2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
58 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
59 #define HPSA_DRIVER_VERSION "3.4.4-1"
60 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
63 /* How long to wait (in milliseconds) for board to go into simple mode */
64 #define MAX_CONFIG_WAIT 30000
65 #define MAX_IOCTL_CONFIG_WAIT 1000
67 /*define how many times we will try a command because of bus resets */
68 #define MAX_CMD_RETRIES 3
70 /* Embedded module documentation macros - see modules.h */
71 MODULE_AUTHOR("Hewlett-Packard Company");
72 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
74 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
75 MODULE_VERSION(HPSA_DRIVER_VERSION);
76 MODULE_LICENSE("GPL");
78 static int hpsa_allow_any;
79 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
80 MODULE_PARM_DESC(hpsa_allow_any,
81 "Allow hpsa driver to access unknown HP Smart Array hardware");
82 static int hpsa_simple_mode;
83 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
84 MODULE_PARM_DESC(hpsa_simple_mode,
85 "Use 'simple mode' rather than 'performant mode'");
87 /* define the PCI info for the cards we can control */
88 static const struct pci_device_id hpsa_pci_device_id[] = {
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
129 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
130 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
131 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
132 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
133 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
134 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
135 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
139 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
141 /* board_id = Subsystem Device ID & Vendor ID
142 * product = Marketing Name for the board
143 * access = Address of the struct of function pointers
145 static struct board_type products[] = {
146 {0x3241103C, "Smart Array P212", &SA5_access},
147 {0x3243103C, "Smart Array P410", &SA5_access},
148 {0x3245103C, "Smart Array P410i", &SA5_access},
149 {0x3247103C, "Smart Array P411", &SA5_access},
150 {0x3249103C, "Smart Array P812", &SA5_access},
151 {0x324A103C, "Smart Array P712m", &SA5_access},
152 {0x324B103C, "Smart Array P711m", &SA5_access},
153 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
154 {0x3350103C, "Smart Array P222", &SA5_access},
155 {0x3351103C, "Smart Array P420", &SA5_access},
156 {0x3352103C, "Smart Array P421", &SA5_access},
157 {0x3353103C, "Smart Array P822", &SA5_access},
158 {0x3354103C, "Smart Array P420i", &SA5_access},
159 {0x3355103C, "Smart Array P220i", &SA5_access},
160 {0x3356103C, "Smart Array P721m", &SA5_access},
161 {0x1921103C, "Smart Array P830i", &SA5_access},
162 {0x1922103C, "Smart Array P430", &SA5_access},
163 {0x1923103C, "Smart Array P431", &SA5_access},
164 {0x1924103C, "Smart Array P830", &SA5_access},
165 {0x1926103C, "Smart Array P731m", &SA5_access},
166 {0x1928103C, "Smart Array P230i", &SA5_access},
167 {0x1929103C, "Smart Array P530", &SA5_access},
168 {0x21BD103C, "Smart Array", &SA5_access},
169 {0x21BE103C, "Smart Array", &SA5_access},
170 {0x21BF103C, "Smart Array", &SA5_access},
171 {0x21C0103C, "Smart Array", &SA5_access},
172 {0x21C1103C, "Smart Array", &SA5_access},
173 {0x21C2103C, "Smart Array", &SA5_access},
174 {0x21C3103C, "Smart Array", &SA5_access},
175 {0x21C4103C, "Smart Array", &SA5_access},
176 {0x21C5103C, "Smart Array", &SA5_access},
177 {0x21C6103C, "Smart Array", &SA5_access},
178 {0x21C7103C, "Smart Array", &SA5_access},
179 {0x21C8103C, "Smart Array", &SA5_access},
180 {0x21C9103C, "Smart Array", &SA5_access},
181 {0x21CA103C, "Smart Array", &SA5_access},
182 {0x21CB103C, "Smart Array", &SA5_access},
183 {0x21CC103C, "Smart Array", &SA5_access},
184 {0x21CD103C, "Smart Array", &SA5_access},
185 {0x21CE103C, "Smart Array", &SA5_access},
186 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
187 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
188 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
189 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
190 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
191 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
194 static int number_of_controllers;
196 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
197 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
198 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
199 static void lock_and_start_io(struct ctlr_info *h);
200 static void start_io(struct ctlr_info *h, unsigned long *flags);
203 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
207 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
208 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
209 static struct CommandList *cmd_alloc(struct ctlr_info *h);
210 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
211 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
212 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
214 #define VPD_PAGE (1 << 8)
216 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
217 static void hpsa_scan_start(struct Scsi_Host *);
218 static int hpsa_scan_finished(struct Scsi_Host *sh,
219 unsigned long elapsed_time);
220 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
222 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
223 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
224 static int hpsa_slave_alloc(struct scsi_device *sdev);
225 static void hpsa_slave_destroy(struct scsi_device *sdev);
227 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
228 static int check_for_unit_attention(struct ctlr_info *h,
229 struct CommandList *c);
230 static void check_ioctl_unit_attention(struct ctlr_info *h,
231 struct CommandList *c);
232 /* performant mode helper functions */
233 static void calc_bucket_map(int *bucket, int num_buckets,
234 int nsgs, int min_blocks, u32 *bucket_map);
235 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
236 static inline u32 next_command(struct ctlr_info *h, u8 q);
237 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
238 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
240 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
241 unsigned long *memory_bar);
242 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
243 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
245 static inline void finish_cmd(struct CommandList *c);
246 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
247 #define BOARD_NOT_READY 0
248 #define BOARD_READY 1
249 static void hpsa_drain_accel_commands(struct ctlr_info *h);
250 static void hpsa_flush_cache(struct ctlr_info *h);
251 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
252 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
255 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
257 unsigned long *priv = shost_priv(sdev->host);
258 return (struct ctlr_info *) *priv;
261 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
263 unsigned long *priv = shost_priv(sh);
264 return (struct ctlr_info *) *priv;
267 static int check_for_unit_attention(struct ctlr_info *h,
268 struct CommandList *c)
270 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
273 switch (c->err_info->SenseInfo[12]) {
275 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
276 "detected, command retried\n", h->ctlr);
279 dev_warn(&h->pdev->dev,
280 HPSA "%d: LUN failure detected\n", h->ctlr);
282 case REPORT_LUNS_CHANGED:
283 dev_warn(&h->pdev->dev,
284 HPSA "%d: report LUN data changed\n", h->ctlr);
286 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
287 * target (array) devices.
291 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
292 "or device reset detected\n", h->ctlr);
294 case UNIT_ATTENTION_CLEARED:
295 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
296 "cleared by another initiator\n", h->ctlr);
299 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
300 "unit attention detected\n", h->ctlr);
306 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
308 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
309 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
310 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
312 dev_warn(&h->pdev->dev, HPSA "device busy");
316 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
317 struct device_attribute *attr,
318 const char *buf, size_t count)
322 struct Scsi_Host *shost = class_to_shost(dev);
325 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
327 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
328 strncpy(tmpbuf, buf, len);
330 if (sscanf(tmpbuf, "%d", &status) != 1)
332 h = shost_to_hba(shost);
333 h->acciopath_status = !!status;
334 dev_warn(&h->pdev->dev,
335 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
336 h->acciopath_status ? "enabled" : "disabled");
340 static ssize_t host_store_raid_offload_debug(struct device *dev,
341 struct device_attribute *attr,
342 const char *buf, size_t count)
344 int debug_level, len;
346 struct Scsi_Host *shost = class_to_shost(dev);
349 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
351 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
352 strncpy(tmpbuf, buf, len);
354 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
358 h = shost_to_hba(shost);
359 h->raid_offload_debug = debug_level;
360 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
361 h->raid_offload_debug);
365 static ssize_t host_store_rescan(struct device *dev,
366 struct device_attribute *attr,
367 const char *buf, size_t count)
370 struct Scsi_Host *shost = class_to_shost(dev);
371 h = shost_to_hba(shost);
372 hpsa_scan_start(h->scsi_host);
376 static ssize_t host_show_firmware_revision(struct device *dev,
377 struct device_attribute *attr, char *buf)
380 struct Scsi_Host *shost = class_to_shost(dev);
381 unsigned char *fwrev;
383 h = shost_to_hba(shost);
384 if (!h->hba_inquiry_data)
386 fwrev = &h->hba_inquiry_data[32];
387 return snprintf(buf, 20, "%c%c%c%c\n",
388 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
391 static ssize_t host_show_commands_outstanding(struct device *dev,
392 struct device_attribute *attr, char *buf)
394 struct Scsi_Host *shost = class_to_shost(dev);
395 struct ctlr_info *h = shost_to_hba(shost);
397 return snprintf(buf, 20, "%d\n",
398 atomic_read(&h->commands_outstanding));
401 static ssize_t host_show_transport_mode(struct device *dev,
402 struct device_attribute *attr, char *buf)
405 struct Scsi_Host *shost = class_to_shost(dev);
407 h = shost_to_hba(shost);
408 return snprintf(buf, 20, "%s\n",
409 h->transMethod & CFGTBL_Trans_Performant ?
410 "performant" : "simple");
413 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
414 struct device_attribute *attr, char *buf)
417 struct Scsi_Host *shost = class_to_shost(dev);
419 h = shost_to_hba(shost);
420 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
421 (h->acciopath_status == 1) ? "enabled" : "disabled");
424 /* List of controllers which cannot be hard reset on kexec with reset_devices */
425 static u32 unresettable_controller[] = {
426 0x324a103C, /* Smart Array P712m */
427 0x324b103C, /* SmartArray P711m */
428 0x3223103C, /* Smart Array P800 */
429 0x3234103C, /* Smart Array P400 */
430 0x3235103C, /* Smart Array P400i */
431 0x3211103C, /* Smart Array E200i */
432 0x3212103C, /* Smart Array E200 */
433 0x3213103C, /* Smart Array E200i */
434 0x3214103C, /* Smart Array E200i */
435 0x3215103C, /* Smart Array E200i */
436 0x3237103C, /* Smart Array E500 */
437 0x323D103C, /* Smart Array P700m */
438 0x40800E11, /* Smart Array 5i */
439 0x409C0E11, /* Smart Array 6400 */
440 0x409D0E11, /* Smart Array 6400 EM */
441 0x40700E11, /* Smart Array 5300 */
442 0x40820E11, /* Smart Array 532 */
443 0x40830E11, /* Smart Array 5312 */
444 0x409A0E11, /* Smart Array 641 */
445 0x409B0E11, /* Smart Array 642 */
446 0x40910E11, /* Smart Array 6i */
449 /* List of controllers which cannot even be soft reset */
450 static u32 soft_unresettable_controller[] = {
451 0x40800E11, /* Smart Array 5i */
452 0x40700E11, /* Smart Array 5300 */
453 0x40820E11, /* Smart Array 532 */
454 0x40830E11, /* Smart Array 5312 */
455 0x409A0E11, /* Smart Array 641 */
456 0x409B0E11, /* Smart Array 642 */
457 0x40910E11, /* Smart Array 6i */
458 /* Exclude 640x boards. These are two pci devices in one slot
459 * which share a battery backed cache module. One controls the
460 * cache, the other accesses the cache through the one that controls
461 * it. If we reset the one controlling the cache, the other will
462 * likely not be happy. Just forbid resetting this conjoined mess.
463 * The 640x isn't really supported by hpsa anyway.
465 0x409C0E11, /* Smart Array 6400 */
466 0x409D0E11, /* Smart Array 6400 EM */
469 static int ctlr_is_hard_resettable(u32 board_id)
473 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
474 if (unresettable_controller[i] == board_id)
479 static int ctlr_is_soft_resettable(u32 board_id)
483 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
484 if (soft_unresettable_controller[i] == board_id)
489 static int ctlr_is_resettable(u32 board_id)
491 return ctlr_is_hard_resettable(board_id) ||
492 ctlr_is_soft_resettable(board_id);
495 static ssize_t host_show_resettable(struct device *dev,
496 struct device_attribute *attr, char *buf)
499 struct Scsi_Host *shost = class_to_shost(dev);
501 h = shost_to_hba(shost);
502 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
505 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
507 return (scsi3addr[3] & 0xC0) == 0x40;
510 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
511 "1(+0)ADM", "UNKNOWN"
513 #define HPSA_RAID_0 0
514 #define HPSA_RAID_4 1
515 #define HPSA_RAID_1 2 /* also used for RAID 10 */
516 #define HPSA_RAID_5 3 /* also used for RAID 50 */
517 #define HPSA_RAID_51 4
518 #define HPSA_RAID_6 5 /* also used for RAID 60 */
519 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
520 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
522 static ssize_t raid_level_show(struct device *dev,
523 struct device_attribute *attr, char *buf)
526 unsigned char rlevel;
528 struct scsi_device *sdev;
529 struct hpsa_scsi_dev_t *hdev;
532 sdev = to_scsi_device(dev);
533 h = sdev_to_hba(sdev);
534 spin_lock_irqsave(&h->lock, flags);
535 hdev = sdev->hostdata;
537 spin_unlock_irqrestore(&h->lock, flags);
541 /* Is this even a logical drive? */
542 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
543 spin_unlock_irqrestore(&h->lock, flags);
544 l = snprintf(buf, PAGE_SIZE, "N/A\n");
548 rlevel = hdev->raid_level;
549 spin_unlock_irqrestore(&h->lock, flags);
550 if (rlevel > RAID_UNKNOWN)
551 rlevel = RAID_UNKNOWN;
552 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
556 static ssize_t lunid_show(struct device *dev,
557 struct device_attribute *attr, char *buf)
560 struct scsi_device *sdev;
561 struct hpsa_scsi_dev_t *hdev;
563 unsigned char lunid[8];
565 sdev = to_scsi_device(dev);
566 h = sdev_to_hba(sdev);
567 spin_lock_irqsave(&h->lock, flags);
568 hdev = sdev->hostdata;
570 spin_unlock_irqrestore(&h->lock, flags);
573 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
574 spin_unlock_irqrestore(&h->lock, flags);
575 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
576 lunid[0], lunid[1], lunid[2], lunid[3],
577 lunid[4], lunid[5], lunid[6], lunid[7]);
580 static ssize_t unique_id_show(struct device *dev,
581 struct device_attribute *attr, char *buf)
584 struct scsi_device *sdev;
585 struct hpsa_scsi_dev_t *hdev;
587 unsigned char sn[16];
589 sdev = to_scsi_device(dev);
590 h = sdev_to_hba(sdev);
591 spin_lock_irqsave(&h->lock, flags);
592 hdev = sdev->hostdata;
594 spin_unlock_irqrestore(&h->lock, flags);
597 memcpy(sn, hdev->device_id, sizeof(sn));
598 spin_unlock_irqrestore(&h->lock, flags);
599 return snprintf(buf, 16 * 2 + 2,
600 "%02X%02X%02X%02X%02X%02X%02X%02X"
601 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
602 sn[0], sn[1], sn[2], sn[3],
603 sn[4], sn[5], sn[6], sn[7],
604 sn[8], sn[9], sn[10], sn[11],
605 sn[12], sn[13], sn[14], sn[15]);
608 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
609 struct device_attribute *attr, char *buf)
612 struct scsi_device *sdev;
613 struct hpsa_scsi_dev_t *hdev;
617 sdev = to_scsi_device(dev);
618 h = sdev_to_hba(sdev);
619 spin_lock_irqsave(&h->lock, flags);
620 hdev = sdev->hostdata;
622 spin_unlock_irqrestore(&h->lock, flags);
625 offload_enabled = hdev->offload_enabled;
626 spin_unlock_irqrestore(&h->lock, flags);
627 return snprintf(buf, 20, "%d\n", offload_enabled);
630 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
631 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
632 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
633 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
634 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
635 host_show_hp_ssd_smart_path_enabled, NULL);
636 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
637 host_show_hp_ssd_smart_path_status,
638 host_store_hp_ssd_smart_path_status);
639 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
640 host_store_raid_offload_debug);
641 static DEVICE_ATTR(firmware_revision, S_IRUGO,
642 host_show_firmware_revision, NULL);
643 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
644 host_show_commands_outstanding, NULL);
645 static DEVICE_ATTR(transport_mode, S_IRUGO,
646 host_show_transport_mode, NULL);
647 static DEVICE_ATTR(resettable, S_IRUGO,
648 host_show_resettable, NULL);
650 static struct device_attribute *hpsa_sdev_attrs[] = {
651 &dev_attr_raid_level,
654 &dev_attr_hp_ssd_smart_path_enabled,
658 static struct device_attribute *hpsa_shost_attrs[] = {
660 &dev_attr_firmware_revision,
661 &dev_attr_commands_outstanding,
662 &dev_attr_transport_mode,
663 &dev_attr_resettable,
664 &dev_attr_hp_ssd_smart_path_status,
665 &dev_attr_raid_offload_debug,
669 static struct scsi_host_template hpsa_driver_template = {
670 .module = THIS_MODULE,
673 .queuecommand = hpsa_scsi_queue_command,
674 .scan_start = hpsa_scan_start,
675 .scan_finished = hpsa_scan_finished,
676 .change_queue_depth = hpsa_change_queue_depth,
678 .use_clustering = ENABLE_CLUSTERING,
679 .eh_abort_handler = hpsa_eh_abort_handler,
680 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
682 .slave_alloc = hpsa_slave_alloc,
683 .slave_destroy = hpsa_slave_destroy,
685 .compat_ioctl = hpsa_compat_ioctl,
687 .sdev_attrs = hpsa_sdev_attrs,
688 .shost_attrs = hpsa_shost_attrs,
694 /* Enqueuing and dequeuing functions for cmdlists. */
695 static inline void addQ(struct list_head *list, struct CommandList *c)
697 list_add_tail(&c->list, list);
700 static inline u32 next_command(struct ctlr_info *h, u8 q)
703 struct reply_queue_buffer *rq = &h->reply_queue[q];
705 if (h->transMethod & CFGTBL_Trans_io_accel1)
706 return h->access.command_completed(h, q);
708 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
709 return h->access.command_completed(h, q);
711 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
712 a = rq->head[rq->current_entry];
714 atomic_dec(&h->commands_outstanding);
718 /* Check for wraparound */
719 if (rq->current_entry == h->max_commands) {
720 rq->current_entry = 0;
727 * There are some special bits in the bus address of the
728 * command that we have to set for the controller to know
729 * how to process the command:
731 * Normal performant mode:
732 * bit 0: 1 means performant mode, 0 means simple mode.
733 * bits 1-3 = block fetch table entry
734 * bits 4-6 = command type (== 0)
737 * bit 0 = "performant mode" bit.
738 * bits 1-3 = block fetch table entry
739 * bits 4-6 = command type (== 110)
740 * (command type is needed because ioaccel1 mode
741 * commands are submitted through the same register as normal
742 * mode commands, so this is how the controller knows whether
743 * the command is normal mode or ioaccel1 mode.)
746 * bit 0 = "performant mode" bit.
747 * bits 1-4 = block fetch table entry (note extra bit)
748 * bits 4-6 = not needed, because ioaccel2 mode has
749 * a separate special register for submitting commands.
752 /* set_performant_mode: Modify the tag for cciss performant
753 * set bit 0 for pull model, bits 3-1 for block fetch
756 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
758 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
759 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
760 if (likely(h->msix_vector > 0))
761 c->Header.ReplyQueue =
762 raw_smp_processor_id() % h->nreply_queues;
766 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
767 struct CommandList *c)
769 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
771 /* Tell the controller to post the reply to the queue for this
772 * processor. This seems to give the best I/O throughput.
774 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
775 /* Set the bits in the address sent down to include:
776 * - performant mode bit (bit 0)
777 * - pull count (bits 1-3)
778 * - command type (bits 4-6)
780 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
781 IOACCEL1_BUSADDR_CMDTYPE;
784 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
785 struct CommandList *c)
787 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
789 /* Tell the controller to post the reply to the queue for this
790 * processor. This seems to give the best I/O throughput.
792 cp->reply_queue = smp_processor_id() % h->nreply_queues;
793 /* Set the bits in the address sent down to include:
794 * - performant mode bit not used in ioaccel mode 2
795 * - pull count (bits 0-3)
796 * - command type isn't needed for ioaccel2
798 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
801 static int is_firmware_flash_cmd(u8 *cdb)
803 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
807 * During firmware flash, the heartbeat register may not update as frequently
808 * as it should. So we dial down lockup detection during firmware flash. and
809 * dial it back up when firmware flash completes.
811 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
812 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
813 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
814 struct CommandList *c)
816 if (!is_firmware_flash_cmd(c->Request.CDB))
818 atomic_inc(&h->firmware_flash_in_progress);
819 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
822 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
823 struct CommandList *c)
825 if (is_firmware_flash_cmd(c->Request.CDB) &&
826 atomic_dec_and_test(&h->firmware_flash_in_progress))
827 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
830 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
831 struct CommandList *c)
835 switch (c->cmd_type) {
837 set_ioaccel1_performant_mode(h, c);
840 set_ioaccel2_performant_mode(h, c);
843 set_performant_mode(h, c);
845 dial_down_lockup_detection_during_fw_flash(h, c);
846 spin_lock_irqsave(&h->lock, flags);
850 spin_unlock_irqrestore(&h->lock, flags);
853 static inline void removeQ(struct CommandList *c)
855 if (WARN_ON(list_empty(&c->list)))
857 list_del_init(&c->list);
860 static inline int is_hba_lunid(unsigned char scsi3addr[])
862 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
865 static inline int is_scsi_rev_5(struct ctlr_info *h)
867 if (!h->hba_inquiry_data)
869 if ((h->hba_inquiry_data[2] & 0x07) == 5)
874 static int hpsa_find_target_lun(struct ctlr_info *h,
875 unsigned char scsi3addr[], int bus, int *target, int *lun)
877 /* finds an unused bus, target, lun for a new physical device
878 * assumes h->devlock is held
881 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
883 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
885 for (i = 0; i < h->ndevices; i++) {
886 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
887 __set_bit(h->dev[i]->target, lun_taken);
890 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
891 if (i < HPSA_MAX_DEVICES) {
900 /* Add an entry into h->dev[] array. */
901 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
902 struct hpsa_scsi_dev_t *device,
903 struct hpsa_scsi_dev_t *added[], int *nadded)
905 /* assumes h->devlock is held */
908 unsigned char addr1[8], addr2[8];
909 struct hpsa_scsi_dev_t *sd;
911 if (n >= HPSA_MAX_DEVICES) {
912 dev_err(&h->pdev->dev, "too many devices, some will be "
917 /* physical devices do not have lun or target assigned until now. */
918 if (device->lun != -1)
919 /* Logical device, lun is already assigned. */
922 /* If this device a non-zero lun of a multi-lun device
923 * byte 4 of the 8-byte LUN addr will contain the logical
924 * unit no, zero otherwise.
926 if (device->scsi3addr[4] == 0) {
927 /* This is not a non-zero lun of a multi-lun device */
928 if (hpsa_find_target_lun(h, device->scsi3addr,
929 device->bus, &device->target, &device->lun) != 0)
934 /* This is a non-zero lun of a multi-lun device.
935 * Search through our list and find the device which
936 * has the same 8 byte LUN address, excepting byte 4.
937 * Assign the same bus and target for this new LUN.
938 * Use the logical unit number from the firmware.
940 memcpy(addr1, device->scsi3addr, 8);
942 for (i = 0; i < n; i++) {
944 memcpy(addr2, sd->scsi3addr, 8);
946 /* differ only in byte 4? */
947 if (memcmp(addr1, addr2, 8) == 0) {
948 device->bus = sd->bus;
949 device->target = sd->target;
950 device->lun = device->scsi3addr[4];
954 if (device->lun == -1) {
955 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
956 " suspect firmware bug or unsupported hardware "
965 added[*nadded] = device;
968 /* initially, (before registering with scsi layer) we don't
969 * know our hostno and we don't want to print anything first
970 * time anyway (the scsi layer's inquiries will show that info)
972 /* if (hostno != -1) */
973 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
974 scsi_device_type(device->devtype), hostno,
975 device->bus, device->target, device->lun);
979 /* Update an entry in h->dev[] array. */
980 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
981 int entry, struct hpsa_scsi_dev_t *new_entry)
983 /* assumes h->devlock is held */
984 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
986 /* Raid level changed. */
987 h->dev[entry]->raid_level = new_entry->raid_level;
989 /* Raid offload parameters changed. */
990 h->dev[entry]->offload_config = new_entry->offload_config;
991 h->dev[entry]->offload_enabled = new_entry->offload_enabled;
992 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
993 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
994 h->dev[entry]->raid_map = new_entry->raid_map;
996 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
997 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
998 new_entry->target, new_entry->lun);
1001 /* Replace an entry from h->dev[] array. */
1002 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1003 int entry, struct hpsa_scsi_dev_t *new_entry,
1004 struct hpsa_scsi_dev_t *added[], int *nadded,
1005 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1007 /* assumes h->devlock is held */
1008 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1009 removed[*nremoved] = h->dev[entry];
1013 * New physical devices won't have target/lun assigned yet
1014 * so we need to preserve the values in the slot we are replacing.
1016 if (new_entry->target == -1) {
1017 new_entry->target = h->dev[entry]->target;
1018 new_entry->lun = h->dev[entry]->lun;
1021 h->dev[entry] = new_entry;
1022 added[*nadded] = new_entry;
1024 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
1025 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
1026 new_entry->target, new_entry->lun);
1029 /* Remove an entry from h->dev[] array. */
1030 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1031 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1033 /* assumes h->devlock is held */
1035 struct hpsa_scsi_dev_t *sd;
1037 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1040 removed[*nremoved] = h->dev[entry];
1043 for (i = entry; i < h->ndevices-1; i++)
1044 h->dev[i] = h->dev[i+1];
1046 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
1047 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
1051 #define SCSI3ADDR_EQ(a, b) ( \
1052 (a)[7] == (b)[7] && \
1053 (a)[6] == (b)[6] && \
1054 (a)[5] == (b)[5] && \
1055 (a)[4] == (b)[4] && \
1056 (a)[3] == (b)[3] && \
1057 (a)[2] == (b)[2] && \
1058 (a)[1] == (b)[1] && \
1061 static void fixup_botched_add(struct ctlr_info *h,
1062 struct hpsa_scsi_dev_t *added)
1064 /* called when scsi_add_device fails in order to re-adjust
1065 * h->dev[] to match the mid layer's view.
1067 unsigned long flags;
1070 spin_lock_irqsave(&h->lock, flags);
1071 for (i = 0; i < h->ndevices; i++) {
1072 if (h->dev[i] == added) {
1073 for (j = i; j < h->ndevices-1; j++)
1074 h->dev[j] = h->dev[j+1];
1079 spin_unlock_irqrestore(&h->lock, flags);
1083 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1084 struct hpsa_scsi_dev_t *dev2)
1086 /* we compare everything except lun and target as these
1087 * are not yet assigned. Compare parts likely
1090 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1091 sizeof(dev1->scsi3addr)) != 0)
1093 if (memcmp(dev1->device_id, dev2->device_id,
1094 sizeof(dev1->device_id)) != 0)
1096 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1098 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1100 if (dev1->devtype != dev2->devtype)
1102 if (dev1->bus != dev2->bus)
1107 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1108 struct hpsa_scsi_dev_t *dev2)
1110 /* Device attributes that can change, but don't mean
1111 * that the device is a different device, nor that the OS
1112 * needs to be told anything about the change.
1114 if (dev1->raid_level != dev2->raid_level)
1116 if (dev1->offload_config != dev2->offload_config)
1118 if (dev1->offload_enabled != dev2->offload_enabled)
1123 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1124 * and return needle location in *index. If scsi3addr matches, but not
1125 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1126 * location in *index.
1127 * In the case of a minor device attribute change, such as RAID level, just
1128 * return DEVICE_UPDATED, along with the updated device's location in index.
1129 * If needle not found, return DEVICE_NOT_FOUND.
1131 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1132 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1136 #define DEVICE_NOT_FOUND 0
1137 #define DEVICE_CHANGED 1
1138 #define DEVICE_SAME 2
1139 #define DEVICE_UPDATED 3
1140 for (i = 0; i < haystack_size; i++) {
1141 if (haystack[i] == NULL) /* previously removed. */
1143 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1145 if (device_is_the_same(needle, haystack[i])) {
1146 if (device_updated(needle, haystack[i]))
1147 return DEVICE_UPDATED;
1150 /* Keep offline devices offline */
1151 if (needle->volume_offline)
1152 return DEVICE_NOT_FOUND;
1153 return DEVICE_CHANGED;
1158 return DEVICE_NOT_FOUND;
1161 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1162 unsigned char scsi3addr[])
1164 struct offline_device_entry *device;
1165 unsigned long flags;
1167 /* Check to see if device is already on the list */
1168 spin_lock_irqsave(&h->offline_device_lock, flags);
1169 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1170 if (memcmp(device->scsi3addr, scsi3addr,
1171 sizeof(device->scsi3addr)) == 0) {
1172 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1176 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1178 /* Device is not on the list, add it. */
1179 device = kmalloc(sizeof(*device), GFP_KERNEL);
1181 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1184 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1185 spin_lock_irqsave(&h->offline_device_lock, flags);
1186 list_add_tail(&device->offline_list, &h->offline_device_list);
1187 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1190 /* Print a message explaining various offline volume states */
1191 static void hpsa_show_volume_status(struct ctlr_info *h,
1192 struct hpsa_scsi_dev_t *sd)
1194 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1195 dev_info(&h->pdev->dev,
1196 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1197 h->scsi_host->host_no,
1198 sd->bus, sd->target, sd->lun);
1199 switch (sd->volume_offline) {
1202 case HPSA_LV_UNDERGOING_ERASE:
1203 dev_info(&h->pdev->dev,
1204 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1205 h->scsi_host->host_no,
1206 sd->bus, sd->target, sd->lun);
1208 case HPSA_LV_UNDERGOING_RPI:
1209 dev_info(&h->pdev->dev,
1210 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1211 h->scsi_host->host_no,
1212 sd->bus, sd->target, sd->lun);
1214 case HPSA_LV_PENDING_RPI:
1215 dev_info(&h->pdev->dev,
1216 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1217 h->scsi_host->host_no,
1218 sd->bus, sd->target, sd->lun);
1220 case HPSA_LV_ENCRYPTED_NO_KEY:
1221 dev_info(&h->pdev->dev,
1222 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1223 h->scsi_host->host_no,
1224 sd->bus, sd->target, sd->lun);
1226 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1227 dev_info(&h->pdev->dev,
1228 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1229 h->scsi_host->host_no,
1230 sd->bus, sd->target, sd->lun);
1232 case HPSA_LV_UNDERGOING_ENCRYPTION:
1233 dev_info(&h->pdev->dev,
1234 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1235 h->scsi_host->host_no,
1236 sd->bus, sd->target, sd->lun);
1238 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1239 dev_info(&h->pdev->dev,
1240 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1241 h->scsi_host->host_no,
1242 sd->bus, sd->target, sd->lun);
1244 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1245 dev_info(&h->pdev->dev,
1246 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1247 h->scsi_host->host_no,
1248 sd->bus, sd->target, sd->lun);
1250 case HPSA_LV_PENDING_ENCRYPTION:
1251 dev_info(&h->pdev->dev,
1252 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1253 h->scsi_host->host_no,
1254 sd->bus, sd->target, sd->lun);
1256 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1257 dev_info(&h->pdev->dev,
1258 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1259 h->scsi_host->host_no,
1260 sd->bus, sd->target, sd->lun);
1265 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1266 struct hpsa_scsi_dev_t *sd[], int nsds)
1268 /* sd contains scsi3 addresses and devtypes, and inquiry
1269 * data. This function takes what's in sd to be the current
1270 * reality and updates h->dev[] to reflect that reality.
1272 int i, entry, device_change, changes = 0;
1273 struct hpsa_scsi_dev_t *csd;
1274 unsigned long flags;
1275 struct hpsa_scsi_dev_t **added, **removed;
1276 int nadded, nremoved;
1277 struct Scsi_Host *sh = NULL;
1279 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1280 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1282 if (!added || !removed) {
1283 dev_warn(&h->pdev->dev, "out of memory in "
1284 "adjust_hpsa_scsi_table\n");
1288 spin_lock_irqsave(&h->devlock, flags);
1290 /* find any devices in h->dev[] that are not in
1291 * sd[] and remove them from h->dev[], and for any
1292 * devices which have changed, remove the old device
1293 * info and add the new device info.
1294 * If minor device attributes change, just update
1295 * the existing device structure.
1300 while (i < h->ndevices) {
1302 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1303 if (device_change == DEVICE_NOT_FOUND) {
1305 hpsa_scsi_remove_entry(h, hostno, i,
1306 removed, &nremoved);
1307 continue; /* remove ^^^, hence i not incremented */
1308 } else if (device_change == DEVICE_CHANGED) {
1310 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1311 added, &nadded, removed, &nremoved);
1312 /* Set it to NULL to prevent it from being freed
1313 * at the bottom of hpsa_update_scsi_devices()
1316 } else if (device_change == DEVICE_UPDATED) {
1317 hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1322 /* Now, make sure every device listed in sd[] is also
1323 * listed in h->dev[], adding them if they aren't found
1326 for (i = 0; i < nsds; i++) {
1327 if (!sd[i]) /* if already added above. */
1330 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1331 * as the SCSI mid-layer does not handle such devices well.
1332 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1333 * at 160Hz, and prevents the system from coming up.
1335 if (sd[i]->volume_offline) {
1336 hpsa_show_volume_status(h, sd[i]);
1337 dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
1338 h->scsi_host->host_no,
1339 sd[i]->bus, sd[i]->target, sd[i]->lun);
1343 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1344 h->ndevices, &entry);
1345 if (device_change == DEVICE_NOT_FOUND) {
1347 if (hpsa_scsi_add_entry(h, hostno, sd[i],
1348 added, &nadded) != 0)
1350 sd[i] = NULL; /* prevent from being freed later. */
1351 } else if (device_change == DEVICE_CHANGED) {
1352 /* should never happen... */
1354 dev_warn(&h->pdev->dev,
1355 "device unexpectedly changed.\n");
1356 /* but if it does happen, we just ignore that device */
1359 spin_unlock_irqrestore(&h->devlock, flags);
1361 /* Monitor devices which are in one of several NOT READY states to be
1362 * brought online later. This must be done without holding h->devlock,
1363 * so don't touch h->dev[]
1365 for (i = 0; i < nsds; i++) {
1366 if (!sd[i]) /* if already added above. */
1368 if (sd[i]->volume_offline)
1369 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1372 /* Don't notify scsi mid layer of any changes the first time through
1373 * (or if there are no changes) scsi_scan_host will do it later the
1374 * first time through.
1376 if (hostno == -1 || !changes)
1380 /* Notify scsi mid layer of any removed devices */
1381 for (i = 0; i < nremoved; i++) {
1382 struct scsi_device *sdev =
1383 scsi_device_lookup(sh, removed[i]->bus,
1384 removed[i]->target, removed[i]->lun);
1386 scsi_remove_device(sdev);
1387 scsi_device_put(sdev);
1389 /* We don't expect to get here.
1390 * future cmds to this device will get selection
1391 * timeout as if the device was gone.
1393 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1394 " for removal.", hostno, removed[i]->bus,
1395 removed[i]->target, removed[i]->lun);
1401 /* Notify scsi mid layer of any added devices */
1402 for (i = 0; i < nadded; i++) {
1403 if (scsi_add_device(sh, added[i]->bus,
1404 added[i]->target, added[i]->lun) == 0)
1406 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1407 "device not added.\n", hostno, added[i]->bus,
1408 added[i]->target, added[i]->lun);
1409 /* now we have to remove it from h->dev,
1410 * since it didn't get added to scsi mid layer
1412 fixup_botched_add(h, added[i]);
1421 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1422 * Assume's h->devlock is held.
1424 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1425 int bus, int target, int lun)
1428 struct hpsa_scsi_dev_t *sd;
1430 for (i = 0; i < h->ndevices; i++) {
1432 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1438 /* link sdev->hostdata to our per-device structure. */
1439 static int hpsa_slave_alloc(struct scsi_device *sdev)
1441 struct hpsa_scsi_dev_t *sd;
1442 unsigned long flags;
1443 struct ctlr_info *h;
1445 h = sdev_to_hba(sdev);
1446 spin_lock_irqsave(&h->devlock, flags);
1447 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1448 sdev_id(sdev), sdev->lun);
1450 sdev->hostdata = sd;
1451 spin_unlock_irqrestore(&h->devlock, flags);
1455 static void hpsa_slave_destroy(struct scsi_device *sdev)
1457 /* nothing to do. */
1460 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1464 if (!h->cmd_sg_list)
1466 for (i = 0; i < h->nr_cmds; i++) {
1467 kfree(h->cmd_sg_list[i]);
1468 h->cmd_sg_list[i] = NULL;
1470 kfree(h->cmd_sg_list);
1471 h->cmd_sg_list = NULL;
1474 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1478 if (h->chainsize <= 0)
1481 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1483 if (!h->cmd_sg_list)
1485 for (i = 0; i < h->nr_cmds; i++) {
1486 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1487 h->chainsize, GFP_KERNEL);
1488 if (!h->cmd_sg_list[i])
1494 hpsa_free_sg_chain_blocks(h);
1498 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1499 struct CommandList *c)
1501 struct SGDescriptor *chain_sg, *chain_block;
1505 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1506 chain_block = h->cmd_sg_list[c->cmdindex];
1507 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1508 chain_len = sizeof(*chain_sg) *
1509 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1510 chain_sg->Len = cpu_to_le32(chain_len);
1511 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1513 if (dma_mapping_error(&h->pdev->dev, temp64)) {
1514 /* prevent subsequent unmapping */
1515 chain_sg->Addr = cpu_to_le64(0);
1518 chain_sg->Addr = cpu_to_le64(temp64);
1522 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1523 struct CommandList *c)
1525 struct SGDescriptor *chain_sg;
1527 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1530 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1531 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
1532 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1536 /* Decode the various types of errors on ioaccel2 path.
1537 * Return 1 for any error that should generate a RAID path retry.
1538 * Return 0 for errors that don't require a RAID path retry.
1540 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1541 struct CommandList *c,
1542 struct scsi_cmnd *cmd,
1543 struct io_accel2_cmd *c2)
1548 switch (c2->error_data.serv_response) {
1549 case IOACCEL2_SERV_RESPONSE_COMPLETE:
1550 switch (c2->error_data.status) {
1551 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1553 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1554 dev_warn(&h->pdev->dev,
1555 "%s: task complete with check condition.\n",
1556 "HP SSD Smart Path");
1557 cmd->result |= SAM_STAT_CHECK_CONDITION;
1558 if (c2->error_data.data_present !=
1559 IOACCEL2_SENSE_DATA_PRESENT) {
1560 memset(cmd->sense_buffer, 0,
1561 SCSI_SENSE_BUFFERSIZE);
1564 /* copy the sense data */
1565 data_len = c2->error_data.sense_data_len;
1566 if (data_len > SCSI_SENSE_BUFFERSIZE)
1567 data_len = SCSI_SENSE_BUFFERSIZE;
1568 if (data_len > sizeof(c2->error_data.sense_data_buff))
1570 sizeof(c2->error_data.sense_data_buff);
1571 memcpy(cmd->sense_buffer,
1572 c2->error_data.sense_data_buff, data_len);
1575 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1576 dev_warn(&h->pdev->dev,
1577 "%s: task complete with BUSY status.\n",
1578 "HP SSD Smart Path");
1581 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1582 dev_warn(&h->pdev->dev,
1583 "%s: task complete with reservation conflict.\n",
1584 "HP SSD Smart Path");
1587 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1588 /* Make scsi midlayer do unlimited retries */
1589 cmd->result = DID_IMM_RETRY << 16;
1591 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1592 dev_warn(&h->pdev->dev,
1593 "%s: task complete with aborted status.\n",
1594 "HP SSD Smart Path");
1598 dev_warn(&h->pdev->dev,
1599 "%s: task complete with unrecognized status: 0x%02x\n",
1600 "HP SSD Smart Path", c2->error_data.status);
1605 case IOACCEL2_SERV_RESPONSE_FAILURE:
1606 /* don't expect to get here. */
1607 dev_warn(&h->pdev->dev,
1608 "unexpected delivery or target failure, status = 0x%02x\n",
1609 c2->error_data.status);
1612 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1614 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1616 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1617 dev_warn(&h->pdev->dev, "task management function rejected.\n");
1620 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1621 dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1624 dev_warn(&h->pdev->dev,
1625 "%s: Unrecognized server response: 0x%02x\n",
1626 "HP SSD Smart Path",
1627 c2->error_data.serv_response);
1632 return retry; /* retry on raid path? */
1635 static void process_ioaccel2_completion(struct ctlr_info *h,
1636 struct CommandList *c, struct scsi_cmnd *cmd,
1637 struct hpsa_scsi_dev_t *dev)
1639 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1642 /* check for good status */
1643 if (likely(c2->error_data.serv_response == 0 &&
1644 c2->error_data.status == 0)) {
1646 cmd->scsi_done(cmd);
1650 /* Any RAID offload error results in retry which will use
1651 * the normal I/O path so the controller can handle whatever's
1654 if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1655 c2->error_data.serv_response ==
1656 IOACCEL2_SERV_RESPONSE_FAILURE) {
1657 dev->offload_enabled = 0;
1658 h->drv_req_rescan = 1; /* schedule controller for a rescan */
1659 cmd->result = DID_SOFT_ERROR << 16;
1661 cmd->scsi_done(cmd);
1664 raid_retry = handle_ioaccel_mode2_error(h, c, cmd, c2);
1665 /* If error found, disable Smart Path, schedule a rescan,
1666 * and force a retry on the standard path.
1669 dev_warn(&h->pdev->dev, "%s: Retrying on standard path.\n",
1670 "HP SSD Smart Path");
1671 dev->offload_enabled = 0; /* Disable Smart Path */
1672 h->drv_req_rescan = 1; /* schedule controller rescan */
1673 cmd->result = DID_SOFT_ERROR << 16;
1676 cmd->scsi_done(cmd);
1679 static void complete_scsi_command(struct CommandList *cp)
1681 struct scsi_cmnd *cmd;
1682 struct ctlr_info *h;
1683 struct ErrorInfo *ei;
1684 struct hpsa_scsi_dev_t *dev;
1686 unsigned char sense_key;
1687 unsigned char asc; /* additional sense code */
1688 unsigned char ascq; /* additional sense code qualifier */
1689 unsigned long sense_data_size;
1692 cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1694 dev = cmd->device->hostdata;
1696 scsi_dma_unmap(cmd); /* undo the DMA mappings */
1697 if ((cp->cmd_type == CMD_SCSI) &&
1698 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
1699 hpsa_unmap_sg_chain_block(h, cp);
1701 cmd->result = (DID_OK << 16); /* host byte */
1702 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1704 if (cp->cmd_type == CMD_IOACCEL2)
1705 return process_ioaccel2_completion(h, cp, cmd, dev);
1707 cmd->result |= ei->ScsiStatus;
1709 scsi_set_resid(cmd, ei->ResidualCnt);
1710 if (ei->CommandStatus == 0) {
1712 cmd->scsi_done(cmd);
1716 /* copy the sense data */
1717 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1718 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1720 sense_data_size = sizeof(ei->SenseInfo);
1721 if (ei->SenseLen < sense_data_size)
1722 sense_data_size = ei->SenseLen;
1724 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1726 /* For I/O accelerator commands, copy over some fields to the normal
1727 * CISS header used below for error handling.
1729 if (cp->cmd_type == CMD_IOACCEL1) {
1730 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
1731 cp->Header.SGList = scsi_sg_count(cmd);
1732 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
1733 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
1734 IOACCEL1_IOFLAGS_CDBLEN_MASK;
1735 cp->Header.tag = c->tag;
1736 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
1737 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1739 /* Any RAID offload error results in retry which will use
1740 * the normal I/O path so the controller can handle whatever's
1743 if (is_logical_dev_addr_mode(dev->scsi3addr)) {
1744 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
1745 dev->offload_enabled = 0;
1746 cmd->result = DID_SOFT_ERROR << 16;
1748 cmd->scsi_done(cmd);
1753 /* an error has occurred */
1754 switch (ei->CommandStatus) {
1756 case CMD_TARGET_STATUS:
1757 if (ei->ScsiStatus) {
1759 sense_key = 0xf & ei->SenseInfo[2];
1760 /* Get additional sense code */
1761 asc = ei->SenseInfo[12];
1762 /* Get addition sense code qualifier */
1763 ascq = ei->SenseInfo[13];
1765 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1766 if (sense_key == ABORTED_COMMAND) {
1767 cmd->result |= DID_SOFT_ERROR << 16;
1772 /* Problem was not a check condition
1773 * Pass it up to the upper layers...
1775 if (ei->ScsiStatus) {
1776 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1777 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1778 "Returning result: 0x%x\n",
1780 sense_key, asc, ascq,
1782 } else { /* scsi status is zero??? How??? */
1783 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1784 "Returning no connection.\n", cp),
1786 /* Ordinarily, this case should never happen,
1787 * but there is a bug in some released firmware
1788 * revisions that allows it to happen if, for
1789 * example, a 4100 backplane loses power and
1790 * the tape drive is in it. We assume that
1791 * it's a fatal error of some kind because we
1792 * can't show that it wasn't. We will make it
1793 * look like selection timeout since that is
1794 * the most common reason for this to occur,
1795 * and it's severe enough.
1798 cmd->result = DID_NO_CONNECT << 16;
1802 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1804 case CMD_DATA_OVERRUN:
1805 dev_warn(&h->pdev->dev, "cp %p has"
1806 " completed with data overrun "
1810 /* print_bytes(cp, sizeof(*cp), 1, 0);
1812 /* We get CMD_INVALID if you address a non-existent device
1813 * instead of a selection timeout (no response). You will
1814 * see this if you yank out a drive, then try to access it.
1815 * This is kind of a shame because it means that any other
1816 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1817 * missing target. */
1818 cmd->result = DID_NO_CONNECT << 16;
1821 case CMD_PROTOCOL_ERR:
1822 cmd->result = DID_ERROR << 16;
1823 dev_warn(&h->pdev->dev, "cp %p has "
1824 "protocol error\n", cp);
1826 case CMD_HARDWARE_ERR:
1827 cmd->result = DID_ERROR << 16;
1828 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1830 case CMD_CONNECTION_LOST:
1831 cmd->result = DID_ERROR << 16;
1832 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1835 cmd->result = DID_ABORT << 16;
1836 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1837 cp, ei->ScsiStatus);
1839 case CMD_ABORT_FAILED:
1840 cmd->result = DID_ERROR << 16;
1841 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1843 case CMD_UNSOLICITED_ABORT:
1844 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1845 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1849 cmd->result = DID_TIME_OUT << 16;
1850 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1852 case CMD_UNABORTABLE:
1853 cmd->result = DID_ERROR << 16;
1854 dev_warn(&h->pdev->dev, "Command unabortable\n");
1856 case CMD_IOACCEL_DISABLED:
1857 /* This only handles the direct pass-through case since RAID
1858 * offload is handled above. Just attempt a retry.
1860 cmd->result = DID_SOFT_ERROR << 16;
1861 dev_warn(&h->pdev->dev,
1862 "cp %p had HP SSD Smart Path error\n", cp);
1865 cmd->result = DID_ERROR << 16;
1866 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1867 cp, ei->CommandStatus);
1870 cmd->scsi_done(cmd);
1873 static void hpsa_pci_unmap(struct pci_dev *pdev,
1874 struct CommandList *c, int sg_used, int data_direction)
1878 for (i = 0; i < sg_used; i++)
1879 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
1880 le32_to_cpu(c->SG[i].Len),
1884 static int hpsa_map_one(struct pci_dev *pdev,
1885 struct CommandList *cp,
1892 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1893 cp->Header.SGList = 0;
1894 cp->Header.SGTotal = cpu_to_le16(0);
1898 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
1899 if (dma_mapping_error(&pdev->dev, addr64)) {
1900 /* Prevent subsequent unmap of something never mapped */
1901 cp->Header.SGList = 0;
1902 cp->Header.SGTotal = cpu_to_le16(0);
1905 cp->SG[0].Addr = cpu_to_le64(addr64);
1906 cp->SG[0].Len = cpu_to_le32(buflen);
1907 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
1908 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
1909 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
1913 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1914 struct CommandList *c)
1916 DECLARE_COMPLETION_ONSTACK(wait);
1919 enqueue_cmd_and_start_io(h, c);
1920 wait_for_completion(&wait);
1923 static u32 lockup_detected(struct ctlr_info *h)
1926 u32 rc, *lockup_detected;
1929 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
1930 rc = *lockup_detected;
1935 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1936 struct CommandList *c)
1938 /* If controller lockup detected, fake a hardware error. */
1939 if (unlikely(lockup_detected(h)))
1940 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1942 hpsa_scsi_do_simple_cmd_core(h, c);
1945 #define MAX_DRIVER_CMD_RETRIES 25
1946 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1947 struct CommandList *c, int data_direction)
1949 int backoff_time = 10, retry_count = 0;
1952 memset(c->err_info, 0, sizeof(*c->err_info));
1953 hpsa_scsi_do_simple_cmd_core(h, c);
1955 if (retry_count > 3) {
1956 msleep(backoff_time);
1957 if (backoff_time < 1000)
1960 } while ((check_for_unit_attention(h, c) ||
1961 check_for_busy(h, c)) &&
1962 retry_count <= MAX_DRIVER_CMD_RETRIES);
1963 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1966 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
1967 struct CommandList *c)
1969 const u8 *cdb = c->Request.CDB;
1970 const u8 *lun = c->Header.LUN.LunAddrBytes;
1972 dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
1973 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
1974 txt, lun[0], lun[1], lun[2], lun[3],
1975 lun[4], lun[5], lun[6], lun[7],
1976 cdb[0], cdb[1], cdb[2], cdb[3],
1977 cdb[4], cdb[5], cdb[6], cdb[7],
1978 cdb[8], cdb[9], cdb[10], cdb[11],
1979 cdb[12], cdb[13], cdb[14], cdb[15]);
1982 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
1983 struct CommandList *cp)
1985 const struct ErrorInfo *ei = cp->err_info;
1986 struct device *d = &cp->h->pdev->dev;
1987 const u8 *sd = ei->SenseInfo;
1989 switch (ei->CommandStatus) {
1990 case CMD_TARGET_STATUS:
1991 hpsa_print_cmd(h, "SCSI status", cp);
1992 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
1993 dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
1994 sd[2] & 0x0f, sd[12], sd[13]);
1996 dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
1997 if (ei->ScsiStatus == 0)
1998 dev_warn(d, "SCSI status is abnormally zero. "
1999 "(probably indicates selection timeout "
2000 "reported incorrectly due to a known "
2001 "firmware bug, circa July, 2001.)\n");
2003 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2005 case CMD_DATA_OVERRUN:
2006 hpsa_print_cmd(h, "overrun condition", cp);
2009 /* controller unfortunately reports SCSI passthru's
2010 * to non-existent targets as invalid commands.
2012 hpsa_print_cmd(h, "invalid command", cp);
2013 dev_warn(d, "probably means device no longer present\n");
2016 case CMD_PROTOCOL_ERR:
2017 hpsa_print_cmd(h, "protocol error", cp);
2019 case CMD_HARDWARE_ERR:
2020 hpsa_print_cmd(h, "hardware error", cp);
2022 case CMD_CONNECTION_LOST:
2023 hpsa_print_cmd(h, "connection lost", cp);
2026 hpsa_print_cmd(h, "aborted", cp);
2028 case CMD_ABORT_FAILED:
2029 hpsa_print_cmd(h, "abort failed", cp);
2031 case CMD_UNSOLICITED_ABORT:
2032 hpsa_print_cmd(h, "unsolicited abort", cp);
2035 hpsa_print_cmd(h, "timed out", cp);
2037 case CMD_UNABORTABLE:
2038 hpsa_print_cmd(h, "unabortable", cp);
2041 hpsa_print_cmd(h, "unknown status", cp);
2042 dev_warn(d, "Unknown command status %x\n",
2047 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2048 u16 page, unsigned char *buf,
2049 unsigned char bufsize)
2052 struct CommandList *c;
2053 struct ErrorInfo *ei;
2055 c = cmd_special_alloc(h);
2057 if (c == NULL) { /* trouble... */
2058 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2062 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2063 page, scsi3addr, TYPE_CMD)) {
2067 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2069 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2070 hpsa_scsi_interpret_error(h, c);
2074 cmd_special_free(h, c);
2078 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2079 unsigned char *scsi3addr, unsigned char page,
2080 struct bmic_controller_parameters *buf, size_t bufsize)
2083 struct CommandList *c;
2084 struct ErrorInfo *ei;
2086 c = cmd_special_alloc(h);
2088 if (c == NULL) { /* trouble... */
2089 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2093 if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2094 page, scsi3addr, TYPE_CMD)) {
2098 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2100 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2101 hpsa_scsi_interpret_error(h, c);
2105 cmd_special_free(h, c);
2109 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2113 struct CommandList *c;
2114 struct ErrorInfo *ei;
2116 c = cmd_special_alloc(h);
2118 if (c == NULL) { /* trouble... */
2119 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2123 /* fill_cmd can't fail here, no data buffer to map. */
2124 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2125 scsi3addr, TYPE_MSG);
2126 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2127 hpsa_scsi_do_simple_cmd_core(h, c);
2128 /* no unmap needed here because no data xfer. */
2131 if (ei->CommandStatus != 0) {
2132 hpsa_scsi_interpret_error(h, c);
2135 cmd_special_free(h, c);
2139 static void hpsa_get_raid_level(struct ctlr_info *h,
2140 unsigned char *scsi3addr, unsigned char *raid_level)
2145 *raid_level = RAID_UNKNOWN;
2146 buf = kzalloc(64, GFP_KERNEL);
2149 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2151 *raid_level = buf[8];
2152 if (*raid_level > RAID_UNKNOWN)
2153 *raid_level = RAID_UNKNOWN;
2158 #define HPSA_MAP_DEBUG
2159 #ifdef HPSA_MAP_DEBUG
2160 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2161 struct raid_map_data *map_buff)
2163 struct raid_map_disk_data *dd = &map_buff->data[0];
2165 u16 map_cnt, row_cnt, disks_per_row;
2170 /* Show details only if debugging has been activated. */
2171 if (h->raid_offload_debug < 2)
2174 dev_info(&h->pdev->dev, "structure_size = %u\n",
2175 le32_to_cpu(map_buff->structure_size));
2176 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2177 le32_to_cpu(map_buff->volume_blk_size));
2178 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2179 le64_to_cpu(map_buff->volume_blk_cnt));
2180 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2181 map_buff->phys_blk_shift);
2182 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2183 map_buff->parity_rotation_shift);
2184 dev_info(&h->pdev->dev, "strip_size = %u\n",
2185 le16_to_cpu(map_buff->strip_size));
2186 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2187 le64_to_cpu(map_buff->disk_starting_blk));
2188 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2189 le64_to_cpu(map_buff->disk_blk_cnt));
2190 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2191 le16_to_cpu(map_buff->data_disks_per_row));
2192 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2193 le16_to_cpu(map_buff->metadata_disks_per_row));
2194 dev_info(&h->pdev->dev, "row_cnt = %u\n",
2195 le16_to_cpu(map_buff->row_cnt));
2196 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2197 le16_to_cpu(map_buff->layout_map_count));
2198 dev_info(&h->pdev->dev, "flags = 0x%x\n",
2199 le16_to_cpu(map_buff->flags));
2200 dev_info(&h->pdev->dev, "encrypytion = %s\n",
2201 le16_to_cpu(map_buff->flags) &
2202 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
2203 dev_info(&h->pdev->dev, "dekindex = %u\n",
2204 le16_to_cpu(map_buff->dekindex));
2205 map_cnt = le16_to_cpu(map_buff->layout_map_count);
2206 for (map = 0; map < map_cnt; map++) {
2207 dev_info(&h->pdev->dev, "Map%u:\n", map);
2208 row_cnt = le16_to_cpu(map_buff->row_cnt);
2209 for (row = 0; row < row_cnt; row++) {
2210 dev_info(&h->pdev->dev, " Row%u:\n", row);
2212 le16_to_cpu(map_buff->data_disks_per_row);
2213 for (col = 0; col < disks_per_row; col++, dd++)
2214 dev_info(&h->pdev->dev,
2215 " D%02u: h=0x%04x xor=%u,%u\n",
2216 col, dd->ioaccel_handle,
2217 dd->xor_mult[0], dd->xor_mult[1]);
2219 le16_to_cpu(map_buff->metadata_disks_per_row);
2220 for (col = 0; col < disks_per_row; col++, dd++)
2221 dev_info(&h->pdev->dev,
2222 " M%02u: h=0x%04x xor=%u,%u\n",
2223 col, dd->ioaccel_handle,
2224 dd->xor_mult[0], dd->xor_mult[1]);
2229 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2230 __attribute__((unused)) int rc,
2231 __attribute__((unused)) struct raid_map_data *map_buff)
2236 static int hpsa_get_raid_map(struct ctlr_info *h,
2237 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2240 struct CommandList *c;
2241 struct ErrorInfo *ei;
2243 c = cmd_special_alloc(h);
2245 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2248 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2249 sizeof(this_device->raid_map), 0,
2250 scsi3addr, TYPE_CMD)) {
2251 dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2252 cmd_special_free(h, c);
2255 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2257 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2258 hpsa_scsi_interpret_error(h, c);
2259 cmd_special_free(h, c);
2262 cmd_special_free(h, c);
2264 /* @todo in the future, dynamically allocate RAID map memory */
2265 if (le32_to_cpu(this_device->raid_map.structure_size) >
2266 sizeof(this_device->raid_map)) {
2267 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2270 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2274 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2275 unsigned char scsi3addr[], u8 page)
2280 unsigned char *buf, bufsize;
2282 buf = kzalloc(256, GFP_KERNEL);
2286 /* Get the size of the page list first */
2287 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2288 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2289 buf, HPSA_VPD_HEADER_SZ);
2291 goto exit_unsupported;
2293 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2294 bufsize = pages + HPSA_VPD_HEADER_SZ;
2298 /* Get the whole VPD page list */
2299 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2300 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2303 goto exit_unsupported;
2306 for (i = 1; i <= pages; i++)
2307 if (buf[3 + i] == page)
2308 goto exit_supported;
2317 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2318 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2324 this_device->offload_config = 0;
2325 this_device->offload_enabled = 0;
2327 buf = kzalloc(64, GFP_KERNEL);
2330 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2332 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2333 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2337 #define IOACCEL_STATUS_BYTE 4
2338 #define OFFLOAD_CONFIGURED_BIT 0x01
2339 #define OFFLOAD_ENABLED_BIT 0x02
2340 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2341 this_device->offload_config =
2342 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2343 if (this_device->offload_config) {
2344 this_device->offload_enabled =
2345 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2346 if (hpsa_get_raid_map(h, scsi3addr, this_device))
2347 this_device->offload_enabled = 0;
2354 /* Get the device id from inquiry page 0x83 */
2355 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2356 unsigned char *device_id, int buflen)
2363 buf = kzalloc(64, GFP_KERNEL);
2366 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2368 memcpy(device_id, &buf[8], buflen);
2373 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2374 struct ReportLUNdata *buf, int bufsize,
2375 int extended_response)
2378 struct CommandList *c;
2379 unsigned char scsi3addr[8];
2380 struct ErrorInfo *ei;
2382 c = cmd_special_alloc(h);
2383 if (c == NULL) { /* trouble... */
2384 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2387 /* address the controller */
2388 memset(scsi3addr, 0, sizeof(scsi3addr));
2389 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2390 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2394 if (extended_response)
2395 c->Request.CDB[1] = extended_response;
2396 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2398 if (ei->CommandStatus != 0 &&
2399 ei->CommandStatus != CMD_DATA_UNDERRUN) {
2400 hpsa_scsi_interpret_error(h, c);
2403 if (buf->extended_response_flag != extended_response) {
2404 dev_err(&h->pdev->dev,
2405 "report luns requested format %u, got %u\n",
2407 buf->extended_response_flag);
2412 cmd_special_free(h, c);
2416 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2417 struct ReportLUNdata *buf,
2418 int bufsize, int extended_response)
2420 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
2423 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2424 struct ReportLUNdata *buf, int bufsize)
2426 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2429 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2430 int bus, int target, int lun)
2433 device->target = target;
2437 /* Use VPD inquiry to get details of volume status */
2438 static int hpsa_get_volume_status(struct ctlr_info *h,
2439 unsigned char scsi3addr[])
2446 buf = kzalloc(64, GFP_KERNEL);
2448 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2450 /* Does controller have VPD for logical volume status? */
2451 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2454 /* Get the size of the VPD return buffer */
2455 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2456 buf, HPSA_VPD_HEADER_SZ);
2461 /* Now get the whole VPD buffer */
2462 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2463 buf, size + HPSA_VPD_HEADER_SZ);
2466 status = buf[4]; /* status byte */
2472 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2475 /* Determine offline status of a volume.
2478 * 0xff (offline for unknown reasons)
2479 * # (integer code indicating one of several NOT READY states
2480 * describing why a volume is to be kept offline)
2482 static int hpsa_volume_offline(struct ctlr_info *h,
2483 unsigned char scsi3addr[])
2485 struct CommandList *c;
2486 unsigned char *sense, sense_key, asc, ascq;
2490 #define ASC_LUN_NOT_READY 0x04
2491 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2492 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2497 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2498 hpsa_scsi_do_simple_cmd_core(h, c);
2499 sense = c->err_info->SenseInfo;
2500 sense_key = sense[2];
2503 cmd_status = c->err_info->CommandStatus;
2504 scsi_status = c->err_info->ScsiStatus;
2506 /* Is the volume 'not ready'? */
2507 if (cmd_status != CMD_TARGET_STATUS ||
2508 scsi_status != SAM_STAT_CHECK_CONDITION ||
2509 sense_key != NOT_READY ||
2510 asc != ASC_LUN_NOT_READY) {
2514 /* Determine the reason for not ready state */
2515 ldstat = hpsa_get_volume_status(h, scsi3addr);
2517 /* Keep volume offline in certain cases: */
2519 case HPSA_LV_UNDERGOING_ERASE:
2520 case HPSA_LV_UNDERGOING_RPI:
2521 case HPSA_LV_PENDING_RPI:
2522 case HPSA_LV_ENCRYPTED_NO_KEY:
2523 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2524 case HPSA_LV_UNDERGOING_ENCRYPTION:
2525 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2526 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2528 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2529 /* If VPD status page isn't available,
2530 * use ASC/ASCQ to determine state
2532 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2533 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2542 static int hpsa_update_device_info(struct ctlr_info *h,
2543 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
2544 unsigned char *is_OBDR_device)
2547 #define OBDR_SIG_OFFSET 43
2548 #define OBDR_TAPE_SIG "$DR-10"
2549 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2550 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2552 unsigned char *inq_buff;
2553 unsigned char *obdr_sig;
2555 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2559 /* Do an inquiry to the device to see what it is. */
2560 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
2561 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
2562 /* Inquiry failed (msg printed already) */
2563 dev_err(&h->pdev->dev,
2564 "hpsa_update_device_info: inquiry failed\n");
2568 this_device->devtype = (inq_buff[0] & 0x1f);
2569 memcpy(this_device->scsi3addr, scsi3addr, 8);
2570 memcpy(this_device->vendor, &inq_buff[8],
2571 sizeof(this_device->vendor));
2572 memcpy(this_device->model, &inq_buff[16],
2573 sizeof(this_device->model));
2574 memset(this_device->device_id, 0,
2575 sizeof(this_device->device_id));
2576 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
2577 sizeof(this_device->device_id));
2579 if (this_device->devtype == TYPE_DISK &&
2580 is_logical_dev_addr_mode(scsi3addr)) {
2583 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2584 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
2585 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2586 volume_offline = hpsa_volume_offline(h, scsi3addr);
2587 if (volume_offline < 0 || volume_offline > 0xff)
2588 volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
2589 this_device->volume_offline = volume_offline & 0xff;
2591 this_device->raid_level = RAID_UNKNOWN;
2592 this_device->offload_config = 0;
2593 this_device->offload_enabled = 0;
2594 this_device->volume_offline = 0;
2597 if (is_OBDR_device) {
2598 /* See if this is a One-Button-Disaster-Recovery device
2599 * by looking for "$DR-10" at offset 43 in inquiry data.
2601 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
2602 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
2603 strncmp(obdr_sig, OBDR_TAPE_SIG,
2604 OBDR_SIG_LEN) == 0);
2615 static unsigned char *ext_target_model[] = {
2625 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2629 for (i = 0; ext_target_model[i]; i++)
2630 if (strncmp(device->model, ext_target_model[i],
2631 strlen(ext_target_model[i])) == 0)
2636 /* Helper function to assign bus, target, lun mapping of devices.
2637 * Puts non-external target logical volumes on bus 0, external target logical
2638 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2639 * Logical drive target and lun are assigned at this time, but
2640 * physical device lun and target assignment are deferred (assigned
2641 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2643 static void figure_bus_target_lun(struct ctlr_info *h,
2644 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2646 u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
2648 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
2649 /* physical device, target and lun filled in later */
2650 if (is_hba_lunid(lunaddrbytes))
2651 hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2653 /* defer target, lun assignment for physical devices */
2654 hpsa_set_bus_target_lun(device, 2, -1, -1);
2657 /* It's a logical device */
2658 if (is_ext_target(h, device)) {
2659 /* external target way, put logicals on bus 1
2660 * and match target/lun numbers box
2661 * reports, other smart array, bus 0, target 0, match lunid
2663 hpsa_set_bus_target_lun(device,
2664 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
2667 hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2671 * If there is no lun 0 on a target, linux won't find any devices.
2672 * For the external targets (arrays), we have to manually detect the enclosure
2673 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2674 * it for some reason. *tmpdevice is the target we're adding,
2675 * this_device is a pointer into the current element of currentsd[]
2676 * that we're building up in update_scsi_devices(), below.
2677 * lunzerobits is a bitmap that tracks which targets already have a
2679 * Returns 1 if an enclosure was added, 0 if not.
2681 static int add_ext_target_dev(struct ctlr_info *h,
2682 struct hpsa_scsi_dev_t *tmpdevice,
2683 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2684 unsigned long lunzerobits[], int *n_ext_target_devs)
2686 unsigned char scsi3addr[8];
2688 if (test_bit(tmpdevice->target, lunzerobits))
2689 return 0; /* There is already a lun 0 on this target. */
2691 if (!is_logical_dev_addr_mode(lunaddrbytes))
2692 return 0; /* It's the logical targets that may lack lun 0. */
2694 if (!is_ext_target(h, tmpdevice))
2695 return 0; /* Only external target devices have this problem. */
2697 if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2700 memset(scsi3addr, 0, 8);
2701 scsi3addr[3] = tmpdevice->target;
2702 if (is_hba_lunid(scsi3addr))
2703 return 0; /* Don't add the RAID controller here. */
2705 if (is_scsi_rev_5(h))
2706 return 0; /* p1210m doesn't need to do this. */
2708 if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2709 dev_warn(&h->pdev->dev, "Maximum number of external "
2710 "target devices exceeded. Check your hardware "
2715 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2717 (*n_ext_target_devs)++;
2718 hpsa_set_bus_target_lun(this_device,
2719 tmpdevice->bus, tmpdevice->target, 0);
2720 set_bit(tmpdevice->target, lunzerobits);
2725 * Get address of physical disk used for an ioaccel2 mode command:
2726 * 1. Extract ioaccel2 handle from the command.
2727 * 2. Find a matching ioaccel2 handle from list of physical disks.
2729 * 1 and set scsi3addr to address of matching physical
2730 * 0 if no matching physical disk was found.
2732 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
2733 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
2735 struct ReportExtendedLUNdata *physicals = NULL;
2736 int responsesize = 24; /* size of physical extended response */
2737 int extended = 2; /* flag forces reporting 'other dev info'. */
2738 int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
2739 u32 nphysicals = 0; /* number of reported physical devs */
2740 int found = 0; /* found match (1) or not (0) */
2741 u32 find; /* handle we need to match */
2743 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
2744 struct hpsa_scsi_dev_t *d; /* device of request being aborted */
2745 struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
2746 __le32 it_nexus; /* 4 byte device handle for the ioaccel2 cmd */
2747 __le32 scsi_nexus; /* 4 byte device handle for the ioaccel2 cmd */
2749 if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
2750 return 0; /* no match */
2752 /* point to the ioaccel2 device handle */
2753 c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
2755 return 0; /* no match */
2757 scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
2759 return 0; /* no match */
2761 d = scmd->device->hostdata;
2763 return 0; /* no match */
2765 it_nexus = cpu_to_le32(d->ioaccel_handle);
2766 scsi_nexus = c2a->scsi_nexus;
2767 find = le32_to_cpu(c2a->scsi_nexus);
2769 if (h->raid_offload_debug > 0)
2770 dev_info(&h->pdev->dev,
2771 "%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
2772 __func__, scsi_nexus,
2773 d->device_id[0], d->device_id[1], d->device_id[2],
2774 d->device_id[3], d->device_id[4], d->device_id[5],
2775 d->device_id[6], d->device_id[7], d->device_id[8],
2776 d->device_id[9], d->device_id[10], d->device_id[11],
2777 d->device_id[12], d->device_id[13], d->device_id[14],
2780 /* Get the list of physical devices */
2781 physicals = kzalloc(reportsize, GFP_KERNEL);
2782 if (physicals == NULL)
2784 if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals,
2785 reportsize, extended)) {
2786 dev_err(&h->pdev->dev,
2787 "Can't lookup %s device handle: report physical LUNs failed.\n",
2788 "HP SSD Smart Path");
2792 nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
2795 /* find ioaccel2 handle in list of physicals: */
2796 for (i = 0; i < nphysicals; i++) {
2797 struct ext_report_lun_entry *entry = &physicals->LUN[i];
2799 /* handle is in bytes 28-31 of each lun */
2800 if (entry->ioaccel_handle != find)
2801 continue; /* didn't match */
2803 memcpy(scsi3addr, entry->lunid, 8);
2804 if (h->raid_offload_debug > 0)
2805 dev_info(&h->pdev->dev,
2806 "%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%8phN\n",
2808 entry->ioaccel_handle, scsi3addr);
2809 break; /* found it */
2820 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
2821 * logdev. The number of luns in physdev and logdev are returned in
2822 * *nphysicals and *nlogicals, respectively.
2823 * Returns 0 on success, -1 otherwise.
2825 static int hpsa_gather_lun_info(struct ctlr_info *h,
2826 int reportphyslunsize, int reportloglunsize,
2827 struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode,
2828 struct ReportLUNdata *logdev, u32 *nlogicals)
2830 int physical_entry_size = 8;
2834 /* For I/O accelerator mode we need to read physical device handles */
2835 if (h->transMethod & CFGTBL_Trans_io_accel1 ||
2836 h->transMethod & CFGTBL_Trans_io_accel2) {
2837 *physical_mode = HPSA_REPORT_PHYS_EXTENDED;
2838 physical_entry_size = 24;
2840 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportphyslunsize,
2842 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
2845 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) /
2846 physical_entry_size;
2847 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
2848 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
2849 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2850 *nphysicals - HPSA_MAX_PHYS_LUN);
2851 *nphysicals = HPSA_MAX_PHYS_LUN;
2853 if (hpsa_scsi_do_report_log_luns(h, logdev, reportloglunsize)) {
2854 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
2857 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2858 /* Reject Logicals in excess of our max capability. */
2859 if (*nlogicals > HPSA_MAX_LUN) {
2860 dev_warn(&h->pdev->dev,
2861 "maximum logical LUNs (%d) exceeded. "
2862 "%d LUNs ignored.\n", HPSA_MAX_LUN,
2863 *nlogicals - HPSA_MAX_LUN);
2864 *nlogicals = HPSA_MAX_LUN;
2866 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
2867 dev_warn(&h->pdev->dev,
2868 "maximum logical + physical LUNs (%d) exceeded. "
2869 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2870 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
2871 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
2876 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
2877 int i, int nphysicals, int nlogicals,
2878 struct ReportExtendedLUNdata *physdev_list,
2879 struct ReportLUNdata *logdev_list)
2881 /* Helper function, figure out where the LUN ID info is coming from
2882 * given index i, lists of physical and logical devices, where in
2883 * the list the raid controller is supposed to appear (first or last)
2886 int logicals_start = nphysicals + (raid_ctlr_position == 0);
2887 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
2889 if (i == raid_ctlr_position)
2890 return RAID_CTLR_LUNID;
2892 if (i < logicals_start)
2893 return &physdev_list->LUN[i -
2894 (raid_ctlr_position == 0)].lunid[0];
2896 if (i < last_device)
2897 return &logdev_list->LUN[i - nphysicals -
2898 (raid_ctlr_position == 0)][0];
2903 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
2906 int hba_mode_enabled;
2907 struct bmic_controller_parameters *ctlr_params;
2908 ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
2913 rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
2914 sizeof(struct bmic_controller_parameters));
2921 ((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
2923 return hba_mode_enabled;
2926 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
2928 /* the idea here is we could get notified
2929 * that some devices have changed, so we do a report
2930 * physical luns and report logical luns cmd, and adjust
2931 * our list of devices accordingly.
2933 * The scsi3addr's of devices won't change so long as the
2934 * adapter is not reset. That means we can rescan and
2935 * tell which devices we already know about, vs. new
2936 * devices, vs. disappearing devices.
2938 struct ReportExtendedLUNdata *physdev_list = NULL;
2939 struct ReportLUNdata *logdev_list = NULL;
2942 int physical_mode = 0;
2943 u32 ndev_allocated = 0;
2944 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
2946 int i, n_ext_target_devs, ndevs_to_allocate;
2947 int raid_ctlr_position;
2948 int rescan_hba_mode;
2949 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
2951 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
2952 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
2953 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
2954 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
2956 if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
2957 dev_err(&h->pdev->dev, "out of memory\n");
2960 memset(lunzerobits, 0, sizeof(lunzerobits));
2962 rescan_hba_mode = hpsa_hba_mode_enabled(h);
2963 if (rescan_hba_mode < 0)
2966 if (!h->hba_mode_enabled && rescan_hba_mode)
2967 dev_warn(&h->pdev->dev, "HBA mode enabled\n");
2968 else if (h->hba_mode_enabled && !rescan_hba_mode)
2969 dev_warn(&h->pdev->dev, "HBA mode disabled\n");
2971 h->hba_mode_enabled = rescan_hba_mode;
2973 if (hpsa_gather_lun_info(h,
2974 sizeof(*physdev_list), sizeof(*logdev_list),
2975 (struct ReportLUNdata *) physdev_list, &nphysicals,
2976 &physical_mode, logdev_list, &nlogicals))
2979 /* We might see up to the maximum number of logical and physical disks
2980 * plus external target devices, and a device for the local RAID
2983 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
2985 /* Allocate the per device structures */
2986 for (i = 0; i < ndevs_to_allocate; i++) {
2987 if (i >= HPSA_MAX_DEVICES) {
2988 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
2989 " %d devices ignored.\n", HPSA_MAX_DEVICES,
2990 ndevs_to_allocate - HPSA_MAX_DEVICES);
2994 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
2995 if (!currentsd[i]) {
2996 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
2997 __FILE__, __LINE__);
3003 if (is_scsi_rev_5(h))
3004 raid_ctlr_position = 0;
3006 raid_ctlr_position = nphysicals + nlogicals;
3008 /* adjust our table of devices */
3009 n_ext_target_devs = 0;
3010 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3011 u8 *lunaddrbytes, is_OBDR = 0;
3013 /* Figure out where the LUN ID info is coming from */
3014 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3015 i, nphysicals, nlogicals, physdev_list, logdev_list);
3016 /* skip masked physical devices. */
3017 if (lunaddrbytes[3] & 0xC0 &&
3018 i < nphysicals + (raid_ctlr_position == 0))
3021 /* Get device type, vendor, model, device id */
3022 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3024 continue; /* skip it if we can't talk to it. */
3025 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3026 this_device = currentsd[ncurrent];
3029 * For external target devices, we have to insert a LUN 0 which
3030 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3031 * is nonetheless an enclosure device there. We have to
3032 * present that otherwise linux won't find anything if
3033 * there is no lun 0.
3035 if (add_ext_target_dev(h, tmpdevice, this_device,
3036 lunaddrbytes, lunzerobits,
3037 &n_ext_target_devs)) {
3039 this_device = currentsd[ncurrent];
3042 *this_device = *tmpdevice;
3044 switch (this_device->devtype) {
3046 /* We don't *really* support actual CD-ROM devices,
3047 * just "One Button Disaster Recovery" tape drive
3048 * which temporarily pretends to be a CD-ROM drive.
3049 * So we check that the device is really an OBDR tape
3050 * device by checking for "$DR-10" in bytes 43-48 of
3057 if (h->hba_mode_enabled) {
3058 /* never use raid mapper in HBA mode */
3059 this_device->offload_enabled = 0;
3062 } else if (h->acciopath_status) {
3063 if (i >= nphysicals) {
3073 if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) {
3074 memcpy(&this_device->ioaccel_handle,
3076 sizeof(this_device->ioaccel_handle));
3081 case TYPE_MEDIUM_CHANGER:
3085 /* Only present the Smartarray HBA as a RAID controller.
3086 * If it's a RAID controller other than the HBA itself
3087 * (an external RAID controller, MSA500 or similar)
3090 if (!is_hba_lunid(lunaddrbytes))
3097 if (ncurrent >= HPSA_MAX_DEVICES)
3100 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3103 for (i = 0; i < ndev_allocated; i++)
3104 kfree(currentsd[i]);
3106 kfree(physdev_list);
3110 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3111 * dma mapping and fills in the scatter gather entries of the
3114 static int hpsa_scatter_gather(struct ctlr_info *h,
3115 struct CommandList *cp,
3116 struct scsi_cmnd *cmd)
3119 struct scatterlist *sg;
3121 int use_sg, i, sg_index, chained;
3122 struct SGDescriptor *curr_sg;
3124 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3126 use_sg = scsi_dma_map(cmd);
3131 goto sglist_finished;
3136 scsi_for_each_sg(cmd, sg, use_sg, i) {
3137 if (i == h->max_cmd_sg_entries - 1 &&
3138 use_sg > h->max_cmd_sg_entries) {
3140 curr_sg = h->cmd_sg_list[cp->cmdindex];
3143 addr64 = (u64) sg_dma_address(sg);
3144 len = sg_dma_len(sg);
3145 curr_sg->Addr = cpu_to_le64(addr64);
3146 curr_sg->Len = cpu_to_le32(len);
3147 curr_sg->Ext = cpu_to_le32(0);
3150 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3152 if (use_sg + chained > h->maxSG)
3153 h->maxSG = use_sg + chained;
3156 cp->Header.SGList = h->max_cmd_sg_entries;
3157 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3158 if (hpsa_map_sg_chain_block(h, cp)) {
3159 scsi_dma_unmap(cmd);
3167 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
3168 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in this cmd list */
3172 #define IO_ACCEL_INELIGIBLE (1)
3173 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3179 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3186 if (*cdb_len == 6) {
3187 block = (((u32) cdb[2]) << 8) | cdb[3];
3190 BUG_ON(*cdb_len != 12);
3191 block = (((u32) cdb[2]) << 24) |
3192 (((u32) cdb[3]) << 16) |
3193 (((u32) cdb[4]) << 8) |
3196 (((u32) cdb[6]) << 24) |
3197 (((u32) cdb[7]) << 16) |
3198 (((u32) cdb[8]) << 8) |
3201 if (block_cnt > 0xffff)
3202 return IO_ACCEL_INELIGIBLE;
3204 cdb[0] = is_write ? WRITE_10 : READ_10;
3206 cdb[2] = (u8) (block >> 24);
3207 cdb[3] = (u8) (block >> 16);
3208 cdb[4] = (u8) (block >> 8);
3209 cdb[5] = (u8) (block);
3211 cdb[7] = (u8) (block_cnt >> 8);
3212 cdb[8] = (u8) (block_cnt);
3220 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3221 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3224 struct scsi_cmnd *cmd = c->scsi_cmd;
3225 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3227 unsigned int total_len = 0;
3228 struct scatterlist *sg;
3231 struct SGDescriptor *curr_sg;
3232 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3234 /* TODO: implement chaining support */
3235 if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3236 return IO_ACCEL_INELIGIBLE;
3238 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3240 if (fixup_ioaccel_cdb(cdb, &cdb_len))
3241 return IO_ACCEL_INELIGIBLE;
3243 c->cmd_type = CMD_IOACCEL1;
3245 /* Adjust the DMA address to point to the accelerated command buffer */
3246 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3247 (c->cmdindex * sizeof(*cp));
3248 BUG_ON(c->busaddr & 0x0000007F);
3250 use_sg = scsi_dma_map(cmd);
3256 scsi_for_each_sg(cmd, sg, use_sg, i) {
3257 addr64 = (u64) sg_dma_address(sg);
3258 len = sg_dma_len(sg);
3260 curr_sg->Addr = cpu_to_le64(addr64);
3261 curr_sg->Len = cpu_to_le32(len);
3262 curr_sg->Ext = cpu_to_le32(0);
3265 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3267 switch (cmd->sc_data_direction) {
3269 control |= IOACCEL1_CONTROL_DATA_OUT;
3271 case DMA_FROM_DEVICE:
3272 control |= IOACCEL1_CONTROL_DATA_IN;
3275 control |= IOACCEL1_CONTROL_NODATAXFER;
3278 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3279 cmd->sc_data_direction);
3284 control |= IOACCEL1_CONTROL_NODATAXFER;
3287 c->Header.SGList = use_sg;
3288 /* Fill out the command structure to submit */
3289 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
3290 cp->transfer_len = cpu_to_le32(total_len);
3291 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
3292 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
3293 cp->control = cpu_to_le32(control);
3294 memcpy(cp->CDB, cdb, cdb_len);
3295 memcpy(cp->CISS_LUN, scsi3addr, 8);
3296 /* Tag was already set at init time. */
3297 enqueue_cmd_and_start_io(h, c);
3302 * Queue a command directly to a device behind the controller using the
3303 * I/O accelerator path.
3305 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3306 struct CommandList *c)
3308 struct scsi_cmnd *cmd = c->scsi_cmd;
3309 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3311 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3312 cmd->cmnd, cmd->cmd_len, dev->scsi3addr);
3316 * Set encryption parameters for the ioaccel2 request
3318 static void set_encrypt_ioaccel2(struct ctlr_info *h,
3319 struct CommandList *c, struct io_accel2_cmd *cp)
3321 struct scsi_cmnd *cmd = c->scsi_cmd;
3322 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3323 struct raid_map_data *map = &dev->raid_map;
3326 BUG_ON(!(dev->offload_config && dev->offload_enabled));
3328 /* Are we doing encryption on this device */
3329 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
3331 /* Set the data encryption key index. */
3332 cp->dekindex = map->dekindex;
3334 /* Set the encryption enable flag, encoded into direction field. */
3335 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3337 /* Set encryption tweak values based on logical block address
3338 * If block size is 512, tweak value is LBA.
3339 * For other block sizes, tweak is (LBA * block size)/ 512)
3341 switch (cmd->cmnd[0]) {
3342 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3345 first_block = get_unaligned_be16(&cmd->cmnd[2]);
3349 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3352 first_block = get_unaligned_be32(&cmd->cmnd[2]);
3356 first_block = get_unaligned_be64(&cmd->cmnd[2]);
3359 dev_err(&h->pdev->dev,
3360 "ERROR: %s: size (0x%x) not supported for encryption\n",
3361 __func__, cmd->cmnd[0]);
3366 if (le32_to_cpu(map->volume_blk_size) != 512)
3367 first_block = first_block *
3368 le32_to_cpu(map->volume_blk_size)/512;
3370 cp->tweak_lower = cpu_to_le32(first_block);
3371 cp->tweak_upper = cpu_to_le32(first_block >> 32);
3374 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3375 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3378 struct scsi_cmnd *cmd = c->scsi_cmd;
3379 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3380 struct ioaccel2_sg_element *curr_sg;
3382 struct scatterlist *sg;
3387 if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3388 return IO_ACCEL_INELIGIBLE;
3390 if (fixup_ioaccel_cdb(cdb, &cdb_len))
3391 return IO_ACCEL_INELIGIBLE;
3392 c->cmd_type = CMD_IOACCEL2;
3393 /* Adjust the DMA address to point to the accelerated command buffer */
3394 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3395 (c->cmdindex * sizeof(*cp));
3396 BUG_ON(c->busaddr & 0x0000007F);
3398 memset(cp, 0, sizeof(*cp));
3399 cp->IU_type = IOACCEL2_IU_TYPE;
3401 use_sg = scsi_dma_map(cmd);
3406 BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
3408 scsi_for_each_sg(cmd, sg, use_sg, i) {
3409 addr64 = (u64) sg_dma_address(sg);
3410 len = sg_dma_len(sg);
3412 curr_sg->address = cpu_to_le64(addr64);
3413 curr_sg->length = cpu_to_le32(len);
3414 curr_sg->reserved[0] = 0;
3415 curr_sg->reserved[1] = 0;
3416 curr_sg->reserved[2] = 0;
3417 curr_sg->chain_indicator = 0;
3421 switch (cmd->sc_data_direction) {
3423 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3424 cp->direction |= IOACCEL2_DIR_DATA_OUT;
3426 case DMA_FROM_DEVICE:
3427 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3428 cp->direction |= IOACCEL2_DIR_DATA_IN;
3431 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3432 cp->direction |= IOACCEL2_DIR_NO_DATA;
3435 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3436 cmd->sc_data_direction);
3441 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3442 cp->direction |= IOACCEL2_DIR_NO_DATA;
3445 /* Set encryption parameters, if necessary */
3446 set_encrypt_ioaccel2(h, c, cp);
3448 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
3449 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT |
3451 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
3453 /* fill in sg elements */
3454 cp->sg_count = (u8) use_sg;
3456 cp->data_len = cpu_to_le32(total_len);
3457 cp->err_ptr = cpu_to_le64(c->busaddr +
3458 offsetof(struct io_accel2_cmd, error_data));
3459 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
3461 enqueue_cmd_and_start_io(h, c);
3466 * Queue a command to the correct I/O accelerator path.
3468 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3469 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3472 if (h->transMethod & CFGTBL_Trans_io_accel1)
3473 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3474 cdb, cdb_len, scsi3addr);
3476 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3477 cdb, cdb_len, scsi3addr);
3480 static void raid_map_helper(struct raid_map_data *map,
3481 int offload_to_mirror, u32 *map_index, u32 *current_group)
3483 if (offload_to_mirror == 0) {
3484 /* use physical disk in the first mirrored group. */
3485 *map_index %= le16_to_cpu(map->data_disks_per_row);
3489 /* determine mirror group that *map_index indicates */
3490 *current_group = *map_index /
3491 le16_to_cpu(map->data_disks_per_row);
3492 if (offload_to_mirror == *current_group)
3494 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
3495 /* select map index from next group */
3496 *map_index += le16_to_cpu(map->data_disks_per_row);
3499 /* select map index from first group */
3500 *map_index %= le16_to_cpu(map->data_disks_per_row);
3503 } while (offload_to_mirror != *current_group);
3507 * Attempt to perform offload RAID mapping for a logical volume I/O.
3509 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
3510 struct CommandList *c)
3512 struct scsi_cmnd *cmd = c->scsi_cmd;
3513 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3514 struct raid_map_data *map = &dev->raid_map;
3515 struct raid_map_disk_data *dd = &map->data[0];
3518 u64 first_block, last_block;
3521 u64 first_row, last_row;
3522 u32 first_row_offset, last_row_offset;
3523 u32 first_column, last_column;
3524 u64 r0_first_row, r0_last_row;
3525 u32 r5or6_blocks_per_row;
3526 u64 r5or6_first_row, r5or6_last_row;
3527 u32 r5or6_first_row_offset, r5or6_last_row_offset;
3528 u32 r5or6_first_column, r5or6_last_column;
3529 u32 total_disks_per_row;
3531 u32 first_group, last_group, current_group;
3539 #if BITS_PER_LONG == 32
3542 int offload_to_mirror;
3544 BUG_ON(!(dev->offload_config && dev->offload_enabled));
3546 /* check for valid opcode, get LBA and block count */
3547 switch (cmd->cmnd[0]) {
3552 (((u64) cmd->cmnd[2]) << 8) |
3554 block_cnt = cmd->cmnd[4];
3562 (((u64) cmd->cmnd[2]) << 24) |
3563 (((u64) cmd->cmnd[3]) << 16) |
3564 (((u64) cmd->cmnd[4]) << 8) |
3567 (((u32) cmd->cmnd[7]) << 8) |
3574 (((u64) cmd->cmnd[2]) << 24) |
3575 (((u64) cmd->cmnd[3]) << 16) |
3576 (((u64) cmd->cmnd[4]) << 8) |
3579 (((u32) cmd->cmnd[6]) << 24) |
3580 (((u32) cmd->cmnd[7]) << 16) |
3581 (((u32) cmd->cmnd[8]) << 8) |
3588 (((u64) cmd->cmnd[2]) << 56) |
3589 (((u64) cmd->cmnd[3]) << 48) |
3590 (((u64) cmd->cmnd[4]) << 40) |
3591 (((u64) cmd->cmnd[5]) << 32) |
3592 (((u64) cmd->cmnd[6]) << 24) |
3593 (((u64) cmd->cmnd[7]) << 16) |
3594 (((u64) cmd->cmnd[8]) << 8) |
3597 (((u32) cmd->cmnd[10]) << 24) |
3598 (((u32) cmd->cmnd[11]) << 16) |
3599 (((u32) cmd->cmnd[12]) << 8) |
3603 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
3605 last_block = first_block + block_cnt - 1;
3607 /* check for write to non-RAID-0 */
3608 if (is_write && dev->raid_level != 0)
3609 return IO_ACCEL_INELIGIBLE;
3611 /* check for invalid block or wraparound */
3612 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
3613 last_block < first_block)
3614 return IO_ACCEL_INELIGIBLE;
3616 /* calculate stripe information for the request */
3617 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
3618 le16_to_cpu(map->strip_size);
3619 strip_size = le16_to_cpu(map->strip_size);
3620 #if BITS_PER_LONG == 32
3621 tmpdiv = first_block;
3622 (void) do_div(tmpdiv, blocks_per_row);
3624 tmpdiv = last_block;
3625 (void) do_div(tmpdiv, blocks_per_row);
3627 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3628 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3629 tmpdiv = first_row_offset;
3630 (void) do_div(tmpdiv, strip_size);
3631 first_column = tmpdiv;
3632 tmpdiv = last_row_offset;
3633 (void) do_div(tmpdiv, strip_size);
3634 last_column = tmpdiv;
3636 first_row = first_block / blocks_per_row;
3637 last_row = last_block / blocks_per_row;
3638 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3639 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3640 first_column = first_row_offset / strip_size;
3641 last_column = last_row_offset / strip_size;
3644 /* if this isn't a single row/column then give to the controller */
3645 if ((first_row != last_row) || (first_column != last_column))
3646 return IO_ACCEL_INELIGIBLE;
3648 /* proceeding with driver mapping */
3649 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
3650 le16_to_cpu(map->metadata_disks_per_row);
3651 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3652 le16_to_cpu(map->row_cnt);
3653 map_index = (map_row * total_disks_per_row) + first_column;
3655 switch (dev->raid_level) {
3657 break; /* nothing special to do */
3659 /* Handles load balance across RAID 1 members.
3660 * (2-drive R1 and R10 with even # of drives.)
3661 * Appropriate for SSDs, not optimal for HDDs
3663 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
3664 if (dev->offload_to_mirror)
3665 map_index += le16_to_cpu(map->data_disks_per_row);
3666 dev->offload_to_mirror = !dev->offload_to_mirror;
3669 /* Handles N-way mirrors (R1-ADM)
3670 * and R10 with # of drives divisible by 3.)
3672 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
3674 offload_to_mirror = dev->offload_to_mirror;
3675 raid_map_helper(map, offload_to_mirror,
3676 &map_index, ¤t_group);
3677 /* set mirror group to use next time */
3679 (offload_to_mirror >=
3680 le16_to_cpu(map->layout_map_count) - 1)
3681 ? 0 : offload_to_mirror + 1;
3682 dev->offload_to_mirror = offload_to_mirror;
3683 /* Avoid direct use of dev->offload_to_mirror within this
3684 * function since multiple threads might simultaneously
3685 * increment it beyond the range of dev->layout_map_count -1.
3690 if (le16_to_cpu(map->layout_map_count) <= 1)
3693 /* Verify first and last block are in same RAID group */
3694 r5or6_blocks_per_row =
3695 le16_to_cpu(map->strip_size) *
3696 le16_to_cpu(map->data_disks_per_row);
3697 BUG_ON(r5or6_blocks_per_row == 0);
3698 stripesize = r5or6_blocks_per_row *
3699 le16_to_cpu(map->layout_map_count);
3700 #if BITS_PER_LONG == 32
3701 tmpdiv = first_block;
3702 first_group = do_div(tmpdiv, stripesize);
3703 tmpdiv = first_group;
3704 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3705 first_group = tmpdiv;
3706 tmpdiv = last_block;
3707 last_group = do_div(tmpdiv, stripesize);
3708 tmpdiv = last_group;
3709 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3710 last_group = tmpdiv;
3712 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
3713 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
3715 if (first_group != last_group)
3716 return IO_ACCEL_INELIGIBLE;
3718 /* Verify request is in a single row of RAID 5/6 */
3719 #if BITS_PER_LONG == 32
3720 tmpdiv = first_block;
3721 (void) do_div(tmpdiv, stripesize);
3722 first_row = r5or6_first_row = r0_first_row = tmpdiv;
3723 tmpdiv = last_block;
3724 (void) do_div(tmpdiv, stripesize);
3725 r5or6_last_row = r0_last_row = tmpdiv;
3727 first_row = r5or6_first_row = r0_first_row =
3728 first_block / stripesize;
3729 r5or6_last_row = r0_last_row = last_block / stripesize;
3731 if (r5or6_first_row != r5or6_last_row)
3732 return IO_ACCEL_INELIGIBLE;
3735 /* Verify request is in a single column */
3736 #if BITS_PER_LONG == 32
3737 tmpdiv = first_block;
3738 first_row_offset = do_div(tmpdiv, stripesize);
3739 tmpdiv = first_row_offset;
3740 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
3741 r5or6_first_row_offset = first_row_offset;
3742 tmpdiv = last_block;
3743 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
3744 tmpdiv = r5or6_last_row_offset;
3745 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
3746 tmpdiv = r5or6_first_row_offset;
3747 (void) do_div(tmpdiv, map->strip_size);
3748 first_column = r5or6_first_column = tmpdiv;
3749 tmpdiv = r5or6_last_row_offset;
3750 (void) do_div(tmpdiv, map->strip_size);
3751 r5or6_last_column = tmpdiv;
3753 first_row_offset = r5or6_first_row_offset =
3754 (u32)((first_block % stripesize) %
3755 r5or6_blocks_per_row);
3757 r5or6_last_row_offset =
3758 (u32)((last_block % stripesize) %
3759 r5or6_blocks_per_row);
3761 first_column = r5or6_first_column =
3762 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
3764 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
3766 if (r5or6_first_column != r5or6_last_column)
3767 return IO_ACCEL_INELIGIBLE;
3769 /* Request is eligible */
3770 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3771 le16_to_cpu(map->row_cnt);
3773 map_index = (first_group *
3774 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
3775 (map_row * total_disks_per_row) + first_column;
3778 return IO_ACCEL_INELIGIBLE;
3781 disk_handle = dd[map_index].ioaccel_handle;
3782 disk_block = le64_to_cpu(map->disk_starting_blk) +
3783 first_row * le16_to_cpu(map->strip_size) +
3784 (first_row_offset - first_column *
3785 le16_to_cpu(map->strip_size));
3786 disk_block_cnt = block_cnt;
3788 /* handle differing logical/physical block sizes */
3789 if (map->phys_blk_shift) {
3790 disk_block <<= map->phys_blk_shift;
3791 disk_block_cnt <<= map->phys_blk_shift;
3793 BUG_ON(disk_block_cnt > 0xffff);
3795 /* build the new CDB for the physical disk I/O */
3796 if (disk_block > 0xffffffff) {
3797 cdb[0] = is_write ? WRITE_16 : READ_16;
3799 cdb[2] = (u8) (disk_block >> 56);
3800 cdb[3] = (u8) (disk_block >> 48);
3801 cdb[4] = (u8) (disk_block >> 40);
3802 cdb[5] = (u8) (disk_block >> 32);
3803 cdb[6] = (u8) (disk_block >> 24);
3804 cdb[7] = (u8) (disk_block >> 16);
3805 cdb[8] = (u8) (disk_block >> 8);
3806 cdb[9] = (u8) (disk_block);
3807 cdb[10] = (u8) (disk_block_cnt >> 24);
3808 cdb[11] = (u8) (disk_block_cnt >> 16);
3809 cdb[12] = (u8) (disk_block_cnt >> 8);
3810 cdb[13] = (u8) (disk_block_cnt);
3815 cdb[0] = is_write ? WRITE_10 : READ_10;
3817 cdb[2] = (u8) (disk_block >> 24);
3818 cdb[3] = (u8) (disk_block >> 16);
3819 cdb[4] = (u8) (disk_block >> 8);
3820 cdb[5] = (u8) (disk_block);
3822 cdb[7] = (u8) (disk_block_cnt >> 8);
3823 cdb[8] = (u8) (disk_block_cnt);
3827 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
3832 * Running in struct Scsi_Host->host_lock less mode using LLD internal
3833 * struct ctlr_info *h->lock w/ spin_lock_irqsave() protection.
3835 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
3837 struct ctlr_info *h;
3838 struct hpsa_scsi_dev_t *dev;
3839 unsigned char scsi3addr[8];
3840 struct CommandList *c;
3843 /* Get the ptr to our adapter structure out of cmd->host. */
3844 h = sdev_to_hba(cmd->device);
3845 dev = cmd->device->hostdata;
3847 cmd->result = DID_NO_CONNECT << 16;
3848 cmd->scsi_done(cmd);
3851 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
3853 if (unlikely(lockup_detected(h))) {
3854 cmd->result = DID_ERROR << 16;
3855 cmd->scsi_done(cmd);
3859 if (c == NULL) { /* trouble... */
3860 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
3861 return SCSI_MLQUEUE_HOST_BUSY;
3864 /* Fill in the command list header */
3865 /* save c in case we have to abort it */
3866 cmd->host_scribble = (unsigned char *) c;
3868 c->cmd_type = CMD_SCSI;
3871 /* Call alternate submit routine for I/O accelerated commands.
3872 * Retries always go down the normal I/O path.
3874 if (likely(cmd->retries == 0 &&
3875 cmd->request->cmd_type == REQ_TYPE_FS &&
3876 h->acciopath_status)) {
3877 if (dev->offload_enabled) {
3878 rc = hpsa_scsi_ioaccel_raid_map(h, c);
3880 return 0; /* Sent on ioaccel path */
3881 if (rc < 0) { /* scsi_dma_map failed. */
3883 return SCSI_MLQUEUE_HOST_BUSY;
3885 } else if (dev->ioaccel_handle) {
3886 rc = hpsa_scsi_ioaccel_direct_map(h, c);
3888 return 0; /* Sent on direct map path */
3889 if (rc < 0) { /* scsi_dma_map failed. */
3891 return SCSI_MLQUEUE_HOST_BUSY;
3896 c->Header.ReplyQueue = 0; /* unused in simple mode */
3897 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
3898 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT) |
3901 /* Fill in the request block... */
3903 c->Request.Timeout = 0;
3904 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
3905 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
3906 c->Request.CDBLen = cmd->cmd_len;
3907 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
3908 switch (cmd->sc_data_direction) {
3910 c->Request.type_attr_dir =
3911 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
3913 case DMA_FROM_DEVICE:
3914 c->Request.type_attr_dir =
3915 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
3918 c->Request.type_attr_dir =
3919 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
3921 case DMA_BIDIRECTIONAL:
3922 /* This can happen if a buggy application does a scsi passthru
3923 * and sets both inlen and outlen to non-zero. ( see
3924 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
3927 c->Request.type_attr_dir =
3928 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
3929 /* This is technically wrong, and hpsa controllers should
3930 * reject it with CMD_INVALID, which is the most correct
3931 * response, but non-fibre backends appear to let it
3932 * slide by, and give the same results as if this field
3933 * were set correctly. Either way is acceptable for
3934 * our purposes here.
3940 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3941 cmd->sc_data_direction);
3946 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
3948 return SCSI_MLQUEUE_HOST_BUSY;
3950 enqueue_cmd_and_start_io(h, c);
3951 /* the cmd'll come back via intr handler in complete_scsi_command() */
3955 static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
3957 unsigned long flags;
3960 * Don't let rescans be initiated on a controller known
3961 * to be locked up. If the controller locks up *during*
3962 * a rescan, that thread is probably hosed, but at least
3963 * we can prevent new rescan threads from piling up on a
3964 * locked up controller.
3966 if (unlikely(lockup_detected(h))) {
3967 spin_lock_irqsave(&h->scan_lock, flags);
3968 h->scan_finished = 1;
3969 wake_up_all(&h->scan_wait_queue);
3970 spin_unlock_irqrestore(&h->scan_lock, flags);
3976 static void hpsa_scan_start(struct Scsi_Host *sh)
3978 struct ctlr_info *h = shost_to_hba(sh);
3979 unsigned long flags;
3981 if (do_not_scan_if_controller_locked_up(h))
3984 /* wait until any scan already in progress is finished. */
3986 spin_lock_irqsave(&h->scan_lock, flags);
3987 if (h->scan_finished)
3989 spin_unlock_irqrestore(&h->scan_lock, flags);
3990 wait_event(h->scan_wait_queue, h->scan_finished);
3991 /* Note: We don't need to worry about a race between this
3992 * thread and driver unload because the midlayer will
3993 * have incremented the reference count, so unload won't
3994 * happen if we're in here.
3997 h->scan_finished = 0; /* mark scan as in progress */
3998 spin_unlock_irqrestore(&h->scan_lock, flags);
4000 if (do_not_scan_if_controller_locked_up(h))
4003 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4005 spin_lock_irqsave(&h->scan_lock, flags);
4006 h->scan_finished = 1; /* mark scan as finished. */
4007 wake_up_all(&h->scan_wait_queue);
4008 spin_unlock_irqrestore(&h->scan_lock, flags);
4011 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4013 struct ctlr_info *h = sdev_to_hba(sdev);
4018 if (qdepth > h->nr_cmds)
4019 qdepth = h->nr_cmds;
4020 scsi_change_queue_depth(sdev, qdepth);
4021 return sdev->queue_depth;
4024 static int hpsa_scan_finished(struct Scsi_Host *sh,
4025 unsigned long elapsed_time)
4027 struct ctlr_info *h = shost_to_hba(sh);
4028 unsigned long flags;
4031 spin_lock_irqsave(&h->scan_lock, flags);
4032 finished = h->scan_finished;
4033 spin_unlock_irqrestore(&h->scan_lock, flags);
4037 static void hpsa_unregister_scsi(struct ctlr_info *h)
4039 /* we are being forcibly unloaded, and may not refuse. */
4040 scsi_remove_host(h->scsi_host);
4041 scsi_host_put(h->scsi_host);
4042 h->scsi_host = NULL;
4045 static int hpsa_register_scsi(struct ctlr_info *h)
4047 struct Scsi_Host *sh;
4050 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4057 sh->max_channel = 3;
4058 sh->max_cmd_len = MAX_COMMAND_SIZE;
4059 sh->max_lun = HPSA_MAX_LUN;
4060 sh->max_id = HPSA_MAX_LUN;
4061 sh->can_queue = h->nr_cmds;
4062 if (h->hba_mode_enabled)
4063 sh->cmd_per_lun = 7;
4065 sh->cmd_per_lun = h->nr_cmds;
4066 sh->sg_tablesize = h->maxsgentries;
4068 sh->hostdata[0] = (unsigned long) h;
4069 sh->irq = h->intr[h->intr_mode];
4070 sh->unique_id = sh->irq;
4071 error = scsi_add_host(sh, &h->pdev->dev);
4078 dev_err(&h->pdev->dev, "%s: scsi_add_host"
4079 " failed for controller %d\n", __func__, h->ctlr);
4083 dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4084 " failed for controller %d\n", __func__, h->ctlr);
4088 static int wait_for_device_to_become_ready(struct ctlr_info *h,
4089 unsigned char lunaddr[])
4093 int waittime = 1; /* seconds */
4094 struct CommandList *c;
4096 c = cmd_special_alloc(h);
4098 dev_warn(&h->pdev->dev, "out of memory in "
4099 "wait_for_device_to_become_ready.\n");
4103 /* Send test unit ready until device ready, or give up. */
4104 while (count < HPSA_TUR_RETRY_LIMIT) {
4106 /* Wait for a bit. do this first, because if we send
4107 * the TUR right away, the reset will just abort it.
4109 msleep(1000 * waittime);
4111 rc = 0; /* Device ready. */
4113 /* Increase wait time with each try, up to a point. */
4114 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4115 waittime = waittime * 2;
4117 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4118 (void) fill_cmd(c, TEST_UNIT_READY, h,
4119 NULL, 0, 0, lunaddr, TYPE_CMD);
4120 hpsa_scsi_do_simple_cmd_core(h, c);
4121 /* no unmap needed here because no data xfer. */
4123 if (c->err_info->CommandStatus == CMD_SUCCESS)
4126 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4127 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4128 (c->err_info->SenseInfo[2] == NO_SENSE ||
4129 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4132 dev_warn(&h->pdev->dev, "waiting %d secs "
4133 "for device to become ready.\n", waittime);
4134 rc = 1; /* device not ready. */
4138 dev_warn(&h->pdev->dev, "giving up on device.\n");
4140 dev_warn(&h->pdev->dev, "device is ready.\n");
4142 cmd_special_free(h, c);
4146 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
4147 * complaining. Doing a host- or bus-reset can't do anything good here.
4149 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4152 struct ctlr_info *h;
4153 struct hpsa_scsi_dev_t *dev;
4155 /* find the controller to which the command to be aborted was sent */
4156 h = sdev_to_hba(scsicmd->device);
4157 if (h == NULL) /* paranoia */
4159 dev = scsicmd->device->hostdata;
4161 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4162 "device lookup failed.\n");
4165 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
4166 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4167 /* send a reset to the SCSI LUN which the command was sent to */
4168 rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
4169 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4172 dev_warn(&h->pdev->dev, "resetting device failed.\n");
4176 static void swizzle_abort_tag(u8 *tag)
4180 memcpy(original_tag, tag, 8);
4181 tag[0] = original_tag[3];
4182 tag[1] = original_tag[2];
4183 tag[2] = original_tag[1];
4184 tag[3] = original_tag[0];
4185 tag[4] = original_tag[7];
4186 tag[5] = original_tag[6];
4187 tag[6] = original_tag[5];
4188 tag[7] = original_tag[4];
4191 static void hpsa_get_tag(struct ctlr_info *h,
4192 struct CommandList *c, __le32 *taglower, __le32 *tagupper)
4195 if (c->cmd_type == CMD_IOACCEL1) {
4196 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4197 &h->ioaccel_cmd_pool[c->cmdindex];
4198 tag = le64_to_cpu(cm1->tag);
4199 *tagupper = cpu_to_le32(tag >> 32);
4200 *taglower = cpu_to_le32(tag);
4203 if (c->cmd_type == CMD_IOACCEL2) {
4204 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4205 &h->ioaccel2_cmd_pool[c->cmdindex];
4206 /* upper tag not used in ioaccel2 mode */
4207 memset(tagupper, 0, sizeof(*tagupper));
4208 *taglower = cm2->Tag;
4211 tag = le64_to_cpu(c->Header.tag);
4212 *tagupper = cpu_to_le32(tag >> 32);
4213 *taglower = cpu_to_le32(tag);
4216 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4217 struct CommandList *abort, int swizzle)
4220 struct CommandList *c;
4221 struct ErrorInfo *ei;
4222 __le32 tagupper, taglower;
4224 c = cmd_special_alloc(h);
4225 if (c == NULL) { /* trouble... */
4226 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4230 /* fill_cmd can't fail here, no buffer to map */
4231 (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
4232 0, 0, scsi3addr, TYPE_MSG);
4234 swizzle_abort_tag(&c->Request.CDB[4]);
4235 hpsa_scsi_do_simple_cmd_core(h, c);
4236 hpsa_get_tag(h, abort, &taglower, &tagupper);
4237 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4238 __func__, tagupper, taglower);
4239 /* no unmap needed here because no data xfer. */
4242 switch (ei->CommandStatus) {
4245 case CMD_UNABORTABLE: /* Very common, don't make noise. */
4249 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4250 __func__, tagupper, taglower);
4251 hpsa_scsi_interpret_error(h, c);
4255 cmd_special_free(h, c);
4256 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4257 __func__, tagupper, taglower);
4262 * hpsa_find_cmd_in_queue
4264 * Used to determine whether a command (find) is still present
4265 * in queue_head. Optionally excludes the last element of queue_head.
4267 * This is used to avoid unnecessary aborts. Commands in h->reqQ have
4268 * not yet been submitted, and so can be aborted by the driver without
4269 * sending an abort to the hardware.
4271 * Returns pointer to command if found in queue, NULL otherwise.
4273 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
4274 struct scsi_cmnd *find, struct list_head *queue_head)
4276 unsigned long flags;
4277 struct CommandList *c = NULL; /* ptr into cmpQ */
4281 spin_lock_irqsave(&h->lock, flags);
4282 list_for_each_entry(c, queue_head, list) {
4283 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
4285 if (c->scsi_cmd == find) {
4286 spin_unlock_irqrestore(&h->lock, flags);
4290 spin_unlock_irqrestore(&h->lock, flags);
4294 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
4295 u8 *tag, struct list_head *queue_head)
4297 unsigned long flags;
4298 struct CommandList *c;
4300 spin_lock_irqsave(&h->lock, flags);
4301 list_for_each_entry(c, queue_head, list) {
4302 if (memcmp(&c->Header.tag, tag, 8) != 0)
4304 spin_unlock_irqrestore(&h->lock, flags);
4307 spin_unlock_irqrestore(&h->lock, flags);
4311 /* ioaccel2 path firmware cannot handle abort task requests.
4312 * Change abort requests to physical target reset, and send to the
4313 * address of the physical disk used for the ioaccel 2 command.
4314 * Return 0 on success (IO_OK)
4318 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4319 unsigned char *scsi3addr, struct CommandList *abort)
4322 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4323 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4324 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4325 unsigned char *psa = &phys_scsi3addr[0];
4327 /* Get a pointer to the hpsa logical device. */
4328 scmd = (struct scsi_cmnd *) abort->scsi_cmd;
4329 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4331 dev_warn(&h->pdev->dev,
4332 "Cannot abort: no device pointer for command.\n");
4333 return -1; /* not abortable */
4336 if (h->raid_offload_debug > 0)
4337 dev_info(&h->pdev->dev,
4338 "Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4339 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4340 scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4341 scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4343 if (!dev->offload_enabled) {
4344 dev_warn(&h->pdev->dev,
4345 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4346 return -1; /* not abortable */
4349 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
4350 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4351 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4352 return -1; /* not abortable */
4355 /* send the reset */
4356 if (h->raid_offload_debug > 0)
4357 dev_info(&h->pdev->dev,
4358 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4359 psa[0], psa[1], psa[2], psa[3],
4360 psa[4], psa[5], psa[6], psa[7]);
4361 rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
4363 dev_warn(&h->pdev->dev,
4364 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4365 psa[0], psa[1], psa[2], psa[3],
4366 psa[4], psa[5], psa[6], psa[7]);
4367 return rc; /* failed to reset */
4370 /* wait for device to recover */
4371 if (wait_for_device_to_become_ready(h, psa) != 0) {
4372 dev_warn(&h->pdev->dev,
4373 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4374 psa[0], psa[1], psa[2], psa[3],
4375 psa[4], psa[5], psa[6], psa[7]);
4376 return -1; /* failed to recover */
4379 /* device recovered */
4380 dev_info(&h->pdev->dev,
4381 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4382 psa[0], psa[1], psa[2], psa[3],
4383 psa[4], psa[5], psa[6], psa[7]);
4385 return rc; /* success */
4388 /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to
4389 * tell which kind we're dealing with, so we send the abort both ways. There
4390 * shouldn't be any collisions between swizzled and unswizzled tags due to the
4391 * way we construct our tags but we check anyway in case the assumptions which
4392 * make this true someday become false.
4394 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4395 unsigned char *scsi3addr, struct CommandList *abort)
4398 struct CommandList *c;
4399 int rc = 0, rc2 = 0;
4401 /* ioccelerator mode 2 commands should be aborted via the
4402 * accelerated path, since RAID path is unaware of these commands,
4403 * but underlying firmware can't handle abort TMF.
4404 * Change abort to physical device reset.
4406 if (abort->cmd_type == CMD_IOACCEL2)
4407 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);
4409 /* we do not expect to find the swizzled tag in our queue, but
4410 * check anyway just to be sure the assumptions which make this
4411 * the case haven't become wrong.
4413 memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
4414 swizzle_abort_tag(swizzled_tag);
4415 c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
4417 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
4418 return hpsa_send_abort(h, scsi3addr, abort, 0);
4420 rc = hpsa_send_abort(h, scsi3addr, abort, 0);
4422 /* if the command is still in our queue, we can't conclude that it was
4423 * aborted (it might have just completed normally) but in any case
4424 * we don't need to try to abort it another way.
4426 c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
4428 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
4432 /* Send an abort for the specified command.
4433 * If the device and controller support it,
4434 * send a task abort request.
4436 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
4440 struct ctlr_info *h;
4441 struct hpsa_scsi_dev_t *dev;
4442 struct CommandList *abort; /* pointer to command to be aborted */
4443 struct CommandList *found;
4444 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
4445 char msg[256]; /* For debug messaging. */
4447 __le32 tagupper, taglower;
4449 /* Find the controller of the command to be aborted */
4450 h = sdev_to_hba(sc->device);
4452 "ABORT REQUEST FAILED, Controller lookup failed.\n"))
4455 /* Check that controller supports some kind of task abort */
4456 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
4457 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
4460 memset(msg, 0, sizeof(msg));
4461 ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%llu ",
4462 h->scsi_host->host_no, sc->device->channel,
4463 sc->device->id, sc->device->lun);
4465 /* Find the device of the command to be aborted */
4466 dev = sc->device->hostdata;
4468 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
4473 /* Get SCSI command to be aborted */
4474 abort = (struct CommandList *) sc->host_scribble;
4475 if (abort == NULL) {
4476 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
4480 hpsa_get_tag(h, abort, &taglower, &tagupper);
4481 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4482 as = (struct scsi_cmnd *) abort->scsi_cmd;
4484 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
4485 as->cmnd[0], as->serial_number);
4486 dev_dbg(&h->pdev->dev, "%s\n", msg);
4487 dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
4488 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4490 /* Search reqQ to See if command is queued but not submitted,
4491 * if so, complete the command with aborted status and remove
4494 found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
4496 found->err_info->CommandStatus = CMD_ABORTED;
4498 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
4503 /* not in reqQ, if also not in cmpQ, must have already completed */
4504 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4506 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
4512 * Command is in flight, or possibly already completed
4513 * by the firmware (but not to the scsi mid layer) but we can't
4514 * distinguish which. Send the abort down.
4516 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4518 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
4519 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
4520 h->scsi_host->host_no,
4521 dev->bus, dev->target, dev->lun);
4524 dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
4526 /* If the abort(s) above completed and actually aborted the
4527 * command, then the command to be aborted should already be
4528 * completed. If not, wait around a bit more to see if they
4529 * manage to complete normally.
4531 #define ABORT_COMPLETE_WAIT_SECS 30
4532 for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4533 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4538 dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4539 msg, ABORT_COMPLETE_WAIT_SECS);
4545 * For operations that cannot sleep, a command block is allocated at init,
4546 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4547 * which ones are free or in use. Lock must be held when calling this.
4548 * cmd_free() is the complement.
4550 static struct CommandList *cmd_alloc(struct ctlr_info *h)
4552 struct CommandList *c;
4554 union u64bit temp64;
4555 dma_addr_t cmd_dma_handle, err_dma_handle;
4558 /* There is some *extremely* small but non-zero chance that that
4559 * multiple threads could get in here, and one thread could
4560 * be scanning through the list of bits looking for a free
4561 * one, but the free ones are always behind him, and other
4562 * threads sneak in behind him and eat them before he can
4563 * get to them, so that while there is always a free one, a
4564 * very unlucky thread might be starved anyway, never able to
4565 * beat the other threads. In reality, this happens so
4566 * infrequently as to be indistinguishable from never.
4571 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
4572 if (i == h->nr_cmds)
4575 } while (test_and_set_bit(i & (BITS_PER_LONG - 1),
4576 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0 &&
4579 /* Thread got starved? We do not expect this to ever happen. */
4580 if (loopcount >= 10)
4583 c = h->cmd_pool + i;
4584 memset(c, 0, sizeof(*c));
4585 cmd_dma_handle = h->cmd_pool_dhandle
4587 c->err_info = h->errinfo_pool + i;
4588 memset(c->err_info, 0, sizeof(*c->err_info));
4589 err_dma_handle = h->errinfo_pool_dhandle
4590 + i * sizeof(*c->err_info);
4594 INIT_LIST_HEAD(&c->list);
4595 c->busaddr = (u32) cmd_dma_handle;
4596 temp64.val = (u64) err_dma_handle;
4597 c->ErrDesc.Addr = cpu_to_le64(err_dma_handle);
4598 c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info));
4604 /* For operations that can wait for kmalloc to possibly sleep,
4605 * this routine can be called. Lock need not be held to call
4606 * cmd_special_alloc. cmd_special_free() is the complement.
4608 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
4610 struct CommandList *c;
4611 dma_addr_t cmd_dma_handle, err_dma_handle;
4613 c = pci_zalloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
4617 c->cmd_type = CMD_SCSI;
4620 c->err_info = pci_zalloc_consistent(h->pdev, sizeof(*c->err_info),
4623 if (c->err_info == NULL) {
4624 pci_free_consistent(h->pdev,
4625 sizeof(*c), c, cmd_dma_handle);
4629 INIT_LIST_HEAD(&c->list);
4630 c->busaddr = (u32) cmd_dma_handle;
4631 c->ErrDesc.Addr = cpu_to_le64(err_dma_handle);
4632 c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info));
4638 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
4642 i = c - h->cmd_pool;
4643 clear_bit(i & (BITS_PER_LONG - 1),
4644 h->cmd_pool_bits + (i / BITS_PER_LONG));
4647 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
4649 pci_free_consistent(h->pdev, sizeof(*c->err_info),
4651 (dma_addr_t) le64_to_cpu(c->ErrDesc.Addr));
4652 pci_free_consistent(h->pdev, sizeof(*c),
4653 c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
4656 #ifdef CONFIG_COMPAT
4658 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
4661 IOCTL32_Command_struct __user *arg32 =
4662 (IOCTL32_Command_struct __user *) arg;
4663 IOCTL_Command_struct arg64;
4664 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
4668 memset(&arg64, 0, sizeof(arg64));
4670 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4671 sizeof(arg64.LUN_info));
4672 err |= copy_from_user(&arg64.Request, &arg32->Request,
4673 sizeof(arg64.Request));
4674 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4675 sizeof(arg64.error_info));
4676 err |= get_user(arg64.buf_size, &arg32->buf_size);
4677 err |= get_user(cp, &arg32->buf);
4678 arg64.buf = compat_ptr(cp);
4679 err |= copy_to_user(p, &arg64, sizeof(arg64));
4684 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
4687 err |= copy_in_user(&arg32->error_info, &p->error_info,
4688 sizeof(arg32->error_info));
4694 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
4695 int cmd, void __user *arg)
4697 BIG_IOCTL32_Command_struct __user *arg32 =
4698 (BIG_IOCTL32_Command_struct __user *) arg;
4699 BIG_IOCTL_Command_struct arg64;
4700 BIG_IOCTL_Command_struct __user *p =
4701 compat_alloc_user_space(sizeof(arg64));
4705 memset(&arg64, 0, sizeof(arg64));
4707 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4708 sizeof(arg64.LUN_info));
4709 err |= copy_from_user(&arg64.Request, &arg32->Request,
4710 sizeof(arg64.Request));
4711 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4712 sizeof(arg64.error_info));
4713 err |= get_user(arg64.buf_size, &arg32->buf_size);
4714 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
4715 err |= get_user(cp, &arg32->buf);
4716 arg64.buf = compat_ptr(cp);
4717 err |= copy_to_user(p, &arg64, sizeof(arg64));
4722 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
4725 err |= copy_in_user(&arg32->error_info, &p->error_info,
4726 sizeof(arg32->error_info));
4732 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
4735 case CCISS_GETPCIINFO:
4736 case CCISS_GETINTINFO:
4737 case CCISS_SETINTINFO:
4738 case CCISS_GETNODENAME:
4739 case CCISS_SETNODENAME:
4740 case CCISS_GETHEARTBEAT:
4741 case CCISS_GETBUSTYPES:
4742 case CCISS_GETFIRMVER:
4743 case CCISS_GETDRIVVER:
4744 case CCISS_REVALIDVOLS:
4745 case CCISS_DEREGDISK:
4746 case CCISS_REGNEWDISK:
4748 case CCISS_RESCANDISK:
4749 case CCISS_GETLUNINFO:
4750 return hpsa_ioctl(dev, cmd, arg);
4752 case CCISS_PASSTHRU32:
4753 return hpsa_ioctl32_passthru(dev, cmd, arg);
4754 case CCISS_BIG_PASSTHRU32:
4755 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
4758 return -ENOIOCTLCMD;
4763 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
4765 struct hpsa_pci_info pciinfo;
4769 pciinfo.domain = pci_domain_nr(h->pdev->bus);
4770 pciinfo.bus = h->pdev->bus->number;
4771 pciinfo.dev_fn = h->pdev->devfn;
4772 pciinfo.board_id = h->board_id;
4773 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
4778 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
4780 DriverVer_type DriverVer;
4781 unsigned char vmaj, vmin, vsubmin;
4784 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
4785 &vmaj, &vmin, &vsubmin);
4787 dev_info(&h->pdev->dev, "driver version string '%s' "
4788 "unrecognized.", HPSA_DRIVER_VERSION);
4793 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
4796 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
4801 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4803 IOCTL_Command_struct iocommand;
4804 struct CommandList *c;
4811 if (!capable(CAP_SYS_RAWIO))
4813 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
4815 if ((iocommand.buf_size < 1) &&
4816 (iocommand.Request.Type.Direction != XFER_NONE)) {
4819 if (iocommand.buf_size > 0) {
4820 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
4823 if (iocommand.Request.Type.Direction & XFER_WRITE) {
4824 /* Copy the data into the buffer we created */
4825 if (copy_from_user(buff, iocommand.buf,
4826 iocommand.buf_size)) {
4831 memset(buff, 0, iocommand.buf_size);
4834 c = cmd_special_alloc(h);
4839 /* Fill in the command type */
4840 c->cmd_type = CMD_IOCTL_PEND;
4841 /* Fill in Command Header */
4842 c->Header.ReplyQueue = 0; /* unused in simple mode */
4843 if (iocommand.buf_size > 0) { /* buffer to fill */
4844 c->Header.SGList = 1;
4845 c->Header.SGTotal = cpu_to_le16(1);
4846 } else { /* no buffers to fill */
4847 c->Header.SGList = 0;
4848 c->Header.SGTotal = cpu_to_le16(0);
4850 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
4851 /* use the kernel address the cmd block for tag */
4852 c->Header.tag = cpu_to_le64(c->busaddr);
4854 /* Fill in Request block */
4855 memcpy(&c->Request, &iocommand.Request,
4856 sizeof(c->Request));
4858 /* Fill in the scatter gather information */
4859 if (iocommand.buf_size > 0) {
4860 temp64 = pci_map_single(h->pdev, buff,
4861 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4862 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
4863 c->SG[0].Addr = cpu_to_le64(0);
4864 c->SG[0].Len = cpu_to_le32(0);
4868 c->SG[0].Addr = cpu_to_le64(temp64);
4869 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
4870 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
4872 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4873 if (iocommand.buf_size > 0)
4874 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
4875 check_ioctl_unit_attention(h, c);
4877 /* Copy the error information out */
4878 memcpy(&iocommand.error_info, c->err_info,
4879 sizeof(iocommand.error_info));
4880 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
4884 if ((iocommand.Request.Type.Direction & XFER_READ) &&
4885 iocommand.buf_size > 0) {
4886 /* Copy the data out of the buffer we created */
4887 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
4893 cmd_special_free(h, c);
4899 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4901 BIG_IOCTL_Command_struct *ioc;
4902 struct CommandList *c;
4903 unsigned char **buff = NULL;
4904 int *buff_size = NULL;
4910 BYTE __user *data_ptr;
4914 if (!capable(CAP_SYS_RAWIO))
4916 ioc = (BIG_IOCTL_Command_struct *)
4917 kmalloc(sizeof(*ioc), GFP_KERNEL);
4922 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
4926 if ((ioc->buf_size < 1) &&
4927 (ioc->Request.Type.Direction != XFER_NONE)) {
4931 /* Check kmalloc limits using all SGs */
4932 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
4936 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
4940 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
4945 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
4950 left = ioc->buf_size;
4951 data_ptr = ioc->buf;
4953 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
4954 buff_size[sg_used] = sz;
4955 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
4956 if (buff[sg_used] == NULL) {
4960 if (ioc->Request.Type.Direction & XFER_WRITE) {
4961 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
4966 memset(buff[sg_used], 0, sz);
4971 c = cmd_special_alloc(h);
4976 c->cmd_type = CMD_IOCTL_PEND;
4977 c->Header.ReplyQueue = 0;
4978 c->Header.SGList = (u8) sg_used;
4979 c->Header.SGTotal = cpu_to_le16(sg_used);
4980 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
4981 c->Header.tag = cpu_to_le64(c->busaddr);
4982 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
4983 if (ioc->buf_size > 0) {
4985 for (i = 0; i < sg_used; i++) {
4986 temp64 = pci_map_single(h->pdev, buff[i],
4987 buff_size[i], PCI_DMA_BIDIRECTIONAL);
4988 if (dma_mapping_error(&h->pdev->dev,
4989 (dma_addr_t) temp64)) {
4990 c->SG[i].Addr = cpu_to_le64(0);
4991 c->SG[i].Len = cpu_to_le32(0);
4992 hpsa_pci_unmap(h->pdev, c, i,
4993 PCI_DMA_BIDIRECTIONAL);
4997 c->SG[i].Addr = cpu_to_le64(temp64);
4998 c->SG[i].Len = cpu_to_le32(buff_size[i]);
4999 c->SG[i].Ext = cpu_to_le32(0);
5001 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
5003 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
5005 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5006 check_ioctl_unit_attention(h, c);
5007 /* Copy the error information out */
5008 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
5009 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
5013 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
5016 /* Copy the data out of the buffer we created */
5017 BYTE __user *ptr = ioc->buf;
5018 for (i = 0; i < sg_used; i++) {
5019 if (copy_to_user(ptr, buff[i], buff_size[i])) {
5023 ptr += buff_size[i];
5028 cmd_special_free(h, c);
5033 for (i = 0; i < sg_used; i++)
5042 static void check_ioctl_unit_attention(struct ctlr_info *h,
5043 struct CommandList *c)
5045 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5046 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5047 (void) check_for_unit_attention(h, c);
5050 static int increment_passthru_count(struct ctlr_info *h)
5052 unsigned long flags;
5054 spin_lock_irqsave(&h->passthru_count_lock, flags);
5055 if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
5056 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5059 h->passthru_count++;
5060 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5064 static void decrement_passthru_count(struct ctlr_info *h)
5066 unsigned long flags;
5068 spin_lock_irqsave(&h->passthru_count_lock, flags);
5069 if (h->passthru_count <= 0) {
5070 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5071 /* not expecting to get here. */
5072 dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
5075 h->passthru_count--;
5076 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5082 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5084 struct ctlr_info *h;
5085 void __user *argp = (void __user *)arg;
5088 h = sdev_to_hba(dev);
5091 case CCISS_DEREGDISK:
5092 case CCISS_REGNEWDISK:
5094 hpsa_scan_start(h->scsi_host);
5096 case CCISS_GETPCIINFO:
5097 return hpsa_getpciinfo_ioctl(h, argp);
5098 case CCISS_GETDRIVVER:
5099 return hpsa_getdrivver_ioctl(h, argp);
5100 case CCISS_PASSTHRU:
5101 if (increment_passthru_count(h))
5103 rc = hpsa_passthru_ioctl(h, argp);
5104 decrement_passthru_count(h);
5106 case CCISS_BIG_PASSTHRU:
5107 if (increment_passthru_count(h))
5109 rc = hpsa_big_passthru_ioctl(h, argp);
5110 decrement_passthru_count(h);
5117 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5120 struct CommandList *c;
5125 /* fill_cmd can't fail here, no data buffer to map */
5126 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5127 RAID_CTLR_LUNID, TYPE_MSG);
5128 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5130 enqueue_cmd_and_start_io(h, c);
5131 /* Don't wait for completion, the reset won't complete. Don't free
5132 * the command either. This is the last command we will send before
5133 * re-initializing everything, so it doesn't matter and won't leak.
5138 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5139 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5142 int pci_dir = XFER_NONE;
5143 struct CommandList *a; /* for commands to be aborted */
5145 c->cmd_type = CMD_IOCTL_PEND;
5146 c->Header.ReplyQueue = 0;
5147 if (buff != NULL && size > 0) {
5148 c->Header.SGList = 1;
5149 c->Header.SGTotal = cpu_to_le16(1);
5151 c->Header.SGList = 0;
5152 c->Header.SGTotal = cpu_to_le16(0);
5154 c->Header.tag = cpu_to_le64(c->busaddr);
5155 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5157 if (cmd_type == TYPE_CMD) {
5160 /* are we trying to read a vital product page */
5161 if (page_code & VPD_PAGE) {
5162 c->Request.CDB[1] = 0x01;
5163 c->Request.CDB[2] = (page_code & 0xff);
5165 c->Request.CDBLen = 6;
5166 c->Request.type_attr_dir =
5167 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5168 c->Request.Timeout = 0;
5169 c->Request.CDB[0] = HPSA_INQUIRY;
5170 c->Request.CDB[4] = size & 0xFF;
5172 case HPSA_REPORT_LOG:
5173 case HPSA_REPORT_PHYS:
5174 /* Talking to controller so It's a physical command
5175 mode = 00 target = 0. Nothing to write.
5177 c->Request.CDBLen = 12;
5178 c->Request.type_attr_dir =
5179 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5180 c->Request.Timeout = 0;
5181 c->Request.CDB[0] = cmd;
5182 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5183 c->Request.CDB[7] = (size >> 16) & 0xFF;
5184 c->Request.CDB[8] = (size >> 8) & 0xFF;
5185 c->Request.CDB[9] = size & 0xFF;
5187 case HPSA_CACHE_FLUSH:
5188 c->Request.CDBLen = 12;
5189 c->Request.type_attr_dir =
5190 TYPE_ATTR_DIR(cmd_type,
5191 ATTR_SIMPLE, XFER_WRITE);
5192 c->Request.Timeout = 0;
5193 c->Request.CDB[0] = BMIC_WRITE;
5194 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5195 c->Request.CDB[7] = (size >> 8) & 0xFF;
5196 c->Request.CDB[8] = size & 0xFF;
5198 case TEST_UNIT_READY:
5199 c->Request.CDBLen = 6;
5200 c->Request.type_attr_dir =
5201 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5202 c->Request.Timeout = 0;
5204 case HPSA_GET_RAID_MAP:
5205 c->Request.CDBLen = 12;
5206 c->Request.type_attr_dir =
5207 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5208 c->Request.Timeout = 0;
5209 c->Request.CDB[0] = HPSA_CISS_READ;
5210 c->Request.CDB[1] = cmd;
5211 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5212 c->Request.CDB[7] = (size >> 16) & 0xFF;
5213 c->Request.CDB[8] = (size >> 8) & 0xFF;
5214 c->Request.CDB[9] = size & 0xFF;
5216 case BMIC_SENSE_CONTROLLER_PARAMETERS:
5217 c->Request.CDBLen = 10;
5218 c->Request.type_attr_dir =
5219 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5220 c->Request.Timeout = 0;
5221 c->Request.CDB[0] = BMIC_READ;
5222 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5223 c->Request.CDB[7] = (size >> 16) & 0xFF;
5224 c->Request.CDB[8] = (size >> 8) & 0xFF;
5227 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5231 } else if (cmd_type == TYPE_MSG) {
5234 case HPSA_DEVICE_RESET_MSG:
5235 c->Request.CDBLen = 16;
5236 c->Request.type_attr_dir =
5237 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5238 c->Request.Timeout = 0; /* Don't time out */
5239 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5240 c->Request.CDB[0] = cmd;
5241 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5242 /* If bytes 4-7 are zero, it means reset the */
5244 c->Request.CDB[4] = 0x00;
5245 c->Request.CDB[5] = 0x00;
5246 c->Request.CDB[6] = 0x00;
5247 c->Request.CDB[7] = 0x00;
5249 case HPSA_ABORT_MSG:
5250 a = buff; /* point to command to be aborted */
5251 dev_dbg(&h->pdev->dev,
5252 "Abort Tag:0x%016llx request Tag:0x%016llx",
5253 a->Header.tag, c->Header.tag);
5254 c->Request.CDBLen = 16;
5255 c->Request.type_attr_dir =
5256 TYPE_ATTR_DIR(cmd_type,
5257 ATTR_SIMPLE, XFER_WRITE);
5258 c->Request.Timeout = 0; /* Don't time out */
5259 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5260 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5261 c->Request.CDB[2] = 0x00; /* reserved */
5262 c->Request.CDB[3] = 0x00; /* reserved */
5263 /* Tag to abort goes in CDB[4]-CDB[11] */
5264 memcpy(&c->Request.CDB[4], &a->Header.tag,
5265 sizeof(a->Header.tag));
5266 c->Request.CDB[12] = 0x00; /* reserved */
5267 c->Request.CDB[13] = 0x00; /* reserved */
5268 c->Request.CDB[14] = 0x00; /* reserved */
5269 c->Request.CDB[15] = 0x00; /* reserved */
5272 dev_warn(&h->pdev->dev, "unknown message type %d\n",
5277 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5281 switch (GET_DIR(c->Request.type_attr_dir)) {
5283 pci_dir = PCI_DMA_FROMDEVICE;
5286 pci_dir = PCI_DMA_TODEVICE;
5289 pci_dir = PCI_DMA_NONE;
5292 pci_dir = PCI_DMA_BIDIRECTIONAL;
5294 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5300 * Map (physical) PCI mem into (virtual) kernel space
5302 static void __iomem *remap_pci_mem(ulong base, ulong size)
5304 ulong page_base = ((ulong) base) & PAGE_MASK;
5305 ulong page_offs = ((ulong) base) - page_base;
5306 void __iomem *page_remapped = ioremap_nocache(page_base,
5309 return page_remapped ? (page_remapped + page_offs) : NULL;
5312 /* Takes cmds off the submission queue and sends them to the hardware,
5313 * then puts them on the queue of cmds waiting for completion.
5314 * Assumes h->lock is held
5316 static void start_io(struct ctlr_info *h, unsigned long *flags)
5318 struct CommandList *c;
5320 while (!list_empty(&h->reqQ)) {
5321 c = list_entry(h->reqQ.next, struct CommandList, list);
5322 /* can't do anything if fifo is full */
5323 if ((h->access.fifo_full(h))) {
5324 h->fifo_recently_full = 1;
5325 dev_warn(&h->pdev->dev, "fifo full\n");
5328 h->fifo_recently_full = 0;
5330 /* Get the first entry from the Request Q */
5334 /* Put job onto the completed Q */
5336 atomic_inc(&h->commands_outstanding);
5337 spin_unlock_irqrestore(&h->lock, *flags);
5338 /* Tell the controller execute command */
5339 h->access.submit_command(h, c);
5340 spin_lock_irqsave(&h->lock, *flags);
5344 static void lock_and_start_io(struct ctlr_info *h)
5346 unsigned long flags;
5348 spin_lock_irqsave(&h->lock, flags);
5349 start_io(h, &flags);
5350 spin_unlock_irqrestore(&h->lock, flags);
5353 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5355 return h->access.command_completed(h, q);
5358 static inline bool interrupt_pending(struct ctlr_info *h)
5360 return h->access.intr_pending(h);
5363 static inline long interrupt_not_for_us(struct ctlr_info *h)
5365 return (h->access.intr_pending(h) == 0) ||
5366 (h->interrupts_enabled == 0);
5369 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5372 if (unlikely(tag_index >= h->nr_cmds)) {
5373 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5379 static inline void finish_cmd(struct CommandList *c)
5381 unsigned long flags;
5382 int io_may_be_stalled = 0;
5383 struct ctlr_info *h = c->h;
5386 spin_lock_irqsave(&h->lock, flags);
5390 * Check for possibly stalled i/o.
5392 * If a fifo_full condition is encountered, requests will back up
5393 * in h->reqQ. This queue is only emptied out by start_io which is
5394 * only called when a new i/o request comes in. If no i/o's are
5395 * forthcoming, the i/o's in h->reqQ can get stuck. So we call
5396 * start_io from here if we detect such a danger.
5398 * Normally, we shouldn't hit this case, but pounding on the
5399 * CCISS_PASSTHRU ioctl can provoke it. Only call start_io if
5400 * commands_outstanding is low. We want to avoid calling
5401 * start_io from in here as much as possible, and esp. don't
5402 * want to get in a cycle where we call start_io every time
5405 count = atomic_read(&h->commands_outstanding);
5406 spin_unlock_irqrestore(&h->lock, flags);
5407 if (unlikely(h->fifo_recently_full) && count < 5)
5408 io_may_be_stalled = 1;
5410 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5411 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5412 || c->cmd_type == CMD_IOACCEL2))
5413 complete_scsi_command(c);
5414 else if (c->cmd_type == CMD_IOCTL_PEND)
5415 complete(c->waiting);
5416 if (unlikely(io_may_be_stalled))
5417 lock_and_start_io(h);
5420 static inline u32 hpsa_tag_contains_index(u32 tag)
5422 return tag & DIRECT_LOOKUP_BIT;
5425 static inline u32 hpsa_tag_to_index(u32 tag)
5427 return tag >> DIRECT_LOOKUP_SHIFT;
5431 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5433 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5434 #define HPSA_SIMPLE_ERROR_BITS 0x03
5435 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5436 return tag & ~HPSA_SIMPLE_ERROR_BITS;
5437 return tag & ~HPSA_PERF_ERROR_BITS;
5440 /* process completion of an indexed ("direct lookup") command */
5441 static inline void process_indexed_cmd(struct ctlr_info *h,
5445 struct CommandList *c;
5447 tag_index = hpsa_tag_to_index(raw_tag);
5448 if (!bad_tag(h, tag_index, raw_tag)) {
5449 c = h->cmd_pool + tag_index;
5454 /* process completion of a non-indexed command */
5455 static inline void process_nonindexed_cmd(struct ctlr_info *h,
5459 struct CommandList *c = NULL;
5460 unsigned long flags;
5462 tag = hpsa_tag_discard_error_bits(h, raw_tag);
5463 spin_lock_irqsave(&h->lock, flags);
5464 list_for_each_entry(c, &h->cmpQ, list) {
5465 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
5466 spin_unlock_irqrestore(&h->lock, flags);
5471 spin_unlock_irqrestore(&h->lock, flags);
5472 bad_tag(h, h->nr_cmds + 1, raw_tag);
5475 /* Some controllers, like p400, will give us one interrupt
5476 * after a soft reset, even if we turned interrupts off.
5477 * Only need to check for this in the hpsa_xxx_discard_completions
5480 static int ignore_bogus_interrupt(struct ctlr_info *h)
5482 if (likely(!reset_devices))
5485 if (likely(h->interrupts_enabled))
5488 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5489 "(known firmware bug.) Ignoring.\n");
5495 * Convert &h->q[x] (passed to interrupt handlers) back to h.
5496 * Relies on (h-q[x] == x) being true for x such that
5497 * 0 <= x < MAX_REPLY_QUEUES.
5499 static struct ctlr_info *queue_to_hba(u8 *queue)
5501 return container_of((queue - *queue), struct ctlr_info, q[0]);
5504 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5506 struct ctlr_info *h = queue_to_hba(queue);
5507 u8 q = *(u8 *) queue;
5510 if (ignore_bogus_interrupt(h))
5513 if (interrupt_not_for_us(h))
5515 h->last_intr_timestamp = get_jiffies_64();
5516 while (interrupt_pending(h)) {
5517 raw_tag = get_next_completion(h, q);
5518 while (raw_tag != FIFO_EMPTY)
5519 raw_tag = next_command(h, q);
5524 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5526 struct ctlr_info *h = queue_to_hba(queue);
5528 u8 q = *(u8 *) queue;
5530 if (ignore_bogus_interrupt(h))
5533 h->last_intr_timestamp = get_jiffies_64();
5534 raw_tag = get_next_completion(h, q);
5535 while (raw_tag != FIFO_EMPTY)
5536 raw_tag = next_command(h, q);
5540 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5542 struct ctlr_info *h = queue_to_hba((u8 *) queue);
5544 u8 q = *(u8 *) queue;
5546 if (interrupt_not_for_us(h))
5548 h->last_intr_timestamp = get_jiffies_64();
5549 while (interrupt_pending(h)) {
5550 raw_tag = get_next_completion(h, q);
5551 while (raw_tag != FIFO_EMPTY) {
5552 if (likely(hpsa_tag_contains_index(raw_tag)))
5553 process_indexed_cmd(h, raw_tag);
5555 process_nonindexed_cmd(h, raw_tag);
5556 raw_tag = next_command(h, q);
5562 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5564 struct ctlr_info *h = queue_to_hba(queue);
5566 u8 q = *(u8 *) queue;
5568 h->last_intr_timestamp = get_jiffies_64();
5569 raw_tag = get_next_completion(h, q);
5570 while (raw_tag != FIFO_EMPTY) {
5571 if (likely(hpsa_tag_contains_index(raw_tag)))
5572 process_indexed_cmd(h, raw_tag);
5574 process_nonindexed_cmd(h, raw_tag);
5575 raw_tag = next_command(h, q);
5580 /* Send a message CDB to the firmware. Careful, this only works
5581 * in simple mode, not performant mode due to the tag lookup.
5582 * We only ever use this immediately after a controller reset.
5584 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
5588 struct CommandListHeader CommandHeader;
5589 struct RequestBlock Request;
5590 struct ErrDescriptor ErrorDescriptor;
5592 struct Command *cmd;
5593 static const size_t cmd_sz = sizeof(*cmd) +
5594 sizeof(cmd->ErrorDescriptor);
5598 void __iomem *vaddr;
5601 vaddr = pci_ioremap_bar(pdev, 0);
5605 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
5606 * CCISS commands, so they must be allocated from the lower 4GiB of
5609 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
5615 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
5621 /* This must fit, because of the 32-bit consistent DMA mask. Also,
5622 * although there's no guarantee, we assume that the address is at
5623 * least 4-byte aligned (most likely, it's page-aligned).
5625 paddr32 = cpu_to_le32(paddr64);
5627 cmd->CommandHeader.ReplyQueue = 0;
5628 cmd->CommandHeader.SGList = 0;
5629 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
5630 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
5631 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
5633 cmd->Request.CDBLen = 16;
5634 cmd->Request.type_attr_dir =
5635 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
5636 cmd->Request.Timeout = 0; /* Don't time out */
5637 cmd->Request.CDB[0] = opcode;
5638 cmd->Request.CDB[1] = type;
5639 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5640 cmd->ErrorDescriptor.Addr =
5641 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
5642 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
5644 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
5646 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
5647 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
5648 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
5650 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
5655 /* we leak the DMA buffer here ... no choice since the controller could
5656 * still complete the command.
5658 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
5659 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
5664 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
5666 if (tag & HPSA_ERROR_BIT) {
5667 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
5672 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
5677 #define hpsa_noop(p) hpsa_message(p, 3, 0)
5679 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
5680 void __iomem *vaddr, u32 use_doorbell)
5684 /* For everything after the P600, the PCI power state method
5685 * of resetting the controller doesn't work, so we have this
5686 * other way using the doorbell register.
5688 dev_info(&pdev->dev, "using doorbell to reset controller\n");
5689 writel(use_doorbell, vaddr + SA5_DOORBELL);
5691 /* PMC hardware guys tell us we need a 10 second delay after
5692 * doorbell reset and before any attempt to talk to the board
5693 * at all to ensure that this actually works and doesn't fall
5694 * over in some weird corner cases.
5697 } else { /* Try to do it the PCI power state way */
5699 /* Quoting from the Open CISS Specification: "The Power
5700 * Management Control/Status Register (CSR) controls the power
5701 * state of the device. The normal operating state is D0,
5702 * CSR=00h. The software off state is D3, CSR=03h. To reset
5703 * the controller, place the interface device in D3 then to D0,
5704 * this causes a secondary PCI reset which will reset the
5709 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
5711 /* enter the D3hot power management state */
5712 rc = pci_set_power_state(pdev, PCI_D3hot);
5718 /* enter the D0 power management state */
5719 rc = pci_set_power_state(pdev, PCI_D0);
5724 * The P600 requires a small delay when changing states.
5725 * Otherwise we may think the board did not reset and we bail.
5726 * This for kdump only and is particular to the P600.
5733 static void init_driver_version(char *driver_version, int len)
5735 memset(driver_version, 0, len);
5736 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5739 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5741 char *driver_version;
5742 int i, size = sizeof(cfgtable->driver_version);
5744 driver_version = kmalloc(size, GFP_KERNEL);
5745 if (!driver_version)
5748 init_driver_version(driver_version, size);
5749 for (i = 0; i < size; i++)
5750 writeb(driver_version[i], &cfgtable->driver_version[i]);
5751 kfree(driver_version);
5755 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
5756 unsigned char *driver_ver)
5760 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
5761 driver_ver[i] = readb(&cfgtable->driver_version[i]);
5764 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5767 char *driver_ver, *old_driver_ver;
5768 int rc, size = sizeof(cfgtable->driver_version);
5770 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
5771 if (!old_driver_ver)
5773 driver_ver = old_driver_ver + size;
5775 /* After a reset, the 32 bytes of "driver version" in the cfgtable
5776 * should have been changed, otherwise we know the reset failed.
5778 init_driver_version(old_driver_ver, size);
5779 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
5780 rc = !memcmp(driver_ver, old_driver_ver, size);
5781 kfree(old_driver_ver);
5784 /* This does a hard reset of the controller using PCI power management
5785 * states or the using the doorbell register.
5787 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5791 u64 cfg_base_addr_index;
5792 void __iomem *vaddr;
5793 unsigned long paddr;
5794 u32 misc_fw_support;
5796 struct CfgTable __iomem *cfgtable;
5799 u16 command_register;
5801 /* For controllers as old as the P600, this is very nearly
5804 * pci_save_state(pci_dev);
5805 * pci_set_power_state(pci_dev, PCI_D3hot);
5806 * pci_set_power_state(pci_dev, PCI_D0);
5807 * pci_restore_state(pci_dev);
5809 * For controllers newer than the P600, the pci power state
5810 * method of resetting doesn't work so we have another way
5811 * using the doorbell register.
5814 rc = hpsa_lookup_board_id(pdev, &board_id);
5816 dev_warn(&pdev->dev, "Board ID not found\n");
5819 if (!ctlr_is_resettable(board_id)) {
5820 dev_warn(&pdev->dev, "Controller not resettable\n");
5824 /* if controller is soft- but not hard resettable... */
5825 if (!ctlr_is_hard_resettable(board_id))
5826 return -ENOTSUPP; /* try soft reset later. */
5828 /* Save the PCI command register */
5829 pci_read_config_word(pdev, 4, &command_register);
5830 pci_save_state(pdev);
5832 /* find the first memory BAR, so we can find the cfg table */
5833 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
5836 vaddr = remap_pci_mem(paddr, 0x250);
5840 /* find cfgtable in order to check if reset via doorbell is supported */
5841 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
5842 &cfg_base_addr_index, &cfg_offset);
5845 cfgtable = remap_pci_mem(pci_resource_start(pdev,
5846 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
5851 rc = write_driver_ver_to_cfgtable(cfgtable);
5853 goto unmap_cfgtable;
5855 /* If reset via doorbell register is supported, use that.
5856 * There are two such methods. Favor the newest method.
5858 misc_fw_support = readl(&cfgtable->misc_fw_support);
5859 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
5861 use_doorbell = DOORBELL_CTLR_RESET2;
5863 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
5865 dev_warn(&pdev->dev, "Soft reset not supported. "
5866 "Firmware update is required.\n");
5867 rc = -ENOTSUPP; /* try soft reset */
5868 goto unmap_cfgtable;
5872 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
5874 goto unmap_cfgtable;
5876 pci_restore_state(pdev);
5877 pci_write_config_word(pdev, 4, command_register);
5879 /* Some devices (notably the HP Smart Array 5i Controller)
5880 need a little pause here */
5881 msleep(HPSA_POST_RESET_PAUSE_MSECS);
5883 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
5885 dev_warn(&pdev->dev,
5886 "failed waiting for board to become ready "
5887 "after hard reset\n");
5888 goto unmap_cfgtable;
5891 rc = controller_reset_failed(vaddr);
5893 goto unmap_cfgtable;
5895 dev_warn(&pdev->dev, "Unable to successfully reset "
5896 "controller. Will try soft reset.\n");
5899 dev_info(&pdev->dev, "board ready after hard reset.\n");
5911 * We cannot read the structure directly, for portability we must use
5913 * This is for debug only.
5915 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
5921 dev_info(dev, "Controller Configuration information\n");
5922 dev_info(dev, "------------------------------------\n");
5923 for (i = 0; i < 4; i++)
5924 temp_name[i] = readb(&(tb->Signature[i]));
5925 temp_name[4] = '\0';
5926 dev_info(dev, " Signature = %s\n", temp_name);
5927 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
5928 dev_info(dev, " Transport methods supported = 0x%x\n",
5929 readl(&(tb->TransportSupport)));
5930 dev_info(dev, " Transport methods active = 0x%x\n",
5931 readl(&(tb->TransportActive)));
5932 dev_info(dev, " Requested transport Method = 0x%x\n",
5933 readl(&(tb->HostWrite.TransportRequest)));
5934 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
5935 readl(&(tb->HostWrite.CoalIntDelay)));
5936 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
5937 readl(&(tb->HostWrite.CoalIntCount)));
5938 dev_info(dev, " Max outstanding commands = %d\n",
5939 readl(&(tb->CmdsOutMax)));
5940 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
5941 for (i = 0; i < 16; i++)
5942 temp_name[i] = readb(&(tb->ServerName[i]));
5943 temp_name[16] = '\0';
5944 dev_info(dev, " Server Name = %s\n", temp_name);
5945 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
5946 readl(&(tb->HeartBeat)));
5947 #endif /* HPSA_DEBUG */
5950 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
5952 int i, offset, mem_type, bar_type;
5954 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
5957 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5958 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
5959 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
5962 mem_type = pci_resource_flags(pdev, i) &
5963 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
5965 case PCI_BASE_ADDRESS_MEM_TYPE_32:
5966 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
5967 offset += 4; /* 32 bit */
5969 case PCI_BASE_ADDRESS_MEM_TYPE_64:
5972 default: /* reserved in PCI 2.2 */
5973 dev_warn(&pdev->dev,
5974 "base address is invalid\n");
5979 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
5985 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
5986 * controllers that are capable. If not, we use IO-APIC mode.
5989 static void hpsa_interrupt_mode(struct ctlr_info *h)
5991 #ifdef CONFIG_PCI_MSI
5993 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
5995 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
5996 hpsa_msix_entries[i].vector = 0;
5997 hpsa_msix_entries[i].entry = i;
6000 /* Some boards advertise MSI but don't really support it */
6001 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6002 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6003 goto default_int_mode;
6004 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6005 dev_info(&h->pdev->dev, "MSIX\n");
6006 h->msix_vector = MAX_REPLY_QUEUES;
6007 if (h->msix_vector > num_online_cpus())
6008 h->msix_vector = num_online_cpus();
6009 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
6012 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
6014 goto single_msi_mode;
6015 } else if (err < h->msix_vector) {
6016 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6017 "available\n", err);
6019 h->msix_vector = err;
6020 for (i = 0; i < h->msix_vector; i++)
6021 h->intr[i] = hpsa_msix_entries[i].vector;
6025 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6026 dev_info(&h->pdev->dev, "MSI\n");
6027 if (!pci_enable_msi(h->pdev))
6030 dev_warn(&h->pdev->dev, "MSI init failed\n");
6033 #endif /* CONFIG_PCI_MSI */
6034 /* if we get here we're going to use the default interrupt mode */
6035 h->intr[h->intr_mode] = h->pdev->irq;
6038 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6041 u32 subsystem_vendor_id, subsystem_device_id;
6043 subsystem_vendor_id = pdev->subsystem_vendor;
6044 subsystem_device_id = pdev->subsystem_device;
6045 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6046 subsystem_vendor_id;
6048 for (i = 0; i < ARRAY_SIZE(products); i++)
6049 if (*board_id == products[i].board_id)
6052 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6053 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6055 dev_warn(&pdev->dev, "unrecognized board ID: "
6056 "0x%08x, ignoring.\n", *board_id);
6059 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6062 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6063 unsigned long *memory_bar)
6067 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6068 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6069 /* addressing mode bits already removed */
6070 *memory_bar = pci_resource_start(pdev, i);
6071 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6075 dev_warn(&pdev->dev, "no memory BAR found\n");
6079 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6085 iterations = HPSA_BOARD_READY_ITERATIONS;
6087 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6089 for (i = 0; i < iterations; i++) {
6090 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6091 if (wait_for_ready) {
6092 if (scratchpad == HPSA_FIRMWARE_READY)
6095 if (scratchpad != HPSA_FIRMWARE_READY)
6098 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6100 dev_warn(&pdev->dev, "board not ready, timed out.\n");
6104 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6105 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6108 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6109 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6110 *cfg_base_addr &= (u32) 0x0000ffff;
6111 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6112 if (*cfg_base_addr_index == -1) {
6113 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6119 static int hpsa_find_cfgtables(struct ctlr_info *h)
6123 u64 cfg_base_addr_index;
6127 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6128 &cfg_base_addr_index, &cfg_offset);
6131 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6132 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6135 rc = write_driver_ver_to_cfgtable(h->cfgtable);
6138 /* Find performant mode table. */
6139 trans_offset = readl(&h->cfgtable->TransMethodOffset);
6140 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6141 cfg_base_addr_index)+cfg_offset+trans_offset,
6142 sizeof(*h->transtable));
6148 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6150 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
6152 /* Limit commands in memory limited kdump scenario. */
6153 if (reset_devices && h->max_commands > 32)
6154 h->max_commands = 32;
6156 if (h->max_commands < 16) {
6157 dev_warn(&h->pdev->dev, "Controller reports "
6158 "max supported commands of %d, an obvious lie. "
6159 "Using 16. Ensure that firmware is up to date.\n",
6161 h->max_commands = 16;
6165 /* Interrogate the hardware for some limits:
6166 * max commands, max SG elements without chaining, and with chaining,
6167 * SG chain block size, etc.
6169 static void hpsa_find_board_params(struct ctlr_info *h)
6171 hpsa_get_max_perf_mode_cmds(h);
6172 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
6173 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6174 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6176 * Limit in-command s/g elements to 32 save dma'able memory.
6177 * Howvever spec says if 0, use 31
6179 h->max_cmd_sg_entries = 31;
6180 if (h->maxsgentries > 512) {
6181 h->max_cmd_sg_entries = 32;
6182 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
6183 h->maxsgentries--; /* save one for chain pointer */
6186 h->maxsgentries = 31; /* default to traditional values */
6189 /* Find out what task management functions are supported and cache */
6190 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6191 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6192 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6193 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6194 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6197 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6199 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6200 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
6206 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6210 driver_support = readl(&(h->cfgtable->driver_support));
6211 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
6213 driver_support |= ENABLE_SCSI_PREFETCH;
6215 driver_support |= ENABLE_UNIT_ATTN;
6216 writel(driver_support, &(h->cfgtable->driver_support));
6219 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
6220 * in a prefetch beyond physical memory.
6222 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6226 if (h->board_id != 0x3225103C)
6228 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6229 dma_prefetch |= 0x8000;
6230 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6233 static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6237 unsigned long flags;
6238 /* wait until the clear_event_notify bit 6 is cleared by controller. */
6239 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6240 spin_lock_irqsave(&h->lock, flags);
6241 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6242 spin_unlock_irqrestore(&h->lock, flags);
6243 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6245 /* delay and try again */
6250 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6254 unsigned long flags;
6256 /* under certain very rare conditions, this can take awhile.
6257 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6258 * as we enter this code.)
6260 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6261 spin_lock_irqsave(&h->lock, flags);
6262 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6263 spin_unlock_irqrestore(&h->lock, flags);
6264 if (!(doorbell_value & CFGTBL_ChangeReq))
6266 /* delay and try again */
6267 usleep_range(10000, 20000);
6271 static int hpsa_enter_simple_mode(struct ctlr_info *h)
6275 trans_support = readl(&(h->cfgtable->TransportSupport));
6276 if (!(trans_support & SIMPLE_MODE))
6279 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6281 /* Update the field, and then ring the doorbell */
6282 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6283 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6284 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6285 hpsa_wait_for_mode_change_ack(h);
6286 print_cfg_table(&h->pdev->dev, h->cfgtable);
6287 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6289 h->transMethod = CFGTBL_Trans_Simple;
6292 dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
6296 static int hpsa_pci_init(struct ctlr_info *h)
6298 int prod_index, err;
6300 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6303 h->product_name = products[prod_index].product_name;
6304 h->access = *(products[prod_index].access);
6306 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6307 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6309 err = pci_enable_device(h->pdev);
6311 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6315 err = pci_request_regions(h->pdev, HPSA);
6317 dev_err(&h->pdev->dev,
6318 "cannot obtain PCI resources, aborting\n");
6322 pci_set_master(h->pdev);
6324 hpsa_interrupt_mode(h);
6325 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6327 goto err_out_free_res;
6328 h->vaddr = remap_pci_mem(h->paddr, 0x250);
6331 goto err_out_free_res;
6333 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6335 goto err_out_free_res;
6336 err = hpsa_find_cfgtables(h);
6338 goto err_out_free_res;
6339 hpsa_find_board_params(h);
6341 if (!hpsa_CISS_signature_present(h)) {
6343 goto err_out_free_res;
6345 hpsa_set_driver_support_bits(h);
6346 hpsa_p600_dma_prefetch_quirk(h);
6347 err = hpsa_enter_simple_mode(h);
6349 goto err_out_free_res;
6354 iounmap(h->transtable);
6356 iounmap(h->cfgtable);
6359 pci_disable_device(h->pdev);
6360 pci_release_regions(h->pdev);
6364 static void hpsa_hba_inquiry(struct ctlr_info *h)
6368 #define HBA_INQUIRY_BYTE_COUNT 64
6369 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6370 if (!h->hba_inquiry_data)
6372 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6373 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6375 kfree(h->hba_inquiry_data);
6376 h->hba_inquiry_data = NULL;
6380 static int hpsa_init_reset_devices(struct pci_dev *pdev)
6383 void __iomem *vaddr;
6388 /* kdump kernel is loading, we don't know in which state is
6389 * the pci interface. The dev->enable_cnt is equal zero
6390 * so we call enable+disable, wait a while and switch it on.
6392 rc = pci_enable_device(pdev);
6394 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
6397 pci_disable_device(pdev);
6398 msleep(260); /* a randomly chosen number */
6399 rc = pci_enable_device(pdev);
6401 dev_warn(&pdev->dev, "failed to enable device.\n");
6405 pci_set_master(pdev);
6407 vaddr = pci_ioremap_bar(pdev, 0);
6408 if (vaddr == NULL) {
6412 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
6415 /* Reset the controller with a PCI power-cycle or via doorbell */
6416 rc = hpsa_kdump_hard_reset_controller(pdev);
6418 /* -ENOTSUPP here means we cannot reset the controller
6419 * but it's already (and still) up and running in
6420 * "performant mode". Or, it might be 640x, which can't reset
6421 * due to concerns about shared bbwc between 6402/6404 pair.
6426 /* Now try to get the controller to respond to a no-op */
6427 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
6428 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6429 if (hpsa_noop(pdev) == 0)
6432 dev_warn(&pdev->dev, "no-op failed%s\n",
6433 (i < 11 ? "; re-trying" : ""));
6438 pci_disable_device(pdev);
6442 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6444 h->cmd_pool_bits = kzalloc(
6445 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6446 sizeof(unsigned long), GFP_KERNEL);
6447 h->cmd_pool = pci_alloc_consistent(h->pdev,
6448 h->nr_cmds * sizeof(*h->cmd_pool),
6449 &(h->cmd_pool_dhandle));
6450 h->errinfo_pool = pci_alloc_consistent(h->pdev,
6451 h->nr_cmds * sizeof(*h->errinfo_pool),
6452 &(h->errinfo_pool_dhandle));
6453 if ((h->cmd_pool_bits == NULL)
6454 || (h->cmd_pool == NULL)
6455 || (h->errinfo_pool == NULL)) {
6456 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6462 static void hpsa_free_cmd_pool(struct ctlr_info *h)
6464 kfree(h->cmd_pool_bits);
6466 pci_free_consistent(h->pdev,
6467 h->nr_cmds * sizeof(struct CommandList),
6468 h->cmd_pool, h->cmd_pool_dhandle);
6469 if (h->ioaccel2_cmd_pool)
6470 pci_free_consistent(h->pdev,
6471 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
6472 h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6473 if (h->errinfo_pool)
6474 pci_free_consistent(h->pdev,
6475 h->nr_cmds * sizeof(struct ErrorInfo),
6477 h->errinfo_pool_dhandle);
6478 if (h->ioaccel_cmd_pool)
6479 pci_free_consistent(h->pdev,
6480 h->nr_cmds * sizeof(struct io_accel1_cmd),
6481 h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6484 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
6488 cpu = cpumask_first(cpu_online_mask);
6489 for (i = 0; i < h->msix_vector; i++) {
6490 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
6491 cpu = cpumask_next(cpu, cpu_online_mask);
6495 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
6496 static void hpsa_free_irqs(struct ctlr_info *h)
6500 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
6501 /* Single reply queue, only one irq to free */
6503 irq_set_affinity_hint(h->intr[i], NULL);
6504 free_irq(h->intr[i], &h->q[i]);
6508 for (i = 0; i < h->msix_vector; i++) {
6509 irq_set_affinity_hint(h->intr[i], NULL);
6510 free_irq(h->intr[i], &h->q[i]);
6512 for (; i < MAX_REPLY_QUEUES; i++)
6516 static int hpsa_request_irq(struct ctlr_info *h,
6517 irqreturn_t (*msixhandler)(int, void *),
6518 irqreturn_t (*intxhandler)(int, void *))
6523 * initialize h->q[x] = x so that interrupt handlers know which
6526 for (i = 0; i < MAX_REPLY_QUEUES; i++)
6529 if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6530 /* If performant mode and MSI-X, use multiple reply queues */
6531 for (i = 0; i < h->msix_vector; i++) {
6532 rc = request_irq(h->intr[i], msixhandler,
6538 dev_err(&h->pdev->dev,
6539 "failed to get irq %d for %s\n",
6540 h->intr[i], h->devname);
6541 for (j = 0; j < i; j++) {
6542 free_irq(h->intr[j], &h->q[j]);
6545 for (; j < MAX_REPLY_QUEUES; j++)
6550 hpsa_irq_affinity_hints(h);
6552 /* Use single reply pool */
6553 if (h->msix_vector > 0 || h->msi_vector) {
6554 rc = request_irq(h->intr[h->intr_mode],
6555 msixhandler, 0, h->devname,
6556 &h->q[h->intr_mode]);
6558 rc = request_irq(h->intr[h->intr_mode],
6559 intxhandler, IRQF_SHARED, h->devname,
6560 &h->q[h->intr_mode]);
6564 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
6565 h->intr[h->intr_mode], h->devname);
6571 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6573 if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
6574 HPSA_RESET_TYPE_CONTROLLER)) {
6575 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
6579 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
6580 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
6581 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
6585 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
6586 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
6587 dev_warn(&h->pdev->dev, "Board failed to become ready "
6588 "after soft reset.\n");
6595 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6598 #ifdef CONFIG_PCI_MSI
6599 if (h->msix_vector) {
6600 if (h->pdev->msix_enabled)
6601 pci_disable_msix(h->pdev);
6602 } else if (h->msi_vector) {
6603 if (h->pdev->msi_enabled)
6604 pci_disable_msi(h->pdev);
6606 #endif /* CONFIG_PCI_MSI */
6609 static void hpsa_free_reply_queues(struct ctlr_info *h)
6613 for (i = 0; i < h->nreply_queues; i++) {
6614 if (!h->reply_queue[i].head)
6616 pci_free_consistent(h->pdev, h->reply_queue_size,
6617 h->reply_queue[i].head, h->reply_queue[i].busaddr);
6618 h->reply_queue[i].head = NULL;
6619 h->reply_queue[i].busaddr = 0;
6623 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
6625 hpsa_free_irqs_and_disable_msix(h);
6626 hpsa_free_sg_chain_blocks(h);
6627 hpsa_free_cmd_pool(h);
6628 kfree(h->ioaccel1_blockFetchTable);
6629 kfree(h->blockFetchTable);
6630 hpsa_free_reply_queues(h);
6634 iounmap(h->transtable);
6636 iounmap(h->cfgtable);
6637 pci_disable_device(h->pdev);
6638 pci_release_regions(h->pdev);
6642 /* Called when controller lockup detected. */
6643 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
6645 struct CommandList *c = NULL;
6647 assert_spin_locked(&h->lock);
6648 /* Mark all outstanding commands as failed and complete them. */
6649 while (!list_empty(list)) {
6650 c = list_entry(list->next, struct CommandList, list);
6651 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
6656 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
6660 cpu = cpumask_first(cpu_online_mask);
6661 for (i = 0; i < num_online_cpus(); i++) {
6662 u32 *lockup_detected;
6663 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
6664 *lockup_detected = value;
6665 cpu = cpumask_next(cpu, cpu_online_mask);
6667 wmb(); /* be sure the per-cpu variables are out to memory */
6670 static void controller_lockup_detected(struct ctlr_info *h)
6672 unsigned long flags;
6673 u32 lockup_detected;
6675 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6676 spin_lock_irqsave(&h->lock, flags);
6677 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
6678 if (!lockup_detected) {
6679 /* no heartbeat, but controller gave us a zero. */
6680 dev_warn(&h->pdev->dev,
6681 "lockup detected but scratchpad register is zero\n");
6682 lockup_detected = 0xffffffff;
6684 set_lockup_detected_for_all_cpus(h, lockup_detected);
6685 spin_unlock_irqrestore(&h->lock, flags);
6686 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
6688 pci_disable_device(h->pdev);
6689 spin_lock_irqsave(&h->lock, flags);
6690 fail_all_cmds_on_list(h, &h->cmpQ);
6691 fail_all_cmds_on_list(h, &h->reqQ);
6692 spin_unlock_irqrestore(&h->lock, flags);
6695 static void detect_controller_lockup(struct ctlr_info *h)
6699 unsigned long flags;
6701 now = get_jiffies_64();
6702 /* If we've received an interrupt recently, we're ok. */
6703 if (time_after64(h->last_intr_timestamp +
6704 (h->heartbeat_sample_interval), now))
6708 * If we've already checked the heartbeat recently, we're ok.
6709 * This could happen if someone sends us a signal. We
6710 * otherwise don't care about signals in this thread.
6712 if (time_after64(h->last_heartbeat_timestamp +
6713 (h->heartbeat_sample_interval), now))
6716 /* If heartbeat has not changed since we last looked, we're not ok. */
6717 spin_lock_irqsave(&h->lock, flags);
6718 heartbeat = readl(&h->cfgtable->HeartBeat);
6719 spin_unlock_irqrestore(&h->lock, flags);
6720 if (h->last_heartbeat == heartbeat) {
6721 controller_lockup_detected(h);
6726 h->last_heartbeat = heartbeat;
6727 h->last_heartbeat_timestamp = now;
6730 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6735 /* Clear the driver-requested rescan flag */
6736 h->drv_req_rescan = 0;
6738 /* Ask the controller to clear the events we're handling. */
6739 if ((h->transMethod & (CFGTBL_Trans_io_accel1
6740 | CFGTBL_Trans_io_accel2)) &&
6741 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
6742 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
6744 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
6745 event_type = "state change";
6746 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
6747 event_type = "configuration change";
6748 /* Stop sending new RAID offload reqs via the IO accelerator */
6749 scsi_block_requests(h->scsi_host);
6750 for (i = 0; i < h->ndevices; i++)
6751 h->dev[i]->offload_enabled = 0;
6752 hpsa_drain_accel_commands(h);
6753 /* Set 'accelerator path config change' bit */
6754 dev_warn(&h->pdev->dev,
6755 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6756 h->events, event_type);
6757 writel(h->events, &(h->cfgtable->clear_event_notify));
6758 /* Set the "clear event notify field update" bit 6 */
6759 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6760 /* Wait until ctlr clears 'clear event notify field', bit 6 */
6761 hpsa_wait_for_clear_event_notify_ack(h);
6762 scsi_unblock_requests(h->scsi_host);
6764 /* Acknowledge controller notification events. */
6765 writel(h->events, &(h->cfgtable->clear_event_notify));
6766 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6767 hpsa_wait_for_clear_event_notify_ack(h);
6769 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6770 hpsa_wait_for_mode_change_ack(h);
6776 /* Check a register on the controller to see if there are configuration
6777 * changes (added/changed/removed logical drives, etc.) which mean that
6778 * we should rescan the controller for devices.
6779 * Also check flag for driver-initiated rescan.
6781 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6783 if (h->drv_req_rescan)
6786 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6789 h->events = readl(&(h->cfgtable->event_notify));
6790 return h->events & RESCAN_REQUIRED_EVENT_BITS;
6794 * Check if any of the offline devices have become ready
6796 static int hpsa_offline_devices_ready(struct ctlr_info *h)
6798 unsigned long flags;
6799 struct offline_device_entry *d;
6800 struct list_head *this, *tmp;
6802 spin_lock_irqsave(&h->offline_device_lock, flags);
6803 list_for_each_safe(this, tmp, &h->offline_device_list) {
6804 d = list_entry(this, struct offline_device_entry,
6806 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6807 if (!hpsa_volume_offline(h, d->scsi3addr)) {
6808 spin_lock_irqsave(&h->offline_device_lock, flags);
6809 list_del(&d->offline_list);
6810 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6813 spin_lock_irqsave(&h->offline_device_lock, flags);
6815 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6820 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6822 unsigned long flags;
6823 struct ctlr_info *h = container_of(to_delayed_work(work),
6824 struct ctlr_info, monitor_ctlr_work);
6825 detect_controller_lockup(h);
6826 if (lockup_detected(h))
6829 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
6830 scsi_host_get(h->scsi_host);
6831 h->drv_req_rescan = 0;
6832 hpsa_ack_ctlr_events(h);
6833 hpsa_scan_start(h->scsi_host);
6834 scsi_host_put(h->scsi_host);
6837 spin_lock_irqsave(&h->lock, flags);
6838 if (h->remove_in_progress) {
6839 spin_unlock_irqrestore(&h->lock, flags);
6842 schedule_delayed_work(&h->monitor_ctlr_work,
6843 h->heartbeat_sample_interval);
6844 spin_unlock_irqrestore(&h->lock, flags);
6847 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6850 struct ctlr_info *h;
6851 int try_soft_reset = 0;
6852 unsigned long flags;
6854 if (number_of_controllers == 0)
6855 printk(KERN_INFO DRIVER_NAME "\n");
6857 rc = hpsa_init_reset_devices(pdev);
6859 if (rc != -ENOTSUPP)
6861 /* If the reset fails in a particular way (it has no way to do
6862 * a proper hard reset, so returns -ENOTSUPP) we can try to do
6863 * a soft reset once we get the controller configured up to the
6864 * point that it can accept a command.
6870 reinit_after_soft_reset:
6872 /* Command structures must be aligned on a 32-byte boundary because
6873 * the 5 lower bits of the address are used by the hardware. and by
6874 * the driver. See comments in hpsa.h for more info.
6876 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6877 h = kzalloc(sizeof(*h), GFP_KERNEL);
6882 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6883 INIT_LIST_HEAD(&h->cmpQ);
6884 INIT_LIST_HEAD(&h->reqQ);
6885 INIT_LIST_HEAD(&h->offline_device_list);
6886 spin_lock_init(&h->lock);
6887 spin_lock_init(&h->offline_device_lock);
6888 spin_lock_init(&h->scan_lock);
6889 spin_lock_init(&h->passthru_count_lock);
6891 /* Allocate and clear per-cpu variable lockup_detected */
6892 h->lockup_detected = alloc_percpu(u32);
6893 if (!h->lockup_detected) {
6897 set_lockup_detected_for_all_cpus(h, 0);
6899 rc = hpsa_pci_init(h);
6903 sprintf(h->devname, HPSA "%d", number_of_controllers);
6904 h->ctlr = number_of_controllers;
6905 number_of_controllers++;
6907 /* configure PCI DMA stuff */
6908 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
6912 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6916 dev_err(&pdev->dev, "no suitable DMA available\n");
6921 /* make sure the board interrupts are off */
6922 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6924 if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
6926 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
6927 h->devname, pdev->device,
6928 h->intr[h->intr_mode], dac ? "" : " not");
6929 if (hpsa_allocate_cmd_pool(h))
6931 if (hpsa_allocate_sg_chain_blocks(h))
6933 init_waitqueue_head(&h->scan_wait_queue);
6934 h->scan_finished = 1; /* no scan currently in progress */
6936 pci_set_drvdata(pdev, h);
6938 h->hba_mode_enabled = 0;
6939 h->scsi_host = NULL;
6940 spin_lock_init(&h->devlock);
6941 hpsa_put_ctlr_into_performant_mode(h);
6943 /* At this point, the controller is ready to take commands.
6944 * Now, if reset_devices and the hard reset didn't work, try
6945 * the soft reset and see if that works.
6947 if (try_soft_reset) {
6949 /* This is kind of gross. We may or may not get a completion
6950 * from the soft reset command, and if we do, then the value
6951 * from the fifo may or may not be valid. So, we wait 10 secs
6952 * after the reset throwing away any completions we get during
6953 * that time. Unregister the interrupt handler and register
6954 * fake ones to scoop up any residual completions.
6956 spin_lock_irqsave(&h->lock, flags);
6957 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6958 spin_unlock_irqrestore(&h->lock, flags);
6960 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
6961 hpsa_intx_discard_completions);
6963 dev_warn(&h->pdev->dev, "Failed to request_irq after "
6968 rc = hpsa_kdump_soft_reset(h);
6970 /* Neither hard nor soft reset worked, we're hosed. */
6973 dev_info(&h->pdev->dev, "Board READY.\n");
6974 dev_info(&h->pdev->dev,
6975 "Waiting for stale completions to drain.\n");
6976 h->access.set_intr_mask(h, HPSA_INTR_ON);
6978 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6980 rc = controller_reset_failed(h->cfgtable);
6982 dev_info(&h->pdev->dev,
6983 "Soft reset appears to have failed.\n");
6985 /* since the controller's reset, we have to go back and re-init
6986 * everything. Easiest to just forget what we've done and do it
6989 hpsa_undo_allocations_after_kdump_soft_reset(h);
6992 /* don't go to clean4, we already unallocated */
6995 goto reinit_after_soft_reset;
6998 /* Enable Accelerated IO path at driver layer */
6999 h->acciopath_status = 1;
7001 h->drv_req_rescan = 0;
7003 /* Turn the interrupts on so we can service requests */
7004 h->access.set_intr_mask(h, HPSA_INTR_ON);
7006 hpsa_hba_inquiry(h);
7007 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
7009 /* Monitor the controller for firmware lockups */
7010 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
7011 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
7012 schedule_delayed_work(&h->monitor_ctlr_work,
7013 h->heartbeat_sample_interval);
7017 hpsa_free_sg_chain_blocks(h);
7018 hpsa_free_cmd_pool(h);
7022 if (h->lockup_detected)
7023 free_percpu(h->lockup_detected);
7028 static void hpsa_flush_cache(struct ctlr_info *h)
7031 struct CommandList *c;
7033 /* Don't bother trying to flush the cache if locked up */
7034 if (unlikely(lockup_detected(h)))
7036 flush_buf = kzalloc(4, GFP_KERNEL);
7040 c = cmd_special_alloc(h);
7042 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
7045 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7046 RAID_CTLR_LUNID, TYPE_CMD)) {
7049 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
7050 if (c->err_info->CommandStatus != 0)
7052 dev_warn(&h->pdev->dev,
7053 "error flushing cache on controller\n");
7054 cmd_special_free(h, c);
7059 static void hpsa_shutdown(struct pci_dev *pdev)
7061 struct ctlr_info *h;
7063 h = pci_get_drvdata(pdev);
7064 /* Turn board interrupts off and send the flush cache command
7065 * sendcmd will turn off interrupt, and send the flush...
7066 * To write all data in the battery backed cache to disks
7068 hpsa_flush_cache(h);
7069 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7070 hpsa_free_irqs_and_disable_msix(h);
7073 static void hpsa_free_device_info(struct ctlr_info *h)
7077 for (i = 0; i < h->ndevices; i++)
7081 static void hpsa_remove_one(struct pci_dev *pdev)
7083 struct ctlr_info *h;
7084 unsigned long flags;
7086 if (pci_get_drvdata(pdev) == NULL) {
7087 dev_err(&pdev->dev, "unable to remove device\n");
7090 h = pci_get_drvdata(pdev);
7092 /* Get rid of any controller monitoring work items */
7093 spin_lock_irqsave(&h->lock, flags);
7094 h->remove_in_progress = 1;
7095 cancel_delayed_work(&h->monitor_ctlr_work);
7096 spin_unlock_irqrestore(&h->lock, flags);
7098 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
7099 hpsa_shutdown(pdev);
7101 iounmap(h->transtable);
7102 iounmap(h->cfgtable);
7103 hpsa_free_device_info(h);
7104 hpsa_free_sg_chain_blocks(h);
7105 pci_free_consistent(h->pdev,
7106 h->nr_cmds * sizeof(struct CommandList),
7107 h->cmd_pool, h->cmd_pool_dhandle);
7108 pci_free_consistent(h->pdev,
7109 h->nr_cmds * sizeof(struct ErrorInfo),
7110 h->errinfo_pool, h->errinfo_pool_dhandle);
7111 hpsa_free_reply_queues(h);
7112 kfree(h->cmd_pool_bits);
7113 kfree(h->blockFetchTable);
7114 kfree(h->ioaccel1_blockFetchTable);
7115 kfree(h->ioaccel2_blockFetchTable);
7116 kfree(h->hba_inquiry_data);
7117 pci_disable_device(pdev);
7118 pci_release_regions(pdev);
7119 free_percpu(h->lockup_detected);
7123 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7124 __attribute__((unused)) pm_message_t state)
7129 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7134 static struct pci_driver hpsa_pci_driver = {
7136 .probe = hpsa_init_one,
7137 .remove = hpsa_remove_one,
7138 .id_table = hpsa_pci_device_id, /* id_table */
7139 .shutdown = hpsa_shutdown,
7140 .suspend = hpsa_suspend,
7141 .resume = hpsa_resume,
7144 /* Fill in bucket_map[], given nsgs (the max number of
7145 * scatter gather elements supported) and bucket[],
7146 * which is an array of 8 integers. The bucket[] array
7147 * contains 8 different DMA transfer sizes (in 16
7148 * byte increments) which the controller uses to fetch
7149 * commands. This function fills in bucket_map[], which
7150 * maps a given number of scatter gather elements to one of
7151 * the 8 DMA transfer sizes. The point of it is to allow the
7152 * controller to only do as much DMA as needed to fetch the
7153 * command, with the DMA transfer size encoded in the lower
7154 * bits of the command address.
7156 static void calc_bucket_map(int bucket[], int num_buckets,
7157 int nsgs, int min_blocks, u32 *bucket_map)
7161 /* Note, bucket_map must have nsgs+1 entries. */
7162 for (i = 0; i <= nsgs; i++) {
7163 /* Compute size of a command with i SG entries */
7164 size = i + min_blocks;
7165 b = num_buckets; /* Assume the biggest bucket */
7166 /* Find the bucket that is just big enough */
7167 for (j = 0; j < num_buckets; j++) {
7168 if (bucket[j] >= size) {
7173 /* for a command with i SG entries, use bucket b. */
7178 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7181 unsigned long register_value;
7182 unsigned long transMethod = CFGTBL_Trans_Performant |
7183 (trans_support & CFGTBL_Trans_use_short_tags) |
7184 CFGTBL_Trans_enable_directed_msix |
7185 (trans_support & (CFGTBL_Trans_io_accel1 |
7186 CFGTBL_Trans_io_accel2));
7187 struct access_method access = SA5_performant_access;
7189 /* This is a bit complicated. There are 8 registers on
7190 * the controller which we write to to tell it 8 different
7191 * sizes of commands which there may be. It's a way of
7192 * reducing the DMA done to fetch each command. Encoded into
7193 * each command's tag are 3 bits which communicate to the controller
7194 * which of the eight sizes that command fits within. The size of
7195 * each command depends on how many scatter gather entries there are.
7196 * Each SG entry requires 16 bytes. The eight registers are programmed
7197 * with the number of 16-byte blocks a command of that size requires.
7198 * The smallest command possible requires 5 such 16 byte blocks.
7199 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7200 * blocks. Note, this only extends to the SG entries contained
7201 * within the command block, and does not extend to chained blocks
7202 * of SG elements. bft[] contains the eight values we write to
7203 * the registers. They are not evenly distributed, but have more
7204 * sizes for small commands, and fewer sizes for larger commands.
7206 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7207 #define MIN_IOACCEL2_BFT_ENTRY 5
7208 #define HPSA_IOACCEL2_HEADER_SZ 4
7209 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7210 13, 14, 15, 16, 17, 18, 19,
7211 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7212 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7213 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7214 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7215 16 * MIN_IOACCEL2_BFT_ENTRY);
7216 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7217 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7218 /* 5 = 1 s/g entry or 4k
7219 * 6 = 2 s/g entry or 8k
7220 * 8 = 4 s/g entry or 16k
7221 * 10 = 6 s/g entry or 24k
7224 /* If the controller supports either ioaccel method then
7225 * we can also use the RAID stack submit path that does not
7226 * perform the superfluous readl() after each command submission.
7228 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
7229 access = SA5_performant_access_no_read;
7231 /* Controller spec: zero out this buffer. */
7232 for (i = 0; i < h->nreply_queues; i++)
7233 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
7235 bft[7] = SG_ENTRIES_IN_CMD + 4;
7236 calc_bucket_map(bft, ARRAY_SIZE(bft),
7237 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7238 for (i = 0; i < 8; i++)
7239 writel(bft[i], &h->transtable->BlockFetch[i]);
7241 /* size of controller ring buffer */
7242 writel(h->max_commands, &h->transtable->RepQSize);
7243 writel(h->nreply_queues, &h->transtable->RepQCount);
7244 writel(0, &h->transtable->RepQCtrAddrLow32);
7245 writel(0, &h->transtable->RepQCtrAddrHigh32);
7247 for (i = 0; i < h->nreply_queues; i++) {
7248 writel(0, &h->transtable->RepQAddr[i].upper);
7249 writel(h->reply_queue[i].busaddr,
7250 &h->transtable->RepQAddr[i].lower);
7253 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7254 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7256 * enable outbound interrupt coalescing in accelerator mode;
7258 if (trans_support & CFGTBL_Trans_io_accel1) {
7259 access = SA5_ioaccel_mode1_access;
7260 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7261 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7263 if (trans_support & CFGTBL_Trans_io_accel2) {
7264 access = SA5_ioaccel_mode2_access;
7265 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7266 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7269 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7270 hpsa_wait_for_mode_change_ack(h);
7271 register_value = readl(&(h->cfgtable->TransportActive));
7272 if (!(register_value & CFGTBL_Trans_Performant)) {
7273 dev_warn(&h->pdev->dev, "unable to get board into"
7274 " performant mode\n");
7277 /* Change the access methods to the performant access methods */
7279 h->transMethod = transMethod;
7281 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7282 (trans_support & CFGTBL_Trans_io_accel2)))
7285 if (trans_support & CFGTBL_Trans_io_accel1) {
7286 /* Set up I/O accelerator mode */
7287 for (i = 0; i < h->nreply_queues; i++) {
7288 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7289 h->reply_queue[i].current_entry =
7290 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7292 bft[7] = h->ioaccel_maxsg + 8;
7293 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7294 h->ioaccel1_blockFetchTable);
7296 /* initialize all reply queue entries to unused */
7297 for (i = 0; i < h->nreply_queues; i++)
7298 memset(h->reply_queue[i].head,
7299 (u8) IOACCEL_MODE1_REPLY_UNUSED,
7300 h->reply_queue_size);
7302 /* set all the constant fields in the accelerator command
7303 * frames once at init time to save CPU cycles later.
7305 for (i = 0; i < h->nr_cmds; i++) {
7306 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7308 cp->function = IOACCEL1_FUNCTION_SCSIIO;
7309 cp->err_info = (u32) (h->errinfo_pool_dhandle +
7310 (i * sizeof(struct ErrorInfo)));
7311 cp->err_info_len = sizeof(struct ErrorInfo);
7312 cp->sgl_offset = IOACCEL1_SGLOFFSET;
7313 cp->host_context_flags =
7314 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
7315 cp->timeout_sec = 0;
7318 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT) |
7321 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
7322 (i * sizeof(struct io_accel1_cmd)));
7324 } else if (trans_support & CFGTBL_Trans_io_accel2) {
7325 u64 cfg_offset, cfg_base_addr_index;
7326 u32 bft2_offset, cfg_base_addr;
7329 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7330 &cfg_base_addr_index, &cfg_offset);
7331 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
7332 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
7333 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
7334 4, h->ioaccel2_blockFetchTable);
7335 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
7336 BUILD_BUG_ON(offsetof(struct CfgTable,
7337 io_accel_request_size_offset) != 0xb8);
7338 h->ioaccel2_bft2_regs =
7339 remap_pci_mem(pci_resource_start(h->pdev,
7340 cfg_base_addr_index) +
7341 cfg_offset + bft2_offset,
7343 sizeof(*h->ioaccel2_bft2_regs));
7344 for (i = 0; i < ARRAY_SIZE(bft2); i++)
7345 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7347 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7348 hpsa_wait_for_mode_change_ack(h);
7351 static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
7354 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7355 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
7356 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
7358 /* Command structures must be aligned on a 128-byte boundary
7359 * because the 7 lower bits of the address are used by the
7362 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
7363 IOACCEL1_COMMANDLIST_ALIGNMENT);
7364 h->ioaccel_cmd_pool =
7365 pci_alloc_consistent(h->pdev,
7366 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7367 &(h->ioaccel_cmd_pool_dhandle));
7369 h->ioaccel1_blockFetchTable =
7370 kmalloc(((h->ioaccel_maxsg + 1) *
7371 sizeof(u32)), GFP_KERNEL);
7373 if ((h->ioaccel_cmd_pool == NULL) ||
7374 (h->ioaccel1_blockFetchTable == NULL))
7377 memset(h->ioaccel_cmd_pool, 0,
7378 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
7382 if (h->ioaccel_cmd_pool)
7383 pci_free_consistent(h->pdev,
7384 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7385 h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
7386 kfree(h->ioaccel1_blockFetchTable);
7390 static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
7392 /* Allocate ioaccel2 mode command blocks and block fetch table */
7395 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7396 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
7397 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
7399 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
7400 IOACCEL2_COMMANDLIST_ALIGNMENT);
7401 h->ioaccel2_cmd_pool =
7402 pci_alloc_consistent(h->pdev,
7403 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7404 &(h->ioaccel2_cmd_pool_dhandle));
7406 h->ioaccel2_blockFetchTable =
7407 kmalloc(((h->ioaccel_maxsg + 1) *
7408 sizeof(u32)), GFP_KERNEL);
7410 if ((h->ioaccel2_cmd_pool == NULL) ||
7411 (h->ioaccel2_blockFetchTable == NULL))
7414 memset(h->ioaccel2_cmd_pool, 0,
7415 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
7419 if (h->ioaccel2_cmd_pool)
7420 pci_free_consistent(h->pdev,
7421 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7422 h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
7423 kfree(h->ioaccel2_blockFetchTable);
7427 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7430 unsigned long transMethod = CFGTBL_Trans_Performant |
7431 CFGTBL_Trans_use_short_tags;
7434 if (hpsa_simple_mode)
7437 trans_support = readl(&(h->cfgtable->TransportSupport));
7438 if (!(trans_support & PERFORMANT_MODE))
7441 /* Check for I/O accelerator mode support */
7442 if (trans_support & CFGTBL_Trans_io_accel1) {
7443 transMethod |= CFGTBL_Trans_io_accel1 |
7444 CFGTBL_Trans_enable_directed_msix;
7445 if (hpsa_alloc_ioaccel_cmd_and_bft(h))
7448 if (trans_support & CFGTBL_Trans_io_accel2) {
7449 transMethod |= CFGTBL_Trans_io_accel2 |
7450 CFGTBL_Trans_enable_directed_msix;
7451 if (ioaccel2_alloc_cmds_and_bft(h))
7456 h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7457 hpsa_get_max_perf_mode_cmds(h);
7458 /* Performant mode ring buffer and supporting data structures */
7459 h->reply_queue_size = h->max_commands * sizeof(u64);
7461 for (i = 0; i < h->nreply_queues; i++) {
7462 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
7463 h->reply_queue_size,
7464 &(h->reply_queue[i].busaddr));
7465 if (!h->reply_queue[i].head)
7467 h->reply_queue[i].size = h->max_commands;
7468 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
7469 h->reply_queue[i].current_entry = 0;
7472 /* Need a block fetch table for performant mode */
7473 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7474 sizeof(u32)), GFP_KERNEL);
7475 if (!h->blockFetchTable)
7478 hpsa_enter_performant_mode(h, trans_support);
7482 hpsa_free_reply_queues(h);
7483 kfree(h->blockFetchTable);
7486 static int is_accelerated_cmd(struct CommandList *c)
7488 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
7491 static void hpsa_drain_accel_commands(struct ctlr_info *h)
7493 struct CommandList *c = NULL;
7494 unsigned long flags;
7497 do { /* wait for all outstanding commands to drain out */
7499 spin_lock_irqsave(&h->lock, flags);
7500 list_for_each_entry(c, &h->cmpQ, list)
7501 accel_cmds_out += is_accelerated_cmd(c);
7502 list_for_each_entry(c, &h->reqQ, list)
7503 accel_cmds_out += is_accelerated_cmd(c);
7504 spin_unlock_irqrestore(&h->lock, flags);
7505 if (accel_cmds_out <= 0)
7512 * This is it. Register the PCI driver information for the cards we control
7513 * the OS will call our registered routines when it finds one of our cards.
7515 static int __init hpsa_init(void)
7517 return pci_register_driver(&hpsa_pci_driver);
7520 static void __exit hpsa_cleanup(void)
7522 pci_unregister_driver(&hpsa_pci_driver);
7525 static void __attribute__((unused)) verify_offsets(void)
7527 #define VERIFY_OFFSET(member, offset) \
7528 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7530 VERIFY_OFFSET(structure_size, 0);
7531 VERIFY_OFFSET(volume_blk_size, 4);
7532 VERIFY_OFFSET(volume_blk_cnt, 8);
7533 VERIFY_OFFSET(phys_blk_shift, 16);
7534 VERIFY_OFFSET(parity_rotation_shift, 17);
7535 VERIFY_OFFSET(strip_size, 18);
7536 VERIFY_OFFSET(disk_starting_blk, 20);
7537 VERIFY_OFFSET(disk_blk_cnt, 28);
7538 VERIFY_OFFSET(data_disks_per_row, 36);
7539 VERIFY_OFFSET(metadata_disks_per_row, 38);
7540 VERIFY_OFFSET(row_cnt, 40);
7541 VERIFY_OFFSET(layout_map_count, 42);
7542 VERIFY_OFFSET(flags, 44);
7543 VERIFY_OFFSET(dekindex, 46);
7544 /* VERIFY_OFFSET(reserved, 48 */
7545 VERIFY_OFFSET(data, 64);
7547 #undef VERIFY_OFFSET
7549 #define VERIFY_OFFSET(member, offset) \
7550 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7552 VERIFY_OFFSET(IU_type, 0);
7553 VERIFY_OFFSET(direction, 1);
7554 VERIFY_OFFSET(reply_queue, 2);
7555 /* VERIFY_OFFSET(reserved1, 3); */
7556 VERIFY_OFFSET(scsi_nexus, 4);
7557 VERIFY_OFFSET(Tag, 8);
7558 VERIFY_OFFSET(cdb, 16);
7559 VERIFY_OFFSET(cciss_lun, 32);
7560 VERIFY_OFFSET(data_len, 40);
7561 VERIFY_OFFSET(cmd_priority_task_attr, 44);
7562 VERIFY_OFFSET(sg_count, 45);
7563 /* VERIFY_OFFSET(reserved3 */
7564 VERIFY_OFFSET(err_ptr, 48);
7565 VERIFY_OFFSET(err_len, 56);
7566 /* VERIFY_OFFSET(reserved4 */
7567 VERIFY_OFFSET(sg, 64);
7569 #undef VERIFY_OFFSET
7571 #define VERIFY_OFFSET(member, offset) \
7572 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
7574 VERIFY_OFFSET(dev_handle, 0x00);
7575 VERIFY_OFFSET(reserved1, 0x02);
7576 VERIFY_OFFSET(function, 0x03);
7577 VERIFY_OFFSET(reserved2, 0x04);
7578 VERIFY_OFFSET(err_info, 0x0C);
7579 VERIFY_OFFSET(reserved3, 0x10);
7580 VERIFY_OFFSET(err_info_len, 0x12);
7581 VERIFY_OFFSET(reserved4, 0x13);
7582 VERIFY_OFFSET(sgl_offset, 0x14);
7583 VERIFY_OFFSET(reserved5, 0x15);
7584 VERIFY_OFFSET(transfer_len, 0x1C);
7585 VERIFY_OFFSET(reserved6, 0x20);
7586 VERIFY_OFFSET(io_flags, 0x24);
7587 VERIFY_OFFSET(reserved7, 0x26);
7588 VERIFY_OFFSET(LUN, 0x34);
7589 VERIFY_OFFSET(control, 0x3C);
7590 VERIFY_OFFSET(CDB, 0x40);
7591 VERIFY_OFFSET(reserved8, 0x50);
7592 VERIFY_OFFSET(host_context_flags, 0x60);
7593 VERIFY_OFFSET(timeout_sec, 0x62);
7594 VERIFY_OFFSET(ReplyQueue, 0x64);
7595 VERIFY_OFFSET(reserved9, 0x65);
7596 VERIFY_OFFSET(tag, 0x68);
7597 VERIFY_OFFSET(host_addr, 0x70);
7598 VERIFY_OFFSET(CISS_LUN, 0x78);
7599 VERIFY_OFFSET(SG, 0x78 + 8);
7600 #undef VERIFY_OFFSET
7603 module_init(hpsa_init);
7604 module_exit(hpsa_cleanup);