[SCSI] hpsa: factor out cmd pool allocation functions
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68         HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76                 "Allow hpsa driver to access unknown HP Smart Array hardware");
77 static int hpsa_simple_mode;
78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_simple_mode,
80         "Use 'simple mode' rather than 'performant mode'");
81
82 /* define the PCI info for the cards we can control */
83 static const struct pci_device_id hpsa_pci_device_id[] = {
84         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
99         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
100                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
101         {0,}
102 };
103
104 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
105
106 /*  board_id = Subsystem Device ID & Vendor ID
107  *  product = Marketing Name for the board
108  *  access = Address of the struct of function pointers
109  */
110 static struct board_type products[] = {
111         {0x3241103C, "Smart Array P212", &SA5_access},
112         {0x3243103C, "Smart Array P410", &SA5_access},
113         {0x3245103C, "Smart Array P410i", &SA5_access},
114         {0x3247103C, "Smart Array P411", &SA5_access},
115         {0x3249103C, "Smart Array P812", &SA5_access},
116         {0x324a103C, "Smart Array P712m", &SA5_access},
117         {0x324b103C, "Smart Array P711m", &SA5_access},
118         {0x3350103C, "Smart Array", &SA5_access},
119         {0x3351103C, "Smart Array", &SA5_access},
120         {0x3352103C, "Smart Array", &SA5_access},
121         {0x3353103C, "Smart Array", &SA5_access},
122         {0x3354103C, "Smart Array", &SA5_access},
123         {0x3355103C, "Smart Array", &SA5_access},
124         {0x3356103C, "Smart Array", &SA5_access},
125         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
126 };
127
128 static int number_of_controllers;
129
130 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
131 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
132 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
133 static void start_io(struct ctlr_info *h);
134
135 #ifdef CONFIG_COMPAT
136 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
137 #endif
138
139 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
140 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
141 static struct CommandList *cmd_alloc(struct ctlr_info *h);
142 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
143 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
144         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
145         int cmd_type);
146
147 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
148 static void hpsa_scan_start(struct Scsi_Host *);
149 static int hpsa_scan_finished(struct Scsi_Host *sh,
150         unsigned long elapsed_time);
151 static int hpsa_change_queue_depth(struct scsi_device *sdev,
152         int qdepth, int reason);
153
154 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
155 static int hpsa_slave_alloc(struct scsi_device *sdev);
156 static void hpsa_slave_destroy(struct scsi_device *sdev);
157
158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
159 static int check_for_unit_attention(struct ctlr_info *h,
160         struct CommandList *c);
161 static void check_ioctl_unit_attention(struct ctlr_info *h,
162         struct CommandList *c);
163 /* performant mode helper functions */
164 static void calc_bucket_map(int *bucket, int num_buckets,
165         int nsgs, int *bucket_map);
166 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
167 static inline u32 next_command(struct ctlr_info *h);
168 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
169         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
170         u64 *cfg_offset);
171 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
172         unsigned long *memory_bar);
173 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
174 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
175         void __iomem *vaddr, int wait_for_ready);
176 #define BOARD_NOT_READY 0
177 #define BOARD_READY 1
178
179 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
180 {
181         unsigned long *priv = shost_priv(sdev->host);
182         return (struct ctlr_info *) *priv;
183 }
184
185 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
186 {
187         unsigned long *priv = shost_priv(sh);
188         return (struct ctlr_info *) *priv;
189 }
190
191 static int check_for_unit_attention(struct ctlr_info *h,
192         struct CommandList *c)
193 {
194         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
195                 return 0;
196
197         switch (c->err_info->SenseInfo[12]) {
198         case STATE_CHANGED:
199                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
200                         "detected, command retried\n", h->ctlr);
201                 break;
202         case LUN_FAILED:
203                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
204                         "detected, action required\n", h->ctlr);
205                 break;
206         case REPORT_LUNS_CHANGED:
207                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
208                         "changed, action required\n", h->ctlr);
209         /*
210          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
211          */
212                 break;
213         case POWER_OR_RESET:
214                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
215                         "or device reset detected\n", h->ctlr);
216                 break;
217         case UNIT_ATTENTION_CLEARED:
218                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
219                     "cleared by another initiator\n", h->ctlr);
220                 break;
221         default:
222                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
223                         "unit attention detected\n", h->ctlr);
224                 break;
225         }
226         return 1;
227 }
228
229 static ssize_t host_store_rescan(struct device *dev,
230                                  struct device_attribute *attr,
231                                  const char *buf, size_t count)
232 {
233         struct ctlr_info *h;
234         struct Scsi_Host *shost = class_to_shost(dev);
235         h = shost_to_hba(shost);
236         hpsa_scan_start(h->scsi_host);
237         return count;
238 }
239
240 static ssize_t host_show_firmware_revision(struct device *dev,
241              struct device_attribute *attr, char *buf)
242 {
243         struct ctlr_info *h;
244         struct Scsi_Host *shost = class_to_shost(dev);
245         unsigned char *fwrev;
246
247         h = shost_to_hba(shost);
248         if (!h->hba_inquiry_data)
249                 return 0;
250         fwrev = &h->hba_inquiry_data[32];
251         return snprintf(buf, 20, "%c%c%c%c\n",
252                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
253 }
254
255 static ssize_t host_show_commands_outstanding(struct device *dev,
256              struct device_attribute *attr, char *buf)
257 {
258         struct Scsi_Host *shost = class_to_shost(dev);
259         struct ctlr_info *h = shost_to_hba(shost);
260
261         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
262 }
263
264 static ssize_t host_show_transport_mode(struct device *dev,
265         struct device_attribute *attr, char *buf)
266 {
267         struct ctlr_info *h;
268         struct Scsi_Host *shost = class_to_shost(dev);
269
270         h = shost_to_hba(shost);
271         return snprintf(buf, 20, "%s\n",
272                 h->transMethod & CFGTBL_Trans_Performant ?
273                         "performant" : "simple");
274 }
275
276 /* List of controllers which cannot be reset on kexec with reset_devices */
277 static u32 unresettable_controller[] = {
278         0x324a103C, /* Smart Array P712m */
279         0x324b103C, /* SmartArray P711m */
280         0x3223103C, /* Smart Array P800 */
281         0x3234103C, /* Smart Array P400 */
282         0x3235103C, /* Smart Array P400i */
283         0x3211103C, /* Smart Array E200i */
284         0x3212103C, /* Smart Array E200 */
285         0x3213103C, /* Smart Array E200i */
286         0x3214103C, /* Smart Array E200i */
287         0x3215103C, /* Smart Array E200i */
288         0x3237103C, /* Smart Array E500 */
289         0x323D103C, /* Smart Array P700m */
290         0x409C0E11, /* Smart Array 6400 */
291         0x409D0E11, /* Smart Array 6400 EM */
292 };
293
294 static int ctlr_is_resettable(struct ctlr_info *h)
295 {
296         int i;
297
298         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
299                 if (unresettable_controller[i] == h->board_id)
300                         return 0;
301         return 1;
302 }
303
304 static ssize_t host_show_resettable(struct device *dev,
305         struct device_attribute *attr, char *buf)
306 {
307         struct ctlr_info *h;
308         struct Scsi_Host *shost = class_to_shost(dev);
309
310         h = shost_to_hba(shost);
311         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h));
312 }
313
314 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
315 {
316         return (scsi3addr[3] & 0xC0) == 0x40;
317 }
318
319 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
320         "UNKNOWN"
321 };
322 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
323
324 static ssize_t raid_level_show(struct device *dev,
325              struct device_attribute *attr, char *buf)
326 {
327         ssize_t l = 0;
328         unsigned char rlevel;
329         struct ctlr_info *h;
330         struct scsi_device *sdev;
331         struct hpsa_scsi_dev_t *hdev;
332         unsigned long flags;
333
334         sdev = to_scsi_device(dev);
335         h = sdev_to_hba(sdev);
336         spin_lock_irqsave(&h->lock, flags);
337         hdev = sdev->hostdata;
338         if (!hdev) {
339                 spin_unlock_irqrestore(&h->lock, flags);
340                 return -ENODEV;
341         }
342
343         /* Is this even a logical drive? */
344         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
345                 spin_unlock_irqrestore(&h->lock, flags);
346                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
347                 return l;
348         }
349
350         rlevel = hdev->raid_level;
351         spin_unlock_irqrestore(&h->lock, flags);
352         if (rlevel > RAID_UNKNOWN)
353                 rlevel = RAID_UNKNOWN;
354         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
355         return l;
356 }
357
358 static ssize_t lunid_show(struct device *dev,
359              struct device_attribute *attr, char *buf)
360 {
361         struct ctlr_info *h;
362         struct scsi_device *sdev;
363         struct hpsa_scsi_dev_t *hdev;
364         unsigned long flags;
365         unsigned char lunid[8];
366
367         sdev = to_scsi_device(dev);
368         h = sdev_to_hba(sdev);
369         spin_lock_irqsave(&h->lock, flags);
370         hdev = sdev->hostdata;
371         if (!hdev) {
372                 spin_unlock_irqrestore(&h->lock, flags);
373                 return -ENODEV;
374         }
375         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
376         spin_unlock_irqrestore(&h->lock, flags);
377         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
378                 lunid[0], lunid[1], lunid[2], lunid[3],
379                 lunid[4], lunid[5], lunid[6], lunid[7]);
380 }
381
382 static ssize_t unique_id_show(struct device *dev,
383              struct device_attribute *attr, char *buf)
384 {
385         struct ctlr_info *h;
386         struct scsi_device *sdev;
387         struct hpsa_scsi_dev_t *hdev;
388         unsigned long flags;
389         unsigned char sn[16];
390
391         sdev = to_scsi_device(dev);
392         h = sdev_to_hba(sdev);
393         spin_lock_irqsave(&h->lock, flags);
394         hdev = sdev->hostdata;
395         if (!hdev) {
396                 spin_unlock_irqrestore(&h->lock, flags);
397                 return -ENODEV;
398         }
399         memcpy(sn, hdev->device_id, sizeof(sn));
400         spin_unlock_irqrestore(&h->lock, flags);
401         return snprintf(buf, 16 * 2 + 2,
402                         "%02X%02X%02X%02X%02X%02X%02X%02X"
403                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
404                         sn[0], sn[1], sn[2], sn[3],
405                         sn[4], sn[5], sn[6], sn[7],
406                         sn[8], sn[9], sn[10], sn[11],
407                         sn[12], sn[13], sn[14], sn[15]);
408 }
409
410 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
411 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
412 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
413 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
414 static DEVICE_ATTR(firmware_revision, S_IRUGO,
415         host_show_firmware_revision, NULL);
416 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
417         host_show_commands_outstanding, NULL);
418 static DEVICE_ATTR(transport_mode, S_IRUGO,
419         host_show_transport_mode, NULL);
420 static DEVICE_ATTR(resettable, S_IRUGO,
421         host_show_resettable, NULL);
422
423 static struct device_attribute *hpsa_sdev_attrs[] = {
424         &dev_attr_raid_level,
425         &dev_attr_lunid,
426         &dev_attr_unique_id,
427         NULL,
428 };
429
430 static struct device_attribute *hpsa_shost_attrs[] = {
431         &dev_attr_rescan,
432         &dev_attr_firmware_revision,
433         &dev_attr_commands_outstanding,
434         &dev_attr_transport_mode,
435         &dev_attr_resettable,
436         NULL,
437 };
438
439 static struct scsi_host_template hpsa_driver_template = {
440         .module                 = THIS_MODULE,
441         .name                   = "hpsa",
442         .proc_name              = "hpsa",
443         .queuecommand           = hpsa_scsi_queue_command,
444         .scan_start             = hpsa_scan_start,
445         .scan_finished          = hpsa_scan_finished,
446         .change_queue_depth     = hpsa_change_queue_depth,
447         .this_id                = -1,
448         .use_clustering         = ENABLE_CLUSTERING,
449         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
450         .ioctl                  = hpsa_ioctl,
451         .slave_alloc            = hpsa_slave_alloc,
452         .slave_destroy          = hpsa_slave_destroy,
453 #ifdef CONFIG_COMPAT
454         .compat_ioctl           = hpsa_compat_ioctl,
455 #endif
456         .sdev_attrs = hpsa_sdev_attrs,
457         .shost_attrs = hpsa_shost_attrs,
458 };
459
460
461 /* Enqueuing and dequeuing functions for cmdlists. */
462 static inline void addQ(struct list_head *list, struct CommandList *c)
463 {
464         list_add_tail(&c->list, list);
465 }
466
467 static inline u32 next_command(struct ctlr_info *h)
468 {
469         u32 a;
470
471         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
472                 return h->access.command_completed(h);
473
474         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
475                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
476                 (h->reply_pool_head)++;
477                 h->commands_outstanding--;
478         } else {
479                 a = FIFO_EMPTY;
480         }
481         /* Check for wraparound */
482         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
483                 h->reply_pool_head = h->reply_pool;
484                 h->reply_pool_wraparound ^= 1;
485         }
486         return a;
487 }
488
489 /* set_performant_mode: Modify the tag for cciss performant
490  * set bit 0 for pull model, bits 3-1 for block fetch
491  * register number
492  */
493 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
494 {
495         if (likely(h->transMethod & CFGTBL_Trans_Performant))
496                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
497 }
498
499 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
500         struct CommandList *c)
501 {
502         unsigned long flags;
503
504         set_performant_mode(h, c);
505         spin_lock_irqsave(&h->lock, flags);
506         addQ(&h->reqQ, c);
507         h->Qdepth++;
508         start_io(h);
509         spin_unlock_irqrestore(&h->lock, flags);
510 }
511
512 static inline void removeQ(struct CommandList *c)
513 {
514         if (WARN_ON(list_empty(&c->list)))
515                 return;
516         list_del_init(&c->list);
517 }
518
519 static inline int is_hba_lunid(unsigned char scsi3addr[])
520 {
521         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
522 }
523
524 static inline int is_scsi_rev_5(struct ctlr_info *h)
525 {
526         if (!h->hba_inquiry_data)
527                 return 0;
528         if ((h->hba_inquiry_data[2] & 0x07) == 5)
529                 return 1;
530         return 0;
531 }
532
533 static int hpsa_find_target_lun(struct ctlr_info *h,
534         unsigned char scsi3addr[], int bus, int *target, int *lun)
535 {
536         /* finds an unused bus, target, lun for a new physical device
537          * assumes h->devlock is held
538          */
539         int i, found = 0;
540         DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
541
542         memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
543
544         for (i = 0; i < h->ndevices; i++) {
545                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
546                         set_bit(h->dev[i]->target, lun_taken);
547         }
548
549         for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
550                 if (!test_bit(i, lun_taken)) {
551                         /* *bus = 1; */
552                         *target = i;
553                         *lun = 0;
554                         found = 1;
555                         break;
556                 }
557         }
558         return !found;
559 }
560
561 /* Add an entry into h->dev[] array. */
562 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
563                 struct hpsa_scsi_dev_t *device,
564                 struct hpsa_scsi_dev_t *added[], int *nadded)
565 {
566         /* assumes h->devlock is held */
567         int n = h->ndevices;
568         int i;
569         unsigned char addr1[8], addr2[8];
570         struct hpsa_scsi_dev_t *sd;
571
572         if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
573                 dev_err(&h->pdev->dev, "too many devices, some will be "
574                         "inaccessible.\n");
575                 return -1;
576         }
577
578         /* physical devices do not have lun or target assigned until now. */
579         if (device->lun != -1)
580                 /* Logical device, lun is already assigned. */
581                 goto lun_assigned;
582
583         /* If this device a non-zero lun of a multi-lun device
584          * byte 4 of the 8-byte LUN addr will contain the logical
585          * unit no, zero otherise.
586          */
587         if (device->scsi3addr[4] == 0) {
588                 /* This is not a non-zero lun of a multi-lun device */
589                 if (hpsa_find_target_lun(h, device->scsi3addr,
590                         device->bus, &device->target, &device->lun) != 0)
591                         return -1;
592                 goto lun_assigned;
593         }
594
595         /* This is a non-zero lun of a multi-lun device.
596          * Search through our list and find the device which
597          * has the same 8 byte LUN address, excepting byte 4.
598          * Assign the same bus and target for this new LUN.
599          * Use the logical unit number from the firmware.
600          */
601         memcpy(addr1, device->scsi3addr, 8);
602         addr1[4] = 0;
603         for (i = 0; i < n; i++) {
604                 sd = h->dev[i];
605                 memcpy(addr2, sd->scsi3addr, 8);
606                 addr2[4] = 0;
607                 /* differ only in byte 4? */
608                 if (memcmp(addr1, addr2, 8) == 0) {
609                         device->bus = sd->bus;
610                         device->target = sd->target;
611                         device->lun = device->scsi3addr[4];
612                         break;
613                 }
614         }
615         if (device->lun == -1) {
616                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
617                         " suspect firmware bug or unsupported hardware "
618                         "configuration.\n");
619                         return -1;
620         }
621
622 lun_assigned:
623
624         h->dev[n] = device;
625         h->ndevices++;
626         added[*nadded] = device;
627         (*nadded)++;
628
629         /* initially, (before registering with scsi layer) we don't
630          * know our hostno and we don't want to print anything first
631          * time anyway (the scsi layer's inquiries will show that info)
632          */
633         /* if (hostno != -1) */
634                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
635                         scsi_device_type(device->devtype), hostno,
636                         device->bus, device->target, device->lun);
637         return 0;
638 }
639
640 /* Replace an entry from h->dev[] array. */
641 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
642         int entry, struct hpsa_scsi_dev_t *new_entry,
643         struct hpsa_scsi_dev_t *added[], int *nadded,
644         struct hpsa_scsi_dev_t *removed[], int *nremoved)
645 {
646         /* assumes h->devlock is held */
647         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
648         removed[*nremoved] = h->dev[entry];
649         (*nremoved)++;
650         h->dev[entry] = new_entry;
651         added[*nadded] = new_entry;
652         (*nadded)++;
653         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
654                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
655                         new_entry->target, new_entry->lun);
656 }
657
658 /* Remove an entry from h->dev[] array. */
659 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
660         struct hpsa_scsi_dev_t *removed[], int *nremoved)
661 {
662         /* assumes h->devlock is held */
663         int i;
664         struct hpsa_scsi_dev_t *sd;
665
666         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
667
668         sd = h->dev[entry];
669         removed[*nremoved] = h->dev[entry];
670         (*nremoved)++;
671
672         for (i = entry; i < h->ndevices-1; i++)
673                 h->dev[i] = h->dev[i+1];
674         h->ndevices--;
675         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
676                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
677                 sd->lun);
678 }
679
680 #define SCSI3ADDR_EQ(a, b) ( \
681         (a)[7] == (b)[7] && \
682         (a)[6] == (b)[6] && \
683         (a)[5] == (b)[5] && \
684         (a)[4] == (b)[4] && \
685         (a)[3] == (b)[3] && \
686         (a)[2] == (b)[2] && \
687         (a)[1] == (b)[1] && \
688         (a)[0] == (b)[0])
689
690 static void fixup_botched_add(struct ctlr_info *h,
691         struct hpsa_scsi_dev_t *added)
692 {
693         /* called when scsi_add_device fails in order to re-adjust
694          * h->dev[] to match the mid layer's view.
695          */
696         unsigned long flags;
697         int i, j;
698
699         spin_lock_irqsave(&h->lock, flags);
700         for (i = 0; i < h->ndevices; i++) {
701                 if (h->dev[i] == added) {
702                         for (j = i; j < h->ndevices-1; j++)
703                                 h->dev[j] = h->dev[j+1];
704                         h->ndevices--;
705                         break;
706                 }
707         }
708         spin_unlock_irqrestore(&h->lock, flags);
709         kfree(added);
710 }
711
712 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
713         struct hpsa_scsi_dev_t *dev2)
714 {
715         /* we compare everything except lun and target as these
716          * are not yet assigned.  Compare parts likely
717          * to differ first
718          */
719         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
720                 sizeof(dev1->scsi3addr)) != 0)
721                 return 0;
722         if (memcmp(dev1->device_id, dev2->device_id,
723                 sizeof(dev1->device_id)) != 0)
724                 return 0;
725         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
726                 return 0;
727         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
728                 return 0;
729         if (dev1->devtype != dev2->devtype)
730                 return 0;
731         if (dev1->bus != dev2->bus)
732                 return 0;
733         return 1;
734 }
735
736 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
737  * and return needle location in *index.  If scsi3addr matches, but not
738  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
739  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
740  */
741 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
742         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
743         int *index)
744 {
745         int i;
746 #define DEVICE_NOT_FOUND 0
747 #define DEVICE_CHANGED 1
748 #define DEVICE_SAME 2
749         for (i = 0; i < haystack_size; i++) {
750                 if (haystack[i] == NULL) /* previously removed. */
751                         continue;
752                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
753                         *index = i;
754                         if (device_is_the_same(needle, haystack[i]))
755                                 return DEVICE_SAME;
756                         else
757                                 return DEVICE_CHANGED;
758                 }
759         }
760         *index = -1;
761         return DEVICE_NOT_FOUND;
762 }
763
764 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
765         struct hpsa_scsi_dev_t *sd[], int nsds)
766 {
767         /* sd contains scsi3 addresses and devtypes, and inquiry
768          * data.  This function takes what's in sd to be the current
769          * reality and updates h->dev[] to reflect that reality.
770          */
771         int i, entry, device_change, changes = 0;
772         struct hpsa_scsi_dev_t *csd;
773         unsigned long flags;
774         struct hpsa_scsi_dev_t **added, **removed;
775         int nadded, nremoved;
776         struct Scsi_Host *sh = NULL;
777
778         added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
779                 GFP_KERNEL);
780         removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
781                 GFP_KERNEL);
782
783         if (!added || !removed) {
784                 dev_warn(&h->pdev->dev, "out of memory in "
785                         "adjust_hpsa_scsi_table\n");
786                 goto free_and_out;
787         }
788
789         spin_lock_irqsave(&h->devlock, flags);
790
791         /* find any devices in h->dev[] that are not in
792          * sd[] and remove them from h->dev[], and for any
793          * devices which have changed, remove the old device
794          * info and add the new device info.
795          */
796         i = 0;
797         nremoved = 0;
798         nadded = 0;
799         while (i < h->ndevices) {
800                 csd = h->dev[i];
801                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
802                 if (device_change == DEVICE_NOT_FOUND) {
803                         changes++;
804                         hpsa_scsi_remove_entry(h, hostno, i,
805                                 removed, &nremoved);
806                         continue; /* remove ^^^, hence i not incremented */
807                 } else if (device_change == DEVICE_CHANGED) {
808                         changes++;
809                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
810                                 added, &nadded, removed, &nremoved);
811                         /* Set it to NULL to prevent it from being freed
812                          * at the bottom of hpsa_update_scsi_devices()
813                          */
814                         sd[entry] = NULL;
815                 }
816                 i++;
817         }
818
819         /* Now, make sure every device listed in sd[] is also
820          * listed in h->dev[], adding them if they aren't found
821          */
822
823         for (i = 0; i < nsds; i++) {
824                 if (!sd[i]) /* if already added above. */
825                         continue;
826                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
827                                         h->ndevices, &entry);
828                 if (device_change == DEVICE_NOT_FOUND) {
829                         changes++;
830                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
831                                 added, &nadded) != 0)
832                                 break;
833                         sd[i] = NULL; /* prevent from being freed later. */
834                 } else if (device_change == DEVICE_CHANGED) {
835                         /* should never happen... */
836                         changes++;
837                         dev_warn(&h->pdev->dev,
838                                 "device unexpectedly changed.\n");
839                         /* but if it does happen, we just ignore that device */
840                 }
841         }
842         spin_unlock_irqrestore(&h->devlock, flags);
843
844         /* Don't notify scsi mid layer of any changes the first time through
845          * (or if there are no changes) scsi_scan_host will do it later the
846          * first time through.
847          */
848         if (hostno == -1 || !changes)
849                 goto free_and_out;
850
851         sh = h->scsi_host;
852         /* Notify scsi mid layer of any removed devices */
853         for (i = 0; i < nremoved; i++) {
854                 struct scsi_device *sdev =
855                         scsi_device_lookup(sh, removed[i]->bus,
856                                 removed[i]->target, removed[i]->lun);
857                 if (sdev != NULL) {
858                         scsi_remove_device(sdev);
859                         scsi_device_put(sdev);
860                 } else {
861                         /* We don't expect to get here.
862                          * future cmds to this device will get selection
863                          * timeout as if the device was gone.
864                          */
865                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
866                                 " for removal.", hostno, removed[i]->bus,
867                                 removed[i]->target, removed[i]->lun);
868                 }
869                 kfree(removed[i]);
870                 removed[i] = NULL;
871         }
872
873         /* Notify scsi mid layer of any added devices */
874         for (i = 0; i < nadded; i++) {
875                 if (scsi_add_device(sh, added[i]->bus,
876                         added[i]->target, added[i]->lun) == 0)
877                         continue;
878                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
879                         "device not added.\n", hostno, added[i]->bus,
880                         added[i]->target, added[i]->lun);
881                 /* now we have to remove it from h->dev,
882                  * since it didn't get added to scsi mid layer
883                  */
884                 fixup_botched_add(h, added[i]);
885         }
886
887 free_and_out:
888         kfree(added);
889         kfree(removed);
890 }
891
892 /*
893  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
894  * Assume's h->devlock is held.
895  */
896 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
897         int bus, int target, int lun)
898 {
899         int i;
900         struct hpsa_scsi_dev_t *sd;
901
902         for (i = 0; i < h->ndevices; i++) {
903                 sd = h->dev[i];
904                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
905                         return sd;
906         }
907         return NULL;
908 }
909
910 /* link sdev->hostdata to our per-device structure. */
911 static int hpsa_slave_alloc(struct scsi_device *sdev)
912 {
913         struct hpsa_scsi_dev_t *sd;
914         unsigned long flags;
915         struct ctlr_info *h;
916
917         h = sdev_to_hba(sdev);
918         spin_lock_irqsave(&h->devlock, flags);
919         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
920                 sdev_id(sdev), sdev->lun);
921         if (sd != NULL)
922                 sdev->hostdata = sd;
923         spin_unlock_irqrestore(&h->devlock, flags);
924         return 0;
925 }
926
927 static void hpsa_slave_destroy(struct scsi_device *sdev)
928 {
929         /* nothing to do. */
930 }
931
932 static void hpsa_scsi_setup(struct ctlr_info *h)
933 {
934         h->ndevices = 0;
935         h->scsi_host = NULL;
936         spin_lock_init(&h->devlock);
937 }
938
939 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
940 {
941         int i;
942
943         if (!h->cmd_sg_list)
944                 return;
945         for (i = 0; i < h->nr_cmds; i++) {
946                 kfree(h->cmd_sg_list[i]);
947                 h->cmd_sg_list[i] = NULL;
948         }
949         kfree(h->cmd_sg_list);
950         h->cmd_sg_list = NULL;
951 }
952
953 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
954 {
955         int i;
956
957         if (h->chainsize <= 0)
958                 return 0;
959
960         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
961                                 GFP_KERNEL);
962         if (!h->cmd_sg_list)
963                 return -ENOMEM;
964         for (i = 0; i < h->nr_cmds; i++) {
965                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
966                                                 h->chainsize, GFP_KERNEL);
967                 if (!h->cmd_sg_list[i])
968                         goto clean;
969         }
970         return 0;
971
972 clean:
973         hpsa_free_sg_chain_blocks(h);
974         return -ENOMEM;
975 }
976
977 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
978         struct CommandList *c)
979 {
980         struct SGDescriptor *chain_sg, *chain_block;
981         u64 temp64;
982
983         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
984         chain_block = h->cmd_sg_list[c->cmdindex];
985         chain_sg->Ext = HPSA_SG_CHAIN;
986         chain_sg->Len = sizeof(*chain_sg) *
987                 (c->Header.SGTotal - h->max_cmd_sg_entries);
988         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
989                                 PCI_DMA_TODEVICE);
990         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
991         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
992 }
993
994 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
995         struct CommandList *c)
996 {
997         struct SGDescriptor *chain_sg;
998         union u64bit temp64;
999
1000         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1001                 return;
1002
1003         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1004         temp64.val32.lower = chain_sg->Addr.lower;
1005         temp64.val32.upper = chain_sg->Addr.upper;
1006         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1007 }
1008
1009 static void complete_scsi_command(struct CommandList *cp)
1010 {
1011         struct scsi_cmnd *cmd;
1012         struct ctlr_info *h;
1013         struct ErrorInfo *ei;
1014
1015         unsigned char sense_key;
1016         unsigned char asc;      /* additional sense code */
1017         unsigned char ascq;     /* additional sense code qualifier */
1018
1019         ei = cp->err_info;
1020         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1021         h = cp->h;
1022
1023         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1024         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1025                 hpsa_unmap_sg_chain_block(h, cp);
1026
1027         cmd->result = (DID_OK << 16);           /* host byte */
1028         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1029         cmd->result |= ei->ScsiStatus;
1030
1031         /* copy the sense data whether we need to or not. */
1032         memcpy(cmd->sense_buffer, ei->SenseInfo,
1033                 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
1034                         SCSI_SENSE_BUFFERSIZE :
1035                         ei->SenseLen);
1036         scsi_set_resid(cmd, ei->ResidualCnt);
1037
1038         if (ei->CommandStatus == 0) {
1039                 cmd->scsi_done(cmd);
1040                 cmd_free(h, cp);
1041                 return;
1042         }
1043
1044         /* an error has occurred */
1045         switch (ei->CommandStatus) {
1046
1047         case CMD_TARGET_STATUS:
1048                 if (ei->ScsiStatus) {
1049                         /* Get sense key */
1050                         sense_key = 0xf & ei->SenseInfo[2];
1051                         /* Get additional sense code */
1052                         asc = ei->SenseInfo[12];
1053                         /* Get addition sense code qualifier */
1054                         ascq = ei->SenseInfo[13];
1055                 }
1056
1057                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1058                         if (check_for_unit_attention(h, cp)) {
1059                                 cmd->result = DID_SOFT_ERROR << 16;
1060                                 break;
1061                         }
1062                         if (sense_key == ILLEGAL_REQUEST) {
1063                                 /*
1064                                  * SCSI REPORT_LUNS is commonly unsupported on
1065                                  * Smart Array.  Suppress noisy complaint.
1066                                  */
1067                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1068                                         break;
1069
1070                                 /* If ASC/ASCQ indicate Logical Unit
1071                                  * Not Supported condition,
1072                                  */
1073                                 if ((asc == 0x25) && (ascq == 0x0)) {
1074                                         dev_warn(&h->pdev->dev, "cp %p "
1075                                                 "has check condition\n", cp);
1076                                         break;
1077                                 }
1078                         }
1079
1080                         if (sense_key == NOT_READY) {
1081                                 /* If Sense is Not Ready, Logical Unit
1082                                  * Not ready, Manual Intervention
1083                                  * required
1084                                  */
1085                                 if ((asc == 0x04) && (ascq == 0x03)) {
1086                                         dev_warn(&h->pdev->dev, "cp %p "
1087                                                 "has check condition: unit "
1088                                                 "not ready, manual "
1089                                                 "intervention required\n", cp);
1090                                         break;
1091                                 }
1092                         }
1093                         if (sense_key == ABORTED_COMMAND) {
1094                                 /* Aborted command is retryable */
1095                                 dev_warn(&h->pdev->dev, "cp %p "
1096                                         "has check condition: aborted command: "
1097                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1098                                         cp, asc, ascq);
1099                                 cmd->result = DID_SOFT_ERROR << 16;
1100                                 break;
1101                         }
1102                         /* Must be some other type of check condition */
1103                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1104                                         "unknown type: "
1105                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1106                                         "Returning result: 0x%x, "
1107                                         "cmd=[%02x %02x %02x %02x %02x "
1108                                         "%02x %02x %02x %02x %02x %02x "
1109                                         "%02x %02x %02x %02x %02x]\n",
1110                                         cp, sense_key, asc, ascq,
1111                                         cmd->result,
1112                                         cmd->cmnd[0], cmd->cmnd[1],
1113                                         cmd->cmnd[2], cmd->cmnd[3],
1114                                         cmd->cmnd[4], cmd->cmnd[5],
1115                                         cmd->cmnd[6], cmd->cmnd[7],
1116                                         cmd->cmnd[8], cmd->cmnd[9],
1117                                         cmd->cmnd[10], cmd->cmnd[11],
1118                                         cmd->cmnd[12], cmd->cmnd[13],
1119                                         cmd->cmnd[14], cmd->cmnd[15]);
1120                         break;
1121                 }
1122
1123
1124                 /* Problem was not a check condition
1125                  * Pass it up to the upper layers...
1126                  */
1127                 if (ei->ScsiStatus) {
1128                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1129                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1130                                 "Returning result: 0x%x\n",
1131                                 cp, ei->ScsiStatus,
1132                                 sense_key, asc, ascq,
1133                                 cmd->result);
1134                 } else {  /* scsi status is zero??? How??? */
1135                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1136                                 "Returning no connection.\n", cp),
1137
1138                         /* Ordinarily, this case should never happen,
1139                          * but there is a bug in some released firmware
1140                          * revisions that allows it to happen if, for
1141                          * example, a 4100 backplane loses power and
1142                          * the tape drive is in it.  We assume that
1143                          * it's a fatal error of some kind because we
1144                          * can't show that it wasn't. We will make it
1145                          * look like selection timeout since that is
1146                          * the most common reason for this to occur,
1147                          * and it's severe enough.
1148                          */
1149
1150                         cmd->result = DID_NO_CONNECT << 16;
1151                 }
1152                 break;
1153
1154         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1155                 break;
1156         case CMD_DATA_OVERRUN:
1157                 dev_warn(&h->pdev->dev, "cp %p has"
1158                         " completed with data overrun "
1159                         "reported\n", cp);
1160                 break;
1161         case CMD_INVALID: {
1162                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1163                 print_cmd(cp); */
1164                 /* We get CMD_INVALID if you address a non-existent device
1165                  * instead of a selection timeout (no response).  You will
1166                  * see this if you yank out a drive, then try to access it.
1167                  * This is kind of a shame because it means that any other
1168                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1169                  * missing target. */
1170                 cmd->result = DID_NO_CONNECT << 16;
1171         }
1172                 break;
1173         case CMD_PROTOCOL_ERR:
1174                 dev_warn(&h->pdev->dev, "cp %p has "
1175                         "protocol error \n", cp);
1176                 break;
1177         case CMD_HARDWARE_ERR:
1178                 cmd->result = DID_ERROR << 16;
1179                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1180                 break;
1181         case CMD_CONNECTION_LOST:
1182                 cmd->result = DID_ERROR << 16;
1183                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1184                 break;
1185         case CMD_ABORTED:
1186                 cmd->result = DID_ABORT << 16;
1187                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1188                                 cp, ei->ScsiStatus);
1189                 break;
1190         case CMD_ABORT_FAILED:
1191                 cmd->result = DID_ERROR << 16;
1192                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1193                 break;
1194         case CMD_UNSOLICITED_ABORT:
1195                 cmd->result = DID_RESET << 16;
1196                 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1197                         "abort\n", cp);
1198                 break;
1199         case CMD_TIMEOUT:
1200                 cmd->result = DID_TIME_OUT << 16;
1201                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1202                 break;
1203         case CMD_UNABORTABLE:
1204                 cmd->result = DID_ERROR << 16;
1205                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1206                 break;
1207         default:
1208                 cmd->result = DID_ERROR << 16;
1209                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1210                                 cp, ei->CommandStatus);
1211         }
1212         cmd->scsi_done(cmd);
1213         cmd_free(h, cp);
1214 }
1215
1216 static int hpsa_scsi_detect(struct ctlr_info *h)
1217 {
1218         struct Scsi_Host *sh;
1219         int error;
1220
1221         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1222         if (sh == NULL)
1223                 goto fail;
1224
1225         sh->io_port = 0;
1226         sh->n_io_port = 0;
1227         sh->this_id = -1;
1228         sh->max_channel = 3;
1229         sh->max_cmd_len = MAX_COMMAND_SIZE;
1230         sh->max_lun = HPSA_MAX_LUN;
1231         sh->max_id = HPSA_MAX_LUN;
1232         sh->can_queue = h->nr_cmds;
1233         sh->cmd_per_lun = h->nr_cmds;
1234         sh->sg_tablesize = h->maxsgentries;
1235         h->scsi_host = sh;
1236         sh->hostdata[0] = (unsigned long) h;
1237         sh->irq = h->intr[h->intr_mode];
1238         sh->unique_id = sh->irq;
1239         error = scsi_add_host(sh, &h->pdev->dev);
1240         if (error)
1241                 goto fail_host_put;
1242         scsi_scan_host(sh);
1243         return 0;
1244
1245  fail_host_put:
1246         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1247                 " failed for controller %d\n", h->ctlr);
1248         scsi_host_put(sh);
1249         return error;
1250  fail:
1251         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1252                 " failed for controller %d\n", h->ctlr);
1253         return -ENOMEM;
1254 }
1255
1256 static void hpsa_pci_unmap(struct pci_dev *pdev,
1257         struct CommandList *c, int sg_used, int data_direction)
1258 {
1259         int i;
1260         union u64bit addr64;
1261
1262         for (i = 0; i < sg_used; i++) {
1263                 addr64.val32.lower = c->SG[i].Addr.lower;
1264                 addr64.val32.upper = c->SG[i].Addr.upper;
1265                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1266                         data_direction);
1267         }
1268 }
1269
1270 static void hpsa_map_one(struct pci_dev *pdev,
1271                 struct CommandList *cp,
1272                 unsigned char *buf,
1273                 size_t buflen,
1274                 int data_direction)
1275 {
1276         u64 addr64;
1277
1278         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1279                 cp->Header.SGList = 0;
1280                 cp->Header.SGTotal = 0;
1281                 return;
1282         }
1283
1284         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1285         cp->SG[0].Addr.lower =
1286           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1287         cp->SG[0].Addr.upper =
1288           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1289         cp->SG[0].Len = buflen;
1290         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1291         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1292 }
1293
1294 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1295         struct CommandList *c)
1296 {
1297         DECLARE_COMPLETION_ONSTACK(wait);
1298
1299         c->waiting = &wait;
1300         enqueue_cmd_and_start_io(h, c);
1301         wait_for_completion(&wait);
1302 }
1303
1304 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1305         struct CommandList *c, int data_direction)
1306 {
1307         int retry_count = 0;
1308
1309         do {
1310                 memset(c->err_info, 0, sizeof(c->err_info));
1311                 hpsa_scsi_do_simple_cmd_core(h, c);
1312                 retry_count++;
1313         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1314         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1315 }
1316
1317 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1318 {
1319         struct ErrorInfo *ei;
1320         struct device *d = &cp->h->pdev->dev;
1321
1322         ei = cp->err_info;
1323         switch (ei->CommandStatus) {
1324         case CMD_TARGET_STATUS:
1325                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1326                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1327                                 ei->ScsiStatus);
1328                 if (ei->ScsiStatus == 0)
1329                         dev_warn(d, "SCSI status is abnormally zero.  "
1330                         "(probably indicates selection timeout "
1331                         "reported incorrectly due to a known "
1332                         "firmware bug, circa July, 2001.)\n");
1333                 break;
1334         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1335                         dev_info(d, "UNDERRUN\n");
1336                 break;
1337         case CMD_DATA_OVERRUN:
1338                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1339                 break;
1340         case CMD_INVALID: {
1341                 /* controller unfortunately reports SCSI passthru's
1342                  * to non-existent targets as invalid commands.
1343                  */
1344                 dev_warn(d, "cp %p is reported invalid (probably means "
1345                         "target device no longer present)\n", cp);
1346                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1347                 print_cmd(cp);  */
1348                 }
1349                 break;
1350         case CMD_PROTOCOL_ERR:
1351                 dev_warn(d, "cp %p has protocol error \n", cp);
1352                 break;
1353         case CMD_HARDWARE_ERR:
1354                 /* cmd->result = DID_ERROR << 16; */
1355                 dev_warn(d, "cp %p had hardware error\n", cp);
1356                 break;
1357         case CMD_CONNECTION_LOST:
1358                 dev_warn(d, "cp %p had connection lost\n", cp);
1359                 break;
1360         case CMD_ABORTED:
1361                 dev_warn(d, "cp %p was aborted\n", cp);
1362                 break;
1363         case CMD_ABORT_FAILED:
1364                 dev_warn(d, "cp %p reports abort failed\n", cp);
1365                 break;
1366         case CMD_UNSOLICITED_ABORT:
1367                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1368                 break;
1369         case CMD_TIMEOUT:
1370                 dev_warn(d, "cp %p timed out\n", cp);
1371                 break;
1372         case CMD_UNABORTABLE:
1373                 dev_warn(d, "Command unabortable\n");
1374                 break;
1375         default:
1376                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1377                                 ei->CommandStatus);
1378         }
1379 }
1380
1381 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1382                         unsigned char page, unsigned char *buf,
1383                         unsigned char bufsize)
1384 {
1385         int rc = IO_OK;
1386         struct CommandList *c;
1387         struct ErrorInfo *ei;
1388
1389         c = cmd_special_alloc(h);
1390
1391         if (c == NULL) {                        /* trouble... */
1392                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1393                 return -ENOMEM;
1394         }
1395
1396         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1397         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1398         ei = c->err_info;
1399         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1400                 hpsa_scsi_interpret_error(c);
1401                 rc = -1;
1402         }
1403         cmd_special_free(h, c);
1404         return rc;
1405 }
1406
1407 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1408 {
1409         int rc = IO_OK;
1410         struct CommandList *c;
1411         struct ErrorInfo *ei;
1412
1413         c = cmd_special_alloc(h);
1414
1415         if (c == NULL) {                        /* trouble... */
1416                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1417                 return -ENOMEM;
1418         }
1419
1420         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1421         hpsa_scsi_do_simple_cmd_core(h, c);
1422         /* no unmap needed here because no data xfer. */
1423
1424         ei = c->err_info;
1425         if (ei->CommandStatus != 0) {
1426                 hpsa_scsi_interpret_error(c);
1427                 rc = -1;
1428         }
1429         cmd_special_free(h, c);
1430         return rc;
1431 }
1432
1433 static void hpsa_get_raid_level(struct ctlr_info *h,
1434         unsigned char *scsi3addr, unsigned char *raid_level)
1435 {
1436         int rc;
1437         unsigned char *buf;
1438
1439         *raid_level = RAID_UNKNOWN;
1440         buf = kzalloc(64, GFP_KERNEL);
1441         if (!buf)
1442                 return;
1443         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1444         if (rc == 0)
1445                 *raid_level = buf[8];
1446         if (*raid_level > RAID_UNKNOWN)
1447                 *raid_level = RAID_UNKNOWN;
1448         kfree(buf);
1449         return;
1450 }
1451
1452 /* Get the device id from inquiry page 0x83 */
1453 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1454         unsigned char *device_id, int buflen)
1455 {
1456         int rc;
1457         unsigned char *buf;
1458
1459         if (buflen > 16)
1460                 buflen = 16;
1461         buf = kzalloc(64, GFP_KERNEL);
1462         if (!buf)
1463                 return -1;
1464         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1465         if (rc == 0)
1466                 memcpy(device_id, &buf[8], buflen);
1467         kfree(buf);
1468         return rc != 0;
1469 }
1470
1471 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1472                 struct ReportLUNdata *buf, int bufsize,
1473                 int extended_response)
1474 {
1475         int rc = IO_OK;
1476         struct CommandList *c;
1477         unsigned char scsi3addr[8];
1478         struct ErrorInfo *ei;
1479
1480         c = cmd_special_alloc(h);
1481         if (c == NULL) {                        /* trouble... */
1482                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1483                 return -1;
1484         }
1485         /* address the controller */
1486         memset(scsi3addr, 0, sizeof(scsi3addr));
1487         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1488                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1489         if (extended_response)
1490                 c->Request.CDB[1] = extended_response;
1491         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1492         ei = c->err_info;
1493         if (ei->CommandStatus != 0 &&
1494             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1495                 hpsa_scsi_interpret_error(c);
1496                 rc = -1;
1497         }
1498         cmd_special_free(h, c);
1499         return rc;
1500 }
1501
1502 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1503                 struct ReportLUNdata *buf,
1504                 int bufsize, int extended_response)
1505 {
1506         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1507 }
1508
1509 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1510                 struct ReportLUNdata *buf, int bufsize)
1511 {
1512         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1513 }
1514
1515 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1516         int bus, int target, int lun)
1517 {
1518         device->bus = bus;
1519         device->target = target;
1520         device->lun = lun;
1521 }
1522
1523 static int hpsa_update_device_info(struct ctlr_info *h,
1524         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1525 {
1526 #define OBDR_TAPE_INQ_SIZE 49
1527         unsigned char *inq_buff;
1528
1529         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1530         if (!inq_buff)
1531                 goto bail_out;
1532
1533         /* Do an inquiry to the device to see what it is. */
1534         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1535                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1536                 /* Inquiry failed (msg printed already) */
1537                 dev_err(&h->pdev->dev,
1538                         "hpsa_update_device_info: inquiry failed\n");
1539                 goto bail_out;
1540         }
1541
1542         this_device->devtype = (inq_buff[0] & 0x1f);
1543         memcpy(this_device->scsi3addr, scsi3addr, 8);
1544         memcpy(this_device->vendor, &inq_buff[8],
1545                 sizeof(this_device->vendor));
1546         memcpy(this_device->model, &inq_buff[16],
1547                 sizeof(this_device->model));
1548         memset(this_device->device_id, 0,
1549                 sizeof(this_device->device_id));
1550         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1551                 sizeof(this_device->device_id));
1552
1553         if (this_device->devtype == TYPE_DISK &&
1554                 is_logical_dev_addr_mode(scsi3addr))
1555                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1556         else
1557                 this_device->raid_level = RAID_UNKNOWN;
1558
1559         kfree(inq_buff);
1560         return 0;
1561
1562 bail_out:
1563         kfree(inq_buff);
1564         return 1;
1565 }
1566
1567 static unsigned char *msa2xxx_model[] = {
1568         "MSA2012",
1569         "MSA2024",
1570         "MSA2312",
1571         "MSA2324",
1572         NULL,
1573 };
1574
1575 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1576 {
1577         int i;
1578
1579         for (i = 0; msa2xxx_model[i]; i++)
1580                 if (strncmp(device->model, msa2xxx_model[i],
1581                         strlen(msa2xxx_model[i])) == 0)
1582                         return 1;
1583         return 0;
1584 }
1585
1586 /* Helper function to assign bus, target, lun mapping of devices.
1587  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1588  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1589  * Logical drive target and lun are assigned at this time, but
1590  * physical device lun and target assignment are deferred (assigned
1591  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1592  */
1593 static void figure_bus_target_lun(struct ctlr_info *h,
1594         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1595         struct hpsa_scsi_dev_t *device)
1596 {
1597         u32 lunid;
1598
1599         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1600                 /* logical device */
1601                 if (unlikely(is_scsi_rev_5(h))) {
1602                         /* p1210m, logical drives lun assignments
1603                          * match SCSI REPORT LUNS data.
1604                          */
1605                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1606                         *bus = 0;
1607                         *target = 0;
1608                         *lun = (lunid & 0x3fff) + 1;
1609                 } else {
1610                         /* not p1210m... */
1611                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1612                         if (is_msa2xxx(h, device)) {
1613                                 /* msa2xxx way, put logicals on bus 1
1614                                  * and match target/lun numbers box
1615                                  * reports.
1616                                  */
1617                                 *bus = 1;
1618                                 *target = (lunid >> 16) & 0x3fff;
1619                                 *lun = lunid & 0x00ff;
1620                         } else {
1621                                 /* Traditional smart array way. */
1622                                 *bus = 0;
1623                                 *lun = 0;
1624                                 *target = lunid & 0x3fff;
1625                         }
1626                 }
1627         } else {
1628                 /* physical device */
1629                 if (is_hba_lunid(lunaddrbytes))
1630                         if (unlikely(is_scsi_rev_5(h))) {
1631                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1632                                 *target = 0;
1633                                 *lun = 0;
1634                                 return;
1635                         } else
1636                                 *bus = 3; /* traditional smartarray */
1637                 else
1638                         *bus = 2; /* physical disk */
1639                 *target = -1;
1640                 *lun = -1; /* we will fill these in later. */
1641         }
1642 }
1643
1644 /*
1645  * If there is no lun 0 on a target, linux won't find any devices.
1646  * For the MSA2xxx boxes, we have to manually detect the enclosure
1647  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1648  * it for some reason.  *tmpdevice is the target we're adding,
1649  * this_device is a pointer into the current element of currentsd[]
1650  * that we're building up in update_scsi_devices(), below.
1651  * lunzerobits is a bitmap that tracks which targets already have a
1652  * lun 0 assigned.
1653  * Returns 1 if an enclosure was added, 0 if not.
1654  */
1655 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1656         struct hpsa_scsi_dev_t *tmpdevice,
1657         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1658         int bus, int target, int lun, unsigned long lunzerobits[],
1659         int *nmsa2xxx_enclosures)
1660 {
1661         unsigned char scsi3addr[8];
1662
1663         if (test_bit(target, lunzerobits))
1664                 return 0; /* There is already a lun 0 on this target. */
1665
1666         if (!is_logical_dev_addr_mode(lunaddrbytes))
1667                 return 0; /* It's the logical targets that may lack lun 0. */
1668
1669         if (!is_msa2xxx(h, tmpdevice))
1670                 return 0; /* It's only the MSA2xxx that have this problem. */
1671
1672         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1673                 return 0;
1674
1675         memset(scsi3addr, 0, 8);
1676         scsi3addr[3] = target;
1677         if (is_hba_lunid(scsi3addr))
1678                 return 0; /* Don't add the RAID controller here. */
1679
1680         if (is_scsi_rev_5(h))
1681                 return 0; /* p1210m doesn't need to do this. */
1682
1683 #define MAX_MSA2XXX_ENCLOSURES 32
1684         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1685                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1686                         "enclosures exceeded.  Check your hardware "
1687                         "configuration.");
1688                 return 0;
1689         }
1690
1691         if (hpsa_update_device_info(h, scsi3addr, this_device))
1692                 return 0;
1693         (*nmsa2xxx_enclosures)++;
1694         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1695         set_bit(target, lunzerobits);
1696         return 1;
1697 }
1698
1699 /*
1700  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1701  * logdev.  The number of luns in physdev and logdev are returned in
1702  * *nphysicals and *nlogicals, respectively.
1703  * Returns 0 on success, -1 otherwise.
1704  */
1705 static int hpsa_gather_lun_info(struct ctlr_info *h,
1706         int reportlunsize,
1707         struct ReportLUNdata *physdev, u32 *nphysicals,
1708         struct ReportLUNdata *logdev, u32 *nlogicals)
1709 {
1710         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1711                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1712                 return -1;
1713         }
1714         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1715         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1716                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1717                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1718                         *nphysicals - HPSA_MAX_PHYS_LUN);
1719                 *nphysicals = HPSA_MAX_PHYS_LUN;
1720         }
1721         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1722                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1723                 return -1;
1724         }
1725         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1726         /* Reject Logicals in excess of our max capability. */
1727         if (*nlogicals > HPSA_MAX_LUN) {
1728                 dev_warn(&h->pdev->dev,
1729                         "maximum logical LUNs (%d) exceeded.  "
1730                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1731                         *nlogicals - HPSA_MAX_LUN);
1732                         *nlogicals = HPSA_MAX_LUN;
1733         }
1734         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1735                 dev_warn(&h->pdev->dev,
1736                         "maximum logical + physical LUNs (%d) exceeded. "
1737                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1738                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1739                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1740         }
1741         return 0;
1742 }
1743
1744 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1745         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1746         struct ReportLUNdata *logdev_list)
1747 {
1748         /* Helper function, figure out where the LUN ID info is coming from
1749          * given index i, lists of physical and logical devices, where in
1750          * the list the raid controller is supposed to appear (first or last)
1751          */
1752
1753         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1754         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1755
1756         if (i == raid_ctlr_position)
1757                 return RAID_CTLR_LUNID;
1758
1759         if (i < logicals_start)
1760                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1761
1762         if (i < last_device)
1763                 return &logdev_list->LUN[i - nphysicals -
1764                         (raid_ctlr_position == 0)][0];
1765         BUG();
1766         return NULL;
1767 }
1768
1769 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1770 {
1771         /* the idea here is we could get notified
1772          * that some devices have changed, so we do a report
1773          * physical luns and report logical luns cmd, and adjust
1774          * our list of devices accordingly.
1775          *
1776          * The scsi3addr's of devices won't change so long as the
1777          * adapter is not reset.  That means we can rescan and
1778          * tell which devices we already know about, vs. new
1779          * devices, vs.  disappearing devices.
1780          */
1781         struct ReportLUNdata *physdev_list = NULL;
1782         struct ReportLUNdata *logdev_list = NULL;
1783         unsigned char *inq_buff = NULL;
1784         u32 nphysicals = 0;
1785         u32 nlogicals = 0;
1786         u32 ndev_allocated = 0;
1787         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1788         int ncurrent = 0;
1789         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1790         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1791         int bus, target, lun;
1792         int raid_ctlr_position;
1793         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1794
1795         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1796                 GFP_KERNEL);
1797         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1798         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1799         inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1800         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1801
1802         if (!currentsd || !physdev_list || !logdev_list ||
1803                 !inq_buff || !tmpdevice) {
1804                 dev_err(&h->pdev->dev, "out of memory\n");
1805                 goto out;
1806         }
1807         memset(lunzerobits, 0, sizeof(lunzerobits));
1808
1809         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1810                         logdev_list, &nlogicals))
1811                 goto out;
1812
1813         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1814          * but each of them 4 times through different paths.  The plus 1
1815          * is for the RAID controller.
1816          */
1817         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1818
1819         /* Allocate the per device structures */
1820         for (i = 0; i < ndevs_to_allocate; i++) {
1821                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1822                 if (!currentsd[i]) {
1823                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1824                                 __FILE__, __LINE__);
1825                         goto out;
1826                 }
1827                 ndev_allocated++;
1828         }
1829
1830         if (unlikely(is_scsi_rev_5(h)))
1831                 raid_ctlr_position = 0;
1832         else
1833                 raid_ctlr_position = nphysicals + nlogicals;
1834
1835         /* adjust our table of devices */
1836         nmsa2xxx_enclosures = 0;
1837         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1838                 u8 *lunaddrbytes;
1839
1840                 /* Figure out where the LUN ID info is coming from */
1841                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1842                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1843                 /* skip masked physical devices. */
1844                 if (lunaddrbytes[3] & 0xC0 &&
1845                         i < nphysicals + (raid_ctlr_position == 0))
1846                         continue;
1847
1848                 /* Get device type, vendor, model, device id */
1849                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1850                         continue; /* skip it if we can't talk to it. */
1851                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1852                         tmpdevice);
1853                 this_device = currentsd[ncurrent];
1854
1855                 /*
1856                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1857                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1858                  * is nonetheless an enclosure device there.  We have to
1859                  * present that otherwise linux won't find anything if
1860                  * there is no lun 0.
1861                  */
1862                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1863                                 lunaddrbytes, bus, target, lun, lunzerobits,
1864                                 &nmsa2xxx_enclosures)) {
1865                         ncurrent++;
1866                         this_device = currentsd[ncurrent];
1867                 }
1868
1869                 *this_device = *tmpdevice;
1870                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1871
1872                 switch (this_device->devtype) {
1873                 case TYPE_ROM: {
1874                         /* We don't *really* support actual CD-ROM devices,
1875                          * just "One Button Disaster Recovery" tape drive
1876                          * which temporarily pretends to be a CD-ROM drive.
1877                          * So we check that the device is really an OBDR tape
1878                          * device by checking for "$DR-10" in bytes 43-48 of
1879                          * the inquiry data.
1880                          */
1881                                 char obdr_sig[7];
1882 #define OBDR_TAPE_SIG "$DR-10"
1883                                 strncpy(obdr_sig, &inq_buff[43], 6);
1884                                 obdr_sig[6] = '\0';
1885                                 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1886                                         /* Not OBDR device, ignore it. */
1887                                         break;
1888                         }
1889                         ncurrent++;
1890                         break;
1891                 case TYPE_DISK:
1892                         if (i < nphysicals)
1893                                 break;
1894                         ncurrent++;
1895                         break;
1896                 case TYPE_TAPE:
1897                 case TYPE_MEDIUM_CHANGER:
1898                         ncurrent++;
1899                         break;
1900                 case TYPE_RAID:
1901                         /* Only present the Smartarray HBA as a RAID controller.
1902                          * If it's a RAID controller other than the HBA itself
1903                          * (an external RAID controller, MSA500 or similar)
1904                          * don't present it.
1905                          */
1906                         if (!is_hba_lunid(lunaddrbytes))
1907                                 break;
1908                         ncurrent++;
1909                         break;
1910                 default:
1911                         break;
1912                 }
1913                 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1914                         break;
1915         }
1916         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1917 out:
1918         kfree(tmpdevice);
1919         for (i = 0; i < ndev_allocated; i++)
1920                 kfree(currentsd[i]);
1921         kfree(currentsd);
1922         kfree(inq_buff);
1923         kfree(physdev_list);
1924         kfree(logdev_list);
1925 }
1926
1927 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1928  * dma mapping  and fills in the scatter gather entries of the
1929  * hpsa command, cp.
1930  */
1931 static int hpsa_scatter_gather(struct ctlr_info *h,
1932                 struct CommandList *cp,
1933                 struct scsi_cmnd *cmd)
1934 {
1935         unsigned int len;
1936         struct scatterlist *sg;
1937         u64 addr64;
1938         int use_sg, i, sg_index, chained;
1939         struct SGDescriptor *curr_sg;
1940
1941         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1942
1943         use_sg = scsi_dma_map(cmd);
1944         if (use_sg < 0)
1945                 return use_sg;
1946
1947         if (!use_sg)
1948                 goto sglist_finished;
1949
1950         curr_sg = cp->SG;
1951         chained = 0;
1952         sg_index = 0;
1953         scsi_for_each_sg(cmd, sg, use_sg, i) {
1954                 if (i == h->max_cmd_sg_entries - 1 &&
1955                         use_sg > h->max_cmd_sg_entries) {
1956                         chained = 1;
1957                         curr_sg = h->cmd_sg_list[cp->cmdindex];
1958                         sg_index = 0;
1959                 }
1960                 addr64 = (u64) sg_dma_address(sg);
1961                 len  = sg_dma_len(sg);
1962                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1963                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1964                 curr_sg->Len = len;
1965                 curr_sg->Ext = 0;  /* we are not chaining */
1966                 curr_sg++;
1967         }
1968
1969         if (use_sg + chained > h->maxSG)
1970                 h->maxSG = use_sg + chained;
1971
1972         if (chained) {
1973                 cp->Header.SGList = h->max_cmd_sg_entries;
1974                 cp->Header.SGTotal = (u16) (use_sg + 1);
1975                 hpsa_map_sg_chain_block(h, cp);
1976                 return 0;
1977         }
1978
1979 sglist_finished:
1980
1981         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1982         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1983         return 0;
1984 }
1985
1986
1987 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
1988         void (*done)(struct scsi_cmnd *))
1989 {
1990         struct ctlr_info *h;
1991         struct hpsa_scsi_dev_t *dev;
1992         unsigned char scsi3addr[8];
1993         struct CommandList *c;
1994         unsigned long flags;
1995
1996         /* Get the ptr to our adapter structure out of cmd->host. */
1997         h = sdev_to_hba(cmd->device);
1998         dev = cmd->device->hostdata;
1999         if (!dev) {
2000                 cmd->result = DID_NO_CONNECT << 16;
2001                 done(cmd);
2002                 return 0;
2003         }
2004         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2005
2006         /* Need a lock as this is being allocated from the pool */
2007         spin_lock_irqsave(&h->lock, flags);
2008         c = cmd_alloc(h);
2009         spin_unlock_irqrestore(&h->lock, flags);
2010         if (c == NULL) {                        /* trouble... */
2011                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2012                 return SCSI_MLQUEUE_HOST_BUSY;
2013         }
2014
2015         /* Fill in the command list header */
2016
2017         cmd->scsi_done = done;    /* save this for use by completion code */
2018
2019         /* save c in case we have to abort it  */
2020         cmd->host_scribble = (unsigned char *) c;
2021
2022         c->cmd_type = CMD_SCSI;
2023         c->scsi_cmd = cmd;
2024         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2025         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2026         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2027         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2028
2029         /* Fill in the request block... */
2030
2031         c->Request.Timeout = 0;
2032         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2033         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2034         c->Request.CDBLen = cmd->cmd_len;
2035         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2036         c->Request.Type.Type = TYPE_CMD;
2037         c->Request.Type.Attribute = ATTR_SIMPLE;
2038         switch (cmd->sc_data_direction) {
2039         case DMA_TO_DEVICE:
2040                 c->Request.Type.Direction = XFER_WRITE;
2041                 break;
2042         case DMA_FROM_DEVICE:
2043                 c->Request.Type.Direction = XFER_READ;
2044                 break;
2045         case DMA_NONE:
2046                 c->Request.Type.Direction = XFER_NONE;
2047                 break;
2048         case DMA_BIDIRECTIONAL:
2049                 /* This can happen if a buggy application does a scsi passthru
2050                  * and sets both inlen and outlen to non-zero. ( see
2051                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2052                  */
2053
2054                 c->Request.Type.Direction = XFER_RSVD;
2055                 /* This is technically wrong, and hpsa controllers should
2056                  * reject it with CMD_INVALID, which is the most correct
2057                  * response, but non-fibre backends appear to let it
2058                  * slide by, and give the same results as if this field
2059                  * were set correctly.  Either way is acceptable for
2060                  * our purposes here.
2061                  */
2062
2063                 break;
2064
2065         default:
2066                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2067                         cmd->sc_data_direction);
2068                 BUG();
2069                 break;
2070         }
2071
2072         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2073                 cmd_free(h, c);
2074                 return SCSI_MLQUEUE_HOST_BUSY;
2075         }
2076         enqueue_cmd_and_start_io(h, c);
2077         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2078         return 0;
2079 }
2080
2081 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2082
2083 static void hpsa_scan_start(struct Scsi_Host *sh)
2084 {
2085         struct ctlr_info *h = shost_to_hba(sh);
2086         unsigned long flags;
2087
2088         /* wait until any scan already in progress is finished. */
2089         while (1) {
2090                 spin_lock_irqsave(&h->scan_lock, flags);
2091                 if (h->scan_finished)
2092                         break;
2093                 spin_unlock_irqrestore(&h->scan_lock, flags);
2094                 wait_event(h->scan_wait_queue, h->scan_finished);
2095                 /* Note: We don't need to worry about a race between this
2096                  * thread and driver unload because the midlayer will
2097                  * have incremented the reference count, so unload won't
2098                  * happen if we're in here.
2099                  */
2100         }
2101         h->scan_finished = 0; /* mark scan as in progress */
2102         spin_unlock_irqrestore(&h->scan_lock, flags);
2103
2104         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2105
2106         spin_lock_irqsave(&h->scan_lock, flags);
2107         h->scan_finished = 1; /* mark scan as finished. */
2108         wake_up_all(&h->scan_wait_queue);
2109         spin_unlock_irqrestore(&h->scan_lock, flags);
2110 }
2111
2112 static int hpsa_scan_finished(struct Scsi_Host *sh,
2113         unsigned long elapsed_time)
2114 {
2115         struct ctlr_info *h = shost_to_hba(sh);
2116         unsigned long flags;
2117         int finished;
2118
2119         spin_lock_irqsave(&h->scan_lock, flags);
2120         finished = h->scan_finished;
2121         spin_unlock_irqrestore(&h->scan_lock, flags);
2122         return finished;
2123 }
2124
2125 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2126         int qdepth, int reason)
2127 {
2128         struct ctlr_info *h = sdev_to_hba(sdev);
2129
2130         if (reason != SCSI_QDEPTH_DEFAULT)
2131                 return -ENOTSUPP;
2132
2133         if (qdepth < 1)
2134                 qdepth = 1;
2135         else
2136                 if (qdepth > h->nr_cmds)
2137                         qdepth = h->nr_cmds;
2138         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2139         return sdev->queue_depth;
2140 }
2141
2142 static void hpsa_unregister_scsi(struct ctlr_info *h)
2143 {
2144         /* we are being forcibly unloaded, and may not refuse. */
2145         scsi_remove_host(h->scsi_host);
2146         scsi_host_put(h->scsi_host);
2147         h->scsi_host = NULL;
2148 }
2149
2150 static int hpsa_register_scsi(struct ctlr_info *h)
2151 {
2152         int rc;
2153
2154         rc = hpsa_scsi_detect(h);
2155         if (rc != 0)
2156                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2157                         " hpsa_scsi_detect(), rc is %d\n", rc);
2158         return rc;
2159 }
2160
2161 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2162         unsigned char lunaddr[])
2163 {
2164         int rc = 0;
2165         int count = 0;
2166         int waittime = 1; /* seconds */
2167         struct CommandList *c;
2168
2169         c = cmd_special_alloc(h);
2170         if (!c) {
2171                 dev_warn(&h->pdev->dev, "out of memory in "
2172                         "wait_for_device_to_become_ready.\n");
2173                 return IO_ERROR;
2174         }
2175
2176         /* Send test unit ready until device ready, or give up. */
2177         while (count < HPSA_TUR_RETRY_LIMIT) {
2178
2179                 /* Wait for a bit.  do this first, because if we send
2180                  * the TUR right away, the reset will just abort it.
2181                  */
2182                 msleep(1000 * waittime);
2183                 count++;
2184
2185                 /* Increase wait time with each try, up to a point. */
2186                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2187                         waittime = waittime * 2;
2188
2189                 /* Send the Test Unit Ready */
2190                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2191                 hpsa_scsi_do_simple_cmd_core(h, c);
2192                 /* no unmap needed here because no data xfer. */
2193
2194                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2195                         break;
2196
2197                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2198                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2199                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2200                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2201                         break;
2202
2203                 dev_warn(&h->pdev->dev, "waiting %d secs "
2204                         "for device to become ready.\n", waittime);
2205                 rc = 1; /* device not ready. */
2206         }
2207
2208         if (rc)
2209                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2210         else
2211                 dev_warn(&h->pdev->dev, "device is ready.\n");
2212
2213         cmd_special_free(h, c);
2214         return rc;
2215 }
2216
2217 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2218  * complaining.  Doing a host- or bus-reset can't do anything good here.
2219  */
2220 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2221 {
2222         int rc;
2223         struct ctlr_info *h;
2224         struct hpsa_scsi_dev_t *dev;
2225
2226         /* find the controller to which the command to be aborted was sent */
2227         h = sdev_to_hba(scsicmd->device);
2228         if (h == NULL) /* paranoia */
2229                 return FAILED;
2230         dev = scsicmd->device->hostdata;
2231         if (!dev) {
2232                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2233                         "device lookup failed.\n");
2234                 return FAILED;
2235         }
2236         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2237                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2238         /* send a reset to the SCSI LUN which the command was sent to */
2239         rc = hpsa_send_reset(h, dev->scsi3addr);
2240         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2241                 return SUCCESS;
2242
2243         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2244         return FAILED;
2245 }
2246
2247 /*
2248  * For operations that cannot sleep, a command block is allocated at init,
2249  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2250  * which ones are free or in use.  Lock must be held when calling this.
2251  * cmd_free() is the complement.
2252  */
2253 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2254 {
2255         struct CommandList *c;
2256         int i;
2257         union u64bit temp64;
2258         dma_addr_t cmd_dma_handle, err_dma_handle;
2259
2260         do {
2261                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2262                 if (i == h->nr_cmds)
2263                         return NULL;
2264         } while (test_and_set_bit
2265                  (i & (BITS_PER_LONG - 1),
2266                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2267         c = h->cmd_pool + i;
2268         memset(c, 0, sizeof(*c));
2269         cmd_dma_handle = h->cmd_pool_dhandle
2270             + i * sizeof(*c);
2271         c->err_info = h->errinfo_pool + i;
2272         memset(c->err_info, 0, sizeof(*c->err_info));
2273         err_dma_handle = h->errinfo_pool_dhandle
2274             + i * sizeof(*c->err_info);
2275         h->nr_allocs++;
2276
2277         c->cmdindex = i;
2278
2279         INIT_LIST_HEAD(&c->list);
2280         c->busaddr = (u32) cmd_dma_handle;
2281         temp64.val = (u64) err_dma_handle;
2282         c->ErrDesc.Addr.lower = temp64.val32.lower;
2283         c->ErrDesc.Addr.upper = temp64.val32.upper;
2284         c->ErrDesc.Len = sizeof(*c->err_info);
2285
2286         c->h = h;
2287         return c;
2288 }
2289
2290 /* For operations that can wait for kmalloc to possibly sleep,
2291  * this routine can be called. Lock need not be held to call
2292  * cmd_special_alloc. cmd_special_free() is the complement.
2293  */
2294 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2295 {
2296         struct CommandList *c;
2297         union u64bit temp64;
2298         dma_addr_t cmd_dma_handle, err_dma_handle;
2299
2300         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2301         if (c == NULL)
2302                 return NULL;
2303         memset(c, 0, sizeof(*c));
2304
2305         c->cmdindex = -1;
2306
2307         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2308                     &err_dma_handle);
2309
2310         if (c->err_info == NULL) {
2311                 pci_free_consistent(h->pdev,
2312                         sizeof(*c), c, cmd_dma_handle);
2313                 return NULL;
2314         }
2315         memset(c->err_info, 0, sizeof(*c->err_info));
2316
2317         INIT_LIST_HEAD(&c->list);
2318         c->busaddr = (u32) cmd_dma_handle;
2319         temp64.val = (u64) err_dma_handle;
2320         c->ErrDesc.Addr.lower = temp64.val32.lower;
2321         c->ErrDesc.Addr.upper = temp64.val32.upper;
2322         c->ErrDesc.Len = sizeof(*c->err_info);
2323
2324         c->h = h;
2325         return c;
2326 }
2327
2328 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2329 {
2330         int i;
2331
2332         i = c - h->cmd_pool;
2333         clear_bit(i & (BITS_PER_LONG - 1),
2334                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2335         h->nr_frees++;
2336 }
2337
2338 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2339 {
2340         union u64bit temp64;
2341
2342         temp64.val32.lower = c->ErrDesc.Addr.lower;
2343         temp64.val32.upper = c->ErrDesc.Addr.upper;
2344         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2345                             c->err_info, (dma_addr_t) temp64.val);
2346         pci_free_consistent(h->pdev, sizeof(*c),
2347                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2348 }
2349
2350 #ifdef CONFIG_COMPAT
2351
2352 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2353 {
2354         IOCTL32_Command_struct __user *arg32 =
2355             (IOCTL32_Command_struct __user *) arg;
2356         IOCTL_Command_struct arg64;
2357         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2358         int err;
2359         u32 cp;
2360
2361         memset(&arg64, 0, sizeof(arg64));
2362         err = 0;
2363         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2364                            sizeof(arg64.LUN_info));
2365         err |= copy_from_user(&arg64.Request, &arg32->Request,
2366                            sizeof(arg64.Request));
2367         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2368                            sizeof(arg64.error_info));
2369         err |= get_user(arg64.buf_size, &arg32->buf_size);
2370         err |= get_user(cp, &arg32->buf);
2371         arg64.buf = compat_ptr(cp);
2372         err |= copy_to_user(p, &arg64, sizeof(arg64));
2373
2374         if (err)
2375                 return -EFAULT;
2376
2377         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2378         if (err)
2379                 return err;
2380         err |= copy_in_user(&arg32->error_info, &p->error_info,
2381                          sizeof(arg32->error_info));
2382         if (err)
2383                 return -EFAULT;
2384         return err;
2385 }
2386
2387 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2388         int cmd, void *arg)
2389 {
2390         BIG_IOCTL32_Command_struct __user *arg32 =
2391             (BIG_IOCTL32_Command_struct __user *) arg;
2392         BIG_IOCTL_Command_struct arg64;
2393         BIG_IOCTL_Command_struct __user *p =
2394             compat_alloc_user_space(sizeof(arg64));
2395         int err;
2396         u32 cp;
2397
2398         memset(&arg64, 0, sizeof(arg64));
2399         err = 0;
2400         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2401                            sizeof(arg64.LUN_info));
2402         err |= copy_from_user(&arg64.Request, &arg32->Request,
2403                            sizeof(arg64.Request));
2404         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2405                            sizeof(arg64.error_info));
2406         err |= get_user(arg64.buf_size, &arg32->buf_size);
2407         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2408         err |= get_user(cp, &arg32->buf);
2409         arg64.buf = compat_ptr(cp);
2410         err |= copy_to_user(p, &arg64, sizeof(arg64));
2411
2412         if (err)
2413                 return -EFAULT;
2414
2415         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2416         if (err)
2417                 return err;
2418         err |= copy_in_user(&arg32->error_info, &p->error_info,
2419                          sizeof(arg32->error_info));
2420         if (err)
2421                 return -EFAULT;
2422         return err;
2423 }
2424
2425 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2426 {
2427         switch (cmd) {
2428         case CCISS_GETPCIINFO:
2429         case CCISS_GETINTINFO:
2430         case CCISS_SETINTINFO:
2431         case CCISS_GETNODENAME:
2432         case CCISS_SETNODENAME:
2433         case CCISS_GETHEARTBEAT:
2434         case CCISS_GETBUSTYPES:
2435         case CCISS_GETFIRMVER:
2436         case CCISS_GETDRIVVER:
2437         case CCISS_REVALIDVOLS:
2438         case CCISS_DEREGDISK:
2439         case CCISS_REGNEWDISK:
2440         case CCISS_REGNEWD:
2441         case CCISS_RESCANDISK:
2442         case CCISS_GETLUNINFO:
2443                 return hpsa_ioctl(dev, cmd, arg);
2444
2445         case CCISS_PASSTHRU32:
2446                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2447         case CCISS_BIG_PASSTHRU32:
2448                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2449
2450         default:
2451                 return -ENOIOCTLCMD;
2452         }
2453 }
2454 #endif
2455
2456 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2457 {
2458         struct hpsa_pci_info pciinfo;
2459
2460         if (!argp)
2461                 return -EINVAL;
2462         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2463         pciinfo.bus = h->pdev->bus->number;
2464         pciinfo.dev_fn = h->pdev->devfn;
2465         pciinfo.board_id = h->board_id;
2466         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2467                 return -EFAULT;
2468         return 0;
2469 }
2470
2471 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2472 {
2473         DriverVer_type DriverVer;
2474         unsigned char vmaj, vmin, vsubmin;
2475         int rc;
2476
2477         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2478                 &vmaj, &vmin, &vsubmin);
2479         if (rc != 3) {
2480                 dev_info(&h->pdev->dev, "driver version string '%s' "
2481                         "unrecognized.", HPSA_DRIVER_VERSION);
2482                 vmaj = 0;
2483                 vmin = 0;
2484                 vsubmin = 0;
2485         }
2486         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2487         if (!argp)
2488                 return -EINVAL;
2489         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2490                 return -EFAULT;
2491         return 0;
2492 }
2493
2494 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2495 {
2496         IOCTL_Command_struct iocommand;
2497         struct CommandList *c;
2498         char *buff = NULL;
2499         union u64bit temp64;
2500
2501         if (!argp)
2502                 return -EINVAL;
2503         if (!capable(CAP_SYS_RAWIO))
2504                 return -EPERM;
2505         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2506                 return -EFAULT;
2507         if ((iocommand.buf_size < 1) &&
2508             (iocommand.Request.Type.Direction != XFER_NONE)) {
2509                 return -EINVAL;
2510         }
2511         if (iocommand.buf_size > 0) {
2512                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2513                 if (buff == NULL)
2514                         return -EFAULT;
2515                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2516                         /* Copy the data into the buffer we created */
2517                         if (copy_from_user(buff, iocommand.buf,
2518                                 iocommand.buf_size)) {
2519                                 kfree(buff);
2520                                 return -EFAULT;
2521                         }
2522                 } else {
2523                         memset(buff, 0, iocommand.buf_size);
2524                 }
2525         }
2526         c = cmd_special_alloc(h);
2527         if (c == NULL) {
2528                 kfree(buff);
2529                 return -ENOMEM;
2530         }
2531         /* Fill in the command type */
2532         c->cmd_type = CMD_IOCTL_PEND;
2533         /* Fill in Command Header */
2534         c->Header.ReplyQueue = 0; /* unused in simple mode */
2535         if (iocommand.buf_size > 0) {   /* buffer to fill */
2536                 c->Header.SGList = 1;
2537                 c->Header.SGTotal = 1;
2538         } else  { /* no buffers to fill */
2539                 c->Header.SGList = 0;
2540                 c->Header.SGTotal = 0;
2541         }
2542         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2543         /* use the kernel address the cmd block for tag */
2544         c->Header.Tag.lower = c->busaddr;
2545
2546         /* Fill in Request block */
2547         memcpy(&c->Request, &iocommand.Request,
2548                 sizeof(c->Request));
2549
2550         /* Fill in the scatter gather information */
2551         if (iocommand.buf_size > 0) {
2552                 temp64.val = pci_map_single(h->pdev, buff,
2553                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2554                 c->SG[0].Addr.lower = temp64.val32.lower;
2555                 c->SG[0].Addr.upper = temp64.val32.upper;
2556                 c->SG[0].Len = iocommand.buf_size;
2557                 c->SG[0].Ext = 0; /* we are not chaining*/
2558         }
2559         hpsa_scsi_do_simple_cmd_core(h, c);
2560         hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2561         check_ioctl_unit_attention(h, c);
2562
2563         /* Copy the error information out */
2564         memcpy(&iocommand.error_info, c->err_info,
2565                 sizeof(iocommand.error_info));
2566         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2567                 kfree(buff);
2568                 cmd_special_free(h, c);
2569                 return -EFAULT;
2570         }
2571         if (iocommand.Request.Type.Direction == XFER_READ &&
2572                 iocommand.buf_size > 0) {
2573                 /* Copy the data out of the buffer we created */
2574                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2575                         kfree(buff);
2576                         cmd_special_free(h, c);
2577                         return -EFAULT;
2578                 }
2579         }
2580         kfree(buff);
2581         cmd_special_free(h, c);
2582         return 0;
2583 }
2584
2585 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2586 {
2587         BIG_IOCTL_Command_struct *ioc;
2588         struct CommandList *c;
2589         unsigned char **buff = NULL;
2590         int *buff_size = NULL;
2591         union u64bit temp64;
2592         BYTE sg_used = 0;
2593         int status = 0;
2594         int i;
2595         u32 left;
2596         u32 sz;
2597         BYTE __user *data_ptr;
2598
2599         if (!argp)
2600                 return -EINVAL;
2601         if (!capable(CAP_SYS_RAWIO))
2602                 return -EPERM;
2603         ioc = (BIG_IOCTL_Command_struct *)
2604             kmalloc(sizeof(*ioc), GFP_KERNEL);
2605         if (!ioc) {
2606                 status = -ENOMEM;
2607                 goto cleanup1;
2608         }
2609         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2610                 status = -EFAULT;
2611                 goto cleanup1;
2612         }
2613         if ((ioc->buf_size < 1) &&
2614             (ioc->Request.Type.Direction != XFER_NONE)) {
2615                 status = -EINVAL;
2616                 goto cleanup1;
2617         }
2618         /* Check kmalloc limits  using all SGs */
2619         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2620                 status = -EINVAL;
2621                 goto cleanup1;
2622         }
2623         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2624                 status = -EINVAL;
2625                 goto cleanup1;
2626         }
2627         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2628         if (!buff) {
2629                 status = -ENOMEM;
2630                 goto cleanup1;
2631         }
2632         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2633         if (!buff_size) {
2634                 status = -ENOMEM;
2635                 goto cleanup1;
2636         }
2637         left = ioc->buf_size;
2638         data_ptr = ioc->buf;
2639         while (left) {
2640                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2641                 buff_size[sg_used] = sz;
2642                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2643                 if (buff[sg_used] == NULL) {
2644                         status = -ENOMEM;
2645                         goto cleanup1;
2646                 }
2647                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2648                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2649                                 status = -ENOMEM;
2650                                 goto cleanup1;
2651                         }
2652                 } else
2653                         memset(buff[sg_used], 0, sz);
2654                 left -= sz;
2655                 data_ptr += sz;
2656                 sg_used++;
2657         }
2658         c = cmd_special_alloc(h);
2659         if (c == NULL) {
2660                 status = -ENOMEM;
2661                 goto cleanup1;
2662         }
2663         c->cmd_type = CMD_IOCTL_PEND;
2664         c->Header.ReplyQueue = 0;
2665         c->Header.SGList = c->Header.SGTotal = sg_used;
2666         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2667         c->Header.Tag.lower = c->busaddr;
2668         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2669         if (ioc->buf_size > 0) {
2670                 int i;
2671                 for (i = 0; i < sg_used; i++) {
2672                         temp64.val = pci_map_single(h->pdev, buff[i],
2673                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2674                         c->SG[i].Addr.lower = temp64.val32.lower;
2675                         c->SG[i].Addr.upper = temp64.val32.upper;
2676                         c->SG[i].Len = buff_size[i];
2677                         /* we are not chaining */
2678                         c->SG[i].Ext = 0;
2679                 }
2680         }
2681         hpsa_scsi_do_simple_cmd_core(h, c);
2682         if (sg_used)
2683                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2684         check_ioctl_unit_attention(h, c);
2685         /* Copy the error information out */
2686         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2687         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2688                 cmd_special_free(h, c);
2689                 status = -EFAULT;
2690                 goto cleanup1;
2691         }
2692         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2693                 /* Copy the data out of the buffer we created */
2694                 BYTE __user *ptr = ioc->buf;
2695                 for (i = 0; i < sg_used; i++) {
2696                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2697                                 cmd_special_free(h, c);
2698                                 status = -EFAULT;
2699                                 goto cleanup1;
2700                         }
2701                         ptr += buff_size[i];
2702                 }
2703         }
2704         cmd_special_free(h, c);
2705         status = 0;
2706 cleanup1:
2707         if (buff) {
2708                 for (i = 0; i < sg_used; i++)
2709                         kfree(buff[i]);
2710                 kfree(buff);
2711         }
2712         kfree(buff_size);
2713         kfree(ioc);
2714         return status;
2715 }
2716
2717 static void check_ioctl_unit_attention(struct ctlr_info *h,
2718         struct CommandList *c)
2719 {
2720         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2721                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2722                 (void) check_for_unit_attention(h, c);
2723 }
2724 /*
2725  * ioctl
2726  */
2727 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2728 {
2729         struct ctlr_info *h;
2730         void __user *argp = (void __user *)arg;
2731
2732         h = sdev_to_hba(dev);
2733
2734         switch (cmd) {
2735         case CCISS_DEREGDISK:
2736         case CCISS_REGNEWDISK:
2737         case CCISS_REGNEWD:
2738                 hpsa_scan_start(h->scsi_host);
2739                 return 0;
2740         case CCISS_GETPCIINFO:
2741                 return hpsa_getpciinfo_ioctl(h, argp);
2742         case CCISS_GETDRIVVER:
2743                 return hpsa_getdrivver_ioctl(h, argp);
2744         case CCISS_PASSTHRU:
2745                 return hpsa_passthru_ioctl(h, argp);
2746         case CCISS_BIG_PASSTHRU:
2747                 return hpsa_big_passthru_ioctl(h, argp);
2748         default:
2749                 return -ENOTTY;
2750         }
2751 }
2752
2753 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2754         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2755         int cmd_type)
2756 {
2757         int pci_dir = XFER_NONE;
2758
2759         c->cmd_type = CMD_IOCTL_PEND;
2760         c->Header.ReplyQueue = 0;
2761         if (buff != NULL && size > 0) {
2762                 c->Header.SGList = 1;
2763                 c->Header.SGTotal = 1;
2764         } else {
2765                 c->Header.SGList = 0;
2766                 c->Header.SGTotal = 0;
2767         }
2768         c->Header.Tag.lower = c->busaddr;
2769         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2770
2771         c->Request.Type.Type = cmd_type;
2772         if (cmd_type == TYPE_CMD) {
2773                 switch (cmd) {
2774                 case HPSA_INQUIRY:
2775                         /* are we trying to read a vital product page */
2776                         if (page_code != 0) {
2777                                 c->Request.CDB[1] = 0x01;
2778                                 c->Request.CDB[2] = page_code;
2779                         }
2780                         c->Request.CDBLen = 6;
2781                         c->Request.Type.Attribute = ATTR_SIMPLE;
2782                         c->Request.Type.Direction = XFER_READ;
2783                         c->Request.Timeout = 0;
2784                         c->Request.CDB[0] = HPSA_INQUIRY;
2785                         c->Request.CDB[4] = size & 0xFF;
2786                         break;
2787                 case HPSA_REPORT_LOG:
2788                 case HPSA_REPORT_PHYS:
2789                         /* Talking to controller so It's a physical command
2790                            mode = 00 target = 0.  Nothing to write.
2791                          */
2792                         c->Request.CDBLen = 12;
2793                         c->Request.Type.Attribute = ATTR_SIMPLE;
2794                         c->Request.Type.Direction = XFER_READ;
2795                         c->Request.Timeout = 0;
2796                         c->Request.CDB[0] = cmd;
2797                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2798                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2799                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2800                         c->Request.CDB[9] = size & 0xFF;
2801                         break;
2802                 case HPSA_CACHE_FLUSH:
2803                         c->Request.CDBLen = 12;
2804                         c->Request.Type.Attribute = ATTR_SIMPLE;
2805                         c->Request.Type.Direction = XFER_WRITE;
2806                         c->Request.Timeout = 0;
2807                         c->Request.CDB[0] = BMIC_WRITE;
2808                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2809                         break;
2810                 case TEST_UNIT_READY:
2811                         c->Request.CDBLen = 6;
2812                         c->Request.Type.Attribute = ATTR_SIMPLE;
2813                         c->Request.Type.Direction = XFER_NONE;
2814                         c->Request.Timeout = 0;
2815                         break;
2816                 default:
2817                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2818                         BUG();
2819                         return;
2820                 }
2821         } else if (cmd_type == TYPE_MSG) {
2822                 switch (cmd) {
2823
2824                 case  HPSA_DEVICE_RESET_MSG:
2825                         c->Request.CDBLen = 16;
2826                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2827                         c->Request.Type.Attribute = ATTR_SIMPLE;
2828                         c->Request.Type.Direction = XFER_NONE;
2829                         c->Request.Timeout = 0; /* Don't time out */
2830                         c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2831                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2832                         /* If bytes 4-7 are zero, it means reset the */
2833                         /* LunID device */
2834                         c->Request.CDB[4] = 0x00;
2835                         c->Request.CDB[5] = 0x00;
2836                         c->Request.CDB[6] = 0x00;
2837                         c->Request.CDB[7] = 0x00;
2838                 break;
2839
2840                 default:
2841                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2842                                 cmd);
2843                         BUG();
2844                 }
2845         } else {
2846                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2847                 BUG();
2848         }
2849
2850         switch (c->Request.Type.Direction) {
2851         case XFER_READ:
2852                 pci_dir = PCI_DMA_FROMDEVICE;
2853                 break;
2854         case XFER_WRITE:
2855                 pci_dir = PCI_DMA_TODEVICE;
2856                 break;
2857         case XFER_NONE:
2858                 pci_dir = PCI_DMA_NONE;
2859                 break;
2860         default:
2861                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2862         }
2863
2864         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2865
2866         return;
2867 }
2868
2869 /*
2870  * Map (physical) PCI mem into (virtual) kernel space
2871  */
2872 static void __iomem *remap_pci_mem(ulong base, ulong size)
2873 {
2874         ulong page_base = ((ulong) base) & PAGE_MASK;
2875         ulong page_offs = ((ulong) base) - page_base;
2876         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2877
2878         return page_remapped ? (page_remapped + page_offs) : NULL;
2879 }
2880
2881 /* Takes cmds off the submission queue and sends them to the hardware,
2882  * then puts them on the queue of cmds waiting for completion.
2883  */
2884 static void start_io(struct ctlr_info *h)
2885 {
2886         struct CommandList *c;
2887
2888         while (!list_empty(&h->reqQ)) {
2889                 c = list_entry(h->reqQ.next, struct CommandList, list);
2890                 /* can't do anything if fifo is full */
2891                 if ((h->access.fifo_full(h))) {
2892                         dev_warn(&h->pdev->dev, "fifo full\n");
2893                         break;
2894                 }
2895
2896                 /* Get the first entry from the Request Q */
2897                 removeQ(c);
2898                 h->Qdepth--;
2899
2900                 /* Tell the controller execute command */
2901                 h->access.submit_command(h, c);
2902
2903                 /* Put job onto the completed Q */
2904                 addQ(&h->cmpQ, c);
2905         }
2906 }
2907
2908 static inline unsigned long get_next_completion(struct ctlr_info *h)
2909 {
2910         return h->access.command_completed(h);
2911 }
2912
2913 static inline bool interrupt_pending(struct ctlr_info *h)
2914 {
2915         return h->access.intr_pending(h);
2916 }
2917
2918 static inline long interrupt_not_for_us(struct ctlr_info *h)
2919 {
2920         return (h->access.intr_pending(h) == 0) ||
2921                 (h->interrupts_enabled == 0);
2922 }
2923
2924 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2925         u32 raw_tag)
2926 {
2927         if (unlikely(tag_index >= h->nr_cmds)) {
2928                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2929                 return 1;
2930         }
2931         return 0;
2932 }
2933
2934 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2935 {
2936         removeQ(c);
2937         if (likely(c->cmd_type == CMD_SCSI))
2938                 complete_scsi_command(c);
2939         else if (c->cmd_type == CMD_IOCTL_PEND)
2940                 complete(c->waiting);
2941 }
2942
2943 static inline u32 hpsa_tag_contains_index(u32 tag)
2944 {
2945         return tag & DIRECT_LOOKUP_BIT;
2946 }
2947
2948 static inline u32 hpsa_tag_to_index(u32 tag)
2949 {
2950         return tag >> DIRECT_LOOKUP_SHIFT;
2951 }
2952
2953
2954 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
2955 {
2956 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
2957 #define HPSA_SIMPLE_ERROR_BITS 0x03
2958         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
2959                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
2960         return tag & ~HPSA_PERF_ERROR_BITS;
2961 }
2962
2963 /* process completion of an indexed ("direct lookup") command */
2964 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2965         u32 raw_tag)
2966 {
2967         u32 tag_index;
2968         struct CommandList *c;
2969
2970         tag_index = hpsa_tag_to_index(raw_tag);
2971         if (bad_tag(h, tag_index, raw_tag))
2972                 return next_command(h);
2973         c = h->cmd_pool + tag_index;
2974         finish_cmd(c, raw_tag);
2975         return next_command(h);
2976 }
2977
2978 /* process completion of a non-indexed command */
2979 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2980         u32 raw_tag)
2981 {
2982         u32 tag;
2983         struct CommandList *c = NULL;
2984
2985         tag = hpsa_tag_discard_error_bits(h, raw_tag);
2986         list_for_each_entry(c, &h->cmpQ, list) {
2987                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2988                         finish_cmd(c, raw_tag);
2989                         return next_command(h);
2990                 }
2991         }
2992         bad_tag(h, h->nr_cmds + 1, raw_tag);
2993         return next_command(h);
2994 }
2995
2996 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
2997 {
2998         struct ctlr_info *h = dev_id;
2999         unsigned long flags;
3000         u32 raw_tag;
3001
3002         if (interrupt_not_for_us(h))
3003                 return IRQ_NONE;
3004         spin_lock_irqsave(&h->lock, flags);
3005         while (interrupt_pending(h)) {
3006                 raw_tag = get_next_completion(h);
3007                 while (raw_tag != FIFO_EMPTY) {
3008                         if (hpsa_tag_contains_index(raw_tag))
3009                                 raw_tag = process_indexed_cmd(h, raw_tag);
3010                         else
3011                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
3012                 }
3013         }
3014         spin_unlock_irqrestore(&h->lock, flags);
3015         return IRQ_HANDLED;
3016 }
3017
3018 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3019 {
3020         struct ctlr_info *h = dev_id;
3021         unsigned long flags;
3022         u32 raw_tag;
3023
3024         spin_lock_irqsave(&h->lock, flags);
3025         raw_tag = get_next_completion(h);
3026         while (raw_tag != FIFO_EMPTY) {
3027                 if (hpsa_tag_contains_index(raw_tag))
3028                         raw_tag = process_indexed_cmd(h, raw_tag);
3029                 else
3030                         raw_tag = process_nonindexed_cmd(h, raw_tag);
3031         }
3032         spin_unlock_irqrestore(&h->lock, flags);
3033         return IRQ_HANDLED;
3034 }
3035
3036 /* Send a message CDB to the firmware. Careful, this only works
3037  * in simple mode, not performant mode due to the tag lookup.
3038  * We only ever use this immediately after a controller reset.
3039  */
3040 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3041                                                 unsigned char type)
3042 {
3043         struct Command {
3044                 struct CommandListHeader CommandHeader;
3045                 struct RequestBlock Request;
3046                 struct ErrDescriptor ErrorDescriptor;
3047         };
3048         struct Command *cmd;
3049         static const size_t cmd_sz = sizeof(*cmd) +
3050                                         sizeof(cmd->ErrorDescriptor);
3051         dma_addr_t paddr64;
3052         uint32_t paddr32, tag;
3053         void __iomem *vaddr;
3054         int i, err;
3055
3056         vaddr = pci_ioremap_bar(pdev, 0);
3057         if (vaddr == NULL)
3058                 return -ENOMEM;
3059
3060         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3061          * CCISS commands, so they must be allocated from the lower 4GiB of
3062          * memory.
3063          */
3064         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3065         if (err) {
3066                 iounmap(vaddr);
3067                 return -ENOMEM;
3068         }
3069
3070         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3071         if (cmd == NULL) {
3072                 iounmap(vaddr);
3073                 return -ENOMEM;
3074         }
3075
3076         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3077          * although there's no guarantee, we assume that the address is at
3078          * least 4-byte aligned (most likely, it's page-aligned).
3079          */
3080         paddr32 = paddr64;
3081
3082         cmd->CommandHeader.ReplyQueue = 0;
3083         cmd->CommandHeader.SGList = 0;
3084         cmd->CommandHeader.SGTotal = 0;
3085         cmd->CommandHeader.Tag.lower = paddr32;
3086         cmd->CommandHeader.Tag.upper = 0;
3087         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3088
3089         cmd->Request.CDBLen = 16;
3090         cmd->Request.Type.Type = TYPE_MSG;
3091         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3092         cmd->Request.Type.Direction = XFER_NONE;
3093         cmd->Request.Timeout = 0; /* Don't time out */
3094         cmd->Request.CDB[0] = opcode;
3095         cmd->Request.CDB[1] = type;
3096         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3097         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3098         cmd->ErrorDescriptor.Addr.upper = 0;
3099         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3100
3101         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3102
3103         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3104                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3105                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3106                         break;
3107                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3108         }
3109
3110         iounmap(vaddr);
3111
3112         /* we leak the DMA buffer here ... no choice since the controller could
3113          *  still complete the command.
3114          */
3115         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3116                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3117                         opcode, type);
3118                 return -ETIMEDOUT;
3119         }
3120
3121         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3122
3123         if (tag & HPSA_ERROR_BIT) {
3124                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3125                         opcode, type);
3126                 return -EIO;
3127         }
3128
3129         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3130                 opcode, type);
3131         return 0;
3132 }
3133
3134 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3135 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3136
3137 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3138         void * __iomem vaddr, bool use_doorbell)
3139 {
3140         u16 pmcsr;
3141         int pos;
3142
3143         if (use_doorbell) {
3144                 /* For everything after the P600, the PCI power state method
3145                  * of resetting the controller doesn't work, so we have this
3146                  * other way using the doorbell register.
3147                  */
3148                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3149                 writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
3150                 msleep(1000);
3151         } else { /* Try to do it the PCI power state way */
3152
3153                 /* Quoting from the Open CISS Specification: "The Power
3154                  * Management Control/Status Register (CSR) controls the power
3155                  * state of the device.  The normal operating state is D0,
3156                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3157                  * the controller, place the interface device in D3 then to D0,
3158                  * this causes a secondary PCI reset which will reset the
3159                  * controller." */
3160
3161                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3162                 if (pos == 0) {
3163                         dev_err(&pdev->dev,
3164                                 "hpsa_reset_controller: "
3165                                 "PCI PM not supported\n");
3166                         return -ENODEV;
3167                 }
3168                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3169                 /* enter the D3hot power management state */
3170                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3171                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3172                 pmcsr |= PCI_D3hot;
3173                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3174
3175                 msleep(500);
3176
3177                 /* enter the D0 power management state */
3178                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3179                 pmcsr |= PCI_D0;
3180                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3181
3182                 msleep(500);
3183         }
3184         return 0;
3185 }
3186
3187 static __devinit void init_driver_version(char *driver_version, int len)
3188 {
3189         memset(driver_version, 0, len);
3190         strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3191 }
3192
3193 static __devinit int write_driver_ver_to_cfgtable(
3194         struct CfgTable __iomem *cfgtable)
3195 {
3196         char *driver_version;
3197         int i, size = sizeof(cfgtable->driver_version);
3198
3199         driver_version = kmalloc(size, GFP_KERNEL);
3200         if (!driver_version)
3201                 return -ENOMEM;
3202
3203         init_driver_version(driver_version, size);
3204         for (i = 0; i < size; i++)
3205                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3206         kfree(driver_version);
3207         return 0;
3208 }
3209
3210 static __devinit void read_driver_ver_from_cfgtable(
3211         struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3212 {
3213         int i;
3214
3215         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3216                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3217 }
3218
3219 static __devinit int controller_reset_failed(
3220         struct CfgTable __iomem *cfgtable)
3221 {
3222
3223         char *driver_ver, *old_driver_ver;
3224         int rc, size = sizeof(cfgtable->driver_version);
3225
3226         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3227         if (!old_driver_ver)
3228                 return -ENOMEM;
3229         driver_ver = old_driver_ver + size;
3230
3231         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3232          * should have been changed, otherwise we know the reset failed.
3233          */
3234         init_driver_version(old_driver_ver, size);
3235         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3236         rc = !memcmp(driver_ver, old_driver_ver, size);
3237         kfree(old_driver_ver);
3238         return rc;
3239 }
3240 /* This does a hard reset of the controller using PCI power management
3241  * states or the using the doorbell register.
3242  */
3243 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3244 {
3245         u64 cfg_offset;
3246         u32 cfg_base_addr;
3247         u64 cfg_base_addr_index;
3248         void __iomem *vaddr;
3249         unsigned long paddr;
3250         u32 misc_fw_support;
3251         int rc;
3252         struct CfgTable __iomem *cfgtable;
3253         bool use_doorbell;
3254         u32 board_id;
3255         u16 command_register;
3256
3257         /* For controllers as old as the P600, this is very nearly
3258          * the same thing as
3259          *
3260          * pci_save_state(pci_dev);
3261          * pci_set_power_state(pci_dev, PCI_D3hot);
3262          * pci_set_power_state(pci_dev, PCI_D0);
3263          * pci_restore_state(pci_dev);
3264          *
3265          * For controllers newer than the P600, the pci power state
3266          * method of resetting doesn't work so we have another way
3267          * using the doorbell register.
3268          */
3269
3270         /* Exclude 640x boards.  These are two pci devices in one slot
3271          * which share a battery backed cache module.  One controls the
3272          * cache, the other accesses the cache through the one that controls
3273          * it.  If we reset the one controlling the cache, the other will
3274          * likely not be happy.  Just forbid resetting this conjoined mess.
3275          * The 640x isn't really supported by hpsa anyway.
3276          */
3277         rc = hpsa_lookup_board_id(pdev, &board_id);
3278         if (rc < 0) {
3279                 dev_warn(&pdev->dev, "Not resetting device.\n");
3280                 return -ENODEV;
3281         }
3282         if (board_id == 0x409C0E11 || board_id == 0x409D0E11)
3283                 return -ENOTSUPP;
3284
3285         /* Save the PCI command register */
3286         pci_read_config_word(pdev, 4, &command_register);
3287         /* Turn the board off.  This is so that later pci_restore_state()
3288          * won't turn the board on before the rest of config space is ready.
3289          */
3290         pci_disable_device(pdev);
3291         pci_save_state(pdev);
3292
3293         /* find the first memory BAR, so we can find the cfg table */
3294         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3295         if (rc)
3296                 return rc;
3297         vaddr = remap_pci_mem(paddr, 0x250);
3298         if (!vaddr)
3299                 return -ENOMEM;
3300
3301         /* find cfgtable in order to check if reset via doorbell is supported */
3302         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3303                                         &cfg_base_addr_index, &cfg_offset);
3304         if (rc)
3305                 goto unmap_vaddr;
3306         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3307                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3308         if (!cfgtable) {
3309                 rc = -ENOMEM;
3310                 goto unmap_vaddr;
3311         }
3312         rc = write_driver_ver_to_cfgtable(cfgtable);
3313         if (rc)
3314                 goto unmap_vaddr;
3315
3316         /* If reset via doorbell register is supported, use that. */
3317         misc_fw_support = readl(&cfgtable->misc_fw_support);
3318         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3319
3320         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3321         if (rc)
3322                 goto unmap_cfgtable;
3323
3324         pci_restore_state(pdev);
3325         rc = pci_enable_device(pdev);
3326         if (rc) {
3327                 dev_warn(&pdev->dev, "failed to enable device.\n");
3328                 goto unmap_cfgtable;
3329         }
3330         pci_write_config_word(pdev, 4, command_register);
3331
3332         /* Some devices (notably the HP Smart Array 5i Controller)
3333            need a little pause here */
3334         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3335
3336         /* Wait for board to become not ready, then ready. */
3337         dev_info(&pdev->dev, "Waiting for board to become ready.\n");
3338         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3339         if (rc)
3340                 dev_warn(&pdev->dev,
3341                         "failed waiting for board to become not ready\n");
3342         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3343         if (rc) {
3344                 dev_warn(&pdev->dev,
3345                         "failed waiting for board to become ready\n");
3346                 goto unmap_cfgtable;
3347         }
3348
3349         rc = controller_reset_failed(vaddr);
3350         if (rc < 0)
3351                 goto unmap_cfgtable;
3352         if (rc) {
3353                 dev_warn(&pdev->dev, "Unable to successfully reset controller,"
3354                         " Ignoring controller.\n");
3355                 rc = -ENODEV;
3356         } else {
3357                 dev_info(&pdev->dev, "board ready.\n");
3358         }
3359
3360 unmap_cfgtable:
3361         iounmap(cfgtable);
3362
3363 unmap_vaddr:
3364         iounmap(vaddr);
3365         return rc;
3366 }
3367
3368 /*
3369  *  We cannot read the structure directly, for portability we must use
3370  *   the io functions.
3371  *   This is for debug only.
3372  */
3373 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3374 {
3375 #ifdef HPSA_DEBUG
3376         int i;
3377         char temp_name[17];
3378
3379         dev_info(dev, "Controller Configuration information\n");
3380         dev_info(dev, "------------------------------------\n");
3381         for (i = 0; i < 4; i++)
3382                 temp_name[i] = readb(&(tb->Signature[i]));
3383         temp_name[4] = '\0';
3384         dev_info(dev, "   Signature = %s\n", temp_name);
3385         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3386         dev_info(dev, "   Transport methods supported = 0x%x\n",
3387                readl(&(tb->TransportSupport)));
3388         dev_info(dev, "   Transport methods active = 0x%x\n",
3389                readl(&(tb->TransportActive)));
3390         dev_info(dev, "   Requested transport Method = 0x%x\n",
3391                readl(&(tb->HostWrite.TransportRequest)));
3392         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3393                readl(&(tb->HostWrite.CoalIntDelay)));
3394         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3395                readl(&(tb->HostWrite.CoalIntCount)));
3396         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3397                readl(&(tb->CmdsOutMax)));
3398         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3399         for (i = 0; i < 16; i++)
3400                 temp_name[i] = readb(&(tb->ServerName[i]));
3401         temp_name[16] = '\0';
3402         dev_info(dev, "   Server Name = %s\n", temp_name);
3403         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3404                 readl(&(tb->HeartBeat)));
3405 #endif                          /* HPSA_DEBUG */
3406 }
3407
3408 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3409 {
3410         int i, offset, mem_type, bar_type;
3411
3412         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3413                 return 0;
3414         offset = 0;
3415         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3416                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3417                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3418                         offset += 4;
3419                 else {
3420                         mem_type = pci_resource_flags(pdev, i) &
3421                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3422                         switch (mem_type) {
3423                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3424                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3425                                 offset += 4;    /* 32 bit */
3426                                 break;
3427                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3428                                 offset += 8;
3429                                 break;
3430                         default:        /* reserved in PCI 2.2 */
3431                                 dev_warn(&pdev->dev,
3432                                        "base address is invalid\n");
3433                                 return -1;
3434                                 break;
3435                         }
3436                 }
3437                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3438                         return i + 1;
3439         }
3440         return -1;
3441 }
3442
3443 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3444  * controllers that are capable. If not, we use IO-APIC mode.
3445  */
3446
3447 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3448 {
3449 #ifdef CONFIG_PCI_MSI
3450         int err;
3451         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3452         {0, 2}, {0, 3}
3453         };
3454
3455         /* Some boards advertise MSI but don't really support it */
3456         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3457             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3458                 goto default_int_mode;
3459         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3460                 dev_info(&h->pdev->dev, "MSIX\n");
3461                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3462                 if (!err) {
3463                         h->intr[0] = hpsa_msix_entries[0].vector;
3464                         h->intr[1] = hpsa_msix_entries[1].vector;
3465                         h->intr[2] = hpsa_msix_entries[2].vector;
3466                         h->intr[3] = hpsa_msix_entries[3].vector;
3467                         h->msix_vector = 1;
3468                         return;
3469                 }
3470                 if (err > 0) {
3471                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3472                                "available\n", err);
3473                         goto default_int_mode;
3474                 } else {
3475                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3476                                err);
3477                         goto default_int_mode;
3478                 }
3479         }
3480         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3481                 dev_info(&h->pdev->dev, "MSI\n");
3482                 if (!pci_enable_msi(h->pdev))
3483                         h->msi_vector = 1;
3484                 else
3485                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3486         }
3487 default_int_mode:
3488 #endif                          /* CONFIG_PCI_MSI */
3489         /* if we get here we're going to use the default interrupt mode */
3490         h->intr[h->intr_mode] = h->pdev->irq;
3491 }
3492
3493 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3494 {
3495         int i;
3496         u32 subsystem_vendor_id, subsystem_device_id;
3497
3498         subsystem_vendor_id = pdev->subsystem_vendor;
3499         subsystem_device_id = pdev->subsystem_device;
3500         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3501                     subsystem_vendor_id;
3502
3503         for (i = 0; i < ARRAY_SIZE(products); i++)
3504                 if (*board_id == products[i].board_id)
3505                         return i;
3506
3507         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3508                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3509                 !hpsa_allow_any) {
3510                 dev_warn(&pdev->dev, "unrecognized board ID: "
3511                         "0x%08x, ignoring.\n", *board_id);
3512                         return -ENODEV;
3513         }
3514         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3515 }
3516
3517 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3518 {
3519         u16 command;
3520
3521         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3522         return ((command & PCI_COMMAND_MEMORY) == 0);
3523 }
3524
3525 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3526         unsigned long *memory_bar)
3527 {
3528         int i;
3529
3530         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3531                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3532                         /* addressing mode bits already removed */
3533                         *memory_bar = pci_resource_start(pdev, i);
3534                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3535                                 *memory_bar);
3536                         return 0;
3537                 }
3538         dev_warn(&pdev->dev, "no memory BAR found\n");
3539         return -ENODEV;
3540 }
3541
3542 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3543         void __iomem *vaddr, int wait_for_ready)
3544 {
3545         int i, iterations;
3546         u32 scratchpad;
3547         if (wait_for_ready)
3548                 iterations = HPSA_BOARD_READY_ITERATIONS;
3549         else
3550                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3551
3552         for (i = 0; i < iterations; i++) {
3553                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3554                 if (wait_for_ready) {
3555                         if (scratchpad == HPSA_FIRMWARE_READY)
3556                                 return 0;
3557                 } else {
3558                         if (scratchpad != HPSA_FIRMWARE_READY)
3559                                 return 0;
3560                 }
3561                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3562         }
3563         dev_warn(&pdev->dev, "board not ready, timed out.\n");
3564         return -ENODEV;
3565 }
3566
3567 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3568         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3569         u64 *cfg_offset)
3570 {
3571         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3572         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3573         *cfg_base_addr &= (u32) 0x0000ffff;
3574         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3575         if (*cfg_base_addr_index == -1) {
3576                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3577                 return -ENODEV;
3578         }
3579         return 0;
3580 }
3581
3582 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3583 {
3584         u64 cfg_offset;
3585         u32 cfg_base_addr;
3586         u64 cfg_base_addr_index;
3587         u32 trans_offset;
3588         int rc;
3589
3590         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3591                 &cfg_base_addr_index, &cfg_offset);
3592         if (rc)
3593                 return rc;
3594         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3595                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3596         if (!h->cfgtable)
3597                 return -ENOMEM;
3598         rc = write_driver_ver_to_cfgtable(h->cfgtable);
3599         if (rc)
3600                 return rc;
3601         /* Find performant mode table. */
3602         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3603         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3604                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3605                                 sizeof(*h->transtable));
3606         if (!h->transtable)
3607                 return -ENOMEM;
3608         return 0;
3609 }
3610
3611 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3612 {
3613         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3614
3615         /* Limit commands in memory limited kdump scenario. */
3616         if (reset_devices && h->max_commands > 32)
3617                 h->max_commands = 32;
3618
3619         if (h->max_commands < 16) {
3620                 dev_warn(&h->pdev->dev, "Controller reports "
3621                         "max supported commands of %d, an obvious lie. "
3622                         "Using 16.  Ensure that firmware is up to date.\n",
3623                         h->max_commands);
3624                 h->max_commands = 16;
3625         }
3626 }
3627
3628 /* Interrogate the hardware for some limits:
3629  * max commands, max SG elements without chaining, and with chaining,
3630  * SG chain block size, etc.
3631  */
3632 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3633 {
3634         hpsa_get_max_perf_mode_cmds(h);
3635         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3636         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3637         /*
3638          * Limit in-command s/g elements to 32 save dma'able memory.
3639          * Howvever spec says if 0, use 31
3640          */
3641         h->max_cmd_sg_entries = 31;
3642         if (h->maxsgentries > 512) {
3643                 h->max_cmd_sg_entries = 32;
3644                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3645                 h->maxsgentries--; /* save one for chain pointer */
3646         } else {
3647                 h->maxsgentries = 31; /* default to traditional values */
3648                 h->chainsize = 0;
3649         }
3650 }
3651
3652 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3653 {
3654         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3655             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3656             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3657             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3658                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3659                 return false;
3660         }
3661         return true;
3662 }
3663
3664 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3665 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3666 {
3667 #ifdef CONFIG_X86
3668         u32 prefetch;
3669
3670         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3671         prefetch |= 0x100;
3672         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3673 #endif
3674 }
3675
3676 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3677  * in a prefetch beyond physical memory.
3678  */
3679 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3680 {
3681         u32 dma_prefetch;
3682
3683         if (h->board_id != 0x3225103C)
3684                 return;
3685         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3686         dma_prefetch |= 0x8000;
3687         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3688 }
3689
3690 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3691 {
3692         int i;
3693         u32 doorbell_value;
3694         unsigned long flags;
3695
3696         /* under certain very rare conditions, this can take awhile.
3697          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3698          * as we enter this code.)
3699          */
3700         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3701                 spin_lock_irqsave(&h->lock, flags);
3702                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3703                 spin_unlock_irqrestore(&h->lock, flags);
3704                 if (!(doorbell_value & CFGTBL_ChangeReq))
3705                         break;
3706                 /* delay and try again */
3707                 usleep_range(10000, 20000);
3708         }
3709 }
3710
3711 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3712 {
3713         u32 trans_support;
3714
3715         trans_support = readl(&(h->cfgtable->TransportSupport));
3716         if (!(trans_support & SIMPLE_MODE))
3717                 return -ENOTSUPP;
3718
3719         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3720         /* Update the field, and then ring the doorbell */
3721         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3722         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3723         hpsa_wait_for_mode_change_ack(h);
3724         print_cfg_table(&h->pdev->dev, h->cfgtable);
3725         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3726                 dev_warn(&h->pdev->dev,
3727                         "unable to get board into simple mode\n");
3728                 return -ENODEV;
3729         }
3730         h->transMethod = CFGTBL_Trans_Simple;
3731         return 0;
3732 }
3733
3734 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3735 {
3736         int prod_index, err;
3737
3738         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3739         if (prod_index < 0)
3740                 return -ENODEV;
3741         h->product_name = products[prod_index].product_name;
3742         h->access = *(products[prod_index].access);
3743
3744         if (hpsa_board_disabled(h->pdev)) {
3745                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3746                 return -ENODEV;
3747         }
3748         err = pci_enable_device(h->pdev);
3749         if (err) {
3750                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3751                 return err;
3752         }
3753
3754         err = pci_request_regions(h->pdev, "hpsa");
3755         if (err) {
3756                 dev_err(&h->pdev->dev,
3757                         "cannot obtain PCI resources, aborting\n");
3758                 return err;
3759         }
3760         hpsa_interrupt_mode(h);
3761         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3762         if (err)
3763                 goto err_out_free_res;
3764         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3765         if (!h->vaddr) {
3766                 err = -ENOMEM;
3767                 goto err_out_free_res;
3768         }
3769         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3770         if (err)
3771                 goto err_out_free_res;
3772         err = hpsa_find_cfgtables(h);
3773         if (err)
3774                 goto err_out_free_res;
3775         hpsa_find_board_params(h);
3776
3777         if (!hpsa_CISS_signature_present(h)) {
3778                 err = -ENODEV;
3779                 goto err_out_free_res;
3780         }
3781         hpsa_enable_scsi_prefetch(h);
3782         hpsa_p600_dma_prefetch_quirk(h);
3783         err = hpsa_enter_simple_mode(h);
3784         if (err)
3785                 goto err_out_free_res;
3786         return 0;
3787
3788 err_out_free_res:
3789         if (h->transtable)
3790                 iounmap(h->transtable);
3791         if (h->cfgtable)
3792                 iounmap(h->cfgtable);
3793         if (h->vaddr)
3794                 iounmap(h->vaddr);
3795         /*
3796          * Deliberately omit pci_disable_device(): it does something nasty to
3797          * Smart Array controllers that pci_enable_device does not undo
3798          */
3799         pci_release_regions(h->pdev);
3800         return err;
3801 }
3802
3803 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3804 {
3805         int rc;
3806
3807 #define HBA_INQUIRY_BYTE_COUNT 64
3808         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3809         if (!h->hba_inquiry_data)
3810                 return;
3811         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3812                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3813         if (rc != 0) {
3814                 kfree(h->hba_inquiry_data);
3815                 h->hba_inquiry_data = NULL;
3816         }
3817 }
3818
3819 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3820 {
3821         int rc, i;
3822
3823         if (!reset_devices)
3824                 return 0;
3825
3826         /* Reset the controller with a PCI power-cycle or via doorbell */
3827         rc = hpsa_kdump_hard_reset_controller(pdev);
3828
3829         /* -ENOTSUPP here means we cannot reset the controller
3830          * but it's already (and still) up and running in
3831          * "performant mode".  Or, it might be 640x, which can't reset
3832          * due to concerns about shared bbwc between 6402/6404 pair.
3833          */
3834         if (rc == -ENOTSUPP)
3835                 return 0; /* just try to do the kdump anyhow. */
3836         if (rc)
3837                 return -ENODEV;
3838
3839         /* Now try to get the controller to respond to a no-op */
3840         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3841                 if (hpsa_noop(pdev) == 0)
3842                         break;
3843                 else
3844                         dev_warn(&pdev->dev, "no-op failed%s\n",
3845                                         (i < 11 ? "; re-trying" : ""));
3846         }
3847         return 0;
3848 }
3849
3850 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
3851 {
3852         h->cmd_pool_bits = kzalloc(
3853                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
3854                 sizeof(unsigned long), GFP_KERNEL);
3855         h->cmd_pool = pci_alloc_consistent(h->pdev,
3856                     h->nr_cmds * sizeof(*h->cmd_pool),
3857                     &(h->cmd_pool_dhandle));
3858         h->errinfo_pool = pci_alloc_consistent(h->pdev,
3859                     h->nr_cmds * sizeof(*h->errinfo_pool),
3860                     &(h->errinfo_pool_dhandle));
3861         if ((h->cmd_pool_bits == NULL)
3862             || (h->cmd_pool == NULL)
3863             || (h->errinfo_pool == NULL)) {
3864                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
3865                 return -ENOMEM;
3866         }
3867         return 0;
3868 }
3869
3870 static void hpsa_free_cmd_pool(struct ctlr_info *h)
3871 {
3872         kfree(h->cmd_pool_bits);
3873         if (h->cmd_pool)
3874                 pci_free_consistent(h->pdev,
3875                             h->nr_cmds * sizeof(struct CommandList),
3876                             h->cmd_pool, h->cmd_pool_dhandle);
3877         if (h->errinfo_pool)
3878                 pci_free_consistent(h->pdev,
3879                             h->nr_cmds * sizeof(struct ErrorInfo),
3880                             h->errinfo_pool,
3881                             h->errinfo_pool_dhandle);
3882 }
3883
3884 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3885                                     const struct pci_device_id *ent)
3886 {
3887         int dac, rc;
3888         struct ctlr_info *h;
3889
3890         if (number_of_controllers == 0)
3891                 printk(KERN_INFO DRIVER_NAME "\n");
3892
3893         rc = hpsa_init_reset_devices(pdev);
3894         if (rc)
3895                 return rc;
3896
3897         /* Command structures must be aligned on a 32-byte boundary because
3898          * the 5 lower bits of the address are used by the hardware. and by
3899          * the driver.  See comments in hpsa.h for more info.
3900          */
3901 #define COMMANDLIST_ALIGNMENT 32
3902         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3903         h = kzalloc(sizeof(*h), GFP_KERNEL);
3904         if (!h)
3905                 return -ENOMEM;
3906
3907         h->pdev = pdev;
3908         h->busy_initializing = 1;
3909         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
3910         INIT_LIST_HEAD(&h->cmpQ);
3911         INIT_LIST_HEAD(&h->reqQ);
3912         spin_lock_init(&h->lock);
3913         spin_lock_init(&h->scan_lock);
3914         rc = hpsa_pci_init(h);
3915         if (rc != 0)
3916                 goto clean1;
3917
3918         sprintf(h->devname, "hpsa%d", number_of_controllers);
3919         h->ctlr = number_of_controllers;
3920         number_of_controllers++;
3921
3922         /* configure PCI DMA stuff */
3923         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3924         if (rc == 0) {
3925                 dac = 1;
3926         } else {
3927                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3928                 if (rc == 0) {
3929                         dac = 0;
3930                 } else {
3931                         dev_err(&pdev->dev, "no suitable DMA available\n");
3932                         goto clean1;
3933                 }
3934         }
3935
3936         /* make sure the board interrupts are off */
3937         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3938
3939         if (h->msix_vector || h->msi_vector)
3940                 rc = request_irq(h->intr[h->intr_mode], do_hpsa_intr_msi,
3941                                 IRQF_DISABLED, h->devname, h);
3942         else
3943                 rc = request_irq(h->intr[h->intr_mode], do_hpsa_intr_intx,
3944                                 IRQF_DISABLED, h->devname, h);
3945         if (rc) {
3946                 dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3947                        h->intr[h->intr_mode], h->devname);
3948                 goto clean2;
3949         }
3950
3951         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3952                h->devname, pdev->device,
3953                h->intr[h->intr_mode], dac ? "" : " not");
3954         if (hpsa_allocate_cmd_pool(h))
3955                 goto clean4;
3956         if (hpsa_allocate_sg_chain_blocks(h))
3957                 goto clean4;
3958         init_waitqueue_head(&h->scan_wait_queue);
3959         h->scan_finished = 1; /* no scan currently in progress */
3960
3961         pci_set_drvdata(pdev, h);
3962         hpsa_scsi_setup(h);
3963
3964         /* Turn the interrupts on so we can service requests */
3965         h->access.set_intr_mask(h, HPSA_INTR_ON);
3966
3967         hpsa_put_ctlr_into_performant_mode(h);
3968         hpsa_hba_inquiry(h);
3969         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
3970         h->busy_initializing = 0;
3971         return 1;
3972
3973 clean4:
3974         hpsa_free_sg_chain_blocks(h);
3975         hpsa_free_cmd_pool(h);
3976         free_irq(h->intr[h->intr_mode], h);
3977 clean2:
3978 clean1:
3979         h->busy_initializing = 0;
3980         kfree(h);
3981         return rc;
3982 }
3983
3984 static void hpsa_flush_cache(struct ctlr_info *h)
3985 {
3986         char *flush_buf;
3987         struct CommandList *c;
3988
3989         flush_buf = kzalloc(4, GFP_KERNEL);
3990         if (!flush_buf)
3991                 return;
3992
3993         c = cmd_special_alloc(h);
3994         if (!c) {
3995                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3996                 goto out_of_memory;
3997         }
3998         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3999                 RAID_CTLR_LUNID, TYPE_CMD);
4000         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4001         if (c->err_info->CommandStatus != 0)
4002                 dev_warn(&h->pdev->dev,
4003                         "error flushing cache on controller\n");
4004         cmd_special_free(h, c);
4005 out_of_memory:
4006         kfree(flush_buf);
4007 }
4008
4009 static void hpsa_shutdown(struct pci_dev *pdev)
4010 {
4011         struct ctlr_info *h;
4012
4013         h = pci_get_drvdata(pdev);
4014         /* Turn board interrupts off  and send the flush cache command
4015          * sendcmd will turn off interrupt, and send the flush...
4016          * To write all data in the battery backed cache to disks
4017          */
4018         hpsa_flush_cache(h);
4019         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4020         free_irq(h->intr[h->intr_mode], h);
4021 #ifdef CONFIG_PCI_MSI
4022         if (h->msix_vector)
4023                 pci_disable_msix(h->pdev);
4024         else if (h->msi_vector)
4025                 pci_disable_msi(h->pdev);
4026 #endif                          /* CONFIG_PCI_MSI */
4027 }
4028
4029 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4030 {
4031         struct ctlr_info *h;
4032
4033         if (pci_get_drvdata(pdev) == NULL) {
4034                 dev_err(&pdev->dev, "unable to remove device \n");
4035                 return;
4036         }
4037         h = pci_get_drvdata(pdev);
4038         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
4039         hpsa_shutdown(pdev);
4040         iounmap(h->vaddr);
4041         iounmap(h->transtable);
4042         iounmap(h->cfgtable);
4043         hpsa_free_sg_chain_blocks(h);
4044         pci_free_consistent(h->pdev,
4045                 h->nr_cmds * sizeof(struct CommandList),
4046                 h->cmd_pool, h->cmd_pool_dhandle);
4047         pci_free_consistent(h->pdev,
4048                 h->nr_cmds * sizeof(struct ErrorInfo),
4049                 h->errinfo_pool, h->errinfo_pool_dhandle);
4050         pci_free_consistent(h->pdev, h->reply_pool_size,
4051                 h->reply_pool, h->reply_pool_dhandle);
4052         kfree(h->cmd_pool_bits);
4053         kfree(h->blockFetchTable);
4054         kfree(h->hba_inquiry_data);
4055         /*
4056          * Deliberately omit pci_disable_device(): it does something nasty to
4057          * Smart Array controllers that pci_enable_device does not undo
4058          */
4059         pci_release_regions(pdev);
4060         pci_set_drvdata(pdev, NULL);
4061         kfree(h);
4062 }
4063
4064 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4065         __attribute__((unused)) pm_message_t state)
4066 {
4067         return -ENOSYS;
4068 }
4069
4070 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4071 {
4072         return -ENOSYS;
4073 }
4074
4075 static struct pci_driver hpsa_pci_driver = {
4076         .name = "hpsa",
4077         .probe = hpsa_init_one,
4078         .remove = __devexit_p(hpsa_remove_one),
4079         .id_table = hpsa_pci_device_id, /* id_table */
4080         .shutdown = hpsa_shutdown,
4081         .suspend = hpsa_suspend,
4082         .resume = hpsa_resume,
4083 };
4084
4085 /* Fill in bucket_map[], given nsgs (the max number of
4086  * scatter gather elements supported) and bucket[],
4087  * which is an array of 8 integers.  The bucket[] array
4088  * contains 8 different DMA transfer sizes (in 16
4089  * byte increments) which the controller uses to fetch
4090  * commands.  This function fills in bucket_map[], which
4091  * maps a given number of scatter gather elements to one of
4092  * the 8 DMA transfer sizes.  The point of it is to allow the
4093  * controller to only do as much DMA as needed to fetch the
4094  * command, with the DMA transfer size encoded in the lower
4095  * bits of the command address.
4096  */
4097 static void  calc_bucket_map(int bucket[], int num_buckets,
4098         int nsgs, int *bucket_map)
4099 {
4100         int i, j, b, size;
4101
4102         /* even a command with 0 SGs requires 4 blocks */
4103 #define MINIMUM_TRANSFER_BLOCKS 4
4104 #define NUM_BUCKETS 8
4105         /* Note, bucket_map must have nsgs+1 entries. */
4106         for (i = 0; i <= nsgs; i++) {
4107                 /* Compute size of a command with i SG entries */
4108                 size = i + MINIMUM_TRANSFER_BLOCKS;
4109                 b = num_buckets; /* Assume the biggest bucket */
4110                 /* Find the bucket that is just big enough */
4111                 for (j = 0; j < 8; j++) {
4112                         if (bucket[j] >= size) {
4113                                 b = j;
4114                                 break;
4115                         }
4116                 }
4117                 /* for a command with i SG entries, use bucket b. */
4118                 bucket_map[i] = b;
4119         }
4120 }
4121
4122 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4123         u32 use_short_tags)
4124 {
4125         int i;
4126         unsigned long register_value;
4127
4128         /* This is a bit complicated.  There are 8 registers on
4129          * the controller which we write to to tell it 8 different
4130          * sizes of commands which there may be.  It's a way of
4131          * reducing the DMA done to fetch each command.  Encoded into
4132          * each command's tag are 3 bits which communicate to the controller
4133          * which of the eight sizes that command fits within.  The size of
4134          * each command depends on how many scatter gather entries there are.
4135          * Each SG entry requires 16 bytes.  The eight registers are programmed
4136          * with the number of 16-byte blocks a command of that size requires.
4137          * The smallest command possible requires 5 such 16 byte blocks.
4138          * the largest command possible requires MAXSGENTRIES + 4 16-byte
4139          * blocks.  Note, this only extends to the SG entries contained
4140          * within the command block, and does not extend to chained blocks
4141          * of SG elements.   bft[] contains the eight values we write to
4142          * the registers.  They are not evenly distributed, but have more
4143          * sizes for small commands, and fewer sizes for larger commands.
4144          */
4145         int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4146         BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4147         /*  5 = 1 s/g entry or 4k
4148          *  6 = 2 s/g entry or 8k
4149          *  8 = 4 s/g entry or 16k
4150          * 10 = 6 s/g entry or 24k
4151          */
4152
4153         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4154
4155         /* Controller spec: zero out this buffer. */
4156         memset(h->reply_pool, 0, h->reply_pool_size);
4157         h->reply_pool_head = h->reply_pool;
4158
4159         bft[7] = h->max_sg_entries + 4;
4160         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4161         for (i = 0; i < 8; i++)
4162                 writel(bft[i], &h->transtable->BlockFetch[i]);
4163
4164         /* size of controller ring buffer */
4165         writel(h->max_commands, &h->transtable->RepQSize);
4166         writel(1, &h->transtable->RepQCount);
4167         writel(0, &h->transtable->RepQCtrAddrLow32);
4168         writel(0, &h->transtable->RepQCtrAddrHigh32);
4169         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4170         writel(0, &h->transtable->RepQAddr0High32);
4171         writel(CFGTBL_Trans_Performant | use_short_tags,
4172                 &(h->cfgtable->HostWrite.TransportRequest));
4173         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4174         hpsa_wait_for_mode_change_ack(h);
4175         register_value = readl(&(h->cfgtable->TransportActive));
4176         if (!(register_value & CFGTBL_Trans_Performant)) {
4177                 dev_warn(&h->pdev->dev, "unable to get board into"
4178                                         " performant mode\n");
4179                 return;
4180         }
4181         /* Change the access methods to the performant access methods */
4182         h->access = SA5_performant_access;
4183         h->transMethod = CFGTBL_Trans_Performant;
4184 }
4185
4186 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4187 {
4188         u32 trans_support;
4189
4190         if (hpsa_simple_mode)
4191                 return;
4192
4193         trans_support = readl(&(h->cfgtable->TransportSupport));
4194         if (!(trans_support & PERFORMANT_MODE))
4195                 return;
4196
4197         hpsa_get_max_perf_mode_cmds(h);
4198         h->max_sg_entries = 32;
4199         /* Performant mode ring buffer and supporting data structures */
4200         h->reply_pool_size = h->max_commands * sizeof(u64);
4201         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4202                                 &(h->reply_pool_dhandle));
4203
4204         /* Need a block fetch table for performant mode */
4205         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4206                                 sizeof(u32)), GFP_KERNEL);
4207
4208         if ((h->reply_pool == NULL)
4209                 || (h->blockFetchTable == NULL))
4210                 goto clean_up;
4211
4212         hpsa_enter_performant_mode(h,
4213                 trans_support & CFGTBL_Trans_use_short_tags);
4214
4215         return;
4216
4217 clean_up:
4218         if (h->reply_pool)
4219                 pci_free_consistent(h->pdev, h->reply_pool_size,
4220                         h->reply_pool, h->reply_pool_dhandle);
4221         kfree(h->blockFetchTable);
4222 }
4223
4224 /*
4225  *  This is it.  Register the PCI driver information for the cards we control
4226  *  the OS will call our registered routines when it finds one of our cards.
4227  */
4228 static int __init hpsa_init(void)
4229 {
4230         return pci_register_driver(&hpsa_pci_driver);
4231 }
4232
4233 static void __exit hpsa_cleanup(void)
4234 {
4235         pci_unregister_driver(&hpsa_pci_driver);
4236 }
4237
4238 module_init(hpsa_init);
4239 module_exit(hpsa_cleanup);