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
633 }
634
635 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
636                 struct CommandList *c)
637 {
638         if (is_firmware_flash_cmd(c->Request.CDB) &&
639                 atomic_dec_and_test(&h->firmware_flash_in_progress))
640                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
641 }
642
643 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
644         struct CommandList *c)
645 {
646         unsigned long flags;
647
648         set_performant_mode(h, c);
649         dial_down_lockup_detection_during_fw_flash(h, c);
650         spin_lock_irqsave(&h->lock, flags);
651         addQ(&h->reqQ, c);
652         h->Qdepth++;
653         spin_unlock_irqrestore(&h->lock, flags);
654         start_io(h);
655 }
656
657 static inline void removeQ(struct CommandList *c)
658 {
659         if (WARN_ON(list_empty(&c->list)))
660                 return;
661         list_del_init(&c->list);
662 }
663
664 static inline int is_hba_lunid(unsigned char scsi3addr[])
665 {
666         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
667 }
668
669 static inline int is_scsi_rev_5(struct ctlr_info *h)
670 {
671         if (!h->hba_inquiry_data)
672                 return 0;
673         if ((h->hba_inquiry_data[2] & 0x07) == 5)
674                 return 1;
675         return 0;
676 }
677
678 static int hpsa_find_target_lun(struct ctlr_info *h,
679         unsigned char scsi3addr[], int bus, int *target, int *lun)
680 {
681         /* finds an unused bus, target, lun for a new physical device
682          * assumes h->devlock is held
683          */
684         int i, found = 0;
685         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
686
687         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
688
689         for (i = 0; i < h->ndevices; i++) {
690                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
691                         __set_bit(h->dev[i]->target, lun_taken);
692         }
693
694         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
695         if (i < HPSA_MAX_DEVICES) {
696                 /* *bus = 1; */
697                 *target = i;
698                 *lun = 0;
699                 found = 1;
700         }
701         return !found;
702 }
703
704 /* Add an entry into h->dev[] array. */
705 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
706                 struct hpsa_scsi_dev_t *device,
707                 struct hpsa_scsi_dev_t *added[], int *nadded)
708 {
709         /* assumes h->devlock is held */
710         int n = h->ndevices;
711         int i;
712         unsigned char addr1[8], addr2[8];
713         struct hpsa_scsi_dev_t *sd;
714
715         if (n >= HPSA_MAX_DEVICES) {
716                 dev_err(&h->pdev->dev, "too many devices, some will be "
717                         "inaccessible.\n");
718                 return -1;
719         }
720
721         /* physical devices do not have lun or target assigned until now. */
722         if (device->lun != -1)
723                 /* Logical device, lun is already assigned. */
724                 goto lun_assigned;
725
726         /* If this device a non-zero lun of a multi-lun device
727          * byte 4 of the 8-byte LUN addr will contain the logical
728          * unit no, zero otherise.
729          */
730         if (device->scsi3addr[4] == 0) {
731                 /* This is not a non-zero lun of a multi-lun device */
732                 if (hpsa_find_target_lun(h, device->scsi3addr,
733                         device->bus, &device->target, &device->lun) != 0)
734                         return -1;
735                 goto lun_assigned;
736         }
737
738         /* This is a non-zero lun of a multi-lun device.
739          * Search through our list and find the device which
740          * has the same 8 byte LUN address, excepting byte 4.
741          * Assign the same bus and target for this new LUN.
742          * Use the logical unit number from the firmware.
743          */
744         memcpy(addr1, device->scsi3addr, 8);
745         addr1[4] = 0;
746         for (i = 0; i < n; i++) {
747                 sd = h->dev[i];
748                 memcpy(addr2, sd->scsi3addr, 8);
749                 addr2[4] = 0;
750                 /* differ only in byte 4? */
751                 if (memcmp(addr1, addr2, 8) == 0) {
752                         device->bus = sd->bus;
753                         device->target = sd->target;
754                         device->lun = device->scsi3addr[4];
755                         break;
756                 }
757         }
758         if (device->lun == -1) {
759                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
760                         " suspect firmware bug or unsupported hardware "
761                         "configuration.\n");
762                         return -1;
763         }
764
765 lun_assigned:
766
767         h->dev[n] = device;
768         h->ndevices++;
769         added[*nadded] = device;
770         (*nadded)++;
771
772         /* initially, (before registering with scsi layer) we don't
773          * know our hostno and we don't want to print anything first
774          * time anyway (the scsi layer's inquiries will show that info)
775          */
776         /* if (hostno != -1) */
777                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
778                         scsi_device_type(device->devtype), hostno,
779                         device->bus, device->target, device->lun);
780         return 0;
781 }
782
783 /* Update an entry in h->dev[] array. */
784 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
785         int entry, struct hpsa_scsi_dev_t *new_entry)
786 {
787         /* assumes h->devlock is held */
788         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
789
790         /* Raid level changed. */
791         h->dev[entry]->raid_level = new_entry->raid_level;
792         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
793                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
794                 new_entry->target, new_entry->lun);
795 }
796
797 /* Replace an entry from h->dev[] array. */
798 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
799         int entry, struct hpsa_scsi_dev_t *new_entry,
800         struct hpsa_scsi_dev_t *added[], int *nadded,
801         struct hpsa_scsi_dev_t *removed[], int *nremoved)
802 {
803         /* assumes h->devlock is held */
804         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
805         removed[*nremoved] = h->dev[entry];
806         (*nremoved)++;
807
808         /*
809          * New physical devices won't have target/lun assigned yet
810          * so we need to preserve the values in the slot we are replacing.
811          */
812         if (new_entry->target == -1) {
813                 new_entry->target = h->dev[entry]->target;
814                 new_entry->lun = h->dev[entry]->lun;
815         }
816
817         h->dev[entry] = new_entry;
818         added[*nadded] = new_entry;
819         (*nadded)++;
820         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
821                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
822                         new_entry->target, new_entry->lun);
823 }
824
825 /* Remove an entry from h->dev[] array. */
826 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
827         struct hpsa_scsi_dev_t *removed[], int *nremoved)
828 {
829         /* assumes h->devlock is held */
830         int i;
831         struct hpsa_scsi_dev_t *sd;
832
833         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
834
835         sd = h->dev[entry];
836         removed[*nremoved] = h->dev[entry];
837         (*nremoved)++;
838
839         for (i = entry; i < h->ndevices-1; i++)
840                 h->dev[i] = h->dev[i+1];
841         h->ndevices--;
842         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
843                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
844                 sd->lun);
845 }
846
847 #define SCSI3ADDR_EQ(a, b) ( \
848         (a)[7] == (b)[7] && \
849         (a)[6] == (b)[6] && \
850         (a)[5] == (b)[5] && \
851         (a)[4] == (b)[4] && \
852         (a)[3] == (b)[3] && \
853         (a)[2] == (b)[2] && \
854         (a)[1] == (b)[1] && \
855         (a)[0] == (b)[0])
856
857 static void fixup_botched_add(struct ctlr_info *h,
858         struct hpsa_scsi_dev_t *added)
859 {
860         /* called when scsi_add_device fails in order to re-adjust
861          * h->dev[] to match the mid layer's view.
862          */
863         unsigned long flags;
864         int i, j;
865
866         spin_lock_irqsave(&h->lock, flags);
867         for (i = 0; i < h->ndevices; i++) {
868                 if (h->dev[i] == added) {
869                         for (j = i; j < h->ndevices-1; j++)
870                                 h->dev[j] = h->dev[j+1];
871                         h->ndevices--;
872                         break;
873                 }
874         }
875         spin_unlock_irqrestore(&h->lock, flags);
876         kfree(added);
877 }
878
879 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
880         struct hpsa_scsi_dev_t *dev2)
881 {
882         /* we compare everything except lun and target as these
883          * are not yet assigned.  Compare parts likely
884          * to differ first
885          */
886         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
887                 sizeof(dev1->scsi3addr)) != 0)
888                 return 0;
889         if (memcmp(dev1->device_id, dev2->device_id,
890                 sizeof(dev1->device_id)) != 0)
891                 return 0;
892         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
893                 return 0;
894         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
895                 return 0;
896         if (dev1->devtype != dev2->devtype)
897                 return 0;
898         if (dev1->bus != dev2->bus)
899                 return 0;
900         return 1;
901 }
902
903 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
904         struct hpsa_scsi_dev_t *dev2)
905 {
906         /* Device attributes that can change, but don't mean
907          * that the device is a different device, nor that the OS
908          * needs to be told anything about the change.
909          */
910         if (dev1->raid_level != dev2->raid_level)
911                 return 1;
912         return 0;
913 }
914
915 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
916  * and return needle location in *index.  If scsi3addr matches, but not
917  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
918  * location in *index.
919  * In the case of a minor device attribute change, such as RAID level, just
920  * return DEVICE_UPDATED, along with the updated device's location in index.
921  * If needle not found, return DEVICE_NOT_FOUND.
922  */
923 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
924         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
925         int *index)
926 {
927         int i;
928 #define DEVICE_NOT_FOUND 0
929 #define DEVICE_CHANGED 1
930 #define DEVICE_SAME 2
931 #define DEVICE_UPDATED 3
932         for (i = 0; i < haystack_size; i++) {
933                 if (haystack[i] == NULL) /* previously removed. */
934                         continue;
935                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
936                         *index = i;
937                         if (device_is_the_same(needle, haystack[i])) {
938                                 if (device_updated(needle, haystack[i]))
939                                         return DEVICE_UPDATED;
940                                 return DEVICE_SAME;
941                         } else {
942                                 return DEVICE_CHANGED;
943                         }
944                 }
945         }
946         *index = -1;
947         return DEVICE_NOT_FOUND;
948 }
949
950 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
951         struct hpsa_scsi_dev_t *sd[], int nsds)
952 {
953         /* sd contains scsi3 addresses and devtypes, and inquiry
954          * data.  This function takes what's in sd to be the current
955          * reality and updates h->dev[] to reflect that reality.
956          */
957         int i, entry, device_change, changes = 0;
958         struct hpsa_scsi_dev_t *csd;
959         unsigned long flags;
960         struct hpsa_scsi_dev_t **added, **removed;
961         int nadded, nremoved;
962         struct Scsi_Host *sh = NULL;
963
964         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
965         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
966
967         if (!added || !removed) {
968                 dev_warn(&h->pdev->dev, "out of memory in "
969                         "adjust_hpsa_scsi_table\n");
970                 goto free_and_out;
971         }
972
973         spin_lock_irqsave(&h->devlock, flags);
974
975         /* find any devices in h->dev[] that are not in
976          * sd[] and remove them from h->dev[], and for any
977          * devices which have changed, remove the old device
978          * info and add the new device info.
979          * If minor device attributes change, just update
980          * the existing device structure.
981          */
982         i = 0;
983         nremoved = 0;
984         nadded = 0;
985         while (i < h->ndevices) {
986                 csd = h->dev[i];
987                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
988                 if (device_change == DEVICE_NOT_FOUND) {
989                         changes++;
990                         hpsa_scsi_remove_entry(h, hostno, i,
991                                 removed, &nremoved);
992                         continue; /* remove ^^^, hence i not incremented */
993                 } else if (device_change == DEVICE_CHANGED) {
994                         changes++;
995                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
996                                 added, &nadded, removed, &nremoved);
997                         /* Set it to NULL to prevent it from being freed
998                          * at the bottom of hpsa_update_scsi_devices()
999                          */
1000                         sd[entry] = NULL;
1001                 } else if (device_change == DEVICE_UPDATED) {
1002                         hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1003                 }
1004                 i++;
1005         }
1006
1007         /* Now, make sure every device listed in sd[] is also
1008          * listed in h->dev[], adding them if they aren't found
1009          */
1010
1011         for (i = 0; i < nsds; i++) {
1012                 if (!sd[i]) /* if already added above. */
1013                         continue;
1014                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1015                                         h->ndevices, &entry);
1016                 if (device_change == DEVICE_NOT_FOUND) {
1017                         changes++;
1018                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
1019                                 added, &nadded) != 0)
1020                                 break;
1021                         sd[i] = NULL; /* prevent from being freed later. */
1022                 } else if (device_change == DEVICE_CHANGED) {
1023                         /* should never happen... */
1024                         changes++;
1025                         dev_warn(&h->pdev->dev,
1026                                 "device unexpectedly changed.\n");
1027                         /* but if it does happen, we just ignore that device */
1028                 }
1029         }
1030         spin_unlock_irqrestore(&h->devlock, flags);
1031
1032         /* Don't notify scsi mid layer of any changes the first time through
1033          * (or if there are no changes) scsi_scan_host will do it later the
1034          * first time through.
1035          */
1036         if (hostno == -1 || !changes)
1037                 goto free_and_out;
1038
1039         sh = h->scsi_host;
1040         /* Notify scsi mid layer of any removed devices */
1041         for (i = 0; i < nremoved; i++) {
1042                 struct scsi_device *sdev =
1043                         scsi_device_lookup(sh, removed[i]->bus,
1044                                 removed[i]->target, removed[i]->lun);
1045                 if (sdev != NULL) {
1046                         scsi_remove_device(sdev);
1047                         scsi_device_put(sdev);
1048                 } else {
1049                         /* We don't expect to get here.
1050                          * future cmds to this device will get selection
1051                          * timeout as if the device was gone.
1052                          */
1053                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1054                                 " for removal.", hostno, removed[i]->bus,
1055                                 removed[i]->target, removed[i]->lun);
1056                 }
1057                 kfree(removed[i]);
1058                 removed[i] = NULL;
1059         }
1060
1061         /* Notify scsi mid layer of any added devices */
1062         for (i = 0; i < nadded; i++) {
1063                 if (scsi_add_device(sh, added[i]->bus,
1064                         added[i]->target, added[i]->lun) == 0)
1065                         continue;
1066                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1067                         "device not added.\n", hostno, added[i]->bus,
1068                         added[i]->target, added[i]->lun);
1069                 /* now we have to remove it from h->dev,
1070                  * since it didn't get added to scsi mid layer
1071                  */
1072                 fixup_botched_add(h, added[i]);
1073         }
1074
1075 free_and_out:
1076         kfree(added);
1077         kfree(removed);
1078 }
1079
1080 /*
1081  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1082  * Assume's h->devlock is held.
1083  */
1084 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1085         int bus, int target, int lun)
1086 {
1087         int i;
1088         struct hpsa_scsi_dev_t *sd;
1089
1090         for (i = 0; i < h->ndevices; i++) {
1091                 sd = h->dev[i];
1092                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1093                         return sd;
1094         }
1095         return NULL;
1096 }
1097
1098 /* link sdev->hostdata to our per-device structure. */
1099 static int hpsa_slave_alloc(struct scsi_device *sdev)
1100 {
1101         struct hpsa_scsi_dev_t *sd;
1102         unsigned long flags;
1103         struct ctlr_info *h;
1104
1105         h = sdev_to_hba(sdev);
1106         spin_lock_irqsave(&h->devlock, flags);
1107         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1108                 sdev_id(sdev), sdev->lun);
1109         if (sd != NULL)
1110                 sdev->hostdata = sd;
1111         spin_unlock_irqrestore(&h->devlock, flags);
1112         return 0;
1113 }
1114
1115 static void hpsa_slave_destroy(struct scsi_device *sdev)
1116 {
1117         /* nothing to do. */
1118 }
1119
1120 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1121 {
1122         int i;
1123
1124         if (!h->cmd_sg_list)
1125                 return;
1126         for (i = 0; i < h->nr_cmds; i++) {
1127                 kfree(h->cmd_sg_list[i]);
1128                 h->cmd_sg_list[i] = NULL;
1129         }
1130         kfree(h->cmd_sg_list);
1131         h->cmd_sg_list = NULL;
1132 }
1133
1134 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1135 {
1136         int i;
1137
1138         if (h->chainsize <= 0)
1139                 return 0;
1140
1141         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1142                                 GFP_KERNEL);
1143         if (!h->cmd_sg_list)
1144                 return -ENOMEM;
1145         for (i = 0; i < h->nr_cmds; i++) {
1146                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1147                                                 h->chainsize, GFP_KERNEL);
1148                 if (!h->cmd_sg_list[i])
1149                         goto clean;
1150         }
1151         return 0;
1152
1153 clean:
1154         hpsa_free_sg_chain_blocks(h);
1155         return -ENOMEM;
1156 }
1157
1158 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1159         struct CommandList *c)
1160 {
1161         struct SGDescriptor *chain_sg, *chain_block;
1162         u64 temp64;
1163
1164         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1165         chain_block = h->cmd_sg_list[c->cmdindex];
1166         chain_sg->Ext = HPSA_SG_CHAIN;
1167         chain_sg->Len = sizeof(*chain_sg) *
1168                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1169         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1170                                 PCI_DMA_TODEVICE);
1171         if (dma_mapping_error(&h->pdev->dev, temp64)) {
1172                 /* prevent subsequent unmapping */
1173                 chain_sg->Addr.lower = 0;
1174                 chain_sg->Addr.upper = 0;
1175                 return -1;
1176         }
1177         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1178         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1179         return 0;
1180 }
1181
1182 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1183         struct CommandList *c)
1184 {
1185         struct SGDescriptor *chain_sg;
1186         union u64bit temp64;
1187
1188         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1189                 return;
1190
1191         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1192         temp64.val32.lower = chain_sg->Addr.lower;
1193         temp64.val32.upper = chain_sg->Addr.upper;
1194         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1195 }
1196
1197 static void complete_scsi_command(struct CommandList *cp)
1198 {
1199         struct scsi_cmnd *cmd;
1200         struct ctlr_info *h;
1201         struct ErrorInfo *ei;
1202
1203         unsigned char sense_key;
1204         unsigned char asc;      /* additional sense code */
1205         unsigned char ascq;     /* additional sense code qualifier */
1206         unsigned long sense_data_size;
1207
1208         ei = cp->err_info;
1209         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1210         h = cp->h;
1211
1212         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1213         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1214                 hpsa_unmap_sg_chain_block(h, cp);
1215
1216         cmd->result = (DID_OK << 16);           /* host byte */
1217         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1218         cmd->result |= ei->ScsiStatus;
1219
1220         /* copy the sense data whether we need to or not. */
1221         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1222                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1223         else
1224                 sense_data_size = sizeof(ei->SenseInfo);
1225         if (ei->SenseLen < sense_data_size)
1226                 sense_data_size = ei->SenseLen;
1227
1228         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1229         scsi_set_resid(cmd, ei->ResidualCnt);
1230
1231         if (ei->CommandStatus == 0) {
1232                 cmd_free(h, cp);
1233                 cmd->scsi_done(cmd);
1234                 return;
1235         }
1236
1237         /* an error has occurred */
1238         switch (ei->CommandStatus) {
1239
1240         case CMD_TARGET_STATUS:
1241                 if (ei->ScsiStatus) {
1242                         /* Get sense key */
1243                         sense_key = 0xf & ei->SenseInfo[2];
1244                         /* Get additional sense code */
1245                         asc = ei->SenseInfo[12];
1246                         /* Get addition sense code qualifier */
1247                         ascq = ei->SenseInfo[13];
1248                 }
1249
1250                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1251                         if (check_for_unit_attention(h, cp)) {
1252                                 cmd->result = DID_SOFT_ERROR << 16;
1253                                 break;
1254                         }
1255                         if (sense_key == ILLEGAL_REQUEST) {
1256                                 /*
1257                                  * SCSI REPORT_LUNS is commonly unsupported on
1258                                  * Smart Array.  Suppress noisy complaint.
1259                                  */
1260                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1261                                         break;
1262
1263                                 /* If ASC/ASCQ indicate Logical Unit
1264                                  * Not Supported condition,
1265                                  */
1266                                 if ((asc == 0x25) && (ascq == 0x0)) {
1267                                         dev_warn(&h->pdev->dev, "cp %p "
1268                                                 "has check condition\n", cp);
1269                                         break;
1270                                 }
1271                         }
1272
1273                         if (sense_key == NOT_READY) {
1274                                 /* If Sense is Not Ready, Logical Unit
1275                                  * Not ready, Manual Intervention
1276                                  * required
1277                                  */
1278                                 if ((asc == 0x04) && (ascq == 0x03)) {
1279                                         dev_warn(&h->pdev->dev, "cp %p "
1280                                                 "has check condition: unit "
1281                                                 "not ready, manual "
1282                                                 "intervention required\n", cp);
1283                                         break;
1284                                 }
1285                         }
1286                         if (sense_key == ABORTED_COMMAND) {
1287                                 /* Aborted command is retryable */
1288                                 dev_warn(&h->pdev->dev, "cp %p "
1289                                         "has check condition: aborted command: "
1290                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1291                                         cp, asc, ascq);
1292                                 cmd->result = DID_SOFT_ERROR << 16;
1293                                 break;
1294                         }
1295                         /* Must be some other type of check condition */
1296                         dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1297                                         "unknown type: "
1298                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1299                                         "Returning result: 0x%x, "
1300                                         "cmd=[%02x %02x %02x %02x %02x "
1301                                         "%02x %02x %02x %02x %02x %02x "
1302                                         "%02x %02x %02x %02x %02x]\n",
1303                                         cp, sense_key, asc, ascq,
1304                                         cmd->result,
1305                                         cmd->cmnd[0], cmd->cmnd[1],
1306                                         cmd->cmnd[2], cmd->cmnd[3],
1307                                         cmd->cmnd[4], cmd->cmnd[5],
1308                                         cmd->cmnd[6], cmd->cmnd[7],
1309                                         cmd->cmnd[8], cmd->cmnd[9],
1310                                         cmd->cmnd[10], cmd->cmnd[11],
1311                                         cmd->cmnd[12], cmd->cmnd[13],
1312                                         cmd->cmnd[14], cmd->cmnd[15]);
1313                         break;
1314                 }
1315
1316
1317                 /* Problem was not a check condition
1318                  * Pass it up to the upper layers...
1319                  */
1320                 if (ei->ScsiStatus) {
1321                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1322                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1323                                 "Returning result: 0x%x\n",
1324                                 cp, ei->ScsiStatus,
1325                                 sense_key, asc, ascq,
1326                                 cmd->result);
1327                 } else {  /* scsi status is zero??? How??? */
1328                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1329                                 "Returning no connection.\n", cp),
1330
1331                         /* Ordinarily, this case should never happen,
1332                          * but there is a bug in some released firmware
1333                          * revisions that allows it to happen if, for
1334                          * example, a 4100 backplane loses power and
1335                          * the tape drive is in it.  We assume that
1336                          * it's a fatal error of some kind because we
1337                          * can't show that it wasn't. We will make it
1338                          * look like selection timeout since that is
1339                          * the most common reason for this to occur,
1340                          * and it's severe enough.
1341                          */
1342
1343                         cmd->result = DID_NO_CONNECT << 16;
1344                 }
1345                 break;
1346
1347         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1348                 break;
1349         case CMD_DATA_OVERRUN:
1350                 dev_warn(&h->pdev->dev, "cp %p has"
1351                         " completed with data overrun "
1352                         "reported\n", cp);
1353                 break;
1354         case CMD_INVALID: {
1355                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1356                 print_cmd(cp); */
1357                 /* We get CMD_INVALID if you address a non-existent device
1358                  * instead of a selection timeout (no response).  You will
1359                  * see this if you yank out a drive, then try to access it.
1360                  * This is kind of a shame because it means that any other
1361                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1362                  * missing target. */
1363                 cmd->result = DID_NO_CONNECT << 16;
1364         }
1365                 break;
1366         case CMD_PROTOCOL_ERR:
1367                 cmd->result = DID_ERROR << 16;
1368                 dev_warn(&h->pdev->dev, "cp %p has "
1369                         "protocol error\n", cp);
1370                 break;
1371         case CMD_HARDWARE_ERR:
1372                 cmd->result = DID_ERROR << 16;
1373                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1374                 break;
1375         case CMD_CONNECTION_LOST:
1376                 cmd->result = DID_ERROR << 16;
1377                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1378                 break;
1379         case CMD_ABORTED:
1380                 cmd->result = DID_ABORT << 16;
1381                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1382                                 cp, ei->ScsiStatus);
1383                 break;
1384         case CMD_ABORT_FAILED:
1385                 cmd->result = DID_ERROR << 16;
1386                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1387                 break;
1388         case CMD_UNSOLICITED_ABORT:
1389                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1390                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1391                         "abort\n", cp);
1392                 break;
1393         case CMD_TIMEOUT:
1394                 cmd->result = DID_TIME_OUT << 16;
1395                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1396                 break;
1397         case CMD_UNABORTABLE:
1398                 cmd->result = DID_ERROR << 16;
1399                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1400                 break;
1401         default:
1402                 cmd->result = DID_ERROR << 16;
1403                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1404                                 cp, ei->CommandStatus);
1405         }
1406         cmd_free(h, cp);
1407         cmd->scsi_done(cmd);
1408 }
1409
1410 static void hpsa_pci_unmap(struct pci_dev *pdev,
1411         struct CommandList *c, int sg_used, int data_direction)
1412 {
1413         int i;
1414         union u64bit addr64;
1415
1416         for (i = 0; i < sg_used; i++) {
1417                 addr64.val32.lower = c->SG[i].Addr.lower;
1418                 addr64.val32.upper = c->SG[i].Addr.upper;
1419                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1420                         data_direction);
1421         }
1422 }
1423
1424 static int hpsa_map_one(struct pci_dev *pdev,
1425                 struct CommandList *cp,
1426                 unsigned char *buf,
1427                 size_t buflen,
1428                 int data_direction)
1429 {
1430         u64 addr64;
1431
1432         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1433                 cp->Header.SGList = 0;
1434                 cp->Header.SGTotal = 0;
1435                 return 0;
1436         }
1437
1438         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1439         if (dma_mapping_error(&pdev->dev, addr64)) {
1440                 /* Prevent subsequent unmap of something never mapped */
1441                 cp->Header.SGList = 0;
1442                 cp->Header.SGTotal = 0;
1443                 return -1;
1444         }
1445         cp->SG[0].Addr.lower =
1446           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1447         cp->SG[0].Addr.upper =
1448           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1449         cp->SG[0].Len = buflen;
1450         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1451         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1452         return 0;
1453 }
1454
1455 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1456         struct CommandList *c)
1457 {
1458         DECLARE_COMPLETION_ONSTACK(wait);
1459
1460         c->waiting = &wait;
1461         enqueue_cmd_and_start_io(h, c);
1462         wait_for_completion(&wait);
1463 }
1464
1465 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1466         struct CommandList *c)
1467 {
1468         unsigned long flags;
1469
1470         /* If controller lockup detected, fake a hardware error. */
1471         spin_lock_irqsave(&h->lock, flags);
1472         if (unlikely(h->lockup_detected)) {
1473                 spin_unlock_irqrestore(&h->lock, flags);
1474                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1475         } else {
1476                 spin_unlock_irqrestore(&h->lock, flags);
1477                 hpsa_scsi_do_simple_cmd_core(h, c);
1478         }
1479 }
1480
1481 #define MAX_DRIVER_CMD_RETRIES 25
1482 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1483         struct CommandList *c, int data_direction)
1484 {
1485         int backoff_time = 10, retry_count = 0;
1486
1487         do {
1488                 memset(c->err_info, 0, sizeof(*c->err_info));
1489                 hpsa_scsi_do_simple_cmd_core(h, c);
1490                 retry_count++;
1491                 if (retry_count > 3) {
1492                         msleep(backoff_time);
1493                         if (backoff_time < 1000)
1494                                 backoff_time *= 2;
1495                 }
1496         } while ((check_for_unit_attention(h, c) ||
1497                         check_for_busy(h, c)) &&
1498                         retry_count <= MAX_DRIVER_CMD_RETRIES);
1499         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1500 }
1501
1502 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1503 {
1504         struct ErrorInfo *ei;
1505         struct device *d = &cp->h->pdev->dev;
1506
1507         ei = cp->err_info;
1508         switch (ei->CommandStatus) {
1509         case CMD_TARGET_STATUS:
1510                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1511                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1512                                 ei->ScsiStatus);
1513                 if (ei->ScsiStatus == 0)
1514                         dev_warn(d, "SCSI status is abnormally zero.  "
1515                         "(probably indicates selection timeout "
1516                         "reported incorrectly due to a known "
1517                         "firmware bug, circa July, 2001.)\n");
1518                 break;
1519         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1520                         dev_info(d, "UNDERRUN\n");
1521                 break;
1522         case CMD_DATA_OVERRUN:
1523                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1524                 break;
1525         case CMD_INVALID: {
1526                 /* controller unfortunately reports SCSI passthru's
1527                  * to non-existent targets as invalid commands.
1528                  */
1529                 dev_warn(d, "cp %p is reported invalid (probably means "
1530                         "target device no longer present)\n", cp);
1531                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1532                 print_cmd(cp);  */
1533                 }
1534                 break;
1535         case CMD_PROTOCOL_ERR:
1536                 dev_warn(d, "cp %p has protocol error \n", cp);
1537                 break;
1538         case CMD_HARDWARE_ERR:
1539                 /* cmd->result = DID_ERROR << 16; */
1540                 dev_warn(d, "cp %p had hardware error\n", cp);
1541                 break;
1542         case CMD_CONNECTION_LOST:
1543                 dev_warn(d, "cp %p had connection lost\n", cp);
1544                 break;
1545         case CMD_ABORTED:
1546                 dev_warn(d, "cp %p was aborted\n", cp);
1547                 break;
1548         case CMD_ABORT_FAILED:
1549                 dev_warn(d, "cp %p reports abort failed\n", cp);
1550                 break;
1551         case CMD_UNSOLICITED_ABORT:
1552                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1553                 break;
1554         case CMD_TIMEOUT:
1555                 dev_warn(d, "cp %p timed out\n", cp);
1556                 break;
1557         case CMD_UNABORTABLE:
1558                 dev_warn(d, "Command unabortable\n");
1559                 break;
1560         default:
1561                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1562                                 ei->CommandStatus);
1563         }
1564 }
1565
1566 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1567                         unsigned char page, unsigned char *buf,
1568                         unsigned char bufsize)
1569 {
1570         int rc = IO_OK;
1571         struct CommandList *c;
1572         struct ErrorInfo *ei;
1573
1574         c = cmd_special_alloc(h);
1575
1576         if (c == NULL) {                        /* trouble... */
1577                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1578                 return -ENOMEM;
1579         }
1580
1581         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
1582                         page, scsi3addr, TYPE_CMD)) {
1583                 rc = -1;
1584                 goto out;
1585         }
1586         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1587         ei = c->err_info;
1588         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1589                 hpsa_scsi_interpret_error(c);
1590                 rc = -1;
1591         }
1592 out:
1593         cmd_special_free(h, c);
1594         return rc;
1595 }
1596
1597 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1598 {
1599         int rc = IO_OK;
1600         struct CommandList *c;
1601         struct ErrorInfo *ei;
1602
1603         c = cmd_special_alloc(h);
1604
1605         if (c == NULL) {                        /* trouble... */
1606                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1607                 return -ENOMEM;
1608         }
1609
1610         /* fill_cmd can't fail here, no data buffer to map. */
1611         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h,
1612                         NULL, 0, 0, scsi3addr, TYPE_MSG);
1613         hpsa_scsi_do_simple_cmd_core(h, c);
1614         /* no unmap needed here because no data xfer. */
1615
1616         ei = c->err_info;
1617         if (ei->CommandStatus != 0) {
1618                 hpsa_scsi_interpret_error(c);
1619                 rc = -1;
1620         }
1621         cmd_special_free(h, c);
1622         return rc;
1623 }
1624
1625 static void hpsa_get_raid_level(struct ctlr_info *h,
1626         unsigned char *scsi3addr, unsigned char *raid_level)
1627 {
1628         int rc;
1629         unsigned char *buf;
1630
1631         *raid_level = RAID_UNKNOWN;
1632         buf = kzalloc(64, GFP_KERNEL);
1633         if (!buf)
1634                 return;
1635         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1636         if (rc == 0)
1637                 *raid_level = buf[8];
1638         if (*raid_level > RAID_UNKNOWN)
1639                 *raid_level = RAID_UNKNOWN;
1640         kfree(buf);
1641         return;
1642 }
1643
1644 /* Get the device id from inquiry page 0x83 */
1645 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1646         unsigned char *device_id, int buflen)
1647 {
1648         int rc;
1649         unsigned char *buf;
1650
1651         if (buflen > 16)
1652                 buflen = 16;
1653         buf = kzalloc(64, GFP_KERNEL);
1654         if (!buf)
1655                 return -1;
1656         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1657         if (rc == 0)
1658                 memcpy(device_id, &buf[8], buflen);
1659         kfree(buf);
1660         return rc != 0;
1661 }
1662
1663 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1664                 struct ReportLUNdata *buf, int bufsize,
1665                 int extended_response)
1666 {
1667         int rc = IO_OK;
1668         struct CommandList *c;
1669         unsigned char scsi3addr[8];
1670         struct ErrorInfo *ei;
1671
1672         c = cmd_special_alloc(h);
1673         if (c == NULL) {                        /* trouble... */
1674                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1675                 return -1;
1676         }
1677         /* address the controller */
1678         memset(scsi3addr, 0, sizeof(scsi3addr));
1679         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1680                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
1681                 rc = -1;
1682                 goto out;
1683         }
1684         if (extended_response)
1685                 c->Request.CDB[1] = extended_response;
1686         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1687         ei = c->err_info;
1688         if (ei->CommandStatus != 0 &&
1689             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1690                 hpsa_scsi_interpret_error(c);
1691                 rc = -1;
1692         }
1693 out:
1694         cmd_special_free(h, c);
1695         return rc;
1696 }
1697
1698 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1699                 struct ReportLUNdata *buf,
1700                 int bufsize, int extended_response)
1701 {
1702         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1703 }
1704
1705 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1706                 struct ReportLUNdata *buf, int bufsize)
1707 {
1708         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1709 }
1710
1711 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1712         int bus, int target, int lun)
1713 {
1714         device->bus = bus;
1715         device->target = target;
1716         device->lun = lun;
1717 }
1718
1719 static int hpsa_update_device_info(struct ctlr_info *h,
1720         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1721         unsigned char *is_OBDR_device)
1722 {
1723
1724 #define OBDR_SIG_OFFSET 43
1725 #define OBDR_TAPE_SIG "$DR-10"
1726 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1727 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1728
1729         unsigned char *inq_buff;
1730         unsigned char *obdr_sig;
1731
1732         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1733         if (!inq_buff)
1734                 goto bail_out;
1735
1736         /* Do an inquiry to the device to see what it is. */
1737         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1738                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1739                 /* Inquiry failed (msg printed already) */
1740                 dev_err(&h->pdev->dev,
1741                         "hpsa_update_device_info: inquiry failed\n");
1742                 goto bail_out;
1743         }
1744
1745         this_device->devtype = (inq_buff[0] & 0x1f);
1746         memcpy(this_device->scsi3addr, scsi3addr, 8);
1747         memcpy(this_device->vendor, &inq_buff[8],
1748                 sizeof(this_device->vendor));
1749         memcpy(this_device->model, &inq_buff[16],
1750                 sizeof(this_device->model));
1751         memset(this_device->device_id, 0,
1752                 sizeof(this_device->device_id));
1753         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1754                 sizeof(this_device->device_id));
1755
1756         if (this_device->devtype == TYPE_DISK &&
1757                 is_logical_dev_addr_mode(scsi3addr))
1758                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1759         else
1760                 this_device->raid_level = RAID_UNKNOWN;
1761
1762         if (is_OBDR_device) {
1763                 /* See if this is a One-Button-Disaster-Recovery device
1764                  * by looking for "$DR-10" at offset 43 in inquiry data.
1765                  */
1766                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1767                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1768                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
1769                                                 OBDR_SIG_LEN) == 0);
1770         }
1771
1772         kfree(inq_buff);
1773         return 0;
1774
1775 bail_out:
1776         kfree(inq_buff);
1777         return 1;
1778 }
1779
1780 static unsigned char *ext_target_model[] = {
1781         "MSA2012",
1782         "MSA2024",
1783         "MSA2312",
1784         "MSA2324",
1785         "P2000 G3 SAS",
1786         NULL,
1787 };
1788
1789 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1790 {
1791         int i;
1792
1793         for (i = 0; ext_target_model[i]; i++)
1794                 if (strncmp(device->model, ext_target_model[i],
1795                         strlen(ext_target_model[i])) == 0)
1796                         return 1;
1797         return 0;
1798 }
1799
1800 /* Helper function to assign bus, target, lun mapping of devices.
1801  * Puts non-external target logical volumes on bus 0, external target logical
1802  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1803  * Logical drive target and lun are assigned at this time, but
1804  * physical device lun and target assignment are deferred (assigned
1805  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1806  */
1807 static void figure_bus_target_lun(struct ctlr_info *h,
1808         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1809 {
1810         u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1811
1812         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1813                 /* physical device, target and lun filled in later */
1814                 if (is_hba_lunid(lunaddrbytes))
1815                         hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1816                 else
1817                         /* defer target, lun assignment for physical devices */
1818                         hpsa_set_bus_target_lun(device, 2, -1, -1);
1819                 return;
1820         }
1821         /* It's a logical device */
1822         if (is_ext_target(h, device)) {
1823                 /* external target way, put logicals on bus 1
1824                  * and match target/lun numbers box
1825                  * reports, other smart array, bus 0, target 0, match lunid
1826                  */
1827                 hpsa_set_bus_target_lun(device,
1828                         1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1829                 return;
1830         }
1831         hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1832 }
1833
1834 /*
1835  * If there is no lun 0 on a target, linux won't find any devices.
1836  * For the external targets (arrays), we have to manually detect the enclosure
1837  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1838  * it for some reason.  *tmpdevice is the target we're adding,
1839  * this_device is a pointer into the current element of currentsd[]
1840  * that we're building up in update_scsi_devices(), below.
1841  * lunzerobits is a bitmap that tracks which targets already have a
1842  * lun 0 assigned.
1843  * Returns 1 if an enclosure was added, 0 if not.
1844  */
1845 static int add_ext_target_dev(struct ctlr_info *h,
1846         struct hpsa_scsi_dev_t *tmpdevice,
1847         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1848         unsigned long lunzerobits[], int *n_ext_target_devs)
1849 {
1850         unsigned char scsi3addr[8];
1851
1852         if (test_bit(tmpdevice->target, lunzerobits))
1853                 return 0; /* There is already a lun 0 on this target. */
1854
1855         if (!is_logical_dev_addr_mode(lunaddrbytes))
1856                 return 0; /* It's the logical targets that may lack lun 0. */
1857
1858         if (!is_ext_target(h, tmpdevice))
1859                 return 0; /* Only external target devices have this problem. */
1860
1861         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1862                 return 0;
1863
1864         memset(scsi3addr, 0, 8);
1865         scsi3addr[3] = tmpdevice->target;
1866         if (is_hba_lunid(scsi3addr))
1867                 return 0; /* Don't add the RAID controller here. */
1868
1869         if (is_scsi_rev_5(h))
1870                 return 0; /* p1210m doesn't need to do this. */
1871
1872         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1873                 dev_warn(&h->pdev->dev, "Maximum number of external "
1874                         "target devices exceeded.  Check your hardware "
1875                         "configuration.");
1876                 return 0;
1877         }
1878
1879         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1880                 return 0;
1881         (*n_ext_target_devs)++;
1882         hpsa_set_bus_target_lun(this_device,
1883                                 tmpdevice->bus, tmpdevice->target, 0);
1884         set_bit(tmpdevice->target, lunzerobits);
1885         return 1;
1886 }
1887
1888 /*
1889  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1890  * logdev.  The number of luns in physdev and logdev are returned in
1891  * *nphysicals and *nlogicals, respectively.
1892  * Returns 0 on success, -1 otherwise.
1893  */
1894 static int hpsa_gather_lun_info(struct ctlr_info *h,
1895         int reportlunsize,
1896         struct ReportLUNdata *physdev, u32 *nphysicals,
1897         struct ReportLUNdata *logdev, u32 *nlogicals)
1898 {
1899         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1900                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1901                 return -1;
1902         }
1903         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1904         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1905                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1906                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1907                         *nphysicals - HPSA_MAX_PHYS_LUN);
1908                 *nphysicals = HPSA_MAX_PHYS_LUN;
1909         }
1910         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1911                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1912                 return -1;
1913         }
1914         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1915         /* Reject Logicals in excess of our max capability. */
1916         if (*nlogicals > HPSA_MAX_LUN) {
1917                 dev_warn(&h->pdev->dev,
1918                         "maximum logical LUNs (%d) exceeded.  "
1919                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1920                         *nlogicals - HPSA_MAX_LUN);
1921                         *nlogicals = HPSA_MAX_LUN;
1922         }
1923         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1924                 dev_warn(&h->pdev->dev,
1925                         "maximum logical + physical LUNs (%d) exceeded. "
1926                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1927                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1928                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1929         }
1930         return 0;
1931 }
1932
1933 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1934         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1935         struct ReportLUNdata *logdev_list)
1936 {
1937         /* Helper function, figure out where the LUN ID info is coming from
1938          * given index i, lists of physical and logical devices, where in
1939          * the list the raid controller is supposed to appear (first or last)
1940          */
1941
1942         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1943         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1944
1945         if (i == raid_ctlr_position)
1946                 return RAID_CTLR_LUNID;
1947
1948         if (i < logicals_start)
1949                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1950
1951         if (i < last_device)
1952                 return &logdev_list->LUN[i - nphysicals -
1953                         (raid_ctlr_position == 0)][0];
1954         BUG();
1955         return NULL;
1956 }
1957
1958 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1959 {
1960         /* the idea here is we could get notified
1961          * that some devices have changed, so we do a report
1962          * physical luns and report logical luns cmd, and adjust
1963          * our list of devices accordingly.
1964          *
1965          * The scsi3addr's of devices won't change so long as the
1966          * adapter is not reset.  That means we can rescan and
1967          * tell which devices we already know about, vs. new
1968          * devices, vs.  disappearing devices.
1969          */
1970         struct ReportLUNdata *physdev_list = NULL;
1971         struct ReportLUNdata *logdev_list = NULL;
1972         u32 nphysicals = 0;
1973         u32 nlogicals = 0;
1974         u32 ndev_allocated = 0;
1975         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1976         int ncurrent = 0;
1977         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1978         int i, n_ext_target_devs, ndevs_to_allocate;
1979         int raid_ctlr_position;
1980         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1981
1982         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1983         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1984         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1985         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1986
1987         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1988                 dev_err(&h->pdev->dev, "out of memory\n");
1989                 goto out;
1990         }
1991         memset(lunzerobits, 0, sizeof(lunzerobits));
1992
1993         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1994                         logdev_list, &nlogicals))
1995                 goto out;
1996
1997         /* We might see up to the maximum number of logical and physical disks
1998          * plus external target devices, and a device for the local RAID
1999          * controller.
2000          */
2001         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
2002
2003         /* Allocate the per device structures */
2004         for (i = 0; i < ndevs_to_allocate; i++) {
2005                 if (i >= HPSA_MAX_DEVICES) {
2006                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
2007                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
2008                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
2009                         break;
2010                 }
2011
2012                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
2013                 if (!currentsd[i]) {
2014                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
2015                                 __FILE__, __LINE__);
2016                         goto out;
2017                 }
2018                 ndev_allocated++;
2019         }
2020
2021         if (unlikely(is_scsi_rev_5(h)))
2022                 raid_ctlr_position = 0;
2023         else
2024                 raid_ctlr_position = nphysicals + nlogicals;
2025
2026         /* adjust our table of devices */
2027         n_ext_target_devs = 0;
2028         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
2029                 u8 *lunaddrbytes, is_OBDR = 0;
2030
2031                 /* Figure out where the LUN ID info is coming from */
2032                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
2033                         i, nphysicals, nlogicals, physdev_list, logdev_list);
2034                 /* skip masked physical devices. */
2035                 if (lunaddrbytes[3] & 0xC0 &&
2036                         i < nphysicals + (raid_ctlr_position == 0))
2037                         continue;
2038
2039                 /* Get device type, vendor, model, device id */
2040                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
2041                                                         &is_OBDR))
2042                         continue; /* skip it if we can't talk to it. */
2043                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
2044                 this_device = currentsd[ncurrent];
2045
2046                 /*
2047                  * For external target devices, we have to insert a LUN 0 which
2048                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
2049                  * is nonetheless an enclosure device there.  We have to
2050                  * present that otherwise linux won't find anything if
2051                  * there is no lun 0.
2052                  */
2053                 if (add_ext_target_dev(h, tmpdevice, this_device,
2054                                 lunaddrbytes, lunzerobits,
2055                                 &n_ext_target_devs)) {
2056                         ncurrent++;
2057                         this_device = currentsd[ncurrent];
2058                 }
2059
2060                 *this_device = *tmpdevice;
2061
2062                 switch (this_device->devtype) {
2063                 case TYPE_ROM:
2064                         /* We don't *really* support actual CD-ROM devices,
2065                          * just "One Button Disaster Recovery" tape drive
2066                          * which temporarily pretends to be a CD-ROM drive.
2067                          * So we check that the device is really an OBDR tape
2068                          * device by checking for "$DR-10" in bytes 43-48 of
2069                          * the inquiry data.
2070                          */
2071                         if (is_OBDR)
2072                                 ncurrent++;
2073                         break;
2074                 case TYPE_DISK:
2075                         if (i < nphysicals)
2076                                 break;
2077                         ncurrent++;
2078                         break;
2079                 case TYPE_TAPE:
2080                 case TYPE_MEDIUM_CHANGER:
2081                         ncurrent++;
2082                         break;
2083                 case TYPE_RAID:
2084                         /* Only present the Smartarray HBA as a RAID controller.
2085                          * If it's a RAID controller other than the HBA itself
2086                          * (an external RAID controller, MSA500 or similar)
2087                          * don't present it.
2088                          */
2089                         if (!is_hba_lunid(lunaddrbytes))
2090                                 break;
2091                         ncurrent++;
2092                         break;
2093                 default:
2094                         break;
2095                 }
2096                 if (ncurrent >= HPSA_MAX_DEVICES)
2097                         break;
2098         }
2099         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
2100 out:
2101         kfree(tmpdevice);
2102         for (i = 0; i < ndev_allocated; i++)
2103                 kfree(currentsd[i]);
2104         kfree(currentsd);
2105         kfree(physdev_list);
2106         kfree(logdev_list);
2107 }
2108
2109 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2110  * dma mapping  and fills in the scatter gather entries of the
2111  * hpsa command, cp.
2112  */
2113 static int hpsa_scatter_gather(struct ctlr_info *h,
2114                 struct CommandList *cp,
2115                 struct scsi_cmnd *cmd)
2116 {
2117         unsigned int len;
2118         struct scatterlist *sg;
2119         u64 addr64;
2120         int use_sg, i, sg_index, chained;
2121         struct SGDescriptor *curr_sg;
2122
2123         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2124
2125         use_sg = scsi_dma_map(cmd);
2126         if (use_sg < 0)
2127                 return use_sg;
2128
2129         if (!use_sg)
2130                 goto sglist_finished;
2131
2132         curr_sg = cp->SG;
2133         chained = 0;
2134         sg_index = 0;
2135         scsi_for_each_sg(cmd, sg, use_sg, i) {
2136                 if (i == h->max_cmd_sg_entries - 1 &&
2137                         use_sg > h->max_cmd_sg_entries) {
2138                         chained = 1;
2139                         curr_sg = h->cmd_sg_list[cp->cmdindex];
2140                         sg_index = 0;
2141                 }
2142                 addr64 = (u64) sg_dma_address(sg);
2143                 len  = sg_dma_len(sg);
2144                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2145                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2146                 curr_sg->Len = len;
2147                 curr_sg->Ext = 0;  /* we are not chaining */
2148                 curr_sg++;
2149         }
2150
2151         if (use_sg + chained > h->maxSG)
2152                 h->maxSG = use_sg + chained;
2153
2154         if (chained) {
2155                 cp->Header.SGList = h->max_cmd_sg_entries;
2156                 cp->Header.SGTotal = (u16) (use_sg + 1);
2157                 if (hpsa_map_sg_chain_block(h, cp)) {
2158                         scsi_dma_unmap(cmd);
2159                         return -1;
2160                 }
2161                 return 0;
2162         }
2163
2164 sglist_finished:
2165
2166         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2167         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2168         return 0;
2169 }
2170
2171
2172 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2173         void (*done)(struct scsi_cmnd *))
2174 {
2175         struct ctlr_info *h;
2176         struct hpsa_scsi_dev_t *dev;
2177         unsigned char scsi3addr[8];
2178         struct CommandList *c;
2179         unsigned long flags;
2180
2181         /* Get the ptr to our adapter structure out of cmd->host. */
2182         h = sdev_to_hba(cmd->device);
2183         dev = cmd->device->hostdata;
2184         if (!dev) {
2185                 cmd->result = DID_NO_CONNECT << 16;
2186                 done(cmd);
2187                 return 0;
2188         }
2189         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2190
2191         spin_lock_irqsave(&h->lock, flags);
2192         if (unlikely(h->lockup_detected)) {
2193                 spin_unlock_irqrestore(&h->lock, flags);
2194                 cmd->result = DID_ERROR << 16;
2195                 done(cmd);
2196                 return 0;
2197         }
2198         spin_unlock_irqrestore(&h->lock, flags);
2199         c = cmd_alloc(h);
2200         if (c == NULL) {                        /* trouble... */
2201                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2202                 return SCSI_MLQUEUE_HOST_BUSY;
2203         }
2204
2205         /* Fill in the command list header */
2206
2207         cmd->scsi_done = done;    /* save this for use by completion code */
2208
2209         /* save c in case we have to abort it  */
2210         cmd->host_scribble = (unsigned char *) c;
2211
2212         c->cmd_type = CMD_SCSI;
2213         c->scsi_cmd = cmd;
2214         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2215         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2216         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2217         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2218
2219         /* Fill in the request block... */
2220
2221         c->Request.Timeout = 0;
2222         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2223         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2224         c->Request.CDBLen = cmd->cmd_len;
2225         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2226         c->Request.Type.Type = TYPE_CMD;
2227         c->Request.Type.Attribute = ATTR_SIMPLE;
2228         switch (cmd->sc_data_direction) {
2229         case DMA_TO_DEVICE:
2230                 c->Request.Type.Direction = XFER_WRITE;
2231                 break;
2232         case DMA_FROM_DEVICE:
2233                 c->Request.Type.Direction = XFER_READ;
2234                 break;
2235         case DMA_NONE:
2236                 c->Request.Type.Direction = XFER_NONE;
2237                 break;
2238         case DMA_BIDIRECTIONAL:
2239                 /* This can happen if a buggy application does a scsi passthru
2240                  * and sets both inlen and outlen to non-zero. ( see
2241                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2242                  */
2243
2244                 c->Request.Type.Direction = XFER_RSVD;
2245                 /* This is technically wrong, and hpsa controllers should
2246                  * reject it with CMD_INVALID, which is the most correct
2247                  * response, but non-fibre backends appear to let it
2248                  * slide by, and give the same results as if this field
2249                  * were set correctly.  Either way is acceptable for
2250                  * our purposes here.
2251                  */
2252
2253                 break;
2254
2255         default:
2256                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2257                         cmd->sc_data_direction);
2258                 BUG();
2259                 break;
2260         }
2261
2262         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2263                 cmd_free(h, c);
2264                 return SCSI_MLQUEUE_HOST_BUSY;
2265         }
2266         enqueue_cmd_and_start_io(h, c);
2267         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2268         return 0;
2269 }
2270
2271 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2272
2273 static void hpsa_scan_start(struct Scsi_Host *sh)
2274 {
2275         struct ctlr_info *h = shost_to_hba(sh);
2276         unsigned long flags;
2277
2278         /* wait until any scan already in progress is finished. */
2279         while (1) {
2280                 spin_lock_irqsave(&h->scan_lock, flags);
2281                 if (h->scan_finished)
2282                         break;
2283                 spin_unlock_irqrestore(&h->scan_lock, flags);
2284                 wait_event(h->scan_wait_queue, h->scan_finished);
2285                 /* Note: We don't need to worry about a race between this
2286                  * thread and driver unload because the midlayer will
2287                  * have incremented the reference count, so unload won't
2288                  * happen if we're in here.
2289                  */
2290         }
2291         h->scan_finished = 0; /* mark scan as in progress */
2292         spin_unlock_irqrestore(&h->scan_lock, flags);
2293
2294         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2295
2296         spin_lock_irqsave(&h->scan_lock, flags);
2297         h->scan_finished = 1; /* mark scan as finished. */
2298         wake_up_all(&h->scan_wait_queue);
2299         spin_unlock_irqrestore(&h->scan_lock, flags);
2300 }
2301
2302 static int hpsa_scan_finished(struct Scsi_Host *sh,
2303         unsigned long elapsed_time)
2304 {
2305         struct ctlr_info *h = shost_to_hba(sh);
2306         unsigned long flags;
2307         int finished;
2308
2309         spin_lock_irqsave(&h->scan_lock, flags);
2310         finished = h->scan_finished;
2311         spin_unlock_irqrestore(&h->scan_lock, flags);
2312         return finished;
2313 }
2314
2315 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2316         int qdepth, int reason)
2317 {
2318         struct ctlr_info *h = sdev_to_hba(sdev);
2319
2320         if (reason != SCSI_QDEPTH_DEFAULT)
2321                 return -ENOTSUPP;
2322
2323         if (qdepth < 1)
2324                 qdepth = 1;
2325         else
2326                 if (qdepth > h->nr_cmds)
2327                         qdepth = h->nr_cmds;
2328         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2329         return sdev->queue_depth;
2330 }
2331
2332 static void hpsa_unregister_scsi(struct ctlr_info *h)
2333 {
2334         /* we are being forcibly unloaded, and may not refuse. */
2335         scsi_remove_host(h->scsi_host);
2336         scsi_host_put(h->scsi_host);
2337         h->scsi_host = NULL;
2338 }
2339
2340 static int hpsa_register_scsi(struct ctlr_info *h)
2341 {
2342         struct Scsi_Host *sh;
2343         int error;
2344
2345         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2346         if (sh == NULL)
2347                 goto fail;
2348
2349         sh->io_port = 0;
2350         sh->n_io_port = 0;
2351         sh->this_id = -1;
2352         sh->max_channel = 3;
2353         sh->max_cmd_len = MAX_COMMAND_SIZE;
2354         sh->max_lun = HPSA_MAX_LUN;
2355         sh->max_id = HPSA_MAX_LUN;
2356         sh->can_queue = h->nr_cmds;
2357         sh->cmd_per_lun = h->nr_cmds;
2358         sh->sg_tablesize = h->maxsgentries;
2359         h->scsi_host = sh;
2360         sh->hostdata[0] = (unsigned long) h;
2361         sh->irq = h->intr[h->intr_mode];
2362         sh->unique_id = sh->irq;
2363         error = scsi_add_host(sh, &h->pdev->dev);
2364         if (error)
2365                 goto fail_host_put;
2366         scsi_scan_host(sh);
2367         return 0;
2368
2369  fail_host_put:
2370         dev_err(&h->pdev->dev, "%s: scsi_add_host"
2371                 " failed for controller %d\n", __func__, h->ctlr);
2372         scsi_host_put(sh);
2373         return error;
2374  fail:
2375         dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2376                 " failed for controller %d\n", __func__, h->ctlr);
2377         return -ENOMEM;
2378 }
2379
2380 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2381         unsigned char lunaddr[])
2382 {
2383         int rc = 0;
2384         int count = 0;
2385         int waittime = 1; /* seconds */
2386         struct CommandList *c;
2387
2388         c = cmd_special_alloc(h);
2389         if (!c) {
2390                 dev_warn(&h->pdev->dev, "out of memory in "
2391                         "wait_for_device_to_become_ready.\n");
2392                 return IO_ERROR;
2393         }
2394
2395         /* Send test unit ready until device ready, or give up. */
2396         while (count < HPSA_TUR_RETRY_LIMIT) {
2397
2398                 /* Wait for a bit.  do this first, because if we send
2399                  * the TUR right away, the reset will just abort it.
2400                  */
2401                 msleep(1000 * waittime);
2402                 count++;
2403
2404                 /* Increase wait time with each try, up to a point. */
2405                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2406                         waittime = waittime * 2;
2407
2408                 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
2409                 (void) fill_cmd(c, TEST_UNIT_READY, h,
2410                                 NULL, 0, 0, lunaddr, TYPE_CMD);
2411                 hpsa_scsi_do_simple_cmd_core(h, c);
2412                 /* no unmap needed here because no data xfer. */
2413
2414                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2415                         break;
2416
2417                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2418                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2419                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2420                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2421                         break;
2422
2423                 dev_warn(&h->pdev->dev, "waiting %d secs "
2424                         "for device to become ready.\n", waittime);
2425                 rc = 1; /* device not ready. */
2426         }
2427
2428         if (rc)
2429                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2430         else
2431                 dev_warn(&h->pdev->dev, "device is ready.\n");
2432
2433         cmd_special_free(h, c);
2434         return rc;
2435 }
2436
2437 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2438  * complaining.  Doing a host- or bus-reset can't do anything good here.
2439  */
2440 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2441 {
2442         int rc;
2443         struct ctlr_info *h;
2444         struct hpsa_scsi_dev_t *dev;
2445
2446         /* find the controller to which the command to be aborted was sent */
2447         h = sdev_to_hba(scsicmd->device);
2448         if (h == NULL) /* paranoia */
2449                 return FAILED;
2450         dev = scsicmd->device->hostdata;
2451         if (!dev) {
2452                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2453                         "device lookup failed.\n");
2454                 return FAILED;
2455         }
2456         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2457                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2458         /* send a reset to the SCSI LUN which the command was sent to */
2459         rc = hpsa_send_reset(h, dev->scsi3addr);
2460         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2461                 return SUCCESS;
2462
2463         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2464         return FAILED;
2465 }
2466
2467 static void swizzle_abort_tag(u8 *tag)
2468 {
2469         u8 original_tag[8];
2470
2471         memcpy(original_tag, tag, 8);
2472         tag[0] = original_tag[3];
2473         tag[1] = original_tag[2];
2474         tag[2] = original_tag[1];
2475         tag[3] = original_tag[0];
2476         tag[4] = original_tag[7];
2477         tag[5] = original_tag[6];
2478         tag[6] = original_tag[5];
2479         tag[7] = original_tag[4];
2480 }
2481
2482 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2483         struct CommandList *abort, int swizzle)
2484 {
2485         int rc = IO_OK;
2486         struct CommandList *c;
2487         struct ErrorInfo *ei;
2488
2489         c = cmd_special_alloc(h);
2490         if (c == NULL) {        /* trouble... */
2491                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2492                 return -ENOMEM;
2493         }
2494
2495         /* fill_cmd can't fail here, no buffer to map */
2496         (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
2497                 0, 0, scsi3addr, TYPE_MSG);
2498         if (swizzle)
2499                 swizzle_abort_tag(&c->Request.CDB[4]);
2500         hpsa_scsi_do_simple_cmd_core(h, c);
2501         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2502                 __func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
2503         /* no unmap needed here because no data xfer. */
2504
2505         ei = c->err_info;
2506         switch (ei->CommandStatus) {
2507         case CMD_SUCCESS:
2508                 break;
2509         case CMD_UNABORTABLE: /* Very common, don't make noise. */
2510                 rc = -1;
2511                 break;
2512         default:
2513                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2514                         __func__, abort->Header.Tag.upper,
2515                         abort->Header.Tag.lower);
2516                 hpsa_scsi_interpret_error(c);
2517                 rc = -1;
2518                 break;
2519         }
2520         cmd_special_free(h, c);
2521         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
2522                 abort->Header.Tag.upper, abort->Header.Tag.lower);
2523         return rc;
2524 }
2525
2526 /*
2527  * hpsa_find_cmd_in_queue
2528  *
2529  * Used to determine whether a command (find) is still present
2530  * in queue_head.   Optionally excludes the last element of queue_head.
2531  *
2532  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
2533  * not yet been submitted, and so can be aborted by the driver without
2534  * sending an abort to the hardware.
2535  *
2536  * Returns pointer to command if found in queue, NULL otherwise.
2537  */
2538 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
2539                         struct scsi_cmnd *find, struct list_head *queue_head)
2540 {
2541         unsigned long flags;
2542         struct CommandList *c = NULL;   /* ptr into cmpQ */
2543
2544         if (!find)
2545                 return 0;
2546         spin_lock_irqsave(&h->lock, flags);
2547         list_for_each_entry(c, queue_head, list) {
2548                 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
2549                         continue;
2550                 if (c->scsi_cmd == find) {
2551                         spin_unlock_irqrestore(&h->lock, flags);
2552                         return c;
2553                 }
2554         }
2555         spin_unlock_irqrestore(&h->lock, flags);
2556         return NULL;
2557 }
2558
2559 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
2560                                         u8 *tag, struct list_head *queue_head)
2561 {
2562         unsigned long flags;
2563         struct CommandList *c;
2564
2565         spin_lock_irqsave(&h->lock, flags);
2566         list_for_each_entry(c, queue_head, list) {
2567                 if (memcmp(&c->Header.Tag, tag, 8) != 0)
2568                         continue;
2569                 spin_unlock_irqrestore(&h->lock, flags);
2570                 return c;
2571         }
2572         spin_unlock_irqrestore(&h->lock, flags);
2573         return NULL;
2574 }
2575
2576 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
2577  * tell which kind we're dealing with, so we send the abort both ways.  There
2578  * shouldn't be any collisions between swizzled and unswizzled tags due to the
2579  * way we construct our tags but we check anyway in case the assumptions which
2580  * make this true someday become false.
2581  */
2582 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
2583         unsigned char *scsi3addr, struct CommandList *abort)
2584 {
2585         u8 swizzled_tag[8];
2586         struct CommandList *c;
2587         int rc = 0, rc2 = 0;
2588
2589         /* we do not expect to find the swizzled tag in our queue, but
2590          * check anyway just to be sure the assumptions which make this
2591          * the case haven't become wrong.
2592          */
2593         memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
2594         swizzle_abort_tag(swizzled_tag);
2595         c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
2596         if (c != NULL) {
2597                 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
2598                 return hpsa_send_abort(h, scsi3addr, abort, 0);
2599         }
2600         rc = hpsa_send_abort(h, scsi3addr, abort, 0);
2601
2602         /* if the command is still in our queue, we can't conclude that it was
2603          * aborted (it might have just completed normally) but in any case
2604          * we don't need to try to abort it another way.
2605          */
2606         c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
2607         if (c)
2608                 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
2609         return rc && rc2;
2610 }
2611
2612 /* Send an abort for the specified command.
2613  *      If the device and controller support it,
2614  *              send a task abort request.
2615  */
2616 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
2617 {
2618
2619         int i, rc;
2620         struct ctlr_info *h;
2621         struct hpsa_scsi_dev_t *dev;
2622         struct CommandList *abort; /* pointer to command to be aborted */
2623         struct CommandList *found;
2624         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
2625         char msg[256];          /* For debug messaging. */
2626         int ml = 0;
2627
2628         /* Find the controller of the command to be aborted */
2629         h = sdev_to_hba(sc->device);
2630         if (WARN(h == NULL,
2631                         "ABORT REQUEST FAILED, Controller lookup failed.\n"))
2632                 return FAILED;
2633
2634         /* Check that controller supports some kind of task abort */
2635         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
2636                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
2637                 return FAILED;
2638
2639         memset(msg, 0, sizeof(msg));
2640         ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2641                 h->scsi_host->host_no, sc->device->channel,
2642                 sc->device->id, sc->device->lun);
2643
2644         /* Find the device of the command to be aborted */
2645         dev = sc->device->hostdata;
2646         if (!dev) {
2647                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
2648                                 msg);
2649                 return FAILED;
2650         }
2651
2652         /* Get SCSI command to be aborted */
2653         abort = (struct CommandList *) sc->host_scribble;
2654         if (abort == NULL) {
2655                 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
2656                                 msg);
2657                 return FAILED;
2658         }
2659
2660         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
2661                 abort->Header.Tag.upper, abort->Header.Tag.lower);
2662         as  = (struct scsi_cmnd *) abort->scsi_cmd;
2663         if (as != NULL)
2664                 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
2665                         as->cmnd[0], as->serial_number);
2666         dev_dbg(&h->pdev->dev, "%s\n", msg);
2667         dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
2668                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2669
2670         /* Search reqQ to See if command is queued but not submitted,
2671          * if so, complete the command with aborted status and remove
2672          * it from the reqQ.
2673          */
2674         found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
2675         if (found) {
2676                 found->err_info->CommandStatus = CMD_ABORTED;
2677                 finish_cmd(found);
2678                 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
2679                                 msg);
2680                 return SUCCESS;
2681         }
2682
2683         /* not in reqQ, if also not in cmpQ, must have already completed */
2684         found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2685         if (!found)  {
2686                 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
2687                                 msg);
2688                 return SUCCESS;
2689         }
2690
2691         /*
2692          * Command is in flight, or possibly already completed
2693          * by the firmware (but not to the scsi mid layer) but we can't
2694          * distinguish which.  Send the abort down.
2695          */
2696         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2697         if (rc != 0) {
2698                 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
2699                 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2700                         h->scsi_host->host_no,
2701                         dev->bus, dev->target, dev->lun);
2702                 return FAILED;
2703         }
2704         dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
2705
2706         /* If the abort(s) above completed and actually aborted the
2707          * command, then the command to be aborted should already be
2708          * completed.  If not, wait around a bit more to see if they
2709          * manage to complete normally.
2710          */
2711 #define ABORT_COMPLETE_WAIT_SECS 30
2712         for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
2713                 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2714                 if (!found)
2715                         return SUCCESS;
2716                 msleep(100);
2717         }
2718         dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2719                 msg, ABORT_COMPLETE_WAIT_SECS);
2720         return FAILED;
2721 }
2722
2723
2724 /*
2725  * For operations that cannot sleep, a command block is allocated at init,
2726  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2727  * which ones are free or in use.  Lock must be held when calling this.
2728  * cmd_free() is the complement.
2729  */
2730 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2731 {
2732         struct CommandList *c;
2733         int i;
2734         union u64bit temp64;
2735         dma_addr_t cmd_dma_handle, err_dma_handle;
2736         unsigned long flags;
2737
2738         spin_lock_irqsave(&h->lock, flags);
2739         do {
2740                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2741                 if (i == h->nr_cmds) {
2742                         spin_unlock_irqrestore(&h->lock, flags);
2743                         return NULL;
2744                 }
2745         } while (test_and_set_bit
2746                  (i & (BITS_PER_LONG - 1),
2747                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2748         spin_unlock_irqrestore(&h->lock, flags);
2749
2750         c = h->cmd_pool + i;
2751         memset(c, 0, sizeof(*c));
2752         cmd_dma_handle = h->cmd_pool_dhandle
2753             + i * sizeof(*c);
2754         c->err_info = h->errinfo_pool + i;
2755         memset(c->err_info, 0, sizeof(*c->err_info));
2756         err_dma_handle = h->errinfo_pool_dhandle
2757             + i * sizeof(*c->err_info);
2758
2759         c->cmdindex = i;
2760
2761         INIT_LIST_HEAD(&c->list);
2762         c->busaddr = (u32) cmd_dma_handle;
2763         temp64.val = (u64) err_dma_handle;
2764         c->ErrDesc.Addr.lower = temp64.val32.lower;
2765         c->ErrDesc.Addr.upper = temp64.val32.upper;
2766         c->ErrDesc.Len = sizeof(*c->err_info);
2767
2768         c->h = h;
2769         return c;
2770 }
2771
2772 /* For operations that can wait for kmalloc to possibly sleep,
2773  * this routine can be called. Lock need not be held to call
2774  * cmd_special_alloc. cmd_special_free() is the complement.
2775  */
2776 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2777 {
2778         struct CommandList *c;
2779         union u64bit temp64;
2780         dma_addr_t cmd_dma_handle, err_dma_handle;
2781
2782         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2783         if (c == NULL)
2784                 return NULL;
2785         memset(c, 0, sizeof(*c));
2786
2787         c->cmdindex = -1;
2788
2789         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2790                     &err_dma_handle);
2791
2792         if (c->err_info == NULL) {
2793                 pci_free_consistent(h->pdev,
2794                         sizeof(*c), c, cmd_dma_handle);
2795                 return NULL;
2796         }
2797         memset(c->err_info, 0, sizeof(*c->err_info));
2798
2799         INIT_LIST_HEAD(&c->list);
2800         c->busaddr = (u32) cmd_dma_handle;
2801         temp64.val = (u64) err_dma_handle;
2802         c->ErrDesc.Addr.lower = temp64.val32.lower;
2803         c->ErrDesc.Addr.upper = temp64.val32.upper;
2804         c->ErrDesc.Len = sizeof(*c->err_info);
2805
2806         c->h = h;
2807         return c;
2808 }
2809
2810 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2811 {
2812         int i;
2813         unsigned long flags;
2814
2815         i = c - h->cmd_pool;
2816         spin_lock_irqsave(&h->lock, flags);
2817         clear_bit(i & (BITS_PER_LONG - 1),
2818                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2819         spin_unlock_irqrestore(&h->lock, flags);
2820 }
2821
2822 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2823 {
2824         union u64bit temp64;
2825
2826         temp64.val32.lower = c->ErrDesc.Addr.lower;
2827         temp64.val32.upper = c->ErrDesc.Addr.upper;
2828         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2829                             c->err_info, (dma_addr_t) temp64.val);
2830         pci_free_consistent(h->pdev, sizeof(*c),
2831                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2832 }
2833
2834 #ifdef CONFIG_COMPAT
2835
2836 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2837 {
2838         IOCTL32_Command_struct __user *arg32 =
2839             (IOCTL32_Command_struct __user *) arg;
2840         IOCTL_Command_struct arg64;
2841         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2842         int err;
2843         u32 cp;
2844
2845         memset(&arg64, 0, sizeof(arg64));
2846         err = 0;
2847         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2848                            sizeof(arg64.LUN_info));
2849         err |= copy_from_user(&arg64.Request, &arg32->Request,
2850                            sizeof(arg64.Request));
2851         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2852                            sizeof(arg64.error_info));
2853         err |= get_user(arg64.buf_size, &arg32->buf_size);
2854         err |= get_user(cp, &arg32->buf);
2855         arg64.buf = compat_ptr(cp);
2856         err |= copy_to_user(p, &arg64, sizeof(arg64));
2857
2858         if (err)
2859                 return -EFAULT;
2860
2861         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2862         if (err)
2863                 return err;
2864         err |= copy_in_user(&arg32->error_info, &p->error_info,
2865                          sizeof(arg32->error_info));
2866         if (err)
2867                 return -EFAULT;
2868         return err;
2869 }
2870
2871 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2872         int cmd, void *arg)
2873 {
2874         BIG_IOCTL32_Command_struct __user *arg32 =
2875             (BIG_IOCTL32_Command_struct __user *) arg;
2876         BIG_IOCTL_Command_struct arg64;
2877         BIG_IOCTL_Command_struct __user *p =
2878             compat_alloc_user_space(sizeof(arg64));
2879         int err;
2880         u32 cp;
2881
2882         memset(&arg64, 0, sizeof(arg64));
2883         err = 0;
2884         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2885                            sizeof(arg64.LUN_info));
2886         err |= copy_from_user(&arg64.Request, &arg32->Request,
2887                            sizeof(arg64.Request));
2888         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2889                            sizeof(arg64.error_info));
2890         err |= get_user(arg64.buf_size, &arg32->buf_size);
2891         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2892         err |= get_user(cp, &arg32->buf);
2893         arg64.buf = compat_ptr(cp);
2894         err |= copy_to_user(p, &arg64, sizeof(arg64));
2895
2896         if (err)
2897                 return -EFAULT;
2898
2899         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2900         if (err)
2901                 return err;
2902         err |= copy_in_user(&arg32->error_info, &p->error_info,
2903                          sizeof(arg32->error_info));
2904         if (err)
2905                 return -EFAULT;
2906         return err;
2907 }
2908
2909 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2910 {
2911         switch (cmd) {
2912         case CCISS_GETPCIINFO:
2913         case CCISS_GETINTINFO:
2914         case CCISS_SETINTINFO:
2915         case CCISS_GETNODENAME:
2916         case CCISS_SETNODENAME:
2917         case CCISS_GETHEARTBEAT:
2918         case CCISS_GETBUSTYPES:
2919         case CCISS_GETFIRMVER:
2920         case CCISS_GETDRIVVER:
2921         case CCISS_REVALIDVOLS:
2922         case CCISS_DEREGDISK:
2923         case CCISS_REGNEWDISK:
2924         case CCISS_REGNEWD:
2925         case CCISS_RESCANDISK:
2926         case CCISS_GETLUNINFO:
2927                 return hpsa_ioctl(dev, cmd, arg);
2928
2929         case CCISS_PASSTHRU32:
2930                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2931         case CCISS_BIG_PASSTHRU32:
2932                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2933
2934         default:
2935                 return -ENOIOCTLCMD;
2936         }
2937 }
2938 #endif
2939
2940 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2941 {
2942         struct hpsa_pci_info pciinfo;
2943
2944         if (!argp)
2945                 return -EINVAL;
2946         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2947         pciinfo.bus = h->pdev->bus->number;
2948         pciinfo.dev_fn = h->pdev->devfn;
2949         pciinfo.board_id = h->board_id;
2950         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2951                 return -EFAULT;
2952         return 0;
2953 }
2954
2955 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2956 {
2957         DriverVer_type DriverVer;
2958         unsigned char vmaj, vmin, vsubmin;
2959         int rc;
2960
2961         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2962                 &vmaj, &vmin, &vsubmin);
2963         if (rc != 3) {
2964                 dev_info(&h->pdev->dev, "driver version string '%s' "
2965                         "unrecognized.", HPSA_DRIVER_VERSION);
2966                 vmaj = 0;
2967                 vmin = 0;
2968                 vsubmin = 0;
2969         }
2970         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2971         if (!argp)
2972                 return -EINVAL;
2973         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2974                 return -EFAULT;
2975         return 0;
2976 }
2977
2978 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2979 {
2980         IOCTL_Command_struct iocommand;
2981         struct CommandList *c;
2982         char *buff = NULL;
2983         union u64bit temp64;
2984         int rc = 0;
2985
2986         if (!argp)
2987                 return -EINVAL;
2988         if (!capable(CAP_SYS_RAWIO))
2989                 return -EPERM;
2990         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2991                 return -EFAULT;
2992         if ((iocommand.buf_size < 1) &&
2993             (iocommand.Request.Type.Direction != XFER_NONE)) {
2994                 return -EINVAL;
2995         }
2996         if (iocommand.buf_size > 0) {
2997                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2998                 if (buff == NULL)
2999                         return -EFAULT;
3000                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
3001                         /* Copy the data into the buffer we created */
3002                         if (copy_from_user(buff, iocommand.buf,
3003                                 iocommand.buf_size)) {
3004                                 rc = -EFAULT;
3005                                 goto out_kfree;
3006                         }
3007                 } else {
3008                         memset(buff, 0, iocommand.buf_size);
3009                 }
3010         }
3011         c = cmd_special_alloc(h);
3012         if (c == NULL) {
3013                 rc = -ENOMEM;
3014                 goto out_kfree;
3015         }
3016         /* Fill in the command type */
3017         c->cmd_type = CMD_IOCTL_PEND;
3018         /* Fill in Command Header */
3019         c->Header.ReplyQueue = 0; /* unused in simple mode */
3020         if (iocommand.buf_size > 0) {   /* buffer to fill */
3021                 c->Header.SGList = 1;
3022                 c->Header.SGTotal = 1;
3023         } else  { /* no buffers to fill */
3024                 c->Header.SGList = 0;
3025                 c->Header.SGTotal = 0;
3026         }
3027         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
3028         /* use the kernel address the cmd block for tag */
3029         c->Header.Tag.lower = c->busaddr;
3030
3031         /* Fill in Request block */
3032         memcpy(&c->Request, &iocommand.Request,
3033                 sizeof(c->Request));
3034
3035         /* Fill in the scatter gather information */
3036         if (iocommand.buf_size > 0) {
3037                 temp64.val = pci_map_single(h->pdev, buff,
3038                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
3039                 if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3040                         c->SG[0].Addr.lower = 0;
3041                         c->SG[0].Addr.upper = 0;
3042                         c->SG[0].Len = 0;
3043                         rc = -ENOMEM;
3044                         goto out;
3045                 }
3046                 c->SG[0].Addr.lower = temp64.val32.lower;
3047                 c->SG[0].Addr.upper = temp64.val32.upper;
3048                 c->SG[0].Len = iocommand.buf_size;
3049                 c->SG[0].Ext = 0; /* we are not chaining*/
3050         }
3051         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3052         if (iocommand.buf_size > 0)
3053                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
3054         check_ioctl_unit_attention(h, c);
3055
3056         /* Copy the error information out */
3057         memcpy(&iocommand.error_info, c->err_info,
3058                 sizeof(iocommand.error_info));
3059         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
3060                 rc = -EFAULT;
3061                 goto out;
3062         }
3063         if (iocommand.Request.Type.Direction == XFER_READ &&
3064                 iocommand.buf_size > 0) {
3065                 /* Copy the data out of the buffer we created */
3066                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
3067                         rc = -EFAULT;
3068                         goto out;
3069                 }
3070         }
3071 out:
3072         cmd_special_free(h, c);
3073 out_kfree:
3074         kfree(buff);
3075         return rc;
3076 }
3077
3078 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
3079 {
3080         BIG_IOCTL_Command_struct *ioc;
3081         struct CommandList *c;
3082         unsigned char **buff = NULL;
3083         int *buff_size = NULL;
3084         union u64bit temp64;
3085         BYTE sg_used = 0;
3086         int status = 0;
3087         int i;
3088         u32 left;
3089         u32 sz;
3090         BYTE __user *data_ptr;
3091
3092         if (!argp)
3093                 return -EINVAL;
3094         if (!capable(CAP_SYS_RAWIO))
3095                 return -EPERM;
3096         ioc = (BIG_IOCTL_Command_struct *)
3097             kmalloc(sizeof(*ioc), GFP_KERNEL);
3098         if (!ioc) {
3099                 status = -ENOMEM;
3100                 goto cleanup1;
3101         }
3102         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
3103                 status = -EFAULT;
3104                 goto cleanup1;
3105         }
3106         if ((ioc->buf_size < 1) &&
3107             (ioc->Request.Type.Direction != XFER_NONE)) {
3108                 status = -EINVAL;
3109                 goto cleanup1;
3110         }
3111         /* Check kmalloc limits  using all SGs */
3112         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
3113                 status = -EINVAL;
3114                 goto cleanup1;
3115         }
3116         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
3117                 status = -EINVAL;
3118                 goto cleanup1;
3119         }
3120         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
3121         if (!buff) {
3122                 status = -ENOMEM;
3123                 goto cleanup1;
3124         }
3125         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3126         if (!buff_size) {
3127                 status = -ENOMEM;
3128                 goto cleanup1;
3129         }
3130         left = ioc->buf_size;
3131         data_ptr = ioc->buf;
3132         while (left) {
3133                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
3134                 buff_size[sg_used] = sz;
3135                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
3136                 if (buff[sg_used] == NULL) {
3137                         status = -ENOMEM;
3138                         goto cleanup1;
3139                 }
3140                 if (ioc->Request.Type.Direction == XFER_WRITE) {
3141                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
3142                                 status = -ENOMEM;
3143                                 goto cleanup1;
3144                         }
3145                 } else
3146                         memset(buff[sg_used], 0, sz);
3147                 left -= sz;
3148                 data_ptr += sz;
3149                 sg_used++;
3150         }
3151         c = cmd_special_alloc(h);
3152         if (c == NULL) {
3153                 status = -ENOMEM;
3154                 goto cleanup1;
3155         }
3156         c->cmd_type = CMD_IOCTL_PEND;
3157         c->Header.ReplyQueue = 0;
3158         c->Header.SGList = c->Header.SGTotal = sg_used;
3159         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
3160         c->Header.Tag.lower = c->busaddr;
3161         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
3162         if (ioc->buf_size > 0) {
3163                 int i;
3164                 for (i = 0; i < sg_used; i++) {
3165                         temp64.val = pci_map_single(h->pdev, buff[i],
3166                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
3167                         if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3168                                 c->SG[i].Addr.lower = 0;
3169                                 c->SG[i].Addr.upper = 0;
3170                                 c->SG[i].Len = 0;
3171                                 hpsa_pci_unmap(h->pdev, c, i,
3172                                         PCI_DMA_BIDIRECTIONAL);
3173                                 status = -ENOMEM;
3174                                 goto cleanup1;
3175                         }
3176                         c->SG[i].Addr.lower = temp64.val32.lower;
3177                         c->SG[i].Addr.upper = temp64.val32.upper;
3178                         c->SG[i].Len = buff_size[i];
3179                         /* we are not chaining */
3180                         c->SG[i].Ext = 0;
3181                 }
3182         }
3183         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3184         if (sg_used)
3185                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3186         check_ioctl_unit_attention(h, c);
3187         /* Copy the error information out */
3188         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
3189         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
3190                 cmd_special_free(h, c);
3191                 status = -EFAULT;
3192                 goto cleanup1;
3193         }
3194         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3195                 /* Copy the data out of the buffer we created */
3196                 BYTE __user *ptr = ioc->buf;
3197                 for (i = 0; i < sg_used; i++) {
3198                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
3199                                 cmd_special_free(h, c);
3200                                 status = -EFAULT;
3201                                 goto cleanup1;
3202                         }
3203                         ptr += buff_size[i];
3204                 }
3205         }
3206         cmd_special_free(h, c);
3207         status = 0;
3208 cleanup1:
3209         if (buff) {
3210                 for (i = 0; i < sg_used; i++)
3211                         kfree(buff[i]);
3212                 kfree(buff);
3213         }
3214         kfree(buff_size);
3215         kfree(ioc);
3216         return status;
3217 }
3218
3219 static void check_ioctl_unit_attention(struct ctlr_info *h,
3220         struct CommandList *c)
3221 {
3222         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
3223                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
3224                 (void) check_for_unit_attention(h, c);
3225 }
3226 /*
3227  * ioctl
3228  */
3229 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
3230 {
3231         struct ctlr_info *h;
3232         void __user *argp = (void __user *)arg;
3233
3234         h = sdev_to_hba(dev);
3235
3236         switch (cmd) {
3237         case CCISS_DEREGDISK:
3238         case CCISS_REGNEWDISK:
3239         case CCISS_REGNEWD:
3240                 hpsa_scan_start(h->scsi_host);
3241                 return 0;
3242         case CCISS_GETPCIINFO:
3243                 return hpsa_getpciinfo_ioctl(h, argp);
3244         case CCISS_GETDRIVVER:
3245                 return hpsa_getdrivver_ioctl(h, argp);
3246         case CCISS_PASSTHRU:
3247                 return hpsa_passthru_ioctl(h, argp);
3248         case CCISS_BIG_PASSTHRU:
3249                 return hpsa_big_passthru_ioctl(h, argp);
3250         default:
3251                 return -ENOTTY;
3252         }
3253 }
3254
3255 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3256                                 u8 reset_type)
3257 {
3258         struct CommandList *c;
3259
3260         c = cmd_alloc(h);
3261         if (!c)
3262                 return -ENOMEM;
3263         /* fill_cmd can't fail here, no data buffer to map */
3264         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3265                 RAID_CTLR_LUNID, TYPE_MSG);
3266         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
3267         c->waiting = NULL;
3268         enqueue_cmd_and_start_io(h, c);
3269         /* Don't wait for completion, the reset won't complete.  Don't free
3270          * the command either.  This is the last command we will send before
3271          * re-initializing everything, so it doesn't matter and won't leak.
3272          */
3273         return 0;
3274 }
3275
3276 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3277         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3278         int cmd_type)
3279 {
3280         int pci_dir = XFER_NONE;
3281         struct CommandList *a; /* for commands to be aborted */
3282
3283         c->cmd_type = CMD_IOCTL_PEND;
3284         c->Header.ReplyQueue = 0;
3285         if (buff != NULL && size > 0) {
3286                 c->Header.SGList = 1;
3287                 c->Header.SGTotal = 1;
3288         } else {
3289                 c->Header.SGList = 0;
3290                 c->Header.SGTotal = 0;
3291         }
3292         c->Header.Tag.lower = c->busaddr;
3293         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
3294
3295         c->Request.Type.Type = cmd_type;
3296         if (cmd_type == TYPE_CMD) {
3297                 switch (cmd) {
3298                 case HPSA_INQUIRY:
3299                         /* are we trying to read a vital product page */
3300                         if (page_code != 0) {
3301                                 c->Request.CDB[1] = 0x01;
3302                                 c->Request.CDB[2] = page_code;
3303                         }
3304                         c->Request.CDBLen = 6;
3305                         c->Request.Type.Attribute = ATTR_SIMPLE;
3306                         c->Request.Type.Direction = XFER_READ;
3307                         c->Request.Timeout = 0;
3308                         c->Request.CDB[0] = HPSA_INQUIRY;
3309                         c->Request.CDB[4] = size & 0xFF;
3310                         break;
3311                 case HPSA_REPORT_LOG:
3312                 case HPSA_REPORT_PHYS:
3313                         /* Talking to controller so It's a physical command
3314                            mode = 00 target = 0.  Nothing to write.
3315                          */
3316                         c->Request.CDBLen = 12;
3317                         c->Request.Type.Attribute = ATTR_SIMPLE;
3318                         c->Request.Type.Direction = XFER_READ;
3319                         c->Request.Timeout = 0;
3320                         c->Request.CDB[0] = cmd;
3321                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
3322                         c->Request.CDB[7] = (size >> 16) & 0xFF;
3323                         c->Request.CDB[8] = (size >> 8) & 0xFF;
3324                         c->Request.CDB[9] = size & 0xFF;
3325                         break;
3326                 case HPSA_CACHE_FLUSH:
3327                         c->Request.CDBLen = 12;
3328                         c->Request.Type.Attribute = ATTR_SIMPLE;
3329                         c->Request.Type.Direction = XFER_WRITE;
3330                         c->Request.Timeout = 0;
3331                         c->Request.CDB[0] = BMIC_WRITE;
3332                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3333                         c->Request.CDB[7] = (size >> 8) & 0xFF;
3334                         c->Request.CDB[8] = size & 0xFF;
3335                         break;
3336                 case TEST_UNIT_READY:
3337                         c->Request.CDBLen = 6;
3338                         c->Request.Type.Attribute = ATTR_SIMPLE;
3339                         c->Request.Type.Direction = XFER_NONE;
3340                         c->Request.Timeout = 0;
3341                         break;
3342                 default:
3343                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
3344                         BUG();
3345                         return -1;
3346                 }
3347         } else if (cmd_type == TYPE_MSG) {
3348                 switch (cmd) {
3349
3350                 case  HPSA_DEVICE_RESET_MSG:
3351                         c->Request.CDBLen = 16;
3352                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
3353                         c->Request.Type.Attribute = ATTR_SIMPLE;
3354                         c->Request.Type.Direction = XFER_NONE;
3355                         c->Request.Timeout = 0; /* Don't time out */
3356                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
3357                         c->Request.CDB[0] =  cmd;
3358                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
3359                         /* If bytes 4-7 are zero, it means reset the */
3360                         /* LunID device */
3361                         c->Request.CDB[4] = 0x00;
3362                         c->Request.CDB[5] = 0x00;
3363                         c->Request.CDB[6] = 0x00;
3364                         c->Request.CDB[7] = 0x00;
3365                         break;
3366                 case  HPSA_ABORT_MSG:
3367                         a = buff;       /* point to command to be aborted */
3368                         dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3369                                 a->Header.Tag.upper, a->Header.Tag.lower,
3370                                 c->Header.Tag.upper, c->Header.Tag.lower);
3371                         c->Request.CDBLen = 16;
3372                         c->Request.Type.Type = TYPE_MSG;
3373                         c->Request.Type.Attribute = ATTR_SIMPLE;
3374                         c->Request.Type.Direction = XFER_WRITE;
3375                         c->Request.Timeout = 0; /* Don't time out */
3376                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
3377                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
3378                         c->Request.CDB[2] = 0x00; /* reserved */
3379                         c->Request.CDB[3] = 0x00; /* reserved */
3380                         /* Tag to abort goes in CDB[4]-CDB[11] */
3381                         c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
3382                         c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
3383                         c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
3384                         c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
3385                         c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
3386                         c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
3387                         c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
3388                         c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
3389                         c->Request.CDB[12] = 0x00; /* reserved */
3390                         c->Request.CDB[13] = 0x00; /* reserved */
3391                         c->Request.CDB[14] = 0x00; /* reserved */
3392                         c->Request.CDB[15] = 0x00; /* reserved */
3393                 break;
3394                 default:
3395                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
3396                                 cmd);
3397                         BUG();
3398                 }
3399         } else {
3400                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
3401                 BUG();
3402         }
3403
3404         switch (c->Request.Type.Direction) {
3405         case XFER_READ:
3406                 pci_dir = PCI_DMA_FROMDEVICE;
3407                 break;
3408         case XFER_WRITE:
3409                 pci_dir = PCI_DMA_TODEVICE;
3410                 break;
3411         case XFER_NONE:
3412                 pci_dir = PCI_DMA_NONE;
3413                 break;
3414         default:
3415                 pci_dir = PCI_DMA_BIDIRECTIONAL;
3416         }
3417         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
3418                 return -1;
3419         return 0;
3420 }
3421
3422 /*
3423  * Map (physical) PCI mem into (virtual) kernel space
3424  */
3425 static void __iomem *remap_pci_mem(ulong base, ulong size)
3426 {
3427         ulong page_base = ((ulong) base) & PAGE_MASK;
3428         ulong page_offs = ((ulong) base) - page_base;
3429         void __iomem *page_remapped = ioremap_nocache(page_base,
3430                 page_offs + size);
3431
3432         return page_remapped ? (page_remapped + page_offs) : NULL;
3433 }
3434
3435 /* Takes cmds off the submission queue and sends them to the hardware,
3436  * then puts them on the queue of cmds waiting for completion.
3437  */
3438 static void start_io(struct ctlr_info *h)
3439 {
3440         struct CommandList *c;
3441         unsigned long flags;
3442
3443         spin_lock_irqsave(&h->lock, flags);
3444         while (!list_empty(&h->reqQ)) {
3445                 c = list_entry(h->reqQ.next, struct CommandList, list);
3446                 /* can't do anything if fifo is full */
3447                 if ((h->access.fifo_full(h))) {
3448                         dev_warn(&h->pdev->dev, "fifo full\n");
3449                         break;
3450                 }
3451
3452                 /* Get the first entry from the Request Q */
3453                 removeQ(c);
3454                 h->Qdepth--;
3455
3456                 /* Put job onto the completed Q */
3457                 addQ(&h->cmpQ, c);
3458
3459                 /* Must increment commands_outstanding before unlocking
3460                  * and submitting to avoid race checking for fifo full
3461                  * condition.
3462                  */
3463                 h->commands_outstanding++;
3464                 if (h->commands_outstanding > h->max_outstanding)
3465                         h->max_outstanding = h->commands_outstanding;
3466
3467                 /* Tell the controller execute command */
3468                 spin_unlock_irqrestore(&h->lock, flags);
3469                 h->access.submit_command(h, c);
3470                 spin_lock_irqsave(&h->lock, flags);
3471         }
3472         spin_unlock_irqrestore(&h->lock, flags);
3473 }
3474
3475 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
3476 {
3477         return h->access.command_completed(h, q);
3478 }
3479
3480 static inline bool interrupt_pending(struct ctlr_info *h)
3481 {
3482         return h->access.intr_pending(h);
3483 }
3484
3485 static inline long interrupt_not_for_us(struct ctlr_info *h)
3486 {
3487         return (h->access.intr_pending(h) == 0) ||
3488                 (h->interrupts_enabled == 0);
3489 }
3490
3491 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3492         u32 raw_tag)
3493 {
3494         if (unlikely(tag_index >= h->nr_cmds)) {
3495                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3496                 return 1;
3497         }
3498         return 0;
3499 }
3500
3501 static inline void finish_cmd(struct CommandList *c)
3502 {
3503         unsigned long flags;
3504
3505         spin_lock_irqsave(&c->h->lock, flags);
3506         removeQ(c);
3507         spin_unlock_irqrestore(&c->h->lock, flags);
3508         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3509         if (likely(c->cmd_type == CMD_SCSI))
3510                 complete_scsi_command(c);
3511         else if (c->cmd_type == CMD_IOCTL_PEND)
3512                 complete(c->waiting);
3513 }
3514
3515 static inline u32 hpsa_tag_contains_index(u32 tag)
3516 {
3517         return tag & DIRECT_LOOKUP_BIT;
3518 }
3519
3520 static inline u32 hpsa_tag_to_index(u32 tag)
3521 {
3522         return tag >> DIRECT_LOOKUP_SHIFT;
3523 }
3524
3525
3526 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3527 {
3528 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3529 #define HPSA_SIMPLE_ERROR_BITS 0x03
3530         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3531                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3532         return tag & ~HPSA_PERF_ERROR_BITS;
3533 }
3534
3535 /* process completion of an indexed ("direct lookup") command */
3536 static inline void process_indexed_cmd(struct ctlr_info *h,
3537         u32 raw_tag)
3538 {
3539         u32 tag_index;
3540         struct CommandList *c;
3541
3542         tag_index = hpsa_tag_to_index(raw_tag);
3543         if (!bad_tag(h, tag_index, raw_tag)) {
3544                 c = h->cmd_pool + tag_index;
3545                 finish_cmd(c);
3546         }
3547 }
3548
3549 /* process completion of a non-indexed command */
3550 static inline void process_nonindexed_cmd(struct ctlr_info *h,
3551         u32 raw_tag)
3552 {
3553         u32 tag;
3554         struct CommandList *c = NULL;
3555         unsigned long flags;
3556
3557         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3558         spin_lock_irqsave(&h->lock, flags);
3559         list_for_each_entry(c, &h->cmpQ, list) {
3560                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3561                         spin_unlock_irqrestore(&h->lock, flags);
3562                         finish_cmd(c);
3563                         return;
3564                 }
3565         }
3566         spin_unlock_irqrestore(&h->lock, flags);
3567         bad_tag(h, h->nr_cmds + 1, raw_tag);
3568 }
3569
3570 /* Some controllers, like p400, will give us one interrupt
3571  * after a soft reset, even if we turned interrupts off.
3572  * Only need to check for this in the hpsa_xxx_discard_completions
3573  * functions.
3574  */
3575 static int ignore_bogus_interrupt(struct ctlr_info *h)
3576 {
3577         if (likely(!reset_devices))
3578                 return 0;
3579
3580         if (likely(h->interrupts_enabled))
3581                 return 0;
3582
3583         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3584                 "(known firmware bug.)  Ignoring.\n");
3585
3586         return 1;
3587 }
3588
3589 /*
3590  * Convert &h->q[x] (passed to interrupt handlers) back to h.
3591  * Relies on (h-q[x] == x) being true for x such that
3592  * 0 <= x < MAX_REPLY_QUEUES.
3593  */
3594 static struct ctlr_info *queue_to_hba(u8 *queue)
3595 {
3596         return container_of((queue - *queue), struct ctlr_info, q[0]);
3597 }
3598
3599 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
3600 {
3601         struct ctlr_info *h = queue_to_hba(queue);
3602         u8 q = *(u8 *) queue;
3603         u32 raw_tag;
3604
3605         if (ignore_bogus_interrupt(h))
3606                 return IRQ_NONE;
3607
3608         if (interrupt_not_for_us(h))
3609                 return IRQ_NONE;
3610         h->last_intr_timestamp = get_jiffies_64();
3611         while (interrupt_pending(h)) {
3612                 raw_tag = get_next_completion(h, q);
3613                 while (raw_tag != FIFO_EMPTY)
3614                         raw_tag = next_command(h, q);
3615         }
3616         return IRQ_HANDLED;
3617 }
3618
3619 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
3620 {
3621         struct ctlr_info *h = queue_to_hba(queue);
3622         u32 raw_tag;
3623         u8 q = *(u8 *) queue;
3624
3625         if (ignore_bogus_interrupt(h))
3626                 return IRQ_NONE;
3627
3628         h->last_intr_timestamp = get_jiffies_64();
3629         raw_tag = get_next_completion(h, q);
3630         while (raw_tag != FIFO_EMPTY)
3631                 raw_tag = next_command(h, q);
3632         return IRQ_HANDLED;
3633 }
3634
3635 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
3636 {
3637         struct ctlr_info *h = queue_to_hba((u8 *) queue);
3638         u32 raw_tag;
3639         u8 q = *(u8 *) queue;
3640
3641         if (interrupt_not_for_us(h))
3642                 return IRQ_NONE;
3643         h->last_intr_timestamp = get_jiffies_64();
3644         while (interrupt_pending(h)) {
3645                 raw_tag = get_next_completion(h, q);
3646                 while (raw_tag != FIFO_EMPTY) {
3647                         if (likely(hpsa_tag_contains_index(raw_tag)))
3648                                 process_indexed_cmd(h, raw_tag);
3649                         else
3650                                 process_nonindexed_cmd(h, raw_tag);
3651                         raw_tag = next_command(h, q);
3652                 }
3653         }
3654         return IRQ_HANDLED;
3655 }
3656
3657 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
3658 {
3659         struct ctlr_info *h = queue_to_hba(queue);
3660         u32 raw_tag;
3661         u8 q = *(u8 *) queue;
3662
3663         h->last_intr_timestamp = get_jiffies_64();
3664         raw_tag = get_next_completion(h, q);
3665         while (raw_tag != FIFO_EMPTY) {
3666                 if (likely(hpsa_tag_contains_index(raw_tag)))
3667                         process_indexed_cmd(h, raw_tag);
3668                 else
3669                         process_nonindexed_cmd(h, raw_tag);
3670                 raw_tag = next_command(h, q);
3671         }
3672         return IRQ_HANDLED;
3673 }
3674
3675 /* Send a message CDB to the firmware. Careful, this only works
3676  * in simple mode, not performant mode due to the tag lookup.
3677  * We only ever use this immediately after a controller reset.
3678  */
3679 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3680                         unsigned char type)
3681 {
3682         struct Command {
3683                 struct CommandListHeader CommandHeader;
3684                 struct RequestBlock Request;
3685                 struct ErrDescriptor ErrorDescriptor;
3686         };
3687         struct Command *cmd;
3688         static const size_t cmd_sz = sizeof(*cmd) +
3689                                         sizeof(cmd->ErrorDescriptor);
3690         dma_addr_t paddr64;
3691         uint32_t paddr32, tag;
3692         void __iomem *vaddr;
3693         int i, err;
3694
3695         vaddr = pci_ioremap_bar(pdev, 0);
3696         if (vaddr == NULL)
3697                 return -ENOMEM;
3698
3699         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3700          * CCISS commands, so they must be allocated from the lower 4GiB of
3701          * memory.
3702          */
3703         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3704         if (err) {
3705                 iounmap(vaddr);
3706                 return -ENOMEM;
3707         }
3708
3709         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3710         if (cmd == NULL) {
3711                 iounmap(vaddr);
3712                 return -ENOMEM;
3713         }
3714
3715         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3716          * although there's no guarantee, we assume that the address is at
3717          * least 4-byte aligned (most likely, it's page-aligned).
3718          */
3719         paddr32 = paddr64;
3720
3721         cmd->CommandHeader.ReplyQueue = 0;
3722         cmd->CommandHeader.SGList = 0;
3723         cmd->CommandHeader.SGTotal = 0;
3724         cmd->CommandHeader.Tag.lower = paddr32;
3725         cmd->CommandHeader.Tag.upper = 0;
3726         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3727
3728         cmd->Request.CDBLen = 16;
3729         cmd->Request.Type.Type = TYPE_MSG;
3730         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3731         cmd->Request.Type.Direction = XFER_NONE;
3732         cmd->Request.Timeout = 0; /* Don't time out */
3733         cmd->Request.CDB[0] = opcode;
3734         cmd->Request.CDB[1] = type;
3735         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3736         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3737         cmd->ErrorDescriptor.Addr.upper = 0;
3738         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3739
3740         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3741
3742         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3743                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3744                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3745                         break;
3746                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3747         }
3748
3749         iounmap(vaddr);
3750
3751         /* we leak the DMA buffer here ... no choice since the controller could
3752          *  still complete the command.
3753          */
3754         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3755                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3756                         opcode, type);
3757                 return -ETIMEDOUT;
3758         }
3759
3760         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3761
3762         if (tag & HPSA_ERROR_BIT) {
3763                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3764                         opcode, type);
3765                 return -EIO;
3766         }
3767
3768         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3769                 opcode, type);
3770         return 0;
3771 }
3772
3773 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3774
3775 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3776         void * __iomem vaddr, u32 use_doorbell)
3777 {
3778         u16 pmcsr;
3779         int pos;
3780
3781         if (use_doorbell) {
3782                 /* For everything after the P600, the PCI power state method
3783                  * of resetting the controller doesn't work, so we have this
3784                  * other way using the doorbell register.
3785                  */
3786                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3787                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3788         } else { /* Try to do it the PCI power state way */
3789
3790                 /* Quoting from the Open CISS Specification: "The Power
3791                  * Management Control/Status Register (CSR) controls the power
3792                  * state of the device.  The normal operating state is D0,
3793                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3794                  * the controller, place the interface device in D3 then to D0,
3795                  * this causes a secondary PCI reset which will reset the
3796                  * controller." */
3797
3798                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3799                 if (pos == 0) {
3800                         dev_err(&pdev->dev,
3801                                 "hpsa_reset_controller: "
3802                                 "PCI PM not supported\n");
3803                         return -ENODEV;
3804                 }
3805                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3806                 /* enter the D3hot power management state */
3807                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3808                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3809                 pmcsr |= PCI_D3hot;
3810                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3811
3812                 msleep(500);
3813
3814                 /* enter the D0 power management state */
3815                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3816                 pmcsr |= PCI_D0;
3817                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3818
3819                 /*
3820                  * The P600 requires a small delay when changing states.
3821                  * Otherwise we may think the board did not reset and we bail.
3822                  * This for kdump only and is particular to the P600.
3823                  */
3824                 msleep(500);
3825         }
3826         return 0;
3827 }
3828
3829 static void init_driver_version(char *driver_version, int len)
3830 {
3831         memset(driver_version, 0, len);
3832         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3833 }
3834
3835 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
3836 {
3837         char *driver_version;
3838         int i, size = sizeof(cfgtable->driver_version);
3839
3840         driver_version = kmalloc(size, GFP_KERNEL);
3841         if (!driver_version)
3842                 return -ENOMEM;
3843
3844         init_driver_version(driver_version, size);
3845         for (i = 0; i < size; i++)
3846                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3847         kfree(driver_version);
3848         return 0;
3849 }
3850
3851 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
3852                                           unsigned char *driver_ver)
3853 {
3854         int i;
3855
3856         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3857                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3858 }
3859
3860 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
3861 {
3862
3863         char *driver_ver, *old_driver_ver;
3864         int rc, size = sizeof(cfgtable->driver_version);
3865
3866         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3867         if (!old_driver_ver)
3868                 return -ENOMEM;
3869         driver_ver = old_driver_ver + size;
3870
3871         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3872          * should have been changed, otherwise we know the reset failed.
3873          */
3874         init_driver_version(old_driver_ver, size);
3875         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3876         rc = !memcmp(driver_ver, old_driver_ver, size);
3877         kfree(old_driver_ver);
3878         return rc;
3879 }
3880 /* This does a hard reset of the controller using PCI power management
3881  * states or the using the doorbell register.
3882  */
3883 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3884 {
3885         u64 cfg_offset;
3886         u32 cfg_base_addr;
3887         u64 cfg_base_addr_index;
3888         void __iomem *vaddr;
3889         unsigned long paddr;
3890         u32 misc_fw_support;
3891         int rc;
3892         struct CfgTable __iomem *cfgtable;
3893         u32 use_doorbell;
3894         u32 board_id;
3895         u16 command_register;
3896
3897         /* For controllers as old as the P600, this is very nearly
3898          * the same thing as
3899          *
3900          * pci_save_state(pci_dev);
3901          * pci_set_power_state(pci_dev, PCI_D3hot);
3902          * pci_set_power_state(pci_dev, PCI_D0);
3903          * pci_restore_state(pci_dev);
3904          *
3905          * For controllers newer than the P600, the pci power state
3906          * method of resetting doesn't work so we have another way
3907          * using the doorbell register.
3908          */
3909
3910         rc = hpsa_lookup_board_id(pdev, &board_id);
3911         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3912                 dev_warn(&pdev->dev, "Not resetting device.\n");
3913                 return -ENODEV;
3914         }
3915
3916         /* if controller is soft- but not hard resettable... */
3917         if (!ctlr_is_hard_resettable(board_id))
3918                 return -ENOTSUPP; /* try soft reset later. */
3919
3920         /* Save the PCI command register */
3921         pci_read_config_word(pdev, 4, &command_register);
3922         /* Turn the board off.  This is so that later pci_restore_state()
3923          * won't turn the board on before the rest of config space is ready.
3924          */
3925         pci_disable_device(pdev);
3926         pci_save_state(pdev);
3927
3928         /* find the first memory BAR, so we can find the cfg table */
3929         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3930         if (rc)
3931                 return rc;
3932         vaddr = remap_pci_mem(paddr, 0x250);
3933         if (!vaddr)
3934                 return -ENOMEM;
3935
3936         /* find cfgtable in order to check if reset via doorbell is supported */
3937         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3938                                         &cfg_base_addr_index, &cfg_offset);
3939         if (rc)
3940                 goto unmap_vaddr;
3941         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3942                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3943         if (!cfgtable) {
3944                 rc = -ENOMEM;
3945                 goto unmap_vaddr;
3946         }
3947         rc = write_driver_ver_to_cfgtable(cfgtable);
3948         if (rc)
3949                 goto unmap_vaddr;
3950
3951         /* If reset via doorbell register is supported, use that.
3952          * There are two such methods.  Favor the newest method.
3953          */
3954         misc_fw_support = readl(&cfgtable->misc_fw_support);
3955         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3956         if (use_doorbell) {
3957                 use_doorbell = DOORBELL_CTLR_RESET2;
3958         } else {
3959                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3960                 if (use_doorbell) {
3961                         dev_warn(&pdev->dev, "Soft reset not supported. "
3962                                 "Firmware update is required.\n");
3963                         rc = -ENOTSUPP; /* try soft reset */
3964                         goto unmap_cfgtable;
3965                 }
3966         }
3967
3968         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3969         if (rc)
3970                 goto unmap_cfgtable;
3971
3972         pci_restore_state(pdev);
3973         rc = pci_enable_device(pdev);
3974         if (rc) {
3975                 dev_warn(&pdev->dev, "failed to enable device.\n");
3976                 goto unmap_cfgtable;
3977         }
3978         pci_write_config_word(pdev, 4, command_register);
3979
3980         /* Some devices (notably the HP Smart Array 5i Controller)
3981            need a little pause here */
3982         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3983
3984         /* Wait for board to become not ready, then ready. */
3985         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3986         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3987         if (rc) {
3988                 dev_warn(&pdev->dev,
3989                         "failed waiting for board to reset."
3990                         " Will try soft reset.\n");
3991                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3992                 goto unmap_cfgtable;
3993         }
3994         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3995         if (rc) {
3996                 dev_warn(&pdev->dev,
3997                         "failed waiting for board to become ready "
3998                         "after hard reset\n");
3999                 goto unmap_cfgtable;
4000         }
4001
4002         rc = controller_reset_failed(vaddr);
4003         if (rc < 0)
4004                 goto unmap_cfgtable;
4005         if (rc) {
4006                 dev_warn(&pdev->dev, "Unable to successfully reset "
4007                         "controller. Will try soft reset.\n");
4008                 rc = -ENOTSUPP;
4009         } else {
4010                 dev_info(&pdev->dev, "board ready after hard reset.\n");
4011         }
4012
4013 unmap_cfgtable:
4014         iounmap(cfgtable);
4015
4016 unmap_vaddr:
4017         iounmap(vaddr);
4018         return rc;
4019 }
4020
4021 /*
4022  *  We cannot read the structure directly, for portability we must use
4023  *   the io functions.
4024  *   This is for debug only.
4025  */
4026 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
4027 {
4028 #ifdef HPSA_DEBUG
4029         int i;
4030         char temp_name[17];
4031
4032         dev_info(dev, "Controller Configuration information\n");
4033         dev_info(dev, "------------------------------------\n");
4034         for (i = 0; i < 4; i++)
4035                 temp_name[i] = readb(&(tb->Signature[i]));
4036         temp_name[4] = '\0';
4037         dev_info(dev, "   Signature = %s\n", temp_name);
4038         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
4039         dev_info(dev, "   Transport methods supported = 0x%x\n",
4040                readl(&(tb->TransportSupport)));
4041         dev_info(dev, "   Transport methods active = 0x%x\n",
4042                readl(&(tb->TransportActive)));
4043         dev_info(dev, "   Requested transport Method = 0x%x\n",
4044                readl(&(tb->HostWrite.TransportRequest)));
4045         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
4046                readl(&(tb->HostWrite.CoalIntDelay)));
4047         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
4048                readl(&(tb->HostWrite.CoalIntCount)));
4049         dev_info(dev, "   Max outstanding commands = 0x%d\n",
4050                readl(&(tb->CmdsOutMax)));
4051         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
4052         for (i = 0; i < 16; i++)
4053                 temp_name[i] = readb(&(tb->ServerName[i]));
4054         temp_name[16] = '\0';
4055         dev_info(dev, "   Server Name = %s\n", temp_name);
4056         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
4057                 readl(&(tb->HeartBeat)));
4058 #endif                          /* HPSA_DEBUG */
4059 }
4060
4061 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
4062 {
4063         int i, offset, mem_type, bar_type;
4064
4065         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
4066                 return 0;
4067         offset = 0;
4068         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4069                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
4070                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
4071                         offset += 4;
4072                 else {
4073                         mem_type = pci_resource_flags(pdev, i) &
4074                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
4075                         switch (mem_type) {
4076                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
4077                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
4078                                 offset += 4;    /* 32 bit */
4079                                 break;
4080                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
4081                                 offset += 8;
4082                                 break;
4083                         default:        /* reserved in PCI 2.2 */
4084                                 dev_warn(&pdev->dev,
4085                                        "base address is invalid\n");
4086                                 return -1;
4087                                 break;
4088                         }
4089                 }
4090                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
4091                         return i + 1;
4092         }
4093         return -1;
4094 }
4095
4096 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4097  * controllers that are capable. If not, we use IO-APIC mode.
4098  */
4099
4100 static void hpsa_interrupt_mode(struct ctlr_info *h)
4101 {
4102 #ifdef CONFIG_PCI_MSI
4103         int err, i;
4104         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
4105
4106         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
4107                 hpsa_msix_entries[i].vector = 0;
4108                 hpsa_msix_entries[i].entry = i;
4109         }
4110
4111         /* Some boards advertise MSI but don't really support it */
4112         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4113             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4114                 goto default_int_mode;
4115         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4116                 dev_info(&h->pdev->dev, "MSIX\n");
4117                 err = pci_enable_msix(h->pdev, hpsa_msix_entries,
4118                                                 MAX_REPLY_QUEUES);
4119                 if (!err) {
4120                         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4121                                 h->intr[i] = hpsa_msix_entries[i].vector;
4122                         h->msix_vector = 1;
4123                         return;
4124                 }
4125                 if (err > 0) {
4126                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
4127                                "available\n", err);
4128                         goto default_int_mode;
4129                 } else {
4130                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
4131                                err);
4132                         goto default_int_mode;
4133                 }
4134         }
4135         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4136                 dev_info(&h->pdev->dev, "MSI\n");
4137                 if (!pci_enable_msi(h->pdev))
4138                         h->msi_vector = 1;
4139                 else
4140                         dev_warn(&h->pdev->dev, "MSI init failed\n");
4141         }
4142 default_int_mode:
4143 #endif                          /* CONFIG_PCI_MSI */
4144         /* if we get here we're going to use the default interrupt mode */
4145         h->intr[h->intr_mode] = h->pdev->irq;
4146 }
4147
4148 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4149 {
4150         int i;
4151         u32 subsystem_vendor_id, subsystem_device_id;
4152
4153         subsystem_vendor_id = pdev->subsystem_vendor;
4154         subsystem_device_id = pdev->subsystem_device;
4155         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4156                     subsystem_vendor_id;
4157
4158         for (i = 0; i < ARRAY_SIZE(products); i++)
4159                 if (*board_id == products[i].board_id)
4160                         return i;
4161
4162         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
4163                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
4164                 !hpsa_allow_any) {
4165                 dev_warn(&pdev->dev, "unrecognized board ID: "
4166                         "0x%08x, ignoring.\n", *board_id);
4167                         return -ENODEV;
4168         }
4169         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
4170 }
4171
4172 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
4173                                     unsigned long *memory_bar)
4174 {
4175         int i;
4176
4177         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4178                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4179                         /* addressing mode bits already removed */
4180                         *memory_bar = pci_resource_start(pdev, i);
4181                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4182                                 *memory_bar);
4183                         return 0;
4184                 }
4185         dev_warn(&pdev->dev, "no memory BAR found\n");
4186         return -ENODEV;
4187 }
4188
4189 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
4190                                      int wait_for_ready)
4191 {
4192         int i, iterations;
4193         u32 scratchpad;
4194         if (wait_for_ready)
4195                 iterations = HPSA_BOARD_READY_ITERATIONS;
4196         else
4197                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4198
4199         for (i = 0; i < iterations; i++) {
4200                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4201                 if (wait_for_ready) {
4202                         if (scratchpad == HPSA_FIRMWARE_READY)
4203                                 return 0;
4204                 } else {
4205                         if (scratchpad != HPSA_FIRMWARE_READY)
4206                                 return 0;
4207                 }
4208                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
4209         }
4210         dev_warn(&pdev->dev, "board not ready, timed out.\n");
4211         return -ENODEV;
4212 }
4213
4214 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4215                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4216                                u64 *cfg_offset)
4217 {
4218         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4219         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4220         *cfg_base_addr &= (u32) 0x0000ffff;
4221         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4222         if (*cfg_base_addr_index == -1) {
4223                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
4224                 return -ENODEV;
4225         }
4226         return 0;
4227 }
4228
4229 static int hpsa_find_cfgtables(struct ctlr_info *h)
4230 {
4231         u64 cfg_offset;
4232         u32 cfg_base_addr;
4233         u64 cfg_base_addr_index;
4234         u32 trans_offset;
4235         int rc;
4236
4237         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4238                 &cfg_base_addr_index, &cfg_offset);
4239         if (rc)
4240                 return rc;
4241         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4242                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4243         if (!h->cfgtable)
4244                 return -ENOMEM;
4245         rc = write_driver_ver_to_cfgtable(h->cfgtable);
4246         if (rc)
4247                 return rc;
4248         /* Find performant mode table. */
4249         trans_offset = readl(&h->cfgtable->TransMethodOffset);
4250         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4251                                 cfg_base_addr_index)+cfg_offset+trans_offset,
4252                                 sizeof(*h->transtable));
4253         if (!h->transtable)
4254                 return -ENOMEM;
4255         return 0;
4256 }
4257
4258 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4259 {
4260         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4261
4262         /* Limit commands in memory limited kdump scenario. */
4263         if (reset_devices && h->max_commands > 32)
4264                 h->max_commands = 32;
4265
4266         if (h->max_commands < 16) {
4267                 dev_warn(&h->pdev->dev, "Controller reports "
4268                         "max supported commands of %d, an obvious lie. "
4269                         "Using 16.  Ensure that firmware is up to date.\n",
4270                         h->max_commands);
4271                 h->max_commands = 16;
4272         }
4273 }
4274
4275 /* Interrogate the hardware for some limits:
4276  * max commands, max SG elements without chaining, and with chaining,
4277  * SG chain block size, etc.
4278  */
4279 static void hpsa_find_board_params(struct ctlr_info *h)
4280 {
4281         hpsa_get_max_perf_mode_cmds(h);
4282         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4283         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
4284         /*
4285          * Limit in-command s/g elements to 32 save dma'able memory.
4286          * Howvever spec says if 0, use 31
4287          */
4288         h->max_cmd_sg_entries = 31;
4289         if (h->maxsgentries > 512) {
4290                 h->max_cmd_sg_entries = 32;
4291                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
4292                 h->maxsgentries--; /* save one for chain pointer */
4293         } else {
4294                 h->maxsgentries = 31; /* default to traditional values */
4295                 h->chainsize = 0;
4296         }
4297
4298         /* Find out what task management functions are supported and cache */
4299         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4300 }
4301
4302 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
4303 {
4304         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4305                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4306                 return false;
4307         }
4308         return true;
4309 }
4310
4311 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4312 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
4313 {
4314 #ifdef CONFIG_X86
4315         u32 prefetch;
4316
4317         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4318         prefetch |= 0x100;
4319         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4320 #endif
4321 }
4322
4323 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4324  * in a prefetch beyond physical memory.
4325  */
4326 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
4327 {
4328         u32 dma_prefetch;
4329
4330         if (h->board_id != 0x3225103C)
4331                 return;
4332         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4333         dma_prefetch |= 0x8000;
4334         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4335 }
4336
4337 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4338 {
4339         int i;
4340         u32 doorbell_value;
4341         unsigned long flags;
4342
4343         /* under certain very rare conditions, this can take awhile.
4344          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4345          * as we enter this code.)
4346          */
4347         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4348                 spin_lock_irqsave(&h->lock, flags);
4349                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
4350                 spin_unlock_irqrestore(&h->lock, flags);
4351                 if (!(doorbell_value & CFGTBL_ChangeReq))
4352                         break;
4353                 /* delay and try again */
4354                 usleep_range(10000, 20000);
4355         }
4356 }
4357
4358 static int hpsa_enter_simple_mode(struct ctlr_info *h)
4359 {
4360         u32 trans_support;
4361
4362         trans_support = readl(&(h->cfgtable->TransportSupport));
4363         if (!(trans_support & SIMPLE_MODE))
4364                 return -ENOTSUPP;
4365
4366         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
4367         /* Update the field, and then ring the doorbell */
4368         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
4369         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4370         hpsa_wait_for_mode_change_ack(h);
4371         print_cfg_table(&h->pdev->dev, h->cfgtable);
4372         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
4373                 dev_warn(&h->pdev->dev,
4374                         "unable to get board into simple mode\n");
4375                 return -ENODEV;
4376         }
4377         h->transMethod = CFGTBL_Trans_Simple;
4378         return 0;
4379 }
4380
4381 static int hpsa_pci_init(struct ctlr_info *h)
4382 {
4383         int prod_index, err;
4384
4385         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
4386         if (prod_index < 0)
4387                 return -ENODEV;
4388         h->product_name = products[prod_index].product_name;
4389         h->access = *(products[prod_index].access);
4390
4391         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4392                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4393
4394         err = pci_enable_device(h->pdev);
4395         if (err) {
4396                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4397                 return err;
4398         }
4399
4400         /* Enable bus mastering (pci_disable_device may disable this) */
4401         pci_set_master(h->pdev);
4402
4403         err = pci_request_regions(h->pdev, HPSA);
4404         if (err) {
4405                 dev_err(&h->pdev->dev,
4406                         "cannot obtain PCI resources, aborting\n");
4407                 return err;
4408         }
4409         hpsa_interrupt_mode(h);
4410         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4411         if (err)
4412                 goto err_out_free_res;
4413         h->vaddr = remap_pci_mem(h->paddr, 0x250);
4414         if (!h->vaddr) {
4415                 err = -ENOMEM;
4416                 goto err_out_free_res;
4417         }
4418         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4419         if (err)
4420                 goto err_out_free_res;
4421         err = hpsa_find_cfgtables(h);
4422         if (err)
4423                 goto err_out_free_res;
4424         hpsa_find_board_params(h);
4425
4426         if (!hpsa_CISS_signature_present(h)) {
4427                 err = -ENODEV;
4428                 goto err_out_free_res;
4429         }
4430         hpsa_enable_scsi_prefetch(h);
4431         hpsa_p600_dma_prefetch_quirk(h);
4432         err = hpsa_enter_simple_mode(h);
4433         if (err)
4434                 goto err_out_free_res;
4435         return 0;
4436
4437 err_out_free_res:
4438         if (h->transtable)
4439                 iounmap(h->transtable);
4440         if (h->cfgtable)
4441                 iounmap(h->cfgtable);
4442         if (h->vaddr)
4443                 iounmap(h->vaddr);
4444         pci_disable_device(h->pdev);
4445         pci_release_regions(h->pdev);
4446         return err;
4447 }
4448
4449 static void hpsa_hba_inquiry(struct ctlr_info *h)
4450 {
4451         int rc;
4452
4453 #define HBA_INQUIRY_BYTE_COUNT 64
4454         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4455         if (!h->hba_inquiry_data)
4456                 return;
4457         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4458                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4459         if (rc != 0) {
4460                 kfree(h->hba_inquiry_data);
4461                 h->hba_inquiry_data = NULL;
4462         }
4463 }
4464
4465 static int hpsa_init_reset_devices(struct pci_dev *pdev)
4466 {
4467         int rc, i;
4468
4469         if (!reset_devices)
4470                 return 0;
4471
4472         /* Reset the controller with a PCI power-cycle or via doorbell */
4473         rc = hpsa_kdump_hard_reset_controller(pdev);
4474
4475         /* -ENOTSUPP here means we cannot reset the controller
4476          * but it's already (and still) up and running in
4477          * "performant mode".  Or, it might be 640x, which can't reset
4478          * due to concerns about shared bbwc between 6402/6404 pair.
4479          */
4480         if (rc == -ENOTSUPP)
4481                 return rc; /* just try to do the kdump anyhow. */
4482         if (rc)
4483                 return -ENODEV;
4484
4485         /* Now try to get the controller to respond to a no-op */
4486         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4487         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4488                 if (hpsa_noop(pdev) == 0)
4489                         break;
4490                 else
4491                         dev_warn(&pdev->dev, "no-op failed%s\n",
4492                                         (i < 11 ? "; re-trying" : ""));
4493         }
4494         return 0;
4495 }
4496
4497 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4498 {
4499         h->cmd_pool_bits = kzalloc(
4500                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4501                 sizeof(unsigned long), GFP_KERNEL);
4502         h->cmd_pool = pci_alloc_consistent(h->pdev,
4503                     h->nr_cmds * sizeof(*h->cmd_pool),
4504                     &(h->cmd_pool_dhandle));
4505         h->errinfo_pool = pci_alloc_consistent(h->pdev,
4506                     h->nr_cmds * sizeof(*h->errinfo_pool),
4507                     &(h->errinfo_pool_dhandle));
4508         if ((h->cmd_pool_bits == NULL)
4509             || (h->cmd_pool == NULL)
4510             || (h->errinfo_pool == NULL)) {
4511                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4512                 return -ENOMEM;
4513         }
4514         return 0;
4515 }
4516
4517 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4518 {
4519         kfree(h->cmd_pool_bits);
4520         if (h->cmd_pool)
4521                 pci_free_consistent(h->pdev,
4522                             h->nr_cmds * sizeof(struct CommandList),
4523                             h->cmd_pool, h->cmd_pool_dhandle);
4524         if (h->errinfo_pool)
4525                 pci_free_consistent(h->pdev,
4526                             h->nr_cmds * sizeof(struct ErrorInfo),
4527                             h->errinfo_pool,
4528                             h->errinfo_pool_dhandle);
4529 }
4530
4531 static int hpsa_request_irq(struct ctlr_info *h,
4532         irqreturn_t (*msixhandler)(int, void *),
4533         irqreturn_t (*intxhandler)(int, void *))
4534 {
4535         int rc, i;
4536
4537         /*
4538          * initialize h->q[x] = x so that interrupt handlers know which
4539          * queue to process.
4540          */
4541         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4542                 h->q[i] = (u8) i;
4543
4544         if (h->intr_mode == PERF_MODE_INT && h->msix_vector) {
4545                 /* If performant mode and MSI-X, use multiple reply queues */
4546                 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4547                         rc = request_irq(h->intr[i], msixhandler,
4548                                         0, h->devname,
4549                                         &h->q[i]);
4550         } else {
4551                 /* Use single reply pool */
4552                 if (h->msix_vector || h->msi_vector) {
4553                         rc = request_irq(h->intr[h->intr_mode],
4554                                 msixhandler, 0, h->devname,
4555                                 &h->q[h->intr_mode]);
4556                 } else {
4557                         rc = request_irq(h->intr[h->intr_mode],
4558                                 intxhandler, IRQF_SHARED, h->devname,
4559                                 &h->q[h->intr_mode]);
4560                 }
4561         }
4562         if (rc) {
4563                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4564                        h->intr[h->intr_mode], h->devname);
4565                 return -ENODEV;
4566         }
4567         return 0;
4568 }
4569
4570 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
4571 {
4572         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4573                 HPSA_RESET_TYPE_CONTROLLER)) {
4574                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4575                 return -EIO;
4576         }
4577
4578         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4579         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4580                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4581                 return -1;
4582         }
4583
4584         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4585         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4586                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4587                         "after soft reset.\n");
4588                 return -1;
4589         }
4590
4591         return 0;
4592 }
4593
4594 static void free_irqs(struct ctlr_info *h)
4595 {
4596         int i;
4597
4598         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
4599                 /* Single reply queue, only one irq to free */
4600                 i = h->intr_mode;
4601                 free_irq(h->intr[i], &h->q[i]);
4602                 return;
4603         }
4604
4605         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4606                 free_irq(h->intr[i], &h->q[i]);
4607 }
4608
4609 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
4610 {
4611         free_irqs(h);
4612 #ifdef CONFIG_PCI_MSI
4613         if (h->msix_vector) {
4614                 if (h->pdev->msix_enabled)
4615                         pci_disable_msix(h->pdev);
4616         } else if (h->msi_vector) {
4617                 if (h->pdev->msi_enabled)
4618                         pci_disable_msi(h->pdev);
4619         }
4620 #endif /* CONFIG_PCI_MSI */
4621 }
4622
4623 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4624 {
4625         hpsa_free_irqs_and_disable_msix(h);
4626         hpsa_free_sg_chain_blocks(h);
4627         hpsa_free_cmd_pool(h);
4628         kfree(h->blockFetchTable);
4629         pci_free_consistent(h->pdev, h->reply_pool_size,
4630                 h->reply_pool, h->reply_pool_dhandle);
4631         if (h->vaddr)
4632                 iounmap(h->vaddr);
4633         if (h->transtable)
4634                 iounmap(h->transtable);
4635         if (h->cfgtable)
4636                 iounmap(h->cfgtable);
4637         pci_release_regions(h->pdev);
4638         kfree(h);
4639 }
4640
4641 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4642 {
4643         assert_spin_locked(&lockup_detector_lock);
4644         if (!hpsa_lockup_detector)
4645                 return;
4646         if (h->lockup_detected)
4647                 return; /* already stopped the lockup detector */
4648         list_del(&h->lockup_list);
4649 }
4650
4651 /* Called when controller lockup detected. */
4652 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4653 {
4654         struct CommandList *c = NULL;
4655
4656         assert_spin_locked(&h->lock);
4657         /* Mark all outstanding commands as failed and complete them. */
4658         while (!list_empty(list)) {
4659                 c = list_entry(list->next, struct CommandList, list);
4660                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4661                 finish_cmd(c);
4662         }
4663 }
4664
4665 static void controller_lockup_detected(struct ctlr_info *h)
4666 {
4667         unsigned long flags;
4668
4669         assert_spin_locked(&lockup_detector_lock);
4670         remove_ctlr_from_lockup_detector_list(h);
4671         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4672         spin_lock_irqsave(&h->lock, flags);
4673         h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4674         spin_unlock_irqrestore(&h->lock, flags);
4675         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4676                         h->lockup_detected);
4677         pci_disable_device(h->pdev);
4678         spin_lock_irqsave(&h->lock, flags);
4679         fail_all_cmds_on_list(h, &h->cmpQ);
4680         fail_all_cmds_on_list(h, &h->reqQ);
4681         spin_unlock_irqrestore(&h->lock, flags);
4682 }
4683
4684 static void detect_controller_lockup(struct ctlr_info *h)
4685 {
4686         u64 now;
4687         u32 heartbeat;
4688         unsigned long flags;
4689
4690         assert_spin_locked(&lockup_detector_lock);
4691         now = get_jiffies_64();
4692         /* If we've received an interrupt recently, we're ok. */
4693         if (time_after64(h->last_intr_timestamp +
4694                                 (h->heartbeat_sample_interval), now))
4695                 return;
4696
4697         /*
4698          * If we've already checked the heartbeat recently, we're ok.
4699          * This could happen if someone sends us a signal. We
4700          * otherwise don't care about signals in this thread.
4701          */
4702         if (time_after64(h->last_heartbeat_timestamp +
4703                                 (h->heartbeat_sample_interval), now))
4704                 return;
4705
4706         /* If heartbeat has not changed since we last looked, we're not ok. */
4707         spin_lock_irqsave(&h->lock, flags);
4708         heartbeat = readl(&h->cfgtable->HeartBeat);
4709         spin_unlock_irqrestore(&h->lock, flags);
4710         if (h->last_heartbeat == heartbeat) {
4711                 controller_lockup_detected(h);
4712                 return;
4713         }
4714
4715         /* We're ok. */
4716         h->last_heartbeat = heartbeat;
4717         h->last_heartbeat_timestamp = now;
4718 }
4719
4720 static int detect_controller_lockup_thread(void *notused)
4721 {
4722         struct ctlr_info *h;
4723         unsigned long flags;
4724
4725         while (1) {
4726                 struct list_head *this, *tmp;
4727
4728                 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4729                 if (kthread_should_stop())
4730                         break;
4731                 spin_lock_irqsave(&lockup_detector_lock, flags);
4732                 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4733                         h = list_entry(this, struct ctlr_info, lockup_list);
4734                         detect_controller_lockup(h);
4735                 }
4736                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4737         }
4738         return 0;
4739 }
4740
4741 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4742 {
4743         unsigned long flags;
4744
4745         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
4746         spin_lock_irqsave(&lockup_detector_lock, flags);
4747         list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4748         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4749 }
4750
4751 static void start_controller_lockup_detector(struct ctlr_info *h)
4752 {
4753         /* Start the lockup detector thread if not already started */
4754         if (!hpsa_lockup_detector) {
4755                 spin_lock_init(&lockup_detector_lock);
4756                 hpsa_lockup_detector =
4757                         kthread_run(detect_controller_lockup_thread,
4758                                                 NULL, HPSA);
4759         }
4760         if (!hpsa_lockup_detector) {
4761                 dev_warn(&h->pdev->dev,
4762                         "Could not start lockup detector thread\n");
4763                 return;
4764         }
4765         add_ctlr_to_lockup_detector_list(h);
4766 }
4767
4768 static void stop_controller_lockup_detector(struct ctlr_info *h)
4769 {
4770         unsigned long flags;
4771
4772         spin_lock_irqsave(&lockup_detector_lock, flags);
4773         remove_ctlr_from_lockup_detector_list(h);
4774         /* If the list of ctlr's to monitor is empty, stop the thread */
4775         if (list_empty(&hpsa_ctlr_list)) {
4776                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4777                 kthread_stop(hpsa_lockup_detector);
4778                 spin_lock_irqsave(&lockup_detector_lock, flags);
4779                 hpsa_lockup_detector = NULL;
4780         }
4781         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4782 }
4783
4784 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4785 {
4786         int dac, rc;
4787         struct ctlr_info *h;
4788         int try_soft_reset = 0;
4789         unsigned long flags;
4790
4791         if (number_of_controllers == 0)
4792                 printk(KERN_INFO DRIVER_NAME "\n");
4793
4794         rc = hpsa_init_reset_devices(pdev);
4795         if (rc) {
4796                 if (rc != -ENOTSUPP)
4797                         return rc;
4798                 /* If the reset fails in a particular way (it has no way to do
4799                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4800                  * a soft reset once we get the controller configured up to the
4801                  * point that it can accept a command.
4802                  */
4803                 try_soft_reset = 1;
4804                 rc = 0;
4805         }
4806
4807 reinit_after_soft_reset:
4808
4809         /* Command structures must be aligned on a 32-byte boundary because
4810          * the 5 lower bits of the address are used by the hardware. and by
4811          * the driver.  See comments in hpsa.h for more info.
4812          */
4813 #define COMMANDLIST_ALIGNMENT 32
4814         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4815         h = kzalloc(sizeof(*h), GFP_KERNEL);
4816         if (!h)
4817                 return -ENOMEM;
4818
4819         h->pdev = pdev;
4820         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4821         INIT_LIST_HEAD(&h->cmpQ);
4822         INIT_LIST_HEAD(&h->reqQ);
4823         spin_lock_init(&h->lock);
4824         spin_lock_init(&h->scan_lock);
4825         rc = hpsa_pci_init(h);
4826         if (rc != 0)
4827                 goto clean1;
4828
4829         sprintf(h->devname, HPSA "%d", number_of_controllers);
4830         h->ctlr = number_of_controllers;
4831         number_of_controllers++;
4832
4833         /* configure PCI DMA stuff */
4834         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4835         if (rc == 0) {
4836                 dac = 1;
4837         } else {
4838                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4839                 if (rc == 0) {
4840                         dac = 0;
4841                 } else {
4842                         dev_err(&pdev->dev, "no suitable DMA available\n");
4843                         goto clean1;
4844                 }
4845         }
4846
4847         /* make sure the board interrupts are off */
4848         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4849
4850         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4851                 goto clean2;
4852         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4853                h->devname, pdev->device,
4854                h->intr[h->intr_mode], dac ? "" : " not");
4855         if (hpsa_allocate_cmd_pool(h))
4856                 goto clean4;
4857         if (hpsa_allocate_sg_chain_blocks(h))
4858                 goto clean4;
4859         init_waitqueue_head(&h->scan_wait_queue);
4860         h->scan_finished = 1; /* no scan currently in progress */
4861
4862         pci_set_drvdata(pdev, h);
4863         h->ndevices = 0;
4864         h->scsi_host = NULL;
4865         spin_lock_init(&h->devlock);
4866         hpsa_put_ctlr_into_performant_mode(h);
4867
4868         /* At this point, the controller is ready to take commands.
4869          * Now, if reset_devices and the hard reset didn't work, try
4870          * the soft reset and see if that works.
4871          */
4872         if (try_soft_reset) {
4873
4874                 /* This is kind of gross.  We may or may not get a completion
4875                  * from the soft reset command, and if we do, then the value
4876                  * from the fifo may or may not be valid.  So, we wait 10 secs
4877                  * after the reset throwing away any completions we get during
4878                  * that time.  Unregister the interrupt handler and register
4879                  * fake ones to scoop up any residual completions.
4880                  */
4881                 spin_lock_irqsave(&h->lock, flags);
4882                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4883                 spin_unlock_irqrestore(&h->lock, flags);
4884                 free_irqs(h);
4885                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4886                                         hpsa_intx_discard_completions);
4887                 if (rc) {
4888                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4889                                 "soft reset.\n");
4890                         goto clean4;
4891                 }
4892
4893                 rc = hpsa_kdump_soft_reset(h);
4894                 if (rc)
4895                         /* Neither hard nor soft reset worked, we're hosed. */
4896                         goto clean4;
4897
4898                 dev_info(&h->pdev->dev, "Board READY.\n");
4899                 dev_info(&h->pdev->dev,
4900                         "Waiting for stale completions to drain.\n");
4901                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4902                 msleep(10000);
4903                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4904
4905                 rc = controller_reset_failed(h->cfgtable);
4906                 if (rc)
4907                         dev_info(&h->pdev->dev,
4908                                 "Soft reset appears to have failed.\n");
4909
4910                 /* since the controller's reset, we have to go back and re-init
4911                  * everything.  Easiest to just forget what we've done and do it
4912                  * all over again.
4913                  */
4914                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4915                 try_soft_reset = 0;
4916                 if (rc)
4917                         /* don't go to clean4, we already unallocated */
4918                         return -ENODEV;
4919
4920                 goto reinit_after_soft_reset;
4921         }
4922
4923         /* Turn the interrupts on so we can service requests */
4924         h->access.set_intr_mask(h, HPSA_INTR_ON);
4925
4926         hpsa_hba_inquiry(h);
4927         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4928         start_controller_lockup_detector(h);
4929         return 1;
4930
4931 clean4:
4932         hpsa_free_sg_chain_blocks(h);
4933         hpsa_free_cmd_pool(h);
4934         free_irqs(h);
4935 clean2:
4936 clean1:
4937         kfree(h);
4938         return rc;
4939 }
4940
4941 static void hpsa_flush_cache(struct ctlr_info *h)
4942 {
4943         char *flush_buf;
4944         struct CommandList *c;
4945
4946         flush_buf = kzalloc(4, GFP_KERNEL);
4947         if (!flush_buf)
4948                 return;
4949
4950         c = cmd_special_alloc(h);
4951         if (!c) {
4952                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4953                 goto out_of_memory;
4954         }
4955         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4956                 RAID_CTLR_LUNID, TYPE_CMD)) {
4957                 goto out;
4958         }
4959         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4960         if (c->err_info->CommandStatus != 0)
4961 out:
4962                 dev_warn(&h->pdev->dev,
4963                         "error flushing cache on controller\n");
4964         cmd_special_free(h, c);
4965 out_of_memory:
4966         kfree(flush_buf);
4967 }
4968
4969 static void hpsa_shutdown(struct pci_dev *pdev)
4970 {
4971         struct ctlr_info *h;
4972
4973         h = pci_get_drvdata(pdev);
4974         /* Turn board interrupts off  and send the flush cache command
4975          * sendcmd will turn off interrupt, and send the flush...
4976          * To write all data in the battery backed cache to disks
4977          */
4978         hpsa_flush_cache(h);
4979         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4980         hpsa_free_irqs_and_disable_msix(h);
4981 }
4982
4983 static void hpsa_free_device_info(struct ctlr_info *h)
4984 {
4985         int i;
4986
4987         for (i = 0; i < h->ndevices; i++)
4988                 kfree(h->dev[i]);
4989 }
4990
4991 static void hpsa_remove_one(struct pci_dev *pdev)
4992 {
4993         struct ctlr_info *h;
4994
4995         if (pci_get_drvdata(pdev) == NULL) {
4996                 dev_err(&pdev->dev, "unable to remove device\n");
4997                 return;
4998         }
4999         h = pci_get_drvdata(pdev);
5000         stop_controller_lockup_detector(h);
5001         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
5002         hpsa_shutdown(pdev);
5003         iounmap(h->vaddr);
5004         iounmap(h->transtable);
5005         iounmap(h->cfgtable);
5006         hpsa_free_device_info(h);
5007         hpsa_free_sg_chain_blocks(h);
5008         pci_free_consistent(h->pdev,
5009                 h->nr_cmds * sizeof(struct CommandList),
5010                 h->cmd_pool, h->cmd_pool_dhandle);
5011         pci_free_consistent(h->pdev,
5012                 h->nr_cmds * sizeof(struct ErrorInfo),
5013                 h->errinfo_pool, h->errinfo_pool_dhandle);
5014         pci_free_consistent(h->pdev, h->reply_pool_size,
5015                 h->reply_pool, h->reply_pool_dhandle);
5016         kfree(h->cmd_pool_bits);
5017         kfree(h->blockFetchTable);
5018         kfree(h->hba_inquiry_data);
5019         pci_disable_device(pdev);
5020         pci_release_regions(pdev);
5021         pci_set_drvdata(pdev, NULL);
5022         kfree(h);
5023 }
5024
5025 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
5026         __attribute__((unused)) pm_message_t state)
5027 {
5028         return -ENOSYS;
5029 }
5030
5031 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
5032 {
5033         return -ENOSYS;
5034 }
5035
5036 static struct pci_driver hpsa_pci_driver = {
5037         .name = HPSA,
5038         .probe = hpsa_init_one,
5039         .remove = hpsa_remove_one,
5040         .id_table = hpsa_pci_device_id, /* id_table */
5041         .shutdown = hpsa_shutdown,
5042         .suspend = hpsa_suspend,
5043         .resume = hpsa_resume,
5044 };
5045
5046 /* Fill in bucket_map[], given nsgs (the max number of
5047  * scatter gather elements supported) and bucket[],
5048  * which is an array of 8 integers.  The bucket[] array
5049  * contains 8 different DMA transfer sizes (in 16
5050  * byte increments) which the controller uses to fetch
5051  * commands.  This function fills in bucket_map[], which
5052  * maps a given number of scatter gather elements to one of
5053  * the 8 DMA transfer sizes.  The point of it is to allow the
5054  * controller to only do as much DMA as needed to fetch the
5055  * command, with the DMA transfer size encoded in the lower
5056  * bits of the command address.
5057  */
5058 static void  calc_bucket_map(int bucket[], int num_buckets,
5059         int nsgs, int *bucket_map)
5060 {
5061         int i, j, b, size;
5062
5063         /* even a command with 0 SGs requires 4 blocks */
5064 #define MINIMUM_TRANSFER_BLOCKS 4
5065 #define NUM_BUCKETS 8
5066         /* Note, bucket_map must have nsgs+1 entries. */
5067         for (i = 0; i <= nsgs; i++) {
5068                 /* Compute size of a command with i SG entries */
5069                 size = i + MINIMUM_TRANSFER_BLOCKS;
5070                 b = num_buckets; /* Assume the biggest bucket */
5071                 /* Find the bucket that is just big enough */
5072                 for (j = 0; j < 8; j++) {
5073                         if (bucket[j] >= size) {
5074                                 b = j;
5075                                 break;
5076                         }
5077                 }
5078                 /* for a command with i SG entries, use bucket b. */
5079                 bucket_map[i] = b;
5080         }
5081 }
5082
5083 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 use_short_tags)
5084 {
5085         int i;
5086         unsigned long register_value;
5087
5088         /* This is a bit complicated.  There are 8 registers on
5089          * the controller which we write to to tell it 8 different
5090          * sizes of commands which there may be.  It's a way of
5091          * reducing the DMA done to fetch each command.  Encoded into
5092          * each command's tag are 3 bits which communicate to the controller
5093          * which of the eight sizes that command fits within.  The size of
5094          * each command depends on how many scatter gather entries there are.
5095          * Each SG entry requires 16 bytes.  The eight registers are programmed
5096          * with the number of 16-byte blocks a command of that size requires.
5097          * The smallest command possible requires 5 such 16 byte blocks.
5098          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5099          * blocks.  Note, this only extends to the SG entries contained
5100          * within the command block, and does not extend to chained blocks
5101          * of SG elements.   bft[] contains the eight values we write to
5102          * the registers.  They are not evenly distributed, but have more
5103          * sizes for small commands, and fewer sizes for larger commands.
5104          */
5105         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
5106         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
5107         /*  5 = 1 s/g entry or 4k
5108          *  6 = 2 s/g entry or 8k
5109          *  8 = 4 s/g entry or 16k
5110          * 10 = 6 s/g entry or 24k
5111          */
5112
5113         /* Controller spec: zero out this buffer. */
5114         memset(h->reply_pool, 0, h->reply_pool_size);
5115
5116         bft[7] = SG_ENTRIES_IN_CMD + 4;
5117         calc_bucket_map(bft, ARRAY_SIZE(bft),
5118                                 SG_ENTRIES_IN_CMD, h->blockFetchTable);
5119         for (i = 0; i < 8; i++)
5120                 writel(bft[i], &h->transtable->BlockFetch[i]);
5121
5122         /* size of controller ring buffer */
5123         writel(h->max_commands, &h->transtable->RepQSize);
5124         writel(h->nreply_queues, &h->transtable->RepQCount);
5125         writel(0, &h->transtable->RepQCtrAddrLow32);
5126         writel(0, &h->transtable->RepQCtrAddrHigh32);
5127
5128         for (i = 0; i < h->nreply_queues; i++) {
5129                 writel(0, &h->transtable->RepQAddr[i].upper);
5130                 writel(h->reply_pool_dhandle +
5131                         (h->max_commands * sizeof(u64) * i),
5132                         &h->transtable->RepQAddr[i].lower);
5133         }
5134
5135         writel(CFGTBL_Trans_Performant | use_short_tags |
5136                 CFGTBL_Trans_enable_directed_msix,
5137                 &(h->cfgtable->HostWrite.TransportRequest));
5138         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5139         hpsa_wait_for_mode_change_ack(h);
5140         register_value = readl(&(h->cfgtable->TransportActive));
5141         if (!(register_value & CFGTBL_Trans_Performant)) {
5142                 dev_warn(&h->pdev->dev, "unable to get board into"
5143                                         " performant mode\n");
5144                 return;
5145         }
5146         /* Change the access methods to the performant access methods */
5147         h->access = SA5_performant_access;
5148         h->transMethod = CFGTBL_Trans_Performant;
5149 }
5150
5151 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
5152 {
5153         u32 trans_support;
5154         int i;
5155
5156         if (hpsa_simple_mode)
5157                 return;
5158
5159         trans_support = readl(&(h->cfgtable->TransportSupport));
5160         if (!(trans_support & PERFORMANT_MODE))
5161                 return;
5162
5163         h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1;
5164         hpsa_get_max_perf_mode_cmds(h);
5165         /* Performant mode ring buffer and supporting data structures */
5166         h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
5167         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
5168                                 &(h->reply_pool_dhandle));
5169
5170         for (i = 0; i < h->nreply_queues; i++) {
5171                 h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
5172                 h->reply_queue[i].size = h->max_commands;
5173                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
5174                 h->reply_queue[i].current_entry = 0;
5175         }
5176
5177         /* Need a block fetch table for performant mode */
5178         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
5179                                 sizeof(u32)), GFP_KERNEL);
5180
5181         if ((h->reply_pool == NULL)
5182                 || (h->blockFetchTable == NULL))
5183                 goto clean_up;
5184
5185         hpsa_enter_performant_mode(h,
5186                 trans_support & CFGTBL_Trans_use_short_tags);
5187
5188         return;
5189
5190 clean_up:
5191         if (h->reply_pool)
5192                 pci_free_consistent(h->pdev, h->reply_pool_size,
5193                         h->reply_pool, h->reply_pool_dhandle);
5194         kfree(h->blockFetchTable);
5195 }
5196
5197 /*
5198  *  This is it.  Register the PCI driver information for the cards we control
5199  *  the OS will call our registered routines when it finds one of our cards.
5200  */
5201 static int __init hpsa_init(void)
5202 {
5203         return pci_register_driver(&hpsa_pci_driver);
5204 }
5205
5206 static void __exit hpsa_cleanup(void)
5207 {
5208         pci_unregister_driver(&hpsa_pci_driver);
5209 }
5210
5211 module_init(hpsa_init);
5212 module_exit(hpsa_cleanup);