hpsa: propagate return value from board ID lookup
[platform/kernel/linux-rpi.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57
58 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
59 #define HPSA_DRIVER_VERSION "3.4.4-1"
60 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
61 #define HPSA "hpsa"
62
63 /* How long to wait (in milliseconds) for board to go into simple mode */
64 #define MAX_CONFIG_WAIT 30000
65 #define MAX_IOCTL_CONFIG_WAIT 1000
66
67 /*define how many times we will try a command because of bus resets */
68 #define MAX_CMD_RETRIES 3
69
70 /* Embedded module documentation macros - see modules.h */
71 MODULE_AUTHOR("Hewlett-Packard Company");
72 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
73         HPSA_DRIVER_VERSION);
74 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
75 MODULE_VERSION(HPSA_DRIVER_VERSION);
76 MODULE_LICENSE("GPL");
77
78 static int hpsa_allow_any;
79 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
80 MODULE_PARM_DESC(hpsa_allow_any,
81                 "Allow hpsa driver to access unknown HP Smart Array hardware");
82 static int hpsa_simple_mode;
83 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
84 MODULE_PARM_DESC(hpsa_simple_mode,
85         "Use 'simple mode' rather than 'performant mode'");
86
87 /* define the PCI info for the cards we can control */
88 static const struct pci_device_id hpsa_pci_device_id[] = {
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
129         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
130         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
131         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
132         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
133         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
134         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
135                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
136         {0,}
137 };
138
139 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
140
141 /*  board_id = Subsystem Device ID & Vendor ID
142  *  product = Marketing Name for the board
143  *  access = Address of the struct of function pointers
144  */
145 static struct board_type products[] = {
146         {0x3241103C, "Smart Array P212", &SA5_access},
147         {0x3243103C, "Smart Array P410", &SA5_access},
148         {0x3245103C, "Smart Array P410i", &SA5_access},
149         {0x3247103C, "Smart Array P411", &SA5_access},
150         {0x3249103C, "Smart Array P812", &SA5_access},
151         {0x324A103C, "Smart Array P712m", &SA5_access},
152         {0x324B103C, "Smart Array P711m", &SA5_access},
153         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
154         {0x3350103C, "Smart Array P222", &SA5_access},
155         {0x3351103C, "Smart Array P420", &SA5_access},
156         {0x3352103C, "Smart Array P421", &SA5_access},
157         {0x3353103C, "Smart Array P822", &SA5_access},
158         {0x3354103C, "Smart Array P420i", &SA5_access},
159         {0x3355103C, "Smart Array P220i", &SA5_access},
160         {0x3356103C, "Smart Array P721m", &SA5_access},
161         {0x1921103C, "Smart Array P830i", &SA5_access},
162         {0x1922103C, "Smart Array P430", &SA5_access},
163         {0x1923103C, "Smart Array P431", &SA5_access},
164         {0x1924103C, "Smart Array P830", &SA5_access},
165         {0x1926103C, "Smart Array P731m", &SA5_access},
166         {0x1928103C, "Smart Array P230i", &SA5_access},
167         {0x1929103C, "Smart Array P530", &SA5_access},
168         {0x21BD103C, "Smart Array", &SA5_access},
169         {0x21BE103C, "Smart Array", &SA5_access},
170         {0x21BF103C, "Smart Array", &SA5_access},
171         {0x21C0103C, "Smart Array", &SA5_access},
172         {0x21C1103C, "Smart Array", &SA5_access},
173         {0x21C2103C, "Smart Array", &SA5_access},
174         {0x21C3103C, "Smart Array", &SA5_access},
175         {0x21C4103C, "Smart Array", &SA5_access},
176         {0x21C5103C, "Smart Array", &SA5_access},
177         {0x21C6103C, "Smart Array", &SA5_access},
178         {0x21C7103C, "Smart Array", &SA5_access},
179         {0x21C8103C, "Smart Array", &SA5_access},
180         {0x21C9103C, "Smart Array", &SA5_access},
181         {0x21CA103C, "Smart Array", &SA5_access},
182         {0x21CB103C, "Smart Array", &SA5_access},
183         {0x21CC103C, "Smart Array", &SA5_access},
184         {0x21CD103C, "Smart Array", &SA5_access},
185         {0x21CE103C, "Smart Array", &SA5_access},
186         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
187         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
188         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
189         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
190         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
191         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
192 };
193
194 static int number_of_controllers;
195
196 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
197 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
198 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
199 static void lock_and_start_io(struct ctlr_info *h);
200 static void start_io(struct ctlr_info *h, unsigned long *flags);
201
202 #ifdef CONFIG_COMPAT
203 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
204         void __user *arg);
205 #endif
206
207 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
208 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
209 static struct CommandList *cmd_alloc(struct ctlr_info *h);
210 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
211 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
212         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
213         int cmd_type);
214 #define VPD_PAGE (1 << 8)
215
216 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
217 static void hpsa_scan_start(struct Scsi_Host *);
218 static int hpsa_scan_finished(struct Scsi_Host *sh,
219         unsigned long elapsed_time);
220 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
221
222 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
223 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
224 static int hpsa_slave_alloc(struct scsi_device *sdev);
225 static void hpsa_slave_destroy(struct scsi_device *sdev);
226
227 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
228 static int check_for_unit_attention(struct ctlr_info *h,
229         struct CommandList *c);
230 static void check_ioctl_unit_attention(struct ctlr_info *h,
231         struct CommandList *c);
232 /* performant mode helper functions */
233 static void calc_bucket_map(int *bucket, int num_buckets,
234         int nsgs, int min_blocks, u32 *bucket_map);
235 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
236 static inline u32 next_command(struct ctlr_info *h, u8 q);
237 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
238                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
239                                u64 *cfg_offset);
240 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
241                                     unsigned long *memory_bar);
242 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
243 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
244                                      int wait_for_ready);
245 static inline void finish_cmd(struct CommandList *c);
246 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
247 #define BOARD_NOT_READY 0
248 #define BOARD_READY 1
249 static void hpsa_drain_accel_commands(struct ctlr_info *h);
250 static void hpsa_flush_cache(struct ctlr_info *h);
251 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
252         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
253         u8 *scsi3addr);
254
255 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
256 {
257         unsigned long *priv = shost_priv(sdev->host);
258         return (struct ctlr_info *) *priv;
259 }
260
261 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
262 {
263         unsigned long *priv = shost_priv(sh);
264         return (struct ctlr_info *) *priv;
265 }
266
267 static int check_for_unit_attention(struct ctlr_info *h,
268         struct CommandList *c)
269 {
270         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
271                 return 0;
272
273         switch (c->err_info->SenseInfo[12]) {
274         case STATE_CHANGED:
275                 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
276                         "detected, command retried\n", h->ctlr);
277                 break;
278         case LUN_FAILED:
279                 dev_warn(&h->pdev->dev,
280                         HPSA "%d: LUN failure detected\n", h->ctlr);
281                 break;
282         case REPORT_LUNS_CHANGED:
283                 dev_warn(&h->pdev->dev,
284                         HPSA "%d: report LUN data changed\n", h->ctlr);
285         /*
286          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
287          * target (array) devices.
288          */
289                 break;
290         case POWER_OR_RESET:
291                 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
292                         "or device reset detected\n", h->ctlr);
293                 break;
294         case UNIT_ATTENTION_CLEARED:
295                 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
296                     "cleared by another initiator\n", h->ctlr);
297                 break;
298         default:
299                 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
300                         "unit attention detected\n", h->ctlr);
301                 break;
302         }
303         return 1;
304 }
305
306 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
307 {
308         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
309                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
310                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
311                 return 0;
312         dev_warn(&h->pdev->dev, HPSA "device busy");
313         return 1;
314 }
315
316 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
317                                          struct device_attribute *attr,
318                                          const char *buf, size_t count)
319 {
320         int status, len;
321         struct ctlr_info *h;
322         struct Scsi_Host *shost = class_to_shost(dev);
323         char tmpbuf[10];
324
325         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
326                 return -EACCES;
327         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
328         strncpy(tmpbuf, buf, len);
329         tmpbuf[len] = '\0';
330         if (sscanf(tmpbuf, "%d", &status) != 1)
331                 return -EINVAL;
332         h = shost_to_hba(shost);
333         h->acciopath_status = !!status;
334         dev_warn(&h->pdev->dev,
335                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
336                 h->acciopath_status ? "enabled" : "disabled");
337         return count;
338 }
339
340 static ssize_t host_store_raid_offload_debug(struct device *dev,
341                                          struct device_attribute *attr,
342                                          const char *buf, size_t count)
343 {
344         int debug_level, len;
345         struct ctlr_info *h;
346         struct Scsi_Host *shost = class_to_shost(dev);
347         char tmpbuf[10];
348
349         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
350                 return -EACCES;
351         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
352         strncpy(tmpbuf, buf, len);
353         tmpbuf[len] = '\0';
354         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
355                 return -EINVAL;
356         if (debug_level < 0)
357                 debug_level = 0;
358         h = shost_to_hba(shost);
359         h->raid_offload_debug = debug_level;
360         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
361                 h->raid_offload_debug);
362         return count;
363 }
364
365 static ssize_t host_store_rescan(struct device *dev,
366                                  struct device_attribute *attr,
367                                  const char *buf, size_t count)
368 {
369         struct ctlr_info *h;
370         struct Scsi_Host *shost = class_to_shost(dev);
371         h = shost_to_hba(shost);
372         hpsa_scan_start(h->scsi_host);
373         return count;
374 }
375
376 static ssize_t host_show_firmware_revision(struct device *dev,
377              struct device_attribute *attr, char *buf)
378 {
379         struct ctlr_info *h;
380         struct Scsi_Host *shost = class_to_shost(dev);
381         unsigned char *fwrev;
382
383         h = shost_to_hba(shost);
384         if (!h->hba_inquiry_data)
385                 return 0;
386         fwrev = &h->hba_inquiry_data[32];
387         return snprintf(buf, 20, "%c%c%c%c\n",
388                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
389 }
390
391 static ssize_t host_show_commands_outstanding(struct device *dev,
392              struct device_attribute *attr, char *buf)
393 {
394         struct Scsi_Host *shost = class_to_shost(dev);
395         struct ctlr_info *h = shost_to_hba(shost);
396
397         return snprintf(buf, 20, "%d\n",
398                         atomic_read(&h->commands_outstanding));
399 }
400
401 static ssize_t host_show_transport_mode(struct device *dev,
402         struct device_attribute *attr, char *buf)
403 {
404         struct ctlr_info *h;
405         struct Scsi_Host *shost = class_to_shost(dev);
406
407         h = shost_to_hba(shost);
408         return snprintf(buf, 20, "%s\n",
409                 h->transMethod & CFGTBL_Trans_Performant ?
410                         "performant" : "simple");
411 }
412
413 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
414         struct device_attribute *attr, char *buf)
415 {
416         struct ctlr_info *h;
417         struct Scsi_Host *shost = class_to_shost(dev);
418
419         h = shost_to_hba(shost);
420         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
421                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
422 }
423
424 /* List of controllers which cannot be hard reset on kexec with reset_devices */
425 static u32 unresettable_controller[] = {
426         0x324a103C, /* Smart Array P712m */
427         0x324b103C, /* SmartArray P711m */
428         0x3223103C, /* Smart Array P800 */
429         0x3234103C, /* Smart Array P400 */
430         0x3235103C, /* Smart Array P400i */
431         0x3211103C, /* Smart Array E200i */
432         0x3212103C, /* Smart Array E200 */
433         0x3213103C, /* Smart Array E200i */
434         0x3214103C, /* Smart Array E200i */
435         0x3215103C, /* Smart Array E200i */
436         0x3237103C, /* Smart Array E500 */
437         0x323D103C, /* Smart Array P700m */
438         0x40800E11, /* Smart Array 5i */
439         0x409C0E11, /* Smart Array 6400 */
440         0x409D0E11, /* Smart Array 6400 EM */
441         0x40700E11, /* Smart Array 5300 */
442         0x40820E11, /* Smart Array 532 */
443         0x40830E11, /* Smart Array 5312 */
444         0x409A0E11, /* Smart Array 641 */
445         0x409B0E11, /* Smart Array 642 */
446         0x40910E11, /* Smart Array 6i */
447 };
448
449 /* List of controllers which cannot even be soft reset */
450 static u32 soft_unresettable_controller[] = {
451         0x40800E11, /* Smart Array 5i */
452         0x40700E11, /* Smart Array 5300 */
453         0x40820E11, /* Smart Array 532 */
454         0x40830E11, /* Smart Array 5312 */
455         0x409A0E11, /* Smart Array 641 */
456         0x409B0E11, /* Smart Array 642 */
457         0x40910E11, /* Smart Array 6i */
458         /* Exclude 640x boards.  These are two pci devices in one slot
459          * which share a battery backed cache module.  One controls the
460          * cache, the other accesses the cache through the one that controls
461          * it.  If we reset the one controlling the cache, the other will
462          * likely not be happy.  Just forbid resetting this conjoined mess.
463          * The 640x isn't really supported by hpsa anyway.
464          */
465         0x409C0E11, /* Smart Array 6400 */
466         0x409D0E11, /* Smart Array 6400 EM */
467 };
468
469 static int ctlr_is_hard_resettable(u32 board_id)
470 {
471         int i;
472
473         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
474                 if (unresettable_controller[i] == board_id)
475                         return 0;
476         return 1;
477 }
478
479 static int ctlr_is_soft_resettable(u32 board_id)
480 {
481         int i;
482
483         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
484                 if (soft_unresettable_controller[i] == board_id)
485                         return 0;
486         return 1;
487 }
488
489 static int ctlr_is_resettable(u32 board_id)
490 {
491         return ctlr_is_hard_resettable(board_id) ||
492                 ctlr_is_soft_resettable(board_id);
493 }
494
495 static ssize_t host_show_resettable(struct device *dev,
496         struct device_attribute *attr, char *buf)
497 {
498         struct ctlr_info *h;
499         struct Scsi_Host *shost = class_to_shost(dev);
500
501         h = shost_to_hba(shost);
502         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
503 }
504
505 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
506 {
507         return (scsi3addr[3] & 0xC0) == 0x40;
508 }
509
510 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
511         "1(+0)ADM", "UNKNOWN"
512 };
513 #define HPSA_RAID_0     0
514 #define HPSA_RAID_4     1
515 #define HPSA_RAID_1     2       /* also used for RAID 10 */
516 #define HPSA_RAID_5     3       /* also used for RAID 50 */
517 #define HPSA_RAID_51    4
518 #define HPSA_RAID_6     5       /* also used for RAID 60 */
519 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
520 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
521
522 static ssize_t raid_level_show(struct device *dev,
523              struct device_attribute *attr, char *buf)
524 {
525         ssize_t l = 0;
526         unsigned char rlevel;
527         struct ctlr_info *h;
528         struct scsi_device *sdev;
529         struct hpsa_scsi_dev_t *hdev;
530         unsigned long flags;
531
532         sdev = to_scsi_device(dev);
533         h = sdev_to_hba(sdev);
534         spin_lock_irqsave(&h->lock, flags);
535         hdev = sdev->hostdata;
536         if (!hdev) {
537                 spin_unlock_irqrestore(&h->lock, flags);
538                 return -ENODEV;
539         }
540
541         /* Is this even a logical drive? */
542         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
543                 spin_unlock_irqrestore(&h->lock, flags);
544                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
545                 return l;
546         }
547
548         rlevel = hdev->raid_level;
549         spin_unlock_irqrestore(&h->lock, flags);
550         if (rlevel > RAID_UNKNOWN)
551                 rlevel = RAID_UNKNOWN;
552         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
553         return l;
554 }
555
556 static ssize_t lunid_show(struct device *dev,
557              struct device_attribute *attr, char *buf)
558 {
559         struct ctlr_info *h;
560         struct scsi_device *sdev;
561         struct hpsa_scsi_dev_t *hdev;
562         unsigned long flags;
563         unsigned char lunid[8];
564
565         sdev = to_scsi_device(dev);
566         h = sdev_to_hba(sdev);
567         spin_lock_irqsave(&h->lock, flags);
568         hdev = sdev->hostdata;
569         if (!hdev) {
570                 spin_unlock_irqrestore(&h->lock, flags);
571                 return -ENODEV;
572         }
573         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
574         spin_unlock_irqrestore(&h->lock, flags);
575         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
576                 lunid[0], lunid[1], lunid[2], lunid[3],
577                 lunid[4], lunid[5], lunid[6], lunid[7]);
578 }
579
580 static ssize_t unique_id_show(struct device *dev,
581              struct device_attribute *attr, char *buf)
582 {
583         struct ctlr_info *h;
584         struct scsi_device *sdev;
585         struct hpsa_scsi_dev_t *hdev;
586         unsigned long flags;
587         unsigned char sn[16];
588
589         sdev = to_scsi_device(dev);
590         h = sdev_to_hba(sdev);
591         spin_lock_irqsave(&h->lock, flags);
592         hdev = sdev->hostdata;
593         if (!hdev) {
594                 spin_unlock_irqrestore(&h->lock, flags);
595                 return -ENODEV;
596         }
597         memcpy(sn, hdev->device_id, sizeof(sn));
598         spin_unlock_irqrestore(&h->lock, flags);
599         return snprintf(buf, 16 * 2 + 2,
600                         "%02X%02X%02X%02X%02X%02X%02X%02X"
601                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
602                         sn[0], sn[1], sn[2], sn[3],
603                         sn[4], sn[5], sn[6], sn[7],
604                         sn[8], sn[9], sn[10], sn[11],
605                         sn[12], sn[13], sn[14], sn[15]);
606 }
607
608 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
609              struct device_attribute *attr, char *buf)
610 {
611         struct ctlr_info *h;
612         struct scsi_device *sdev;
613         struct hpsa_scsi_dev_t *hdev;
614         unsigned long flags;
615         int offload_enabled;
616
617         sdev = to_scsi_device(dev);
618         h = sdev_to_hba(sdev);
619         spin_lock_irqsave(&h->lock, flags);
620         hdev = sdev->hostdata;
621         if (!hdev) {
622                 spin_unlock_irqrestore(&h->lock, flags);
623                 return -ENODEV;
624         }
625         offload_enabled = hdev->offload_enabled;
626         spin_unlock_irqrestore(&h->lock, flags);
627         return snprintf(buf, 20, "%d\n", offload_enabled);
628 }
629
630 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
631 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
632 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
633 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
634 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
635                         host_show_hp_ssd_smart_path_enabled, NULL);
636 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
637                 host_show_hp_ssd_smart_path_status,
638                 host_store_hp_ssd_smart_path_status);
639 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
640                         host_store_raid_offload_debug);
641 static DEVICE_ATTR(firmware_revision, S_IRUGO,
642         host_show_firmware_revision, NULL);
643 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
644         host_show_commands_outstanding, NULL);
645 static DEVICE_ATTR(transport_mode, S_IRUGO,
646         host_show_transport_mode, NULL);
647 static DEVICE_ATTR(resettable, S_IRUGO,
648         host_show_resettable, NULL);
649
650 static struct device_attribute *hpsa_sdev_attrs[] = {
651         &dev_attr_raid_level,
652         &dev_attr_lunid,
653         &dev_attr_unique_id,
654         &dev_attr_hp_ssd_smart_path_enabled,
655         NULL,
656 };
657
658 static struct device_attribute *hpsa_shost_attrs[] = {
659         &dev_attr_rescan,
660         &dev_attr_firmware_revision,
661         &dev_attr_commands_outstanding,
662         &dev_attr_transport_mode,
663         &dev_attr_resettable,
664         &dev_attr_hp_ssd_smart_path_status,
665         &dev_attr_raid_offload_debug,
666         NULL,
667 };
668
669 static struct scsi_host_template hpsa_driver_template = {
670         .module                 = THIS_MODULE,
671         .name                   = HPSA,
672         .proc_name              = HPSA,
673         .queuecommand           = hpsa_scsi_queue_command,
674         .scan_start             = hpsa_scan_start,
675         .scan_finished          = hpsa_scan_finished,
676         .change_queue_depth     = hpsa_change_queue_depth,
677         .this_id                = -1,
678         .use_clustering         = ENABLE_CLUSTERING,
679         .eh_abort_handler       = hpsa_eh_abort_handler,
680         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
681         .ioctl                  = hpsa_ioctl,
682         .slave_alloc            = hpsa_slave_alloc,
683         .slave_destroy          = hpsa_slave_destroy,
684 #ifdef CONFIG_COMPAT
685         .compat_ioctl           = hpsa_compat_ioctl,
686 #endif
687         .sdev_attrs = hpsa_sdev_attrs,
688         .shost_attrs = hpsa_shost_attrs,
689         .max_sectors = 8192,
690         .no_write_same = 1,
691 };
692
693
694 /* Enqueuing and dequeuing functions for cmdlists. */
695 static inline void addQ(struct list_head *list, struct CommandList *c)
696 {
697         list_add_tail(&c->list, list);
698 }
699
700 static inline u32 next_command(struct ctlr_info *h, u8 q)
701 {
702         u32 a;
703         struct reply_queue_buffer *rq = &h->reply_queue[q];
704
705         if (h->transMethod & CFGTBL_Trans_io_accel1)
706                 return h->access.command_completed(h, q);
707
708         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
709                 return h->access.command_completed(h, q);
710
711         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
712                 a = rq->head[rq->current_entry];
713                 rq->current_entry++;
714                 atomic_dec(&h->commands_outstanding);
715         } else {
716                 a = FIFO_EMPTY;
717         }
718         /* Check for wraparound */
719         if (rq->current_entry == h->max_commands) {
720                 rq->current_entry = 0;
721                 rq->wraparound ^= 1;
722         }
723         return a;
724 }
725
726 /*
727  * There are some special bits in the bus address of the
728  * command that we have to set for the controller to know
729  * how to process the command:
730  *
731  * Normal performant mode:
732  * bit 0: 1 means performant mode, 0 means simple mode.
733  * bits 1-3 = block fetch table entry
734  * bits 4-6 = command type (== 0)
735  *
736  * ioaccel1 mode:
737  * bit 0 = "performant mode" bit.
738  * bits 1-3 = block fetch table entry
739  * bits 4-6 = command type (== 110)
740  * (command type is needed because ioaccel1 mode
741  * commands are submitted through the same register as normal
742  * mode commands, so this is how the controller knows whether
743  * the command is normal mode or ioaccel1 mode.)
744  *
745  * ioaccel2 mode:
746  * bit 0 = "performant mode" bit.
747  * bits 1-4 = block fetch table entry (note extra bit)
748  * bits 4-6 = not needed, because ioaccel2 mode has
749  * a separate special register for submitting commands.
750  */
751
752 /* set_performant_mode: Modify the tag for cciss performant
753  * set bit 0 for pull model, bits 3-1 for block fetch
754  * register number
755  */
756 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
757 {
758         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
759                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
760                 if (likely(h->msix_vector > 0))
761                         c->Header.ReplyQueue =
762                                 raw_smp_processor_id() % h->nreply_queues;
763         }
764 }
765
766 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
767                                                 struct CommandList *c)
768 {
769         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
770
771         /* Tell the controller to post the reply to the queue for this
772          * processor.  This seems to give the best I/O throughput.
773          */
774         cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
775         /* Set the bits in the address sent down to include:
776          *  - performant mode bit (bit 0)
777          *  - pull count (bits 1-3)
778          *  - command type (bits 4-6)
779          */
780         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
781                                         IOACCEL1_BUSADDR_CMDTYPE;
782 }
783
784 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
785                                                 struct CommandList *c)
786 {
787         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
788
789         /* Tell the controller to post the reply to the queue for this
790          * processor.  This seems to give the best I/O throughput.
791          */
792         cp->reply_queue = smp_processor_id() % h->nreply_queues;
793         /* Set the bits in the address sent down to include:
794          *  - performant mode bit not used in ioaccel mode 2
795          *  - pull count (bits 0-3)
796          *  - command type isn't needed for ioaccel2
797          */
798         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
799 }
800
801 static int is_firmware_flash_cmd(u8 *cdb)
802 {
803         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
804 }
805
806 /*
807  * During firmware flash, the heartbeat register may not update as frequently
808  * as it should.  So we dial down lockup detection during firmware flash. and
809  * dial it back up when firmware flash completes.
810  */
811 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
812 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
813 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
814                 struct CommandList *c)
815 {
816         if (!is_firmware_flash_cmd(c->Request.CDB))
817                 return;
818         atomic_inc(&h->firmware_flash_in_progress);
819         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
820 }
821
822 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
823                 struct CommandList *c)
824 {
825         if (is_firmware_flash_cmd(c->Request.CDB) &&
826                 atomic_dec_and_test(&h->firmware_flash_in_progress))
827                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
828 }
829
830 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
831         struct CommandList *c)
832 {
833         unsigned long flags;
834
835         switch (c->cmd_type) {
836         case CMD_IOACCEL1:
837                 set_ioaccel1_performant_mode(h, c);
838                 break;
839         case CMD_IOACCEL2:
840                 set_ioaccel2_performant_mode(h, c);
841                 break;
842         default:
843                 set_performant_mode(h, c);
844         }
845         dial_down_lockup_detection_during_fw_flash(h, c);
846         spin_lock_irqsave(&h->lock, flags);
847         addQ(&h->reqQ, c);
848         h->Qdepth++;
849         start_io(h, &flags);
850         spin_unlock_irqrestore(&h->lock, flags);
851 }
852
853 static inline void removeQ(struct CommandList *c)
854 {
855         if (WARN_ON(list_empty(&c->list)))
856                 return;
857         list_del_init(&c->list);
858 }
859
860 static inline int is_hba_lunid(unsigned char scsi3addr[])
861 {
862         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
863 }
864
865 static inline int is_scsi_rev_5(struct ctlr_info *h)
866 {
867         if (!h->hba_inquiry_data)
868                 return 0;
869         if ((h->hba_inquiry_data[2] & 0x07) == 5)
870                 return 1;
871         return 0;
872 }
873
874 static int hpsa_find_target_lun(struct ctlr_info *h,
875         unsigned char scsi3addr[], int bus, int *target, int *lun)
876 {
877         /* finds an unused bus, target, lun for a new physical device
878          * assumes h->devlock is held
879          */
880         int i, found = 0;
881         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
882
883         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
884
885         for (i = 0; i < h->ndevices; i++) {
886                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
887                         __set_bit(h->dev[i]->target, lun_taken);
888         }
889
890         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
891         if (i < HPSA_MAX_DEVICES) {
892                 /* *bus = 1; */
893                 *target = i;
894                 *lun = 0;
895                 found = 1;
896         }
897         return !found;
898 }
899
900 /* Add an entry into h->dev[] array. */
901 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
902                 struct hpsa_scsi_dev_t *device,
903                 struct hpsa_scsi_dev_t *added[], int *nadded)
904 {
905         /* assumes h->devlock is held */
906         int n = h->ndevices;
907         int i;
908         unsigned char addr1[8], addr2[8];
909         struct hpsa_scsi_dev_t *sd;
910
911         if (n >= HPSA_MAX_DEVICES) {
912                 dev_err(&h->pdev->dev, "too many devices, some will be "
913                         "inaccessible.\n");
914                 return -1;
915         }
916
917         /* physical devices do not have lun or target assigned until now. */
918         if (device->lun != -1)
919                 /* Logical device, lun is already assigned. */
920                 goto lun_assigned;
921
922         /* If this device a non-zero lun of a multi-lun device
923          * byte 4 of the 8-byte LUN addr will contain the logical
924          * unit no, zero otherwise.
925          */
926         if (device->scsi3addr[4] == 0) {
927                 /* This is not a non-zero lun of a multi-lun device */
928                 if (hpsa_find_target_lun(h, device->scsi3addr,
929                         device->bus, &device->target, &device->lun) != 0)
930                         return -1;
931                 goto lun_assigned;
932         }
933
934         /* This is a non-zero lun of a multi-lun device.
935          * Search through our list and find the device which
936          * has the same 8 byte LUN address, excepting byte 4.
937          * Assign the same bus and target for this new LUN.
938          * Use the logical unit number from the firmware.
939          */
940         memcpy(addr1, device->scsi3addr, 8);
941         addr1[4] = 0;
942         for (i = 0; i < n; i++) {
943                 sd = h->dev[i];
944                 memcpy(addr2, sd->scsi3addr, 8);
945                 addr2[4] = 0;
946                 /* differ only in byte 4? */
947                 if (memcmp(addr1, addr2, 8) == 0) {
948                         device->bus = sd->bus;
949                         device->target = sd->target;
950                         device->lun = device->scsi3addr[4];
951                         break;
952                 }
953         }
954         if (device->lun == -1) {
955                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
956                         " suspect firmware bug or unsupported hardware "
957                         "configuration.\n");
958                         return -1;
959         }
960
961 lun_assigned:
962
963         h->dev[n] = device;
964         h->ndevices++;
965         added[*nadded] = device;
966         (*nadded)++;
967
968         /* initially, (before registering with scsi layer) we don't
969          * know our hostno and we don't want to print anything first
970          * time anyway (the scsi layer's inquiries will show that info)
971          */
972         /* if (hostno != -1) */
973                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
974                         scsi_device_type(device->devtype), hostno,
975                         device->bus, device->target, device->lun);
976         return 0;
977 }
978
979 /* Update an entry in h->dev[] array. */
980 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
981         int entry, struct hpsa_scsi_dev_t *new_entry)
982 {
983         /* assumes h->devlock is held */
984         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
985
986         /* Raid level changed. */
987         h->dev[entry]->raid_level = new_entry->raid_level;
988
989         /* Raid offload parameters changed. */
990         h->dev[entry]->offload_config = new_entry->offload_config;
991         h->dev[entry]->offload_enabled = new_entry->offload_enabled;
992         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
993         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
994         h->dev[entry]->raid_map = new_entry->raid_map;
995
996         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
997                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
998                 new_entry->target, new_entry->lun);
999 }
1000
1001 /* Replace an entry from h->dev[] array. */
1002 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1003         int entry, struct hpsa_scsi_dev_t *new_entry,
1004         struct hpsa_scsi_dev_t *added[], int *nadded,
1005         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1006 {
1007         /* assumes h->devlock is held */
1008         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1009         removed[*nremoved] = h->dev[entry];
1010         (*nremoved)++;
1011
1012         /*
1013          * New physical devices won't have target/lun assigned yet
1014          * so we need to preserve the values in the slot we are replacing.
1015          */
1016         if (new_entry->target == -1) {
1017                 new_entry->target = h->dev[entry]->target;
1018                 new_entry->lun = h->dev[entry]->lun;
1019         }
1020
1021         h->dev[entry] = new_entry;
1022         added[*nadded] = new_entry;
1023         (*nadded)++;
1024         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
1025                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
1026                         new_entry->target, new_entry->lun);
1027 }
1028
1029 /* Remove an entry from h->dev[] array. */
1030 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1031         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1032 {
1033         /* assumes h->devlock is held */
1034         int i;
1035         struct hpsa_scsi_dev_t *sd;
1036
1037         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1038
1039         sd = h->dev[entry];
1040         removed[*nremoved] = h->dev[entry];
1041         (*nremoved)++;
1042
1043         for (i = entry; i < h->ndevices-1; i++)
1044                 h->dev[i] = h->dev[i+1];
1045         h->ndevices--;
1046         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
1047                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
1048                 sd->lun);
1049 }
1050
1051 #define SCSI3ADDR_EQ(a, b) ( \
1052         (a)[7] == (b)[7] && \
1053         (a)[6] == (b)[6] && \
1054         (a)[5] == (b)[5] && \
1055         (a)[4] == (b)[4] && \
1056         (a)[3] == (b)[3] && \
1057         (a)[2] == (b)[2] && \
1058         (a)[1] == (b)[1] && \
1059         (a)[0] == (b)[0])
1060
1061 static void fixup_botched_add(struct ctlr_info *h,
1062         struct hpsa_scsi_dev_t *added)
1063 {
1064         /* called when scsi_add_device fails in order to re-adjust
1065          * h->dev[] to match the mid layer's view.
1066          */
1067         unsigned long flags;
1068         int i, j;
1069
1070         spin_lock_irqsave(&h->lock, flags);
1071         for (i = 0; i < h->ndevices; i++) {
1072                 if (h->dev[i] == added) {
1073                         for (j = i; j < h->ndevices-1; j++)
1074                                 h->dev[j] = h->dev[j+1];
1075                         h->ndevices--;
1076                         break;
1077                 }
1078         }
1079         spin_unlock_irqrestore(&h->lock, flags);
1080         kfree(added);
1081 }
1082
1083 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1084         struct hpsa_scsi_dev_t *dev2)
1085 {
1086         /* we compare everything except lun and target as these
1087          * are not yet assigned.  Compare parts likely
1088          * to differ first
1089          */
1090         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1091                 sizeof(dev1->scsi3addr)) != 0)
1092                 return 0;
1093         if (memcmp(dev1->device_id, dev2->device_id,
1094                 sizeof(dev1->device_id)) != 0)
1095                 return 0;
1096         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1097                 return 0;
1098         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1099                 return 0;
1100         if (dev1->devtype != dev2->devtype)
1101                 return 0;
1102         if (dev1->bus != dev2->bus)
1103                 return 0;
1104         return 1;
1105 }
1106
1107 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1108         struct hpsa_scsi_dev_t *dev2)
1109 {
1110         /* Device attributes that can change, but don't mean
1111          * that the device is a different device, nor that the OS
1112          * needs to be told anything about the change.
1113          */
1114         if (dev1->raid_level != dev2->raid_level)
1115                 return 1;
1116         if (dev1->offload_config != dev2->offload_config)
1117                 return 1;
1118         if (dev1->offload_enabled != dev2->offload_enabled)
1119                 return 1;
1120         return 0;
1121 }
1122
1123 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1124  * and return needle location in *index.  If scsi3addr matches, but not
1125  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1126  * location in *index.
1127  * In the case of a minor device attribute change, such as RAID level, just
1128  * return DEVICE_UPDATED, along with the updated device's location in index.
1129  * If needle not found, return DEVICE_NOT_FOUND.
1130  */
1131 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1132         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1133         int *index)
1134 {
1135         int i;
1136 #define DEVICE_NOT_FOUND 0
1137 #define DEVICE_CHANGED 1
1138 #define DEVICE_SAME 2
1139 #define DEVICE_UPDATED 3
1140         for (i = 0; i < haystack_size; i++) {
1141                 if (haystack[i] == NULL) /* previously removed. */
1142                         continue;
1143                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1144                         *index = i;
1145                         if (device_is_the_same(needle, haystack[i])) {
1146                                 if (device_updated(needle, haystack[i]))
1147                                         return DEVICE_UPDATED;
1148                                 return DEVICE_SAME;
1149                         } else {
1150                                 /* Keep offline devices offline */
1151                                 if (needle->volume_offline)
1152                                         return DEVICE_NOT_FOUND;
1153                                 return DEVICE_CHANGED;
1154                         }
1155                 }
1156         }
1157         *index = -1;
1158         return DEVICE_NOT_FOUND;
1159 }
1160
1161 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1162                                         unsigned char scsi3addr[])
1163 {
1164         struct offline_device_entry *device;
1165         unsigned long flags;
1166
1167         /* Check to see if device is already on the list */
1168         spin_lock_irqsave(&h->offline_device_lock, flags);
1169         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1170                 if (memcmp(device->scsi3addr, scsi3addr,
1171                         sizeof(device->scsi3addr)) == 0) {
1172                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1173                         return;
1174                 }
1175         }
1176         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1177
1178         /* Device is not on the list, add it. */
1179         device = kmalloc(sizeof(*device), GFP_KERNEL);
1180         if (!device) {
1181                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1182                 return;
1183         }
1184         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1185         spin_lock_irqsave(&h->offline_device_lock, flags);
1186         list_add_tail(&device->offline_list, &h->offline_device_list);
1187         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1188 }
1189
1190 /* Print a message explaining various offline volume states */
1191 static void hpsa_show_volume_status(struct ctlr_info *h,
1192         struct hpsa_scsi_dev_t *sd)
1193 {
1194         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1195                 dev_info(&h->pdev->dev,
1196                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1197                         h->scsi_host->host_no,
1198                         sd->bus, sd->target, sd->lun);
1199         switch (sd->volume_offline) {
1200         case HPSA_LV_OK:
1201                 break;
1202         case HPSA_LV_UNDERGOING_ERASE:
1203                 dev_info(&h->pdev->dev,
1204                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1205                         h->scsi_host->host_no,
1206                         sd->bus, sd->target, sd->lun);
1207                 break;
1208         case HPSA_LV_UNDERGOING_RPI:
1209                 dev_info(&h->pdev->dev,
1210                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1211                         h->scsi_host->host_no,
1212                         sd->bus, sd->target, sd->lun);
1213                 break;
1214         case HPSA_LV_PENDING_RPI:
1215                 dev_info(&h->pdev->dev,
1216                                 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1217                                 h->scsi_host->host_no,
1218                                 sd->bus, sd->target, sd->lun);
1219                 break;
1220         case HPSA_LV_ENCRYPTED_NO_KEY:
1221                 dev_info(&h->pdev->dev,
1222                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1223                         h->scsi_host->host_no,
1224                         sd->bus, sd->target, sd->lun);
1225                 break;
1226         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1227                 dev_info(&h->pdev->dev,
1228                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1229                         h->scsi_host->host_no,
1230                         sd->bus, sd->target, sd->lun);
1231                 break;
1232         case HPSA_LV_UNDERGOING_ENCRYPTION:
1233                 dev_info(&h->pdev->dev,
1234                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1235                         h->scsi_host->host_no,
1236                         sd->bus, sd->target, sd->lun);
1237                 break;
1238         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1239                 dev_info(&h->pdev->dev,
1240                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1241                         h->scsi_host->host_no,
1242                         sd->bus, sd->target, sd->lun);
1243                 break;
1244         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1245                 dev_info(&h->pdev->dev,
1246                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1247                         h->scsi_host->host_no,
1248                         sd->bus, sd->target, sd->lun);
1249                 break;
1250         case HPSA_LV_PENDING_ENCRYPTION:
1251                 dev_info(&h->pdev->dev,
1252                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1253                         h->scsi_host->host_no,
1254                         sd->bus, sd->target, sd->lun);
1255                 break;
1256         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1257                 dev_info(&h->pdev->dev,
1258                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1259                         h->scsi_host->host_no,
1260                         sd->bus, sd->target, sd->lun);
1261                 break;
1262         }
1263 }
1264
1265 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1266         struct hpsa_scsi_dev_t *sd[], int nsds)
1267 {
1268         /* sd contains scsi3 addresses and devtypes, and inquiry
1269          * data.  This function takes what's in sd to be the current
1270          * reality and updates h->dev[] to reflect that reality.
1271          */
1272         int i, entry, device_change, changes = 0;
1273         struct hpsa_scsi_dev_t *csd;
1274         unsigned long flags;
1275         struct hpsa_scsi_dev_t **added, **removed;
1276         int nadded, nremoved;
1277         struct Scsi_Host *sh = NULL;
1278
1279         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1280         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1281
1282         if (!added || !removed) {
1283                 dev_warn(&h->pdev->dev, "out of memory in "
1284                         "adjust_hpsa_scsi_table\n");
1285                 goto free_and_out;
1286         }
1287
1288         spin_lock_irqsave(&h->devlock, flags);
1289
1290         /* find any devices in h->dev[] that are not in
1291          * sd[] and remove them from h->dev[], and for any
1292          * devices which have changed, remove the old device
1293          * info and add the new device info.
1294          * If minor device attributes change, just update
1295          * the existing device structure.
1296          */
1297         i = 0;
1298         nremoved = 0;
1299         nadded = 0;
1300         while (i < h->ndevices) {
1301                 csd = h->dev[i];
1302                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1303                 if (device_change == DEVICE_NOT_FOUND) {
1304                         changes++;
1305                         hpsa_scsi_remove_entry(h, hostno, i,
1306                                 removed, &nremoved);
1307                         continue; /* remove ^^^, hence i not incremented */
1308                 } else if (device_change == DEVICE_CHANGED) {
1309                         changes++;
1310                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1311                                 added, &nadded, removed, &nremoved);
1312                         /* Set it to NULL to prevent it from being freed
1313                          * at the bottom of hpsa_update_scsi_devices()
1314                          */
1315                         sd[entry] = NULL;
1316                 } else if (device_change == DEVICE_UPDATED) {
1317                         hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1318                 }
1319                 i++;
1320         }
1321
1322         /* Now, make sure every device listed in sd[] is also
1323          * listed in h->dev[], adding them if they aren't found
1324          */
1325
1326         for (i = 0; i < nsds; i++) {
1327                 if (!sd[i]) /* if already added above. */
1328                         continue;
1329
1330                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1331                  * as the SCSI mid-layer does not handle such devices well.
1332                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1333                  * at 160Hz, and prevents the system from coming up.
1334                  */
1335                 if (sd[i]->volume_offline) {
1336                         hpsa_show_volume_status(h, sd[i]);
1337                         dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
1338                                 h->scsi_host->host_no,
1339                                 sd[i]->bus, sd[i]->target, sd[i]->lun);
1340                         continue;
1341                 }
1342
1343                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1344                                         h->ndevices, &entry);
1345                 if (device_change == DEVICE_NOT_FOUND) {
1346                         changes++;
1347                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
1348                                 added, &nadded) != 0)
1349                                 break;
1350                         sd[i] = NULL; /* prevent from being freed later. */
1351                 } else if (device_change == DEVICE_CHANGED) {
1352                         /* should never happen... */
1353                         changes++;
1354                         dev_warn(&h->pdev->dev,
1355                                 "device unexpectedly changed.\n");
1356                         /* but if it does happen, we just ignore that device */
1357                 }
1358         }
1359         spin_unlock_irqrestore(&h->devlock, flags);
1360
1361         /* Monitor devices which are in one of several NOT READY states to be
1362          * brought online later. This must be done without holding h->devlock,
1363          * so don't touch h->dev[]
1364          */
1365         for (i = 0; i < nsds; i++) {
1366                 if (!sd[i]) /* if already added above. */
1367                         continue;
1368                 if (sd[i]->volume_offline)
1369                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1370         }
1371
1372         /* Don't notify scsi mid layer of any changes the first time through
1373          * (or if there are no changes) scsi_scan_host will do it later the
1374          * first time through.
1375          */
1376         if (hostno == -1 || !changes)
1377                 goto free_and_out;
1378
1379         sh = h->scsi_host;
1380         /* Notify scsi mid layer of any removed devices */
1381         for (i = 0; i < nremoved; i++) {
1382                 struct scsi_device *sdev =
1383                         scsi_device_lookup(sh, removed[i]->bus,
1384                                 removed[i]->target, removed[i]->lun);
1385                 if (sdev != NULL) {
1386                         scsi_remove_device(sdev);
1387                         scsi_device_put(sdev);
1388                 } else {
1389                         /* We don't expect to get here.
1390                          * future cmds to this device will get selection
1391                          * timeout as if the device was gone.
1392                          */
1393                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1394                                 " for removal.", hostno, removed[i]->bus,
1395                                 removed[i]->target, removed[i]->lun);
1396                 }
1397                 kfree(removed[i]);
1398                 removed[i] = NULL;
1399         }
1400
1401         /* Notify scsi mid layer of any added devices */
1402         for (i = 0; i < nadded; i++) {
1403                 if (scsi_add_device(sh, added[i]->bus,
1404                         added[i]->target, added[i]->lun) == 0)
1405                         continue;
1406                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1407                         "device not added.\n", hostno, added[i]->bus,
1408                         added[i]->target, added[i]->lun);
1409                 /* now we have to remove it from h->dev,
1410                  * since it didn't get added to scsi mid layer
1411                  */
1412                 fixup_botched_add(h, added[i]);
1413         }
1414
1415 free_and_out:
1416         kfree(added);
1417         kfree(removed);
1418 }
1419
1420 /*
1421  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1422  * Assume's h->devlock is held.
1423  */
1424 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1425         int bus, int target, int lun)
1426 {
1427         int i;
1428         struct hpsa_scsi_dev_t *sd;
1429
1430         for (i = 0; i < h->ndevices; i++) {
1431                 sd = h->dev[i];
1432                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1433                         return sd;
1434         }
1435         return NULL;
1436 }
1437
1438 /* link sdev->hostdata to our per-device structure. */
1439 static int hpsa_slave_alloc(struct scsi_device *sdev)
1440 {
1441         struct hpsa_scsi_dev_t *sd;
1442         unsigned long flags;
1443         struct ctlr_info *h;
1444
1445         h = sdev_to_hba(sdev);
1446         spin_lock_irqsave(&h->devlock, flags);
1447         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1448                 sdev_id(sdev), sdev->lun);
1449         if (sd != NULL)
1450                 sdev->hostdata = sd;
1451         spin_unlock_irqrestore(&h->devlock, flags);
1452         return 0;
1453 }
1454
1455 static void hpsa_slave_destroy(struct scsi_device *sdev)
1456 {
1457         /* nothing to do. */
1458 }
1459
1460 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1461 {
1462         int i;
1463
1464         if (!h->cmd_sg_list)
1465                 return;
1466         for (i = 0; i < h->nr_cmds; i++) {
1467                 kfree(h->cmd_sg_list[i]);
1468                 h->cmd_sg_list[i] = NULL;
1469         }
1470         kfree(h->cmd_sg_list);
1471         h->cmd_sg_list = NULL;
1472 }
1473
1474 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1475 {
1476         int i;
1477
1478         if (h->chainsize <= 0)
1479                 return 0;
1480
1481         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1482                                 GFP_KERNEL);
1483         if (!h->cmd_sg_list)
1484                 return -ENOMEM;
1485         for (i = 0; i < h->nr_cmds; i++) {
1486                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1487                                                 h->chainsize, GFP_KERNEL);
1488                 if (!h->cmd_sg_list[i])
1489                         goto clean;
1490         }
1491         return 0;
1492
1493 clean:
1494         hpsa_free_sg_chain_blocks(h);
1495         return -ENOMEM;
1496 }
1497
1498 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1499         struct CommandList *c)
1500 {
1501         struct SGDescriptor *chain_sg, *chain_block;
1502         u64 temp64;
1503         u32 chain_len;
1504
1505         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1506         chain_block = h->cmd_sg_list[c->cmdindex];
1507         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1508         chain_len = sizeof(*chain_sg) *
1509                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1510         chain_sg->Len = cpu_to_le32(chain_len);
1511         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1512                                 PCI_DMA_TODEVICE);
1513         if (dma_mapping_error(&h->pdev->dev, temp64)) {
1514                 /* prevent subsequent unmapping */
1515                 chain_sg->Addr = cpu_to_le64(0);
1516                 return -1;
1517         }
1518         chain_sg->Addr = cpu_to_le64(temp64);
1519         return 0;
1520 }
1521
1522 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1523         struct CommandList *c)
1524 {
1525         struct SGDescriptor *chain_sg;
1526
1527         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1528                 return;
1529
1530         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1531         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
1532                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1533 }
1534
1535
1536 /* Decode the various types of errors on ioaccel2 path.
1537  * Return 1 for any error that should generate a RAID path retry.
1538  * Return 0 for errors that don't require a RAID path retry.
1539  */
1540 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1541                                         struct CommandList *c,
1542                                         struct scsi_cmnd *cmd,
1543                                         struct io_accel2_cmd *c2)
1544 {
1545         int data_len;
1546         int retry = 0;
1547
1548         switch (c2->error_data.serv_response) {
1549         case IOACCEL2_SERV_RESPONSE_COMPLETE:
1550                 switch (c2->error_data.status) {
1551                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1552                         break;
1553                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1554                         dev_warn(&h->pdev->dev,
1555                                 "%s: task complete with check condition.\n",
1556                                 "HP SSD Smart Path");
1557                         cmd->result |= SAM_STAT_CHECK_CONDITION;
1558                         if (c2->error_data.data_present !=
1559                                         IOACCEL2_SENSE_DATA_PRESENT) {
1560                                 memset(cmd->sense_buffer, 0,
1561                                         SCSI_SENSE_BUFFERSIZE);
1562                                 break;
1563                         }
1564                         /* copy the sense data */
1565                         data_len = c2->error_data.sense_data_len;
1566                         if (data_len > SCSI_SENSE_BUFFERSIZE)
1567                                 data_len = SCSI_SENSE_BUFFERSIZE;
1568                         if (data_len > sizeof(c2->error_data.sense_data_buff))
1569                                 data_len =
1570                                         sizeof(c2->error_data.sense_data_buff);
1571                         memcpy(cmd->sense_buffer,
1572                                 c2->error_data.sense_data_buff, data_len);
1573                         retry = 1;
1574                         break;
1575                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1576                         dev_warn(&h->pdev->dev,
1577                                 "%s: task complete with BUSY status.\n",
1578                                 "HP SSD Smart Path");
1579                         retry = 1;
1580                         break;
1581                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1582                         dev_warn(&h->pdev->dev,
1583                                 "%s: task complete with reservation conflict.\n",
1584                                 "HP SSD Smart Path");
1585                         retry = 1;
1586                         break;
1587                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1588                         /* Make scsi midlayer do unlimited retries */
1589                         cmd->result = DID_IMM_RETRY << 16;
1590                         break;
1591                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1592                         dev_warn(&h->pdev->dev,
1593                                 "%s: task complete with aborted status.\n",
1594                                 "HP SSD Smart Path");
1595                         retry = 1;
1596                         break;
1597                 default:
1598                         dev_warn(&h->pdev->dev,
1599                                 "%s: task complete with unrecognized status: 0x%02x\n",
1600                                 "HP SSD Smart Path", c2->error_data.status);
1601                         retry = 1;
1602                         break;
1603                 }
1604                 break;
1605         case IOACCEL2_SERV_RESPONSE_FAILURE:
1606                 /* don't expect to get here. */
1607                 dev_warn(&h->pdev->dev,
1608                         "unexpected delivery or target failure, status = 0x%02x\n",
1609                         c2->error_data.status);
1610                 retry = 1;
1611                 break;
1612         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1613                 break;
1614         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1615                 break;
1616         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1617                 dev_warn(&h->pdev->dev, "task management function rejected.\n");
1618                 retry = 1;
1619                 break;
1620         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1621                 dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1622                 break;
1623         default:
1624                 dev_warn(&h->pdev->dev,
1625                         "%s: Unrecognized server response: 0x%02x\n",
1626                         "HP SSD Smart Path",
1627                         c2->error_data.serv_response);
1628                 retry = 1;
1629                 break;
1630         }
1631
1632         return retry;   /* retry on raid path? */
1633 }
1634
1635 static void process_ioaccel2_completion(struct ctlr_info *h,
1636                 struct CommandList *c, struct scsi_cmnd *cmd,
1637                 struct hpsa_scsi_dev_t *dev)
1638 {
1639         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1640         int raid_retry = 0;
1641
1642         /* check for good status */
1643         if (likely(c2->error_data.serv_response == 0 &&
1644                         c2->error_data.status == 0)) {
1645                 cmd_free(h, c);
1646                 cmd->scsi_done(cmd);
1647                 return;
1648         }
1649
1650         /* Any RAID offload error results in retry which will use
1651          * the normal I/O path so the controller can handle whatever's
1652          * wrong.
1653          */
1654         if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1655                 c2->error_data.serv_response ==
1656                         IOACCEL2_SERV_RESPONSE_FAILURE) {
1657                 dev->offload_enabled = 0;
1658                 h->drv_req_rescan = 1;  /* schedule controller for a rescan */
1659                 cmd->result = DID_SOFT_ERROR << 16;
1660                 cmd_free(h, c);
1661                 cmd->scsi_done(cmd);
1662                 return;
1663         }
1664         raid_retry = handle_ioaccel_mode2_error(h, c, cmd, c2);
1665         /* If error found, disable Smart Path, schedule a rescan,
1666          * and force a retry on the standard path.
1667          */
1668         if (raid_retry) {
1669                 dev_warn(&h->pdev->dev, "%s: Retrying on standard path.\n",
1670                         "HP SSD Smart Path");
1671                 dev->offload_enabled = 0; /* Disable Smart Path */
1672                 h->drv_req_rescan = 1;    /* schedule controller rescan */
1673                 cmd->result = DID_SOFT_ERROR << 16;
1674         }
1675         cmd_free(h, c);
1676         cmd->scsi_done(cmd);
1677 }
1678
1679 static void complete_scsi_command(struct CommandList *cp)
1680 {
1681         struct scsi_cmnd *cmd;
1682         struct ctlr_info *h;
1683         struct ErrorInfo *ei;
1684         struct hpsa_scsi_dev_t *dev;
1685
1686         unsigned char sense_key;
1687         unsigned char asc;      /* additional sense code */
1688         unsigned char ascq;     /* additional sense code qualifier */
1689         unsigned long sense_data_size;
1690
1691         ei = cp->err_info;
1692         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1693         h = cp->h;
1694         dev = cmd->device->hostdata;
1695
1696         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1697         if ((cp->cmd_type == CMD_SCSI) &&
1698                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
1699                 hpsa_unmap_sg_chain_block(h, cp);
1700
1701         cmd->result = (DID_OK << 16);           /* host byte */
1702         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1703
1704         if (cp->cmd_type == CMD_IOACCEL2)
1705                 return process_ioaccel2_completion(h, cp, cmd, dev);
1706
1707         cmd->result |= ei->ScsiStatus;
1708
1709         scsi_set_resid(cmd, ei->ResidualCnt);
1710         if (ei->CommandStatus == 0) {
1711                 cmd_free(h, cp);
1712                 cmd->scsi_done(cmd);
1713                 return;
1714         }
1715
1716         /* copy the sense data */
1717         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1718                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1719         else
1720                 sense_data_size = sizeof(ei->SenseInfo);
1721         if (ei->SenseLen < sense_data_size)
1722                 sense_data_size = ei->SenseLen;
1723
1724         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1725
1726         /* For I/O accelerator commands, copy over some fields to the normal
1727          * CISS header used below for error handling.
1728          */
1729         if (cp->cmd_type == CMD_IOACCEL1) {
1730                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
1731                 cp->Header.SGList = scsi_sg_count(cmd);
1732                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
1733                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
1734                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
1735                 cp->Header.tag = c->tag;
1736                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
1737                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1738
1739                 /* Any RAID offload error results in retry which will use
1740                  * the normal I/O path so the controller can handle whatever's
1741                  * wrong.
1742                  */
1743                 if (is_logical_dev_addr_mode(dev->scsi3addr)) {
1744                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
1745                                 dev->offload_enabled = 0;
1746                         cmd->result = DID_SOFT_ERROR << 16;
1747                         cmd_free(h, cp);
1748                         cmd->scsi_done(cmd);
1749                         return;
1750                 }
1751         }
1752
1753         /* an error has occurred */
1754         switch (ei->CommandStatus) {
1755
1756         case CMD_TARGET_STATUS:
1757                 if (ei->ScsiStatus) {
1758                         /* Get sense key */
1759                         sense_key = 0xf & ei->SenseInfo[2];
1760                         /* Get additional sense code */
1761                         asc = ei->SenseInfo[12];
1762                         /* Get addition sense code qualifier */
1763                         ascq = ei->SenseInfo[13];
1764                 }
1765                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1766                         if (sense_key == ABORTED_COMMAND) {
1767                                 cmd->result |= DID_SOFT_ERROR << 16;
1768                                 break;
1769                         }
1770                         break;
1771                 }
1772                 /* Problem was not a check condition
1773                  * Pass it up to the upper layers...
1774                  */
1775                 if (ei->ScsiStatus) {
1776                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1777                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1778                                 "Returning result: 0x%x\n",
1779                                 cp, ei->ScsiStatus,
1780                                 sense_key, asc, ascq,
1781                                 cmd->result);
1782                 } else {  /* scsi status is zero??? How??? */
1783                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1784                                 "Returning no connection.\n", cp),
1785
1786                         /* Ordinarily, this case should never happen,
1787                          * but there is a bug in some released firmware
1788                          * revisions that allows it to happen if, for
1789                          * example, a 4100 backplane loses power and
1790                          * the tape drive is in it.  We assume that
1791                          * it's a fatal error of some kind because we
1792                          * can't show that it wasn't. We will make it
1793                          * look like selection timeout since that is
1794                          * the most common reason for this to occur,
1795                          * and it's severe enough.
1796                          */
1797
1798                         cmd->result = DID_NO_CONNECT << 16;
1799                 }
1800                 break;
1801
1802         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1803                 break;
1804         case CMD_DATA_OVERRUN:
1805                 dev_warn(&h->pdev->dev, "cp %p has"
1806                         " completed with data overrun "
1807                         "reported\n", cp);
1808                 break;
1809         case CMD_INVALID: {
1810                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1811                 print_cmd(cp); */
1812                 /* We get CMD_INVALID if you address a non-existent device
1813                  * instead of a selection timeout (no response).  You will
1814                  * see this if you yank out a drive, then try to access it.
1815                  * This is kind of a shame because it means that any other
1816                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1817                  * missing target. */
1818                 cmd->result = DID_NO_CONNECT << 16;
1819         }
1820                 break;
1821         case CMD_PROTOCOL_ERR:
1822                 cmd->result = DID_ERROR << 16;
1823                 dev_warn(&h->pdev->dev, "cp %p has "
1824                         "protocol error\n", cp);
1825                 break;
1826         case CMD_HARDWARE_ERR:
1827                 cmd->result = DID_ERROR << 16;
1828                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1829                 break;
1830         case CMD_CONNECTION_LOST:
1831                 cmd->result = DID_ERROR << 16;
1832                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1833                 break;
1834         case CMD_ABORTED:
1835                 cmd->result = DID_ABORT << 16;
1836                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1837                                 cp, ei->ScsiStatus);
1838                 break;
1839         case CMD_ABORT_FAILED:
1840                 cmd->result = DID_ERROR << 16;
1841                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1842                 break;
1843         case CMD_UNSOLICITED_ABORT:
1844                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1845                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1846                         "abort\n", cp);
1847                 break;
1848         case CMD_TIMEOUT:
1849                 cmd->result = DID_TIME_OUT << 16;
1850                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1851                 break;
1852         case CMD_UNABORTABLE:
1853                 cmd->result = DID_ERROR << 16;
1854                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1855                 break;
1856         case CMD_IOACCEL_DISABLED:
1857                 /* This only handles the direct pass-through case since RAID
1858                  * offload is handled above.  Just attempt a retry.
1859                  */
1860                 cmd->result = DID_SOFT_ERROR << 16;
1861                 dev_warn(&h->pdev->dev,
1862                                 "cp %p had HP SSD Smart Path error\n", cp);
1863                 break;
1864         default:
1865                 cmd->result = DID_ERROR << 16;
1866                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1867                                 cp, ei->CommandStatus);
1868         }
1869         cmd_free(h, cp);
1870         cmd->scsi_done(cmd);
1871 }
1872
1873 static void hpsa_pci_unmap(struct pci_dev *pdev,
1874         struct CommandList *c, int sg_used, int data_direction)
1875 {
1876         int i;
1877
1878         for (i = 0; i < sg_used; i++)
1879                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
1880                                 le32_to_cpu(c->SG[i].Len),
1881                                 data_direction);
1882 }
1883
1884 static int hpsa_map_one(struct pci_dev *pdev,
1885                 struct CommandList *cp,
1886                 unsigned char *buf,
1887                 size_t buflen,
1888                 int data_direction)
1889 {
1890         u64 addr64;
1891
1892         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1893                 cp->Header.SGList = 0;
1894                 cp->Header.SGTotal = cpu_to_le16(0);
1895                 return 0;
1896         }
1897
1898         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
1899         if (dma_mapping_error(&pdev->dev, addr64)) {
1900                 /* Prevent subsequent unmap of something never mapped */
1901                 cp->Header.SGList = 0;
1902                 cp->Header.SGTotal = cpu_to_le16(0);
1903                 return -1;
1904         }
1905         cp->SG[0].Addr = cpu_to_le64(addr64);
1906         cp->SG[0].Len = cpu_to_le32(buflen);
1907         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
1908         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
1909         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
1910         return 0;
1911 }
1912
1913 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1914         struct CommandList *c)
1915 {
1916         DECLARE_COMPLETION_ONSTACK(wait);
1917
1918         c->waiting = &wait;
1919         enqueue_cmd_and_start_io(h, c);
1920         wait_for_completion(&wait);
1921 }
1922
1923 static u32 lockup_detected(struct ctlr_info *h)
1924 {
1925         int cpu;
1926         u32 rc, *lockup_detected;
1927
1928         cpu = get_cpu();
1929         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
1930         rc = *lockup_detected;
1931         put_cpu();
1932         return rc;
1933 }
1934
1935 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1936         struct CommandList *c)
1937 {
1938         /* If controller lockup detected, fake a hardware error. */
1939         if (unlikely(lockup_detected(h)))
1940                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1941         else
1942                 hpsa_scsi_do_simple_cmd_core(h, c);
1943 }
1944
1945 #define MAX_DRIVER_CMD_RETRIES 25
1946 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1947         struct CommandList *c, int data_direction)
1948 {
1949         int backoff_time = 10, retry_count = 0;
1950
1951         do {
1952                 memset(c->err_info, 0, sizeof(*c->err_info));
1953                 hpsa_scsi_do_simple_cmd_core(h, c);
1954                 retry_count++;
1955                 if (retry_count > 3) {
1956                         msleep(backoff_time);
1957                         if (backoff_time < 1000)
1958                                 backoff_time *= 2;
1959                 }
1960         } while ((check_for_unit_attention(h, c) ||
1961                         check_for_busy(h, c)) &&
1962                         retry_count <= MAX_DRIVER_CMD_RETRIES);
1963         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1964 }
1965
1966 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
1967                                 struct CommandList *c)
1968 {
1969         const u8 *cdb = c->Request.CDB;
1970         const u8 *lun = c->Header.LUN.LunAddrBytes;
1971
1972         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
1973         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
1974                 txt, lun[0], lun[1], lun[2], lun[3],
1975                 lun[4], lun[5], lun[6], lun[7],
1976                 cdb[0], cdb[1], cdb[2], cdb[3],
1977                 cdb[4], cdb[5], cdb[6], cdb[7],
1978                 cdb[8], cdb[9], cdb[10], cdb[11],
1979                 cdb[12], cdb[13], cdb[14], cdb[15]);
1980 }
1981
1982 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
1983                         struct CommandList *cp)
1984 {
1985         const struct ErrorInfo *ei = cp->err_info;
1986         struct device *d = &cp->h->pdev->dev;
1987         const u8 *sd = ei->SenseInfo;
1988
1989         switch (ei->CommandStatus) {
1990         case CMD_TARGET_STATUS:
1991                 hpsa_print_cmd(h, "SCSI status", cp);
1992                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
1993                         dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
1994                                 sd[2] & 0x0f, sd[12], sd[13]);
1995                 else
1996                         dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
1997                 if (ei->ScsiStatus == 0)
1998                         dev_warn(d, "SCSI status is abnormally zero.  "
1999                         "(probably indicates selection timeout "
2000                         "reported incorrectly due to a known "
2001                         "firmware bug, circa July, 2001.)\n");
2002                 break;
2003         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2004                 break;
2005         case CMD_DATA_OVERRUN:
2006                 hpsa_print_cmd(h, "overrun condition", cp);
2007                 break;
2008         case CMD_INVALID: {
2009                 /* controller unfortunately reports SCSI passthru's
2010                  * to non-existent targets as invalid commands.
2011                  */
2012                 hpsa_print_cmd(h, "invalid command", cp);
2013                 dev_warn(d, "probably means device no longer present\n");
2014                 }
2015                 break;
2016         case CMD_PROTOCOL_ERR:
2017                 hpsa_print_cmd(h, "protocol error", cp);
2018                 break;
2019         case CMD_HARDWARE_ERR:
2020                 hpsa_print_cmd(h, "hardware error", cp);
2021                 break;
2022         case CMD_CONNECTION_LOST:
2023                 hpsa_print_cmd(h, "connection lost", cp);
2024                 break;
2025         case CMD_ABORTED:
2026                 hpsa_print_cmd(h, "aborted", cp);
2027                 break;
2028         case CMD_ABORT_FAILED:
2029                 hpsa_print_cmd(h, "abort failed", cp);
2030                 break;
2031         case CMD_UNSOLICITED_ABORT:
2032                 hpsa_print_cmd(h, "unsolicited abort", cp);
2033                 break;
2034         case CMD_TIMEOUT:
2035                 hpsa_print_cmd(h, "timed out", cp);
2036                 break;
2037         case CMD_UNABORTABLE:
2038                 hpsa_print_cmd(h, "unabortable", cp);
2039                 break;
2040         default:
2041                 hpsa_print_cmd(h, "unknown status", cp);
2042                 dev_warn(d, "Unknown command status %x\n",
2043                                 ei->CommandStatus);
2044         }
2045 }
2046
2047 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2048                         u16 page, unsigned char *buf,
2049                         unsigned char bufsize)
2050 {
2051         int rc = IO_OK;
2052         struct CommandList *c;
2053         struct ErrorInfo *ei;
2054
2055         c = cmd_special_alloc(h);
2056
2057         if (c == NULL) {                        /* trouble... */
2058                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2059                 return -ENOMEM;
2060         }
2061
2062         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2063                         page, scsi3addr, TYPE_CMD)) {
2064                 rc = -1;
2065                 goto out;
2066         }
2067         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2068         ei = c->err_info;
2069         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2070                 hpsa_scsi_interpret_error(h, c);
2071                 rc = -1;
2072         }
2073 out:
2074         cmd_special_free(h, c);
2075         return rc;
2076 }
2077
2078 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2079                 unsigned char *scsi3addr, unsigned char page,
2080                 struct bmic_controller_parameters *buf, size_t bufsize)
2081 {
2082         int rc = IO_OK;
2083         struct CommandList *c;
2084         struct ErrorInfo *ei;
2085
2086         c = cmd_special_alloc(h);
2087
2088         if (c == NULL) {                        /* trouble... */
2089                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2090                 return -ENOMEM;
2091         }
2092
2093         if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2094                         page, scsi3addr, TYPE_CMD)) {
2095                 rc = -1;
2096                 goto out;
2097         }
2098         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2099         ei = c->err_info;
2100         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2101                 hpsa_scsi_interpret_error(h, c);
2102                 rc = -1;
2103         }
2104 out:
2105         cmd_special_free(h, c);
2106         return rc;
2107         }
2108
2109 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2110         u8 reset_type)
2111 {
2112         int rc = IO_OK;
2113         struct CommandList *c;
2114         struct ErrorInfo *ei;
2115
2116         c = cmd_special_alloc(h);
2117
2118         if (c == NULL) {                        /* trouble... */
2119                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2120                 return -ENOMEM;
2121         }
2122
2123         /* fill_cmd can't fail here, no data buffer to map. */
2124         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2125                         scsi3addr, TYPE_MSG);
2126         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2127         hpsa_scsi_do_simple_cmd_core(h, c);
2128         /* no unmap needed here because no data xfer. */
2129
2130         ei = c->err_info;
2131         if (ei->CommandStatus != 0) {
2132                 hpsa_scsi_interpret_error(h, c);
2133                 rc = -1;
2134         }
2135         cmd_special_free(h, c);
2136         return rc;
2137 }
2138
2139 static void hpsa_get_raid_level(struct ctlr_info *h,
2140         unsigned char *scsi3addr, unsigned char *raid_level)
2141 {
2142         int rc;
2143         unsigned char *buf;
2144
2145         *raid_level = RAID_UNKNOWN;
2146         buf = kzalloc(64, GFP_KERNEL);
2147         if (!buf)
2148                 return;
2149         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2150         if (rc == 0)
2151                 *raid_level = buf[8];
2152         if (*raid_level > RAID_UNKNOWN)
2153                 *raid_level = RAID_UNKNOWN;
2154         kfree(buf);
2155         return;
2156 }
2157
2158 #define HPSA_MAP_DEBUG
2159 #ifdef HPSA_MAP_DEBUG
2160 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2161                                 struct raid_map_data *map_buff)
2162 {
2163         struct raid_map_disk_data *dd = &map_buff->data[0];
2164         int map, row, col;
2165         u16 map_cnt, row_cnt, disks_per_row;
2166
2167         if (rc != 0)
2168                 return;
2169
2170         /* Show details only if debugging has been activated. */
2171         if (h->raid_offload_debug < 2)
2172                 return;
2173
2174         dev_info(&h->pdev->dev, "structure_size = %u\n",
2175                                 le32_to_cpu(map_buff->structure_size));
2176         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2177                         le32_to_cpu(map_buff->volume_blk_size));
2178         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2179                         le64_to_cpu(map_buff->volume_blk_cnt));
2180         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2181                         map_buff->phys_blk_shift);
2182         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2183                         map_buff->parity_rotation_shift);
2184         dev_info(&h->pdev->dev, "strip_size = %u\n",
2185                         le16_to_cpu(map_buff->strip_size));
2186         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2187                         le64_to_cpu(map_buff->disk_starting_blk));
2188         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2189                         le64_to_cpu(map_buff->disk_blk_cnt));
2190         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2191                         le16_to_cpu(map_buff->data_disks_per_row));
2192         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2193                         le16_to_cpu(map_buff->metadata_disks_per_row));
2194         dev_info(&h->pdev->dev, "row_cnt = %u\n",
2195                         le16_to_cpu(map_buff->row_cnt));
2196         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2197                         le16_to_cpu(map_buff->layout_map_count));
2198         dev_info(&h->pdev->dev, "flags = 0x%x\n",
2199                         le16_to_cpu(map_buff->flags));
2200         dev_info(&h->pdev->dev, "encrypytion = %s\n",
2201                         le16_to_cpu(map_buff->flags) &
2202                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2203         dev_info(&h->pdev->dev, "dekindex = %u\n",
2204                         le16_to_cpu(map_buff->dekindex));
2205         map_cnt = le16_to_cpu(map_buff->layout_map_count);
2206         for (map = 0; map < map_cnt; map++) {
2207                 dev_info(&h->pdev->dev, "Map%u:\n", map);
2208                 row_cnt = le16_to_cpu(map_buff->row_cnt);
2209                 for (row = 0; row < row_cnt; row++) {
2210                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
2211                         disks_per_row =
2212                                 le16_to_cpu(map_buff->data_disks_per_row);
2213                         for (col = 0; col < disks_per_row; col++, dd++)
2214                                 dev_info(&h->pdev->dev,
2215                                         "    D%02u: h=0x%04x xor=%u,%u\n",
2216                                         col, dd->ioaccel_handle,
2217                                         dd->xor_mult[0], dd->xor_mult[1]);
2218                         disks_per_row =
2219                                 le16_to_cpu(map_buff->metadata_disks_per_row);
2220                         for (col = 0; col < disks_per_row; col++, dd++)
2221                                 dev_info(&h->pdev->dev,
2222                                         "    M%02u: h=0x%04x xor=%u,%u\n",
2223                                         col, dd->ioaccel_handle,
2224                                         dd->xor_mult[0], dd->xor_mult[1]);
2225                 }
2226         }
2227 }
2228 #else
2229 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2230                         __attribute__((unused)) int rc,
2231                         __attribute__((unused)) struct raid_map_data *map_buff)
2232 {
2233 }
2234 #endif
2235
2236 static int hpsa_get_raid_map(struct ctlr_info *h,
2237         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2238 {
2239         int rc = 0;
2240         struct CommandList *c;
2241         struct ErrorInfo *ei;
2242
2243         c = cmd_special_alloc(h);
2244         if (c == NULL) {
2245                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2246                 return -ENOMEM;
2247         }
2248         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2249                         sizeof(this_device->raid_map), 0,
2250                         scsi3addr, TYPE_CMD)) {
2251                 dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2252                 cmd_special_free(h, c);
2253                 return -ENOMEM;
2254         }
2255         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2256         ei = c->err_info;
2257         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2258                 hpsa_scsi_interpret_error(h, c);
2259                 cmd_special_free(h, c);
2260                 return -1;
2261         }
2262         cmd_special_free(h, c);
2263
2264         /* @todo in the future, dynamically allocate RAID map memory */
2265         if (le32_to_cpu(this_device->raid_map.structure_size) >
2266                                 sizeof(this_device->raid_map)) {
2267                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2268                 rc = -1;
2269         }
2270         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2271         return rc;
2272 }
2273
2274 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2275         unsigned char scsi3addr[], u8 page)
2276 {
2277         int rc;
2278         int i;
2279         int pages;
2280         unsigned char *buf, bufsize;
2281
2282         buf = kzalloc(256, GFP_KERNEL);
2283         if (!buf)
2284                 return 0;
2285
2286         /* Get the size of the page list first */
2287         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2288                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2289                                 buf, HPSA_VPD_HEADER_SZ);
2290         if (rc != 0)
2291                 goto exit_unsupported;
2292         pages = buf[3];
2293         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2294                 bufsize = pages + HPSA_VPD_HEADER_SZ;
2295         else
2296                 bufsize = 255;
2297
2298         /* Get the whole VPD page list */
2299         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2300                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2301                                 buf, bufsize);
2302         if (rc != 0)
2303                 goto exit_unsupported;
2304
2305         pages = buf[3];
2306         for (i = 1; i <= pages; i++)
2307                 if (buf[3 + i] == page)
2308                         goto exit_supported;
2309 exit_unsupported:
2310         kfree(buf);
2311         return 0;
2312 exit_supported:
2313         kfree(buf);
2314         return 1;
2315 }
2316
2317 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2318         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2319 {
2320         int rc;
2321         unsigned char *buf;
2322         u8 ioaccel_status;
2323
2324         this_device->offload_config = 0;
2325         this_device->offload_enabled = 0;
2326
2327         buf = kzalloc(64, GFP_KERNEL);
2328         if (!buf)
2329                 return;
2330         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2331                 goto out;
2332         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2333                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2334         if (rc != 0)
2335                 goto out;
2336
2337 #define IOACCEL_STATUS_BYTE 4
2338 #define OFFLOAD_CONFIGURED_BIT 0x01
2339 #define OFFLOAD_ENABLED_BIT 0x02
2340         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2341         this_device->offload_config =
2342                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2343         if (this_device->offload_config) {
2344                 this_device->offload_enabled =
2345                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2346                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
2347                         this_device->offload_enabled = 0;
2348         }
2349 out:
2350         kfree(buf);
2351         return;
2352 }
2353
2354 /* Get the device id from inquiry page 0x83 */
2355 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2356         unsigned char *device_id, int buflen)
2357 {
2358         int rc;
2359         unsigned char *buf;
2360
2361         if (buflen > 16)
2362                 buflen = 16;
2363         buf = kzalloc(64, GFP_KERNEL);
2364         if (!buf)
2365                 return -ENOMEM;
2366         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2367         if (rc == 0)
2368                 memcpy(device_id, &buf[8], buflen);
2369         kfree(buf);
2370         return rc != 0;
2371 }
2372
2373 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2374                 struct ReportLUNdata *buf, int bufsize,
2375                 int extended_response)
2376 {
2377         int rc = IO_OK;
2378         struct CommandList *c;
2379         unsigned char scsi3addr[8];
2380         struct ErrorInfo *ei;
2381
2382         c = cmd_special_alloc(h);
2383         if (c == NULL) {                        /* trouble... */
2384                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2385                 return -1;
2386         }
2387         /* address the controller */
2388         memset(scsi3addr, 0, sizeof(scsi3addr));
2389         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2390                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2391                 rc = -1;
2392                 goto out;
2393         }
2394         if (extended_response)
2395                 c->Request.CDB[1] = extended_response;
2396         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2397         ei = c->err_info;
2398         if (ei->CommandStatus != 0 &&
2399             ei->CommandStatus != CMD_DATA_UNDERRUN) {
2400                 hpsa_scsi_interpret_error(h, c);
2401                 rc = -1;
2402         } else {
2403                 if (buf->extended_response_flag != extended_response) {
2404                         dev_err(&h->pdev->dev,
2405                                 "report luns requested format %u, got %u\n",
2406                                 extended_response,
2407                                 buf->extended_response_flag);
2408                         rc = -1;
2409                 }
2410         }
2411 out:
2412         cmd_special_free(h, c);
2413         return rc;
2414 }
2415
2416 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2417                 struct ReportLUNdata *buf,
2418                 int bufsize, int extended_response)
2419 {
2420         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
2421 }
2422
2423 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2424                 struct ReportLUNdata *buf, int bufsize)
2425 {
2426         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2427 }
2428
2429 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2430         int bus, int target, int lun)
2431 {
2432         device->bus = bus;
2433         device->target = target;
2434         device->lun = lun;
2435 }
2436
2437 /* Use VPD inquiry to get details of volume status */
2438 static int hpsa_get_volume_status(struct ctlr_info *h,
2439                                         unsigned char scsi3addr[])
2440 {
2441         int rc;
2442         int status;
2443         int size;
2444         unsigned char *buf;
2445
2446         buf = kzalloc(64, GFP_KERNEL);
2447         if (!buf)
2448                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2449
2450         /* Does controller have VPD for logical volume status? */
2451         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2452                 goto exit_failed;
2453
2454         /* Get the size of the VPD return buffer */
2455         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2456                                         buf, HPSA_VPD_HEADER_SZ);
2457         if (rc != 0)
2458                 goto exit_failed;
2459         size = buf[3];
2460
2461         /* Now get the whole VPD buffer */
2462         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2463                                         buf, size + HPSA_VPD_HEADER_SZ);
2464         if (rc != 0)
2465                 goto exit_failed;
2466         status = buf[4]; /* status byte */
2467
2468         kfree(buf);
2469         return status;
2470 exit_failed:
2471         kfree(buf);
2472         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2473 }
2474
2475 /* Determine offline status of a volume.
2476  * Return either:
2477  *  0 (not offline)
2478  *  0xff (offline for unknown reasons)
2479  *  # (integer code indicating one of several NOT READY states
2480  *     describing why a volume is to be kept offline)
2481  */
2482 static int hpsa_volume_offline(struct ctlr_info *h,
2483                                         unsigned char scsi3addr[])
2484 {
2485         struct CommandList *c;
2486         unsigned char *sense, sense_key, asc, ascq;
2487         int ldstat = 0;
2488         u16 cmd_status;
2489         u8 scsi_status;
2490 #define ASC_LUN_NOT_READY 0x04
2491 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2492 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2493
2494         c = cmd_alloc(h);
2495         if (!c)
2496                 return 0;
2497         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2498         hpsa_scsi_do_simple_cmd_core(h, c);
2499         sense = c->err_info->SenseInfo;
2500         sense_key = sense[2];
2501         asc = sense[12];
2502         ascq = sense[13];
2503         cmd_status = c->err_info->CommandStatus;
2504         scsi_status = c->err_info->ScsiStatus;
2505         cmd_free(h, c);
2506         /* Is the volume 'not ready'? */
2507         if (cmd_status != CMD_TARGET_STATUS ||
2508                 scsi_status != SAM_STAT_CHECK_CONDITION ||
2509                 sense_key != NOT_READY ||
2510                 asc != ASC_LUN_NOT_READY)  {
2511                 return 0;
2512         }
2513
2514         /* Determine the reason for not ready state */
2515         ldstat = hpsa_get_volume_status(h, scsi3addr);
2516
2517         /* Keep volume offline in certain cases: */
2518         switch (ldstat) {
2519         case HPSA_LV_UNDERGOING_ERASE:
2520         case HPSA_LV_UNDERGOING_RPI:
2521         case HPSA_LV_PENDING_RPI:
2522         case HPSA_LV_ENCRYPTED_NO_KEY:
2523         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2524         case HPSA_LV_UNDERGOING_ENCRYPTION:
2525         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2526         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2527                 return ldstat;
2528         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2529                 /* If VPD status page isn't available,
2530                  * use ASC/ASCQ to determine state
2531                  */
2532                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2533                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2534                         return ldstat;
2535                 break;
2536         default:
2537                 break;
2538         }
2539         return 0;
2540 }
2541
2542 static int hpsa_update_device_info(struct ctlr_info *h,
2543         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
2544         unsigned char *is_OBDR_device)
2545 {
2546
2547 #define OBDR_SIG_OFFSET 43
2548 #define OBDR_TAPE_SIG "$DR-10"
2549 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2550 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2551
2552         unsigned char *inq_buff;
2553         unsigned char *obdr_sig;
2554
2555         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2556         if (!inq_buff)
2557                 goto bail_out;
2558
2559         /* Do an inquiry to the device to see what it is. */
2560         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
2561                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
2562                 /* Inquiry failed (msg printed already) */
2563                 dev_err(&h->pdev->dev,
2564                         "hpsa_update_device_info: inquiry failed\n");
2565                 goto bail_out;
2566         }
2567
2568         this_device->devtype = (inq_buff[0] & 0x1f);
2569         memcpy(this_device->scsi3addr, scsi3addr, 8);
2570         memcpy(this_device->vendor, &inq_buff[8],
2571                 sizeof(this_device->vendor));
2572         memcpy(this_device->model, &inq_buff[16],
2573                 sizeof(this_device->model));
2574         memset(this_device->device_id, 0,
2575                 sizeof(this_device->device_id));
2576         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
2577                 sizeof(this_device->device_id));
2578
2579         if (this_device->devtype == TYPE_DISK &&
2580                 is_logical_dev_addr_mode(scsi3addr)) {
2581                 int volume_offline;
2582
2583                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2584                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
2585                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2586                 volume_offline = hpsa_volume_offline(h, scsi3addr);
2587                 if (volume_offline < 0 || volume_offline > 0xff)
2588                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
2589                 this_device->volume_offline = volume_offline & 0xff;
2590         } else {
2591                 this_device->raid_level = RAID_UNKNOWN;
2592                 this_device->offload_config = 0;
2593                 this_device->offload_enabled = 0;
2594                 this_device->volume_offline = 0;
2595         }
2596
2597         if (is_OBDR_device) {
2598                 /* See if this is a One-Button-Disaster-Recovery device
2599                  * by looking for "$DR-10" at offset 43 in inquiry data.
2600                  */
2601                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
2602                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
2603                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
2604                                                 OBDR_SIG_LEN) == 0);
2605         }
2606
2607         kfree(inq_buff);
2608         return 0;
2609
2610 bail_out:
2611         kfree(inq_buff);
2612         return 1;
2613 }
2614
2615 static unsigned char *ext_target_model[] = {
2616         "MSA2012",
2617         "MSA2024",
2618         "MSA2312",
2619         "MSA2324",
2620         "P2000 G3 SAS",
2621         "MSA 2040 SAS",
2622         NULL,
2623 };
2624
2625 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2626 {
2627         int i;
2628
2629         for (i = 0; ext_target_model[i]; i++)
2630                 if (strncmp(device->model, ext_target_model[i],
2631                         strlen(ext_target_model[i])) == 0)
2632                         return 1;
2633         return 0;
2634 }
2635
2636 /* Helper function to assign bus, target, lun mapping of devices.
2637  * Puts non-external target logical volumes on bus 0, external target logical
2638  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2639  * Logical drive target and lun are assigned at this time, but
2640  * physical device lun and target assignment are deferred (assigned
2641  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2642  */
2643 static void figure_bus_target_lun(struct ctlr_info *h,
2644         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2645 {
2646         u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
2647
2648         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
2649                 /* physical device, target and lun filled in later */
2650                 if (is_hba_lunid(lunaddrbytes))
2651                         hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2652                 else
2653                         /* defer target, lun assignment for physical devices */
2654                         hpsa_set_bus_target_lun(device, 2, -1, -1);
2655                 return;
2656         }
2657         /* It's a logical device */
2658         if (is_ext_target(h, device)) {
2659                 /* external target way, put logicals on bus 1
2660                  * and match target/lun numbers box
2661                  * reports, other smart array, bus 0, target 0, match lunid
2662                  */
2663                 hpsa_set_bus_target_lun(device,
2664                         1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
2665                 return;
2666         }
2667         hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2668 }
2669
2670 /*
2671  * If there is no lun 0 on a target, linux won't find any devices.
2672  * For the external targets (arrays), we have to manually detect the enclosure
2673  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2674  * it for some reason.  *tmpdevice is the target we're adding,
2675  * this_device is a pointer into the current element of currentsd[]
2676  * that we're building up in update_scsi_devices(), below.
2677  * lunzerobits is a bitmap that tracks which targets already have a
2678  * lun 0 assigned.
2679  * Returns 1 if an enclosure was added, 0 if not.
2680  */
2681 static int add_ext_target_dev(struct ctlr_info *h,
2682         struct hpsa_scsi_dev_t *tmpdevice,
2683         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2684         unsigned long lunzerobits[], int *n_ext_target_devs)
2685 {
2686         unsigned char scsi3addr[8];
2687
2688         if (test_bit(tmpdevice->target, lunzerobits))
2689                 return 0; /* There is already a lun 0 on this target. */
2690
2691         if (!is_logical_dev_addr_mode(lunaddrbytes))
2692                 return 0; /* It's the logical targets that may lack lun 0. */
2693
2694         if (!is_ext_target(h, tmpdevice))
2695                 return 0; /* Only external target devices have this problem. */
2696
2697         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2698                 return 0;
2699
2700         memset(scsi3addr, 0, 8);
2701         scsi3addr[3] = tmpdevice->target;
2702         if (is_hba_lunid(scsi3addr))
2703                 return 0; /* Don't add the RAID controller here. */
2704
2705         if (is_scsi_rev_5(h))
2706                 return 0; /* p1210m doesn't need to do this. */
2707
2708         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2709                 dev_warn(&h->pdev->dev, "Maximum number of external "
2710                         "target devices exceeded.  Check your hardware "
2711                         "configuration.");
2712                 return 0;
2713         }
2714
2715         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2716                 return 0;
2717         (*n_ext_target_devs)++;
2718         hpsa_set_bus_target_lun(this_device,
2719                                 tmpdevice->bus, tmpdevice->target, 0);
2720         set_bit(tmpdevice->target, lunzerobits);
2721         return 1;
2722 }
2723
2724 /*
2725  * Get address of physical disk used for an ioaccel2 mode command:
2726  *      1. Extract ioaccel2 handle from the command.
2727  *      2. Find a matching ioaccel2 handle from list of physical disks.
2728  *      3. Return:
2729  *              1 and set scsi3addr to address of matching physical
2730  *              0 if no matching physical disk was found.
2731  */
2732 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
2733         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
2734 {
2735         struct ReportExtendedLUNdata *physicals = NULL;
2736         int responsesize = 24;  /* size of physical extended response */
2737         int extended = 2;       /* flag forces reporting 'other dev info'. */
2738         int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
2739         u32 nphysicals = 0;     /* number of reported physical devs */
2740         int found = 0;          /* found match (1) or not (0) */
2741         u32 find;               /* handle we need to match */
2742         int i;
2743         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
2744         struct hpsa_scsi_dev_t *d; /* device of request being aborted */
2745         struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
2746         __le32 it_nexus;        /* 4 byte device handle for the ioaccel2 cmd */
2747         __le32 scsi_nexus;      /* 4 byte device handle for the ioaccel2 cmd */
2748
2749         if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
2750                 return 0; /* no match */
2751
2752         /* point to the ioaccel2 device handle */
2753         c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
2754         if (c2a == NULL)
2755                 return 0; /* no match */
2756
2757         scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
2758         if (scmd == NULL)
2759                 return 0; /* no match */
2760
2761         d = scmd->device->hostdata;
2762         if (d == NULL)
2763                 return 0; /* no match */
2764
2765         it_nexus = cpu_to_le32(d->ioaccel_handle);
2766         scsi_nexus = c2a->scsi_nexus;
2767         find = le32_to_cpu(c2a->scsi_nexus);
2768
2769         if (h->raid_offload_debug > 0)
2770                 dev_info(&h->pdev->dev,
2771                         "%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
2772                         __func__, scsi_nexus,
2773                         d->device_id[0], d->device_id[1], d->device_id[2],
2774                         d->device_id[3], d->device_id[4], d->device_id[5],
2775                         d->device_id[6], d->device_id[7], d->device_id[8],
2776                         d->device_id[9], d->device_id[10], d->device_id[11],
2777                         d->device_id[12], d->device_id[13], d->device_id[14],
2778                         d->device_id[15]);
2779
2780         /* Get the list of physical devices */
2781         physicals = kzalloc(reportsize, GFP_KERNEL);
2782         if (physicals == NULL)
2783                 return 0;
2784         if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals,
2785                 reportsize, extended)) {
2786                 dev_err(&h->pdev->dev,
2787                         "Can't lookup %s device handle: report physical LUNs failed.\n",
2788                         "HP SSD Smart Path");
2789                 kfree(physicals);
2790                 return 0;
2791         }
2792         nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
2793                                                         responsesize;
2794
2795         /* find ioaccel2 handle in list of physicals: */
2796         for (i = 0; i < nphysicals; i++) {
2797                 struct ext_report_lun_entry *entry = &physicals->LUN[i];
2798
2799                 /* handle is in bytes 28-31 of each lun */
2800                 if (entry->ioaccel_handle != find)
2801                         continue; /* didn't match */
2802                 found = 1;
2803                 memcpy(scsi3addr, entry->lunid, 8);
2804                 if (h->raid_offload_debug > 0)
2805                         dev_info(&h->pdev->dev,
2806                                 "%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%8phN\n",
2807                                 __func__, find,
2808                                 entry->ioaccel_handle, scsi3addr);
2809                 break; /* found it */
2810         }
2811
2812         kfree(physicals);
2813         if (found)
2814                 return 1;
2815         else
2816                 return 0;
2817
2818 }
2819 /*
2820  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
2821  * logdev.  The number of luns in physdev and logdev are returned in
2822  * *nphysicals and *nlogicals, respectively.
2823  * Returns 0 on success, -1 otherwise.
2824  */
2825 static int hpsa_gather_lun_info(struct ctlr_info *h,
2826         int reportphyslunsize, int reportloglunsize,
2827         struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode,
2828         struct ReportLUNdata *logdev, u32 *nlogicals)
2829 {
2830         int physical_entry_size = 8;
2831
2832         *physical_mode = 0;
2833
2834         /* For I/O accelerator mode we need to read physical device handles */
2835         if (h->transMethod & CFGTBL_Trans_io_accel1 ||
2836                 h->transMethod & CFGTBL_Trans_io_accel2) {
2837                 *physical_mode = HPSA_REPORT_PHYS_EXTENDED;
2838                 physical_entry_size = 24;
2839         }
2840         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportphyslunsize,
2841                                                         *physical_mode)) {
2842                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
2843                 return -1;
2844         }
2845         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) /
2846                                                         physical_entry_size;
2847         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
2848                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
2849                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2850                         *nphysicals - HPSA_MAX_PHYS_LUN);
2851                 *nphysicals = HPSA_MAX_PHYS_LUN;
2852         }
2853         if (hpsa_scsi_do_report_log_luns(h, logdev, reportloglunsize)) {
2854                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
2855                 return -1;
2856         }
2857         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2858         /* Reject Logicals in excess of our max capability. */
2859         if (*nlogicals > HPSA_MAX_LUN) {
2860                 dev_warn(&h->pdev->dev,
2861                         "maximum logical LUNs (%d) exceeded.  "
2862                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
2863                         *nlogicals - HPSA_MAX_LUN);
2864                         *nlogicals = HPSA_MAX_LUN;
2865         }
2866         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
2867                 dev_warn(&h->pdev->dev,
2868                         "maximum logical + physical LUNs (%d) exceeded. "
2869                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2870                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
2871                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
2872         }
2873         return 0;
2874 }
2875
2876 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
2877         int i, int nphysicals, int nlogicals,
2878         struct ReportExtendedLUNdata *physdev_list,
2879         struct ReportLUNdata *logdev_list)
2880 {
2881         /* Helper function, figure out where the LUN ID info is coming from
2882          * given index i, lists of physical and logical devices, where in
2883          * the list the raid controller is supposed to appear (first or last)
2884          */
2885
2886         int logicals_start = nphysicals + (raid_ctlr_position == 0);
2887         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
2888
2889         if (i == raid_ctlr_position)
2890                 return RAID_CTLR_LUNID;
2891
2892         if (i < logicals_start)
2893                 return &physdev_list->LUN[i -
2894                                 (raid_ctlr_position == 0)].lunid[0];
2895
2896         if (i < last_device)
2897                 return &logdev_list->LUN[i - nphysicals -
2898                         (raid_ctlr_position == 0)][0];
2899         BUG();
2900         return NULL;
2901 }
2902
2903 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
2904 {
2905         int rc;
2906         int hba_mode_enabled;
2907         struct bmic_controller_parameters *ctlr_params;
2908         ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
2909                 GFP_KERNEL);
2910
2911         if (!ctlr_params)
2912                 return -ENOMEM;
2913         rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
2914                 sizeof(struct bmic_controller_parameters));
2915         if (rc) {
2916                 kfree(ctlr_params);
2917                 return rc;
2918         }
2919
2920         hba_mode_enabled =
2921                 ((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
2922         kfree(ctlr_params);
2923         return hba_mode_enabled;
2924 }
2925
2926 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
2927 {
2928         /* the idea here is we could get notified
2929          * that some devices have changed, so we do a report
2930          * physical luns and report logical luns cmd, and adjust
2931          * our list of devices accordingly.
2932          *
2933          * The scsi3addr's of devices won't change so long as the
2934          * adapter is not reset.  That means we can rescan and
2935          * tell which devices we already know about, vs. new
2936          * devices, vs.  disappearing devices.
2937          */
2938         struct ReportExtendedLUNdata *physdev_list = NULL;
2939         struct ReportLUNdata *logdev_list = NULL;
2940         u32 nphysicals = 0;
2941         u32 nlogicals = 0;
2942         int physical_mode = 0;
2943         u32 ndev_allocated = 0;
2944         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
2945         int ncurrent = 0;
2946         int i, n_ext_target_devs, ndevs_to_allocate;
2947         int raid_ctlr_position;
2948         int rescan_hba_mode;
2949         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
2950
2951         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
2952         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
2953         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
2954         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
2955
2956         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
2957                 dev_err(&h->pdev->dev, "out of memory\n");
2958                 goto out;
2959         }
2960         memset(lunzerobits, 0, sizeof(lunzerobits));
2961
2962         rescan_hba_mode = hpsa_hba_mode_enabled(h);
2963         if (rescan_hba_mode < 0)
2964                 goto out;
2965
2966         if (!h->hba_mode_enabled && rescan_hba_mode)
2967                 dev_warn(&h->pdev->dev, "HBA mode enabled\n");
2968         else if (h->hba_mode_enabled && !rescan_hba_mode)
2969                 dev_warn(&h->pdev->dev, "HBA mode disabled\n");
2970
2971         h->hba_mode_enabled = rescan_hba_mode;
2972
2973         if (hpsa_gather_lun_info(h,
2974                         sizeof(*physdev_list), sizeof(*logdev_list),
2975                         (struct ReportLUNdata *) physdev_list, &nphysicals,
2976                         &physical_mode, logdev_list, &nlogicals))
2977                 goto out;
2978
2979         /* We might see up to the maximum number of logical and physical disks
2980          * plus external target devices, and a device for the local RAID
2981          * controller.
2982          */
2983         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
2984
2985         /* Allocate the per device structures */
2986         for (i = 0; i < ndevs_to_allocate; i++) {
2987                 if (i >= HPSA_MAX_DEVICES) {
2988                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
2989                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
2990                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
2991                         break;
2992                 }
2993
2994                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
2995                 if (!currentsd[i]) {
2996                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
2997                                 __FILE__, __LINE__);
2998                         goto out;
2999                 }
3000                 ndev_allocated++;
3001         }
3002
3003         if (is_scsi_rev_5(h))
3004                 raid_ctlr_position = 0;
3005         else
3006                 raid_ctlr_position = nphysicals + nlogicals;
3007
3008         /* adjust our table of devices */
3009         n_ext_target_devs = 0;
3010         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3011                 u8 *lunaddrbytes, is_OBDR = 0;
3012
3013                 /* Figure out where the LUN ID info is coming from */
3014                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3015                         i, nphysicals, nlogicals, physdev_list, logdev_list);
3016                 /* skip masked physical devices. */
3017                 if (lunaddrbytes[3] & 0xC0 &&
3018                         i < nphysicals + (raid_ctlr_position == 0))
3019                         continue;
3020
3021                 /* Get device type, vendor, model, device id */
3022                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3023                                                         &is_OBDR))
3024                         continue; /* skip it if we can't talk to it. */
3025                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3026                 this_device = currentsd[ncurrent];
3027
3028                 /*
3029                  * For external target devices, we have to insert a LUN 0 which
3030                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3031                  * is nonetheless an enclosure device there.  We have to
3032                  * present that otherwise linux won't find anything if
3033                  * there is no lun 0.
3034                  */
3035                 if (add_ext_target_dev(h, tmpdevice, this_device,
3036                                 lunaddrbytes, lunzerobits,
3037                                 &n_ext_target_devs)) {
3038                         ncurrent++;
3039                         this_device = currentsd[ncurrent];
3040                 }
3041
3042                 *this_device = *tmpdevice;
3043
3044                 switch (this_device->devtype) {
3045                 case TYPE_ROM:
3046                         /* We don't *really* support actual CD-ROM devices,
3047                          * just "One Button Disaster Recovery" tape drive
3048                          * which temporarily pretends to be a CD-ROM drive.
3049                          * So we check that the device is really an OBDR tape
3050                          * device by checking for "$DR-10" in bytes 43-48 of
3051                          * the inquiry data.
3052                          */
3053                         if (is_OBDR)
3054                                 ncurrent++;
3055                         break;
3056                 case TYPE_DISK:
3057                         if (h->hba_mode_enabled) {
3058                                 /* never use raid mapper in HBA mode */
3059                                 this_device->offload_enabled = 0;
3060                                 ncurrent++;
3061                                 break;
3062                         } else if (h->acciopath_status) {
3063                                 if (i >= nphysicals) {
3064                                         ncurrent++;
3065                                         break;
3066                                 }
3067                         } else {
3068                                 if (i < nphysicals)
3069                                         break;
3070                                 ncurrent++;
3071                                 break;
3072                         }
3073                         if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) {
3074                                 memcpy(&this_device->ioaccel_handle,
3075                                         &lunaddrbytes[20],
3076                                         sizeof(this_device->ioaccel_handle));
3077                                 ncurrent++;
3078                         }
3079                         break;
3080                 case TYPE_TAPE:
3081                 case TYPE_MEDIUM_CHANGER:
3082                         ncurrent++;
3083                         break;
3084                 case TYPE_RAID:
3085                         /* Only present the Smartarray HBA as a RAID controller.
3086                          * If it's a RAID controller other than the HBA itself
3087                          * (an external RAID controller, MSA500 or similar)
3088                          * don't present it.
3089                          */
3090                         if (!is_hba_lunid(lunaddrbytes))
3091                                 break;
3092                         ncurrent++;
3093                         break;
3094                 default:
3095                         break;
3096                 }
3097                 if (ncurrent >= HPSA_MAX_DEVICES)
3098                         break;
3099         }
3100         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3101 out:
3102         kfree(tmpdevice);
3103         for (i = 0; i < ndev_allocated; i++)
3104                 kfree(currentsd[i]);
3105         kfree(currentsd);
3106         kfree(physdev_list);
3107         kfree(logdev_list);
3108 }
3109
3110 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3111  * dma mapping  and fills in the scatter gather entries of the
3112  * hpsa command, cp.
3113  */
3114 static int hpsa_scatter_gather(struct ctlr_info *h,
3115                 struct CommandList *cp,
3116                 struct scsi_cmnd *cmd)
3117 {
3118         unsigned int len;
3119         struct scatterlist *sg;
3120         u64 addr64;
3121         int use_sg, i, sg_index, chained;
3122         struct SGDescriptor *curr_sg;
3123
3124         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3125
3126         use_sg = scsi_dma_map(cmd);
3127         if (use_sg < 0)
3128                 return use_sg;
3129
3130         if (!use_sg)
3131                 goto sglist_finished;
3132
3133         curr_sg = cp->SG;
3134         chained = 0;
3135         sg_index = 0;
3136         scsi_for_each_sg(cmd, sg, use_sg, i) {
3137                 if (i == h->max_cmd_sg_entries - 1 &&
3138                         use_sg > h->max_cmd_sg_entries) {
3139                         chained = 1;
3140                         curr_sg = h->cmd_sg_list[cp->cmdindex];
3141                         sg_index = 0;
3142                 }
3143                 addr64 = (u64) sg_dma_address(sg);
3144                 len  = sg_dma_len(sg);
3145                 curr_sg->Addr = cpu_to_le64(addr64);
3146                 curr_sg->Len = cpu_to_le32(len);
3147                 curr_sg->Ext = cpu_to_le32(0);
3148                 curr_sg++;
3149         }
3150         (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3151
3152         if (use_sg + chained > h->maxSG)
3153                 h->maxSG = use_sg + chained;
3154
3155         if (chained) {
3156                 cp->Header.SGList = h->max_cmd_sg_entries;
3157                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3158                 if (hpsa_map_sg_chain_block(h, cp)) {
3159                         scsi_dma_unmap(cmd);
3160                         return -1;
3161                 }
3162                 return 0;
3163         }
3164
3165 sglist_finished:
3166
3167         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3168         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in this cmd list */
3169         return 0;
3170 }
3171
3172 #define IO_ACCEL_INELIGIBLE (1)
3173 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3174 {
3175         int is_write = 0;
3176         u32 block;
3177         u32 block_cnt;
3178
3179         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3180         switch (cdb[0]) {
3181         case WRITE_6:
3182         case WRITE_12:
3183                 is_write = 1;
3184         case READ_6:
3185         case READ_12:
3186                 if (*cdb_len == 6) {
3187                         block = (((u32) cdb[2]) << 8) | cdb[3];
3188                         block_cnt = cdb[4];
3189                 } else {
3190                         BUG_ON(*cdb_len != 12);
3191                         block = (((u32) cdb[2]) << 24) |
3192                                 (((u32) cdb[3]) << 16) |
3193                                 (((u32) cdb[4]) << 8) |
3194                                 cdb[5];
3195                         block_cnt =
3196                                 (((u32) cdb[6]) << 24) |
3197                                 (((u32) cdb[7]) << 16) |
3198                                 (((u32) cdb[8]) << 8) |
3199                                 cdb[9];
3200                 }
3201                 if (block_cnt > 0xffff)
3202                         return IO_ACCEL_INELIGIBLE;
3203
3204                 cdb[0] = is_write ? WRITE_10 : READ_10;
3205                 cdb[1] = 0;
3206                 cdb[2] = (u8) (block >> 24);
3207                 cdb[3] = (u8) (block >> 16);
3208                 cdb[4] = (u8) (block >> 8);
3209                 cdb[5] = (u8) (block);
3210                 cdb[6] = 0;
3211                 cdb[7] = (u8) (block_cnt >> 8);
3212                 cdb[8] = (u8) (block_cnt);
3213                 cdb[9] = 0;
3214                 *cdb_len = 10;
3215                 break;
3216         }
3217         return 0;
3218 }
3219
3220 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3221         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3222         u8 *scsi3addr)
3223 {
3224         struct scsi_cmnd *cmd = c->scsi_cmd;
3225         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3226         unsigned int len;
3227         unsigned int total_len = 0;
3228         struct scatterlist *sg;
3229         u64 addr64;
3230         int use_sg, i;
3231         struct SGDescriptor *curr_sg;
3232         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3233
3234         /* TODO: implement chaining support */
3235         if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3236                 return IO_ACCEL_INELIGIBLE;
3237
3238         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3239
3240         if (fixup_ioaccel_cdb(cdb, &cdb_len))
3241                 return IO_ACCEL_INELIGIBLE;
3242
3243         c->cmd_type = CMD_IOACCEL1;
3244
3245         /* Adjust the DMA address to point to the accelerated command buffer */
3246         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3247                                 (c->cmdindex * sizeof(*cp));
3248         BUG_ON(c->busaddr & 0x0000007F);
3249
3250         use_sg = scsi_dma_map(cmd);
3251         if (use_sg < 0)
3252                 return use_sg;
3253
3254         if (use_sg) {
3255                 curr_sg = cp->SG;
3256                 scsi_for_each_sg(cmd, sg, use_sg, i) {
3257                         addr64 = (u64) sg_dma_address(sg);
3258                         len  = sg_dma_len(sg);
3259                         total_len += len;
3260                         curr_sg->Addr = cpu_to_le64(addr64);
3261                         curr_sg->Len = cpu_to_le32(len);
3262                         curr_sg->Ext = cpu_to_le32(0);
3263                         curr_sg++;
3264                 }
3265                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3266
3267                 switch (cmd->sc_data_direction) {
3268                 case DMA_TO_DEVICE:
3269                         control |= IOACCEL1_CONTROL_DATA_OUT;
3270                         break;
3271                 case DMA_FROM_DEVICE:
3272                         control |= IOACCEL1_CONTROL_DATA_IN;
3273                         break;
3274                 case DMA_NONE:
3275                         control |= IOACCEL1_CONTROL_NODATAXFER;
3276                         break;
3277                 default:
3278                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3279                         cmd->sc_data_direction);
3280                         BUG();
3281                         break;
3282                 }
3283         } else {
3284                 control |= IOACCEL1_CONTROL_NODATAXFER;
3285         }
3286
3287         c->Header.SGList = use_sg;
3288         /* Fill out the command structure to submit */
3289         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
3290         cp->transfer_len = cpu_to_le32(total_len);
3291         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
3292                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
3293         cp->control = cpu_to_le32(control);
3294         memcpy(cp->CDB, cdb, cdb_len);
3295         memcpy(cp->CISS_LUN, scsi3addr, 8);
3296         /* Tag was already set at init time. */
3297         enqueue_cmd_and_start_io(h, c);
3298         return 0;
3299 }
3300
3301 /*
3302  * Queue a command directly to a device behind the controller using the
3303  * I/O accelerator path.
3304  */
3305 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3306         struct CommandList *c)
3307 {
3308         struct scsi_cmnd *cmd = c->scsi_cmd;
3309         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3310
3311         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3312                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr);
3313 }
3314
3315 /*
3316  * Set encryption parameters for the ioaccel2 request
3317  */
3318 static void set_encrypt_ioaccel2(struct ctlr_info *h,
3319         struct CommandList *c, struct io_accel2_cmd *cp)
3320 {
3321         struct scsi_cmnd *cmd = c->scsi_cmd;
3322         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3323         struct raid_map_data *map = &dev->raid_map;
3324         u64 first_block;
3325
3326         BUG_ON(!(dev->offload_config && dev->offload_enabled));
3327
3328         /* Are we doing encryption on this device */
3329         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
3330                 return;
3331         /* Set the data encryption key index. */
3332         cp->dekindex = map->dekindex;
3333
3334         /* Set the encryption enable flag, encoded into direction field. */
3335         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3336
3337         /* Set encryption tweak values based on logical block address
3338          * If block size is 512, tweak value is LBA.
3339          * For other block sizes, tweak is (LBA * block size)/ 512)
3340          */
3341         switch (cmd->cmnd[0]) {
3342         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3343         case WRITE_6:
3344         case READ_6:
3345                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
3346                 break;
3347         case WRITE_10:
3348         case READ_10:
3349         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3350         case WRITE_12:
3351         case READ_12:
3352                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
3353                 break;
3354         case WRITE_16:
3355         case READ_16:
3356                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
3357                 break;
3358         default:
3359                 dev_err(&h->pdev->dev,
3360                         "ERROR: %s: size (0x%x) not supported for encryption\n",
3361                         __func__, cmd->cmnd[0]);
3362                 BUG();
3363                 break;
3364         }
3365
3366         if (le32_to_cpu(map->volume_blk_size) != 512)
3367                 first_block = first_block *
3368                                 le32_to_cpu(map->volume_blk_size)/512;
3369
3370         cp->tweak_lower = cpu_to_le32(first_block);
3371         cp->tweak_upper = cpu_to_le32(first_block >> 32);
3372 }
3373
3374 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3375         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3376         u8 *scsi3addr)
3377 {
3378         struct scsi_cmnd *cmd = c->scsi_cmd;
3379         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3380         struct ioaccel2_sg_element *curr_sg;
3381         int use_sg, i;
3382         struct scatterlist *sg;
3383         u64 addr64;
3384         u32 len;
3385         u32 total_len = 0;
3386
3387         if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3388                 return IO_ACCEL_INELIGIBLE;
3389
3390         if (fixup_ioaccel_cdb(cdb, &cdb_len))
3391                 return IO_ACCEL_INELIGIBLE;
3392         c->cmd_type = CMD_IOACCEL2;
3393         /* Adjust the DMA address to point to the accelerated command buffer */
3394         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3395                                 (c->cmdindex * sizeof(*cp));
3396         BUG_ON(c->busaddr & 0x0000007F);
3397
3398         memset(cp, 0, sizeof(*cp));
3399         cp->IU_type = IOACCEL2_IU_TYPE;
3400
3401         use_sg = scsi_dma_map(cmd);
3402         if (use_sg < 0)
3403                 return use_sg;
3404
3405         if (use_sg) {
3406                 BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
3407                 curr_sg = cp->sg;
3408                 scsi_for_each_sg(cmd, sg, use_sg, i) {
3409                         addr64 = (u64) sg_dma_address(sg);
3410                         len  = sg_dma_len(sg);
3411                         total_len += len;
3412                         curr_sg->address = cpu_to_le64(addr64);
3413                         curr_sg->length = cpu_to_le32(len);
3414                         curr_sg->reserved[0] = 0;
3415                         curr_sg->reserved[1] = 0;
3416                         curr_sg->reserved[2] = 0;
3417                         curr_sg->chain_indicator = 0;
3418                         curr_sg++;
3419                 }
3420
3421                 switch (cmd->sc_data_direction) {
3422                 case DMA_TO_DEVICE:
3423                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3424                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
3425                         break;
3426                 case DMA_FROM_DEVICE:
3427                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3428                         cp->direction |= IOACCEL2_DIR_DATA_IN;
3429                         break;
3430                 case DMA_NONE:
3431                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3432                         cp->direction |= IOACCEL2_DIR_NO_DATA;
3433                         break;
3434                 default:
3435                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3436                                 cmd->sc_data_direction);
3437                         BUG();
3438                         break;
3439                 }
3440         } else {
3441                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3442                 cp->direction |= IOACCEL2_DIR_NO_DATA;
3443         }
3444
3445         /* Set encryption parameters, if necessary */
3446         set_encrypt_ioaccel2(h, c, cp);
3447
3448         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
3449         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT |
3450                                 DIRECT_LOOKUP_BIT);
3451         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
3452
3453         /* fill in sg elements */
3454         cp->sg_count = (u8) use_sg;
3455
3456         cp->data_len = cpu_to_le32(total_len);
3457         cp->err_ptr = cpu_to_le64(c->busaddr +
3458                         offsetof(struct io_accel2_cmd, error_data));
3459         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
3460
3461         enqueue_cmd_and_start_io(h, c);
3462         return 0;
3463 }
3464
3465 /*
3466  * Queue a command to the correct I/O accelerator path.
3467  */
3468 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3469         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3470         u8 *scsi3addr)
3471 {
3472         if (h->transMethod & CFGTBL_Trans_io_accel1)
3473                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3474                                                 cdb, cdb_len, scsi3addr);
3475         else
3476                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3477                                                 cdb, cdb_len, scsi3addr);
3478 }
3479
3480 static void raid_map_helper(struct raid_map_data *map,
3481                 int offload_to_mirror, u32 *map_index, u32 *current_group)
3482 {
3483         if (offload_to_mirror == 0)  {
3484                 /* use physical disk in the first mirrored group. */
3485                 *map_index %= le16_to_cpu(map->data_disks_per_row);
3486                 return;
3487         }
3488         do {
3489                 /* determine mirror group that *map_index indicates */
3490                 *current_group = *map_index /
3491                         le16_to_cpu(map->data_disks_per_row);
3492                 if (offload_to_mirror == *current_group)
3493                         continue;
3494                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
3495                         /* select map index from next group */
3496                         *map_index += le16_to_cpu(map->data_disks_per_row);
3497                         (*current_group)++;
3498                 } else {
3499                         /* select map index from first group */
3500                         *map_index %= le16_to_cpu(map->data_disks_per_row);
3501                         *current_group = 0;
3502                 }
3503         } while (offload_to_mirror != *current_group);
3504 }
3505
3506 /*
3507  * Attempt to perform offload RAID mapping for a logical volume I/O.
3508  */
3509 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
3510         struct CommandList *c)
3511 {
3512         struct scsi_cmnd *cmd = c->scsi_cmd;
3513         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3514         struct raid_map_data *map = &dev->raid_map;
3515         struct raid_map_disk_data *dd = &map->data[0];
3516         int is_write = 0;
3517         u32 map_index;
3518         u64 first_block, last_block;
3519         u32 block_cnt;
3520         u32 blocks_per_row;
3521         u64 first_row, last_row;
3522         u32 first_row_offset, last_row_offset;
3523         u32 first_column, last_column;
3524         u64 r0_first_row, r0_last_row;
3525         u32 r5or6_blocks_per_row;
3526         u64 r5or6_first_row, r5or6_last_row;
3527         u32 r5or6_first_row_offset, r5or6_last_row_offset;
3528         u32 r5or6_first_column, r5or6_last_column;
3529         u32 total_disks_per_row;
3530         u32 stripesize;
3531         u32 first_group, last_group, current_group;
3532         u32 map_row;
3533         u32 disk_handle;
3534         u64 disk_block;
3535         u32 disk_block_cnt;
3536         u8 cdb[16];
3537         u8 cdb_len;
3538         u16 strip_size;
3539 #if BITS_PER_LONG == 32
3540         u64 tmpdiv;
3541 #endif
3542         int offload_to_mirror;
3543
3544         BUG_ON(!(dev->offload_config && dev->offload_enabled));
3545
3546         /* check for valid opcode, get LBA and block count */
3547         switch (cmd->cmnd[0]) {
3548         case WRITE_6:
3549                 is_write = 1;
3550         case READ_6:
3551                 first_block =
3552                         (((u64) cmd->cmnd[2]) << 8) |
3553                         cmd->cmnd[3];
3554                 block_cnt = cmd->cmnd[4];
3555                 if (block_cnt == 0)
3556                         block_cnt = 256;
3557                 break;
3558         case WRITE_10:
3559                 is_write = 1;
3560         case READ_10:
3561                 first_block =
3562                         (((u64) cmd->cmnd[2]) << 24) |
3563                         (((u64) cmd->cmnd[3]) << 16) |
3564                         (((u64) cmd->cmnd[4]) << 8) |
3565                         cmd->cmnd[5];
3566                 block_cnt =
3567                         (((u32) cmd->cmnd[7]) << 8) |
3568                         cmd->cmnd[8];
3569                 break;
3570         case WRITE_12:
3571                 is_write = 1;
3572         case READ_12:
3573                 first_block =
3574                         (((u64) cmd->cmnd[2]) << 24) |
3575                         (((u64) cmd->cmnd[3]) << 16) |
3576                         (((u64) cmd->cmnd[4]) << 8) |
3577                         cmd->cmnd[5];
3578                 block_cnt =
3579                         (((u32) cmd->cmnd[6]) << 24) |
3580                         (((u32) cmd->cmnd[7]) << 16) |
3581                         (((u32) cmd->cmnd[8]) << 8) |
3582                 cmd->cmnd[9];
3583                 break;
3584         case WRITE_16:
3585                 is_write = 1;
3586         case READ_16:
3587                 first_block =
3588                         (((u64) cmd->cmnd[2]) << 56) |
3589                         (((u64) cmd->cmnd[3]) << 48) |
3590                         (((u64) cmd->cmnd[4]) << 40) |
3591                         (((u64) cmd->cmnd[5]) << 32) |
3592                         (((u64) cmd->cmnd[6]) << 24) |
3593                         (((u64) cmd->cmnd[7]) << 16) |
3594                         (((u64) cmd->cmnd[8]) << 8) |
3595                         cmd->cmnd[9];
3596                 block_cnt =
3597                         (((u32) cmd->cmnd[10]) << 24) |
3598                         (((u32) cmd->cmnd[11]) << 16) |
3599                         (((u32) cmd->cmnd[12]) << 8) |
3600                         cmd->cmnd[13];
3601                 break;
3602         default:
3603                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
3604         }
3605         last_block = first_block + block_cnt - 1;
3606
3607         /* check for write to non-RAID-0 */
3608         if (is_write && dev->raid_level != 0)
3609                 return IO_ACCEL_INELIGIBLE;
3610
3611         /* check for invalid block or wraparound */
3612         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
3613                 last_block < first_block)
3614                 return IO_ACCEL_INELIGIBLE;
3615
3616         /* calculate stripe information for the request */
3617         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
3618                                 le16_to_cpu(map->strip_size);
3619         strip_size = le16_to_cpu(map->strip_size);
3620 #if BITS_PER_LONG == 32
3621         tmpdiv = first_block;
3622         (void) do_div(tmpdiv, blocks_per_row);
3623         first_row = tmpdiv;
3624         tmpdiv = last_block;
3625         (void) do_div(tmpdiv, blocks_per_row);
3626         last_row = tmpdiv;
3627         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3628         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3629         tmpdiv = first_row_offset;
3630         (void) do_div(tmpdiv, strip_size);
3631         first_column = tmpdiv;
3632         tmpdiv = last_row_offset;
3633         (void) do_div(tmpdiv, strip_size);
3634         last_column = tmpdiv;
3635 #else
3636         first_row = first_block / blocks_per_row;
3637         last_row = last_block / blocks_per_row;
3638         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3639         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3640         first_column = first_row_offset / strip_size;
3641         last_column = last_row_offset / strip_size;
3642 #endif
3643
3644         /* if this isn't a single row/column then give to the controller */
3645         if ((first_row != last_row) || (first_column != last_column))
3646                 return IO_ACCEL_INELIGIBLE;
3647
3648         /* proceeding with driver mapping */
3649         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
3650                                 le16_to_cpu(map->metadata_disks_per_row);
3651         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3652                                 le16_to_cpu(map->row_cnt);
3653         map_index = (map_row * total_disks_per_row) + first_column;
3654
3655         switch (dev->raid_level) {
3656         case HPSA_RAID_0:
3657                 break; /* nothing special to do */
3658         case HPSA_RAID_1:
3659                 /* Handles load balance across RAID 1 members.
3660                  * (2-drive R1 and R10 with even # of drives.)
3661                  * Appropriate for SSDs, not optimal for HDDs
3662                  */
3663                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
3664                 if (dev->offload_to_mirror)
3665                         map_index += le16_to_cpu(map->data_disks_per_row);
3666                 dev->offload_to_mirror = !dev->offload_to_mirror;
3667                 break;
3668         case HPSA_RAID_ADM:
3669                 /* Handles N-way mirrors  (R1-ADM)
3670                  * and R10 with # of drives divisible by 3.)
3671                  */
3672                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
3673
3674                 offload_to_mirror = dev->offload_to_mirror;
3675                 raid_map_helper(map, offload_to_mirror,
3676                                 &map_index, &current_group);
3677                 /* set mirror group to use next time */
3678                 offload_to_mirror =
3679                         (offload_to_mirror >=
3680                         le16_to_cpu(map->layout_map_count) - 1)
3681                         ? 0 : offload_to_mirror + 1;
3682                 dev->offload_to_mirror = offload_to_mirror;
3683                 /* Avoid direct use of dev->offload_to_mirror within this
3684                  * function since multiple threads might simultaneously
3685                  * increment it beyond the range of dev->layout_map_count -1.
3686                  */
3687                 break;
3688         case HPSA_RAID_5:
3689         case HPSA_RAID_6:
3690                 if (le16_to_cpu(map->layout_map_count) <= 1)
3691                         break;
3692
3693                 /* Verify first and last block are in same RAID group */
3694                 r5or6_blocks_per_row =
3695                         le16_to_cpu(map->strip_size) *
3696                         le16_to_cpu(map->data_disks_per_row);
3697                 BUG_ON(r5or6_blocks_per_row == 0);
3698                 stripesize = r5or6_blocks_per_row *
3699                         le16_to_cpu(map->layout_map_count);
3700 #if BITS_PER_LONG == 32
3701                 tmpdiv = first_block;
3702                 first_group = do_div(tmpdiv, stripesize);
3703                 tmpdiv = first_group;
3704                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3705                 first_group = tmpdiv;
3706                 tmpdiv = last_block;
3707                 last_group = do_div(tmpdiv, stripesize);
3708                 tmpdiv = last_group;
3709                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3710                 last_group = tmpdiv;
3711 #else
3712                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
3713                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
3714 #endif
3715                 if (first_group != last_group)
3716                         return IO_ACCEL_INELIGIBLE;
3717
3718                 /* Verify request is in a single row of RAID 5/6 */
3719 #if BITS_PER_LONG == 32
3720                 tmpdiv = first_block;
3721                 (void) do_div(tmpdiv, stripesize);
3722                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
3723                 tmpdiv = last_block;
3724                 (void) do_div(tmpdiv, stripesize);
3725                 r5or6_last_row = r0_last_row = tmpdiv;
3726 #else
3727                 first_row = r5or6_first_row = r0_first_row =
3728                                                 first_block / stripesize;
3729                 r5or6_last_row = r0_last_row = last_block / stripesize;
3730 #endif
3731                 if (r5or6_first_row != r5or6_last_row)
3732                         return IO_ACCEL_INELIGIBLE;
3733
3734
3735                 /* Verify request is in a single column */
3736 #if BITS_PER_LONG == 32
3737                 tmpdiv = first_block;
3738                 first_row_offset = do_div(tmpdiv, stripesize);
3739                 tmpdiv = first_row_offset;
3740                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
3741                 r5or6_first_row_offset = first_row_offset;
3742                 tmpdiv = last_block;
3743                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
3744                 tmpdiv = r5or6_last_row_offset;
3745                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
3746                 tmpdiv = r5or6_first_row_offset;
3747                 (void) do_div(tmpdiv, map->strip_size);
3748                 first_column = r5or6_first_column = tmpdiv;
3749                 tmpdiv = r5or6_last_row_offset;
3750                 (void) do_div(tmpdiv, map->strip_size);
3751                 r5or6_last_column = tmpdiv;
3752 #else
3753                 first_row_offset = r5or6_first_row_offset =
3754                         (u32)((first_block % stripesize) %
3755                                                 r5or6_blocks_per_row);
3756
3757                 r5or6_last_row_offset =
3758                         (u32)((last_block % stripesize) %
3759                                                 r5or6_blocks_per_row);
3760
3761                 first_column = r5or6_first_column =
3762                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
3763                 r5or6_last_column =
3764                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
3765 #endif
3766                 if (r5or6_first_column != r5or6_last_column)
3767                         return IO_ACCEL_INELIGIBLE;
3768
3769                 /* Request is eligible */
3770                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3771                         le16_to_cpu(map->row_cnt);
3772
3773                 map_index = (first_group *
3774                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
3775                         (map_row * total_disks_per_row) + first_column;
3776                 break;
3777         default:
3778                 return IO_ACCEL_INELIGIBLE;
3779         }
3780
3781         disk_handle = dd[map_index].ioaccel_handle;
3782         disk_block = le64_to_cpu(map->disk_starting_blk) +
3783                         first_row * le16_to_cpu(map->strip_size) +
3784                         (first_row_offset - first_column *
3785                         le16_to_cpu(map->strip_size));
3786         disk_block_cnt = block_cnt;
3787
3788         /* handle differing logical/physical block sizes */
3789         if (map->phys_blk_shift) {
3790                 disk_block <<= map->phys_blk_shift;
3791                 disk_block_cnt <<= map->phys_blk_shift;
3792         }
3793         BUG_ON(disk_block_cnt > 0xffff);
3794
3795         /* build the new CDB for the physical disk I/O */
3796         if (disk_block > 0xffffffff) {
3797                 cdb[0] = is_write ? WRITE_16 : READ_16;
3798                 cdb[1] = 0;
3799                 cdb[2] = (u8) (disk_block >> 56);
3800                 cdb[3] = (u8) (disk_block >> 48);
3801                 cdb[4] = (u8) (disk_block >> 40);
3802                 cdb[5] = (u8) (disk_block >> 32);
3803                 cdb[6] = (u8) (disk_block >> 24);
3804                 cdb[7] = (u8) (disk_block >> 16);
3805                 cdb[8] = (u8) (disk_block >> 8);
3806                 cdb[9] = (u8) (disk_block);
3807                 cdb[10] = (u8) (disk_block_cnt >> 24);
3808                 cdb[11] = (u8) (disk_block_cnt >> 16);
3809                 cdb[12] = (u8) (disk_block_cnt >> 8);
3810                 cdb[13] = (u8) (disk_block_cnt);
3811                 cdb[14] = 0;
3812                 cdb[15] = 0;
3813                 cdb_len = 16;
3814         } else {
3815                 cdb[0] = is_write ? WRITE_10 : READ_10;
3816                 cdb[1] = 0;
3817                 cdb[2] = (u8) (disk_block >> 24);
3818                 cdb[3] = (u8) (disk_block >> 16);
3819                 cdb[4] = (u8) (disk_block >> 8);
3820                 cdb[5] = (u8) (disk_block);
3821                 cdb[6] = 0;
3822                 cdb[7] = (u8) (disk_block_cnt >> 8);
3823                 cdb[8] = (u8) (disk_block_cnt);
3824                 cdb[9] = 0;
3825                 cdb_len = 10;
3826         }
3827         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
3828                                                 dev->scsi3addr);
3829 }
3830
3831 /*
3832  * Running in struct Scsi_Host->host_lock less mode using LLD internal
3833  * struct ctlr_info *h->lock w/ spin_lock_irqsave() protection.
3834  */
3835 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
3836 {
3837         struct ctlr_info *h;
3838         struct hpsa_scsi_dev_t *dev;
3839         unsigned char scsi3addr[8];
3840         struct CommandList *c;
3841         int rc = 0;
3842
3843         /* Get the ptr to our adapter structure out of cmd->host. */
3844         h = sdev_to_hba(cmd->device);
3845         dev = cmd->device->hostdata;
3846         if (!dev) {
3847                 cmd->result = DID_NO_CONNECT << 16;
3848                 cmd->scsi_done(cmd);
3849                 return 0;
3850         }
3851         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
3852
3853         if (unlikely(lockup_detected(h))) {
3854                 cmd->result = DID_ERROR << 16;
3855                 cmd->scsi_done(cmd);
3856                 return 0;
3857         }
3858         c = cmd_alloc(h);
3859         if (c == NULL) {                        /* trouble... */
3860                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
3861                 return SCSI_MLQUEUE_HOST_BUSY;
3862         }
3863
3864         /* Fill in the command list header */
3865         /* save c in case we have to abort it  */
3866         cmd->host_scribble = (unsigned char *) c;
3867
3868         c->cmd_type = CMD_SCSI;
3869         c->scsi_cmd = cmd;
3870
3871         /* Call alternate submit routine for I/O accelerated commands.
3872          * Retries always go down the normal I/O path.
3873          */
3874         if (likely(cmd->retries == 0 &&
3875                 cmd->request->cmd_type == REQ_TYPE_FS &&
3876                 h->acciopath_status)) {
3877                 if (dev->offload_enabled) {
3878                         rc = hpsa_scsi_ioaccel_raid_map(h, c);
3879                         if (rc == 0)
3880                                 return 0; /* Sent on ioaccel path */
3881                         if (rc < 0) {   /* scsi_dma_map failed. */
3882                                 cmd_free(h, c);
3883                                 return SCSI_MLQUEUE_HOST_BUSY;
3884                         }
3885                 } else if (dev->ioaccel_handle) {
3886                         rc = hpsa_scsi_ioaccel_direct_map(h, c);
3887                         if (rc == 0)
3888                                 return 0; /* Sent on direct map path */
3889                         if (rc < 0) {   /* scsi_dma_map failed. */
3890                                 cmd_free(h, c);
3891                                 return SCSI_MLQUEUE_HOST_BUSY;
3892                         }
3893                 }
3894         }
3895
3896         c->Header.ReplyQueue = 0;  /* unused in simple mode */
3897         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
3898         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT) |
3899                                         DIRECT_LOOKUP_BIT);
3900
3901         /* Fill in the request block... */
3902
3903         c->Request.Timeout = 0;
3904         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
3905         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
3906         c->Request.CDBLen = cmd->cmd_len;
3907         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
3908         switch (cmd->sc_data_direction) {
3909         case DMA_TO_DEVICE:
3910                 c->Request.type_attr_dir =
3911                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
3912                 break;
3913         case DMA_FROM_DEVICE:
3914                 c->Request.type_attr_dir =
3915                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
3916                 break;
3917         case DMA_NONE:
3918                 c->Request.type_attr_dir =
3919                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
3920                 break;
3921         case DMA_BIDIRECTIONAL:
3922                 /* This can happen if a buggy application does a scsi passthru
3923                  * and sets both inlen and outlen to non-zero. ( see
3924                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
3925                  */
3926
3927                 c->Request.type_attr_dir =
3928                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
3929                 /* This is technically wrong, and hpsa controllers should
3930                  * reject it with CMD_INVALID, which is the most correct
3931                  * response, but non-fibre backends appear to let it
3932                  * slide by, and give the same results as if this field
3933                  * were set correctly.  Either way is acceptable for
3934                  * our purposes here.
3935                  */
3936
3937                 break;
3938
3939         default:
3940                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3941                         cmd->sc_data_direction);
3942                 BUG();
3943                 break;
3944         }
3945
3946         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
3947                 cmd_free(h, c);
3948                 return SCSI_MLQUEUE_HOST_BUSY;
3949         }
3950         enqueue_cmd_and_start_io(h, c);
3951         /* the cmd'll come back via intr handler in complete_scsi_command()  */
3952         return 0;
3953 }
3954
3955 static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
3956 {
3957         unsigned long flags;
3958
3959         /*
3960          * Don't let rescans be initiated on a controller known
3961          * to be locked up.  If the controller locks up *during*
3962          * a rescan, that thread is probably hosed, but at least
3963          * we can prevent new rescan threads from piling up on a
3964          * locked up controller.
3965          */
3966         if (unlikely(lockup_detected(h))) {
3967                 spin_lock_irqsave(&h->scan_lock, flags);
3968                 h->scan_finished = 1;
3969                 wake_up_all(&h->scan_wait_queue);
3970                 spin_unlock_irqrestore(&h->scan_lock, flags);
3971                 return 1;
3972         }
3973         return 0;
3974 }
3975
3976 static void hpsa_scan_start(struct Scsi_Host *sh)
3977 {
3978         struct ctlr_info *h = shost_to_hba(sh);
3979         unsigned long flags;
3980
3981         if (do_not_scan_if_controller_locked_up(h))
3982                 return;
3983
3984         /* wait until any scan already in progress is finished. */
3985         while (1) {
3986                 spin_lock_irqsave(&h->scan_lock, flags);
3987                 if (h->scan_finished)
3988                         break;
3989                 spin_unlock_irqrestore(&h->scan_lock, flags);
3990                 wait_event(h->scan_wait_queue, h->scan_finished);
3991                 /* Note: We don't need to worry about a race between this
3992                  * thread and driver unload because the midlayer will
3993                  * have incremented the reference count, so unload won't
3994                  * happen if we're in here.
3995                  */
3996         }
3997         h->scan_finished = 0; /* mark scan as in progress */
3998         spin_unlock_irqrestore(&h->scan_lock, flags);
3999
4000         if (do_not_scan_if_controller_locked_up(h))
4001                 return;
4002
4003         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4004
4005         spin_lock_irqsave(&h->scan_lock, flags);
4006         h->scan_finished = 1; /* mark scan as finished. */
4007         wake_up_all(&h->scan_wait_queue);
4008         spin_unlock_irqrestore(&h->scan_lock, flags);
4009 }
4010
4011 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4012 {
4013         struct ctlr_info *h = sdev_to_hba(sdev);
4014
4015         if (qdepth < 1)
4016                 qdepth = 1;
4017         else
4018                 if (qdepth > h->nr_cmds)
4019                         qdepth = h->nr_cmds;
4020         scsi_change_queue_depth(sdev, qdepth);
4021         return sdev->queue_depth;
4022 }
4023
4024 static int hpsa_scan_finished(struct Scsi_Host *sh,
4025         unsigned long elapsed_time)
4026 {
4027         struct ctlr_info *h = shost_to_hba(sh);
4028         unsigned long flags;
4029         int finished;
4030
4031         spin_lock_irqsave(&h->scan_lock, flags);
4032         finished = h->scan_finished;
4033         spin_unlock_irqrestore(&h->scan_lock, flags);
4034         return finished;
4035 }
4036
4037 static void hpsa_unregister_scsi(struct ctlr_info *h)
4038 {
4039         /* we are being forcibly unloaded, and may not refuse. */
4040         scsi_remove_host(h->scsi_host);
4041         scsi_host_put(h->scsi_host);
4042         h->scsi_host = NULL;
4043 }
4044
4045 static int hpsa_register_scsi(struct ctlr_info *h)
4046 {
4047         struct Scsi_Host *sh;
4048         int error;
4049
4050         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4051         if (sh == NULL)
4052                 goto fail;
4053
4054         sh->io_port = 0;
4055         sh->n_io_port = 0;
4056         sh->this_id = -1;
4057         sh->max_channel = 3;
4058         sh->max_cmd_len = MAX_COMMAND_SIZE;
4059         sh->max_lun = HPSA_MAX_LUN;
4060         sh->max_id = HPSA_MAX_LUN;
4061         sh->can_queue = h->nr_cmds;
4062         if (h->hba_mode_enabled)
4063                 sh->cmd_per_lun = 7;
4064         else
4065                 sh->cmd_per_lun = h->nr_cmds;
4066         sh->sg_tablesize = h->maxsgentries;
4067         h->scsi_host = sh;
4068         sh->hostdata[0] = (unsigned long) h;
4069         sh->irq = h->intr[h->intr_mode];
4070         sh->unique_id = sh->irq;
4071         error = scsi_add_host(sh, &h->pdev->dev);
4072         if (error)
4073                 goto fail_host_put;
4074         scsi_scan_host(sh);
4075         return 0;
4076
4077  fail_host_put:
4078         dev_err(&h->pdev->dev, "%s: scsi_add_host"
4079                 " failed for controller %d\n", __func__, h->ctlr);
4080         scsi_host_put(sh);
4081         return error;
4082  fail:
4083         dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4084                 " failed for controller %d\n", __func__, h->ctlr);
4085         return -ENOMEM;
4086 }
4087
4088 static int wait_for_device_to_become_ready(struct ctlr_info *h,
4089         unsigned char lunaddr[])
4090 {
4091         int rc;
4092         int count = 0;
4093         int waittime = 1; /* seconds */
4094         struct CommandList *c;
4095
4096         c = cmd_special_alloc(h);
4097         if (!c) {
4098                 dev_warn(&h->pdev->dev, "out of memory in "
4099                         "wait_for_device_to_become_ready.\n");
4100                 return IO_ERROR;
4101         }
4102
4103         /* Send test unit ready until device ready, or give up. */
4104         while (count < HPSA_TUR_RETRY_LIMIT) {
4105
4106                 /* Wait for a bit.  do this first, because if we send
4107                  * the TUR right away, the reset will just abort it.
4108                  */
4109                 msleep(1000 * waittime);
4110                 count++;
4111                 rc = 0; /* Device ready. */
4112
4113                 /* Increase wait time with each try, up to a point. */
4114                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4115                         waittime = waittime * 2;
4116
4117                 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4118                 (void) fill_cmd(c, TEST_UNIT_READY, h,
4119                                 NULL, 0, 0, lunaddr, TYPE_CMD);
4120                 hpsa_scsi_do_simple_cmd_core(h, c);
4121                 /* no unmap needed here because no data xfer. */
4122
4123                 if (c->err_info->CommandStatus == CMD_SUCCESS)
4124                         break;
4125
4126                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4127                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4128                         (c->err_info->SenseInfo[2] == NO_SENSE ||
4129                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4130                         break;
4131
4132                 dev_warn(&h->pdev->dev, "waiting %d secs "
4133                         "for device to become ready.\n", waittime);
4134                 rc = 1; /* device not ready. */
4135         }
4136
4137         if (rc)
4138                 dev_warn(&h->pdev->dev, "giving up on device.\n");
4139         else
4140                 dev_warn(&h->pdev->dev, "device is ready.\n");
4141
4142         cmd_special_free(h, c);
4143         return rc;
4144 }
4145
4146 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
4147  * complaining.  Doing a host- or bus-reset can't do anything good here.
4148  */
4149 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4150 {
4151         int rc;
4152         struct ctlr_info *h;
4153         struct hpsa_scsi_dev_t *dev;
4154
4155         /* find the controller to which the command to be aborted was sent */
4156         h = sdev_to_hba(scsicmd->device);
4157         if (h == NULL) /* paranoia */
4158                 return FAILED;
4159         dev = scsicmd->device->hostdata;
4160         if (!dev) {
4161                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4162                         "device lookup failed.\n");
4163                 return FAILED;
4164         }
4165         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
4166                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4167         /* send a reset to the SCSI LUN which the command was sent to */
4168         rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
4169         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4170                 return SUCCESS;
4171
4172         dev_warn(&h->pdev->dev, "resetting device failed.\n");
4173         return FAILED;
4174 }
4175
4176 static void swizzle_abort_tag(u8 *tag)
4177 {
4178         u8 original_tag[8];
4179
4180         memcpy(original_tag, tag, 8);
4181         tag[0] = original_tag[3];
4182         tag[1] = original_tag[2];
4183         tag[2] = original_tag[1];
4184         tag[3] = original_tag[0];
4185         tag[4] = original_tag[7];
4186         tag[5] = original_tag[6];
4187         tag[6] = original_tag[5];
4188         tag[7] = original_tag[4];
4189 }
4190
4191 static void hpsa_get_tag(struct ctlr_info *h,
4192         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
4193 {
4194         u64 tag;
4195         if (c->cmd_type == CMD_IOACCEL1) {
4196                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4197                         &h->ioaccel_cmd_pool[c->cmdindex];
4198                 tag = le64_to_cpu(cm1->tag);
4199                 *tagupper = cpu_to_le32(tag >> 32);
4200                 *taglower = cpu_to_le32(tag);
4201                 return;
4202         }
4203         if (c->cmd_type == CMD_IOACCEL2) {
4204                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4205                         &h->ioaccel2_cmd_pool[c->cmdindex];
4206                 /* upper tag not used in ioaccel2 mode */
4207                 memset(tagupper, 0, sizeof(*tagupper));
4208                 *taglower = cm2->Tag;
4209                 return;
4210         }
4211         tag = le64_to_cpu(c->Header.tag);
4212         *tagupper = cpu_to_le32(tag >> 32);
4213         *taglower = cpu_to_le32(tag);
4214 }
4215
4216 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4217         struct CommandList *abort, int swizzle)
4218 {
4219         int rc = IO_OK;
4220         struct CommandList *c;
4221         struct ErrorInfo *ei;
4222         __le32 tagupper, taglower;
4223
4224         c = cmd_special_alloc(h);
4225         if (c == NULL) {        /* trouble... */
4226                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4227                 return -ENOMEM;
4228         }
4229
4230         /* fill_cmd can't fail here, no buffer to map */
4231         (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
4232                 0, 0, scsi3addr, TYPE_MSG);
4233         if (swizzle)
4234                 swizzle_abort_tag(&c->Request.CDB[4]);
4235         hpsa_scsi_do_simple_cmd_core(h, c);
4236         hpsa_get_tag(h, abort, &taglower, &tagupper);
4237         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4238                 __func__, tagupper, taglower);
4239         /* no unmap needed here because no data xfer. */
4240
4241         ei = c->err_info;
4242         switch (ei->CommandStatus) {
4243         case CMD_SUCCESS:
4244                 break;
4245         case CMD_UNABORTABLE: /* Very common, don't make noise. */
4246                 rc = -1;
4247                 break;
4248         default:
4249                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4250                         __func__, tagupper, taglower);
4251                 hpsa_scsi_interpret_error(h, c);
4252                 rc = -1;
4253                 break;
4254         }
4255         cmd_special_free(h, c);
4256         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4257                 __func__, tagupper, taglower);
4258         return rc;
4259 }
4260
4261 /*
4262  * hpsa_find_cmd_in_queue
4263  *
4264  * Used to determine whether a command (find) is still present
4265  * in queue_head.   Optionally excludes the last element of queue_head.
4266  *
4267  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
4268  * not yet been submitted, and so can be aborted by the driver without
4269  * sending an abort to the hardware.
4270  *
4271  * Returns pointer to command if found in queue, NULL otherwise.
4272  */
4273 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
4274                         struct scsi_cmnd *find, struct list_head *queue_head)
4275 {
4276         unsigned long flags;
4277         struct CommandList *c = NULL;   /* ptr into cmpQ */
4278
4279         if (!find)
4280                 return NULL;
4281         spin_lock_irqsave(&h->lock, flags);
4282         list_for_each_entry(c, queue_head, list) {
4283                 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
4284                         continue;
4285                 if (c->scsi_cmd == find) {
4286                         spin_unlock_irqrestore(&h->lock, flags);
4287                         return c;
4288                 }
4289         }
4290         spin_unlock_irqrestore(&h->lock, flags);
4291         return NULL;
4292 }
4293
4294 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
4295                                         u8 *tag, struct list_head *queue_head)
4296 {
4297         unsigned long flags;
4298         struct CommandList *c;
4299
4300         spin_lock_irqsave(&h->lock, flags);
4301         list_for_each_entry(c, queue_head, list) {
4302                 if (memcmp(&c->Header.tag, tag, 8) != 0)
4303                         continue;
4304                 spin_unlock_irqrestore(&h->lock, flags);
4305                 return c;
4306         }
4307         spin_unlock_irqrestore(&h->lock, flags);
4308         return NULL;
4309 }
4310
4311 /* ioaccel2 path firmware cannot handle abort task requests.
4312  * Change abort requests to physical target reset, and send to the
4313  * address of the physical disk used for the ioaccel 2 command.
4314  * Return 0 on success (IO_OK)
4315  *       -1 on failure
4316  */
4317
4318 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4319         unsigned char *scsi3addr, struct CommandList *abort)
4320 {
4321         int rc = IO_OK;
4322         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4323         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4324         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4325         unsigned char *psa = &phys_scsi3addr[0];
4326
4327         /* Get a pointer to the hpsa logical device. */
4328         scmd = (struct scsi_cmnd *) abort->scsi_cmd;
4329         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4330         if (dev == NULL) {
4331                 dev_warn(&h->pdev->dev,
4332                         "Cannot abort: no device pointer for command.\n");
4333                         return -1; /* not abortable */
4334         }
4335
4336         if (h->raid_offload_debug > 0)
4337                 dev_info(&h->pdev->dev,
4338                         "Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4339                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4340                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4341                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4342
4343         if (!dev->offload_enabled) {
4344                 dev_warn(&h->pdev->dev,
4345                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4346                 return -1; /* not abortable */
4347         }
4348
4349         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
4350         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4351                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4352                 return -1; /* not abortable */
4353         }
4354
4355         /* send the reset */
4356         if (h->raid_offload_debug > 0)
4357                 dev_info(&h->pdev->dev,
4358                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4359                         psa[0], psa[1], psa[2], psa[3],
4360                         psa[4], psa[5], psa[6], psa[7]);
4361         rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
4362         if (rc != 0) {
4363                 dev_warn(&h->pdev->dev,
4364                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4365                         psa[0], psa[1], psa[2], psa[3],
4366                         psa[4], psa[5], psa[6], psa[7]);
4367                 return rc; /* failed to reset */
4368         }
4369
4370         /* wait for device to recover */
4371         if (wait_for_device_to_become_ready(h, psa) != 0) {
4372                 dev_warn(&h->pdev->dev,
4373                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4374                         psa[0], psa[1], psa[2], psa[3],
4375                         psa[4], psa[5], psa[6], psa[7]);
4376                 return -1;  /* failed to recover */
4377         }
4378
4379         /* device recovered */
4380         dev_info(&h->pdev->dev,
4381                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4382                 psa[0], psa[1], psa[2], psa[3],
4383                 psa[4], psa[5], psa[6], psa[7]);
4384
4385         return rc; /* success */
4386 }
4387
4388 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
4389  * tell which kind we're dealing with, so we send the abort both ways.  There
4390  * shouldn't be any collisions between swizzled and unswizzled tags due to the
4391  * way we construct our tags but we check anyway in case the assumptions which
4392  * make this true someday become false.
4393  */
4394 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4395         unsigned char *scsi3addr, struct CommandList *abort)
4396 {
4397         u8 swizzled_tag[8];
4398         struct CommandList *c;
4399         int rc = 0, rc2 = 0;
4400
4401         /* ioccelerator mode 2 commands should be aborted via the
4402          * accelerated path, since RAID path is unaware of these commands,
4403          * but underlying firmware can't handle abort TMF.
4404          * Change abort to physical device reset.
4405          */
4406         if (abort->cmd_type == CMD_IOACCEL2)
4407                 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);
4408
4409         /* we do not expect to find the swizzled tag in our queue, but
4410          * check anyway just to be sure the assumptions which make this
4411          * the case haven't become wrong.
4412          */
4413         memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
4414         swizzle_abort_tag(swizzled_tag);
4415         c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
4416         if (c != NULL) {
4417                 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
4418                 return hpsa_send_abort(h, scsi3addr, abort, 0);
4419         }
4420         rc = hpsa_send_abort(h, scsi3addr, abort, 0);
4421
4422         /* if the command is still in our queue, we can't conclude that it was
4423          * aborted (it might have just completed normally) but in any case
4424          * we don't need to try to abort it another way.
4425          */
4426         c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
4427         if (c)
4428                 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
4429         return rc && rc2;
4430 }
4431
4432 /* Send an abort for the specified command.
4433  *      If the device and controller support it,
4434  *              send a task abort request.
4435  */
4436 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
4437 {
4438
4439         int i, rc;
4440         struct ctlr_info *h;
4441         struct hpsa_scsi_dev_t *dev;
4442         struct CommandList *abort; /* pointer to command to be aborted */
4443         struct CommandList *found;
4444         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
4445         char msg[256];          /* For debug messaging. */
4446         int ml = 0;
4447         __le32 tagupper, taglower;
4448
4449         /* Find the controller of the command to be aborted */
4450         h = sdev_to_hba(sc->device);
4451         if (WARN(h == NULL,
4452                         "ABORT REQUEST FAILED, Controller lookup failed.\n"))
4453                 return FAILED;
4454
4455         /* Check that controller supports some kind of task abort */
4456         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
4457                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
4458                 return FAILED;
4459
4460         memset(msg, 0, sizeof(msg));
4461         ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%llu ",
4462                 h->scsi_host->host_no, sc->device->channel,
4463                 sc->device->id, sc->device->lun);
4464
4465         /* Find the device of the command to be aborted */
4466         dev = sc->device->hostdata;
4467         if (!dev) {
4468                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
4469                                 msg);
4470                 return FAILED;
4471         }
4472
4473         /* Get SCSI command to be aborted */
4474         abort = (struct CommandList *) sc->host_scribble;
4475         if (abort == NULL) {
4476                 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
4477                                 msg);
4478                 return FAILED;
4479         }
4480         hpsa_get_tag(h, abort, &taglower, &tagupper);
4481         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4482         as  = (struct scsi_cmnd *) abort->scsi_cmd;
4483         if (as != NULL)
4484                 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
4485                         as->cmnd[0], as->serial_number);
4486         dev_dbg(&h->pdev->dev, "%s\n", msg);
4487         dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
4488                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4489
4490         /* Search reqQ to See if command is queued but not submitted,
4491          * if so, complete the command with aborted status and remove
4492          * it from the reqQ.
4493          */
4494         found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
4495         if (found) {
4496                 found->err_info->CommandStatus = CMD_ABORTED;
4497                 finish_cmd(found);
4498                 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
4499                                 msg);
4500                 return SUCCESS;
4501         }
4502
4503         /* not in reqQ, if also not in cmpQ, must have already completed */
4504         found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4505         if (!found)  {
4506                 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
4507                                 msg);
4508                 return SUCCESS;
4509         }
4510
4511         /*
4512          * Command is in flight, or possibly already completed
4513          * by the firmware (but not to the scsi mid layer) but we can't
4514          * distinguish which.  Send the abort down.
4515          */
4516         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4517         if (rc != 0) {
4518                 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
4519                 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
4520                         h->scsi_host->host_no,
4521                         dev->bus, dev->target, dev->lun);
4522                 return FAILED;
4523         }
4524         dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
4525
4526         /* If the abort(s) above completed and actually aborted the
4527          * command, then the command to be aborted should already be
4528          * completed.  If not, wait around a bit more to see if they
4529          * manage to complete normally.
4530          */
4531 #define ABORT_COMPLETE_WAIT_SECS 30
4532         for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4533                 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4534                 if (!found)
4535                         return SUCCESS;
4536                 msleep(100);
4537         }
4538         dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4539                 msg, ABORT_COMPLETE_WAIT_SECS);
4540         return FAILED;
4541 }
4542
4543
4544 /*
4545  * For operations that cannot sleep, a command block is allocated at init,
4546  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4547  * which ones are free or in use.  Lock must be held when calling this.
4548  * cmd_free() is the complement.
4549  */
4550 static struct CommandList *cmd_alloc(struct ctlr_info *h)
4551 {
4552         struct CommandList *c;
4553         int i;
4554         union u64bit temp64;
4555         dma_addr_t cmd_dma_handle, err_dma_handle;
4556         int loopcount;
4557
4558         /* There is some *extremely* small but non-zero chance that that
4559          * multiple threads could get in here, and one thread could
4560          * be scanning through the list of bits looking for a free
4561          * one, but the free ones are always behind him, and other
4562          * threads sneak in behind him and eat them before he can
4563          * get to them, so that while there is always a free one, a
4564          * very unlucky thread might be starved anyway, never able to
4565          * beat the other threads.  In reality, this happens so
4566          * infrequently as to be indistinguishable from never.
4567          */
4568
4569         loopcount = 0;
4570         do {
4571                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
4572                 if (i == h->nr_cmds)
4573                         i = 0;
4574                 loopcount++;
4575         } while (test_and_set_bit(i & (BITS_PER_LONG - 1),
4576                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0 &&
4577                 loopcount < 10);
4578
4579         /* Thread got starved?  We do not expect this to ever happen. */
4580         if (loopcount >= 10)
4581                 return NULL;
4582
4583         c = h->cmd_pool + i;
4584         memset(c, 0, sizeof(*c));
4585         cmd_dma_handle = h->cmd_pool_dhandle
4586             + i * sizeof(*c);
4587         c->err_info = h->errinfo_pool + i;
4588         memset(c->err_info, 0, sizeof(*c->err_info));
4589         err_dma_handle = h->errinfo_pool_dhandle
4590             + i * sizeof(*c->err_info);
4591
4592         c->cmdindex = i;
4593
4594         INIT_LIST_HEAD(&c->list);
4595         c->busaddr = (u32) cmd_dma_handle;
4596         temp64.val = (u64) err_dma_handle;
4597         c->ErrDesc.Addr = cpu_to_le64(err_dma_handle);
4598         c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info));
4599
4600         c->h = h;
4601         return c;
4602 }
4603
4604 /* For operations that can wait for kmalloc to possibly sleep,
4605  * this routine can be called. Lock need not be held to call
4606  * cmd_special_alloc. cmd_special_free() is the complement.
4607  */
4608 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
4609 {
4610         struct CommandList *c;
4611         dma_addr_t cmd_dma_handle, err_dma_handle;
4612
4613         c = pci_zalloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
4614         if (c == NULL)
4615                 return NULL;
4616
4617         c->cmd_type = CMD_SCSI;
4618         c->cmdindex = -1;
4619
4620         c->err_info = pci_zalloc_consistent(h->pdev, sizeof(*c->err_info),
4621                                             &err_dma_handle);
4622
4623         if (c->err_info == NULL) {
4624                 pci_free_consistent(h->pdev,
4625                         sizeof(*c), c, cmd_dma_handle);
4626                 return NULL;
4627         }
4628
4629         INIT_LIST_HEAD(&c->list);
4630         c->busaddr = (u32) cmd_dma_handle;
4631         c->ErrDesc.Addr = cpu_to_le64(err_dma_handle);
4632         c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info));
4633
4634         c->h = h;
4635         return c;
4636 }
4637
4638 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
4639 {
4640         int i;
4641
4642         i = c - h->cmd_pool;
4643         clear_bit(i & (BITS_PER_LONG - 1),
4644                   h->cmd_pool_bits + (i / BITS_PER_LONG));
4645 }
4646
4647 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
4648 {
4649         pci_free_consistent(h->pdev, sizeof(*c->err_info),
4650                             c->err_info,
4651                             (dma_addr_t) le64_to_cpu(c->ErrDesc.Addr));
4652         pci_free_consistent(h->pdev, sizeof(*c),
4653                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
4654 }
4655
4656 #ifdef CONFIG_COMPAT
4657
4658 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
4659         void __user *arg)
4660 {
4661         IOCTL32_Command_struct __user *arg32 =
4662             (IOCTL32_Command_struct __user *) arg;
4663         IOCTL_Command_struct arg64;
4664         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
4665         int err;
4666         u32 cp;
4667
4668         memset(&arg64, 0, sizeof(arg64));
4669         err = 0;
4670         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4671                            sizeof(arg64.LUN_info));
4672         err |= copy_from_user(&arg64.Request, &arg32->Request,
4673                            sizeof(arg64.Request));
4674         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4675                            sizeof(arg64.error_info));
4676         err |= get_user(arg64.buf_size, &arg32->buf_size);
4677         err |= get_user(cp, &arg32->buf);
4678         arg64.buf = compat_ptr(cp);
4679         err |= copy_to_user(p, &arg64, sizeof(arg64));
4680
4681         if (err)
4682                 return -EFAULT;
4683
4684         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
4685         if (err)
4686                 return err;
4687         err |= copy_in_user(&arg32->error_info, &p->error_info,
4688                          sizeof(arg32->error_info));
4689         if (err)
4690                 return -EFAULT;
4691         return err;
4692 }
4693
4694 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
4695         int cmd, void __user *arg)
4696 {
4697         BIG_IOCTL32_Command_struct __user *arg32 =
4698             (BIG_IOCTL32_Command_struct __user *) arg;
4699         BIG_IOCTL_Command_struct arg64;
4700         BIG_IOCTL_Command_struct __user *p =
4701             compat_alloc_user_space(sizeof(arg64));
4702         int err;
4703         u32 cp;
4704
4705         memset(&arg64, 0, sizeof(arg64));
4706         err = 0;
4707         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4708                            sizeof(arg64.LUN_info));
4709         err |= copy_from_user(&arg64.Request, &arg32->Request,
4710                            sizeof(arg64.Request));
4711         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4712                            sizeof(arg64.error_info));
4713         err |= get_user(arg64.buf_size, &arg32->buf_size);
4714         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
4715         err |= get_user(cp, &arg32->buf);
4716         arg64.buf = compat_ptr(cp);
4717         err |= copy_to_user(p, &arg64, sizeof(arg64));
4718
4719         if (err)
4720                 return -EFAULT;
4721
4722         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
4723         if (err)
4724                 return err;
4725         err |= copy_in_user(&arg32->error_info, &p->error_info,
4726                          sizeof(arg32->error_info));
4727         if (err)
4728                 return -EFAULT;
4729         return err;
4730 }
4731
4732 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
4733 {
4734         switch (cmd) {
4735         case CCISS_GETPCIINFO:
4736         case CCISS_GETINTINFO:
4737         case CCISS_SETINTINFO:
4738         case CCISS_GETNODENAME:
4739         case CCISS_SETNODENAME:
4740         case CCISS_GETHEARTBEAT:
4741         case CCISS_GETBUSTYPES:
4742         case CCISS_GETFIRMVER:
4743         case CCISS_GETDRIVVER:
4744         case CCISS_REVALIDVOLS:
4745         case CCISS_DEREGDISK:
4746         case CCISS_REGNEWDISK:
4747         case CCISS_REGNEWD:
4748         case CCISS_RESCANDISK:
4749         case CCISS_GETLUNINFO:
4750                 return hpsa_ioctl(dev, cmd, arg);
4751
4752         case CCISS_PASSTHRU32:
4753                 return hpsa_ioctl32_passthru(dev, cmd, arg);
4754         case CCISS_BIG_PASSTHRU32:
4755                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
4756
4757         default:
4758                 return -ENOIOCTLCMD;
4759         }
4760 }
4761 #endif
4762
4763 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
4764 {
4765         struct hpsa_pci_info pciinfo;
4766
4767         if (!argp)
4768                 return -EINVAL;
4769         pciinfo.domain = pci_domain_nr(h->pdev->bus);
4770         pciinfo.bus = h->pdev->bus->number;
4771         pciinfo.dev_fn = h->pdev->devfn;
4772         pciinfo.board_id = h->board_id;
4773         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
4774                 return -EFAULT;
4775         return 0;
4776 }
4777
4778 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
4779 {
4780         DriverVer_type DriverVer;
4781         unsigned char vmaj, vmin, vsubmin;
4782         int rc;
4783
4784         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
4785                 &vmaj, &vmin, &vsubmin);
4786         if (rc != 3) {
4787                 dev_info(&h->pdev->dev, "driver version string '%s' "
4788                         "unrecognized.", HPSA_DRIVER_VERSION);
4789                 vmaj = 0;
4790                 vmin = 0;
4791                 vsubmin = 0;
4792         }
4793         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
4794         if (!argp)
4795                 return -EINVAL;
4796         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
4797                 return -EFAULT;
4798         return 0;
4799 }
4800
4801 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4802 {
4803         IOCTL_Command_struct iocommand;
4804         struct CommandList *c;
4805         char *buff = NULL;
4806         u64 temp64;
4807         int rc = 0;
4808
4809         if (!argp)
4810                 return -EINVAL;
4811         if (!capable(CAP_SYS_RAWIO))
4812                 return -EPERM;
4813         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
4814                 return -EFAULT;
4815         if ((iocommand.buf_size < 1) &&
4816             (iocommand.Request.Type.Direction != XFER_NONE)) {
4817                 return -EINVAL;
4818         }
4819         if (iocommand.buf_size > 0) {
4820                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
4821                 if (buff == NULL)
4822                         return -EFAULT;
4823                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
4824                         /* Copy the data into the buffer we created */
4825                         if (copy_from_user(buff, iocommand.buf,
4826                                 iocommand.buf_size)) {
4827                                 rc = -EFAULT;
4828                                 goto out_kfree;
4829                         }
4830                 } else {
4831                         memset(buff, 0, iocommand.buf_size);
4832                 }
4833         }
4834         c = cmd_special_alloc(h);
4835         if (c == NULL) {
4836                 rc = -ENOMEM;
4837                 goto out_kfree;
4838         }
4839         /* Fill in the command type */
4840         c->cmd_type = CMD_IOCTL_PEND;
4841         /* Fill in Command Header */
4842         c->Header.ReplyQueue = 0; /* unused in simple mode */
4843         if (iocommand.buf_size > 0) {   /* buffer to fill */
4844                 c->Header.SGList = 1;
4845                 c->Header.SGTotal = cpu_to_le16(1);
4846         } else  { /* no buffers to fill */
4847                 c->Header.SGList = 0;
4848                 c->Header.SGTotal = cpu_to_le16(0);
4849         }
4850         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
4851         /* use the kernel address the cmd block for tag */
4852         c->Header.tag = cpu_to_le64(c->busaddr);
4853
4854         /* Fill in Request block */
4855         memcpy(&c->Request, &iocommand.Request,
4856                 sizeof(c->Request));
4857
4858         /* Fill in the scatter gather information */
4859         if (iocommand.buf_size > 0) {
4860                 temp64 = pci_map_single(h->pdev, buff,
4861                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4862                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
4863                         c->SG[0].Addr = cpu_to_le64(0);
4864                         c->SG[0].Len = cpu_to_le32(0);
4865                         rc = -ENOMEM;
4866                         goto out;
4867                 }
4868                 c->SG[0].Addr = cpu_to_le64(temp64);
4869                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
4870                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
4871         }
4872         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4873         if (iocommand.buf_size > 0)
4874                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
4875         check_ioctl_unit_attention(h, c);
4876
4877         /* Copy the error information out */
4878         memcpy(&iocommand.error_info, c->err_info,
4879                 sizeof(iocommand.error_info));
4880         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
4881                 rc = -EFAULT;
4882                 goto out;
4883         }
4884         if ((iocommand.Request.Type.Direction & XFER_READ) &&
4885                 iocommand.buf_size > 0) {
4886                 /* Copy the data out of the buffer we created */
4887                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
4888                         rc = -EFAULT;
4889                         goto out;
4890                 }
4891         }
4892 out:
4893         cmd_special_free(h, c);
4894 out_kfree:
4895         kfree(buff);
4896         return rc;
4897 }
4898
4899 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4900 {
4901         BIG_IOCTL_Command_struct *ioc;
4902         struct CommandList *c;
4903         unsigned char **buff = NULL;
4904         int *buff_size = NULL;
4905         u64 temp64;
4906         BYTE sg_used = 0;
4907         int status = 0;
4908         u32 left;
4909         u32 sz;
4910         BYTE __user *data_ptr;
4911
4912         if (!argp)
4913                 return -EINVAL;
4914         if (!capable(CAP_SYS_RAWIO))
4915                 return -EPERM;
4916         ioc = (BIG_IOCTL_Command_struct *)
4917             kmalloc(sizeof(*ioc), GFP_KERNEL);
4918         if (!ioc) {
4919                 status = -ENOMEM;
4920                 goto cleanup1;
4921         }
4922         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
4923                 status = -EFAULT;
4924                 goto cleanup1;
4925         }
4926         if ((ioc->buf_size < 1) &&
4927             (ioc->Request.Type.Direction != XFER_NONE)) {
4928                 status = -EINVAL;
4929                 goto cleanup1;
4930         }
4931         /* Check kmalloc limits  using all SGs */
4932         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
4933                 status = -EINVAL;
4934                 goto cleanup1;
4935         }
4936         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
4937                 status = -EINVAL;
4938                 goto cleanup1;
4939         }
4940         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
4941         if (!buff) {
4942                 status = -ENOMEM;
4943                 goto cleanup1;
4944         }
4945         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
4946         if (!buff_size) {
4947                 status = -ENOMEM;
4948                 goto cleanup1;
4949         }
4950         left = ioc->buf_size;
4951         data_ptr = ioc->buf;
4952         while (left) {
4953                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
4954                 buff_size[sg_used] = sz;
4955                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
4956                 if (buff[sg_used] == NULL) {
4957                         status = -ENOMEM;
4958                         goto cleanup1;
4959                 }
4960                 if (ioc->Request.Type.Direction & XFER_WRITE) {
4961                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
4962                                 status = -EFAULT;
4963                                 goto cleanup1;
4964                         }
4965                 } else
4966                         memset(buff[sg_used], 0, sz);
4967                 left -= sz;
4968                 data_ptr += sz;
4969                 sg_used++;
4970         }
4971         c = cmd_special_alloc(h);
4972         if (c == NULL) {
4973                 status = -ENOMEM;
4974                 goto cleanup1;
4975         }
4976         c->cmd_type = CMD_IOCTL_PEND;
4977         c->Header.ReplyQueue = 0;
4978         c->Header.SGList = (u8) sg_used;
4979         c->Header.SGTotal = cpu_to_le16(sg_used);
4980         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
4981         c->Header.tag = cpu_to_le64(c->busaddr);
4982         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
4983         if (ioc->buf_size > 0) {
4984                 int i;
4985                 for (i = 0; i < sg_used; i++) {
4986                         temp64 = pci_map_single(h->pdev, buff[i],
4987                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
4988                         if (dma_mapping_error(&h->pdev->dev,
4989                                                         (dma_addr_t) temp64)) {
4990                                 c->SG[i].Addr = cpu_to_le64(0);
4991                                 c->SG[i].Len = cpu_to_le32(0);
4992                                 hpsa_pci_unmap(h->pdev, c, i,
4993                                         PCI_DMA_BIDIRECTIONAL);
4994                                 status = -ENOMEM;
4995                                 goto cleanup0;
4996                         }
4997                         c->SG[i].Addr = cpu_to_le64(temp64);
4998                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
4999                         c->SG[i].Ext = cpu_to_le32(0);
5000                 }
5001                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
5002         }
5003         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
5004         if (sg_used)
5005                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5006         check_ioctl_unit_attention(h, c);
5007         /* Copy the error information out */
5008         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
5009         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
5010                 status = -EFAULT;
5011                 goto cleanup0;
5012         }
5013         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
5014                 int i;
5015
5016                 /* Copy the data out of the buffer we created */
5017                 BYTE __user *ptr = ioc->buf;
5018                 for (i = 0; i < sg_used; i++) {
5019                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
5020                                 status = -EFAULT;
5021                                 goto cleanup0;
5022                         }
5023                         ptr += buff_size[i];
5024                 }
5025         }
5026         status = 0;
5027 cleanup0:
5028         cmd_special_free(h, c);
5029 cleanup1:
5030         if (buff) {
5031                 int i;
5032
5033                 for (i = 0; i < sg_used; i++)
5034                         kfree(buff[i]);
5035                 kfree(buff);
5036         }
5037         kfree(buff_size);
5038         kfree(ioc);
5039         return status;
5040 }
5041
5042 static void check_ioctl_unit_attention(struct ctlr_info *h,
5043         struct CommandList *c)
5044 {
5045         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5046                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5047                 (void) check_for_unit_attention(h, c);
5048 }
5049
5050 static int increment_passthru_count(struct ctlr_info *h)
5051 {
5052         unsigned long flags;
5053
5054         spin_lock_irqsave(&h->passthru_count_lock, flags);
5055         if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
5056                 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5057                 return -1;
5058         }
5059         h->passthru_count++;
5060         spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5061         return 0;
5062 }
5063
5064 static void decrement_passthru_count(struct ctlr_info *h)
5065 {
5066         unsigned long flags;
5067
5068         spin_lock_irqsave(&h->passthru_count_lock, flags);
5069         if (h->passthru_count <= 0) {
5070                 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5071                 /* not expecting to get here. */
5072                 dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
5073                 return;
5074         }
5075         h->passthru_count--;
5076         spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5077 }
5078
5079 /*
5080  * ioctl
5081  */
5082 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5083 {
5084         struct ctlr_info *h;
5085         void __user *argp = (void __user *)arg;
5086         int rc;
5087
5088         h = sdev_to_hba(dev);
5089
5090         switch (cmd) {
5091         case CCISS_DEREGDISK:
5092         case CCISS_REGNEWDISK:
5093         case CCISS_REGNEWD:
5094                 hpsa_scan_start(h->scsi_host);
5095                 return 0;
5096         case CCISS_GETPCIINFO:
5097                 return hpsa_getpciinfo_ioctl(h, argp);
5098         case CCISS_GETDRIVVER:
5099                 return hpsa_getdrivver_ioctl(h, argp);
5100         case CCISS_PASSTHRU:
5101                 if (increment_passthru_count(h))
5102                         return -EAGAIN;
5103                 rc = hpsa_passthru_ioctl(h, argp);
5104                 decrement_passthru_count(h);
5105                 return rc;
5106         case CCISS_BIG_PASSTHRU:
5107                 if (increment_passthru_count(h))
5108                         return -EAGAIN;
5109                 rc = hpsa_big_passthru_ioctl(h, argp);
5110                 decrement_passthru_count(h);
5111                 return rc;
5112         default:
5113                 return -ENOTTY;
5114         }
5115 }
5116
5117 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5118                                 u8 reset_type)
5119 {
5120         struct CommandList *c;
5121
5122         c = cmd_alloc(h);
5123         if (!c)
5124                 return -ENOMEM;
5125         /* fill_cmd can't fail here, no data buffer to map */
5126         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5127                 RAID_CTLR_LUNID, TYPE_MSG);
5128         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5129         c->waiting = NULL;
5130         enqueue_cmd_and_start_io(h, c);
5131         /* Don't wait for completion, the reset won't complete.  Don't free
5132          * the command either.  This is the last command we will send before
5133          * re-initializing everything, so it doesn't matter and won't leak.
5134          */
5135         return 0;
5136 }
5137
5138 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5139         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5140         int cmd_type)
5141 {
5142         int pci_dir = XFER_NONE;
5143         struct CommandList *a; /* for commands to be aborted */
5144
5145         c->cmd_type = CMD_IOCTL_PEND;
5146         c->Header.ReplyQueue = 0;
5147         if (buff != NULL && size > 0) {
5148                 c->Header.SGList = 1;
5149                 c->Header.SGTotal = cpu_to_le16(1);
5150         } else {
5151                 c->Header.SGList = 0;
5152                 c->Header.SGTotal = cpu_to_le16(0);
5153         }
5154         c->Header.tag = cpu_to_le64(c->busaddr);
5155         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5156
5157         if (cmd_type == TYPE_CMD) {
5158                 switch (cmd) {
5159                 case HPSA_INQUIRY:
5160                         /* are we trying to read a vital product page */
5161                         if (page_code & VPD_PAGE) {
5162                                 c->Request.CDB[1] = 0x01;
5163                                 c->Request.CDB[2] = (page_code & 0xff);
5164                         }
5165                         c->Request.CDBLen = 6;
5166                         c->Request.type_attr_dir =
5167                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5168                         c->Request.Timeout = 0;
5169                         c->Request.CDB[0] = HPSA_INQUIRY;
5170                         c->Request.CDB[4] = size & 0xFF;
5171                         break;
5172                 case HPSA_REPORT_LOG:
5173                 case HPSA_REPORT_PHYS:
5174                         /* Talking to controller so It's a physical command
5175                            mode = 00 target = 0.  Nothing to write.
5176                          */
5177                         c->Request.CDBLen = 12;
5178                         c->Request.type_attr_dir =
5179                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5180                         c->Request.Timeout = 0;
5181                         c->Request.CDB[0] = cmd;
5182                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5183                         c->Request.CDB[7] = (size >> 16) & 0xFF;
5184                         c->Request.CDB[8] = (size >> 8) & 0xFF;
5185                         c->Request.CDB[9] = size & 0xFF;
5186                         break;
5187                 case HPSA_CACHE_FLUSH:
5188                         c->Request.CDBLen = 12;
5189                         c->Request.type_attr_dir =
5190                                         TYPE_ATTR_DIR(cmd_type,
5191                                                 ATTR_SIMPLE, XFER_WRITE);
5192                         c->Request.Timeout = 0;
5193                         c->Request.CDB[0] = BMIC_WRITE;
5194                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5195                         c->Request.CDB[7] = (size >> 8) & 0xFF;
5196                         c->Request.CDB[8] = size & 0xFF;
5197                         break;
5198                 case TEST_UNIT_READY:
5199                         c->Request.CDBLen = 6;
5200                         c->Request.type_attr_dir =
5201                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5202                         c->Request.Timeout = 0;
5203                         break;
5204                 case HPSA_GET_RAID_MAP:
5205                         c->Request.CDBLen = 12;
5206                         c->Request.type_attr_dir =
5207                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5208                         c->Request.Timeout = 0;
5209                         c->Request.CDB[0] = HPSA_CISS_READ;
5210                         c->Request.CDB[1] = cmd;
5211                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5212                         c->Request.CDB[7] = (size >> 16) & 0xFF;
5213                         c->Request.CDB[8] = (size >> 8) & 0xFF;
5214                         c->Request.CDB[9] = size & 0xFF;
5215                         break;
5216                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
5217                         c->Request.CDBLen = 10;
5218                         c->Request.type_attr_dir =
5219                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5220                         c->Request.Timeout = 0;
5221                         c->Request.CDB[0] = BMIC_READ;
5222                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5223                         c->Request.CDB[7] = (size >> 16) & 0xFF;
5224                         c->Request.CDB[8] = (size >> 8) & 0xFF;
5225                         break;
5226                 default:
5227                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5228                         BUG();
5229                         return -1;
5230                 }
5231         } else if (cmd_type == TYPE_MSG) {
5232                 switch (cmd) {
5233
5234                 case  HPSA_DEVICE_RESET_MSG:
5235                         c->Request.CDBLen = 16;
5236                         c->Request.type_attr_dir =
5237                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5238                         c->Request.Timeout = 0; /* Don't time out */
5239                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5240                         c->Request.CDB[0] =  cmd;
5241                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5242                         /* If bytes 4-7 are zero, it means reset the */
5243                         /* LunID device */
5244                         c->Request.CDB[4] = 0x00;
5245                         c->Request.CDB[5] = 0x00;
5246                         c->Request.CDB[6] = 0x00;
5247                         c->Request.CDB[7] = 0x00;
5248                         break;
5249                 case  HPSA_ABORT_MSG:
5250                         a = buff;       /* point to command to be aborted */
5251                         dev_dbg(&h->pdev->dev,
5252                                 "Abort Tag:0x%016llx request Tag:0x%016llx",
5253                                 a->Header.tag, c->Header.tag);
5254                         c->Request.CDBLen = 16;
5255                         c->Request.type_attr_dir =
5256                                         TYPE_ATTR_DIR(cmd_type,
5257                                                 ATTR_SIMPLE, XFER_WRITE);
5258                         c->Request.Timeout = 0; /* Don't time out */
5259                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5260                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5261                         c->Request.CDB[2] = 0x00; /* reserved */
5262                         c->Request.CDB[3] = 0x00; /* reserved */
5263                         /* Tag to abort goes in CDB[4]-CDB[11] */
5264                         memcpy(&c->Request.CDB[4], &a->Header.tag,
5265                                 sizeof(a->Header.tag));
5266                         c->Request.CDB[12] = 0x00; /* reserved */
5267                         c->Request.CDB[13] = 0x00; /* reserved */
5268                         c->Request.CDB[14] = 0x00; /* reserved */
5269                         c->Request.CDB[15] = 0x00; /* reserved */
5270                 break;
5271                 default:
5272                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
5273                                 cmd);
5274                         BUG();
5275                 }
5276         } else {
5277                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5278                 BUG();
5279         }
5280
5281         switch (GET_DIR(c->Request.type_attr_dir)) {
5282         case XFER_READ:
5283                 pci_dir = PCI_DMA_FROMDEVICE;
5284                 break;
5285         case XFER_WRITE:
5286                 pci_dir = PCI_DMA_TODEVICE;
5287                 break;
5288         case XFER_NONE:
5289                 pci_dir = PCI_DMA_NONE;
5290                 break;
5291         default:
5292                 pci_dir = PCI_DMA_BIDIRECTIONAL;
5293         }
5294         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5295                 return -1;
5296         return 0;
5297 }
5298
5299 /*
5300  * Map (physical) PCI mem into (virtual) kernel space
5301  */
5302 static void __iomem *remap_pci_mem(ulong base, ulong size)
5303 {
5304         ulong page_base = ((ulong) base) & PAGE_MASK;
5305         ulong page_offs = ((ulong) base) - page_base;
5306         void __iomem *page_remapped = ioremap_nocache(page_base,
5307                 page_offs + size);
5308
5309         return page_remapped ? (page_remapped + page_offs) : NULL;
5310 }
5311
5312 /* Takes cmds off the submission queue and sends them to the hardware,
5313  * then puts them on the queue of cmds waiting for completion.
5314  * Assumes h->lock is held
5315  */
5316 static void start_io(struct ctlr_info *h, unsigned long *flags)
5317 {
5318         struct CommandList *c;
5319
5320         while (!list_empty(&h->reqQ)) {
5321                 c = list_entry(h->reqQ.next, struct CommandList, list);
5322                 /* can't do anything if fifo is full */
5323                 if ((h->access.fifo_full(h))) {
5324                         h->fifo_recently_full = 1;
5325                         dev_warn(&h->pdev->dev, "fifo full\n");
5326                         break;
5327                 }
5328                 h->fifo_recently_full = 0;
5329
5330                 /* Get the first entry from the Request Q */
5331                 removeQ(c);
5332                 h->Qdepth--;
5333
5334                 /* Put job onto the completed Q */
5335                 addQ(&h->cmpQ, c);
5336                 atomic_inc(&h->commands_outstanding);
5337                 spin_unlock_irqrestore(&h->lock, *flags);
5338                 /* Tell the controller execute command */
5339                 h->access.submit_command(h, c);
5340                 spin_lock_irqsave(&h->lock, *flags);
5341         }
5342 }
5343
5344 static void lock_and_start_io(struct ctlr_info *h)
5345 {
5346         unsigned long flags;
5347
5348         spin_lock_irqsave(&h->lock, flags);
5349         start_io(h, &flags);
5350         spin_unlock_irqrestore(&h->lock, flags);
5351 }
5352
5353 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5354 {
5355         return h->access.command_completed(h, q);
5356 }
5357
5358 static inline bool interrupt_pending(struct ctlr_info *h)
5359 {
5360         return h->access.intr_pending(h);
5361 }
5362
5363 static inline long interrupt_not_for_us(struct ctlr_info *h)
5364 {
5365         return (h->access.intr_pending(h) == 0) ||
5366                 (h->interrupts_enabled == 0);
5367 }
5368
5369 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5370         u32 raw_tag)
5371 {
5372         if (unlikely(tag_index >= h->nr_cmds)) {
5373                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5374                 return 1;
5375         }
5376         return 0;
5377 }
5378
5379 static inline void finish_cmd(struct CommandList *c)
5380 {
5381         unsigned long flags;
5382         int io_may_be_stalled = 0;
5383         struct ctlr_info *h = c->h;
5384         int count;
5385
5386         spin_lock_irqsave(&h->lock, flags);
5387         removeQ(c);
5388
5389         /*
5390          * Check for possibly stalled i/o.
5391          *
5392          * If a fifo_full condition is encountered, requests will back up
5393          * in h->reqQ.  This queue is only emptied out by start_io which is
5394          * only called when a new i/o request comes in.  If no i/o's are
5395          * forthcoming, the i/o's in h->reqQ can get stuck.  So we call
5396          * start_io from here if we detect such a danger.
5397          *
5398          * Normally, we shouldn't hit this case, but pounding on the
5399          * CCISS_PASSTHRU ioctl can provoke it.  Only call start_io if
5400          * commands_outstanding is low.  We want to avoid calling
5401          * start_io from in here as much as possible, and esp. don't
5402          * want to get in a cycle where we call start_io every time
5403          * through here.
5404          */
5405         count = atomic_read(&h->commands_outstanding);
5406         spin_unlock_irqrestore(&h->lock, flags);
5407         if (unlikely(h->fifo_recently_full) && count < 5)
5408                 io_may_be_stalled = 1;
5409
5410         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5411         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5412                         || c->cmd_type == CMD_IOACCEL2))
5413                 complete_scsi_command(c);
5414         else if (c->cmd_type == CMD_IOCTL_PEND)
5415                 complete(c->waiting);
5416         if (unlikely(io_may_be_stalled))
5417                 lock_and_start_io(h);
5418 }
5419
5420 static inline u32 hpsa_tag_contains_index(u32 tag)
5421 {
5422         return tag & DIRECT_LOOKUP_BIT;
5423 }
5424
5425 static inline u32 hpsa_tag_to_index(u32 tag)
5426 {
5427         return tag >> DIRECT_LOOKUP_SHIFT;
5428 }
5429
5430
5431 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5432 {
5433 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5434 #define HPSA_SIMPLE_ERROR_BITS 0x03
5435         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5436                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
5437         return tag & ~HPSA_PERF_ERROR_BITS;
5438 }
5439
5440 /* process completion of an indexed ("direct lookup") command */
5441 static inline void process_indexed_cmd(struct ctlr_info *h,
5442         u32 raw_tag)
5443 {
5444         u32 tag_index;
5445         struct CommandList *c;
5446
5447         tag_index = hpsa_tag_to_index(raw_tag);
5448         if (!bad_tag(h, tag_index, raw_tag)) {
5449                 c = h->cmd_pool + tag_index;
5450                 finish_cmd(c);
5451         }
5452 }
5453
5454 /* process completion of a non-indexed command */
5455 static inline void process_nonindexed_cmd(struct ctlr_info *h,
5456         u32 raw_tag)
5457 {
5458         u32 tag;
5459         struct CommandList *c = NULL;
5460         unsigned long flags;
5461
5462         tag = hpsa_tag_discard_error_bits(h, raw_tag);
5463         spin_lock_irqsave(&h->lock, flags);
5464         list_for_each_entry(c, &h->cmpQ, list) {
5465                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
5466                         spin_unlock_irqrestore(&h->lock, flags);
5467                         finish_cmd(c);
5468                         return;
5469                 }
5470         }
5471         spin_unlock_irqrestore(&h->lock, flags);
5472         bad_tag(h, h->nr_cmds + 1, raw_tag);
5473 }
5474
5475 /* Some controllers, like p400, will give us one interrupt
5476  * after a soft reset, even if we turned interrupts off.
5477  * Only need to check for this in the hpsa_xxx_discard_completions
5478  * functions.
5479  */
5480 static int ignore_bogus_interrupt(struct ctlr_info *h)
5481 {
5482         if (likely(!reset_devices))
5483                 return 0;
5484
5485         if (likely(h->interrupts_enabled))
5486                 return 0;
5487
5488         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5489                 "(known firmware bug.)  Ignoring.\n");
5490
5491         return 1;
5492 }
5493
5494 /*
5495  * Convert &h->q[x] (passed to interrupt handlers) back to h.
5496  * Relies on (h-q[x] == x) being true for x such that
5497  * 0 <= x < MAX_REPLY_QUEUES.
5498  */
5499 static struct ctlr_info *queue_to_hba(u8 *queue)
5500 {
5501         return container_of((queue - *queue), struct ctlr_info, q[0]);
5502 }
5503
5504 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5505 {
5506         struct ctlr_info *h = queue_to_hba(queue);
5507         u8 q = *(u8 *) queue;
5508         u32 raw_tag;
5509
5510         if (ignore_bogus_interrupt(h))
5511                 return IRQ_NONE;
5512
5513         if (interrupt_not_for_us(h))
5514                 return IRQ_NONE;
5515         h->last_intr_timestamp = get_jiffies_64();
5516         while (interrupt_pending(h)) {
5517                 raw_tag = get_next_completion(h, q);
5518                 while (raw_tag != FIFO_EMPTY)
5519                         raw_tag = next_command(h, q);
5520         }
5521         return IRQ_HANDLED;
5522 }
5523
5524 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5525 {
5526         struct ctlr_info *h = queue_to_hba(queue);
5527         u32 raw_tag;
5528         u8 q = *(u8 *) queue;
5529
5530         if (ignore_bogus_interrupt(h))
5531                 return IRQ_NONE;
5532
5533         h->last_intr_timestamp = get_jiffies_64();
5534         raw_tag = get_next_completion(h, q);
5535         while (raw_tag != FIFO_EMPTY)
5536                 raw_tag = next_command(h, q);
5537         return IRQ_HANDLED;
5538 }
5539
5540 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5541 {
5542         struct ctlr_info *h = queue_to_hba((u8 *) queue);
5543         u32 raw_tag;
5544         u8 q = *(u8 *) queue;
5545
5546         if (interrupt_not_for_us(h))
5547                 return IRQ_NONE;
5548         h->last_intr_timestamp = get_jiffies_64();
5549         while (interrupt_pending(h)) {
5550                 raw_tag = get_next_completion(h, q);
5551                 while (raw_tag != FIFO_EMPTY) {
5552                         if (likely(hpsa_tag_contains_index(raw_tag)))
5553                                 process_indexed_cmd(h, raw_tag);
5554                         else
5555                                 process_nonindexed_cmd(h, raw_tag);
5556                         raw_tag = next_command(h, q);
5557                 }
5558         }
5559         return IRQ_HANDLED;
5560 }
5561
5562 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5563 {
5564         struct ctlr_info *h = queue_to_hba(queue);
5565         u32 raw_tag;
5566         u8 q = *(u8 *) queue;
5567
5568         h->last_intr_timestamp = get_jiffies_64();
5569         raw_tag = get_next_completion(h, q);
5570         while (raw_tag != FIFO_EMPTY) {
5571                 if (likely(hpsa_tag_contains_index(raw_tag)))
5572                         process_indexed_cmd(h, raw_tag);
5573                 else
5574                         process_nonindexed_cmd(h, raw_tag);
5575                 raw_tag = next_command(h, q);
5576         }
5577         return IRQ_HANDLED;
5578 }
5579
5580 /* Send a message CDB to the firmware. Careful, this only works
5581  * in simple mode, not performant mode due to the tag lookup.
5582  * We only ever use this immediately after a controller reset.
5583  */
5584 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
5585                         unsigned char type)
5586 {
5587         struct Command {
5588                 struct CommandListHeader CommandHeader;
5589                 struct RequestBlock Request;
5590                 struct ErrDescriptor ErrorDescriptor;
5591         };
5592         struct Command *cmd;
5593         static const size_t cmd_sz = sizeof(*cmd) +
5594                                         sizeof(cmd->ErrorDescriptor);
5595         dma_addr_t paddr64;
5596         __le32 paddr32;
5597         u32 tag;
5598         void __iomem *vaddr;
5599         int i, err;
5600
5601         vaddr = pci_ioremap_bar(pdev, 0);
5602         if (vaddr == NULL)
5603                 return -ENOMEM;
5604
5605         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
5606          * CCISS commands, so they must be allocated from the lower 4GiB of
5607          * memory.
5608          */
5609         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
5610         if (err) {
5611                 iounmap(vaddr);
5612                 return -ENOMEM;
5613         }
5614
5615         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
5616         if (cmd == NULL) {
5617                 iounmap(vaddr);
5618                 return -ENOMEM;
5619         }
5620
5621         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
5622          * although there's no guarantee, we assume that the address is at
5623          * least 4-byte aligned (most likely, it's page-aligned).
5624          */
5625         paddr32 = cpu_to_le32(paddr64);
5626
5627         cmd->CommandHeader.ReplyQueue = 0;
5628         cmd->CommandHeader.SGList = 0;
5629         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
5630         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
5631         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
5632
5633         cmd->Request.CDBLen = 16;
5634         cmd->Request.type_attr_dir =
5635                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
5636         cmd->Request.Timeout = 0; /* Don't time out */
5637         cmd->Request.CDB[0] = opcode;
5638         cmd->Request.CDB[1] = type;
5639         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5640         cmd->ErrorDescriptor.Addr =
5641                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
5642         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
5643
5644         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
5645
5646         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
5647                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
5648                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
5649                         break;
5650                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
5651         }
5652
5653         iounmap(vaddr);
5654
5655         /* we leak the DMA buffer here ... no choice since the controller could
5656          *  still complete the command.
5657          */
5658         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
5659                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
5660                         opcode, type);
5661                 return -ETIMEDOUT;
5662         }
5663
5664         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
5665
5666         if (tag & HPSA_ERROR_BIT) {
5667                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
5668                         opcode, type);
5669                 return -EIO;
5670         }
5671
5672         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
5673                 opcode, type);
5674         return 0;
5675 }
5676
5677 #define hpsa_noop(p) hpsa_message(p, 3, 0)
5678
5679 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
5680         void __iomem *vaddr, u32 use_doorbell)
5681 {
5682
5683         if (use_doorbell) {
5684                 /* For everything after the P600, the PCI power state method
5685                  * of resetting the controller doesn't work, so we have this
5686                  * other way using the doorbell register.
5687                  */
5688                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
5689                 writel(use_doorbell, vaddr + SA5_DOORBELL);
5690
5691                 /* PMC hardware guys tell us we need a 10 second delay after
5692                  * doorbell reset and before any attempt to talk to the board
5693                  * at all to ensure that this actually works and doesn't fall
5694                  * over in some weird corner cases.
5695                  */
5696                 msleep(10000);
5697         } else { /* Try to do it the PCI power state way */
5698
5699                 /* Quoting from the Open CISS Specification: "The Power
5700                  * Management Control/Status Register (CSR) controls the power
5701                  * state of the device.  The normal operating state is D0,
5702                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
5703                  * the controller, place the interface device in D3 then to D0,
5704                  * this causes a secondary PCI reset which will reset the
5705                  * controller." */
5706
5707                 int rc = 0;
5708
5709                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
5710
5711                 /* enter the D3hot power management state */
5712                 rc = pci_set_power_state(pdev, PCI_D3hot);
5713                 if (rc)
5714                         return rc;
5715
5716                 msleep(500);
5717
5718                 /* enter the D0 power management state */
5719                 rc = pci_set_power_state(pdev, PCI_D0);
5720                 if (rc)
5721                         return rc;
5722
5723                 /*
5724                  * The P600 requires a small delay when changing states.
5725                  * Otherwise we may think the board did not reset and we bail.
5726                  * This for kdump only and is particular to the P600.
5727                  */
5728                 msleep(500);
5729         }
5730         return 0;
5731 }
5732
5733 static void init_driver_version(char *driver_version, int len)
5734 {
5735         memset(driver_version, 0, len);
5736         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5737 }
5738
5739 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5740 {
5741         char *driver_version;
5742         int i, size = sizeof(cfgtable->driver_version);
5743
5744         driver_version = kmalloc(size, GFP_KERNEL);
5745         if (!driver_version)
5746                 return -ENOMEM;
5747
5748         init_driver_version(driver_version, size);
5749         for (i = 0; i < size; i++)
5750                 writeb(driver_version[i], &cfgtable->driver_version[i]);
5751         kfree(driver_version);
5752         return 0;
5753 }
5754
5755 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
5756                                           unsigned char *driver_ver)
5757 {
5758         int i;
5759
5760         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
5761                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
5762 }
5763
5764 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5765 {
5766
5767         char *driver_ver, *old_driver_ver;
5768         int rc, size = sizeof(cfgtable->driver_version);
5769
5770         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
5771         if (!old_driver_ver)
5772                 return -ENOMEM;
5773         driver_ver = old_driver_ver + size;
5774
5775         /* After a reset, the 32 bytes of "driver version" in the cfgtable
5776          * should have been changed, otherwise we know the reset failed.
5777          */
5778         init_driver_version(old_driver_ver, size);
5779         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
5780         rc = !memcmp(driver_ver, old_driver_ver, size);
5781         kfree(old_driver_ver);
5782         return rc;
5783 }
5784 /* This does a hard reset of the controller using PCI power management
5785  * states or the using the doorbell register.
5786  */
5787 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5788 {
5789         u64 cfg_offset;
5790         u32 cfg_base_addr;
5791         u64 cfg_base_addr_index;
5792         void __iomem *vaddr;
5793         unsigned long paddr;
5794         u32 misc_fw_support;
5795         int rc;
5796         struct CfgTable __iomem *cfgtable;
5797         u32 use_doorbell;
5798         u32 board_id;
5799         u16 command_register;
5800
5801         /* For controllers as old as the P600, this is very nearly
5802          * the same thing as
5803          *
5804          * pci_save_state(pci_dev);
5805          * pci_set_power_state(pci_dev, PCI_D3hot);
5806          * pci_set_power_state(pci_dev, PCI_D0);
5807          * pci_restore_state(pci_dev);
5808          *
5809          * For controllers newer than the P600, the pci power state
5810          * method of resetting doesn't work so we have another way
5811          * using the doorbell register.
5812          */
5813
5814         rc = hpsa_lookup_board_id(pdev, &board_id);
5815         if (rc < 0) {
5816                 dev_warn(&pdev->dev, "Board ID not found\n");
5817                 return rc;
5818         }
5819         if (!ctlr_is_resettable(board_id)) {
5820                 dev_warn(&pdev->dev, "Controller not resettable\n");
5821                 return -ENODEV;
5822         }
5823
5824         /* if controller is soft- but not hard resettable... */
5825         if (!ctlr_is_hard_resettable(board_id))
5826                 return -ENOTSUPP; /* try soft reset later. */
5827
5828         /* Save the PCI command register */
5829         pci_read_config_word(pdev, 4, &command_register);
5830         pci_save_state(pdev);
5831
5832         /* find the first memory BAR, so we can find the cfg table */
5833         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
5834         if (rc)
5835                 return rc;
5836         vaddr = remap_pci_mem(paddr, 0x250);
5837         if (!vaddr)
5838                 return -ENOMEM;
5839
5840         /* find cfgtable in order to check if reset via doorbell is supported */
5841         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
5842                                         &cfg_base_addr_index, &cfg_offset);
5843         if (rc)
5844                 goto unmap_vaddr;
5845         cfgtable = remap_pci_mem(pci_resource_start(pdev,
5846                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
5847         if (!cfgtable) {
5848                 rc = -ENOMEM;
5849                 goto unmap_vaddr;
5850         }
5851         rc = write_driver_ver_to_cfgtable(cfgtable);
5852         if (rc)
5853                 goto unmap_cfgtable;
5854
5855         /* If reset via doorbell register is supported, use that.
5856          * There are two such methods.  Favor the newest method.
5857          */
5858         misc_fw_support = readl(&cfgtable->misc_fw_support);
5859         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
5860         if (use_doorbell) {
5861                 use_doorbell = DOORBELL_CTLR_RESET2;
5862         } else {
5863                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
5864                 if (use_doorbell) {
5865                         dev_warn(&pdev->dev, "Soft reset not supported. "
5866                                 "Firmware update is required.\n");
5867                         rc = -ENOTSUPP; /* try soft reset */
5868                         goto unmap_cfgtable;
5869                 }
5870         }
5871
5872         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
5873         if (rc)
5874                 goto unmap_cfgtable;
5875
5876         pci_restore_state(pdev);
5877         pci_write_config_word(pdev, 4, command_register);
5878
5879         /* Some devices (notably the HP Smart Array 5i Controller)
5880            need a little pause here */
5881         msleep(HPSA_POST_RESET_PAUSE_MSECS);
5882
5883         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
5884         if (rc) {
5885                 dev_warn(&pdev->dev,
5886                         "failed waiting for board to become ready "
5887                         "after hard reset\n");
5888                 goto unmap_cfgtable;
5889         }
5890
5891         rc = controller_reset_failed(vaddr);
5892         if (rc < 0)
5893                 goto unmap_cfgtable;
5894         if (rc) {
5895                 dev_warn(&pdev->dev, "Unable to successfully reset "
5896                         "controller. Will try soft reset.\n");
5897                 rc = -ENOTSUPP;
5898         } else {
5899                 dev_info(&pdev->dev, "board ready after hard reset.\n");
5900         }
5901
5902 unmap_cfgtable:
5903         iounmap(cfgtable);
5904
5905 unmap_vaddr:
5906         iounmap(vaddr);
5907         return rc;
5908 }
5909
5910 /*
5911  *  We cannot read the structure directly, for portability we must use
5912  *   the io functions.
5913  *   This is for debug only.
5914  */
5915 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
5916 {
5917 #ifdef HPSA_DEBUG
5918         int i;
5919         char temp_name[17];
5920
5921         dev_info(dev, "Controller Configuration information\n");
5922         dev_info(dev, "------------------------------------\n");
5923         for (i = 0; i < 4; i++)
5924                 temp_name[i] = readb(&(tb->Signature[i]));
5925         temp_name[4] = '\0';
5926         dev_info(dev, "   Signature = %s\n", temp_name);
5927         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
5928         dev_info(dev, "   Transport methods supported = 0x%x\n",
5929                readl(&(tb->TransportSupport)));
5930         dev_info(dev, "   Transport methods active = 0x%x\n",
5931                readl(&(tb->TransportActive)));
5932         dev_info(dev, "   Requested transport Method = 0x%x\n",
5933                readl(&(tb->HostWrite.TransportRequest)));
5934         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
5935                readl(&(tb->HostWrite.CoalIntDelay)));
5936         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
5937                readl(&(tb->HostWrite.CoalIntCount)));
5938         dev_info(dev, "   Max outstanding commands = %d\n",
5939                readl(&(tb->CmdsOutMax)));
5940         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
5941         for (i = 0; i < 16; i++)
5942                 temp_name[i] = readb(&(tb->ServerName[i]));
5943         temp_name[16] = '\0';
5944         dev_info(dev, "   Server Name = %s\n", temp_name);
5945         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
5946                 readl(&(tb->HeartBeat)));
5947 #endif                          /* HPSA_DEBUG */
5948 }
5949
5950 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
5951 {
5952         int i, offset, mem_type, bar_type;
5953
5954         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
5955                 return 0;
5956         offset = 0;
5957         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5958                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
5959                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
5960                         offset += 4;
5961                 else {
5962                         mem_type = pci_resource_flags(pdev, i) &
5963                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
5964                         switch (mem_type) {
5965                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
5966                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
5967                                 offset += 4;    /* 32 bit */
5968                                 break;
5969                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
5970                                 offset += 8;
5971                                 break;
5972                         default:        /* reserved in PCI 2.2 */
5973                                 dev_warn(&pdev->dev,
5974                                        "base address is invalid\n");
5975                                 return -1;
5976                                 break;
5977                         }
5978                 }
5979                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
5980                         return i + 1;
5981         }
5982         return -1;
5983 }
5984
5985 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
5986  * controllers that are capable. If not, we use IO-APIC mode.
5987  */
5988
5989 static void hpsa_interrupt_mode(struct ctlr_info *h)
5990 {
5991 #ifdef CONFIG_PCI_MSI
5992         int err, i;
5993         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
5994
5995         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
5996                 hpsa_msix_entries[i].vector = 0;
5997                 hpsa_msix_entries[i].entry = i;
5998         }
5999
6000         /* Some boards advertise MSI but don't really support it */
6001         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6002             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6003                 goto default_int_mode;
6004         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6005                 dev_info(&h->pdev->dev, "MSIX\n");
6006                 h->msix_vector = MAX_REPLY_QUEUES;
6007                 if (h->msix_vector > num_online_cpus())
6008                         h->msix_vector = num_online_cpus();
6009                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
6010                                             1, h->msix_vector);
6011                 if (err < 0) {
6012                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
6013                         h->msix_vector = 0;
6014                         goto single_msi_mode;
6015                 } else if (err < h->msix_vector) {
6016                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6017                                "available\n", err);
6018                 }
6019                 h->msix_vector = err;
6020                 for (i = 0; i < h->msix_vector; i++)
6021                         h->intr[i] = hpsa_msix_entries[i].vector;
6022                 return;
6023         }
6024 single_msi_mode:
6025         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6026                 dev_info(&h->pdev->dev, "MSI\n");
6027                 if (!pci_enable_msi(h->pdev))
6028                         h->msi_vector = 1;
6029                 else
6030                         dev_warn(&h->pdev->dev, "MSI init failed\n");
6031         }
6032 default_int_mode:
6033 #endif                          /* CONFIG_PCI_MSI */
6034         /* if we get here we're going to use the default interrupt mode */
6035         h->intr[h->intr_mode] = h->pdev->irq;
6036 }
6037
6038 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6039 {
6040         int i;
6041         u32 subsystem_vendor_id, subsystem_device_id;
6042
6043         subsystem_vendor_id = pdev->subsystem_vendor;
6044         subsystem_device_id = pdev->subsystem_device;
6045         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6046                     subsystem_vendor_id;
6047
6048         for (i = 0; i < ARRAY_SIZE(products); i++)
6049                 if (*board_id == products[i].board_id)
6050                         return i;
6051
6052         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6053                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6054                 !hpsa_allow_any) {
6055                 dev_warn(&pdev->dev, "unrecognized board ID: "
6056                         "0x%08x, ignoring.\n", *board_id);
6057                         return -ENODEV;
6058         }
6059         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6060 }
6061
6062 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6063                                     unsigned long *memory_bar)
6064 {
6065         int i;
6066
6067         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6068                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6069                         /* addressing mode bits already removed */
6070                         *memory_bar = pci_resource_start(pdev, i);
6071                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6072                                 *memory_bar);
6073                         return 0;
6074                 }
6075         dev_warn(&pdev->dev, "no memory BAR found\n");
6076         return -ENODEV;
6077 }
6078
6079 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6080                                      int wait_for_ready)
6081 {
6082         int i, iterations;
6083         u32 scratchpad;
6084         if (wait_for_ready)
6085                 iterations = HPSA_BOARD_READY_ITERATIONS;
6086         else
6087                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6088
6089         for (i = 0; i < iterations; i++) {
6090                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6091                 if (wait_for_ready) {
6092                         if (scratchpad == HPSA_FIRMWARE_READY)
6093                                 return 0;
6094                 } else {
6095                         if (scratchpad != HPSA_FIRMWARE_READY)
6096                                 return 0;
6097                 }
6098                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6099         }
6100         dev_warn(&pdev->dev, "board not ready, timed out.\n");
6101         return -ENODEV;
6102 }
6103
6104 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6105                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6106                                u64 *cfg_offset)
6107 {
6108         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6109         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6110         *cfg_base_addr &= (u32) 0x0000ffff;
6111         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6112         if (*cfg_base_addr_index == -1) {
6113                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6114                 return -ENODEV;
6115         }
6116         return 0;
6117 }
6118
6119 static int hpsa_find_cfgtables(struct ctlr_info *h)
6120 {
6121         u64 cfg_offset;
6122         u32 cfg_base_addr;
6123         u64 cfg_base_addr_index;
6124         u32 trans_offset;
6125         int rc;
6126
6127         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6128                 &cfg_base_addr_index, &cfg_offset);
6129         if (rc)
6130                 return rc;
6131         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6132                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6133         if (!h->cfgtable)
6134                 return -ENOMEM;
6135         rc = write_driver_ver_to_cfgtable(h->cfgtable);
6136         if (rc)
6137                 return rc;
6138         /* Find performant mode table. */
6139         trans_offset = readl(&h->cfgtable->TransMethodOffset);
6140         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6141                                 cfg_base_addr_index)+cfg_offset+trans_offset,
6142                                 sizeof(*h->transtable));
6143         if (!h->transtable)
6144                 return -ENOMEM;
6145         return 0;
6146 }
6147
6148 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6149 {
6150         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
6151
6152         /* Limit commands in memory limited kdump scenario. */
6153         if (reset_devices && h->max_commands > 32)
6154                 h->max_commands = 32;
6155
6156         if (h->max_commands < 16) {
6157                 dev_warn(&h->pdev->dev, "Controller reports "
6158                         "max supported commands of %d, an obvious lie. "
6159                         "Using 16.  Ensure that firmware is up to date.\n",
6160                         h->max_commands);
6161                 h->max_commands = 16;
6162         }
6163 }
6164
6165 /* Interrogate the hardware for some limits:
6166  * max commands, max SG elements without chaining, and with chaining,
6167  * SG chain block size, etc.
6168  */
6169 static void hpsa_find_board_params(struct ctlr_info *h)
6170 {
6171         hpsa_get_max_perf_mode_cmds(h);
6172         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
6173         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6174         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6175         /*
6176          * Limit in-command s/g elements to 32 save dma'able memory.
6177          * Howvever spec says if 0, use 31
6178          */
6179         h->max_cmd_sg_entries = 31;
6180         if (h->maxsgentries > 512) {
6181                 h->max_cmd_sg_entries = 32;
6182                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
6183                 h->maxsgentries--; /* save one for chain pointer */
6184         } else {
6185                 h->chainsize = 0;
6186                 h->maxsgentries = 31; /* default to traditional values */
6187         }
6188
6189         /* Find out what task management functions are supported and cache */
6190         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6191         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6192                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6193         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6194                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6195 }
6196
6197 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6198 {
6199         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6200                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
6201                 return false;
6202         }
6203         return true;
6204 }
6205
6206 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6207 {
6208         u32 driver_support;
6209
6210         driver_support = readl(&(h->cfgtable->driver_support));
6211         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
6212 #ifdef CONFIG_X86
6213         driver_support |= ENABLE_SCSI_PREFETCH;
6214 #endif
6215         driver_support |= ENABLE_UNIT_ATTN;
6216         writel(driver_support, &(h->cfgtable->driver_support));
6217 }
6218
6219 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
6220  * in a prefetch beyond physical memory.
6221  */
6222 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6223 {
6224         u32 dma_prefetch;
6225
6226         if (h->board_id != 0x3225103C)
6227                 return;
6228         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6229         dma_prefetch |= 0x8000;
6230         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6231 }
6232
6233 static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6234 {
6235         int i;
6236         u32 doorbell_value;
6237         unsigned long flags;
6238         /* wait until the clear_event_notify bit 6 is cleared by controller. */
6239         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6240                 spin_lock_irqsave(&h->lock, flags);
6241                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6242                 spin_unlock_irqrestore(&h->lock, flags);
6243                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6244                         break;
6245                 /* delay and try again */
6246                 msleep(20);
6247         }
6248 }
6249
6250 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6251 {
6252         int i;
6253         u32 doorbell_value;
6254         unsigned long flags;
6255
6256         /* under certain very rare conditions, this can take awhile.
6257          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6258          * as we enter this code.)
6259          */
6260         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6261                 spin_lock_irqsave(&h->lock, flags);
6262                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6263                 spin_unlock_irqrestore(&h->lock, flags);
6264                 if (!(doorbell_value & CFGTBL_ChangeReq))
6265                         break;
6266                 /* delay and try again */
6267                 usleep_range(10000, 20000);
6268         }
6269 }
6270
6271 static int hpsa_enter_simple_mode(struct ctlr_info *h)
6272 {
6273         u32 trans_support;
6274
6275         trans_support = readl(&(h->cfgtable->TransportSupport));
6276         if (!(trans_support & SIMPLE_MODE))
6277                 return -ENOTSUPP;
6278
6279         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6280
6281         /* Update the field, and then ring the doorbell */
6282         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6283         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6284         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6285         hpsa_wait_for_mode_change_ack(h);
6286         print_cfg_table(&h->pdev->dev, h->cfgtable);
6287         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6288                 goto error;
6289         h->transMethod = CFGTBL_Trans_Simple;
6290         return 0;
6291 error:
6292         dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
6293         return -ENODEV;
6294 }
6295
6296 static int hpsa_pci_init(struct ctlr_info *h)
6297 {
6298         int prod_index, err;
6299
6300         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6301         if (prod_index < 0)
6302                 return prod_index;
6303         h->product_name = products[prod_index].product_name;
6304         h->access = *(products[prod_index].access);
6305
6306         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6307                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6308
6309         err = pci_enable_device(h->pdev);
6310         if (err) {
6311                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6312                 return err;
6313         }
6314
6315         err = pci_request_regions(h->pdev, HPSA);
6316         if (err) {
6317                 dev_err(&h->pdev->dev,
6318                         "cannot obtain PCI resources, aborting\n");
6319                 return err;
6320         }
6321
6322         pci_set_master(h->pdev);
6323
6324         hpsa_interrupt_mode(h);
6325         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6326         if (err)
6327                 goto err_out_free_res;
6328         h->vaddr = remap_pci_mem(h->paddr, 0x250);
6329         if (!h->vaddr) {
6330                 err = -ENOMEM;
6331                 goto err_out_free_res;
6332         }
6333         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6334         if (err)
6335                 goto err_out_free_res;
6336         err = hpsa_find_cfgtables(h);
6337         if (err)
6338                 goto err_out_free_res;
6339         hpsa_find_board_params(h);
6340
6341         if (!hpsa_CISS_signature_present(h)) {
6342                 err = -ENODEV;
6343                 goto err_out_free_res;
6344         }
6345         hpsa_set_driver_support_bits(h);
6346         hpsa_p600_dma_prefetch_quirk(h);
6347         err = hpsa_enter_simple_mode(h);
6348         if (err)
6349                 goto err_out_free_res;
6350         return 0;
6351
6352 err_out_free_res:
6353         if (h->transtable)
6354                 iounmap(h->transtable);
6355         if (h->cfgtable)
6356                 iounmap(h->cfgtable);
6357         if (h->vaddr)
6358                 iounmap(h->vaddr);
6359         pci_disable_device(h->pdev);
6360         pci_release_regions(h->pdev);
6361         return err;
6362 }
6363
6364 static void hpsa_hba_inquiry(struct ctlr_info *h)
6365 {
6366         int rc;
6367
6368 #define HBA_INQUIRY_BYTE_COUNT 64
6369         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6370         if (!h->hba_inquiry_data)
6371                 return;
6372         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6373                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6374         if (rc != 0) {
6375                 kfree(h->hba_inquiry_data);
6376                 h->hba_inquiry_data = NULL;
6377         }
6378 }
6379
6380 static int hpsa_init_reset_devices(struct pci_dev *pdev)
6381 {
6382         int rc, i;
6383         void __iomem *vaddr;
6384
6385         if (!reset_devices)
6386                 return 0;
6387
6388         /* kdump kernel is loading, we don't know in which state is
6389          * the pci interface. The dev->enable_cnt is equal zero
6390          * so we call enable+disable, wait a while and switch it on.
6391          */
6392         rc = pci_enable_device(pdev);
6393         if (rc) {
6394                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
6395                 return -ENODEV;
6396         }
6397         pci_disable_device(pdev);
6398         msleep(260);                    /* a randomly chosen number */
6399         rc = pci_enable_device(pdev);
6400         if (rc) {
6401                 dev_warn(&pdev->dev, "failed to enable device.\n");
6402                 return -ENODEV;
6403         }
6404
6405         pci_set_master(pdev);
6406
6407         vaddr = pci_ioremap_bar(pdev, 0);
6408         if (vaddr == NULL) {
6409                 rc = -ENOMEM;
6410                 goto out_disable;
6411         }
6412         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
6413         iounmap(vaddr);
6414
6415         /* Reset the controller with a PCI power-cycle or via doorbell */
6416         rc = hpsa_kdump_hard_reset_controller(pdev);
6417
6418         /* -ENOTSUPP here means we cannot reset the controller
6419          * but it's already (and still) up and running in
6420          * "performant mode".  Or, it might be 640x, which can't reset
6421          * due to concerns about shared bbwc between 6402/6404 pair.
6422          */
6423         if (rc)
6424                 goto out_disable;
6425
6426         /* Now try to get the controller to respond to a no-op */
6427         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
6428         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6429                 if (hpsa_noop(pdev) == 0)
6430                         break;
6431                 else
6432                         dev_warn(&pdev->dev, "no-op failed%s\n",
6433                                         (i < 11 ? "; re-trying" : ""));
6434         }
6435
6436 out_disable:
6437
6438         pci_disable_device(pdev);
6439         return rc;
6440 }
6441
6442 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6443 {
6444         h->cmd_pool_bits = kzalloc(
6445                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6446                 sizeof(unsigned long), GFP_KERNEL);
6447         h->cmd_pool = pci_alloc_consistent(h->pdev,
6448                     h->nr_cmds * sizeof(*h->cmd_pool),
6449                     &(h->cmd_pool_dhandle));
6450         h->errinfo_pool = pci_alloc_consistent(h->pdev,
6451                     h->nr_cmds * sizeof(*h->errinfo_pool),
6452                     &(h->errinfo_pool_dhandle));
6453         if ((h->cmd_pool_bits == NULL)
6454             || (h->cmd_pool == NULL)
6455             || (h->errinfo_pool == NULL)) {
6456                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6457                 return -ENOMEM;
6458         }
6459         return 0;
6460 }
6461
6462 static void hpsa_free_cmd_pool(struct ctlr_info *h)
6463 {
6464         kfree(h->cmd_pool_bits);
6465         if (h->cmd_pool)
6466                 pci_free_consistent(h->pdev,
6467                             h->nr_cmds * sizeof(struct CommandList),
6468                             h->cmd_pool, h->cmd_pool_dhandle);
6469         if (h->ioaccel2_cmd_pool)
6470                 pci_free_consistent(h->pdev,
6471                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
6472                         h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6473         if (h->errinfo_pool)
6474                 pci_free_consistent(h->pdev,
6475                             h->nr_cmds * sizeof(struct ErrorInfo),
6476                             h->errinfo_pool,
6477                             h->errinfo_pool_dhandle);
6478         if (h->ioaccel_cmd_pool)
6479                 pci_free_consistent(h->pdev,
6480                         h->nr_cmds * sizeof(struct io_accel1_cmd),
6481                         h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6482 }
6483
6484 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
6485 {
6486         int i, cpu;
6487
6488         cpu = cpumask_first(cpu_online_mask);
6489         for (i = 0; i < h->msix_vector; i++) {
6490                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
6491                 cpu = cpumask_next(cpu, cpu_online_mask);
6492         }
6493 }
6494
6495 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
6496 static void hpsa_free_irqs(struct ctlr_info *h)
6497 {
6498         int i;
6499
6500         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
6501                 /* Single reply queue, only one irq to free */
6502                 i = h->intr_mode;
6503                 irq_set_affinity_hint(h->intr[i], NULL);
6504                 free_irq(h->intr[i], &h->q[i]);
6505                 return;
6506         }
6507
6508         for (i = 0; i < h->msix_vector; i++) {
6509                 irq_set_affinity_hint(h->intr[i], NULL);
6510                 free_irq(h->intr[i], &h->q[i]);
6511         }
6512         for (; i < MAX_REPLY_QUEUES; i++)
6513                 h->q[i] = 0;
6514 }
6515
6516 static int hpsa_request_irq(struct ctlr_info *h,
6517         irqreturn_t (*msixhandler)(int, void *),
6518         irqreturn_t (*intxhandler)(int, void *))
6519 {
6520         int rc, i;
6521
6522         /*
6523          * initialize h->q[x] = x so that interrupt handlers know which
6524          * queue to process.
6525          */
6526         for (i = 0; i < MAX_REPLY_QUEUES; i++)
6527                 h->q[i] = (u8) i;
6528
6529         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6530                 /* If performant mode and MSI-X, use multiple reply queues */
6531                 for (i = 0; i < h->msix_vector; i++) {
6532                         rc = request_irq(h->intr[i], msixhandler,
6533                                         0, h->devname,
6534                                         &h->q[i]);
6535                         if (rc) {
6536                                 int j;
6537
6538                                 dev_err(&h->pdev->dev,
6539                                         "failed to get irq %d for %s\n",
6540                                        h->intr[i], h->devname);
6541                                 for (j = 0; j < i; j++) {
6542                                         free_irq(h->intr[j], &h->q[j]);
6543                                         h->q[j] = 0;
6544                                 }
6545                                 for (; j < MAX_REPLY_QUEUES; j++)
6546                                         h->q[j] = 0;
6547                                 return rc;
6548                         }
6549                 }
6550                 hpsa_irq_affinity_hints(h);
6551         } else {
6552                 /* Use single reply pool */
6553                 if (h->msix_vector > 0 || h->msi_vector) {
6554                         rc = request_irq(h->intr[h->intr_mode],
6555                                 msixhandler, 0, h->devname,
6556                                 &h->q[h->intr_mode]);
6557                 } else {
6558                         rc = request_irq(h->intr[h->intr_mode],
6559                                 intxhandler, IRQF_SHARED, h->devname,
6560                                 &h->q[h->intr_mode]);
6561                 }
6562         }
6563         if (rc) {
6564                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
6565                        h->intr[h->intr_mode], h->devname);
6566                 return -ENODEV;
6567         }
6568         return 0;
6569 }
6570
6571 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6572 {
6573         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
6574                 HPSA_RESET_TYPE_CONTROLLER)) {
6575                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
6576                 return -EIO;
6577         }
6578
6579         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
6580         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
6581                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
6582                 return -1;
6583         }
6584
6585         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
6586         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
6587                 dev_warn(&h->pdev->dev, "Board failed to become ready "
6588                         "after soft reset.\n");
6589                 return -1;
6590         }
6591
6592         return 0;
6593 }
6594
6595 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6596 {
6597         hpsa_free_irqs(h);
6598 #ifdef CONFIG_PCI_MSI
6599         if (h->msix_vector) {
6600                 if (h->pdev->msix_enabled)
6601                         pci_disable_msix(h->pdev);
6602         } else if (h->msi_vector) {
6603                 if (h->pdev->msi_enabled)
6604                         pci_disable_msi(h->pdev);
6605         }
6606 #endif /* CONFIG_PCI_MSI */
6607 }
6608
6609 static void hpsa_free_reply_queues(struct ctlr_info *h)
6610 {
6611         int i;
6612
6613         for (i = 0; i < h->nreply_queues; i++) {
6614                 if (!h->reply_queue[i].head)
6615                         continue;
6616                 pci_free_consistent(h->pdev, h->reply_queue_size,
6617                         h->reply_queue[i].head, h->reply_queue[i].busaddr);
6618                 h->reply_queue[i].head = NULL;
6619                 h->reply_queue[i].busaddr = 0;
6620         }
6621 }
6622
6623 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
6624 {
6625         hpsa_free_irqs_and_disable_msix(h);
6626         hpsa_free_sg_chain_blocks(h);
6627         hpsa_free_cmd_pool(h);
6628         kfree(h->ioaccel1_blockFetchTable);
6629         kfree(h->blockFetchTable);
6630         hpsa_free_reply_queues(h);
6631         if (h->vaddr)
6632                 iounmap(h->vaddr);
6633         if (h->transtable)
6634                 iounmap(h->transtable);
6635         if (h->cfgtable)
6636                 iounmap(h->cfgtable);
6637         pci_disable_device(h->pdev);
6638         pci_release_regions(h->pdev);
6639         kfree(h);
6640 }
6641
6642 /* Called when controller lockup detected. */
6643 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
6644 {
6645         struct CommandList *c = NULL;
6646
6647         assert_spin_locked(&h->lock);
6648         /* Mark all outstanding commands as failed and complete them. */
6649         while (!list_empty(list)) {
6650                 c = list_entry(list->next, struct CommandList, list);
6651                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
6652                 finish_cmd(c);
6653         }
6654 }
6655
6656 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
6657 {
6658         int i, cpu;
6659
6660         cpu = cpumask_first(cpu_online_mask);
6661         for (i = 0; i < num_online_cpus(); i++) {
6662                 u32 *lockup_detected;
6663                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
6664                 *lockup_detected = value;
6665                 cpu = cpumask_next(cpu, cpu_online_mask);
6666         }
6667         wmb(); /* be sure the per-cpu variables are out to memory */
6668 }
6669
6670 static void controller_lockup_detected(struct ctlr_info *h)
6671 {
6672         unsigned long flags;
6673         u32 lockup_detected;
6674
6675         h->access.set_intr_mask(h, HPSA_INTR_OFF);
6676         spin_lock_irqsave(&h->lock, flags);
6677         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
6678         if (!lockup_detected) {
6679                 /* no heartbeat, but controller gave us a zero. */
6680                 dev_warn(&h->pdev->dev,
6681                         "lockup detected but scratchpad register is zero\n");
6682                 lockup_detected = 0xffffffff;
6683         }
6684         set_lockup_detected_for_all_cpus(h, lockup_detected);
6685         spin_unlock_irqrestore(&h->lock, flags);
6686         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
6687                         lockup_detected);
6688         pci_disable_device(h->pdev);
6689         spin_lock_irqsave(&h->lock, flags);
6690         fail_all_cmds_on_list(h, &h->cmpQ);
6691         fail_all_cmds_on_list(h, &h->reqQ);
6692         spin_unlock_irqrestore(&h->lock, flags);
6693 }
6694
6695 static void detect_controller_lockup(struct ctlr_info *h)
6696 {
6697         u64 now;
6698         u32 heartbeat;
6699         unsigned long flags;
6700
6701         now = get_jiffies_64();
6702         /* If we've received an interrupt recently, we're ok. */
6703         if (time_after64(h->last_intr_timestamp +
6704                                 (h->heartbeat_sample_interval), now))
6705                 return;
6706
6707         /*
6708          * If we've already checked the heartbeat recently, we're ok.
6709          * This could happen if someone sends us a signal. We
6710          * otherwise don't care about signals in this thread.
6711          */
6712         if (time_after64(h->last_heartbeat_timestamp +
6713                                 (h->heartbeat_sample_interval), now))
6714                 return;
6715
6716         /* If heartbeat has not changed since we last looked, we're not ok. */
6717         spin_lock_irqsave(&h->lock, flags);
6718         heartbeat = readl(&h->cfgtable->HeartBeat);
6719         spin_unlock_irqrestore(&h->lock, flags);
6720         if (h->last_heartbeat == heartbeat) {
6721                 controller_lockup_detected(h);
6722                 return;
6723         }
6724
6725         /* We're ok. */
6726         h->last_heartbeat = heartbeat;
6727         h->last_heartbeat_timestamp = now;
6728 }
6729
6730 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6731 {
6732         int i;
6733         char *event_type;
6734
6735         /* Clear the driver-requested rescan flag */
6736         h->drv_req_rescan = 0;
6737
6738         /* Ask the controller to clear the events we're handling. */
6739         if ((h->transMethod & (CFGTBL_Trans_io_accel1
6740                         | CFGTBL_Trans_io_accel2)) &&
6741                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
6742                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
6743
6744                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
6745                         event_type = "state change";
6746                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
6747                         event_type = "configuration change";
6748                 /* Stop sending new RAID offload reqs via the IO accelerator */
6749                 scsi_block_requests(h->scsi_host);
6750                 for (i = 0; i < h->ndevices; i++)
6751                         h->dev[i]->offload_enabled = 0;
6752                 hpsa_drain_accel_commands(h);
6753                 /* Set 'accelerator path config change' bit */
6754                 dev_warn(&h->pdev->dev,
6755                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6756                         h->events, event_type);
6757                 writel(h->events, &(h->cfgtable->clear_event_notify));
6758                 /* Set the "clear event notify field update" bit 6 */
6759                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6760                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
6761                 hpsa_wait_for_clear_event_notify_ack(h);
6762                 scsi_unblock_requests(h->scsi_host);
6763         } else {
6764                 /* Acknowledge controller notification events. */
6765                 writel(h->events, &(h->cfgtable->clear_event_notify));
6766                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6767                 hpsa_wait_for_clear_event_notify_ack(h);
6768 #if 0
6769                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6770                 hpsa_wait_for_mode_change_ack(h);
6771 #endif
6772         }
6773         return;
6774 }
6775
6776 /* Check a register on the controller to see if there are configuration
6777  * changes (added/changed/removed logical drives, etc.) which mean that
6778  * we should rescan the controller for devices.
6779  * Also check flag for driver-initiated rescan.
6780  */
6781 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6782 {
6783         if (h->drv_req_rescan)
6784                 return 1;
6785
6786         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6787                 return 0;
6788
6789         h->events = readl(&(h->cfgtable->event_notify));
6790         return h->events & RESCAN_REQUIRED_EVENT_BITS;
6791 }
6792
6793 /*
6794  * Check if any of the offline devices have become ready
6795  */
6796 static int hpsa_offline_devices_ready(struct ctlr_info *h)
6797 {
6798         unsigned long flags;
6799         struct offline_device_entry *d;
6800         struct list_head *this, *tmp;
6801
6802         spin_lock_irqsave(&h->offline_device_lock, flags);
6803         list_for_each_safe(this, tmp, &h->offline_device_list) {
6804                 d = list_entry(this, struct offline_device_entry,
6805                                 offline_list);
6806                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6807                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
6808                         spin_lock_irqsave(&h->offline_device_lock, flags);
6809                         list_del(&d->offline_list);
6810                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
6811                         return 1;
6812                 }
6813                 spin_lock_irqsave(&h->offline_device_lock, flags);
6814         }
6815         spin_unlock_irqrestore(&h->offline_device_lock, flags);
6816         return 0;
6817 }
6818
6819
6820 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6821 {
6822         unsigned long flags;
6823         struct ctlr_info *h = container_of(to_delayed_work(work),
6824                                         struct ctlr_info, monitor_ctlr_work);
6825         detect_controller_lockup(h);
6826         if (lockup_detected(h))
6827                 return;
6828
6829         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
6830                 scsi_host_get(h->scsi_host);
6831                 h->drv_req_rescan = 0;
6832                 hpsa_ack_ctlr_events(h);
6833                 hpsa_scan_start(h->scsi_host);
6834                 scsi_host_put(h->scsi_host);
6835         }
6836
6837         spin_lock_irqsave(&h->lock, flags);
6838         if (h->remove_in_progress) {
6839                 spin_unlock_irqrestore(&h->lock, flags);
6840                 return;
6841         }
6842         schedule_delayed_work(&h->monitor_ctlr_work,
6843                                 h->heartbeat_sample_interval);
6844         spin_unlock_irqrestore(&h->lock, flags);
6845 }
6846
6847 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6848 {
6849         int dac, rc;
6850         struct ctlr_info *h;
6851         int try_soft_reset = 0;
6852         unsigned long flags;
6853
6854         if (number_of_controllers == 0)
6855                 printk(KERN_INFO DRIVER_NAME "\n");
6856
6857         rc = hpsa_init_reset_devices(pdev);
6858         if (rc) {
6859                 if (rc != -ENOTSUPP)
6860                         return rc;
6861                 /* If the reset fails in a particular way (it has no way to do
6862                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
6863                  * a soft reset once we get the controller configured up to the
6864                  * point that it can accept a command.
6865                  */
6866                 try_soft_reset = 1;
6867                 rc = 0;
6868         }
6869
6870 reinit_after_soft_reset:
6871
6872         /* Command structures must be aligned on a 32-byte boundary because
6873          * the 5 lower bits of the address are used by the hardware. and by
6874          * the driver.  See comments in hpsa.h for more info.
6875          */
6876         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6877         h = kzalloc(sizeof(*h), GFP_KERNEL);
6878         if (!h)
6879                 return -ENOMEM;
6880
6881         h->pdev = pdev;
6882         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6883         INIT_LIST_HEAD(&h->cmpQ);
6884         INIT_LIST_HEAD(&h->reqQ);
6885         INIT_LIST_HEAD(&h->offline_device_list);
6886         spin_lock_init(&h->lock);
6887         spin_lock_init(&h->offline_device_lock);
6888         spin_lock_init(&h->scan_lock);
6889         spin_lock_init(&h->passthru_count_lock);
6890
6891         /* Allocate and clear per-cpu variable lockup_detected */
6892         h->lockup_detected = alloc_percpu(u32);
6893         if (!h->lockup_detected) {
6894                 rc = -ENOMEM;
6895                 goto clean1;
6896         }
6897         set_lockup_detected_for_all_cpus(h, 0);
6898
6899         rc = hpsa_pci_init(h);
6900         if (rc != 0)
6901                 goto clean1;
6902
6903         sprintf(h->devname, HPSA "%d", number_of_controllers);
6904         h->ctlr = number_of_controllers;
6905         number_of_controllers++;
6906
6907         /* configure PCI DMA stuff */
6908         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
6909         if (rc == 0) {
6910                 dac = 1;
6911         } else {
6912                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6913                 if (rc == 0) {
6914                         dac = 0;
6915                 } else {
6916                         dev_err(&pdev->dev, "no suitable DMA available\n");
6917                         goto clean1;
6918                 }
6919         }
6920
6921         /* make sure the board interrupts are off */
6922         h->access.set_intr_mask(h, HPSA_INTR_OFF);
6923
6924         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
6925                 goto clean2;
6926         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
6927                h->devname, pdev->device,
6928                h->intr[h->intr_mode], dac ? "" : " not");
6929         if (hpsa_allocate_cmd_pool(h))
6930                 goto clean4;
6931         if (hpsa_allocate_sg_chain_blocks(h))
6932                 goto clean4;
6933         init_waitqueue_head(&h->scan_wait_queue);
6934         h->scan_finished = 1; /* no scan currently in progress */
6935
6936         pci_set_drvdata(pdev, h);
6937         h->ndevices = 0;
6938         h->hba_mode_enabled = 0;
6939         h->scsi_host = NULL;
6940         spin_lock_init(&h->devlock);
6941         hpsa_put_ctlr_into_performant_mode(h);
6942
6943         /* At this point, the controller is ready to take commands.
6944          * Now, if reset_devices and the hard reset didn't work, try
6945          * the soft reset and see if that works.
6946          */
6947         if (try_soft_reset) {
6948
6949                 /* This is kind of gross.  We may or may not get a completion
6950                  * from the soft reset command, and if we do, then the value
6951                  * from the fifo may or may not be valid.  So, we wait 10 secs
6952                  * after the reset throwing away any completions we get during
6953                  * that time.  Unregister the interrupt handler and register
6954                  * fake ones to scoop up any residual completions.
6955                  */
6956                 spin_lock_irqsave(&h->lock, flags);
6957                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6958                 spin_unlock_irqrestore(&h->lock, flags);
6959                 hpsa_free_irqs(h);
6960                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
6961                                         hpsa_intx_discard_completions);
6962                 if (rc) {
6963                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
6964                                 "soft reset.\n");
6965                         goto clean4;
6966                 }
6967
6968                 rc = hpsa_kdump_soft_reset(h);
6969                 if (rc)
6970                         /* Neither hard nor soft reset worked, we're hosed. */
6971                         goto clean4;
6972
6973                 dev_info(&h->pdev->dev, "Board READY.\n");
6974                 dev_info(&h->pdev->dev,
6975                         "Waiting for stale completions to drain.\n");
6976                 h->access.set_intr_mask(h, HPSA_INTR_ON);
6977                 msleep(10000);
6978                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6979
6980                 rc = controller_reset_failed(h->cfgtable);
6981                 if (rc)
6982                         dev_info(&h->pdev->dev,
6983                                 "Soft reset appears to have failed.\n");
6984
6985                 /* since the controller's reset, we have to go back and re-init
6986                  * everything.  Easiest to just forget what we've done and do it
6987                  * all over again.
6988                  */
6989                 hpsa_undo_allocations_after_kdump_soft_reset(h);
6990                 try_soft_reset = 0;
6991                 if (rc)
6992                         /* don't go to clean4, we already unallocated */
6993                         return -ENODEV;
6994
6995                 goto reinit_after_soft_reset;
6996         }
6997
6998                 /* Enable Accelerated IO path at driver layer */
6999                 h->acciopath_status = 1;
7000
7001         h->drv_req_rescan = 0;
7002
7003         /* Turn the interrupts on so we can service requests */
7004         h->access.set_intr_mask(h, HPSA_INTR_ON);
7005
7006         hpsa_hba_inquiry(h);
7007         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
7008
7009         /* Monitor the controller for firmware lockups */
7010         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
7011         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
7012         schedule_delayed_work(&h->monitor_ctlr_work,
7013                                 h->heartbeat_sample_interval);
7014         return 0;
7015
7016 clean4:
7017         hpsa_free_sg_chain_blocks(h);
7018         hpsa_free_cmd_pool(h);
7019         hpsa_free_irqs(h);
7020 clean2:
7021 clean1:
7022         if (h->lockup_detected)
7023                 free_percpu(h->lockup_detected);
7024         kfree(h);
7025         return rc;
7026 }
7027
7028 static void hpsa_flush_cache(struct ctlr_info *h)
7029 {
7030         char *flush_buf;
7031         struct CommandList *c;
7032
7033         /* Don't bother trying to flush the cache if locked up */
7034         if (unlikely(lockup_detected(h)))
7035                 return;
7036         flush_buf = kzalloc(4, GFP_KERNEL);
7037         if (!flush_buf)
7038                 return;
7039
7040         c = cmd_special_alloc(h);
7041         if (!c) {
7042                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
7043                 goto out_of_memory;
7044         }
7045         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7046                 RAID_CTLR_LUNID, TYPE_CMD)) {
7047                 goto out;
7048         }
7049         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
7050         if (c->err_info->CommandStatus != 0)
7051 out:
7052                 dev_warn(&h->pdev->dev,
7053                         "error flushing cache on controller\n");
7054         cmd_special_free(h, c);
7055 out_of_memory:
7056         kfree(flush_buf);
7057 }
7058
7059 static void hpsa_shutdown(struct pci_dev *pdev)
7060 {
7061         struct ctlr_info *h;
7062
7063         h = pci_get_drvdata(pdev);
7064         /* Turn board interrupts off  and send the flush cache command
7065          * sendcmd will turn off interrupt, and send the flush...
7066          * To write all data in the battery backed cache to disks
7067          */
7068         hpsa_flush_cache(h);
7069         h->access.set_intr_mask(h, HPSA_INTR_OFF);
7070         hpsa_free_irqs_and_disable_msix(h);
7071 }
7072
7073 static void hpsa_free_device_info(struct ctlr_info *h)
7074 {
7075         int i;
7076
7077         for (i = 0; i < h->ndevices; i++)
7078                 kfree(h->dev[i]);
7079 }
7080
7081 static void hpsa_remove_one(struct pci_dev *pdev)
7082 {
7083         struct ctlr_info *h;
7084         unsigned long flags;
7085
7086         if (pci_get_drvdata(pdev) == NULL) {
7087                 dev_err(&pdev->dev, "unable to remove device\n");
7088                 return;
7089         }
7090         h = pci_get_drvdata(pdev);
7091
7092         /* Get rid of any controller monitoring work items */
7093         spin_lock_irqsave(&h->lock, flags);
7094         h->remove_in_progress = 1;
7095         cancel_delayed_work(&h->monitor_ctlr_work);
7096         spin_unlock_irqrestore(&h->lock, flags);
7097
7098         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
7099         hpsa_shutdown(pdev);
7100         iounmap(h->vaddr);
7101         iounmap(h->transtable);
7102         iounmap(h->cfgtable);
7103         hpsa_free_device_info(h);
7104         hpsa_free_sg_chain_blocks(h);
7105         pci_free_consistent(h->pdev,
7106                 h->nr_cmds * sizeof(struct CommandList),
7107                 h->cmd_pool, h->cmd_pool_dhandle);
7108         pci_free_consistent(h->pdev,
7109                 h->nr_cmds * sizeof(struct ErrorInfo),
7110                 h->errinfo_pool, h->errinfo_pool_dhandle);
7111         hpsa_free_reply_queues(h);
7112         kfree(h->cmd_pool_bits);
7113         kfree(h->blockFetchTable);
7114         kfree(h->ioaccel1_blockFetchTable);
7115         kfree(h->ioaccel2_blockFetchTable);
7116         kfree(h->hba_inquiry_data);
7117         pci_disable_device(pdev);
7118         pci_release_regions(pdev);
7119         free_percpu(h->lockup_detected);
7120         kfree(h);
7121 }
7122
7123 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7124         __attribute__((unused)) pm_message_t state)
7125 {
7126         return -ENOSYS;
7127 }
7128
7129 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7130 {
7131         return -ENOSYS;
7132 }
7133
7134 static struct pci_driver hpsa_pci_driver = {
7135         .name = HPSA,
7136         .probe = hpsa_init_one,
7137         .remove = hpsa_remove_one,
7138         .id_table = hpsa_pci_device_id, /* id_table */
7139         .shutdown = hpsa_shutdown,
7140         .suspend = hpsa_suspend,
7141         .resume = hpsa_resume,
7142 };
7143
7144 /* Fill in bucket_map[], given nsgs (the max number of
7145  * scatter gather elements supported) and bucket[],
7146  * which is an array of 8 integers.  The bucket[] array
7147  * contains 8 different DMA transfer sizes (in 16
7148  * byte increments) which the controller uses to fetch
7149  * commands.  This function fills in bucket_map[], which
7150  * maps a given number of scatter gather elements to one of
7151  * the 8 DMA transfer sizes.  The point of it is to allow the
7152  * controller to only do as much DMA as needed to fetch the
7153  * command, with the DMA transfer size encoded in the lower
7154  * bits of the command address.
7155  */
7156 static void  calc_bucket_map(int bucket[], int num_buckets,
7157         int nsgs, int min_blocks, u32 *bucket_map)
7158 {
7159         int i, j, b, size;
7160
7161         /* Note, bucket_map must have nsgs+1 entries. */
7162         for (i = 0; i <= nsgs; i++) {
7163                 /* Compute size of a command with i SG entries */
7164                 size = i + min_blocks;
7165                 b = num_buckets; /* Assume the biggest bucket */
7166                 /* Find the bucket that is just big enough */
7167                 for (j = 0; j < num_buckets; j++) {
7168                         if (bucket[j] >= size) {
7169                                 b = j;
7170                                 break;
7171                         }
7172                 }
7173                 /* for a command with i SG entries, use bucket b. */
7174                 bucket_map[i] = b;
7175         }
7176 }
7177
7178 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7179 {
7180         int i;
7181         unsigned long register_value;
7182         unsigned long transMethod = CFGTBL_Trans_Performant |
7183                         (trans_support & CFGTBL_Trans_use_short_tags) |
7184                                 CFGTBL_Trans_enable_directed_msix |
7185                         (trans_support & (CFGTBL_Trans_io_accel1 |
7186                                 CFGTBL_Trans_io_accel2));
7187         struct access_method access = SA5_performant_access;
7188
7189         /* This is a bit complicated.  There are 8 registers on
7190          * the controller which we write to to tell it 8 different
7191          * sizes of commands which there may be.  It's a way of
7192          * reducing the DMA done to fetch each command.  Encoded into
7193          * each command's tag are 3 bits which communicate to the controller
7194          * which of the eight sizes that command fits within.  The size of
7195          * each command depends on how many scatter gather entries there are.
7196          * Each SG entry requires 16 bytes.  The eight registers are programmed
7197          * with the number of 16-byte blocks a command of that size requires.
7198          * The smallest command possible requires 5 such 16 byte blocks.
7199          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7200          * blocks.  Note, this only extends to the SG entries contained
7201          * within the command block, and does not extend to chained blocks
7202          * of SG elements.   bft[] contains the eight values we write to
7203          * the registers.  They are not evenly distributed, but have more
7204          * sizes for small commands, and fewer sizes for larger commands.
7205          */
7206         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7207 #define MIN_IOACCEL2_BFT_ENTRY 5
7208 #define HPSA_IOACCEL2_HEADER_SZ 4
7209         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7210                         13, 14, 15, 16, 17, 18, 19,
7211                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7212         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7213         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7214         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7215                                  16 * MIN_IOACCEL2_BFT_ENTRY);
7216         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7217         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7218         /*  5 = 1 s/g entry or 4k
7219          *  6 = 2 s/g entry or 8k
7220          *  8 = 4 s/g entry or 16k
7221          * 10 = 6 s/g entry or 24k
7222          */
7223
7224         /* If the controller supports either ioaccel method then
7225          * we can also use the RAID stack submit path that does not
7226          * perform the superfluous readl() after each command submission.
7227          */
7228         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
7229                 access = SA5_performant_access_no_read;
7230
7231         /* Controller spec: zero out this buffer. */
7232         for (i = 0; i < h->nreply_queues; i++)
7233                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
7234
7235         bft[7] = SG_ENTRIES_IN_CMD + 4;
7236         calc_bucket_map(bft, ARRAY_SIZE(bft),
7237                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7238         for (i = 0; i < 8; i++)
7239                 writel(bft[i], &h->transtable->BlockFetch[i]);
7240
7241         /* size of controller ring buffer */
7242         writel(h->max_commands, &h->transtable->RepQSize);
7243         writel(h->nreply_queues, &h->transtable->RepQCount);
7244         writel(0, &h->transtable->RepQCtrAddrLow32);
7245         writel(0, &h->transtable->RepQCtrAddrHigh32);
7246
7247         for (i = 0; i < h->nreply_queues; i++) {
7248                 writel(0, &h->transtable->RepQAddr[i].upper);
7249                 writel(h->reply_queue[i].busaddr,
7250                         &h->transtable->RepQAddr[i].lower);
7251         }
7252
7253         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7254         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7255         /*
7256          * enable outbound interrupt coalescing in accelerator mode;
7257          */
7258         if (trans_support & CFGTBL_Trans_io_accel1) {
7259                 access = SA5_ioaccel_mode1_access;
7260                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7261                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7262         } else {
7263                 if (trans_support & CFGTBL_Trans_io_accel2) {
7264                         access = SA5_ioaccel_mode2_access;
7265                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7266                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7267                 }
7268         }
7269         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7270         hpsa_wait_for_mode_change_ack(h);
7271         register_value = readl(&(h->cfgtable->TransportActive));
7272         if (!(register_value & CFGTBL_Trans_Performant)) {
7273                 dev_warn(&h->pdev->dev, "unable to get board into"
7274                                         " performant mode\n");
7275                 return;
7276         }
7277         /* Change the access methods to the performant access methods */
7278         h->access = access;
7279         h->transMethod = transMethod;
7280
7281         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7282                 (trans_support & CFGTBL_Trans_io_accel2)))
7283                 return;
7284
7285         if (trans_support & CFGTBL_Trans_io_accel1) {
7286                 /* Set up I/O accelerator mode */
7287                 for (i = 0; i < h->nreply_queues; i++) {
7288                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7289                         h->reply_queue[i].current_entry =
7290                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7291                 }
7292                 bft[7] = h->ioaccel_maxsg + 8;
7293                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7294                                 h->ioaccel1_blockFetchTable);
7295
7296                 /* initialize all reply queue entries to unused */
7297                 for (i = 0; i < h->nreply_queues; i++)
7298                         memset(h->reply_queue[i].head,
7299                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
7300                                 h->reply_queue_size);
7301
7302                 /* set all the constant fields in the accelerator command
7303                  * frames once at init time to save CPU cycles later.
7304                  */
7305                 for (i = 0; i < h->nr_cmds; i++) {
7306                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7307
7308                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
7309                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
7310                                         (i * sizeof(struct ErrorInfo)));
7311                         cp->err_info_len = sizeof(struct ErrorInfo);
7312                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
7313                         cp->host_context_flags =
7314                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
7315                         cp->timeout_sec = 0;
7316                         cp->ReplyQueue = 0;
7317                         cp->tag =
7318                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT) |
7319                                                 DIRECT_LOOKUP_BIT);
7320                         cp->host_addr =
7321                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
7322                                         (i * sizeof(struct io_accel1_cmd)));
7323                 }
7324         } else if (trans_support & CFGTBL_Trans_io_accel2) {
7325                 u64 cfg_offset, cfg_base_addr_index;
7326                 u32 bft2_offset, cfg_base_addr;
7327                 int rc;
7328
7329                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7330                         &cfg_base_addr_index, &cfg_offset);
7331                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
7332                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
7333                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
7334                                 4, h->ioaccel2_blockFetchTable);
7335                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
7336                 BUILD_BUG_ON(offsetof(struct CfgTable,
7337                                 io_accel_request_size_offset) != 0xb8);
7338                 h->ioaccel2_bft2_regs =
7339                         remap_pci_mem(pci_resource_start(h->pdev,
7340                                         cfg_base_addr_index) +
7341                                         cfg_offset + bft2_offset,
7342                                         ARRAY_SIZE(bft2) *
7343                                         sizeof(*h->ioaccel2_bft2_regs));
7344                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
7345                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7346         }
7347         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7348         hpsa_wait_for_mode_change_ack(h);
7349 }
7350
7351 static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
7352 {
7353         h->ioaccel_maxsg =
7354                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7355         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
7356                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
7357
7358         /* Command structures must be aligned on a 128-byte boundary
7359          * because the 7 lower bits of the address are used by the
7360          * hardware.
7361          */
7362         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
7363                         IOACCEL1_COMMANDLIST_ALIGNMENT);
7364         h->ioaccel_cmd_pool =
7365                 pci_alloc_consistent(h->pdev,
7366                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7367                         &(h->ioaccel_cmd_pool_dhandle));
7368
7369         h->ioaccel1_blockFetchTable =
7370                 kmalloc(((h->ioaccel_maxsg + 1) *
7371                                 sizeof(u32)), GFP_KERNEL);
7372
7373         if ((h->ioaccel_cmd_pool == NULL) ||
7374                 (h->ioaccel1_blockFetchTable == NULL))
7375                 goto clean_up;
7376
7377         memset(h->ioaccel_cmd_pool, 0,
7378                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
7379         return 0;
7380
7381 clean_up:
7382         if (h->ioaccel_cmd_pool)
7383                 pci_free_consistent(h->pdev,
7384                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7385                         h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
7386         kfree(h->ioaccel1_blockFetchTable);
7387         return 1;
7388 }
7389
7390 static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
7391 {
7392         /* Allocate ioaccel2 mode command blocks and block fetch table */
7393
7394         h->ioaccel_maxsg =
7395                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7396         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
7397                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
7398
7399         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
7400                         IOACCEL2_COMMANDLIST_ALIGNMENT);
7401         h->ioaccel2_cmd_pool =
7402                 pci_alloc_consistent(h->pdev,
7403                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7404                         &(h->ioaccel2_cmd_pool_dhandle));
7405
7406         h->ioaccel2_blockFetchTable =
7407                 kmalloc(((h->ioaccel_maxsg + 1) *
7408                                 sizeof(u32)), GFP_KERNEL);
7409
7410         if ((h->ioaccel2_cmd_pool == NULL) ||
7411                 (h->ioaccel2_blockFetchTable == NULL))
7412                 goto clean_up;
7413
7414         memset(h->ioaccel2_cmd_pool, 0,
7415                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
7416         return 0;
7417
7418 clean_up:
7419         if (h->ioaccel2_cmd_pool)
7420                 pci_free_consistent(h->pdev,
7421                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7422                         h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
7423         kfree(h->ioaccel2_blockFetchTable);
7424         return 1;
7425 }
7426
7427 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7428 {
7429         u32 trans_support;
7430         unsigned long transMethod = CFGTBL_Trans_Performant |
7431                                         CFGTBL_Trans_use_short_tags;
7432         int i;
7433
7434         if (hpsa_simple_mode)
7435                 return;
7436
7437         trans_support = readl(&(h->cfgtable->TransportSupport));
7438         if (!(trans_support & PERFORMANT_MODE))
7439                 return;
7440
7441         /* Check for I/O accelerator mode support */
7442         if (trans_support & CFGTBL_Trans_io_accel1) {
7443                 transMethod |= CFGTBL_Trans_io_accel1 |
7444                                 CFGTBL_Trans_enable_directed_msix;
7445                 if (hpsa_alloc_ioaccel_cmd_and_bft(h))
7446                         goto clean_up;
7447         } else {
7448                 if (trans_support & CFGTBL_Trans_io_accel2) {
7449                                 transMethod |= CFGTBL_Trans_io_accel2 |
7450                                 CFGTBL_Trans_enable_directed_msix;
7451                 if (ioaccel2_alloc_cmds_and_bft(h))
7452                         goto clean_up;
7453                 }
7454         }
7455
7456         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7457         hpsa_get_max_perf_mode_cmds(h);
7458         /* Performant mode ring buffer and supporting data structures */
7459         h->reply_queue_size = h->max_commands * sizeof(u64);
7460
7461         for (i = 0; i < h->nreply_queues; i++) {
7462                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
7463                                                 h->reply_queue_size,
7464                                                 &(h->reply_queue[i].busaddr));
7465                 if (!h->reply_queue[i].head)
7466                         goto clean_up;
7467                 h->reply_queue[i].size = h->max_commands;
7468                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
7469                 h->reply_queue[i].current_entry = 0;
7470         }
7471
7472         /* Need a block fetch table for performant mode */
7473         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7474                                 sizeof(u32)), GFP_KERNEL);
7475         if (!h->blockFetchTable)
7476                 goto clean_up;
7477
7478         hpsa_enter_performant_mode(h, trans_support);
7479         return;
7480
7481 clean_up:
7482         hpsa_free_reply_queues(h);
7483         kfree(h->blockFetchTable);
7484 }
7485
7486 static int is_accelerated_cmd(struct CommandList *c)
7487 {
7488         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
7489 }
7490
7491 static void hpsa_drain_accel_commands(struct ctlr_info *h)
7492 {
7493         struct CommandList *c = NULL;
7494         unsigned long flags;
7495         int accel_cmds_out;
7496
7497         do { /* wait for all outstanding commands to drain out */
7498                 accel_cmds_out = 0;
7499                 spin_lock_irqsave(&h->lock, flags);
7500                 list_for_each_entry(c, &h->cmpQ, list)
7501                         accel_cmds_out += is_accelerated_cmd(c);
7502                 list_for_each_entry(c, &h->reqQ, list)
7503                         accel_cmds_out += is_accelerated_cmd(c);
7504                 spin_unlock_irqrestore(&h->lock, flags);
7505                 if (accel_cmds_out <= 0)
7506                         break;
7507                 msleep(100);
7508         } while (1);
7509 }
7510
7511 /*
7512  *  This is it.  Register the PCI driver information for the cards we control
7513  *  the OS will call our registered routines when it finds one of our cards.
7514  */
7515 static int __init hpsa_init(void)
7516 {
7517         return pci_register_driver(&hpsa_pci_driver);
7518 }
7519
7520 static void __exit hpsa_cleanup(void)
7521 {
7522         pci_unregister_driver(&hpsa_pci_driver);
7523 }
7524
7525 static void __attribute__((unused)) verify_offsets(void)
7526 {
7527 #define VERIFY_OFFSET(member, offset) \
7528         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7529
7530         VERIFY_OFFSET(structure_size, 0);
7531         VERIFY_OFFSET(volume_blk_size, 4);
7532         VERIFY_OFFSET(volume_blk_cnt, 8);
7533         VERIFY_OFFSET(phys_blk_shift, 16);
7534         VERIFY_OFFSET(parity_rotation_shift, 17);
7535         VERIFY_OFFSET(strip_size, 18);
7536         VERIFY_OFFSET(disk_starting_blk, 20);
7537         VERIFY_OFFSET(disk_blk_cnt, 28);
7538         VERIFY_OFFSET(data_disks_per_row, 36);
7539         VERIFY_OFFSET(metadata_disks_per_row, 38);
7540         VERIFY_OFFSET(row_cnt, 40);
7541         VERIFY_OFFSET(layout_map_count, 42);
7542         VERIFY_OFFSET(flags, 44);
7543         VERIFY_OFFSET(dekindex, 46);
7544         /* VERIFY_OFFSET(reserved, 48 */
7545         VERIFY_OFFSET(data, 64);
7546
7547 #undef VERIFY_OFFSET
7548
7549 #define VERIFY_OFFSET(member, offset) \
7550         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7551
7552         VERIFY_OFFSET(IU_type, 0);
7553         VERIFY_OFFSET(direction, 1);
7554         VERIFY_OFFSET(reply_queue, 2);
7555         /* VERIFY_OFFSET(reserved1, 3);  */
7556         VERIFY_OFFSET(scsi_nexus, 4);
7557         VERIFY_OFFSET(Tag, 8);
7558         VERIFY_OFFSET(cdb, 16);
7559         VERIFY_OFFSET(cciss_lun, 32);
7560         VERIFY_OFFSET(data_len, 40);
7561         VERIFY_OFFSET(cmd_priority_task_attr, 44);
7562         VERIFY_OFFSET(sg_count, 45);
7563         /* VERIFY_OFFSET(reserved3 */
7564         VERIFY_OFFSET(err_ptr, 48);
7565         VERIFY_OFFSET(err_len, 56);
7566         /* VERIFY_OFFSET(reserved4  */
7567         VERIFY_OFFSET(sg, 64);
7568
7569 #undef VERIFY_OFFSET
7570
7571 #define VERIFY_OFFSET(member, offset) \
7572         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
7573
7574         VERIFY_OFFSET(dev_handle, 0x00);
7575         VERIFY_OFFSET(reserved1, 0x02);
7576         VERIFY_OFFSET(function, 0x03);
7577         VERIFY_OFFSET(reserved2, 0x04);
7578         VERIFY_OFFSET(err_info, 0x0C);
7579         VERIFY_OFFSET(reserved3, 0x10);
7580         VERIFY_OFFSET(err_info_len, 0x12);
7581         VERIFY_OFFSET(reserved4, 0x13);
7582         VERIFY_OFFSET(sgl_offset, 0x14);
7583         VERIFY_OFFSET(reserved5, 0x15);
7584         VERIFY_OFFSET(transfer_len, 0x1C);
7585         VERIFY_OFFSET(reserved6, 0x20);
7586         VERIFY_OFFSET(io_flags, 0x24);
7587         VERIFY_OFFSET(reserved7, 0x26);
7588         VERIFY_OFFSET(LUN, 0x34);
7589         VERIFY_OFFSET(control, 0x3C);
7590         VERIFY_OFFSET(CDB, 0x40);
7591         VERIFY_OFFSET(reserved8, 0x50);
7592         VERIFY_OFFSET(host_context_flags, 0x60);
7593         VERIFY_OFFSET(timeout_sec, 0x62);
7594         VERIFY_OFFSET(ReplyQueue, 0x64);
7595         VERIFY_OFFSET(reserved9, 0x65);
7596         VERIFY_OFFSET(tag, 0x68);
7597         VERIFY_OFFSET(host_addr, 0x70);
7598         VERIFY_OFFSET(CISS_LUN, 0x78);
7599         VERIFY_OFFSET(SG, 0x78 + 8);
7600 #undef VERIFY_OFFSET
7601 }
7602
7603 module_init(hpsa_init);
7604 module_exit(hpsa_cleanup);