ubifs: free the encrypted symlink target
[platform/kernel/linux-rpi.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80         HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
85
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89         "Use 'simple mode' rather than 'performant mode'");
90
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
147                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
149                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150         {0,}
151 };
152
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154
155 /*  board_id = Subsystem Device ID & Vendor ID
156  *  product = Marketing Name for the board
157  *  access = Address of the struct of function pointers
158  */
159 static struct board_type products[] = {
160         {0x40700E11, "Smart Array 5300", &SA5A_access},
161         {0x40800E11, "Smart Array 5i", &SA5B_access},
162         {0x40820E11, "Smart Array 532", &SA5B_access},
163         {0x40830E11, "Smart Array 5312", &SA5B_access},
164         {0x409A0E11, "Smart Array 641", &SA5A_access},
165         {0x409B0E11, "Smart Array 642", &SA5A_access},
166         {0x409C0E11, "Smart Array 6400", &SA5A_access},
167         {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168         {0x40910E11, "Smart Array 6i", &SA5A_access},
169         {0x3225103C, "Smart Array P600", &SA5A_access},
170         {0x3223103C, "Smart Array P800", &SA5A_access},
171         {0x3234103C, "Smart Array P400", &SA5A_access},
172         {0x3235103C, "Smart Array P400i", &SA5A_access},
173         {0x3211103C, "Smart Array E200i", &SA5A_access},
174         {0x3212103C, "Smart Array E200", &SA5A_access},
175         {0x3213103C, "Smart Array E200i", &SA5A_access},
176         {0x3214103C, "Smart Array E200i", &SA5A_access},
177         {0x3215103C, "Smart Array E200i", &SA5A_access},
178         {0x3237103C, "Smart Array E500", &SA5A_access},
179         {0x323D103C, "Smart Array P700m", &SA5A_access},
180         {0x3241103C, "Smart Array P212", &SA5_access},
181         {0x3243103C, "Smart Array P410", &SA5_access},
182         {0x3245103C, "Smart Array P410i", &SA5_access},
183         {0x3247103C, "Smart Array P411", &SA5_access},
184         {0x3249103C, "Smart Array P812", &SA5_access},
185         {0x324A103C, "Smart Array P712m", &SA5_access},
186         {0x324B103C, "Smart Array P711m", &SA5_access},
187         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188         {0x3350103C, "Smart Array P222", &SA5_access},
189         {0x3351103C, "Smart Array P420", &SA5_access},
190         {0x3352103C, "Smart Array P421", &SA5_access},
191         {0x3353103C, "Smart Array P822", &SA5_access},
192         {0x3354103C, "Smart Array P420i", &SA5_access},
193         {0x3355103C, "Smart Array P220i", &SA5_access},
194         {0x3356103C, "Smart Array P721m", &SA5_access},
195         {0x1920103C, "Smart Array P430i", &SA5_access},
196         {0x1921103C, "Smart Array P830i", &SA5_access},
197         {0x1922103C, "Smart Array P430", &SA5_access},
198         {0x1923103C, "Smart Array P431", &SA5_access},
199         {0x1924103C, "Smart Array P830", &SA5_access},
200         {0x1925103C, "Smart Array P831", &SA5_access},
201         {0x1926103C, "Smart Array P731m", &SA5_access},
202         {0x1928103C, "Smart Array P230i", &SA5_access},
203         {0x1929103C, "Smart Array P530", &SA5_access},
204         {0x21BD103C, "Smart Array P244br", &SA5_access},
205         {0x21BE103C, "Smart Array P741m", &SA5_access},
206         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
207         {0x21C0103C, "Smart Array P440ar", &SA5_access},
208         {0x21C1103C, "Smart Array P840ar", &SA5_access},
209         {0x21C2103C, "Smart Array P440", &SA5_access},
210         {0x21C3103C, "Smart Array P441", &SA5_access},
211         {0x21C4103C, "Smart Array", &SA5_access},
212         {0x21C5103C, "Smart Array P841", &SA5_access},
213         {0x21C6103C, "Smart HBA H244br", &SA5_access},
214         {0x21C7103C, "Smart HBA H240", &SA5_access},
215         {0x21C8103C, "Smart HBA H241", &SA5_access},
216         {0x21C9103C, "Smart Array", &SA5_access},
217         {0x21CA103C, "Smart Array P246br", &SA5_access},
218         {0x21CB103C, "Smart Array P840", &SA5_access},
219         {0x21CC103C, "Smart Array", &SA5_access},
220         {0x21CD103C, "Smart Array", &SA5_access},
221         {0x21CE103C, "Smart HBA", &SA5_access},
222         {0x05809005, "SmartHBA-SA", &SA5_access},
223         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
224         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
226         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
227         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
234 };
235
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240                         struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244                 struct sas_rphy *rphy);
245
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
251
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
255
256 #ifdef CONFIG_COMPAT
257 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
258         void __user *arg);
259 #endif
260
261 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
262 static struct CommandList *cmd_alloc(struct ctlr_info *h);
263 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
265                                             struct scsi_cmnd *scmd);
266 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
267         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
268         int cmd_type);
269 static void hpsa_free_cmd_pool(struct ctlr_info *h);
270 #define VPD_PAGE (1 << 8)
271 #define HPSA_SIMPLE_ERROR_BITS 0x03
272
273 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
274 static void hpsa_scan_start(struct Scsi_Host *);
275 static int hpsa_scan_finished(struct Scsi_Host *sh,
276         unsigned long elapsed_time);
277 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
278
279 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
280 static int hpsa_slave_alloc(struct scsi_device *sdev);
281 static int hpsa_slave_configure(struct scsi_device *sdev);
282 static void hpsa_slave_destroy(struct scsi_device *sdev);
283
284 static void hpsa_update_scsi_devices(struct ctlr_info *h);
285 static int check_for_unit_attention(struct ctlr_info *h,
286         struct CommandList *c);
287 static void check_ioctl_unit_attention(struct ctlr_info *h,
288         struct CommandList *c);
289 /* performant mode helper functions */
290 static void calc_bucket_map(int *bucket, int num_buckets,
291         int nsgs, int min_blocks, u32 *bucket_map);
292 static void hpsa_free_performant_mode(struct ctlr_info *h);
293 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
294 static inline u32 next_command(struct ctlr_info *h, u8 q);
295 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
296                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
297                                u64 *cfg_offset);
298 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
299                                     unsigned long *memory_bar);
300 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
301                                 bool *legacy_board);
302 static int wait_for_device_to_become_ready(struct ctlr_info *h,
303                                            unsigned char lunaddr[],
304                                            int reply_queue);
305 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
306                                      int wait_for_ready);
307 static inline void finish_cmd(struct CommandList *c);
308 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
309 #define BOARD_NOT_READY 0
310 #define BOARD_READY 1
311 static void hpsa_drain_accel_commands(struct ctlr_info *h);
312 static void hpsa_flush_cache(struct ctlr_info *h);
313 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
314         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
315         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
316 static void hpsa_command_resubmit_worker(struct work_struct *work);
317 static u32 lockup_detected(struct ctlr_info *h);
318 static int detect_controller_lockup(struct ctlr_info *h);
319 static void hpsa_disable_rld_caching(struct ctlr_info *h);
320 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
321         struct ReportExtendedLUNdata *buf, int bufsize);
322 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
323         unsigned char scsi3addr[], u8 page);
324 static int hpsa_luns_changed(struct ctlr_info *h);
325 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
326                                struct hpsa_scsi_dev_t *dev,
327                                unsigned char *scsi3addr);
328
329 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
330 {
331         unsigned long *priv = shost_priv(sdev->host);
332         return (struct ctlr_info *) *priv;
333 }
334
335 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
336 {
337         unsigned long *priv = shost_priv(sh);
338         return (struct ctlr_info *) *priv;
339 }
340
341 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
342 {
343         return c->scsi_cmd == SCSI_CMD_IDLE;
344 }
345
346 static inline bool hpsa_is_pending_event(struct CommandList *c)
347 {
348         return c->reset_pending;
349 }
350
351 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
352 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
353                         u8 *sense_key, u8 *asc, u8 *ascq)
354 {
355         struct scsi_sense_hdr sshdr;
356         bool rc;
357
358         *sense_key = -1;
359         *asc = -1;
360         *ascq = -1;
361
362         if (sense_data_len < 1)
363                 return;
364
365         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
366         if (rc) {
367                 *sense_key = sshdr.sense_key;
368                 *asc = sshdr.asc;
369                 *ascq = sshdr.ascq;
370         }
371 }
372
373 static int check_for_unit_attention(struct ctlr_info *h,
374         struct CommandList *c)
375 {
376         u8 sense_key, asc, ascq;
377         int sense_len;
378
379         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
380                 sense_len = sizeof(c->err_info->SenseInfo);
381         else
382                 sense_len = c->err_info->SenseLen;
383
384         decode_sense_data(c->err_info->SenseInfo, sense_len,
385                                 &sense_key, &asc, &ascq);
386         if (sense_key != UNIT_ATTENTION || asc == 0xff)
387                 return 0;
388
389         switch (asc) {
390         case STATE_CHANGED:
391                 dev_warn(&h->pdev->dev,
392                         "%s: a state change detected, command retried\n",
393                         h->devname);
394                 break;
395         case LUN_FAILED:
396                 dev_warn(&h->pdev->dev,
397                         "%s: LUN failure detected\n", h->devname);
398                 break;
399         case REPORT_LUNS_CHANGED:
400                 dev_warn(&h->pdev->dev,
401                         "%s: report LUN data changed\n", h->devname);
402         /*
403          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
404          * target (array) devices.
405          */
406                 break;
407         case POWER_OR_RESET:
408                 dev_warn(&h->pdev->dev,
409                         "%s: a power on or device reset detected\n",
410                         h->devname);
411                 break;
412         case UNIT_ATTENTION_CLEARED:
413                 dev_warn(&h->pdev->dev,
414                         "%s: unit attention cleared by another initiator\n",
415                         h->devname);
416                 break;
417         default:
418                 dev_warn(&h->pdev->dev,
419                         "%s: unknown unit attention detected\n",
420                         h->devname);
421                 break;
422         }
423         return 1;
424 }
425
426 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
427 {
428         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
429                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
430                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
431                 return 0;
432         dev_warn(&h->pdev->dev, HPSA "device busy");
433         return 1;
434 }
435
436 static u32 lockup_detected(struct ctlr_info *h);
437 static ssize_t host_show_lockup_detected(struct device *dev,
438                 struct device_attribute *attr, char *buf)
439 {
440         int ld;
441         struct ctlr_info *h;
442         struct Scsi_Host *shost = class_to_shost(dev);
443
444         h = shost_to_hba(shost);
445         ld = lockup_detected(h);
446
447         return sprintf(buf, "ld=%d\n", ld);
448 }
449
450 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
451                                          struct device_attribute *attr,
452                                          const char *buf, size_t count)
453 {
454         int status, len;
455         struct ctlr_info *h;
456         struct Scsi_Host *shost = class_to_shost(dev);
457         char tmpbuf[10];
458
459         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
460                 return -EACCES;
461         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
462         strncpy(tmpbuf, buf, len);
463         tmpbuf[len] = '\0';
464         if (sscanf(tmpbuf, "%d", &status) != 1)
465                 return -EINVAL;
466         h = shost_to_hba(shost);
467         h->acciopath_status = !!status;
468         dev_warn(&h->pdev->dev,
469                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
470                 h->acciopath_status ? "enabled" : "disabled");
471         return count;
472 }
473
474 static ssize_t host_store_raid_offload_debug(struct device *dev,
475                                          struct device_attribute *attr,
476                                          const char *buf, size_t count)
477 {
478         int debug_level, len;
479         struct ctlr_info *h;
480         struct Scsi_Host *shost = class_to_shost(dev);
481         char tmpbuf[10];
482
483         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
484                 return -EACCES;
485         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
486         strncpy(tmpbuf, buf, len);
487         tmpbuf[len] = '\0';
488         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
489                 return -EINVAL;
490         if (debug_level < 0)
491                 debug_level = 0;
492         h = shost_to_hba(shost);
493         h->raid_offload_debug = debug_level;
494         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
495                 h->raid_offload_debug);
496         return count;
497 }
498
499 static ssize_t host_store_rescan(struct device *dev,
500                                  struct device_attribute *attr,
501                                  const char *buf, size_t count)
502 {
503         struct ctlr_info *h;
504         struct Scsi_Host *shost = class_to_shost(dev);
505         h = shost_to_hba(shost);
506         hpsa_scan_start(h->scsi_host);
507         return count;
508 }
509
510 static ssize_t host_show_firmware_revision(struct device *dev,
511              struct device_attribute *attr, char *buf)
512 {
513         struct ctlr_info *h;
514         struct Scsi_Host *shost = class_to_shost(dev);
515         unsigned char *fwrev;
516
517         h = shost_to_hba(shost);
518         if (!h->hba_inquiry_data)
519                 return 0;
520         fwrev = &h->hba_inquiry_data[32];
521         return snprintf(buf, 20, "%c%c%c%c\n",
522                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
523 }
524
525 static ssize_t host_show_commands_outstanding(struct device *dev,
526              struct device_attribute *attr, char *buf)
527 {
528         struct Scsi_Host *shost = class_to_shost(dev);
529         struct ctlr_info *h = shost_to_hba(shost);
530
531         return snprintf(buf, 20, "%d\n",
532                         atomic_read(&h->commands_outstanding));
533 }
534
535 static ssize_t host_show_transport_mode(struct device *dev,
536         struct device_attribute *attr, char *buf)
537 {
538         struct ctlr_info *h;
539         struct Scsi_Host *shost = class_to_shost(dev);
540
541         h = shost_to_hba(shost);
542         return snprintf(buf, 20, "%s\n",
543                 h->transMethod & CFGTBL_Trans_Performant ?
544                         "performant" : "simple");
545 }
546
547 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
548         struct device_attribute *attr, char *buf)
549 {
550         struct ctlr_info *h;
551         struct Scsi_Host *shost = class_to_shost(dev);
552
553         h = shost_to_hba(shost);
554         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
555                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
556 }
557
558 /* List of controllers which cannot be hard reset on kexec with reset_devices */
559 static u32 unresettable_controller[] = {
560         0x324a103C, /* Smart Array P712m */
561         0x324b103C, /* Smart Array P711m */
562         0x3223103C, /* Smart Array P800 */
563         0x3234103C, /* Smart Array P400 */
564         0x3235103C, /* Smart Array P400i */
565         0x3211103C, /* Smart Array E200i */
566         0x3212103C, /* Smart Array E200 */
567         0x3213103C, /* Smart Array E200i */
568         0x3214103C, /* Smart Array E200i */
569         0x3215103C, /* Smart Array E200i */
570         0x3237103C, /* Smart Array E500 */
571         0x323D103C, /* Smart Array P700m */
572         0x40800E11, /* Smart Array 5i */
573         0x409C0E11, /* Smart Array 6400 */
574         0x409D0E11, /* Smart Array 6400 EM */
575         0x40700E11, /* Smart Array 5300 */
576         0x40820E11, /* Smart Array 532 */
577         0x40830E11, /* Smart Array 5312 */
578         0x409A0E11, /* Smart Array 641 */
579         0x409B0E11, /* Smart Array 642 */
580         0x40910E11, /* Smart Array 6i */
581 };
582
583 /* List of controllers which cannot even be soft reset */
584 static u32 soft_unresettable_controller[] = {
585         0x40800E11, /* Smart Array 5i */
586         0x40700E11, /* Smart Array 5300 */
587         0x40820E11, /* Smart Array 532 */
588         0x40830E11, /* Smart Array 5312 */
589         0x409A0E11, /* Smart Array 641 */
590         0x409B0E11, /* Smart Array 642 */
591         0x40910E11, /* Smart Array 6i */
592         /* Exclude 640x boards.  These are two pci devices in one slot
593          * which share a battery backed cache module.  One controls the
594          * cache, the other accesses the cache through the one that controls
595          * it.  If we reset the one controlling the cache, the other will
596          * likely not be happy.  Just forbid resetting this conjoined mess.
597          * The 640x isn't really supported by hpsa anyway.
598          */
599         0x409C0E11, /* Smart Array 6400 */
600         0x409D0E11, /* Smart Array 6400 EM */
601 };
602
603 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
604 {
605         int i;
606
607         for (i = 0; i < nelems; i++)
608                 if (a[i] == board_id)
609                         return 1;
610         return 0;
611 }
612
613 static int ctlr_is_hard_resettable(u32 board_id)
614 {
615         return !board_id_in_array(unresettable_controller,
616                         ARRAY_SIZE(unresettable_controller), board_id);
617 }
618
619 static int ctlr_is_soft_resettable(u32 board_id)
620 {
621         return !board_id_in_array(soft_unresettable_controller,
622                         ARRAY_SIZE(soft_unresettable_controller), board_id);
623 }
624
625 static int ctlr_is_resettable(u32 board_id)
626 {
627         return ctlr_is_hard_resettable(board_id) ||
628                 ctlr_is_soft_resettable(board_id);
629 }
630
631 static ssize_t host_show_resettable(struct device *dev,
632         struct device_attribute *attr, char *buf)
633 {
634         struct ctlr_info *h;
635         struct Scsi_Host *shost = class_to_shost(dev);
636
637         h = shost_to_hba(shost);
638         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
639 }
640
641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
642 {
643         return (scsi3addr[3] & 0xC0) == 0x40;
644 }
645
646 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
647         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
648 };
649 #define HPSA_RAID_0     0
650 #define HPSA_RAID_4     1
651 #define HPSA_RAID_1     2       /* also used for RAID 10 */
652 #define HPSA_RAID_5     3       /* also used for RAID 50 */
653 #define HPSA_RAID_51    4
654 #define HPSA_RAID_6     5       /* also used for RAID 60 */
655 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
658
659 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
660 {
661         return !device->physical_device;
662 }
663
664 static ssize_t raid_level_show(struct device *dev,
665              struct device_attribute *attr, char *buf)
666 {
667         ssize_t l = 0;
668         unsigned char rlevel;
669         struct ctlr_info *h;
670         struct scsi_device *sdev;
671         struct hpsa_scsi_dev_t *hdev;
672         unsigned long flags;
673
674         sdev = to_scsi_device(dev);
675         h = sdev_to_hba(sdev);
676         spin_lock_irqsave(&h->lock, flags);
677         hdev = sdev->hostdata;
678         if (!hdev) {
679                 spin_unlock_irqrestore(&h->lock, flags);
680                 return -ENODEV;
681         }
682
683         /* Is this even a logical drive? */
684         if (!is_logical_device(hdev)) {
685                 spin_unlock_irqrestore(&h->lock, flags);
686                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
687                 return l;
688         }
689
690         rlevel = hdev->raid_level;
691         spin_unlock_irqrestore(&h->lock, flags);
692         if (rlevel > RAID_UNKNOWN)
693                 rlevel = RAID_UNKNOWN;
694         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
695         return l;
696 }
697
698 static ssize_t lunid_show(struct device *dev,
699              struct device_attribute *attr, char *buf)
700 {
701         struct ctlr_info *h;
702         struct scsi_device *sdev;
703         struct hpsa_scsi_dev_t *hdev;
704         unsigned long flags;
705         unsigned char lunid[8];
706
707         sdev = to_scsi_device(dev);
708         h = sdev_to_hba(sdev);
709         spin_lock_irqsave(&h->lock, flags);
710         hdev = sdev->hostdata;
711         if (!hdev) {
712                 spin_unlock_irqrestore(&h->lock, flags);
713                 return -ENODEV;
714         }
715         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
716         spin_unlock_irqrestore(&h->lock, flags);
717         return snprintf(buf, 20, "0x%8phN\n", lunid);
718 }
719
720 static ssize_t unique_id_show(struct device *dev,
721              struct device_attribute *attr, char *buf)
722 {
723         struct ctlr_info *h;
724         struct scsi_device *sdev;
725         struct hpsa_scsi_dev_t *hdev;
726         unsigned long flags;
727         unsigned char sn[16];
728
729         sdev = to_scsi_device(dev);
730         h = sdev_to_hba(sdev);
731         spin_lock_irqsave(&h->lock, flags);
732         hdev = sdev->hostdata;
733         if (!hdev) {
734                 spin_unlock_irqrestore(&h->lock, flags);
735                 return -ENODEV;
736         }
737         memcpy(sn, hdev->device_id, sizeof(sn));
738         spin_unlock_irqrestore(&h->lock, flags);
739         return snprintf(buf, 16 * 2 + 2,
740                         "%02X%02X%02X%02X%02X%02X%02X%02X"
741                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
742                         sn[0], sn[1], sn[2], sn[3],
743                         sn[4], sn[5], sn[6], sn[7],
744                         sn[8], sn[9], sn[10], sn[11],
745                         sn[12], sn[13], sn[14], sn[15]);
746 }
747
748 static ssize_t sas_address_show(struct device *dev,
749               struct device_attribute *attr, char *buf)
750 {
751         struct ctlr_info *h;
752         struct scsi_device *sdev;
753         struct hpsa_scsi_dev_t *hdev;
754         unsigned long flags;
755         u64 sas_address;
756
757         sdev = to_scsi_device(dev);
758         h = sdev_to_hba(sdev);
759         spin_lock_irqsave(&h->lock, flags);
760         hdev = sdev->hostdata;
761         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
762                 spin_unlock_irqrestore(&h->lock, flags);
763                 return -ENODEV;
764         }
765         sas_address = hdev->sas_address;
766         spin_unlock_irqrestore(&h->lock, flags);
767
768         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
769 }
770
771 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
772              struct device_attribute *attr, char *buf)
773 {
774         struct ctlr_info *h;
775         struct scsi_device *sdev;
776         struct hpsa_scsi_dev_t *hdev;
777         unsigned long flags;
778         int offload_enabled;
779
780         sdev = to_scsi_device(dev);
781         h = sdev_to_hba(sdev);
782         spin_lock_irqsave(&h->lock, flags);
783         hdev = sdev->hostdata;
784         if (!hdev) {
785                 spin_unlock_irqrestore(&h->lock, flags);
786                 return -ENODEV;
787         }
788         offload_enabled = hdev->offload_enabled;
789         spin_unlock_irqrestore(&h->lock, flags);
790         return snprintf(buf, 20, "%d\n", offload_enabled);
791 }
792
793 #define MAX_PATHS 8
794 static ssize_t path_info_show(struct device *dev,
795              struct device_attribute *attr, char *buf)
796 {
797         struct ctlr_info *h;
798         struct scsi_device *sdev;
799         struct hpsa_scsi_dev_t *hdev;
800         unsigned long flags;
801         int i;
802         int output_len = 0;
803         u8 box;
804         u8 bay;
805         u8 path_map_index = 0;
806         char *active;
807         unsigned char phys_connector[2];
808
809         sdev = to_scsi_device(dev);
810         h = sdev_to_hba(sdev);
811         spin_lock_irqsave(&h->devlock, flags);
812         hdev = sdev->hostdata;
813         if (!hdev) {
814                 spin_unlock_irqrestore(&h->devlock, flags);
815                 return -ENODEV;
816         }
817
818         bay = hdev->bay;
819         for (i = 0; i < MAX_PATHS; i++) {
820                 path_map_index = 1<<i;
821                 if (i == hdev->active_path_index)
822                         active = "Active";
823                 else if (hdev->path_map & path_map_index)
824                         active = "Inactive";
825                 else
826                         continue;
827
828                 output_len += scnprintf(buf + output_len,
829                                 PAGE_SIZE - output_len,
830                                 "[%d:%d:%d:%d] %20.20s ",
831                                 h->scsi_host->host_no,
832                                 hdev->bus, hdev->target, hdev->lun,
833                                 scsi_device_type(hdev->devtype));
834
835                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
836                         output_len += scnprintf(buf + output_len,
837                                                 PAGE_SIZE - output_len,
838                                                 "%s\n", active);
839                         continue;
840                 }
841
842                 box = hdev->box[i];
843                 memcpy(&phys_connector, &hdev->phys_connector[i],
844                         sizeof(phys_connector));
845                 if (phys_connector[0] < '0')
846                         phys_connector[0] = '0';
847                 if (phys_connector[1] < '0')
848                         phys_connector[1] = '0';
849                 output_len += scnprintf(buf + output_len,
850                                 PAGE_SIZE - output_len,
851                                 "PORT: %.2s ",
852                                 phys_connector);
853                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
854                         hdev->expose_device) {
855                         if (box == 0 || box == 0xFF) {
856                                 output_len += scnprintf(buf + output_len,
857                                         PAGE_SIZE - output_len,
858                                         "BAY: %hhu %s\n",
859                                         bay, active);
860                         } else {
861                                 output_len += scnprintf(buf + output_len,
862                                         PAGE_SIZE - output_len,
863                                         "BOX: %hhu BAY: %hhu %s\n",
864                                         box, bay, active);
865                         }
866                 } else if (box != 0 && box != 0xFF) {
867                         output_len += scnprintf(buf + output_len,
868                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
869                                 box, active);
870                 } else
871                         output_len += scnprintf(buf + output_len,
872                                 PAGE_SIZE - output_len, "%s\n", active);
873         }
874
875         spin_unlock_irqrestore(&h->devlock, flags);
876         return output_len;
877 }
878
879 static ssize_t host_show_ctlr_num(struct device *dev,
880         struct device_attribute *attr, char *buf)
881 {
882         struct ctlr_info *h;
883         struct Scsi_Host *shost = class_to_shost(dev);
884
885         h = shost_to_hba(shost);
886         return snprintf(buf, 20, "%d\n", h->ctlr);
887 }
888
889 static ssize_t host_show_legacy_board(struct device *dev,
890         struct device_attribute *attr, char *buf)
891 {
892         struct ctlr_info *h;
893         struct Scsi_Host *shost = class_to_shost(dev);
894
895         h = shost_to_hba(shost);
896         return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
897 }
898
899 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
900 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
901 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
902 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
903 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
904 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
905                         host_show_hp_ssd_smart_path_enabled, NULL);
906 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
907 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
908                 host_show_hp_ssd_smart_path_status,
909                 host_store_hp_ssd_smart_path_status);
910 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
911                         host_store_raid_offload_debug);
912 static DEVICE_ATTR(firmware_revision, S_IRUGO,
913         host_show_firmware_revision, NULL);
914 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
915         host_show_commands_outstanding, NULL);
916 static DEVICE_ATTR(transport_mode, S_IRUGO,
917         host_show_transport_mode, NULL);
918 static DEVICE_ATTR(resettable, S_IRUGO,
919         host_show_resettable, NULL);
920 static DEVICE_ATTR(lockup_detected, S_IRUGO,
921         host_show_lockup_detected, NULL);
922 static DEVICE_ATTR(ctlr_num, S_IRUGO,
923         host_show_ctlr_num, NULL);
924 static DEVICE_ATTR(legacy_board, S_IRUGO,
925         host_show_legacy_board, NULL);
926
927 static struct device_attribute *hpsa_sdev_attrs[] = {
928         &dev_attr_raid_level,
929         &dev_attr_lunid,
930         &dev_attr_unique_id,
931         &dev_attr_hp_ssd_smart_path_enabled,
932         &dev_attr_path_info,
933         &dev_attr_sas_address,
934         NULL,
935 };
936
937 static struct device_attribute *hpsa_shost_attrs[] = {
938         &dev_attr_rescan,
939         &dev_attr_firmware_revision,
940         &dev_attr_commands_outstanding,
941         &dev_attr_transport_mode,
942         &dev_attr_resettable,
943         &dev_attr_hp_ssd_smart_path_status,
944         &dev_attr_raid_offload_debug,
945         &dev_attr_lockup_detected,
946         &dev_attr_ctlr_num,
947         &dev_attr_legacy_board,
948         NULL,
949 };
950
951 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
952                                  HPSA_MAX_CONCURRENT_PASSTHRUS)
953
954 static struct scsi_host_template hpsa_driver_template = {
955         .module                 = THIS_MODULE,
956         .name                   = HPSA,
957         .proc_name              = HPSA,
958         .queuecommand           = hpsa_scsi_queue_command,
959         .scan_start             = hpsa_scan_start,
960         .scan_finished          = hpsa_scan_finished,
961         .change_queue_depth     = hpsa_change_queue_depth,
962         .this_id                = -1,
963         .use_clustering         = ENABLE_CLUSTERING,
964         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
965         .ioctl                  = hpsa_ioctl,
966         .slave_alloc            = hpsa_slave_alloc,
967         .slave_configure        = hpsa_slave_configure,
968         .slave_destroy          = hpsa_slave_destroy,
969 #ifdef CONFIG_COMPAT
970         .compat_ioctl           = hpsa_compat_ioctl,
971 #endif
972         .sdev_attrs = hpsa_sdev_attrs,
973         .shost_attrs = hpsa_shost_attrs,
974         .max_sectors = 1024,
975         .no_write_same = 1,
976 };
977
978 static inline u32 next_command(struct ctlr_info *h, u8 q)
979 {
980         u32 a;
981         struct reply_queue_buffer *rq = &h->reply_queue[q];
982
983         if (h->transMethod & CFGTBL_Trans_io_accel1)
984                 return h->access.command_completed(h, q);
985
986         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
987                 return h->access.command_completed(h, q);
988
989         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
990                 a = rq->head[rq->current_entry];
991                 rq->current_entry++;
992                 atomic_dec(&h->commands_outstanding);
993         } else {
994                 a = FIFO_EMPTY;
995         }
996         /* Check for wraparound */
997         if (rq->current_entry == h->max_commands) {
998                 rq->current_entry = 0;
999                 rq->wraparound ^= 1;
1000         }
1001         return a;
1002 }
1003
1004 /*
1005  * There are some special bits in the bus address of the
1006  * command that we have to set for the controller to know
1007  * how to process the command:
1008  *
1009  * Normal performant mode:
1010  * bit 0: 1 means performant mode, 0 means simple mode.
1011  * bits 1-3 = block fetch table entry
1012  * bits 4-6 = command type (== 0)
1013  *
1014  * ioaccel1 mode:
1015  * bit 0 = "performant mode" bit.
1016  * bits 1-3 = block fetch table entry
1017  * bits 4-6 = command type (== 110)
1018  * (command type is needed because ioaccel1 mode
1019  * commands are submitted through the same register as normal
1020  * mode commands, so this is how the controller knows whether
1021  * the command is normal mode or ioaccel1 mode.)
1022  *
1023  * ioaccel2 mode:
1024  * bit 0 = "performant mode" bit.
1025  * bits 1-4 = block fetch table entry (note extra bit)
1026  * bits 4-6 = not needed, because ioaccel2 mode has
1027  * a separate special register for submitting commands.
1028  */
1029
1030 /*
1031  * set_performant_mode: Modify the tag for cciss performant
1032  * set bit 0 for pull model, bits 3-1 for block fetch
1033  * register number
1034  */
1035 #define DEFAULT_REPLY_QUEUE (-1)
1036 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1037                                         int reply_queue)
1038 {
1039         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1040                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1041                 if (unlikely(!h->msix_vectors))
1042                         return;
1043                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1044                         c->Header.ReplyQueue =
1045                                 raw_smp_processor_id() % h->nreply_queues;
1046                 else
1047                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1048         }
1049 }
1050
1051 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1052                                                 struct CommandList *c,
1053                                                 int reply_queue)
1054 {
1055         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1056
1057         /*
1058          * Tell the controller to post the reply to the queue for this
1059          * processor.  This seems to give the best I/O throughput.
1060          */
1061         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1062                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1063         else
1064                 cp->ReplyQueue = reply_queue % h->nreply_queues;
1065         /*
1066          * Set the bits in the address sent down to include:
1067          *  - performant mode bit (bit 0)
1068          *  - pull count (bits 1-3)
1069          *  - command type (bits 4-6)
1070          */
1071         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1072                                         IOACCEL1_BUSADDR_CMDTYPE;
1073 }
1074
1075 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1076                                                 struct CommandList *c,
1077                                                 int reply_queue)
1078 {
1079         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1080                 &h->ioaccel2_cmd_pool[c->cmdindex];
1081
1082         /* Tell the controller to post the reply to the queue for this
1083          * processor.  This seems to give the best I/O throughput.
1084          */
1085         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1086                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1087         else
1088                 cp->reply_queue = reply_queue % h->nreply_queues;
1089         /* Set the bits in the address sent down to include:
1090          *  - performant mode bit not used in ioaccel mode 2
1091          *  - pull count (bits 0-3)
1092          *  - command type isn't needed for ioaccel2
1093          */
1094         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1095 }
1096
1097 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1098                                                 struct CommandList *c,
1099                                                 int reply_queue)
1100 {
1101         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1102
1103         /*
1104          * Tell the controller to post the reply to the queue for this
1105          * processor.  This seems to give the best I/O throughput.
1106          */
1107         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1108                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1109         else
1110                 cp->reply_queue = reply_queue % h->nreply_queues;
1111         /*
1112          * Set the bits in the address sent down to include:
1113          *  - performant mode bit not used in ioaccel mode 2
1114          *  - pull count (bits 0-3)
1115          *  - command type isn't needed for ioaccel2
1116          */
1117         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1118 }
1119
1120 static int is_firmware_flash_cmd(u8 *cdb)
1121 {
1122         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1123 }
1124
1125 /*
1126  * During firmware flash, the heartbeat register may not update as frequently
1127  * as it should.  So we dial down lockup detection during firmware flash. and
1128  * dial it back up when firmware flash completes.
1129  */
1130 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1131 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1132 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1133 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1134                 struct CommandList *c)
1135 {
1136         if (!is_firmware_flash_cmd(c->Request.CDB))
1137                 return;
1138         atomic_inc(&h->firmware_flash_in_progress);
1139         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1140 }
1141
1142 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1143                 struct CommandList *c)
1144 {
1145         if (is_firmware_flash_cmd(c->Request.CDB) &&
1146                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1147                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1148 }
1149
1150 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1151         struct CommandList *c, int reply_queue)
1152 {
1153         dial_down_lockup_detection_during_fw_flash(h, c);
1154         atomic_inc(&h->commands_outstanding);
1155         switch (c->cmd_type) {
1156         case CMD_IOACCEL1:
1157                 set_ioaccel1_performant_mode(h, c, reply_queue);
1158                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1159                 break;
1160         case CMD_IOACCEL2:
1161                 set_ioaccel2_performant_mode(h, c, reply_queue);
1162                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1163                 break;
1164         case IOACCEL2_TMF:
1165                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1166                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1167                 break;
1168         default:
1169                 set_performant_mode(h, c, reply_queue);
1170                 h->access.submit_command(h, c);
1171         }
1172 }
1173
1174 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1175 {
1176         if (unlikely(hpsa_is_pending_event(c)))
1177                 return finish_cmd(c);
1178
1179         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1180 }
1181
1182 static inline int is_hba_lunid(unsigned char scsi3addr[])
1183 {
1184         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1185 }
1186
1187 static inline int is_scsi_rev_5(struct ctlr_info *h)
1188 {
1189         if (!h->hba_inquiry_data)
1190                 return 0;
1191         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1192                 return 1;
1193         return 0;
1194 }
1195
1196 static int hpsa_find_target_lun(struct ctlr_info *h,
1197         unsigned char scsi3addr[], int bus, int *target, int *lun)
1198 {
1199         /* finds an unused bus, target, lun for a new physical device
1200          * assumes h->devlock is held
1201          */
1202         int i, found = 0;
1203         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1204
1205         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1206
1207         for (i = 0; i < h->ndevices; i++) {
1208                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1209                         __set_bit(h->dev[i]->target, lun_taken);
1210         }
1211
1212         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1213         if (i < HPSA_MAX_DEVICES) {
1214                 /* *bus = 1; */
1215                 *target = i;
1216                 *lun = 0;
1217                 found = 1;
1218         }
1219         return !found;
1220 }
1221
1222 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1223         struct hpsa_scsi_dev_t *dev, char *description)
1224 {
1225 #define LABEL_SIZE 25
1226         char label[LABEL_SIZE];
1227
1228         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1229                 return;
1230
1231         switch (dev->devtype) {
1232         case TYPE_RAID:
1233                 snprintf(label, LABEL_SIZE, "controller");
1234                 break;
1235         case TYPE_ENCLOSURE:
1236                 snprintf(label, LABEL_SIZE, "enclosure");
1237                 break;
1238         case TYPE_DISK:
1239         case TYPE_ZBC:
1240                 if (dev->external)
1241                         snprintf(label, LABEL_SIZE, "external");
1242                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1243                         snprintf(label, LABEL_SIZE, "%s",
1244                                 raid_label[PHYSICAL_DRIVE]);
1245                 else
1246                         snprintf(label, LABEL_SIZE, "RAID-%s",
1247                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1248                                 raid_label[dev->raid_level]);
1249                 break;
1250         case TYPE_ROM:
1251                 snprintf(label, LABEL_SIZE, "rom");
1252                 break;
1253         case TYPE_TAPE:
1254                 snprintf(label, LABEL_SIZE, "tape");
1255                 break;
1256         case TYPE_MEDIUM_CHANGER:
1257                 snprintf(label, LABEL_SIZE, "changer");
1258                 break;
1259         default:
1260                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1261                 break;
1262         }
1263
1264         dev_printk(level, &h->pdev->dev,
1265                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1266                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1267                         description,
1268                         scsi_device_type(dev->devtype),
1269                         dev->vendor,
1270                         dev->model,
1271                         label,
1272                         dev->offload_config ? '+' : '-',
1273                         dev->offload_enabled ? '+' : '-',
1274                         dev->expose_device);
1275 }
1276
1277 /* Add an entry into h->dev[] array. */
1278 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1279                 struct hpsa_scsi_dev_t *device,
1280                 struct hpsa_scsi_dev_t *added[], int *nadded)
1281 {
1282         /* assumes h->devlock is held */
1283         int n = h->ndevices;
1284         int i;
1285         unsigned char addr1[8], addr2[8];
1286         struct hpsa_scsi_dev_t *sd;
1287
1288         if (n >= HPSA_MAX_DEVICES) {
1289                 dev_err(&h->pdev->dev, "too many devices, some will be "
1290                         "inaccessible.\n");
1291                 return -1;
1292         }
1293
1294         /* physical devices do not have lun or target assigned until now. */
1295         if (device->lun != -1)
1296                 /* Logical device, lun is already assigned. */
1297                 goto lun_assigned;
1298
1299         /* If this device a non-zero lun of a multi-lun device
1300          * byte 4 of the 8-byte LUN addr will contain the logical
1301          * unit no, zero otherwise.
1302          */
1303         if (device->scsi3addr[4] == 0) {
1304                 /* This is not a non-zero lun of a multi-lun device */
1305                 if (hpsa_find_target_lun(h, device->scsi3addr,
1306                         device->bus, &device->target, &device->lun) != 0)
1307                         return -1;
1308                 goto lun_assigned;
1309         }
1310
1311         /* This is a non-zero lun of a multi-lun device.
1312          * Search through our list and find the device which
1313          * has the same 8 byte LUN address, excepting byte 4 and 5.
1314          * Assign the same bus and target for this new LUN.
1315          * Use the logical unit number from the firmware.
1316          */
1317         memcpy(addr1, device->scsi3addr, 8);
1318         addr1[4] = 0;
1319         addr1[5] = 0;
1320         for (i = 0; i < n; i++) {
1321                 sd = h->dev[i];
1322                 memcpy(addr2, sd->scsi3addr, 8);
1323                 addr2[4] = 0;
1324                 addr2[5] = 0;
1325                 /* differ only in byte 4 and 5? */
1326                 if (memcmp(addr1, addr2, 8) == 0) {
1327                         device->bus = sd->bus;
1328                         device->target = sd->target;
1329                         device->lun = device->scsi3addr[4];
1330                         break;
1331                 }
1332         }
1333         if (device->lun == -1) {
1334                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1335                         " suspect firmware bug or unsupported hardware "
1336                         "configuration.\n");
1337                         return -1;
1338         }
1339
1340 lun_assigned:
1341
1342         h->dev[n] = device;
1343         h->ndevices++;
1344         added[*nadded] = device;
1345         (*nadded)++;
1346         hpsa_show_dev_msg(KERN_INFO, h, device,
1347                 device->expose_device ? "added" : "masked");
1348         device->offload_to_be_enabled = device->offload_enabled;
1349         device->offload_enabled = 0;
1350         return 0;
1351 }
1352
1353 /* Update an entry in h->dev[] array. */
1354 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1355         int entry, struct hpsa_scsi_dev_t *new_entry)
1356 {
1357         int offload_enabled;
1358         /* assumes h->devlock is held */
1359         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1360
1361         /* Raid level changed. */
1362         h->dev[entry]->raid_level = new_entry->raid_level;
1363
1364         /* Raid offload parameters changed.  Careful about the ordering. */
1365         if (new_entry->offload_config && new_entry->offload_enabled) {
1366                 /*
1367                  * if drive is newly offload_enabled, we want to copy the
1368                  * raid map data first.  If previously offload_enabled and
1369                  * offload_config were set, raid map data had better be
1370                  * the same as it was before.  if raid map data is changed
1371                  * then it had better be the case that
1372                  * h->dev[entry]->offload_enabled is currently 0.
1373                  */
1374                 h->dev[entry]->raid_map = new_entry->raid_map;
1375                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1376         }
1377         if (new_entry->hba_ioaccel_enabled) {
1378                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1379                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1380         }
1381         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1382         h->dev[entry]->offload_config = new_entry->offload_config;
1383         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1384         h->dev[entry]->queue_depth = new_entry->queue_depth;
1385
1386         /*
1387          * We can turn off ioaccel offload now, but need to delay turning
1388          * it on until we can update h->dev[entry]->phys_disk[], but we
1389          * can't do that until all the devices are updated.
1390          */
1391         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1392         if (!new_entry->offload_enabled)
1393                 h->dev[entry]->offload_enabled = 0;
1394
1395         offload_enabled = h->dev[entry]->offload_enabled;
1396         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1397         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1398         h->dev[entry]->offload_enabled = offload_enabled;
1399 }
1400
1401 /* Replace an entry from h->dev[] array. */
1402 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1403         int entry, struct hpsa_scsi_dev_t *new_entry,
1404         struct hpsa_scsi_dev_t *added[], int *nadded,
1405         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1406 {
1407         /* assumes h->devlock is held */
1408         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1409         removed[*nremoved] = h->dev[entry];
1410         (*nremoved)++;
1411
1412         /*
1413          * New physical devices won't have target/lun assigned yet
1414          * so we need to preserve the values in the slot we are replacing.
1415          */
1416         if (new_entry->target == -1) {
1417                 new_entry->target = h->dev[entry]->target;
1418                 new_entry->lun = h->dev[entry]->lun;
1419         }
1420
1421         h->dev[entry] = new_entry;
1422         added[*nadded] = new_entry;
1423         (*nadded)++;
1424         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1425         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1426         new_entry->offload_enabled = 0;
1427 }
1428
1429 /* Remove an entry from h->dev[] array. */
1430 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1431         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1432 {
1433         /* assumes h->devlock is held */
1434         int i;
1435         struct hpsa_scsi_dev_t *sd;
1436
1437         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1438
1439         sd = h->dev[entry];
1440         removed[*nremoved] = h->dev[entry];
1441         (*nremoved)++;
1442
1443         for (i = entry; i < h->ndevices-1; i++)
1444                 h->dev[i] = h->dev[i+1];
1445         h->ndevices--;
1446         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1447 }
1448
1449 #define SCSI3ADDR_EQ(a, b) ( \
1450         (a)[7] == (b)[7] && \
1451         (a)[6] == (b)[6] && \
1452         (a)[5] == (b)[5] && \
1453         (a)[4] == (b)[4] && \
1454         (a)[3] == (b)[3] && \
1455         (a)[2] == (b)[2] && \
1456         (a)[1] == (b)[1] && \
1457         (a)[0] == (b)[0])
1458
1459 static void fixup_botched_add(struct ctlr_info *h,
1460         struct hpsa_scsi_dev_t *added)
1461 {
1462         /* called when scsi_add_device fails in order to re-adjust
1463          * h->dev[] to match the mid layer's view.
1464          */
1465         unsigned long flags;
1466         int i, j;
1467
1468         spin_lock_irqsave(&h->lock, flags);
1469         for (i = 0; i < h->ndevices; i++) {
1470                 if (h->dev[i] == added) {
1471                         for (j = i; j < h->ndevices-1; j++)
1472                                 h->dev[j] = h->dev[j+1];
1473                         h->ndevices--;
1474                         break;
1475                 }
1476         }
1477         spin_unlock_irqrestore(&h->lock, flags);
1478         kfree(added);
1479 }
1480
1481 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1482         struct hpsa_scsi_dev_t *dev2)
1483 {
1484         /* we compare everything except lun and target as these
1485          * are not yet assigned.  Compare parts likely
1486          * to differ first
1487          */
1488         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1489                 sizeof(dev1->scsi3addr)) != 0)
1490                 return 0;
1491         if (memcmp(dev1->device_id, dev2->device_id,
1492                 sizeof(dev1->device_id)) != 0)
1493                 return 0;
1494         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1495                 return 0;
1496         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1497                 return 0;
1498         if (dev1->devtype != dev2->devtype)
1499                 return 0;
1500         if (dev1->bus != dev2->bus)
1501                 return 0;
1502         return 1;
1503 }
1504
1505 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1506         struct hpsa_scsi_dev_t *dev2)
1507 {
1508         /* Device attributes that can change, but don't mean
1509          * that the device is a different device, nor that the OS
1510          * needs to be told anything about the change.
1511          */
1512         if (dev1->raid_level != dev2->raid_level)
1513                 return 1;
1514         if (dev1->offload_config != dev2->offload_config)
1515                 return 1;
1516         if (dev1->offload_enabled != dev2->offload_enabled)
1517                 return 1;
1518         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1519                 if (dev1->queue_depth != dev2->queue_depth)
1520                         return 1;
1521         return 0;
1522 }
1523
1524 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1525  * and return needle location in *index.  If scsi3addr matches, but not
1526  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1527  * location in *index.
1528  * In the case of a minor device attribute change, such as RAID level, just
1529  * return DEVICE_UPDATED, along with the updated device's location in index.
1530  * If needle not found, return DEVICE_NOT_FOUND.
1531  */
1532 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1533         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1534         int *index)
1535 {
1536         int i;
1537 #define DEVICE_NOT_FOUND 0
1538 #define DEVICE_CHANGED 1
1539 #define DEVICE_SAME 2
1540 #define DEVICE_UPDATED 3
1541         if (needle == NULL)
1542                 return DEVICE_NOT_FOUND;
1543
1544         for (i = 0; i < haystack_size; i++) {
1545                 if (haystack[i] == NULL) /* previously removed. */
1546                         continue;
1547                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1548                         *index = i;
1549                         if (device_is_the_same(needle, haystack[i])) {
1550                                 if (device_updated(needle, haystack[i]))
1551                                         return DEVICE_UPDATED;
1552                                 return DEVICE_SAME;
1553                         } else {
1554                                 /* Keep offline devices offline */
1555                                 if (needle->volume_offline)
1556                                         return DEVICE_NOT_FOUND;
1557                                 return DEVICE_CHANGED;
1558                         }
1559                 }
1560         }
1561         *index = -1;
1562         return DEVICE_NOT_FOUND;
1563 }
1564
1565 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1566                                         unsigned char scsi3addr[])
1567 {
1568         struct offline_device_entry *device;
1569         unsigned long flags;
1570
1571         /* Check to see if device is already on the list */
1572         spin_lock_irqsave(&h->offline_device_lock, flags);
1573         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1574                 if (memcmp(device->scsi3addr, scsi3addr,
1575                         sizeof(device->scsi3addr)) == 0) {
1576                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1577                         return;
1578                 }
1579         }
1580         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1581
1582         /* Device is not on the list, add it. */
1583         device = kmalloc(sizeof(*device), GFP_KERNEL);
1584         if (!device)
1585                 return;
1586
1587         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1588         spin_lock_irqsave(&h->offline_device_lock, flags);
1589         list_add_tail(&device->offline_list, &h->offline_device_list);
1590         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1591 }
1592
1593 /* Print a message explaining various offline volume states */
1594 static void hpsa_show_volume_status(struct ctlr_info *h,
1595         struct hpsa_scsi_dev_t *sd)
1596 {
1597         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1598                 dev_info(&h->pdev->dev,
1599                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1600                         h->scsi_host->host_no,
1601                         sd->bus, sd->target, sd->lun);
1602         switch (sd->volume_offline) {
1603         case HPSA_LV_OK:
1604                 break;
1605         case HPSA_LV_UNDERGOING_ERASE:
1606                 dev_info(&h->pdev->dev,
1607                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1608                         h->scsi_host->host_no,
1609                         sd->bus, sd->target, sd->lun);
1610                 break;
1611         case HPSA_LV_NOT_AVAILABLE:
1612                 dev_info(&h->pdev->dev,
1613                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1614                         h->scsi_host->host_no,
1615                         sd->bus, sd->target, sd->lun);
1616                 break;
1617         case HPSA_LV_UNDERGOING_RPI:
1618                 dev_info(&h->pdev->dev,
1619                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1620                         h->scsi_host->host_no,
1621                         sd->bus, sd->target, sd->lun);
1622                 break;
1623         case HPSA_LV_PENDING_RPI:
1624                 dev_info(&h->pdev->dev,
1625                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1626                         h->scsi_host->host_no,
1627                         sd->bus, sd->target, sd->lun);
1628                 break;
1629         case HPSA_LV_ENCRYPTED_NO_KEY:
1630                 dev_info(&h->pdev->dev,
1631                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1632                         h->scsi_host->host_no,
1633                         sd->bus, sd->target, sd->lun);
1634                 break;
1635         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1636                 dev_info(&h->pdev->dev,
1637                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1638                         h->scsi_host->host_no,
1639                         sd->bus, sd->target, sd->lun);
1640                 break;
1641         case HPSA_LV_UNDERGOING_ENCRYPTION:
1642                 dev_info(&h->pdev->dev,
1643                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1644                         h->scsi_host->host_no,
1645                         sd->bus, sd->target, sd->lun);
1646                 break;
1647         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1648                 dev_info(&h->pdev->dev,
1649                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1650                         h->scsi_host->host_no,
1651                         sd->bus, sd->target, sd->lun);
1652                 break;
1653         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1654                 dev_info(&h->pdev->dev,
1655                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1656                         h->scsi_host->host_no,
1657                         sd->bus, sd->target, sd->lun);
1658                 break;
1659         case HPSA_LV_PENDING_ENCRYPTION:
1660                 dev_info(&h->pdev->dev,
1661                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1662                         h->scsi_host->host_no,
1663                         sd->bus, sd->target, sd->lun);
1664                 break;
1665         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1666                 dev_info(&h->pdev->dev,
1667                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1668                         h->scsi_host->host_no,
1669                         sd->bus, sd->target, sd->lun);
1670                 break;
1671         }
1672 }
1673
1674 /*
1675  * Figure the list of physical drive pointers for a logical drive with
1676  * raid offload configured.
1677  */
1678 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1679                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1680                                 struct hpsa_scsi_dev_t *logical_drive)
1681 {
1682         struct raid_map_data *map = &logical_drive->raid_map;
1683         struct raid_map_disk_data *dd = &map->data[0];
1684         int i, j;
1685         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1686                                 le16_to_cpu(map->metadata_disks_per_row);
1687         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1688                                 le16_to_cpu(map->layout_map_count) *
1689                                 total_disks_per_row;
1690         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1691                                 total_disks_per_row;
1692         int qdepth;
1693
1694         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1695                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1696
1697         logical_drive->nphysical_disks = nraid_map_entries;
1698
1699         qdepth = 0;
1700         for (i = 0; i < nraid_map_entries; i++) {
1701                 logical_drive->phys_disk[i] = NULL;
1702                 if (!logical_drive->offload_config)
1703                         continue;
1704                 for (j = 0; j < ndevices; j++) {
1705                         if (dev[j] == NULL)
1706                                 continue;
1707                         if (dev[j]->devtype != TYPE_DISK &&
1708                             dev[j]->devtype != TYPE_ZBC)
1709                                 continue;
1710                         if (is_logical_device(dev[j]))
1711                                 continue;
1712                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1713                                 continue;
1714
1715                         logical_drive->phys_disk[i] = dev[j];
1716                         if (i < nphys_disk)
1717                                 qdepth = min(h->nr_cmds, qdepth +
1718                                     logical_drive->phys_disk[i]->queue_depth);
1719                         break;
1720                 }
1721
1722                 /*
1723                  * This can happen if a physical drive is removed and
1724                  * the logical drive is degraded.  In that case, the RAID
1725                  * map data will refer to a physical disk which isn't actually
1726                  * present.  And in that case offload_enabled should already
1727                  * be 0, but we'll turn it off here just in case
1728                  */
1729                 if (!logical_drive->phys_disk[i]) {
1730                         logical_drive->offload_enabled = 0;
1731                         logical_drive->offload_to_be_enabled = 0;
1732                         logical_drive->queue_depth = 8;
1733                 }
1734         }
1735         if (nraid_map_entries)
1736                 /*
1737                  * This is correct for reads, too high for full stripe writes,
1738                  * way too high for partial stripe writes
1739                  */
1740                 logical_drive->queue_depth = qdepth;
1741         else
1742                 logical_drive->queue_depth = h->nr_cmds;
1743 }
1744
1745 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1746                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1747 {
1748         int i;
1749
1750         for (i = 0; i < ndevices; i++) {
1751                 if (dev[i] == NULL)
1752                         continue;
1753                 if (dev[i]->devtype != TYPE_DISK &&
1754                     dev[i]->devtype != TYPE_ZBC)
1755                         continue;
1756                 if (!is_logical_device(dev[i]))
1757                         continue;
1758
1759                 /*
1760                  * If offload is currently enabled, the RAID map and
1761                  * phys_disk[] assignment *better* not be changing
1762                  * and since it isn't changing, we do not need to
1763                  * update it.
1764                  */
1765                 if (dev[i]->offload_enabled)
1766                         continue;
1767
1768                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1769         }
1770 }
1771
1772 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1773 {
1774         int rc = 0;
1775
1776         if (!h->scsi_host)
1777                 return 1;
1778
1779         if (is_logical_device(device)) /* RAID */
1780                 rc = scsi_add_device(h->scsi_host, device->bus,
1781                                         device->target, device->lun);
1782         else /* HBA */
1783                 rc = hpsa_add_sas_device(h->sas_host, device);
1784
1785         return rc;
1786 }
1787
1788 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1789                                                 struct hpsa_scsi_dev_t *dev)
1790 {
1791         int i;
1792         int count = 0;
1793
1794         for (i = 0; i < h->nr_cmds; i++) {
1795                 struct CommandList *c = h->cmd_pool + i;
1796                 int refcount = atomic_inc_return(&c->refcount);
1797
1798                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1799                                 dev->scsi3addr)) {
1800                         unsigned long flags;
1801
1802                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1803                         if (!hpsa_is_cmd_idle(c))
1804                                 ++count;
1805                         spin_unlock_irqrestore(&h->lock, flags);
1806                 }
1807
1808                 cmd_free(h, c);
1809         }
1810
1811         return count;
1812 }
1813
1814 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1815                                                 struct hpsa_scsi_dev_t *device)
1816 {
1817         int cmds = 0;
1818         int waits = 0;
1819
1820         while (1) {
1821                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1822                 if (cmds == 0)
1823                         break;
1824                 if (++waits > 20)
1825                         break;
1826                 dev_warn(&h->pdev->dev,
1827                         "%s: removing device with %d outstanding commands!\n",
1828                         __func__, cmds);
1829                 msleep(1000);
1830         }
1831 }
1832
1833 static void hpsa_remove_device(struct ctlr_info *h,
1834                         struct hpsa_scsi_dev_t *device)
1835 {
1836         struct scsi_device *sdev = NULL;
1837
1838         if (!h->scsi_host)
1839                 return;
1840
1841         if (is_logical_device(device)) { /* RAID */
1842                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1843                                                 device->target, device->lun);
1844                 if (sdev) {
1845                         scsi_remove_device(sdev);
1846                         scsi_device_put(sdev);
1847                 } else {
1848                         /*
1849                          * We don't expect to get here.  Future commands
1850                          * to this device will get a selection timeout as
1851                          * if the device were gone.
1852                          */
1853                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1854                                         "didn't find device for removal.");
1855                 }
1856         } else { /* HBA */
1857
1858                 device->removed = 1;
1859                 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1860
1861                 hpsa_remove_sas_device(device);
1862         }
1863 }
1864
1865 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1866         struct hpsa_scsi_dev_t *sd[], int nsds)
1867 {
1868         /* sd contains scsi3 addresses and devtypes, and inquiry
1869          * data.  This function takes what's in sd to be the current
1870          * reality and updates h->dev[] to reflect that reality.
1871          */
1872         int i, entry, device_change, changes = 0;
1873         struct hpsa_scsi_dev_t *csd;
1874         unsigned long flags;
1875         struct hpsa_scsi_dev_t **added, **removed;
1876         int nadded, nremoved;
1877
1878         /*
1879          * A reset can cause a device status to change
1880          * re-schedule the scan to see what happened.
1881          */
1882         spin_lock_irqsave(&h->reset_lock, flags);
1883         if (h->reset_in_progress) {
1884                 h->drv_req_rescan = 1;
1885                 spin_unlock_irqrestore(&h->reset_lock, flags);
1886                 return;
1887         }
1888         spin_unlock_irqrestore(&h->reset_lock, flags);
1889
1890         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1891         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1892
1893         if (!added || !removed) {
1894                 dev_warn(&h->pdev->dev, "out of memory in "
1895                         "adjust_hpsa_scsi_table\n");
1896                 goto free_and_out;
1897         }
1898
1899         spin_lock_irqsave(&h->devlock, flags);
1900
1901         /* find any devices in h->dev[] that are not in
1902          * sd[] and remove them from h->dev[], and for any
1903          * devices which have changed, remove the old device
1904          * info and add the new device info.
1905          * If minor device attributes change, just update
1906          * the existing device structure.
1907          */
1908         i = 0;
1909         nremoved = 0;
1910         nadded = 0;
1911         while (i < h->ndevices) {
1912                 csd = h->dev[i];
1913                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1914                 if (device_change == DEVICE_NOT_FOUND) {
1915                         changes++;
1916                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1917                         continue; /* remove ^^^, hence i not incremented */
1918                 } else if (device_change == DEVICE_CHANGED) {
1919                         changes++;
1920                         hpsa_scsi_replace_entry(h, i, sd[entry],
1921                                 added, &nadded, removed, &nremoved);
1922                         /* Set it to NULL to prevent it from being freed
1923                          * at the bottom of hpsa_update_scsi_devices()
1924                          */
1925                         sd[entry] = NULL;
1926                 } else if (device_change == DEVICE_UPDATED) {
1927                         hpsa_scsi_update_entry(h, i, sd[entry]);
1928                 }
1929                 i++;
1930         }
1931
1932         /* Now, make sure every device listed in sd[] is also
1933          * listed in h->dev[], adding them if they aren't found
1934          */
1935
1936         for (i = 0; i < nsds; i++) {
1937                 if (!sd[i]) /* if already added above. */
1938                         continue;
1939
1940                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1941                  * as the SCSI mid-layer does not handle such devices well.
1942                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1943                  * at 160Hz, and prevents the system from coming up.
1944                  */
1945                 if (sd[i]->volume_offline) {
1946                         hpsa_show_volume_status(h, sd[i]);
1947                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1948                         continue;
1949                 }
1950
1951                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1952                                         h->ndevices, &entry);
1953                 if (device_change == DEVICE_NOT_FOUND) {
1954                         changes++;
1955                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1956                                 break;
1957                         sd[i] = NULL; /* prevent from being freed later. */
1958                 } else if (device_change == DEVICE_CHANGED) {
1959                         /* should never happen... */
1960                         changes++;
1961                         dev_warn(&h->pdev->dev,
1962                                 "device unexpectedly changed.\n");
1963                         /* but if it does happen, we just ignore that device */
1964                 }
1965         }
1966         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1967
1968         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1969          * any logical drives that need it enabled.
1970          */
1971         for (i = 0; i < h->ndevices; i++) {
1972                 if (h->dev[i] == NULL)
1973                         continue;
1974                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1975         }
1976
1977         spin_unlock_irqrestore(&h->devlock, flags);
1978
1979         /* Monitor devices which are in one of several NOT READY states to be
1980          * brought online later. This must be done without holding h->devlock,
1981          * so don't touch h->dev[]
1982          */
1983         for (i = 0; i < nsds; i++) {
1984                 if (!sd[i]) /* if already added above. */
1985                         continue;
1986                 if (sd[i]->volume_offline)
1987                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1988         }
1989
1990         /* Don't notify scsi mid layer of any changes the first time through
1991          * (or if there are no changes) scsi_scan_host will do it later the
1992          * first time through.
1993          */
1994         if (!changes)
1995                 goto free_and_out;
1996
1997         /* Notify scsi mid layer of any removed devices */
1998         for (i = 0; i < nremoved; i++) {
1999                 if (removed[i] == NULL)
2000                         continue;
2001                 if (removed[i]->expose_device)
2002                         hpsa_remove_device(h, removed[i]);
2003                 kfree(removed[i]);
2004                 removed[i] = NULL;
2005         }
2006
2007         /* Notify scsi mid layer of any added devices */
2008         for (i = 0; i < nadded; i++) {
2009                 int rc = 0;
2010
2011                 if (added[i] == NULL)
2012                         continue;
2013                 if (!(added[i]->expose_device))
2014                         continue;
2015                 rc = hpsa_add_device(h, added[i]);
2016                 if (!rc)
2017                         continue;
2018                 dev_warn(&h->pdev->dev,
2019                         "addition failed %d, device not added.", rc);
2020                 /* now we have to remove it from h->dev,
2021                  * since it didn't get added to scsi mid layer
2022                  */
2023                 fixup_botched_add(h, added[i]);
2024                 h->drv_req_rescan = 1;
2025         }
2026
2027 free_and_out:
2028         kfree(added);
2029         kfree(removed);
2030 }
2031
2032 /*
2033  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2034  * Assume's h->devlock is held.
2035  */
2036 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2037         int bus, int target, int lun)
2038 {
2039         int i;
2040         struct hpsa_scsi_dev_t *sd;
2041
2042         for (i = 0; i < h->ndevices; i++) {
2043                 sd = h->dev[i];
2044                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2045                         return sd;
2046         }
2047         return NULL;
2048 }
2049
2050 static int hpsa_slave_alloc(struct scsi_device *sdev)
2051 {
2052         struct hpsa_scsi_dev_t *sd = NULL;
2053         unsigned long flags;
2054         struct ctlr_info *h;
2055
2056         h = sdev_to_hba(sdev);
2057         spin_lock_irqsave(&h->devlock, flags);
2058         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2059                 struct scsi_target *starget;
2060                 struct sas_rphy *rphy;
2061
2062                 starget = scsi_target(sdev);
2063                 rphy = target_to_rphy(starget);
2064                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2065                 if (sd) {
2066                         sd->target = sdev_id(sdev);
2067                         sd->lun = sdev->lun;
2068                 }
2069         }
2070         if (!sd)
2071                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2072                                         sdev_id(sdev), sdev->lun);
2073
2074         if (sd && sd->expose_device) {
2075                 atomic_set(&sd->ioaccel_cmds_out, 0);
2076                 sdev->hostdata = sd;
2077         } else
2078                 sdev->hostdata = NULL;
2079         spin_unlock_irqrestore(&h->devlock, flags);
2080         return 0;
2081 }
2082
2083 /* configure scsi device based on internal per-device structure */
2084 static int hpsa_slave_configure(struct scsi_device *sdev)
2085 {
2086         struct hpsa_scsi_dev_t *sd;
2087         int queue_depth;
2088
2089         sd = sdev->hostdata;
2090         sdev->no_uld_attach = !sd || !sd->expose_device;
2091
2092         if (sd) {
2093                 if (sd->external)
2094                         queue_depth = EXTERNAL_QD;
2095                 else
2096                         queue_depth = sd->queue_depth != 0 ?
2097                                         sd->queue_depth : sdev->host->can_queue;
2098         } else
2099                 queue_depth = sdev->host->can_queue;
2100
2101         scsi_change_queue_depth(sdev, queue_depth);
2102
2103         return 0;
2104 }
2105
2106 static void hpsa_slave_destroy(struct scsi_device *sdev)
2107 {
2108         /* nothing to do. */
2109 }
2110
2111 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2112 {
2113         int i;
2114
2115         if (!h->ioaccel2_cmd_sg_list)
2116                 return;
2117         for (i = 0; i < h->nr_cmds; i++) {
2118                 kfree(h->ioaccel2_cmd_sg_list[i]);
2119                 h->ioaccel2_cmd_sg_list[i] = NULL;
2120         }
2121         kfree(h->ioaccel2_cmd_sg_list);
2122         h->ioaccel2_cmd_sg_list = NULL;
2123 }
2124
2125 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2126 {
2127         int i;
2128
2129         if (h->chainsize <= 0)
2130                 return 0;
2131
2132         h->ioaccel2_cmd_sg_list =
2133                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2134                                         GFP_KERNEL);
2135         if (!h->ioaccel2_cmd_sg_list)
2136                 return -ENOMEM;
2137         for (i = 0; i < h->nr_cmds; i++) {
2138                 h->ioaccel2_cmd_sg_list[i] =
2139                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2140                                         h->maxsgentries, GFP_KERNEL);
2141                 if (!h->ioaccel2_cmd_sg_list[i])
2142                         goto clean;
2143         }
2144         return 0;
2145
2146 clean:
2147         hpsa_free_ioaccel2_sg_chain_blocks(h);
2148         return -ENOMEM;
2149 }
2150
2151 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2152 {
2153         int i;
2154
2155         if (!h->cmd_sg_list)
2156                 return;
2157         for (i = 0; i < h->nr_cmds; i++) {
2158                 kfree(h->cmd_sg_list[i]);
2159                 h->cmd_sg_list[i] = NULL;
2160         }
2161         kfree(h->cmd_sg_list);
2162         h->cmd_sg_list = NULL;
2163 }
2164
2165 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2166 {
2167         int i;
2168
2169         if (h->chainsize <= 0)
2170                 return 0;
2171
2172         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2173                                 GFP_KERNEL);
2174         if (!h->cmd_sg_list)
2175                 return -ENOMEM;
2176
2177         for (i = 0; i < h->nr_cmds; i++) {
2178                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2179                                                 h->chainsize, GFP_KERNEL);
2180                 if (!h->cmd_sg_list[i])
2181                         goto clean;
2182
2183         }
2184         return 0;
2185
2186 clean:
2187         hpsa_free_sg_chain_blocks(h);
2188         return -ENOMEM;
2189 }
2190
2191 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2192         struct io_accel2_cmd *cp, struct CommandList *c)
2193 {
2194         struct ioaccel2_sg_element *chain_block;
2195         u64 temp64;
2196         u32 chain_size;
2197
2198         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2199         chain_size = le32_to_cpu(cp->sg[0].length);
2200         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2201                                 PCI_DMA_TODEVICE);
2202         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2203                 /* prevent subsequent unmapping */
2204                 cp->sg->address = 0;
2205                 return -1;
2206         }
2207         cp->sg->address = cpu_to_le64(temp64);
2208         return 0;
2209 }
2210
2211 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2212         struct io_accel2_cmd *cp)
2213 {
2214         struct ioaccel2_sg_element *chain_sg;
2215         u64 temp64;
2216         u32 chain_size;
2217
2218         chain_sg = cp->sg;
2219         temp64 = le64_to_cpu(chain_sg->address);
2220         chain_size = le32_to_cpu(cp->sg[0].length);
2221         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2222 }
2223
2224 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2225         struct CommandList *c)
2226 {
2227         struct SGDescriptor *chain_sg, *chain_block;
2228         u64 temp64;
2229         u32 chain_len;
2230
2231         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2232         chain_block = h->cmd_sg_list[c->cmdindex];
2233         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2234         chain_len = sizeof(*chain_sg) *
2235                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2236         chain_sg->Len = cpu_to_le32(chain_len);
2237         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2238                                 PCI_DMA_TODEVICE);
2239         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2240                 /* prevent subsequent unmapping */
2241                 chain_sg->Addr = cpu_to_le64(0);
2242                 return -1;
2243         }
2244         chain_sg->Addr = cpu_to_le64(temp64);
2245         return 0;
2246 }
2247
2248 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2249         struct CommandList *c)
2250 {
2251         struct SGDescriptor *chain_sg;
2252
2253         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2254                 return;
2255
2256         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2257         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2258                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2259 }
2260
2261
2262 /* Decode the various types of errors on ioaccel2 path.
2263  * Return 1 for any error that should generate a RAID path retry.
2264  * Return 0 for errors that don't require a RAID path retry.
2265  */
2266 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2267                                         struct CommandList *c,
2268                                         struct scsi_cmnd *cmd,
2269                                         struct io_accel2_cmd *c2,
2270                                         struct hpsa_scsi_dev_t *dev)
2271 {
2272         int data_len;
2273         int retry = 0;
2274         u32 ioaccel2_resid = 0;
2275
2276         switch (c2->error_data.serv_response) {
2277         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2278                 switch (c2->error_data.status) {
2279                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2280                         break;
2281                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2282                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2283                         if (c2->error_data.data_present !=
2284                                         IOACCEL2_SENSE_DATA_PRESENT) {
2285                                 memset(cmd->sense_buffer, 0,
2286                                         SCSI_SENSE_BUFFERSIZE);
2287                                 break;
2288                         }
2289                         /* copy the sense data */
2290                         data_len = c2->error_data.sense_data_len;
2291                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2292                                 data_len = SCSI_SENSE_BUFFERSIZE;
2293                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2294                                 data_len =
2295                                         sizeof(c2->error_data.sense_data_buff);
2296                         memcpy(cmd->sense_buffer,
2297                                 c2->error_data.sense_data_buff, data_len);
2298                         retry = 1;
2299                         break;
2300                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2301                         retry = 1;
2302                         break;
2303                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2304                         retry = 1;
2305                         break;
2306                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2307                         retry = 1;
2308                         break;
2309                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2310                         retry = 1;
2311                         break;
2312                 default:
2313                         retry = 1;
2314                         break;
2315                 }
2316                 break;
2317         case IOACCEL2_SERV_RESPONSE_FAILURE:
2318                 switch (c2->error_data.status) {
2319                 case IOACCEL2_STATUS_SR_IO_ERROR:
2320                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2321                 case IOACCEL2_STATUS_SR_OVERRUN:
2322                         retry = 1;
2323                         break;
2324                 case IOACCEL2_STATUS_SR_UNDERRUN:
2325                         cmd->result = (DID_OK << 16);           /* host byte */
2326                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2327                         ioaccel2_resid = get_unaligned_le32(
2328                                                 &c2->error_data.resid_cnt[0]);
2329                         scsi_set_resid(cmd, ioaccel2_resid);
2330                         break;
2331                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2332                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2333                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2334                         /*
2335                          * Did an HBA disk disappear? We will eventually
2336                          * get a state change event from the controller but
2337                          * in the meantime, we need to tell the OS that the
2338                          * HBA disk is no longer there and stop I/O
2339                          * from going down. This allows the potential re-insert
2340                          * of the disk to get the same device node.
2341                          */
2342                         if (dev->physical_device && dev->expose_device) {
2343                                 cmd->result = DID_NO_CONNECT << 16;
2344                                 dev->removed = 1;
2345                                 h->drv_req_rescan = 1;
2346                                 dev_warn(&h->pdev->dev,
2347                                         "%s: device is gone!\n", __func__);
2348                         } else
2349                                 /*
2350                                  * Retry by sending down the RAID path.
2351                                  * We will get an event from ctlr to
2352                                  * trigger rescan regardless.
2353                                  */
2354                                 retry = 1;
2355                         break;
2356                 default:
2357                         retry = 1;
2358                 }
2359                 break;
2360         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2361                 break;
2362         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2363                 break;
2364         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2365                 retry = 1;
2366                 break;
2367         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2368                 break;
2369         default:
2370                 retry = 1;
2371                 break;
2372         }
2373
2374         return retry;   /* retry on raid path? */
2375 }
2376
2377 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2378                 struct CommandList *c)
2379 {
2380         bool do_wake = false;
2381
2382         /*
2383          * Reset c->scsi_cmd here so that the reset handler will know
2384          * this command has completed.  Then, check to see if the handler is
2385          * waiting for this command, and, if so, wake it.
2386          */
2387         c->scsi_cmd = SCSI_CMD_IDLE;
2388         mb();   /* Declare command idle before checking for pending events. */
2389         if (c->reset_pending) {
2390                 unsigned long flags;
2391                 struct hpsa_scsi_dev_t *dev;
2392
2393                 /*
2394                  * There appears to be a reset pending; lock the lock and
2395                  * reconfirm.  If so, then decrement the count of outstanding
2396                  * commands and wake the reset command if this is the last one.
2397                  */
2398                 spin_lock_irqsave(&h->lock, flags);
2399                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2400                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2401                         do_wake = true;
2402                 c->reset_pending = NULL;
2403                 spin_unlock_irqrestore(&h->lock, flags);
2404         }
2405
2406         if (do_wake)
2407                 wake_up_all(&h->event_sync_wait_queue);
2408 }
2409
2410 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2411                                       struct CommandList *c)
2412 {
2413         hpsa_cmd_resolve_events(h, c);
2414         cmd_tagged_free(h, c);
2415 }
2416
2417 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2418                 struct CommandList *c, struct scsi_cmnd *cmd)
2419 {
2420         hpsa_cmd_resolve_and_free(h, c);
2421         if (cmd && cmd->scsi_done)
2422                 cmd->scsi_done(cmd);
2423 }
2424
2425 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2426 {
2427         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2428         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2429 }
2430
2431 static void process_ioaccel2_completion(struct ctlr_info *h,
2432                 struct CommandList *c, struct scsi_cmnd *cmd,
2433                 struct hpsa_scsi_dev_t *dev)
2434 {
2435         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2436
2437         /* check for good status */
2438         if (likely(c2->error_data.serv_response == 0 &&
2439                         c2->error_data.status == 0))
2440                 return hpsa_cmd_free_and_done(h, c, cmd);
2441
2442         /*
2443          * Any RAID offload error results in retry which will use
2444          * the normal I/O path so the controller can handle whatever's
2445          * wrong.
2446          */
2447         if (is_logical_device(dev) &&
2448                 c2->error_data.serv_response ==
2449                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2450                 if (c2->error_data.status ==
2451                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2452                         dev->offload_enabled = 0;
2453                         dev->offload_to_be_enabled = 0;
2454                 }
2455
2456                 return hpsa_retry_cmd(h, c);
2457         }
2458
2459         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2460                 return hpsa_retry_cmd(h, c);
2461
2462         return hpsa_cmd_free_and_done(h, c, cmd);
2463 }
2464
2465 /* Returns 0 on success, < 0 otherwise. */
2466 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2467                                         struct CommandList *cp)
2468 {
2469         u8 tmf_status = cp->err_info->ScsiStatus;
2470
2471         switch (tmf_status) {
2472         case CISS_TMF_COMPLETE:
2473                 /*
2474                  * CISS_TMF_COMPLETE never happens, instead,
2475                  * ei->CommandStatus == 0 for this case.
2476                  */
2477         case CISS_TMF_SUCCESS:
2478                 return 0;
2479         case CISS_TMF_INVALID_FRAME:
2480         case CISS_TMF_NOT_SUPPORTED:
2481         case CISS_TMF_FAILED:
2482         case CISS_TMF_WRONG_LUN:
2483         case CISS_TMF_OVERLAPPED_TAG:
2484                 break;
2485         default:
2486                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2487                                 tmf_status);
2488                 break;
2489         }
2490         return -tmf_status;
2491 }
2492
2493 static void complete_scsi_command(struct CommandList *cp)
2494 {
2495         struct scsi_cmnd *cmd;
2496         struct ctlr_info *h;
2497         struct ErrorInfo *ei;
2498         struct hpsa_scsi_dev_t *dev;
2499         struct io_accel2_cmd *c2;
2500
2501         u8 sense_key;
2502         u8 asc;      /* additional sense code */
2503         u8 ascq;     /* additional sense code qualifier */
2504         unsigned long sense_data_size;
2505
2506         ei = cp->err_info;
2507         cmd = cp->scsi_cmd;
2508         h = cp->h;
2509
2510         if (!cmd->device) {
2511                 cmd->result = DID_NO_CONNECT << 16;
2512                 return hpsa_cmd_free_and_done(h, cp, cmd);
2513         }
2514
2515         dev = cmd->device->hostdata;
2516         if (!dev) {
2517                 cmd->result = DID_NO_CONNECT << 16;
2518                 return hpsa_cmd_free_and_done(h, cp, cmd);
2519         }
2520         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2521
2522         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2523         if ((cp->cmd_type == CMD_SCSI) &&
2524                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2525                 hpsa_unmap_sg_chain_block(h, cp);
2526
2527         if ((cp->cmd_type == CMD_IOACCEL2) &&
2528                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2529                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2530
2531         cmd->result = (DID_OK << 16);           /* host byte */
2532         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2533
2534         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2535                 if (dev->physical_device && dev->expose_device &&
2536                         dev->removed) {
2537                         cmd->result = DID_NO_CONNECT << 16;
2538                         return hpsa_cmd_free_and_done(h, cp, cmd);
2539                 }
2540                 if (likely(cp->phys_disk != NULL))
2541                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2542         }
2543
2544         /*
2545          * We check for lockup status here as it may be set for
2546          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2547          * fail_all_oustanding_cmds()
2548          */
2549         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2550                 /* DID_NO_CONNECT will prevent a retry */
2551                 cmd->result = DID_NO_CONNECT << 16;
2552                 return hpsa_cmd_free_and_done(h, cp, cmd);
2553         }
2554
2555         if ((unlikely(hpsa_is_pending_event(cp))))
2556                 if (cp->reset_pending)
2557                         return hpsa_cmd_free_and_done(h, cp, cmd);
2558
2559         if (cp->cmd_type == CMD_IOACCEL2)
2560                 return process_ioaccel2_completion(h, cp, cmd, dev);
2561
2562         scsi_set_resid(cmd, ei->ResidualCnt);
2563         if (ei->CommandStatus == 0)
2564                 return hpsa_cmd_free_and_done(h, cp, cmd);
2565
2566         /* For I/O accelerator commands, copy over some fields to the normal
2567          * CISS header used below for error handling.
2568          */
2569         if (cp->cmd_type == CMD_IOACCEL1) {
2570                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2571                 cp->Header.SGList = scsi_sg_count(cmd);
2572                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2573                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2574                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2575                 cp->Header.tag = c->tag;
2576                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2577                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2578
2579                 /* Any RAID offload error results in retry which will use
2580                  * the normal I/O path so the controller can handle whatever's
2581                  * wrong.
2582                  */
2583                 if (is_logical_device(dev)) {
2584                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2585                                 dev->offload_enabled = 0;
2586                         return hpsa_retry_cmd(h, cp);
2587                 }
2588         }
2589
2590         /* an error has occurred */
2591         switch (ei->CommandStatus) {
2592
2593         case CMD_TARGET_STATUS:
2594                 cmd->result |= ei->ScsiStatus;
2595                 /* copy the sense data */
2596                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2597                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2598                 else
2599                         sense_data_size = sizeof(ei->SenseInfo);
2600                 if (ei->SenseLen < sense_data_size)
2601                         sense_data_size = ei->SenseLen;
2602                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2603                 if (ei->ScsiStatus)
2604                         decode_sense_data(ei->SenseInfo, sense_data_size,
2605                                 &sense_key, &asc, &ascq);
2606                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2607                         if (sense_key == ABORTED_COMMAND) {
2608                                 cmd->result |= DID_SOFT_ERROR << 16;
2609                                 break;
2610                         }
2611                         break;
2612                 }
2613                 /* Problem was not a check condition
2614                  * Pass it up to the upper layers...
2615                  */
2616                 if (ei->ScsiStatus) {
2617                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2618                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2619                                 "Returning result: 0x%x\n",
2620                                 cp, ei->ScsiStatus,
2621                                 sense_key, asc, ascq,
2622                                 cmd->result);
2623                 } else {  /* scsi status is zero??? How??? */
2624                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2625                                 "Returning no connection.\n", cp),
2626
2627                         /* Ordinarily, this case should never happen,
2628                          * but there is a bug in some released firmware
2629                          * revisions that allows it to happen if, for
2630                          * example, a 4100 backplane loses power and
2631                          * the tape drive is in it.  We assume that
2632                          * it's a fatal error of some kind because we
2633                          * can't show that it wasn't. We will make it
2634                          * look like selection timeout since that is
2635                          * the most common reason for this to occur,
2636                          * and it's severe enough.
2637                          */
2638
2639                         cmd->result = DID_NO_CONNECT << 16;
2640                 }
2641                 break;
2642
2643         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2644                 break;
2645         case CMD_DATA_OVERRUN:
2646                 dev_warn(&h->pdev->dev,
2647                         "CDB %16phN data overrun\n", cp->Request.CDB);
2648                 break;
2649         case CMD_INVALID: {
2650                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2651                 print_cmd(cp); */
2652                 /* We get CMD_INVALID if you address a non-existent device
2653                  * instead of a selection timeout (no response).  You will
2654                  * see this if you yank out a drive, then try to access it.
2655                  * This is kind of a shame because it means that any other
2656                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2657                  * missing target. */
2658                 cmd->result = DID_NO_CONNECT << 16;
2659         }
2660                 break;
2661         case CMD_PROTOCOL_ERR:
2662                 cmd->result = DID_ERROR << 16;
2663                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2664                                 cp->Request.CDB);
2665                 break;
2666         case CMD_HARDWARE_ERR:
2667                 cmd->result = DID_ERROR << 16;
2668                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2669                         cp->Request.CDB);
2670                 break;
2671         case CMD_CONNECTION_LOST:
2672                 cmd->result = DID_ERROR << 16;
2673                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2674                         cp->Request.CDB);
2675                 break;
2676         case CMD_ABORTED:
2677                 cmd->result = DID_ABORT << 16;
2678                 break;
2679         case CMD_ABORT_FAILED:
2680                 cmd->result = DID_ERROR << 16;
2681                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2682                         cp->Request.CDB);
2683                 break;
2684         case CMD_UNSOLICITED_ABORT:
2685                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2686                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2687                         cp->Request.CDB);
2688                 break;
2689         case CMD_TIMEOUT:
2690                 cmd->result = DID_TIME_OUT << 16;
2691                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2692                         cp->Request.CDB);
2693                 break;
2694         case CMD_UNABORTABLE:
2695                 cmd->result = DID_ERROR << 16;
2696                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2697                 break;
2698         case CMD_TMF_STATUS:
2699                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2700                         cmd->result = DID_ERROR << 16;
2701                 break;
2702         case CMD_IOACCEL_DISABLED:
2703                 /* This only handles the direct pass-through case since RAID
2704                  * offload is handled above.  Just attempt a retry.
2705                  */
2706                 cmd->result = DID_SOFT_ERROR << 16;
2707                 dev_warn(&h->pdev->dev,
2708                                 "cp %p had HP SSD Smart Path error\n", cp);
2709                 break;
2710         default:
2711                 cmd->result = DID_ERROR << 16;
2712                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2713                                 cp, ei->CommandStatus);
2714         }
2715
2716         return hpsa_cmd_free_and_done(h, cp, cmd);
2717 }
2718
2719 static void hpsa_pci_unmap(struct pci_dev *pdev,
2720         struct CommandList *c, int sg_used, int data_direction)
2721 {
2722         int i;
2723
2724         for (i = 0; i < sg_used; i++)
2725                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2726                                 le32_to_cpu(c->SG[i].Len),
2727                                 data_direction);
2728 }
2729
2730 static int hpsa_map_one(struct pci_dev *pdev,
2731                 struct CommandList *cp,
2732                 unsigned char *buf,
2733                 size_t buflen,
2734                 int data_direction)
2735 {
2736         u64 addr64;
2737
2738         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2739                 cp->Header.SGList = 0;
2740                 cp->Header.SGTotal = cpu_to_le16(0);
2741                 return 0;
2742         }
2743
2744         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2745         if (dma_mapping_error(&pdev->dev, addr64)) {
2746                 /* Prevent subsequent unmap of something never mapped */
2747                 cp->Header.SGList = 0;
2748                 cp->Header.SGTotal = cpu_to_le16(0);
2749                 return -1;
2750         }
2751         cp->SG[0].Addr = cpu_to_le64(addr64);
2752         cp->SG[0].Len = cpu_to_le32(buflen);
2753         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2754         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2755         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2756         return 0;
2757 }
2758
2759 #define NO_TIMEOUT ((unsigned long) -1)
2760 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2761 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2762         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2763 {
2764         DECLARE_COMPLETION_ONSTACK(wait);
2765
2766         c->waiting = &wait;
2767         __enqueue_cmd_and_start_io(h, c, reply_queue);
2768         if (timeout_msecs == NO_TIMEOUT) {
2769                 /* TODO: get rid of this no-timeout thing */
2770                 wait_for_completion_io(&wait);
2771                 return IO_OK;
2772         }
2773         if (!wait_for_completion_io_timeout(&wait,
2774                                         msecs_to_jiffies(timeout_msecs))) {
2775                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2776                 return -ETIMEDOUT;
2777         }
2778         return IO_OK;
2779 }
2780
2781 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2782                                    int reply_queue, unsigned long timeout_msecs)
2783 {
2784         if (unlikely(lockup_detected(h))) {
2785                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2786                 return IO_OK;
2787         }
2788         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2789 }
2790
2791 static u32 lockup_detected(struct ctlr_info *h)
2792 {
2793         int cpu;
2794         u32 rc, *lockup_detected;
2795
2796         cpu = get_cpu();
2797         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2798         rc = *lockup_detected;
2799         put_cpu();
2800         return rc;
2801 }
2802
2803 #define MAX_DRIVER_CMD_RETRIES 25
2804 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2805         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2806 {
2807         int backoff_time = 10, retry_count = 0;
2808         int rc;
2809
2810         do {
2811                 memset(c->err_info, 0, sizeof(*c->err_info));
2812                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2813                                                   timeout_msecs);
2814                 if (rc)
2815                         break;
2816                 retry_count++;
2817                 if (retry_count > 3) {
2818                         msleep(backoff_time);
2819                         if (backoff_time < 1000)
2820                                 backoff_time *= 2;
2821                 }
2822         } while ((check_for_unit_attention(h, c) ||
2823                         check_for_busy(h, c)) &&
2824                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2825         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2826         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2827                 rc = -EIO;
2828         return rc;
2829 }
2830
2831 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2832                                 struct CommandList *c)
2833 {
2834         const u8 *cdb = c->Request.CDB;
2835         const u8 *lun = c->Header.LUN.LunAddrBytes;
2836
2837         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2838                  txt, lun, cdb);
2839 }
2840
2841 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2842                         struct CommandList *cp)
2843 {
2844         const struct ErrorInfo *ei = cp->err_info;
2845         struct device *d = &cp->h->pdev->dev;
2846         u8 sense_key, asc, ascq;
2847         int sense_len;
2848
2849         switch (ei->CommandStatus) {
2850         case CMD_TARGET_STATUS:
2851                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2852                         sense_len = sizeof(ei->SenseInfo);
2853                 else
2854                         sense_len = ei->SenseLen;
2855                 decode_sense_data(ei->SenseInfo, sense_len,
2856                                         &sense_key, &asc, &ascq);
2857                 hpsa_print_cmd(h, "SCSI status", cp);
2858                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2859                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2860                                 sense_key, asc, ascq);
2861                 else
2862                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2863                 if (ei->ScsiStatus == 0)
2864                         dev_warn(d, "SCSI status is abnormally zero.  "
2865                         "(probably indicates selection timeout "
2866                         "reported incorrectly due to a known "
2867                         "firmware bug, circa July, 2001.)\n");
2868                 break;
2869         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2870                 break;
2871         case CMD_DATA_OVERRUN:
2872                 hpsa_print_cmd(h, "overrun condition", cp);
2873                 break;
2874         case CMD_INVALID: {
2875                 /* controller unfortunately reports SCSI passthru's
2876                  * to non-existent targets as invalid commands.
2877                  */
2878                 hpsa_print_cmd(h, "invalid command", cp);
2879                 dev_warn(d, "probably means device no longer present\n");
2880                 }
2881                 break;
2882         case CMD_PROTOCOL_ERR:
2883                 hpsa_print_cmd(h, "protocol error", cp);
2884                 break;
2885         case CMD_HARDWARE_ERR:
2886                 hpsa_print_cmd(h, "hardware error", cp);
2887                 break;
2888         case CMD_CONNECTION_LOST:
2889                 hpsa_print_cmd(h, "connection lost", cp);
2890                 break;
2891         case CMD_ABORTED:
2892                 hpsa_print_cmd(h, "aborted", cp);
2893                 break;
2894         case CMD_ABORT_FAILED:
2895                 hpsa_print_cmd(h, "abort failed", cp);
2896                 break;
2897         case CMD_UNSOLICITED_ABORT:
2898                 hpsa_print_cmd(h, "unsolicited abort", cp);
2899                 break;
2900         case CMD_TIMEOUT:
2901                 hpsa_print_cmd(h, "timed out", cp);
2902                 break;
2903         case CMD_UNABORTABLE:
2904                 hpsa_print_cmd(h, "unabortable", cp);
2905                 break;
2906         case CMD_CTLR_LOCKUP:
2907                 hpsa_print_cmd(h, "controller lockup detected", cp);
2908                 break;
2909         default:
2910                 hpsa_print_cmd(h, "unknown status", cp);
2911                 dev_warn(d, "Unknown command status %x\n",
2912                                 ei->CommandStatus);
2913         }
2914 }
2915
2916 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2917                         u16 page, unsigned char *buf,
2918                         unsigned char bufsize)
2919 {
2920         int rc = IO_OK;
2921         struct CommandList *c;
2922         struct ErrorInfo *ei;
2923
2924         c = cmd_alloc(h);
2925
2926         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2927                         page, scsi3addr, TYPE_CMD)) {
2928                 rc = -1;
2929                 goto out;
2930         }
2931         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2932                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2933         if (rc)
2934                 goto out;
2935         ei = c->err_info;
2936         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2937                 hpsa_scsi_interpret_error(h, c);
2938                 rc = -1;
2939         }
2940 out:
2941         cmd_free(h, c);
2942         return rc;
2943 }
2944
2945 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2946         u8 reset_type, int reply_queue)
2947 {
2948         int rc = IO_OK;
2949         struct CommandList *c;
2950         struct ErrorInfo *ei;
2951
2952         c = cmd_alloc(h);
2953
2954
2955         /* fill_cmd can't fail here, no data buffer to map. */
2956         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2957                         scsi3addr, TYPE_MSG);
2958         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2959         if (rc) {
2960                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2961                 goto out;
2962         }
2963         /* no unmap needed here because no data xfer. */
2964
2965         ei = c->err_info;
2966         if (ei->CommandStatus != 0) {
2967                 hpsa_scsi_interpret_error(h, c);
2968                 rc = -1;
2969         }
2970 out:
2971         cmd_free(h, c);
2972         return rc;
2973 }
2974
2975 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2976                                struct hpsa_scsi_dev_t *dev,
2977                                unsigned char *scsi3addr)
2978 {
2979         int i;
2980         bool match = false;
2981         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2982         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2983
2984         if (hpsa_is_cmd_idle(c))
2985                 return false;
2986
2987         switch (c->cmd_type) {
2988         case CMD_SCSI:
2989         case CMD_IOCTL_PEND:
2990                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2991                                 sizeof(c->Header.LUN.LunAddrBytes));
2992                 break;
2993
2994         case CMD_IOACCEL1:
2995         case CMD_IOACCEL2:
2996                 if (c->phys_disk == dev) {
2997                         /* HBA mode match */
2998                         match = true;
2999                 } else {
3000                         /* Possible RAID mode -- check each phys dev. */
3001                         /* FIXME:  Do we need to take out a lock here?  If
3002                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3003                          * instead. */
3004                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3005                                 /* FIXME: an alternate test might be
3006                                  *
3007                                  * match = dev->phys_disk[i]->ioaccel_handle
3008                                  *              == c2->scsi_nexus;      */
3009                                 match = dev->phys_disk[i] == c->phys_disk;
3010                         }
3011                 }
3012                 break;
3013
3014         case IOACCEL2_TMF:
3015                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3016                         match = dev->phys_disk[i]->ioaccel_handle ==
3017                                         le32_to_cpu(ac->it_nexus);
3018                 }
3019                 break;
3020
3021         case 0:         /* The command is in the middle of being initialized. */
3022                 match = false;
3023                 break;
3024
3025         default:
3026                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3027                         c->cmd_type);
3028                 BUG();
3029         }
3030
3031         return match;
3032 }
3033
3034 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3035         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3036 {
3037         int i;
3038         int rc = 0;
3039
3040         /* We can really only handle one reset at a time */
3041         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3042                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3043                 return -EINTR;
3044         }
3045
3046         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3047
3048         for (i = 0; i < h->nr_cmds; i++) {
3049                 struct CommandList *c = h->cmd_pool + i;
3050                 int refcount = atomic_inc_return(&c->refcount);
3051
3052                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3053                         unsigned long flags;
3054
3055                         /*
3056                          * Mark the target command as having a reset pending,
3057                          * then lock a lock so that the command cannot complete
3058                          * while we're considering it.  If the command is not
3059                          * idle then count it; otherwise revoke the event.
3060                          */
3061                         c->reset_pending = dev;
3062                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3063                         if (!hpsa_is_cmd_idle(c))
3064                                 atomic_inc(&dev->reset_cmds_out);
3065                         else
3066                                 c->reset_pending = NULL;
3067                         spin_unlock_irqrestore(&h->lock, flags);
3068                 }
3069
3070                 cmd_free(h, c);
3071         }
3072
3073         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3074         if (!rc)
3075                 wait_event(h->event_sync_wait_queue,
3076                         atomic_read(&dev->reset_cmds_out) == 0 ||
3077                         lockup_detected(h));
3078
3079         if (unlikely(lockup_detected(h))) {
3080                 dev_warn(&h->pdev->dev,
3081                          "Controller lockup detected during reset wait\n");
3082                 rc = -ENODEV;
3083         }
3084
3085         if (unlikely(rc))
3086                 atomic_set(&dev->reset_cmds_out, 0);
3087         else
3088                 rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3089
3090         mutex_unlock(&h->reset_mutex);
3091         return rc;
3092 }
3093
3094 static void hpsa_get_raid_level(struct ctlr_info *h,
3095         unsigned char *scsi3addr, unsigned char *raid_level)
3096 {
3097         int rc;
3098         unsigned char *buf;
3099
3100         *raid_level = RAID_UNKNOWN;
3101         buf = kzalloc(64, GFP_KERNEL);
3102         if (!buf)
3103                 return;
3104
3105         if (!hpsa_vpd_page_supported(h, scsi3addr,
3106                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3107                 goto exit;
3108
3109         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3110                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3111
3112         if (rc == 0)
3113                 *raid_level = buf[8];
3114         if (*raid_level > RAID_UNKNOWN)
3115                 *raid_level = RAID_UNKNOWN;
3116 exit:
3117         kfree(buf);
3118         return;
3119 }
3120
3121 #define HPSA_MAP_DEBUG
3122 #ifdef HPSA_MAP_DEBUG
3123 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3124                                 struct raid_map_data *map_buff)
3125 {
3126         struct raid_map_disk_data *dd = &map_buff->data[0];
3127         int map, row, col;
3128         u16 map_cnt, row_cnt, disks_per_row;
3129
3130         if (rc != 0)
3131                 return;
3132
3133         /* Show details only if debugging has been activated. */
3134         if (h->raid_offload_debug < 2)
3135                 return;
3136
3137         dev_info(&h->pdev->dev, "structure_size = %u\n",
3138                                 le32_to_cpu(map_buff->structure_size));
3139         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3140                         le32_to_cpu(map_buff->volume_blk_size));
3141         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3142                         le64_to_cpu(map_buff->volume_blk_cnt));
3143         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3144                         map_buff->phys_blk_shift);
3145         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3146                         map_buff->parity_rotation_shift);
3147         dev_info(&h->pdev->dev, "strip_size = %u\n",
3148                         le16_to_cpu(map_buff->strip_size));
3149         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3150                         le64_to_cpu(map_buff->disk_starting_blk));
3151         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3152                         le64_to_cpu(map_buff->disk_blk_cnt));
3153         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3154                         le16_to_cpu(map_buff->data_disks_per_row));
3155         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3156                         le16_to_cpu(map_buff->metadata_disks_per_row));
3157         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3158                         le16_to_cpu(map_buff->row_cnt));
3159         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3160                         le16_to_cpu(map_buff->layout_map_count));
3161         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3162                         le16_to_cpu(map_buff->flags));
3163         dev_info(&h->pdev->dev, "encryption = %s\n",
3164                         le16_to_cpu(map_buff->flags) &
3165                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3166         dev_info(&h->pdev->dev, "dekindex = %u\n",
3167                         le16_to_cpu(map_buff->dekindex));
3168         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3169         for (map = 0; map < map_cnt; map++) {
3170                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3171                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3172                 for (row = 0; row < row_cnt; row++) {
3173                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3174                         disks_per_row =
3175                                 le16_to_cpu(map_buff->data_disks_per_row);
3176                         for (col = 0; col < disks_per_row; col++, dd++)
3177                                 dev_info(&h->pdev->dev,
3178                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3179                                         col, dd->ioaccel_handle,
3180                                         dd->xor_mult[0], dd->xor_mult[1]);
3181                         disks_per_row =
3182                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3183                         for (col = 0; col < disks_per_row; col++, dd++)
3184                                 dev_info(&h->pdev->dev,
3185                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3186                                         col, dd->ioaccel_handle,
3187                                         dd->xor_mult[0], dd->xor_mult[1]);
3188                 }
3189         }
3190 }
3191 #else
3192 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3193                         __attribute__((unused)) int rc,
3194                         __attribute__((unused)) struct raid_map_data *map_buff)
3195 {
3196 }
3197 #endif
3198
3199 static int hpsa_get_raid_map(struct ctlr_info *h,
3200         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3201 {
3202         int rc = 0;
3203         struct CommandList *c;
3204         struct ErrorInfo *ei;
3205
3206         c = cmd_alloc(h);
3207
3208         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3209                         sizeof(this_device->raid_map), 0,
3210                         scsi3addr, TYPE_CMD)) {
3211                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3212                 cmd_free(h, c);
3213                 return -1;
3214         }
3215         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3216                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3217         if (rc)
3218                 goto out;
3219         ei = c->err_info;
3220         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3221                 hpsa_scsi_interpret_error(h, c);
3222                 rc = -1;
3223                 goto out;
3224         }
3225         cmd_free(h, c);
3226
3227         /* @todo in the future, dynamically allocate RAID map memory */
3228         if (le32_to_cpu(this_device->raid_map.structure_size) >
3229                                 sizeof(this_device->raid_map)) {
3230                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3231                 rc = -1;
3232         }
3233         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3234         return rc;
3235 out:
3236         cmd_free(h, c);
3237         return rc;
3238 }
3239
3240 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3241                 unsigned char scsi3addr[], u16 bmic_device_index,
3242                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3243 {
3244         int rc = IO_OK;
3245         struct CommandList *c;
3246         struct ErrorInfo *ei;
3247
3248         c = cmd_alloc(h);
3249
3250         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3251                 0, RAID_CTLR_LUNID, TYPE_CMD);
3252         if (rc)
3253                 goto out;
3254
3255         c->Request.CDB[2] = bmic_device_index & 0xff;
3256         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3257
3258         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3259                                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3260         if (rc)
3261                 goto out;
3262         ei = c->err_info;
3263         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3264                 hpsa_scsi_interpret_error(h, c);
3265                 rc = -1;
3266         }
3267 out:
3268         cmd_free(h, c);
3269         return rc;
3270 }
3271
3272 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3273         struct bmic_identify_controller *buf, size_t bufsize)
3274 {
3275         int rc = IO_OK;
3276         struct CommandList *c;
3277         struct ErrorInfo *ei;
3278
3279         c = cmd_alloc(h);
3280
3281         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3282                 0, RAID_CTLR_LUNID, TYPE_CMD);
3283         if (rc)
3284                 goto out;
3285
3286         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3287                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3288         if (rc)
3289                 goto out;
3290         ei = c->err_info;
3291         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3292                 hpsa_scsi_interpret_error(h, c);
3293                 rc = -1;
3294         }
3295 out:
3296         cmd_free(h, c);
3297         return rc;
3298 }
3299
3300 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3301                 unsigned char scsi3addr[], u16 bmic_device_index,
3302                 struct bmic_identify_physical_device *buf, size_t bufsize)
3303 {
3304         int rc = IO_OK;
3305         struct CommandList *c;
3306         struct ErrorInfo *ei;
3307
3308         c = cmd_alloc(h);
3309         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3310                 0, RAID_CTLR_LUNID, TYPE_CMD);
3311         if (rc)
3312                 goto out;
3313
3314         c->Request.CDB[2] = bmic_device_index & 0xff;
3315         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3316
3317         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3318                                                 DEFAULT_TIMEOUT);
3319         ei = c->err_info;
3320         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3321                 hpsa_scsi_interpret_error(h, c);
3322                 rc = -1;
3323         }
3324 out:
3325         cmd_free(h, c);
3326
3327         return rc;
3328 }
3329
3330 /*
3331  * get enclosure information
3332  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3333  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3334  * Uses id_physical_device to determine the box_index.
3335  */
3336 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3337                         unsigned char *scsi3addr,
3338                         struct ReportExtendedLUNdata *rlep, int rle_index,
3339                         struct hpsa_scsi_dev_t *encl_dev)
3340 {
3341         int rc = -1;
3342         struct CommandList *c = NULL;
3343         struct ErrorInfo *ei = NULL;
3344         struct bmic_sense_storage_box_params *bssbp = NULL;
3345         struct bmic_identify_physical_device *id_phys = NULL;
3346         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3347         u16 bmic_device_index = 0;
3348
3349         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3350
3351         if (encl_dev->target == -1 || encl_dev->lun == -1) {
3352                 rc = IO_OK;
3353                 goto out;
3354         }
3355
3356         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3357                 rc = IO_OK;
3358                 goto out;
3359         }
3360
3361         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3362         if (!bssbp)
3363                 goto out;
3364
3365         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3366         if (!id_phys)
3367                 goto out;
3368
3369         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3370                                                 id_phys, sizeof(*id_phys));
3371         if (rc) {
3372                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3373                         __func__, encl_dev->external, bmic_device_index);
3374                 goto out;
3375         }
3376
3377         c = cmd_alloc(h);
3378
3379         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3380                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3381
3382         if (rc)
3383                 goto out;
3384
3385         if (id_phys->phys_connector[1] == 'E')
3386                 c->Request.CDB[5] = id_phys->box_index;
3387         else
3388                 c->Request.CDB[5] = 0;
3389
3390         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3391                                                 DEFAULT_TIMEOUT);
3392         if (rc)
3393                 goto out;
3394
3395         ei = c->err_info;
3396         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3397                 rc = -1;
3398                 goto out;
3399         }
3400
3401         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3402         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3403                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3404
3405         rc = IO_OK;
3406 out:
3407         kfree(bssbp);
3408         kfree(id_phys);
3409
3410         if (c)
3411                 cmd_free(h, c);
3412
3413         if (rc != IO_OK)
3414                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3415                         "Error, could not get enclosure information\n");
3416 }
3417
3418 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3419                                                 unsigned char *scsi3addr)
3420 {
3421         struct ReportExtendedLUNdata *physdev;
3422         u32 nphysicals;
3423         u64 sa = 0;
3424         int i;
3425
3426         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3427         if (!physdev)
3428                 return 0;
3429
3430         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3431                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3432                 kfree(physdev);
3433                 return 0;
3434         }
3435         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3436
3437         for (i = 0; i < nphysicals; i++)
3438                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3439                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3440                         break;
3441                 }
3442
3443         kfree(physdev);
3444
3445         return sa;
3446 }
3447
3448 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3449                                         struct hpsa_scsi_dev_t *dev)
3450 {
3451         int rc;
3452         u64 sa = 0;
3453
3454         if (is_hba_lunid(scsi3addr)) {
3455                 struct bmic_sense_subsystem_info *ssi;
3456
3457                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3458                 if (!ssi)
3459                         return;
3460
3461                 rc = hpsa_bmic_sense_subsystem_information(h,
3462                                         scsi3addr, 0, ssi, sizeof(*ssi));
3463                 if (rc == 0) {
3464                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3465                         h->sas_address = sa;
3466                 }
3467
3468                 kfree(ssi);
3469         } else
3470                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3471
3472         dev->sas_address = sa;
3473 }
3474
3475 /* Get a device id from inquiry page 0x83 */
3476 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3477         unsigned char scsi3addr[], u8 page)
3478 {
3479         int rc;
3480         int i;
3481         int pages;
3482         unsigned char *buf, bufsize;
3483
3484         buf = kzalloc(256, GFP_KERNEL);
3485         if (!buf)
3486                 return false;
3487
3488         /* Get the size of the page list first */
3489         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3490                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3491                                 buf, HPSA_VPD_HEADER_SZ);
3492         if (rc != 0)
3493                 goto exit_unsupported;
3494         pages = buf[3];
3495         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3496                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3497         else
3498                 bufsize = 255;
3499
3500         /* Get the whole VPD page list */
3501         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3502                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3503                                 buf, bufsize);
3504         if (rc != 0)
3505                 goto exit_unsupported;
3506
3507         pages = buf[3];
3508         for (i = 1; i <= pages; i++)
3509                 if (buf[3 + i] == page)
3510                         goto exit_supported;
3511 exit_unsupported:
3512         kfree(buf);
3513         return false;
3514 exit_supported:
3515         kfree(buf);
3516         return true;
3517 }
3518
3519 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3520         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3521 {
3522         int rc;
3523         unsigned char *buf;
3524         u8 ioaccel_status;
3525
3526         this_device->offload_config = 0;
3527         this_device->offload_enabled = 0;
3528         this_device->offload_to_be_enabled = 0;
3529
3530         buf = kzalloc(64, GFP_KERNEL);
3531         if (!buf)
3532                 return;
3533         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3534                 goto out;
3535         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3536                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3537         if (rc != 0)
3538                 goto out;
3539
3540 #define IOACCEL_STATUS_BYTE 4
3541 #define OFFLOAD_CONFIGURED_BIT 0x01
3542 #define OFFLOAD_ENABLED_BIT 0x02
3543         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3544         this_device->offload_config =
3545                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3546         if (this_device->offload_config) {
3547                 this_device->offload_enabled =
3548                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3549                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3550                         this_device->offload_enabled = 0;
3551         }
3552         this_device->offload_to_be_enabled = this_device->offload_enabled;
3553 out:
3554         kfree(buf);
3555         return;
3556 }
3557
3558 /* Get the device id from inquiry page 0x83 */
3559 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3560         unsigned char *device_id, int index, int buflen)
3561 {
3562         int rc;
3563         unsigned char *buf;
3564
3565         /* Does controller have VPD for device id? */
3566         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3567                 return 1; /* not supported */
3568
3569         buf = kzalloc(64, GFP_KERNEL);
3570         if (!buf)
3571                 return -ENOMEM;
3572
3573         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3574                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3575         if (rc == 0) {
3576                 if (buflen > 16)
3577                         buflen = 16;
3578                 memcpy(device_id, &buf[8], buflen);
3579         }
3580
3581         kfree(buf);
3582
3583         return rc; /*0 - got id,  otherwise, didn't */
3584 }
3585
3586 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3587                 void *buf, int bufsize,
3588                 int extended_response)
3589 {
3590         int rc = IO_OK;
3591         struct CommandList *c;
3592         unsigned char scsi3addr[8];
3593         struct ErrorInfo *ei;
3594
3595         c = cmd_alloc(h);
3596
3597         /* address the controller */
3598         memset(scsi3addr, 0, sizeof(scsi3addr));
3599         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3600                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3601                 rc = -EAGAIN;
3602                 goto out;
3603         }
3604         if (extended_response)
3605                 c->Request.CDB[1] = extended_response;
3606         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3607                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3608         if (rc)
3609                 goto out;
3610         ei = c->err_info;
3611         if (ei->CommandStatus != 0 &&
3612             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3613                 hpsa_scsi_interpret_error(h, c);
3614                 rc = -EIO;
3615         } else {
3616                 struct ReportLUNdata *rld = buf;
3617
3618                 if (rld->extended_response_flag != extended_response) {
3619                         if (!h->legacy_board) {
3620                                 dev_err(&h->pdev->dev,
3621                                         "report luns requested format %u, got %u\n",
3622                                         extended_response,
3623                                         rld->extended_response_flag);
3624                                 rc = -EINVAL;
3625                         } else
3626                                 rc = -EOPNOTSUPP;
3627                 }
3628         }
3629 out:
3630         cmd_free(h, c);
3631         return rc;
3632 }
3633
3634 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3635                 struct ReportExtendedLUNdata *buf, int bufsize)
3636 {
3637         int rc;
3638         struct ReportLUNdata *lbuf;
3639
3640         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3641                                       HPSA_REPORT_PHYS_EXTENDED);
3642         if (!rc || rc != -EOPNOTSUPP)
3643                 return rc;
3644
3645         /* REPORT PHYS EXTENDED is not supported */
3646         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3647         if (!lbuf)
3648                 return -ENOMEM;
3649
3650         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3651         if (!rc) {
3652                 int i;
3653                 u32 nphys;
3654
3655                 /* Copy ReportLUNdata header */
3656                 memcpy(buf, lbuf, 8);
3657                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3658                 for (i = 0; i < nphys; i++)
3659                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3660         }
3661         kfree(lbuf);
3662         return rc;
3663 }
3664
3665 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3666                 struct ReportLUNdata *buf, int bufsize)
3667 {
3668         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3669 }
3670
3671 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3672         int bus, int target, int lun)
3673 {
3674         device->bus = bus;
3675         device->target = target;
3676         device->lun = lun;
3677 }
3678
3679 /* Use VPD inquiry to get details of volume status */
3680 static int hpsa_get_volume_status(struct ctlr_info *h,
3681                                         unsigned char scsi3addr[])
3682 {
3683         int rc;
3684         int status;
3685         int size;
3686         unsigned char *buf;
3687
3688         buf = kzalloc(64, GFP_KERNEL);
3689         if (!buf)
3690                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3691
3692         /* Does controller have VPD for logical volume status? */
3693         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3694                 goto exit_failed;
3695
3696         /* Get the size of the VPD return buffer */
3697         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3698                                         buf, HPSA_VPD_HEADER_SZ);
3699         if (rc != 0)
3700                 goto exit_failed;
3701         size = buf[3];
3702
3703         /* Now get the whole VPD buffer */
3704         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3705                                         buf, size + HPSA_VPD_HEADER_SZ);
3706         if (rc != 0)
3707                 goto exit_failed;
3708         status = buf[4]; /* status byte */
3709
3710         kfree(buf);
3711         return status;
3712 exit_failed:
3713         kfree(buf);
3714         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3715 }
3716
3717 /* Determine offline status of a volume.
3718  * Return either:
3719  *  0 (not offline)
3720  *  0xff (offline for unknown reasons)
3721  *  # (integer code indicating one of several NOT READY states
3722  *     describing why a volume is to be kept offline)
3723  */
3724 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3725                                         unsigned char scsi3addr[])
3726 {
3727         struct CommandList *c;
3728         unsigned char *sense;
3729         u8 sense_key, asc, ascq;
3730         int sense_len;
3731         int rc, ldstat = 0;
3732         u16 cmd_status;
3733         u8 scsi_status;
3734 #define ASC_LUN_NOT_READY 0x04
3735 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3736 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3737
3738         c = cmd_alloc(h);
3739
3740         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3741         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3742                                         DEFAULT_TIMEOUT);
3743         if (rc) {
3744                 cmd_free(h, c);
3745                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3746         }
3747         sense = c->err_info->SenseInfo;
3748         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3749                 sense_len = sizeof(c->err_info->SenseInfo);
3750         else
3751                 sense_len = c->err_info->SenseLen;
3752         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3753         cmd_status = c->err_info->CommandStatus;
3754         scsi_status = c->err_info->ScsiStatus;
3755         cmd_free(h, c);
3756
3757         /* Determine the reason for not ready state */
3758         ldstat = hpsa_get_volume_status(h, scsi3addr);
3759
3760         /* Keep volume offline in certain cases: */
3761         switch (ldstat) {
3762         case HPSA_LV_FAILED:
3763         case HPSA_LV_UNDERGOING_ERASE:
3764         case HPSA_LV_NOT_AVAILABLE:
3765         case HPSA_LV_UNDERGOING_RPI:
3766         case HPSA_LV_PENDING_RPI:
3767         case HPSA_LV_ENCRYPTED_NO_KEY:
3768         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3769         case HPSA_LV_UNDERGOING_ENCRYPTION:
3770         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3771         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3772                 return ldstat;
3773         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3774                 /* If VPD status page isn't available,
3775                  * use ASC/ASCQ to determine state
3776                  */
3777                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3778                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3779                         return ldstat;
3780                 break;
3781         default:
3782                 break;
3783         }
3784         return HPSA_LV_OK;
3785 }
3786
3787 static int hpsa_update_device_info(struct ctlr_info *h,
3788         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3789         unsigned char *is_OBDR_device)
3790 {
3791
3792 #define OBDR_SIG_OFFSET 43
3793 #define OBDR_TAPE_SIG "$DR-10"
3794 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3795 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3796
3797         unsigned char *inq_buff;
3798         unsigned char *obdr_sig;
3799         int rc = 0;
3800
3801         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3802         if (!inq_buff) {
3803                 rc = -ENOMEM;
3804                 goto bail_out;
3805         }
3806
3807         /* Do an inquiry to the device to see what it is. */
3808         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3809                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3810                 dev_err(&h->pdev->dev,
3811                         "%s: inquiry failed, device will be skipped.\n",
3812                         __func__);
3813                 rc = HPSA_INQUIRY_FAILED;
3814                 goto bail_out;
3815         }
3816
3817         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3818         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3819
3820         this_device->devtype = (inq_buff[0] & 0x1f);
3821         memcpy(this_device->scsi3addr, scsi3addr, 8);
3822         memcpy(this_device->vendor, &inq_buff[8],
3823                 sizeof(this_device->vendor));
3824         memcpy(this_device->model, &inq_buff[16],
3825                 sizeof(this_device->model));
3826         this_device->rev = inq_buff[2];
3827         memset(this_device->device_id, 0,
3828                 sizeof(this_device->device_id));
3829         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3830                 sizeof(this_device->device_id)) < 0)
3831                 dev_err(&h->pdev->dev,
3832                         "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3833                         h->ctlr, __func__,
3834                         h->scsi_host->host_no,
3835                         this_device->target, this_device->lun,
3836                         scsi_device_type(this_device->devtype),
3837                         this_device->model);
3838
3839         if ((this_device->devtype == TYPE_DISK ||
3840                 this_device->devtype == TYPE_ZBC) &&
3841                 is_logical_dev_addr_mode(scsi3addr)) {
3842                 unsigned char volume_offline;
3843
3844                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3845                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3846                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3847                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3848                 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3849                     h->legacy_board) {
3850                         /*
3851                          * Legacy boards might not support volume status
3852                          */
3853                         dev_info(&h->pdev->dev,
3854                                  "C0:T%d:L%d Volume status not available, assuming online.\n",
3855                                  this_device->target, this_device->lun);
3856                         volume_offline = 0;
3857                 }
3858                 this_device->volume_offline = volume_offline;
3859                 if (volume_offline == HPSA_LV_FAILED) {
3860                         rc = HPSA_LV_FAILED;
3861                         dev_err(&h->pdev->dev,
3862                                 "%s: LV failed, device will be skipped.\n",
3863                                 __func__);
3864                         goto bail_out;
3865                 }
3866         } else {
3867                 this_device->raid_level = RAID_UNKNOWN;
3868                 this_device->offload_config = 0;
3869                 this_device->offload_enabled = 0;
3870                 this_device->offload_to_be_enabled = 0;
3871                 this_device->hba_ioaccel_enabled = 0;
3872                 this_device->volume_offline = 0;
3873                 this_device->queue_depth = h->nr_cmds;
3874         }
3875
3876         if (this_device->external)
3877                 this_device->queue_depth = EXTERNAL_QD;
3878
3879         if (is_OBDR_device) {
3880                 /* See if this is a One-Button-Disaster-Recovery device
3881                  * by looking for "$DR-10" at offset 43 in inquiry data.
3882                  */
3883                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3884                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3885                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3886                                                 OBDR_SIG_LEN) == 0);
3887         }
3888         kfree(inq_buff);
3889         return 0;
3890
3891 bail_out:
3892         kfree(inq_buff);
3893         return rc;
3894 }
3895
3896 /*
3897  * Helper function to assign bus, target, lun mapping of devices.
3898  * Logical drive target and lun are assigned at this time, but
3899  * physical device lun and target assignment are deferred (assigned
3900  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3901 */
3902 static void figure_bus_target_lun(struct ctlr_info *h,
3903         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3904 {
3905         u32 lunid = get_unaligned_le32(lunaddrbytes);
3906
3907         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3908                 /* physical device, target and lun filled in later */
3909                 if (is_hba_lunid(lunaddrbytes)) {
3910                         int bus = HPSA_HBA_BUS;
3911
3912                         if (!device->rev)
3913                                 bus = HPSA_LEGACY_HBA_BUS;
3914                         hpsa_set_bus_target_lun(device,
3915                                         bus, 0, lunid & 0x3fff);
3916                 } else
3917                         /* defer target, lun assignment for physical devices */
3918                         hpsa_set_bus_target_lun(device,
3919                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3920                 return;
3921         }
3922         /* It's a logical device */
3923         if (device->external) {
3924                 hpsa_set_bus_target_lun(device,
3925                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3926                         lunid & 0x00ff);
3927                 return;
3928         }
3929         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3930                                 0, lunid & 0x3fff);
3931 }
3932
3933 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3934         int i, int nphysicals, int nlocal_logicals)
3935 {
3936         /* In report logicals, local logicals are listed first,
3937         * then any externals.
3938         */
3939         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3940
3941         if (i == raid_ctlr_position)
3942                 return 0;
3943
3944         if (i < logicals_start)
3945                 return 0;
3946
3947         /* i is in logicals range, but still within local logicals */
3948         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3949                 return 0;
3950
3951         return 1; /* it's an external lun */
3952 }
3953
3954 /*
3955  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3956  * logdev.  The number of luns in physdev and logdev are returned in
3957  * *nphysicals and *nlogicals, respectively.
3958  * Returns 0 on success, -1 otherwise.
3959  */
3960 static int hpsa_gather_lun_info(struct ctlr_info *h,
3961         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3962         struct ReportLUNdata *logdev, u32 *nlogicals)
3963 {
3964         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3965                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3966                 return -1;
3967         }
3968         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3969         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3970                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3971                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3972                 *nphysicals = HPSA_MAX_PHYS_LUN;
3973         }
3974         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3975                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3976                 return -1;
3977         }
3978         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3979         /* Reject Logicals in excess of our max capability. */
3980         if (*nlogicals > HPSA_MAX_LUN) {
3981                 dev_warn(&h->pdev->dev,
3982                         "maximum logical LUNs (%d) exceeded.  "
3983                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
3984                         *nlogicals - HPSA_MAX_LUN);
3985                         *nlogicals = HPSA_MAX_LUN;
3986         }
3987         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3988                 dev_warn(&h->pdev->dev,
3989                         "maximum logical + physical LUNs (%d) exceeded. "
3990                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3991                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3992                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3993         }
3994         return 0;
3995 }
3996
3997 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3998         int i, int nphysicals, int nlogicals,
3999         struct ReportExtendedLUNdata *physdev_list,
4000         struct ReportLUNdata *logdev_list)
4001 {
4002         /* Helper function, figure out where the LUN ID info is coming from
4003          * given index i, lists of physical and logical devices, where in
4004          * the list the raid controller is supposed to appear (first or last)
4005          */
4006
4007         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4008         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4009
4010         if (i == raid_ctlr_position)
4011                 return RAID_CTLR_LUNID;
4012
4013         if (i < logicals_start)
4014                 return &physdev_list->LUN[i -
4015                                 (raid_ctlr_position == 0)].lunid[0];
4016
4017         if (i < last_device)
4018                 return &logdev_list->LUN[i - nphysicals -
4019                         (raid_ctlr_position == 0)][0];
4020         BUG();
4021         return NULL;
4022 }
4023
4024 /* get physical drive ioaccel handle and queue depth */
4025 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4026                 struct hpsa_scsi_dev_t *dev,
4027                 struct ReportExtendedLUNdata *rlep, int rle_index,
4028                 struct bmic_identify_physical_device *id_phys)
4029 {
4030         int rc;
4031         struct ext_report_lun_entry *rle;
4032
4033         rle = &rlep->LUN[rle_index];
4034
4035         dev->ioaccel_handle = rle->ioaccel_handle;
4036         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4037                 dev->hba_ioaccel_enabled = 1;
4038         memset(id_phys, 0, sizeof(*id_phys));
4039         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4040                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4041                         sizeof(*id_phys));
4042         if (!rc)
4043                 /* Reserve space for FW operations */
4044 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4045 #define DRIVE_QUEUE_DEPTH 7
4046                 dev->queue_depth =
4047                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4048                                 DRIVE_CMDS_RESERVED_FOR_FW;
4049         else
4050                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4051 }
4052
4053 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4054         struct ReportExtendedLUNdata *rlep, int rle_index,
4055         struct bmic_identify_physical_device *id_phys)
4056 {
4057         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4058
4059         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4060                 this_device->hba_ioaccel_enabled = 1;
4061
4062         memcpy(&this_device->active_path_index,
4063                 &id_phys->active_path_number,
4064                 sizeof(this_device->active_path_index));
4065         memcpy(&this_device->path_map,
4066                 &id_phys->redundant_path_present_map,
4067                 sizeof(this_device->path_map));
4068         memcpy(&this_device->box,
4069                 &id_phys->alternate_paths_phys_box_on_port,
4070                 sizeof(this_device->box));
4071         memcpy(&this_device->phys_connector,
4072                 &id_phys->alternate_paths_phys_connector,
4073                 sizeof(this_device->phys_connector));
4074         memcpy(&this_device->bay,
4075                 &id_phys->phys_bay_in_box,
4076                 sizeof(this_device->bay));
4077 }
4078
4079 /* get number of local logical disks. */
4080 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4081         struct bmic_identify_controller *id_ctlr,
4082         u32 *nlocals)
4083 {
4084         int rc;
4085
4086         if (!id_ctlr) {
4087                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4088                         __func__);
4089                 return -ENOMEM;
4090         }
4091         memset(id_ctlr, 0, sizeof(*id_ctlr));
4092         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4093         if (!rc)
4094                 if (id_ctlr->configured_logical_drive_count < 255)
4095                         *nlocals = id_ctlr->configured_logical_drive_count;
4096                 else
4097                         *nlocals = le16_to_cpu(
4098                                         id_ctlr->extended_logical_unit_count);
4099         else
4100                 *nlocals = -1;
4101         return rc;
4102 }
4103
4104 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4105 {
4106         struct bmic_identify_physical_device *id_phys;
4107         bool is_spare = false;
4108         int rc;
4109
4110         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4111         if (!id_phys)
4112                 return false;
4113
4114         rc = hpsa_bmic_id_physical_device(h,
4115                                         lunaddrbytes,
4116                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4117                                         id_phys, sizeof(*id_phys));
4118         if (rc == 0)
4119                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4120
4121         kfree(id_phys);
4122         return is_spare;
4123 }
4124
4125 #define RPL_DEV_FLAG_NON_DISK                           0x1
4126 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4127 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4128
4129 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4130
4131 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4132                                 struct ext_report_lun_entry *rle)
4133 {
4134         u8 device_flags;
4135         u8 device_type;
4136
4137         if (!MASKED_DEVICE(lunaddrbytes))
4138                 return false;
4139
4140         device_flags = rle->device_flags;
4141         device_type = rle->device_type;
4142
4143         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4144                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4145                         return false;
4146                 return true;
4147         }
4148
4149         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4150                 return false;
4151
4152         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4153                 return false;
4154
4155         /*
4156          * Spares may be spun down, we do not want to
4157          * do an Inquiry to a RAID set spare drive as
4158          * that would have them spun up, that is a
4159          * performance hit because I/O to the RAID device
4160          * stops while the spin up occurs which can take
4161          * over 50 seconds.
4162          */
4163         if (hpsa_is_disk_spare(h, lunaddrbytes))
4164                 return true;
4165
4166         return false;
4167 }
4168
4169 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4170 {
4171         /* the idea here is we could get notified
4172          * that some devices have changed, so we do a report
4173          * physical luns and report logical luns cmd, and adjust
4174          * our list of devices accordingly.
4175          *
4176          * The scsi3addr's of devices won't change so long as the
4177          * adapter is not reset.  That means we can rescan and
4178          * tell which devices we already know about, vs. new
4179          * devices, vs.  disappearing devices.
4180          */
4181         struct ReportExtendedLUNdata *physdev_list = NULL;
4182         struct ReportLUNdata *logdev_list = NULL;
4183         struct bmic_identify_physical_device *id_phys = NULL;
4184         struct bmic_identify_controller *id_ctlr = NULL;
4185         u32 nphysicals = 0;
4186         u32 nlogicals = 0;
4187         u32 nlocal_logicals = 0;
4188         u32 ndev_allocated = 0;
4189         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4190         int ncurrent = 0;
4191         int i, n_ext_target_devs, ndevs_to_allocate;
4192         int raid_ctlr_position;
4193         bool physical_device;
4194         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4195
4196         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4197         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4198         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4199         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4200         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4201         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4202
4203         if (!currentsd || !physdev_list || !logdev_list ||
4204                 !tmpdevice || !id_phys || !id_ctlr) {
4205                 dev_err(&h->pdev->dev, "out of memory\n");
4206                 goto out;
4207         }
4208         memset(lunzerobits, 0, sizeof(lunzerobits));
4209
4210         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4211
4212         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4213                         logdev_list, &nlogicals)) {
4214                 h->drv_req_rescan = 1;
4215                 goto out;
4216         }
4217
4218         /* Set number of local logicals (non PTRAID) */
4219         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4220                 dev_warn(&h->pdev->dev,
4221                         "%s: Can't determine number of local logical devices.\n",
4222                         __func__);
4223         }
4224
4225         /* We might see up to the maximum number of logical and physical disks
4226          * plus external target devices, and a device for the local RAID
4227          * controller.
4228          */
4229         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4230
4231         /* Allocate the per device structures */
4232         for (i = 0; i < ndevs_to_allocate; i++) {
4233                 if (i >= HPSA_MAX_DEVICES) {
4234                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4235                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4236                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4237                         break;
4238                 }
4239
4240                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4241                 if (!currentsd[i]) {
4242                         h->drv_req_rescan = 1;
4243                         goto out;
4244                 }
4245                 ndev_allocated++;
4246         }
4247
4248         if (is_scsi_rev_5(h))
4249                 raid_ctlr_position = 0;
4250         else
4251                 raid_ctlr_position = nphysicals + nlogicals;
4252
4253         /* adjust our table of devices */
4254         n_ext_target_devs = 0;
4255         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4256                 u8 *lunaddrbytes, is_OBDR = 0;
4257                 int rc = 0;
4258                 int phys_dev_index = i - (raid_ctlr_position == 0);
4259                 bool skip_device = false;
4260
4261                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4262
4263                 /* Figure out where the LUN ID info is coming from */
4264                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4265                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4266
4267                 /* Determine if this is a lun from an external target array */
4268                 tmpdevice->external =
4269                         figure_external_status(h, raid_ctlr_position, i,
4270                                                 nphysicals, nlocal_logicals);
4271
4272                 /*
4273                  * Skip over some devices such as a spare.
4274                  */
4275                 if (!tmpdevice->external && physical_device) {
4276                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4277                                         &physdev_list->LUN[phys_dev_index]);
4278                         if (skip_device)
4279                                 continue;
4280                 }
4281
4282                 /* Get device type, vendor, model, device id */
4283                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4284                                                         &is_OBDR);
4285                 if (rc == -ENOMEM) {
4286                         dev_warn(&h->pdev->dev,
4287                                 "Out of memory, rescan deferred.\n");
4288                         h->drv_req_rescan = 1;
4289                         goto out;
4290                 }
4291                 if (rc) {
4292                         h->drv_req_rescan = 1;
4293                         continue;
4294                 }
4295
4296                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4297                 this_device = currentsd[ncurrent];
4298
4299                 /* Turn on discovery_polling if there are ext target devices.
4300                  * Event-based change notification is unreliable for those.
4301                  */
4302                 if (!h->discovery_polling) {
4303                         if (tmpdevice->external) {
4304                                 h->discovery_polling = 1;
4305                                 dev_info(&h->pdev->dev,
4306                                         "External target, activate discovery polling.\n");
4307                         }
4308                 }
4309
4310
4311                 *this_device = *tmpdevice;
4312                 this_device->physical_device = physical_device;
4313
4314                 /*
4315                  * Expose all devices except for physical devices that
4316                  * are masked.
4317                  */
4318                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4319                         this_device->expose_device = 0;
4320                 else
4321                         this_device->expose_device = 1;
4322
4323
4324                 /*
4325                  * Get the SAS address for physical devices that are exposed.
4326                  */
4327                 if (this_device->physical_device && this_device->expose_device)
4328                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4329
4330                 switch (this_device->devtype) {
4331                 case TYPE_ROM:
4332                         /* We don't *really* support actual CD-ROM devices,
4333                          * just "One Button Disaster Recovery" tape drive
4334                          * which temporarily pretends to be a CD-ROM drive.
4335                          * So we check that the device is really an OBDR tape
4336                          * device by checking for "$DR-10" in bytes 43-48 of
4337                          * the inquiry data.
4338                          */
4339                         if (is_OBDR)
4340                                 ncurrent++;
4341                         break;
4342                 case TYPE_DISK:
4343                 case TYPE_ZBC:
4344                         if (this_device->physical_device) {
4345                                 /* The disk is in HBA mode. */
4346                                 /* Never use RAID mapper in HBA mode. */
4347                                 this_device->offload_enabled = 0;
4348                                 hpsa_get_ioaccel_drive_info(h, this_device,
4349                                         physdev_list, phys_dev_index, id_phys);
4350                                 hpsa_get_path_info(this_device,
4351                                         physdev_list, phys_dev_index, id_phys);
4352                         }
4353                         ncurrent++;
4354                         break;
4355                 case TYPE_TAPE:
4356                 case TYPE_MEDIUM_CHANGER:
4357                         ncurrent++;
4358                         break;
4359                 case TYPE_ENCLOSURE:
4360                         if (!this_device->external)
4361                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4362                                                 physdev_list, phys_dev_index,
4363                                                 this_device);
4364                         ncurrent++;
4365                         break;
4366                 case TYPE_RAID:
4367                         /* Only present the Smartarray HBA as a RAID controller.
4368                          * If it's a RAID controller other than the HBA itself
4369                          * (an external RAID controller, MSA500 or similar)
4370                          * don't present it.
4371                          */
4372                         if (!is_hba_lunid(lunaddrbytes))
4373                                 break;
4374                         ncurrent++;
4375                         break;
4376                 default:
4377                         break;
4378                 }
4379                 if (ncurrent >= HPSA_MAX_DEVICES)
4380                         break;
4381         }
4382
4383         if (h->sas_host == NULL) {
4384                 int rc = 0;
4385
4386                 rc = hpsa_add_sas_host(h);
4387                 if (rc) {
4388                         dev_warn(&h->pdev->dev,
4389                                 "Could not add sas host %d\n", rc);
4390                         goto out;
4391                 }
4392         }
4393
4394         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4395 out:
4396         kfree(tmpdevice);
4397         for (i = 0; i < ndev_allocated; i++)
4398                 kfree(currentsd[i]);
4399         kfree(currentsd);
4400         kfree(physdev_list);
4401         kfree(logdev_list);
4402         kfree(id_ctlr);
4403         kfree(id_phys);
4404 }
4405
4406 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4407                                    struct scatterlist *sg)
4408 {
4409         u64 addr64 = (u64) sg_dma_address(sg);
4410         unsigned int len = sg_dma_len(sg);
4411
4412         desc->Addr = cpu_to_le64(addr64);
4413         desc->Len = cpu_to_le32(len);
4414         desc->Ext = 0;
4415 }
4416
4417 /*
4418  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4419  * dma mapping  and fills in the scatter gather entries of the
4420  * hpsa command, cp.
4421  */
4422 static int hpsa_scatter_gather(struct ctlr_info *h,
4423                 struct CommandList *cp,
4424                 struct scsi_cmnd *cmd)
4425 {
4426         struct scatterlist *sg;
4427         int use_sg, i, sg_limit, chained, last_sg;
4428         struct SGDescriptor *curr_sg;
4429
4430         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4431
4432         use_sg = scsi_dma_map(cmd);
4433         if (use_sg < 0)
4434                 return use_sg;
4435
4436         if (!use_sg)
4437                 goto sglist_finished;
4438
4439         /*
4440          * If the number of entries is greater than the max for a single list,
4441          * then we have a chained list; we will set up all but one entry in the
4442          * first list (the last entry is saved for link information);
4443          * otherwise, we don't have a chained list and we'll set up at each of
4444          * the entries in the one list.
4445          */
4446         curr_sg = cp->SG;
4447         chained = use_sg > h->max_cmd_sg_entries;
4448         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4449         last_sg = scsi_sg_count(cmd) - 1;
4450         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4451                 hpsa_set_sg_descriptor(curr_sg, sg);
4452                 curr_sg++;
4453         }
4454
4455         if (chained) {
4456                 /*
4457                  * Continue with the chained list.  Set curr_sg to the chained
4458                  * list.  Modify the limit to the total count less the entries
4459                  * we've already set up.  Resume the scan at the list entry
4460                  * where the previous loop left off.
4461                  */
4462                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4463                 sg_limit = use_sg - sg_limit;
4464                 for_each_sg(sg, sg, sg_limit, i) {
4465                         hpsa_set_sg_descriptor(curr_sg, sg);
4466                         curr_sg++;
4467                 }
4468         }
4469
4470         /* Back the pointer up to the last entry and mark it as "last". */
4471         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4472
4473         if (use_sg + chained > h->maxSG)
4474                 h->maxSG = use_sg + chained;
4475
4476         if (chained) {
4477                 cp->Header.SGList = h->max_cmd_sg_entries;
4478                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4479                 if (hpsa_map_sg_chain_block(h, cp)) {
4480                         scsi_dma_unmap(cmd);
4481                         return -1;
4482                 }
4483                 return 0;
4484         }
4485
4486 sglist_finished:
4487
4488         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4489         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4490         return 0;
4491 }
4492
4493 #define BUFLEN 128
4494 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4495                                                 u8 *cdb, int cdb_len,
4496                                                 const char *func)
4497 {
4498         char buf[BUFLEN];
4499         int outlen;
4500         int i;
4501
4502         outlen = scnprintf(buf, BUFLEN,
4503                                 "%s: Blocking zero-length request: CDB:", func);
4504         for (i = 0; i < cdb_len; i++)
4505                 outlen += scnprintf(buf+outlen, BUFLEN - outlen,
4506                                         "%02hhx", cdb[i]);
4507         dev_warn(&h->pdev->dev, "%s\n", buf);
4508 }
4509
4510 #define IO_ACCEL_INELIGIBLE 1
4511 /* zero-length transfers trigger hardware errors. */
4512 static bool is_zero_length_transfer(u8 *cdb)
4513 {
4514         u32 block_cnt;
4515
4516         /* Block zero-length transfer sizes on certain commands. */
4517         switch (cdb[0]) {
4518         case READ_10:
4519         case WRITE_10:
4520         case VERIFY:            /* 0x2F */
4521         case WRITE_VERIFY:      /* 0x2E */
4522                 block_cnt = get_unaligned_be16(&cdb[7]);
4523                 break;
4524         case READ_12:
4525         case WRITE_12:
4526         case VERIFY_12: /* 0xAF */
4527         case WRITE_VERIFY_12:   /* 0xAE */
4528                 block_cnt = get_unaligned_be32(&cdb[6]);
4529                 break;
4530         case READ_16:
4531         case WRITE_16:
4532         case VERIFY_16:         /* 0x8F */
4533                 block_cnt = get_unaligned_be32(&cdb[10]);
4534                 break;
4535         default:
4536                 return false;
4537         }
4538
4539         return block_cnt == 0;
4540 }
4541
4542 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4543 {
4544         int is_write = 0;
4545         u32 block;
4546         u32 block_cnt;
4547
4548         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4549         switch (cdb[0]) {
4550         case WRITE_6:
4551         case WRITE_12:
4552                 is_write = 1;
4553         case READ_6:
4554         case READ_12:
4555                 if (*cdb_len == 6) {
4556                         block = (((cdb[1] & 0x1F) << 16) |
4557                                 (cdb[2] << 8) |
4558                                 cdb[3]);
4559                         block_cnt = cdb[4];
4560                         if (block_cnt == 0)
4561                                 block_cnt = 256;
4562                 } else {
4563                         BUG_ON(*cdb_len != 12);
4564                         block = get_unaligned_be32(&cdb[2]);
4565                         block_cnt = get_unaligned_be32(&cdb[6]);
4566                 }
4567                 if (block_cnt > 0xffff)
4568                         return IO_ACCEL_INELIGIBLE;
4569
4570                 cdb[0] = is_write ? WRITE_10 : READ_10;
4571                 cdb[1] = 0;
4572                 cdb[2] = (u8) (block >> 24);
4573                 cdb[3] = (u8) (block >> 16);
4574                 cdb[4] = (u8) (block >> 8);
4575                 cdb[5] = (u8) (block);
4576                 cdb[6] = 0;
4577                 cdb[7] = (u8) (block_cnt >> 8);
4578                 cdb[8] = (u8) (block_cnt);
4579                 cdb[9] = 0;
4580                 *cdb_len = 10;
4581                 break;
4582         }
4583         return 0;
4584 }
4585
4586 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4587         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4588         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4589 {
4590         struct scsi_cmnd *cmd = c->scsi_cmd;
4591         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4592         unsigned int len;
4593         unsigned int total_len = 0;
4594         struct scatterlist *sg;
4595         u64 addr64;
4596         int use_sg, i;
4597         struct SGDescriptor *curr_sg;
4598         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4599
4600         /* TODO: implement chaining support */
4601         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4602                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4603                 return IO_ACCEL_INELIGIBLE;
4604         }
4605
4606         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4607
4608         if (is_zero_length_transfer(cdb)) {
4609                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4610                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4611                 return IO_ACCEL_INELIGIBLE;
4612         }
4613
4614         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4615                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4616                 return IO_ACCEL_INELIGIBLE;
4617         }
4618
4619         c->cmd_type = CMD_IOACCEL1;
4620
4621         /* Adjust the DMA address to point to the accelerated command buffer */
4622         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4623                                 (c->cmdindex * sizeof(*cp));
4624         BUG_ON(c->busaddr & 0x0000007F);
4625
4626         use_sg = scsi_dma_map(cmd);
4627         if (use_sg < 0) {
4628                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4629                 return use_sg;
4630         }
4631
4632         if (use_sg) {
4633                 curr_sg = cp->SG;
4634                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4635                         addr64 = (u64) sg_dma_address(sg);
4636                         len  = sg_dma_len(sg);
4637                         total_len += len;
4638                         curr_sg->Addr = cpu_to_le64(addr64);
4639                         curr_sg->Len = cpu_to_le32(len);
4640                         curr_sg->Ext = cpu_to_le32(0);
4641                         curr_sg++;
4642                 }
4643                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4644
4645                 switch (cmd->sc_data_direction) {
4646                 case DMA_TO_DEVICE:
4647                         control |= IOACCEL1_CONTROL_DATA_OUT;
4648                         break;
4649                 case DMA_FROM_DEVICE:
4650                         control |= IOACCEL1_CONTROL_DATA_IN;
4651                         break;
4652                 case DMA_NONE:
4653                         control |= IOACCEL1_CONTROL_NODATAXFER;
4654                         break;
4655                 default:
4656                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4657                         cmd->sc_data_direction);
4658                         BUG();
4659                         break;
4660                 }
4661         } else {
4662                 control |= IOACCEL1_CONTROL_NODATAXFER;
4663         }
4664
4665         c->Header.SGList = use_sg;
4666         /* Fill out the command structure to submit */
4667         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4668         cp->transfer_len = cpu_to_le32(total_len);
4669         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4670                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4671         cp->control = cpu_to_le32(control);
4672         memcpy(cp->CDB, cdb, cdb_len);
4673         memcpy(cp->CISS_LUN, scsi3addr, 8);
4674         /* Tag was already set at init time. */
4675         enqueue_cmd_and_start_io(h, c);
4676         return 0;
4677 }
4678
4679 /*
4680  * Queue a command directly to a device behind the controller using the
4681  * I/O accelerator path.
4682  */
4683 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4684         struct CommandList *c)
4685 {
4686         struct scsi_cmnd *cmd = c->scsi_cmd;
4687         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4688
4689         if (!dev)
4690                 return -1;
4691
4692         c->phys_disk = dev;
4693
4694         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4695                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4696 }
4697
4698 /*
4699  * Set encryption parameters for the ioaccel2 request
4700  */
4701 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4702         struct CommandList *c, struct io_accel2_cmd *cp)
4703 {
4704         struct scsi_cmnd *cmd = c->scsi_cmd;
4705         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4706         struct raid_map_data *map = &dev->raid_map;
4707         u64 first_block;
4708
4709         /* Are we doing encryption on this device */
4710         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4711                 return;
4712         /* Set the data encryption key index. */
4713         cp->dekindex = map->dekindex;
4714
4715         /* Set the encryption enable flag, encoded into direction field. */
4716         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4717
4718         /* Set encryption tweak values based on logical block address
4719          * If block size is 512, tweak value is LBA.
4720          * For other block sizes, tweak is (LBA * block size)/ 512)
4721          */
4722         switch (cmd->cmnd[0]) {
4723         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4724         case READ_6:
4725         case WRITE_6:
4726                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4727                                 (cmd->cmnd[2] << 8) |
4728                                 cmd->cmnd[3]);
4729                 break;
4730         case WRITE_10:
4731         case READ_10:
4732         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4733         case WRITE_12:
4734         case READ_12:
4735                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4736                 break;
4737         case WRITE_16:
4738         case READ_16:
4739                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4740                 break;
4741         default:
4742                 dev_err(&h->pdev->dev,
4743                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4744                         __func__, cmd->cmnd[0]);
4745                 BUG();
4746                 break;
4747         }
4748
4749         if (le32_to_cpu(map->volume_blk_size) != 512)
4750                 first_block = first_block *
4751                                 le32_to_cpu(map->volume_blk_size)/512;
4752
4753         cp->tweak_lower = cpu_to_le32(first_block);
4754         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4755 }
4756
4757 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4758         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4759         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4760 {
4761         struct scsi_cmnd *cmd = c->scsi_cmd;
4762         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4763         struct ioaccel2_sg_element *curr_sg;
4764         int use_sg, i;
4765         struct scatterlist *sg;
4766         u64 addr64;
4767         u32 len;
4768         u32 total_len = 0;
4769
4770         if (!cmd->device)
4771                 return -1;
4772
4773         if (!cmd->device->hostdata)
4774                 return -1;
4775
4776         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4777
4778         if (is_zero_length_transfer(cdb)) {
4779                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4780                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4781                 return IO_ACCEL_INELIGIBLE;
4782         }
4783
4784         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4785                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4786                 return IO_ACCEL_INELIGIBLE;
4787         }
4788
4789         c->cmd_type = CMD_IOACCEL2;
4790         /* Adjust the DMA address to point to the accelerated command buffer */
4791         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4792                                 (c->cmdindex * sizeof(*cp));
4793         BUG_ON(c->busaddr & 0x0000007F);
4794
4795         memset(cp, 0, sizeof(*cp));
4796         cp->IU_type = IOACCEL2_IU_TYPE;
4797
4798         use_sg = scsi_dma_map(cmd);
4799         if (use_sg < 0) {
4800                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4801                 return use_sg;
4802         }
4803
4804         if (use_sg) {
4805                 curr_sg = cp->sg;
4806                 if (use_sg > h->ioaccel_maxsg) {
4807                         addr64 = le64_to_cpu(
4808                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4809                         curr_sg->address = cpu_to_le64(addr64);
4810                         curr_sg->length = 0;
4811                         curr_sg->reserved[0] = 0;
4812                         curr_sg->reserved[1] = 0;
4813                         curr_sg->reserved[2] = 0;
4814                         curr_sg->chain_indicator = 0x80;
4815
4816                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4817                 }
4818                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4819                         addr64 = (u64) sg_dma_address(sg);
4820                         len  = sg_dma_len(sg);
4821                         total_len += len;
4822                         curr_sg->address = cpu_to_le64(addr64);
4823                         curr_sg->length = cpu_to_le32(len);
4824                         curr_sg->reserved[0] = 0;
4825                         curr_sg->reserved[1] = 0;
4826                         curr_sg->reserved[2] = 0;
4827                         curr_sg->chain_indicator = 0;
4828                         curr_sg++;
4829                 }
4830
4831                 switch (cmd->sc_data_direction) {
4832                 case DMA_TO_DEVICE:
4833                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4834                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4835                         break;
4836                 case DMA_FROM_DEVICE:
4837                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4838                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4839                         break;
4840                 case DMA_NONE:
4841                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4842                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4843                         break;
4844                 default:
4845                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4846                                 cmd->sc_data_direction);
4847                         BUG();
4848                         break;
4849                 }
4850         } else {
4851                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4852                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4853         }
4854
4855         /* Set encryption parameters, if necessary */
4856         set_encrypt_ioaccel2(h, c, cp);
4857
4858         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4859         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4860         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4861
4862         cp->data_len = cpu_to_le32(total_len);
4863         cp->err_ptr = cpu_to_le64(c->busaddr +
4864                         offsetof(struct io_accel2_cmd, error_data));
4865         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4866
4867         /* fill in sg elements */
4868         if (use_sg > h->ioaccel_maxsg) {
4869                 cp->sg_count = 1;
4870                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4871                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4872                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4873                         scsi_dma_unmap(cmd);
4874                         return -1;
4875                 }
4876         } else
4877                 cp->sg_count = (u8) use_sg;
4878
4879         enqueue_cmd_and_start_io(h, c);
4880         return 0;
4881 }
4882
4883 /*
4884  * Queue a command to the correct I/O accelerator path.
4885  */
4886 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4887         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4888         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4889 {
4890         if (!c->scsi_cmd->device)
4891                 return -1;
4892
4893         if (!c->scsi_cmd->device->hostdata)
4894                 return -1;
4895
4896         /* Try to honor the device's queue depth */
4897         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4898                                         phys_disk->queue_depth) {
4899                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4900                 return IO_ACCEL_INELIGIBLE;
4901         }
4902         if (h->transMethod & CFGTBL_Trans_io_accel1)
4903                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4904                                                 cdb, cdb_len, scsi3addr,
4905                                                 phys_disk);
4906         else
4907                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4908                                                 cdb, cdb_len, scsi3addr,
4909                                                 phys_disk);
4910 }
4911
4912 static void raid_map_helper(struct raid_map_data *map,
4913                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4914 {
4915         if (offload_to_mirror == 0)  {
4916                 /* use physical disk in the first mirrored group. */
4917                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4918                 return;
4919         }
4920         do {
4921                 /* determine mirror group that *map_index indicates */
4922                 *current_group = *map_index /
4923                         le16_to_cpu(map->data_disks_per_row);
4924                 if (offload_to_mirror == *current_group)
4925                         continue;
4926                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4927                         /* select map index from next group */
4928                         *map_index += le16_to_cpu(map->data_disks_per_row);
4929                         (*current_group)++;
4930                 } else {
4931                         /* select map index from first group */
4932                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4933                         *current_group = 0;
4934                 }
4935         } while (offload_to_mirror != *current_group);
4936 }
4937
4938 /*
4939  * Attempt to perform offload RAID mapping for a logical volume I/O.
4940  */
4941 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4942         struct CommandList *c)
4943 {
4944         struct scsi_cmnd *cmd = c->scsi_cmd;
4945         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4946         struct raid_map_data *map = &dev->raid_map;
4947         struct raid_map_disk_data *dd = &map->data[0];
4948         int is_write = 0;
4949         u32 map_index;
4950         u64 first_block, last_block;
4951         u32 block_cnt;
4952         u32 blocks_per_row;
4953         u64 first_row, last_row;
4954         u32 first_row_offset, last_row_offset;
4955         u32 first_column, last_column;
4956         u64 r0_first_row, r0_last_row;
4957         u32 r5or6_blocks_per_row;
4958         u64 r5or6_first_row, r5or6_last_row;
4959         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4960         u32 r5or6_first_column, r5or6_last_column;
4961         u32 total_disks_per_row;
4962         u32 stripesize;
4963         u32 first_group, last_group, current_group;
4964         u32 map_row;
4965         u32 disk_handle;
4966         u64 disk_block;
4967         u32 disk_block_cnt;
4968         u8 cdb[16];
4969         u8 cdb_len;
4970         u16 strip_size;
4971 #if BITS_PER_LONG == 32
4972         u64 tmpdiv;
4973 #endif
4974         int offload_to_mirror;
4975
4976         if (!dev)
4977                 return -1;
4978
4979         /* check for valid opcode, get LBA and block count */
4980         switch (cmd->cmnd[0]) {
4981         case WRITE_6:
4982                 is_write = 1;
4983         case READ_6:
4984                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4985                                 (cmd->cmnd[2] << 8) |
4986                                 cmd->cmnd[3]);
4987                 block_cnt = cmd->cmnd[4];
4988                 if (block_cnt == 0)
4989                         block_cnt = 256;
4990                 break;
4991         case WRITE_10:
4992                 is_write = 1;
4993         case READ_10:
4994                 first_block =
4995                         (((u64) cmd->cmnd[2]) << 24) |
4996                         (((u64) cmd->cmnd[3]) << 16) |
4997                         (((u64) cmd->cmnd[4]) << 8) |
4998                         cmd->cmnd[5];
4999                 block_cnt =
5000                         (((u32) cmd->cmnd[7]) << 8) |
5001                         cmd->cmnd[8];
5002                 break;
5003         case WRITE_12:
5004                 is_write = 1;
5005         case READ_12:
5006                 first_block =
5007                         (((u64) cmd->cmnd[2]) << 24) |
5008                         (((u64) cmd->cmnd[3]) << 16) |
5009                         (((u64) cmd->cmnd[4]) << 8) |
5010                         cmd->cmnd[5];
5011                 block_cnt =
5012                         (((u32) cmd->cmnd[6]) << 24) |
5013                         (((u32) cmd->cmnd[7]) << 16) |
5014                         (((u32) cmd->cmnd[8]) << 8) |
5015                 cmd->cmnd[9];
5016                 break;
5017         case WRITE_16:
5018                 is_write = 1;
5019         case READ_16:
5020                 first_block =
5021                         (((u64) cmd->cmnd[2]) << 56) |
5022                         (((u64) cmd->cmnd[3]) << 48) |
5023                         (((u64) cmd->cmnd[4]) << 40) |
5024                         (((u64) cmd->cmnd[5]) << 32) |
5025                         (((u64) cmd->cmnd[6]) << 24) |
5026                         (((u64) cmd->cmnd[7]) << 16) |
5027                         (((u64) cmd->cmnd[8]) << 8) |
5028                         cmd->cmnd[9];
5029                 block_cnt =
5030                         (((u32) cmd->cmnd[10]) << 24) |
5031                         (((u32) cmd->cmnd[11]) << 16) |
5032                         (((u32) cmd->cmnd[12]) << 8) |
5033                         cmd->cmnd[13];
5034                 break;
5035         default:
5036                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5037         }
5038         last_block = first_block + block_cnt - 1;
5039
5040         /* check for write to non-RAID-0 */
5041         if (is_write && dev->raid_level != 0)
5042                 return IO_ACCEL_INELIGIBLE;
5043
5044         /* check for invalid block or wraparound */
5045         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5046                 last_block < first_block)
5047                 return IO_ACCEL_INELIGIBLE;
5048
5049         /* calculate stripe information for the request */
5050         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5051                                 le16_to_cpu(map->strip_size);
5052         strip_size = le16_to_cpu(map->strip_size);
5053 #if BITS_PER_LONG == 32
5054         tmpdiv = first_block;
5055         (void) do_div(tmpdiv, blocks_per_row);
5056         first_row = tmpdiv;
5057         tmpdiv = last_block;
5058         (void) do_div(tmpdiv, blocks_per_row);
5059         last_row = tmpdiv;
5060         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5061         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5062         tmpdiv = first_row_offset;
5063         (void) do_div(tmpdiv, strip_size);
5064         first_column = tmpdiv;
5065         tmpdiv = last_row_offset;
5066         (void) do_div(tmpdiv, strip_size);
5067         last_column = tmpdiv;
5068 #else
5069         first_row = first_block / blocks_per_row;
5070         last_row = last_block / blocks_per_row;
5071         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5072         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5073         first_column = first_row_offset / strip_size;
5074         last_column = last_row_offset / strip_size;
5075 #endif
5076
5077         /* if this isn't a single row/column then give to the controller */
5078         if ((first_row != last_row) || (first_column != last_column))
5079                 return IO_ACCEL_INELIGIBLE;
5080
5081         /* proceeding with driver mapping */
5082         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5083                                 le16_to_cpu(map->metadata_disks_per_row);
5084         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5085                                 le16_to_cpu(map->row_cnt);
5086         map_index = (map_row * total_disks_per_row) + first_column;
5087
5088         switch (dev->raid_level) {
5089         case HPSA_RAID_0:
5090                 break; /* nothing special to do */
5091         case HPSA_RAID_1:
5092                 /* Handles load balance across RAID 1 members.
5093                  * (2-drive R1 and R10 with even # of drives.)
5094                  * Appropriate for SSDs, not optimal for HDDs
5095                  */
5096                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5097                 if (dev->offload_to_mirror)
5098                         map_index += le16_to_cpu(map->data_disks_per_row);
5099                 dev->offload_to_mirror = !dev->offload_to_mirror;
5100                 break;
5101         case HPSA_RAID_ADM:
5102                 /* Handles N-way mirrors  (R1-ADM)
5103                  * and R10 with # of drives divisible by 3.)
5104                  */
5105                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5106
5107                 offload_to_mirror = dev->offload_to_mirror;
5108                 raid_map_helper(map, offload_to_mirror,
5109                                 &map_index, &current_group);
5110                 /* set mirror group to use next time */
5111                 offload_to_mirror =
5112                         (offload_to_mirror >=
5113                         le16_to_cpu(map->layout_map_count) - 1)
5114                         ? 0 : offload_to_mirror + 1;
5115                 dev->offload_to_mirror = offload_to_mirror;
5116                 /* Avoid direct use of dev->offload_to_mirror within this
5117                  * function since multiple threads might simultaneously
5118                  * increment it beyond the range of dev->layout_map_count -1.
5119                  */
5120                 break;
5121         case HPSA_RAID_5:
5122         case HPSA_RAID_6:
5123                 if (le16_to_cpu(map->layout_map_count) <= 1)
5124                         break;
5125
5126                 /* Verify first and last block are in same RAID group */
5127                 r5or6_blocks_per_row =
5128                         le16_to_cpu(map->strip_size) *
5129                         le16_to_cpu(map->data_disks_per_row);
5130                 BUG_ON(r5or6_blocks_per_row == 0);
5131                 stripesize = r5or6_blocks_per_row *
5132                         le16_to_cpu(map->layout_map_count);
5133 #if BITS_PER_LONG == 32
5134                 tmpdiv = first_block;
5135                 first_group = do_div(tmpdiv, stripesize);
5136                 tmpdiv = first_group;
5137                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5138                 first_group = tmpdiv;
5139                 tmpdiv = last_block;
5140                 last_group = do_div(tmpdiv, stripesize);
5141                 tmpdiv = last_group;
5142                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5143                 last_group = tmpdiv;
5144 #else
5145                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5146                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5147 #endif
5148                 if (first_group != last_group)
5149                         return IO_ACCEL_INELIGIBLE;
5150
5151                 /* Verify request is in a single row of RAID 5/6 */
5152 #if BITS_PER_LONG == 32
5153                 tmpdiv = first_block;
5154                 (void) do_div(tmpdiv, stripesize);
5155                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5156                 tmpdiv = last_block;
5157                 (void) do_div(tmpdiv, stripesize);
5158                 r5or6_last_row = r0_last_row = tmpdiv;
5159 #else
5160                 first_row = r5or6_first_row = r0_first_row =
5161                                                 first_block / stripesize;
5162                 r5or6_last_row = r0_last_row = last_block / stripesize;
5163 #endif
5164                 if (r5or6_first_row != r5or6_last_row)
5165                         return IO_ACCEL_INELIGIBLE;
5166
5167
5168                 /* Verify request is in a single column */
5169 #if BITS_PER_LONG == 32
5170                 tmpdiv = first_block;
5171                 first_row_offset = do_div(tmpdiv, stripesize);
5172                 tmpdiv = first_row_offset;
5173                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5174                 r5or6_first_row_offset = first_row_offset;
5175                 tmpdiv = last_block;
5176                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5177                 tmpdiv = r5or6_last_row_offset;
5178                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5179                 tmpdiv = r5or6_first_row_offset;
5180                 (void) do_div(tmpdiv, map->strip_size);
5181                 first_column = r5or6_first_column = tmpdiv;
5182                 tmpdiv = r5or6_last_row_offset;
5183                 (void) do_div(tmpdiv, map->strip_size);
5184                 r5or6_last_column = tmpdiv;
5185 #else
5186                 first_row_offset = r5or6_first_row_offset =
5187                         (u32)((first_block % stripesize) %
5188                                                 r5or6_blocks_per_row);
5189
5190                 r5or6_last_row_offset =
5191                         (u32)((last_block % stripesize) %
5192                                                 r5or6_blocks_per_row);
5193
5194                 first_column = r5or6_first_column =
5195                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5196                 r5or6_last_column =
5197                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5198 #endif
5199                 if (r5or6_first_column != r5or6_last_column)
5200                         return IO_ACCEL_INELIGIBLE;
5201
5202                 /* Request is eligible */
5203                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5204                         le16_to_cpu(map->row_cnt);
5205
5206                 map_index = (first_group *
5207                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5208                         (map_row * total_disks_per_row) + first_column;
5209                 break;
5210         default:
5211                 return IO_ACCEL_INELIGIBLE;
5212         }
5213
5214         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5215                 return IO_ACCEL_INELIGIBLE;
5216
5217         c->phys_disk = dev->phys_disk[map_index];
5218         if (!c->phys_disk)
5219                 return IO_ACCEL_INELIGIBLE;
5220
5221         disk_handle = dd[map_index].ioaccel_handle;
5222         disk_block = le64_to_cpu(map->disk_starting_blk) +
5223                         first_row * le16_to_cpu(map->strip_size) +
5224                         (first_row_offset - first_column *
5225                         le16_to_cpu(map->strip_size));
5226         disk_block_cnt = block_cnt;
5227
5228         /* handle differing logical/physical block sizes */
5229         if (map->phys_blk_shift) {
5230                 disk_block <<= map->phys_blk_shift;
5231                 disk_block_cnt <<= map->phys_blk_shift;
5232         }
5233         BUG_ON(disk_block_cnt > 0xffff);
5234
5235         /* build the new CDB for the physical disk I/O */
5236         if (disk_block > 0xffffffff) {
5237                 cdb[0] = is_write ? WRITE_16 : READ_16;
5238                 cdb[1] = 0;
5239                 cdb[2] = (u8) (disk_block >> 56);
5240                 cdb[3] = (u8) (disk_block >> 48);
5241                 cdb[4] = (u8) (disk_block >> 40);
5242                 cdb[5] = (u8) (disk_block >> 32);
5243                 cdb[6] = (u8) (disk_block >> 24);
5244                 cdb[7] = (u8) (disk_block >> 16);
5245                 cdb[8] = (u8) (disk_block >> 8);
5246                 cdb[9] = (u8) (disk_block);
5247                 cdb[10] = (u8) (disk_block_cnt >> 24);
5248                 cdb[11] = (u8) (disk_block_cnt >> 16);
5249                 cdb[12] = (u8) (disk_block_cnt >> 8);
5250                 cdb[13] = (u8) (disk_block_cnt);
5251                 cdb[14] = 0;
5252                 cdb[15] = 0;
5253                 cdb_len = 16;
5254         } else {
5255                 cdb[0] = is_write ? WRITE_10 : READ_10;
5256                 cdb[1] = 0;
5257                 cdb[2] = (u8) (disk_block >> 24);
5258                 cdb[3] = (u8) (disk_block >> 16);
5259                 cdb[4] = (u8) (disk_block >> 8);
5260                 cdb[5] = (u8) (disk_block);
5261                 cdb[6] = 0;
5262                 cdb[7] = (u8) (disk_block_cnt >> 8);
5263                 cdb[8] = (u8) (disk_block_cnt);
5264                 cdb[9] = 0;
5265                 cdb_len = 10;
5266         }
5267         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5268                                                 dev->scsi3addr,
5269                                                 dev->phys_disk[map_index]);
5270 }
5271
5272 /*
5273  * Submit commands down the "normal" RAID stack path
5274  * All callers to hpsa_ciss_submit must check lockup_detected
5275  * beforehand, before (opt.) and after calling cmd_alloc
5276  */
5277 static int hpsa_ciss_submit(struct ctlr_info *h,
5278         struct CommandList *c, struct scsi_cmnd *cmd,
5279         unsigned char scsi3addr[])
5280 {
5281         cmd->host_scribble = (unsigned char *) c;
5282         c->cmd_type = CMD_SCSI;
5283         c->scsi_cmd = cmd;
5284         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5285         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5286         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5287
5288         /* Fill in the request block... */
5289
5290         c->Request.Timeout = 0;
5291         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5292         c->Request.CDBLen = cmd->cmd_len;
5293         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5294         switch (cmd->sc_data_direction) {
5295         case DMA_TO_DEVICE:
5296                 c->Request.type_attr_dir =
5297                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5298                 break;
5299         case DMA_FROM_DEVICE:
5300                 c->Request.type_attr_dir =
5301                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5302                 break;
5303         case DMA_NONE:
5304                 c->Request.type_attr_dir =
5305                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5306                 break;
5307         case DMA_BIDIRECTIONAL:
5308                 /* This can happen if a buggy application does a scsi passthru
5309                  * and sets both inlen and outlen to non-zero. ( see
5310                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5311                  */
5312
5313                 c->Request.type_attr_dir =
5314                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5315                 /* This is technically wrong, and hpsa controllers should
5316                  * reject it with CMD_INVALID, which is the most correct
5317                  * response, but non-fibre backends appear to let it
5318                  * slide by, and give the same results as if this field
5319                  * were set correctly.  Either way is acceptable for
5320                  * our purposes here.
5321                  */
5322
5323                 break;
5324
5325         default:
5326                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5327                         cmd->sc_data_direction);
5328                 BUG();
5329                 break;
5330         }
5331
5332         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5333                 hpsa_cmd_resolve_and_free(h, c);
5334                 return SCSI_MLQUEUE_HOST_BUSY;
5335         }
5336         enqueue_cmd_and_start_io(h, c);
5337         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5338         return 0;
5339 }
5340
5341 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5342                                 struct CommandList *c)
5343 {
5344         dma_addr_t cmd_dma_handle, err_dma_handle;
5345
5346         /* Zero out all of commandlist except the last field, refcount */
5347         memset(c, 0, offsetof(struct CommandList, refcount));
5348         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5349         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5350         c->err_info = h->errinfo_pool + index;
5351         memset(c->err_info, 0, sizeof(*c->err_info));
5352         err_dma_handle = h->errinfo_pool_dhandle
5353             + index * sizeof(*c->err_info);
5354         c->cmdindex = index;
5355         c->busaddr = (u32) cmd_dma_handle;
5356         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5357         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5358         c->h = h;
5359         c->scsi_cmd = SCSI_CMD_IDLE;
5360 }
5361
5362 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5363 {
5364         int i;
5365
5366         for (i = 0; i < h->nr_cmds; i++) {
5367                 struct CommandList *c = h->cmd_pool + i;
5368
5369                 hpsa_cmd_init(h, i, c);
5370                 atomic_set(&c->refcount, 0);
5371         }
5372 }
5373
5374 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5375                                 struct CommandList *c)
5376 {
5377         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5378
5379         BUG_ON(c->cmdindex != index);
5380
5381         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5382         memset(c->err_info, 0, sizeof(*c->err_info));
5383         c->busaddr = (u32) cmd_dma_handle;
5384 }
5385
5386 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5387                 struct CommandList *c, struct scsi_cmnd *cmd,
5388                 unsigned char *scsi3addr)
5389 {
5390         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5391         int rc = IO_ACCEL_INELIGIBLE;
5392
5393         if (!dev)
5394                 return SCSI_MLQUEUE_HOST_BUSY;
5395
5396         cmd->host_scribble = (unsigned char *) c;
5397
5398         if (dev->offload_enabled) {
5399                 hpsa_cmd_init(h, c->cmdindex, c);
5400                 c->cmd_type = CMD_SCSI;
5401                 c->scsi_cmd = cmd;
5402                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5403                 if (rc < 0)     /* scsi_dma_map failed. */
5404                         rc = SCSI_MLQUEUE_HOST_BUSY;
5405         } else if (dev->hba_ioaccel_enabled) {
5406                 hpsa_cmd_init(h, c->cmdindex, c);
5407                 c->cmd_type = CMD_SCSI;
5408                 c->scsi_cmd = cmd;
5409                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5410                 if (rc < 0)     /* scsi_dma_map failed. */
5411                         rc = SCSI_MLQUEUE_HOST_BUSY;
5412         }
5413         return rc;
5414 }
5415
5416 static void hpsa_command_resubmit_worker(struct work_struct *work)
5417 {
5418         struct scsi_cmnd *cmd;
5419         struct hpsa_scsi_dev_t *dev;
5420         struct CommandList *c = container_of(work, struct CommandList, work);
5421
5422         cmd = c->scsi_cmd;
5423         dev = cmd->device->hostdata;
5424         if (!dev) {
5425                 cmd->result = DID_NO_CONNECT << 16;
5426                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5427         }
5428         if (c->reset_pending)
5429                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5430         if (c->cmd_type == CMD_IOACCEL2) {
5431                 struct ctlr_info *h = c->h;
5432                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5433                 int rc;
5434
5435                 if (c2->error_data.serv_response ==
5436                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5437                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5438                         if (rc == 0)
5439                                 return;
5440                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5441                                 /*
5442                                  * If we get here, it means dma mapping failed.
5443                                  * Try again via scsi mid layer, which will
5444                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5445                                  */
5446                                 cmd->result = DID_IMM_RETRY << 16;
5447                                 return hpsa_cmd_free_and_done(h, c, cmd);
5448                         }
5449                         /* else, fall thru and resubmit down CISS path */
5450                 }
5451         }
5452         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5453         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5454                 /*
5455                  * If we get here, it means dma mapping failed. Try
5456                  * again via scsi mid layer, which will then get
5457                  * SCSI_MLQUEUE_HOST_BUSY.
5458                  *
5459                  * hpsa_ciss_submit will have already freed c
5460                  * if it encountered a dma mapping failure.
5461                  */
5462                 cmd->result = DID_IMM_RETRY << 16;
5463                 cmd->scsi_done(cmd);
5464         }
5465 }
5466
5467 /* Running in struct Scsi_Host->host_lock less mode */
5468 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5469 {
5470         struct ctlr_info *h;
5471         struct hpsa_scsi_dev_t *dev;
5472         unsigned char scsi3addr[8];
5473         struct CommandList *c;
5474         int rc = 0;
5475
5476         /* Get the ptr to our adapter structure out of cmd->host. */
5477         h = sdev_to_hba(cmd->device);
5478
5479         BUG_ON(cmd->request->tag < 0);
5480
5481         dev = cmd->device->hostdata;
5482         if (!dev) {
5483                 cmd->result = DID_NO_CONNECT << 16;
5484                 cmd->scsi_done(cmd);
5485                 return 0;
5486         }
5487
5488         if (dev->removed) {
5489                 cmd->result = DID_NO_CONNECT << 16;
5490                 cmd->scsi_done(cmd);
5491                 return 0;
5492         }
5493
5494         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5495
5496         if (unlikely(lockup_detected(h))) {
5497                 cmd->result = DID_NO_CONNECT << 16;
5498                 cmd->scsi_done(cmd);
5499                 return 0;
5500         }
5501         c = cmd_tagged_alloc(h, cmd);
5502
5503         /*
5504          * Call alternate submit routine for I/O accelerated commands.
5505          * Retries always go down the normal I/O path.
5506          */
5507         if (likely(cmd->retries == 0 &&
5508                         !blk_rq_is_passthrough(cmd->request) &&
5509                         h->acciopath_status)) {
5510                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5511                 if (rc == 0)
5512                         return 0;
5513                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5514                         hpsa_cmd_resolve_and_free(h, c);
5515                         return SCSI_MLQUEUE_HOST_BUSY;
5516                 }
5517         }
5518         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5519 }
5520
5521 static void hpsa_scan_complete(struct ctlr_info *h)
5522 {
5523         unsigned long flags;
5524
5525         spin_lock_irqsave(&h->scan_lock, flags);
5526         h->scan_finished = 1;
5527         wake_up(&h->scan_wait_queue);
5528         spin_unlock_irqrestore(&h->scan_lock, flags);
5529 }
5530
5531 static void hpsa_scan_start(struct Scsi_Host *sh)
5532 {
5533         struct ctlr_info *h = shost_to_hba(sh);
5534         unsigned long flags;
5535
5536         /*
5537          * Don't let rescans be initiated on a controller known to be locked
5538          * up.  If the controller locks up *during* a rescan, that thread is
5539          * probably hosed, but at least we can prevent new rescan threads from
5540          * piling up on a locked up controller.
5541          */
5542         if (unlikely(lockup_detected(h)))
5543                 return hpsa_scan_complete(h);
5544
5545         /*
5546          * If a scan is already waiting to run, no need to add another
5547          */
5548         spin_lock_irqsave(&h->scan_lock, flags);
5549         if (h->scan_waiting) {
5550                 spin_unlock_irqrestore(&h->scan_lock, flags);
5551                 return;
5552         }
5553
5554         spin_unlock_irqrestore(&h->scan_lock, flags);
5555
5556         /* wait until any scan already in progress is finished. */
5557         while (1) {
5558                 spin_lock_irqsave(&h->scan_lock, flags);
5559                 if (h->scan_finished)
5560                         break;
5561                 h->scan_waiting = 1;
5562                 spin_unlock_irqrestore(&h->scan_lock, flags);
5563                 wait_event(h->scan_wait_queue, h->scan_finished);
5564                 /* Note: We don't need to worry about a race between this
5565                  * thread and driver unload because the midlayer will
5566                  * have incremented the reference count, so unload won't
5567                  * happen if we're in here.
5568                  */
5569         }
5570         h->scan_finished = 0; /* mark scan as in progress */
5571         h->scan_waiting = 0;
5572         spin_unlock_irqrestore(&h->scan_lock, flags);
5573
5574         if (unlikely(lockup_detected(h)))
5575                 return hpsa_scan_complete(h);
5576
5577         /*
5578          * Do the scan after a reset completion
5579          */
5580         spin_lock_irqsave(&h->reset_lock, flags);
5581         if (h->reset_in_progress) {
5582                 h->drv_req_rescan = 1;
5583                 spin_unlock_irqrestore(&h->reset_lock, flags);
5584                 hpsa_scan_complete(h);
5585                 return;
5586         }
5587         spin_unlock_irqrestore(&h->reset_lock, flags);
5588
5589         hpsa_update_scsi_devices(h);
5590
5591         hpsa_scan_complete(h);
5592 }
5593
5594 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5595 {
5596         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5597
5598         if (!logical_drive)
5599                 return -ENODEV;
5600
5601         if (qdepth < 1)
5602                 qdepth = 1;
5603         else if (qdepth > logical_drive->queue_depth)
5604                 qdepth = logical_drive->queue_depth;
5605
5606         return scsi_change_queue_depth(sdev, qdepth);
5607 }
5608
5609 static int hpsa_scan_finished(struct Scsi_Host *sh,
5610         unsigned long elapsed_time)
5611 {
5612         struct ctlr_info *h = shost_to_hba(sh);
5613         unsigned long flags;
5614         int finished;
5615
5616         spin_lock_irqsave(&h->scan_lock, flags);
5617         finished = h->scan_finished;
5618         spin_unlock_irqrestore(&h->scan_lock, flags);
5619         return finished;
5620 }
5621
5622 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5623 {
5624         struct Scsi_Host *sh;
5625
5626         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5627         if (sh == NULL) {
5628                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5629                 return -ENOMEM;
5630         }
5631
5632         sh->io_port = 0;
5633         sh->n_io_port = 0;
5634         sh->this_id = -1;
5635         sh->max_channel = 3;
5636         sh->max_cmd_len = MAX_COMMAND_SIZE;
5637         sh->max_lun = HPSA_MAX_LUN;
5638         sh->max_id = HPSA_MAX_LUN;
5639         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5640         sh->cmd_per_lun = sh->can_queue;
5641         sh->sg_tablesize = h->maxsgentries;
5642         sh->transportt = hpsa_sas_transport_template;
5643         sh->hostdata[0] = (unsigned long) h;
5644         sh->irq = pci_irq_vector(h->pdev, 0);
5645         sh->unique_id = sh->irq;
5646
5647         h->scsi_host = sh;
5648         return 0;
5649 }
5650
5651 static int hpsa_scsi_add_host(struct ctlr_info *h)
5652 {
5653         int rv;
5654
5655         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5656         if (rv) {
5657                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5658                 return rv;
5659         }
5660         scsi_scan_host(h->scsi_host);
5661         return 0;
5662 }
5663
5664 /*
5665  * The block layer has already gone to the trouble of picking out a unique,
5666  * small-integer tag for this request.  We use an offset from that value as
5667  * an index to select our command block.  (The offset allows us to reserve the
5668  * low-numbered entries for our own uses.)
5669  */
5670 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5671 {
5672         int idx = scmd->request->tag;
5673
5674         if (idx < 0)
5675                 return idx;
5676
5677         /* Offset to leave space for internal cmds. */
5678         return idx += HPSA_NRESERVED_CMDS;
5679 }
5680
5681 /*
5682  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5683  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5684  */
5685 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5686                                 struct CommandList *c, unsigned char lunaddr[],
5687                                 int reply_queue)
5688 {
5689         int rc;
5690
5691         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5692         (void) fill_cmd(c, TEST_UNIT_READY, h,
5693                         NULL, 0, 0, lunaddr, TYPE_CMD);
5694         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5695         if (rc)
5696                 return rc;
5697         /* no unmap needed here because no data xfer. */
5698
5699         /* Check if the unit is already ready. */
5700         if (c->err_info->CommandStatus == CMD_SUCCESS)
5701                 return 0;
5702
5703         /*
5704          * The first command sent after reset will receive "unit attention" to
5705          * indicate that the LUN has been reset...this is actually what we're
5706          * looking for (but, success is good too).
5707          */
5708         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5709                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5710                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5711                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5712                 return 0;
5713
5714         return 1;
5715 }
5716
5717 /*
5718  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5719  * returns zero when the unit is ready, and non-zero when giving up.
5720  */
5721 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5722                                 struct CommandList *c,
5723                                 unsigned char lunaddr[], int reply_queue)
5724 {
5725         int rc;
5726         int count = 0;
5727         int waittime = 1; /* seconds */
5728
5729         /* Send test unit ready until device ready, or give up. */
5730         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5731
5732                 /*
5733                  * Wait for a bit.  do this first, because if we send
5734                  * the TUR right away, the reset will just abort it.
5735                  */
5736                 msleep(1000 * waittime);
5737
5738                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5739                 if (!rc)
5740                         break;
5741
5742                 /* Increase wait time with each try, up to a point. */
5743                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5744                         waittime *= 2;
5745
5746                 dev_warn(&h->pdev->dev,
5747                          "waiting %d secs for device to become ready.\n",
5748                          waittime);
5749         }
5750
5751         return rc;
5752 }
5753
5754 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5755                                            unsigned char lunaddr[],
5756                                            int reply_queue)
5757 {
5758         int first_queue;
5759         int last_queue;
5760         int rq;
5761         int rc = 0;
5762         struct CommandList *c;
5763
5764         c = cmd_alloc(h);
5765
5766         /*
5767          * If no specific reply queue was requested, then send the TUR
5768          * repeatedly, requesting a reply on each reply queue; otherwise execute
5769          * the loop exactly once using only the specified queue.
5770          */
5771         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5772                 first_queue = 0;
5773                 last_queue = h->nreply_queues - 1;
5774         } else {
5775                 first_queue = reply_queue;
5776                 last_queue = reply_queue;
5777         }
5778
5779         for (rq = first_queue; rq <= last_queue; rq++) {
5780                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5781                 if (rc)
5782                         break;
5783         }
5784
5785         if (rc)
5786                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5787         else
5788                 dev_warn(&h->pdev->dev, "device is ready.\n");
5789
5790         cmd_free(h, c);
5791         return rc;
5792 }
5793
5794 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5795  * complaining.  Doing a host- or bus-reset can't do anything good here.
5796  */
5797 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5798 {
5799         int rc = SUCCESS;
5800         struct ctlr_info *h;
5801         struct hpsa_scsi_dev_t *dev;
5802         u8 reset_type;
5803         char msg[48];
5804         unsigned long flags;
5805
5806         /* find the controller to which the command to be aborted was sent */
5807         h = sdev_to_hba(scsicmd->device);
5808         if (h == NULL) /* paranoia */
5809                 return FAILED;
5810
5811         spin_lock_irqsave(&h->reset_lock, flags);
5812         h->reset_in_progress = 1;
5813         spin_unlock_irqrestore(&h->reset_lock, flags);
5814
5815         if (lockup_detected(h)) {
5816                 rc = FAILED;
5817                 goto return_reset_status;
5818         }
5819
5820         dev = scsicmd->device->hostdata;
5821         if (!dev) {
5822                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5823                 rc = FAILED;
5824                 goto return_reset_status;
5825         }
5826
5827         if (dev->devtype == TYPE_ENCLOSURE) {
5828                 rc = SUCCESS;
5829                 goto return_reset_status;
5830         }
5831
5832         /* if controller locked up, we can guarantee command won't complete */
5833         if (lockup_detected(h)) {
5834                 snprintf(msg, sizeof(msg),
5835                          "cmd %d RESET FAILED, lockup detected",
5836                          hpsa_get_cmd_index(scsicmd));
5837                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5838                 rc = FAILED;
5839                 goto return_reset_status;
5840         }
5841
5842         /* this reset request might be the result of a lockup; check */
5843         if (detect_controller_lockup(h)) {
5844                 snprintf(msg, sizeof(msg),
5845                          "cmd %d RESET FAILED, new lockup detected",
5846                          hpsa_get_cmd_index(scsicmd));
5847                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5848                 rc = FAILED;
5849                 goto return_reset_status;
5850         }
5851
5852         /* Do not attempt on controller */
5853         if (is_hba_lunid(dev->scsi3addr)) {
5854                 rc = SUCCESS;
5855                 goto return_reset_status;
5856         }
5857
5858         if (is_logical_dev_addr_mode(dev->scsi3addr))
5859                 reset_type = HPSA_DEVICE_RESET_MSG;
5860         else
5861                 reset_type = HPSA_PHYS_TARGET_RESET;
5862
5863         sprintf(msg, "resetting %s",
5864                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5865         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5866
5867         /* send a reset to the SCSI LUN which the command was sent to */
5868         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5869                            DEFAULT_REPLY_QUEUE);
5870         if (rc == 0)
5871                 rc = SUCCESS;
5872         else
5873                 rc = FAILED;
5874
5875         sprintf(msg, "reset %s %s",
5876                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5877                 rc == SUCCESS ? "completed successfully" : "failed");
5878         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5879
5880 return_reset_status:
5881         spin_lock_irqsave(&h->reset_lock, flags);
5882         h->reset_in_progress = 0;
5883         spin_unlock_irqrestore(&h->reset_lock, flags);
5884         return rc;
5885 }
5886
5887 /*
5888  * For operations with an associated SCSI command, a command block is allocated
5889  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5890  * block request tag as an index into a table of entries.  cmd_tagged_free() is
5891  * the complement, although cmd_free() may be called instead.
5892  */
5893 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5894                                             struct scsi_cmnd *scmd)
5895 {
5896         int idx = hpsa_get_cmd_index(scmd);
5897         struct CommandList *c = h->cmd_pool + idx;
5898
5899         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5900                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5901                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5902                 /* The index value comes from the block layer, so if it's out of
5903                  * bounds, it's probably not our bug.
5904                  */
5905                 BUG();
5906         }
5907
5908         atomic_inc(&c->refcount);
5909         if (unlikely(!hpsa_is_cmd_idle(c))) {
5910                 /*
5911                  * We expect that the SCSI layer will hand us a unique tag
5912                  * value.  Thus, there should never be a collision here between
5913                  * two requests...because if the selected command isn't idle
5914                  * then someone is going to be very disappointed.
5915                  */
5916                 dev_err(&h->pdev->dev,
5917                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5918                         idx);
5919                 if (c->scsi_cmd != NULL)
5920                         scsi_print_command(c->scsi_cmd);
5921                 scsi_print_command(scmd);
5922         }
5923
5924         hpsa_cmd_partial_init(h, idx, c);
5925         return c;
5926 }
5927
5928 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5929 {
5930         /*
5931          * Release our reference to the block.  We don't need to do anything
5932          * else to free it, because it is accessed by index.
5933          */
5934         (void)atomic_dec(&c->refcount);
5935 }
5936
5937 /*
5938  * For operations that cannot sleep, a command block is allocated at init,
5939  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5940  * which ones are free or in use.  Lock must be held when calling this.
5941  * cmd_free() is the complement.
5942  * This function never gives up and returns NULL.  If it hangs,
5943  * another thread must call cmd_free() to free some tags.
5944  */
5945
5946 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5947 {
5948         struct CommandList *c;
5949         int refcount, i;
5950         int offset = 0;
5951
5952         /*
5953          * There is some *extremely* small but non-zero chance that that
5954          * multiple threads could get in here, and one thread could
5955          * be scanning through the list of bits looking for a free
5956          * one, but the free ones are always behind him, and other
5957          * threads sneak in behind him and eat them before he can
5958          * get to them, so that while there is always a free one, a
5959          * very unlucky thread might be starved anyway, never able to
5960          * beat the other threads.  In reality, this happens so
5961          * infrequently as to be indistinguishable from never.
5962          *
5963          * Note that we start allocating commands before the SCSI host structure
5964          * is initialized.  Since the search starts at bit zero, this
5965          * all works, since we have at least one command structure available;
5966          * however, it means that the structures with the low indexes have to be
5967          * reserved for driver-initiated requests, while requests from the block
5968          * layer will use the higher indexes.
5969          */
5970
5971         for (;;) {
5972                 i = find_next_zero_bit(h->cmd_pool_bits,
5973                                         HPSA_NRESERVED_CMDS,
5974                                         offset);
5975                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5976                         offset = 0;
5977                         continue;
5978                 }
5979                 c = h->cmd_pool + i;
5980                 refcount = atomic_inc_return(&c->refcount);
5981                 if (unlikely(refcount > 1)) {
5982                         cmd_free(h, c); /* already in use */
5983                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
5984                         continue;
5985                 }
5986                 set_bit(i & (BITS_PER_LONG - 1),
5987                         h->cmd_pool_bits + (i / BITS_PER_LONG));
5988                 break; /* it's ours now. */
5989         }
5990         hpsa_cmd_partial_init(h, i, c);
5991         return c;
5992 }
5993
5994 /*
5995  * This is the complementary operation to cmd_alloc().  Note, however, in some
5996  * corner cases it may also be used to free blocks allocated by
5997  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5998  * the clear-bit is harmless.
5999  */
6000 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6001 {
6002         if (atomic_dec_and_test(&c->refcount)) {
6003                 int i;
6004
6005                 i = c - h->cmd_pool;
6006                 clear_bit(i & (BITS_PER_LONG - 1),
6007                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6008         }
6009 }
6010
6011 #ifdef CONFIG_COMPAT
6012
6013 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6014         void __user *arg)
6015 {
6016         IOCTL32_Command_struct __user *arg32 =
6017             (IOCTL32_Command_struct __user *) arg;
6018         IOCTL_Command_struct arg64;
6019         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6020         int err;
6021         u32 cp;
6022
6023         memset(&arg64, 0, sizeof(arg64));
6024         err = 0;
6025         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6026                            sizeof(arg64.LUN_info));
6027         err |= copy_from_user(&arg64.Request, &arg32->Request,
6028                            sizeof(arg64.Request));
6029         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6030                            sizeof(arg64.error_info));
6031         err |= get_user(arg64.buf_size, &arg32->buf_size);
6032         err |= get_user(cp, &arg32->buf);
6033         arg64.buf = compat_ptr(cp);
6034         err |= copy_to_user(p, &arg64, sizeof(arg64));
6035
6036         if (err)
6037                 return -EFAULT;
6038
6039         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6040         if (err)
6041                 return err;
6042         err |= copy_in_user(&arg32->error_info, &p->error_info,
6043                          sizeof(arg32->error_info));
6044         if (err)
6045                 return -EFAULT;
6046         return err;
6047 }
6048
6049 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6050         int cmd, void __user *arg)
6051 {
6052         BIG_IOCTL32_Command_struct __user *arg32 =
6053             (BIG_IOCTL32_Command_struct __user *) arg;
6054         BIG_IOCTL_Command_struct arg64;
6055         BIG_IOCTL_Command_struct __user *p =
6056             compat_alloc_user_space(sizeof(arg64));
6057         int err;
6058         u32 cp;
6059
6060         memset(&arg64, 0, sizeof(arg64));
6061         err = 0;
6062         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6063                            sizeof(arg64.LUN_info));
6064         err |= copy_from_user(&arg64.Request, &arg32->Request,
6065                            sizeof(arg64.Request));
6066         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6067                            sizeof(arg64.error_info));
6068         err |= get_user(arg64.buf_size, &arg32->buf_size);
6069         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6070         err |= get_user(cp, &arg32->buf);
6071         arg64.buf = compat_ptr(cp);
6072         err |= copy_to_user(p, &arg64, sizeof(arg64));
6073
6074         if (err)
6075                 return -EFAULT;
6076
6077         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6078         if (err)
6079                 return err;
6080         err |= copy_in_user(&arg32->error_info, &p->error_info,
6081                          sizeof(arg32->error_info));
6082         if (err)
6083                 return -EFAULT;
6084         return err;
6085 }
6086
6087 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6088 {
6089         switch (cmd) {
6090         case CCISS_GETPCIINFO:
6091         case CCISS_GETINTINFO:
6092         case CCISS_SETINTINFO:
6093         case CCISS_GETNODENAME:
6094         case CCISS_SETNODENAME:
6095         case CCISS_GETHEARTBEAT:
6096         case CCISS_GETBUSTYPES:
6097         case CCISS_GETFIRMVER:
6098         case CCISS_GETDRIVVER:
6099         case CCISS_REVALIDVOLS:
6100         case CCISS_DEREGDISK:
6101         case CCISS_REGNEWDISK:
6102         case CCISS_REGNEWD:
6103         case CCISS_RESCANDISK:
6104         case CCISS_GETLUNINFO:
6105                 return hpsa_ioctl(dev, cmd, arg);
6106
6107         case CCISS_PASSTHRU32:
6108                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6109         case CCISS_BIG_PASSTHRU32:
6110                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6111
6112         default:
6113                 return -ENOIOCTLCMD;
6114         }
6115 }
6116 #endif
6117
6118 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6119 {
6120         struct hpsa_pci_info pciinfo;
6121
6122         if (!argp)
6123                 return -EINVAL;
6124         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6125         pciinfo.bus = h->pdev->bus->number;
6126         pciinfo.dev_fn = h->pdev->devfn;
6127         pciinfo.board_id = h->board_id;
6128         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6129                 return -EFAULT;
6130         return 0;
6131 }
6132
6133 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6134 {
6135         DriverVer_type DriverVer;
6136         unsigned char vmaj, vmin, vsubmin;
6137         int rc;
6138
6139         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6140                 &vmaj, &vmin, &vsubmin);
6141         if (rc != 3) {
6142                 dev_info(&h->pdev->dev, "driver version string '%s' "
6143                         "unrecognized.", HPSA_DRIVER_VERSION);
6144                 vmaj = 0;
6145                 vmin = 0;
6146                 vsubmin = 0;
6147         }
6148         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6149         if (!argp)
6150                 return -EINVAL;
6151         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6152                 return -EFAULT;
6153         return 0;
6154 }
6155
6156 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6157 {
6158         IOCTL_Command_struct iocommand;
6159         struct CommandList *c;
6160         char *buff = NULL;
6161         u64 temp64;
6162         int rc = 0;
6163
6164         if (!argp)
6165                 return -EINVAL;
6166         if (!capable(CAP_SYS_RAWIO))
6167                 return -EPERM;
6168         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6169                 return -EFAULT;
6170         if ((iocommand.buf_size < 1) &&
6171             (iocommand.Request.Type.Direction != XFER_NONE)) {
6172                 return -EINVAL;
6173         }
6174         if (iocommand.buf_size > 0) {
6175                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6176                 if (buff == NULL)
6177                         return -ENOMEM;
6178                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6179                         /* Copy the data into the buffer we created */
6180                         if (copy_from_user(buff, iocommand.buf,
6181                                 iocommand.buf_size)) {
6182                                 rc = -EFAULT;
6183                                 goto out_kfree;
6184                         }
6185                 } else {
6186                         memset(buff, 0, iocommand.buf_size);
6187                 }
6188         }
6189         c = cmd_alloc(h);
6190
6191         /* Fill in the command type */
6192         c->cmd_type = CMD_IOCTL_PEND;
6193         c->scsi_cmd = SCSI_CMD_BUSY;
6194         /* Fill in Command Header */
6195         c->Header.ReplyQueue = 0; /* unused in simple mode */
6196         if (iocommand.buf_size > 0) {   /* buffer to fill */
6197                 c->Header.SGList = 1;
6198                 c->Header.SGTotal = cpu_to_le16(1);
6199         } else  { /* no buffers to fill */
6200                 c->Header.SGList = 0;
6201                 c->Header.SGTotal = cpu_to_le16(0);
6202         }
6203         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6204
6205         /* Fill in Request block */
6206         memcpy(&c->Request, &iocommand.Request,
6207                 sizeof(c->Request));
6208
6209         /* Fill in the scatter gather information */
6210         if (iocommand.buf_size > 0) {
6211                 temp64 = pci_map_single(h->pdev, buff,
6212                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6213                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6214                         c->SG[0].Addr = cpu_to_le64(0);
6215                         c->SG[0].Len = cpu_to_le32(0);
6216                         rc = -ENOMEM;
6217                         goto out;
6218                 }
6219                 c->SG[0].Addr = cpu_to_le64(temp64);
6220                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6221                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6222         }
6223         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6224                                         NO_TIMEOUT);
6225         if (iocommand.buf_size > 0)
6226                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6227         check_ioctl_unit_attention(h, c);
6228         if (rc) {
6229                 rc = -EIO;
6230                 goto out;
6231         }
6232
6233         /* Copy the error information out */
6234         memcpy(&iocommand.error_info, c->err_info,
6235                 sizeof(iocommand.error_info));
6236         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6237                 rc = -EFAULT;
6238                 goto out;
6239         }
6240         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6241                 iocommand.buf_size > 0) {
6242                 /* Copy the data out of the buffer we created */
6243                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6244                         rc = -EFAULT;
6245                         goto out;
6246                 }
6247         }
6248 out:
6249         cmd_free(h, c);
6250 out_kfree:
6251         kfree(buff);
6252         return rc;
6253 }
6254
6255 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6256 {
6257         BIG_IOCTL_Command_struct *ioc;
6258         struct CommandList *c;
6259         unsigned char **buff = NULL;
6260         int *buff_size = NULL;
6261         u64 temp64;
6262         BYTE sg_used = 0;
6263         int status = 0;
6264         u32 left;
6265         u32 sz;
6266         BYTE __user *data_ptr;
6267
6268         if (!argp)
6269                 return -EINVAL;
6270         if (!capable(CAP_SYS_RAWIO))
6271                 return -EPERM;
6272         ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6273         if (!ioc) {
6274                 status = -ENOMEM;
6275                 goto cleanup1;
6276         }
6277         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6278                 status = -EFAULT;
6279                 goto cleanup1;
6280         }
6281         if ((ioc->buf_size < 1) &&
6282             (ioc->Request.Type.Direction != XFER_NONE)) {
6283                 status = -EINVAL;
6284                 goto cleanup1;
6285         }
6286         /* Check kmalloc limits  using all SGs */
6287         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6288                 status = -EINVAL;
6289                 goto cleanup1;
6290         }
6291         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6292                 status = -EINVAL;
6293                 goto cleanup1;
6294         }
6295         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6296         if (!buff) {
6297                 status = -ENOMEM;
6298                 goto cleanup1;
6299         }
6300         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6301         if (!buff_size) {
6302                 status = -ENOMEM;
6303                 goto cleanup1;
6304         }
6305         left = ioc->buf_size;
6306         data_ptr = ioc->buf;
6307         while (left) {
6308                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6309                 buff_size[sg_used] = sz;
6310                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6311                 if (buff[sg_used] == NULL) {
6312                         status = -ENOMEM;
6313                         goto cleanup1;
6314                 }
6315                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6316                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6317                                 status = -EFAULT;
6318                                 goto cleanup1;
6319                         }
6320                 } else
6321                         memset(buff[sg_used], 0, sz);
6322                 left -= sz;
6323                 data_ptr += sz;
6324                 sg_used++;
6325         }
6326         c = cmd_alloc(h);
6327
6328         c->cmd_type = CMD_IOCTL_PEND;
6329         c->scsi_cmd = SCSI_CMD_BUSY;
6330         c->Header.ReplyQueue = 0;
6331         c->Header.SGList = (u8) sg_used;
6332         c->Header.SGTotal = cpu_to_le16(sg_used);
6333         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6334         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6335         if (ioc->buf_size > 0) {
6336                 int i;
6337                 for (i = 0; i < sg_used; i++) {
6338                         temp64 = pci_map_single(h->pdev, buff[i],
6339                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6340                         if (dma_mapping_error(&h->pdev->dev,
6341                                                         (dma_addr_t) temp64)) {
6342                                 c->SG[i].Addr = cpu_to_le64(0);
6343                                 c->SG[i].Len = cpu_to_le32(0);
6344                                 hpsa_pci_unmap(h->pdev, c, i,
6345                                         PCI_DMA_BIDIRECTIONAL);
6346                                 status = -ENOMEM;
6347                                 goto cleanup0;
6348                         }
6349                         c->SG[i].Addr = cpu_to_le64(temp64);
6350                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6351                         c->SG[i].Ext = cpu_to_le32(0);
6352                 }
6353                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6354         }
6355         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6356                                                 NO_TIMEOUT);
6357         if (sg_used)
6358                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6359         check_ioctl_unit_attention(h, c);
6360         if (status) {
6361                 status = -EIO;
6362                 goto cleanup0;
6363         }
6364
6365         /* Copy the error information out */
6366         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6367         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6368                 status = -EFAULT;
6369                 goto cleanup0;
6370         }
6371         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6372                 int i;
6373
6374                 /* Copy the data out of the buffer we created */
6375                 BYTE __user *ptr = ioc->buf;
6376                 for (i = 0; i < sg_used; i++) {
6377                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6378                                 status = -EFAULT;
6379                                 goto cleanup0;
6380                         }
6381                         ptr += buff_size[i];
6382                 }
6383         }
6384         status = 0;
6385 cleanup0:
6386         cmd_free(h, c);
6387 cleanup1:
6388         if (buff) {
6389                 int i;
6390
6391                 for (i = 0; i < sg_used; i++)
6392                         kfree(buff[i]);
6393                 kfree(buff);
6394         }
6395         kfree(buff_size);
6396         kfree(ioc);
6397         return status;
6398 }
6399
6400 static void check_ioctl_unit_attention(struct ctlr_info *h,
6401         struct CommandList *c)
6402 {
6403         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6404                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6405                 (void) check_for_unit_attention(h, c);
6406 }
6407
6408 /*
6409  * ioctl
6410  */
6411 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6412 {
6413         struct ctlr_info *h;
6414         void __user *argp = (void __user *)arg;
6415         int rc;
6416
6417         h = sdev_to_hba(dev);
6418
6419         switch (cmd) {
6420         case CCISS_DEREGDISK:
6421         case CCISS_REGNEWDISK:
6422         case CCISS_REGNEWD:
6423                 hpsa_scan_start(h->scsi_host);
6424                 return 0;
6425         case CCISS_GETPCIINFO:
6426                 return hpsa_getpciinfo_ioctl(h, argp);
6427         case CCISS_GETDRIVVER:
6428                 return hpsa_getdrivver_ioctl(h, argp);
6429         case CCISS_PASSTHRU:
6430                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6431                         return -EAGAIN;
6432                 rc = hpsa_passthru_ioctl(h, argp);
6433                 atomic_inc(&h->passthru_cmds_avail);
6434                 return rc;
6435         case CCISS_BIG_PASSTHRU:
6436                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6437                         return -EAGAIN;
6438                 rc = hpsa_big_passthru_ioctl(h, argp);
6439                 atomic_inc(&h->passthru_cmds_avail);
6440                 return rc;
6441         default:
6442                 return -ENOTTY;
6443         }
6444 }
6445
6446 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6447                                 u8 reset_type)
6448 {
6449         struct CommandList *c;
6450
6451         c = cmd_alloc(h);
6452
6453         /* fill_cmd can't fail here, no data buffer to map */
6454         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6455                 RAID_CTLR_LUNID, TYPE_MSG);
6456         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6457         c->waiting = NULL;
6458         enqueue_cmd_and_start_io(h, c);
6459         /* Don't wait for completion, the reset won't complete.  Don't free
6460          * the command either.  This is the last command we will send before
6461          * re-initializing everything, so it doesn't matter and won't leak.
6462          */
6463         return;
6464 }
6465
6466 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6467         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6468         int cmd_type)
6469 {
6470         int pci_dir = XFER_NONE;
6471
6472         c->cmd_type = CMD_IOCTL_PEND;
6473         c->scsi_cmd = SCSI_CMD_BUSY;
6474         c->Header.ReplyQueue = 0;
6475         if (buff != NULL && size > 0) {
6476                 c->Header.SGList = 1;
6477                 c->Header.SGTotal = cpu_to_le16(1);
6478         } else {
6479                 c->Header.SGList = 0;
6480                 c->Header.SGTotal = cpu_to_le16(0);
6481         }
6482         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6483
6484         if (cmd_type == TYPE_CMD) {
6485                 switch (cmd) {
6486                 case HPSA_INQUIRY:
6487                         /* are we trying to read a vital product page */
6488                         if (page_code & VPD_PAGE) {
6489                                 c->Request.CDB[1] = 0x01;
6490                                 c->Request.CDB[2] = (page_code & 0xff);
6491                         }
6492                         c->Request.CDBLen = 6;
6493                         c->Request.type_attr_dir =
6494                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6495                         c->Request.Timeout = 0;
6496                         c->Request.CDB[0] = HPSA_INQUIRY;
6497                         c->Request.CDB[4] = size & 0xFF;
6498                         break;
6499                 case HPSA_REPORT_LOG:
6500                 case HPSA_REPORT_PHYS:
6501                         /* Talking to controller so It's a physical command
6502                            mode = 00 target = 0.  Nothing to write.
6503                          */
6504                         c->Request.CDBLen = 12;
6505                         c->Request.type_attr_dir =
6506                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6507                         c->Request.Timeout = 0;
6508                         c->Request.CDB[0] = cmd;
6509                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6510                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6511                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6512                         c->Request.CDB[9] = size & 0xFF;
6513                         break;
6514                 case BMIC_SENSE_DIAG_OPTIONS:
6515                         c->Request.CDBLen = 16;
6516                         c->Request.type_attr_dir =
6517                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6518                         c->Request.Timeout = 0;
6519                         /* Spec says this should be BMIC_WRITE */
6520                         c->Request.CDB[0] = BMIC_READ;
6521                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6522                         break;
6523                 case BMIC_SET_DIAG_OPTIONS:
6524                         c->Request.CDBLen = 16;
6525                         c->Request.type_attr_dir =
6526                                         TYPE_ATTR_DIR(cmd_type,
6527                                                 ATTR_SIMPLE, XFER_WRITE);
6528                         c->Request.Timeout = 0;
6529                         c->Request.CDB[0] = BMIC_WRITE;
6530                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6531                         break;
6532                 case HPSA_CACHE_FLUSH:
6533                         c->Request.CDBLen = 12;
6534                         c->Request.type_attr_dir =
6535                                         TYPE_ATTR_DIR(cmd_type,
6536                                                 ATTR_SIMPLE, XFER_WRITE);
6537                         c->Request.Timeout = 0;
6538                         c->Request.CDB[0] = BMIC_WRITE;
6539                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6540                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6541                         c->Request.CDB[8] = size & 0xFF;
6542                         break;
6543                 case TEST_UNIT_READY:
6544                         c->Request.CDBLen = 6;
6545                         c->Request.type_attr_dir =
6546                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6547                         c->Request.Timeout = 0;
6548                         break;
6549                 case HPSA_GET_RAID_MAP:
6550                         c->Request.CDBLen = 12;
6551                         c->Request.type_attr_dir =
6552                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6553                         c->Request.Timeout = 0;
6554                         c->Request.CDB[0] = HPSA_CISS_READ;
6555                         c->Request.CDB[1] = cmd;
6556                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6557                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6558                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6559                         c->Request.CDB[9] = size & 0xFF;
6560                         break;
6561                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6562                         c->Request.CDBLen = 10;
6563                         c->Request.type_attr_dir =
6564                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6565                         c->Request.Timeout = 0;
6566                         c->Request.CDB[0] = BMIC_READ;
6567                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6568                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6569                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6570                         break;
6571                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6572                         c->Request.CDBLen = 10;
6573                         c->Request.type_attr_dir =
6574                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6575                         c->Request.Timeout = 0;
6576                         c->Request.CDB[0] = BMIC_READ;
6577                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6578                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6579                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6580                         break;
6581                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6582                         c->Request.CDBLen = 10;
6583                         c->Request.type_attr_dir =
6584                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6585                         c->Request.Timeout = 0;
6586                         c->Request.CDB[0] = BMIC_READ;
6587                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6588                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6589                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6590                         break;
6591                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6592                         c->Request.CDBLen = 10;
6593                         c->Request.type_attr_dir =
6594                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6595                         c->Request.Timeout = 0;
6596                         c->Request.CDB[0] = BMIC_READ;
6597                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6598                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6599                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6600                         break;
6601                 case BMIC_IDENTIFY_CONTROLLER:
6602                         c->Request.CDBLen = 10;
6603                         c->Request.type_attr_dir =
6604                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6605                         c->Request.Timeout = 0;
6606                         c->Request.CDB[0] = BMIC_READ;
6607                         c->Request.CDB[1] = 0;
6608                         c->Request.CDB[2] = 0;
6609                         c->Request.CDB[3] = 0;
6610                         c->Request.CDB[4] = 0;
6611                         c->Request.CDB[5] = 0;
6612                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6613                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6614                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6615                         c->Request.CDB[9] = 0;
6616                         break;
6617                 default:
6618                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6619                         BUG();
6620                 }
6621         } else if (cmd_type == TYPE_MSG) {
6622                 switch (cmd) {
6623
6624                 case  HPSA_PHYS_TARGET_RESET:
6625                         c->Request.CDBLen = 16;
6626                         c->Request.type_attr_dir =
6627                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6628                         c->Request.Timeout = 0; /* Don't time out */
6629                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6630                         c->Request.CDB[0] = HPSA_RESET;
6631                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6632                         /* Physical target reset needs no control bytes 4-7*/
6633                         c->Request.CDB[4] = 0x00;
6634                         c->Request.CDB[5] = 0x00;
6635                         c->Request.CDB[6] = 0x00;
6636                         c->Request.CDB[7] = 0x00;
6637                         break;
6638                 case  HPSA_DEVICE_RESET_MSG:
6639                         c->Request.CDBLen = 16;
6640                         c->Request.type_attr_dir =
6641                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6642                         c->Request.Timeout = 0; /* Don't time out */
6643                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6644                         c->Request.CDB[0] =  cmd;
6645                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6646                         /* If bytes 4-7 are zero, it means reset the */
6647                         /* LunID device */
6648                         c->Request.CDB[4] = 0x00;
6649                         c->Request.CDB[5] = 0x00;
6650                         c->Request.CDB[6] = 0x00;
6651                         c->Request.CDB[7] = 0x00;
6652                         break;
6653                 default:
6654                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6655                                 cmd);
6656                         BUG();
6657                 }
6658         } else {
6659                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6660                 BUG();
6661         }
6662
6663         switch (GET_DIR(c->Request.type_attr_dir)) {
6664         case XFER_READ:
6665                 pci_dir = PCI_DMA_FROMDEVICE;
6666                 break;
6667         case XFER_WRITE:
6668                 pci_dir = PCI_DMA_TODEVICE;
6669                 break;
6670         case XFER_NONE:
6671                 pci_dir = PCI_DMA_NONE;
6672                 break;
6673         default:
6674                 pci_dir = PCI_DMA_BIDIRECTIONAL;
6675         }
6676         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6677                 return -1;
6678         return 0;
6679 }
6680
6681 /*
6682  * Map (physical) PCI mem into (virtual) kernel space
6683  */
6684 static void __iomem *remap_pci_mem(ulong base, ulong size)
6685 {
6686         ulong page_base = ((ulong) base) & PAGE_MASK;
6687         ulong page_offs = ((ulong) base) - page_base;
6688         void __iomem *page_remapped = ioremap_nocache(page_base,
6689                 page_offs + size);
6690
6691         return page_remapped ? (page_remapped + page_offs) : NULL;
6692 }
6693
6694 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6695 {
6696         return h->access.command_completed(h, q);
6697 }
6698
6699 static inline bool interrupt_pending(struct ctlr_info *h)
6700 {
6701         return h->access.intr_pending(h);
6702 }
6703
6704 static inline long interrupt_not_for_us(struct ctlr_info *h)
6705 {
6706         return (h->access.intr_pending(h) == 0) ||
6707                 (h->interrupts_enabled == 0);
6708 }
6709
6710 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6711         u32 raw_tag)
6712 {
6713         if (unlikely(tag_index >= h->nr_cmds)) {
6714                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6715                 return 1;
6716         }
6717         return 0;
6718 }
6719
6720 static inline void finish_cmd(struct CommandList *c)
6721 {
6722         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6723         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6724                         || c->cmd_type == CMD_IOACCEL2))
6725                 complete_scsi_command(c);
6726         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6727                 complete(c->waiting);
6728 }
6729
6730 /* process completion of an indexed ("direct lookup") command */
6731 static inline void process_indexed_cmd(struct ctlr_info *h,
6732         u32 raw_tag)
6733 {
6734         u32 tag_index;
6735         struct CommandList *c;
6736
6737         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6738         if (!bad_tag(h, tag_index, raw_tag)) {
6739                 c = h->cmd_pool + tag_index;
6740                 finish_cmd(c);
6741         }
6742 }
6743
6744 /* Some controllers, like p400, will give us one interrupt
6745  * after a soft reset, even if we turned interrupts off.
6746  * Only need to check for this in the hpsa_xxx_discard_completions
6747  * functions.
6748  */
6749 static int ignore_bogus_interrupt(struct ctlr_info *h)
6750 {
6751         if (likely(!reset_devices))
6752                 return 0;
6753
6754         if (likely(h->interrupts_enabled))
6755                 return 0;
6756
6757         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6758                 "(known firmware bug.)  Ignoring.\n");
6759
6760         return 1;
6761 }
6762
6763 /*
6764  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6765  * Relies on (h-q[x] == x) being true for x such that
6766  * 0 <= x < MAX_REPLY_QUEUES.
6767  */
6768 static struct ctlr_info *queue_to_hba(u8 *queue)
6769 {
6770         return container_of((queue - *queue), struct ctlr_info, q[0]);
6771 }
6772
6773 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6774 {
6775         struct ctlr_info *h = queue_to_hba(queue);
6776         u8 q = *(u8 *) queue;
6777         u32 raw_tag;
6778
6779         if (ignore_bogus_interrupt(h))
6780                 return IRQ_NONE;
6781
6782         if (interrupt_not_for_us(h))
6783                 return IRQ_NONE;
6784         h->last_intr_timestamp = get_jiffies_64();
6785         while (interrupt_pending(h)) {
6786                 raw_tag = get_next_completion(h, q);
6787                 while (raw_tag != FIFO_EMPTY)
6788                         raw_tag = next_command(h, q);
6789         }
6790         return IRQ_HANDLED;
6791 }
6792
6793 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6794 {
6795         struct ctlr_info *h = queue_to_hba(queue);
6796         u32 raw_tag;
6797         u8 q = *(u8 *) queue;
6798
6799         if (ignore_bogus_interrupt(h))
6800                 return IRQ_NONE;
6801
6802         h->last_intr_timestamp = get_jiffies_64();
6803         raw_tag = get_next_completion(h, q);
6804         while (raw_tag != FIFO_EMPTY)
6805                 raw_tag = next_command(h, q);
6806         return IRQ_HANDLED;
6807 }
6808
6809 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6810 {
6811         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6812         u32 raw_tag;
6813         u8 q = *(u8 *) queue;
6814
6815         if (interrupt_not_for_us(h))
6816                 return IRQ_NONE;
6817         h->last_intr_timestamp = get_jiffies_64();
6818         while (interrupt_pending(h)) {
6819                 raw_tag = get_next_completion(h, q);
6820                 while (raw_tag != FIFO_EMPTY) {
6821                         process_indexed_cmd(h, raw_tag);
6822                         raw_tag = next_command(h, q);
6823                 }
6824         }
6825         return IRQ_HANDLED;
6826 }
6827
6828 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6829 {
6830         struct ctlr_info *h = queue_to_hba(queue);
6831         u32 raw_tag;
6832         u8 q = *(u8 *) queue;
6833
6834         h->last_intr_timestamp = get_jiffies_64();
6835         raw_tag = get_next_completion(h, q);
6836         while (raw_tag != FIFO_EMPTY) {
6837                 process_indexed_cmd(h, raw_tag);
6838                 raw_tag = next_command(h, q);
6839         }
6840         return IRQ_HANDLED;
6841 }
6842
6843 /* Send a message CDB to the firmware. Careful, this only works
6844  * in simple mode, not performant mode due to the tag lookup.
6845  * We only ever use this immediately after a controller reset.
6846  */
6847 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6848                         unsigned char type)
6849 {
6850         struct Command {
6851                 struct CommandListHeader CommandHeader;
6852                 struct RequestBlock Request;
6853                 struct ErrDescriptor ErrorDescriptor;
6854         };
6855         struct Command *cmd;
6856         static const size_t cmd_sz = sizeof(*cmd) +
6857                                         sizeof(cmd->ErrorDescriptor);
6858         dma_addr_t paddr64;
6859         __le32 paddr32;
6860         u32 tag;
6861         void __iomem *vaddr;
6862         int i, err;
6863
6864         vaddr = pci_ioremap_bar(pdev, 0);
6865         if (vaddr == NULL)
6866                 return -ENOMEM;
6867
6868         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6869          * CCISS commands, so they must be allocated from the lower 4GiB of
6870          * memory.
6871          */
6872         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6873         if (err) {
6874                 iounmap(vaddr);
6875                 return err;
6876         }
6877
6878         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6879         if (cmd == NULL) {
6880                 iounmap(vaddr);
6881                 return -ENOMEM;
6882         }
6883
6884         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
6885          * although there's no guarantee, we assume that the address is at
6886          * least 4-byte aligned (most likely, it's page-aligned).
6887          */
6888         paddr32 = cpu_to_le32(paddr64);
6889
6890         cmd->CommandHeader.ReplyQueue = 0;
6891         cmd->CommandHeader.SGList = 0;
6892         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6893         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6894         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6895
6896         cmd->Request.CDBLen = 16;
6897         cmd->Request.type_attr_dir =
6898                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6899         cmd->Request.Timeout = 0; /* Don't time out */
6900         cmd->Request.CDB[0] = opcode;
6901         cmd->Request.CDB[1] = type;
6902         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6903         cmd->ErrorDescriptor.Addr =
6904                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6905         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6906
6907         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6908
6909         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6910                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6911                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6912                         break;
6913                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6914         }
6915
6916         iounmap(vaddr);
6917
6918         /* we leak the DMA buffer here ... no choice since the controller could
6919          *  still complete the command.
6920          */
6921         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6922                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6923                         opcode, type);
6924                 return -ETIMEDOUT;
6925         }
6926
6927         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6928
6929         if (tag & HPSA_ERROR_BIT) {
6930                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6931                         opcode, type);
6932                 return -EIO;
6933         }
6934
6935         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6936                 opcode, type);
6937         return 0;
6938 }
6939
6940 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6941
6942 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6943         void __iomem *vaddr, u32 use_doorbell)
6944 {
6945
6946         if (use_doorbell) {
6947                 /* For everything after the P600, the PCI power state method
6948                  * of resetting the controller doesn't work, so we have this
6949                  * other way using the doorbell register.
6950                  */
6951                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
6952                 writel(use_doorbell, vaddr + SA5_DOORBELL);
6953
6954                 /* PMC hardware guys tell us we need a 10 second delay after
6955                  * doorbell reset and before any attempt to talk to the board
6956                  * at all to ensure that this actually works and doesn't fall
6957                  * over in some weird corner cases.
6958                  */
6959                 msleep(10000);
6960         } else { /* Try to do it the PCI power state way */
6961
6962                 /* Quoting from the Open CISS Specification: "The Power
6963                  * Management Control/Status Register (CSR) controls the power
6964                  * state of the device.  The normal operating state is D0,
6965                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
6966                  * the controller, place the interface device in D3 then to D0,
6967                  * this causes a secondary PCI reset which will reset the
6968                  * controller." */
6969
6970                 int rc = 0;
6971
6972                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6973
6974                 /* enter the D3hot power management state */
6975                 rc = pci_set_power_state(pdev, PCI_D3hot);
6976                 if (rc)
6977                         return rc;
6978
6979                 msleep(500);
6980
6981                 /* enter the D0 power management state */
6982                 rc = pci_set_power_state(pdev, PCI_D0);
6983                 if (rc)
6984                         return rc;
6985
6986                 /*
6987                  * The P600 requires a small delay when changing states.
6988                  * Otherwise we may think the board did not reset and we bail.
6989                  * This for kdump only and is particular to the P600.
6990                  */
6991                 msleep(500);
6992         }
6993         return 0;
6994 }
6995
6996 static void init_driver_version(char *driver_version, int len)
6997 {
6998         memset(driver_version, 0, len);
6999         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7000 }
7001
7002 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7003 {
7004         char *driver_version;
7005         int i, size = sizeof(cfgtable->driver_version);
7006
7007         driver_version = kmalloc(size, GFP_KERNEL);
7008         if (!driver_version)
7009                 return -ENOMEM;
7010
7011         init_driver_version(driver_version, size);
7012         for (i = 0; i < size; i++)
7013                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7014         kfree(driver_version);
7015         return 0;
7016 }
7017
7018 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7019                                           unsigned char *driver_ver)
7020 {
7021         int i;
7022
7023         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7024                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7025 }
7026
7027 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7028 {
7029
7030         char *driver_ver, *old_driver_ver;
7031         int rc, size = sizeof(cfgtable->driver_version);
7032
7033         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7034         if (!old_driver_ver)
7035                 return -ENOMEM;
7036         driver_ver = old_driver_ver + size;
7037
7038         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7039          * should have been changed, otherwise we know the reset failed.
7040          */
7041         init_driver_version(old_driver_ver, size);
7042         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7043         rc = !memcmp(driver_ver, old_driver_ver, size);
7044         kfree(old_driver_ver);
7045         return rc;
7046 }
7047 /* This does a hard reset of the controller using PCI power management
7048  * states or the using the doorbell register.
7049  */
7050 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7051 {
7052         u64 cfg_offset;
7053         u32 cfg_base_addr;
7054         u64 cfg_base_addr_index;
7055         void __iomem *vaddr;
7056         unsigned long paddr;
7057         u32 misc_fw_support;
7058         int rc;
7059         struct CfgTable __iomem *cfgtable;
7060         u32 use_doorbell;
7061         u16 command_register;
7062
7063         /* For controllers as old as the P600, this is very nearly
7064          * the same thing as
7065          *
7066          * pci_save_state(pci_dev);
7067          * pci_set_power_state(pci_dev, PCI_D3hot);
7068          * pci_set_power_state(pci_dev, PCI_D0);
7069          * pci_restore_state(pci_dev);
7070          *
7071          * For controllers newer than the P600, the pci power state
7072          * method of resetting doesn't work so we have another way
7073          * using the doorbell register.
7074          */
7075
7076         if (!ctlr_is_resettable(board_id)) {
7077                 dev_warn(&pdev->dev, "Controller not resettable\n");
7078                 return -ENODEV;
7079         }
7080
7081         /* if controller is soft- but not hard resettable... */
7082         if (!ctlr_is_hard_resettable(board_id))
7083                 return -ENOTSUPP; /* try soft reset later. */
7084
7085         /* Save the PCI command register */
7086         pci_read_config_word(pdev, 4, &command_register);
7087         pci_save_state(pdev);
7088
7089         /* find the first memory BAR, so we can find the cfg table */
7090         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7091         if (rc)
7092                 return rc;
7093         vaddr = remap_pci_mem(paddr, 0x250);
7094         if (!vaddr)
7095                 return -ENOMEM;
7096
7097         /* find cfgtable in order to check if reset via doorbell is supported */
7098         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7099                                         &cfg_base_addr_index, &cfg_offset);
7100         if (rc)
7101                 goto unmap_vaddr;
7102         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7103                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7104         if (!cfgtable) {
7105                 rc = -ENOMEM;
7106                 goto unmap_vaddr;
7107         }
7108         rc = write_driver_ver_to_cfgtable(cfgtable);
7109         if (rc)
7110                 goto unmap_cfgtable;
7111
7112         /* If reset via doorbell register is supported, use that.
7113          * There are two such methods.  Favor the newest method.
7114          */
7115         misc_fw_support = readl(&cfgtable->misc_fw_support);
7116         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7117         if (use_doorbell) {
7118                 use_doorbell = DOORBELL_CTLR_RESET2;
7119         } else {
7120                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7121                 if (use_doorbell) {
7122                         dev_warn(&pdev->dev,
7123                                 "Soft reset not supported. Firmware update is required.\n");
7124                         rc = -ENOTSUPP; /* try soft reset */
7125                         goto unmap_cfgtable;
7126                 }
7127         }
7128
7129         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7130         if (rc)
7131                 goto unmap_cfgtable;
7132
7133         pci_restore_state(pdev);
7134         pci_write_config_word(pdev, 4, command_register);
7135
7136         /* Some devices (notably the HP Smart Array 5i Controller)
7137            need a little pause here */
7138         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7139
7140         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7141         if (rc) {
7142                 dev_warn(&pdev->dev,
7143                         "Failed waiting for board to become ready after hard reset\n");
7144                 goto unmap_cfgtable;
7145         }
7146
7147         rc = controller_reset_failed(vaddr);
7148         if (rc < 0)
7149                 goto unmap_cfgtable;
7150         if (rc) {
7151                 dev_warn(&pdev->dev, "Unable to successfully reset "
7152                         "controller. Will try soft reset.\n");
7153                 rc = -ENOTSUPP;
7154         } else {
7155                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7156         }
7157
7158 unmap_cfgtable:
7159         iounmap(cfgtable);
7160
7161 unmap_vaddr:
7162         iounmap(vaddr);
7163         return rc;
7164 }
7165
7166 /*
7167  *  We cannot read the structure directly, for portability we must use
7168  *   the io functions.
7169  *   This is for debug only.
7170  */
7171 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7172 {
7173 #ifdef HPSA_DEBUG
7174         int i;
7175         char temp_name[17];
7176
7177         dev_info(dev, "Controller Configuration information\n");
7178         dev_info(dev, "------------------------------------\n");
7179         for (i = 0; i < 4; i++)
7180                 temp_name[i] = readb(&(tb->Signature[i]));
7181         temp_name[4] = '\0';
7182         dev_info(dev, "   Signature = %s\n", temp_name);
7183         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7184         dev_info(dev, "   Transport methods supported = 0x%x\n",
7185                readl(&(tb->TransportSupport)));
7186         dev_info(dev, "   Transport methods active = 0x%x\n",
7187                readl(&(tb->TransportActive)));
7188         dev_info(dev, "   Requested transport Method = 0x%x\n",
7189                readl(&(tb->HostWrite.TransportRequest)));
7190         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7191                readl(&(tb->HostWrite.CoalIntDelay)));
7192         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7193                readl(&(tb->HostWrite.CoalIntCount)));
7194         dev_info(dev, "   Max outstanding commands = %d\n",
7195                readl(&(tb->CmdsOutMax)));
7196         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7197         for (i = 0; i < 16; i++)
7198                 temp_name[i] = readb(&(tb->ServerName[i]));
7199         temp_name[16] = '\0';
7200         dev_info(dev, "   Server Name = %s\n", temp_name);
7201         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7202                 readl(&(tb->HeartBeat)));
7203 #endif                          /* HPSA_DEBUG */
7204 }
7205
7206 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7207 {
7208         int i, offset, mem_type, bar_type;
7209
7210         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7211                 return 0;
7212         offset = 0;
7213         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7214                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7215                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7216                         offset += 4;
7217                 else {
7218                         mem_type = pci_resource_flags(pdev, i) &
7219                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7220                         switch (mem_type) {
7221                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7222                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7223                                 offset += 4;    /* 32 bit */
7224                                 break;
7225                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7226                                 offset += 8;
7227                                 break;
7228                         default:        /* reserved in PCI 2.2 */
7229                                 dev_warn(&pdev->dev,
7230                                        "base address is invalid\n");
7231                                 return -1;
7232                                 break;
7233                         }
7234                 }
7235                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7236                         return i + 1;
7237         }
7238         return -1;
7239 }
7240
7241 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7242 {
7243         pci_free_irq_vectors(h->pdev);
7244         h->msix_vectors = 0;
7245 }
7246
7247 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7248  * controllers that are capable. If not, we use legacy INTx mode.
7249  */
7250 static int hpsa_interrupt_mode(struct ctlr_info *h)
7251 {
7252         unsigned int flags = PCI_IRQ_LEGACY;
7253         int ret;
7254
7255         /* Some boards advertise MSI but don't really support it */
7256         switch (h->board_id) {
7257         case 0x40700E11:
7258         case 0x40800E11:
7259         case 0x40820E11:
7260         case 0x40830E11:
7261                 break;
7262         default:
7263                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7264                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7265                 if (ret > 0) {
7266                         h->msix_vectors = ret;
7267                         return 0;
7268                 }
7269
7270                 flags |= PCI_IRQ_MSI;
7271                 break;
7272         }
7273
7274         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7275         if (ret < 0)
7276                 return ret;
7277         return 0;
7278 }
7279
7280 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7281                                 bool *legacy_board)
7282 {
7283         int i;
7284         u32 subsystem_vendor_id, subsystem_device_id;
7285
7286         subsystem_vendor_id = pdev->subsystem_vendor;
7287         subsystem_device_id = pdev->subsystem_device;
7288         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7289                     subsystem_vendor_id;
7290
7291         if (legacy_board)
7292                 *legacy_board = false;
7293         for (i = 0; i < ARRAY_SIZE(products); i++)
7294                 if (*board_id == products[i].board_id) {
7295                         if (products[i].access != &SA5A_access &&
7296                             products[i].access != &SA5B_access)
7297                                 return i;
7298                         dev_warn(&pdev->dev,
7299                                  "legacy board ID: 0x%08x\n",
7300                                  *board_id);
7301                         if (legacy_board)
7302                             *legacy_board = true;
7303                         return i;
7304                 }
7305
7306         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7307         if (legacy_board)
7308                 *legacy_board = true;
7309         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7310 }
7311
7312 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7313                                     unsigned long *memory_bar)
7314 {
7315         int i;
7316
7317         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7318                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7319                         /* addressing mode bits already removed */
7320                         *memory_bar = pci_resource_start(pdev, i);
7321                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7322                                 *memory_bar);
7323                         return 0;
7324                 }
7325         dev_warn(&pdev->dev, "no memory BAR found\n");
7326         return -ENODEV;
7327 }
7328
7329 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7330                                      int wait_for_ready)
7331 {
7332         int i, iterations;
7333         u32 scratchpad;
7334         if (wait_for_ready)
7335                 iterations = HPSA_BOARD_READY_ITERATIONS;
7336         else
7337                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7338
7339         for (i = 0; i < iterations; i++) {
7340                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7341                 if (wait_for_ready) {
7342                         if (scratchpad == HPSA_FIRMWARE_READY)
7343                                 return 0;
7344                 } else {
7345                         if (scratchpad != HPSA_FIRMWARE_READY)
7346                                 return 0;
7347                 }
7348                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7349         }
7350         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7351         return -ENODEV;
7352 }
7353
7354 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7355                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7356                                u64 *cfg_offset)
7357 {
7358         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7359         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7360         *cfg_base_addr &= (u32) 0x0000ffff;
7361         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7362         if (*cfg_base_addr_index == -1) {
7363                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7364                 return -ENODEV;
7365         }
7366         return 0;
7367 }
7368
7369 static void hpsa_free_cfgtables(struct ctlr_info *h)
7370 {
7371         if (h->transtable) {
7372                 iounmap(h->transtable);
7373                 h->transtable = NULL;
7374         }
7375         if (h->cfgtable) {
7376                 iounmap(h->cfgtable);
7377                 h->cfgtable = NULL;
7378         }
7379 }
7380
7381 /* Find and map CISS config table and transfer table
7382 + * several items must be unmapped (freed) later
7383 + * */
7384 static int hpsa_find_cfgtables(struct ctlr_info *h)
7385 {
7386         u64 cfg_offset;
7387         u32 cfg_base_addr;
7388         u64 cfg_base_addr_index;
7389         u32 trans_offset;
7390         int rc;
7391
7392         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7393                 &cfg_base_addr_index, &cfg_offset);
7394         if (rc)
7395                 return rc;
7396         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7397                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7398         if (!h->cfgtable) {
7399                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7400                 return -ENOMEM;
7401         }
7402         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7403         if (rc)
7404                 return rc;
7405         /* Find performant mode table. */
7406         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7407         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7408                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7409                                 sizeof(*h->transtable));
7410         if (!h->transtable) {
7411                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7412                 hpsa_free_cfgtables(h);
7413                 return -ENOMEM;
7414         }
7415         return 0;
7416 }
7417
7418 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7419 {
7420 #define MIN_MAX_COMMANDS 16
7421         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7422
7423         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7424
7425         /* Limit commands in memory limited kdump scenario. */
7426         if (reset_devices && h->max_commands > 32)
7427                 h->max_commands = 32;
7428
7429         if (h->max_commands < MIN_MAX_COMMANDS) {
7430                 dev_warn(&h->pdev->dev,
7431                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7432                         h->max_commands,
7433                         MIN_MAX_COMMANDS);
7434                 h->max_commands = MIN_MAX_COMMANDS;
7435         }
7436 }
7437
7438 /* If the controller reports that the total max sg entries is greater than 512,
7439  * then we know that chained SG blocks work.  (Original smart arrays did not
7440  * support chained SG blocks and would return zero for max sg entries.)
7441  */
7442 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7443 {
7444         return h->maxsgentries > 512;
7445 }
7446
7447 /* Interrogate the hardware for some limits:
7448  * max commands, max SG elements without chaining, and with chaining,
7449  * SG chain block size, etc.
7450  */
7451 static void hpsa_find_board_params(struct ctlr_info *h)
7452 {
7453         hpsa_get_max_perf_mode_cmds(h);
7454         h->nr_cmds = h->max_commands;
7455         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7456         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7457         if (hpsa_supports_chained_sg_blocks(h)) {
7458                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7459                 h->max_cmd_sg_entries = 32;
7460                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7461                 h->maxsgentries--; /* save one for chain pointer */
7462         } else {
7463                 /*
7464                  * Original smart arrays supported at most 31 s/g entries
7465                  * embedded inline in the command (trying to use more
7466                  * would lock up the controller)
7467                  */
7468                 h->max_cmd_sg_entries = 31;
7469                 h->maxsgentries = 31; /* default to traditional values */
7470                 h->chainsize = 0;
7471         }
7472
7473         /* Find out what task management functions are supported and cache */
7474         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7475         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7476                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7477         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7478                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7479         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7480                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7481 }
7482
7483 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7484 {
7485         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7486                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7487                 return false;
7488         }
7489         return true;
7490 }
7491
7492 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7493 {
7494         u32 driver_support;
7495
7496         driver_support = readl(&(h->cfgtable->driver_support));
7497         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7498 #ifdef CONFIG_X86
7499         driver_support |= ENABLE_SCSI_PREFETCH;
7500 #endif
7501         driver_support |= ENABLE_UNIT_ATTN;
7502         writel(driver_support, &(h->cfgtable->driver_support));
7503 }
7504
7505 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7506  * in a prefetch beyond physical memory.
7507  */
7508 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7509 {
7510         u32 dma_prefetch;
7511
7512         if (h->board_id != 0x3225103C)
7513                 return;
7514         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7515         dma_prefetch |= 0x8000;
7516         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7517 }
7518
7519 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7520 {
7521         int i;
7522         u32 doorbell_value;
7523         unsigned long flags;
7524         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7525         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7526                 spin_lock_irqsave(&h->lock, flags);
7527                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7528                 spin_unlock_irqrestore(&h->lock, flags);
7529                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7530                         goto done;
7531                 /* delay and try again */
7532                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7533         }
7534         return -ENODEV;
7535 done:
7536         return 0;
7537 }
7538
7539 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7540 {
7541         int i;
7542         u32 doorbell_value;
7543         unsigned long flags;
7544
7545         /* under certain very rare conditions, this can take awhile.
7546          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7547          * as we enter this code.)
7548          */
7549         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7550                 if (h->remove_in_progress)
7551                         goto done;
7552                 spin_lock_irqsave(&h->lock, flags);
7553                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7554                 spin_unlock_irqrestore(&h->lock, flags);
7555                 if (!(doorbell_value & CFGTBL_ChangeReq))
7556                         goto done;
7557                 /* delay and try again */
7558                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7559         }
7560         return -ENODEV;
7561 done:
7562         return 0;
7563 }
7564
7565 /* return -ENODEV or other reason on error, 0 on success */
7566 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7567 {
7568         u32 trans_support;
7569
7570         trans_support = readl(&(h->cfgtable->TransportSupport));
7571         if (!(trans_support & SIMPLE_MODE))
7572                 return -ENOTSUPP;
7573
7574         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7575
7576         /* Update the field, and then ring the doorbell */
7577         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7578         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7579         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7580         if (hpsa_wait_for_mode_change_ack(h))
7581                 goto error;
7582         print_cfg_table(&h->pdev->dev, h->cfgtable);
7583         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7584                 goto error;
7585         h->transMethod = CFGTBL_Trans_Simple;
7586         return 0;
7587 error:
7588         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7589         return -ENODEV;
7590 }
7591
7592 /* free items allocated or mapped by hpsa_pci_init */
7593 static void hpsa_free_pci_init(struct ctlr_info *h)
7594 {
7595         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7596         iounmap(h->vaddr);                      /* pci_init 3 */
7597         h->vaddr = NULL;
7598         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7599         /*
7600          * call pci_disable_device before pci_release_regions per
7601          * Documentation/PCI/pci.txt
7602          */
7603         pci_disable_device(h->pdev);            /* pci_init 1 */
7604         pci_release_regions(h->pdev);           /* pci_init 2 */
7605 }
7606
7607 /* several items must be freed later */
7608 static int hpsa_pci_init(struct ctlr_info *h)
7609 {
7610         int prod_index, err;
7611         bool legacy_board;
7612
7613         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7614         if (prod_index < 0)
7615                 return prod_index;
7616         h->product_name = products[prod_index].product_name;
7617         h->access = *(products[prod_index].access);
7618         h->legacy_board = legacy_board;
7619         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7620                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7621
7622         err = pci_enable_device(h->pdev);
7623         if (err) {
7624                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7625                 pci_disable_device(h->pdev);
7626                 return err;
7627         }
7628
7629         err = pci_request_regions(h->pdev, HPSA);
7630         if (err) {
7631                 dev_err(&h->pdev->dev,
7632                         "failed to obtain PCI resources\n");
7633                 pci_disable_device(h->pdev);
7634                 return err;
7635         }
7636
7637         pci_set_master(h->pdev);
7638
7639         err = hpsa_interrupt_mode(h);
7640         if (err)
7641                 goto clean1;
7642         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7643         if (err)
7644                 goto clean2;    /* intmode+region, pci */
7645         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7646         if (!h->vaddr) {
7647                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7648                 err = -ENOMEM;
7649                 goto clean2;    /* intmode+region, pci */
7650         }
7651         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7652         if (err)
7653                 goto clean3;    /* vaddr, intmode+region, pci */
7654         err = hpsa_find_cfgtables(h);
7655         if (err)
7656                 goto clean3;    /* vaddr, intmode+region, pci */
7657         hpsa_find_board_params(h);
7658
7659         if (!hpsa_CISS_signature_present(h)) {
7660                 err = -ENODEV;
7661                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7662         }
7663         hpsa_set_driver_support_bits(h);
7664         hpsa_p600_dma_prefetch_quirk(h);
7665         err = hpsa_enter_simple_mode(h);
7666         if (err)
7667                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7668         return 0;
7669
7670 clean4: /* cfgtables, vaddr, intmode+region, pci */
7671         hpsa_free_cfgtables(h);
7672 clean3: /* vaddr, intmode+region, pci */
7673         iounmap(h->vaddr);
7674         h->vaddr = NULL;
7675 clean2: /* intmode+region, pci */
7676         hpsa_disable_interrupt_mode(h);
7677 clean1:
7678         /*
7679          * call pci_disable_device before pci_release_regions per
7680          * Documentation/PCI/pci.txt
7681          */
7682         pci_disable_device(h->pdev);
7683         pci_release_regions(h->pdev);
7684         return err;
7685 }
7686
7687 static void hpsa_hba_inquiry(struct ctlr_info *h)
7688 {
7689         int rc;
7690
7691 #define HBA_INQUIRY_BYTE_COUNT 64
7692         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7693         if (!h->hba_inquiry_data)
7694                 return;
7695         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7696                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7697         if (rc != 0) {
7698                 kfree(h->hba_inquiry_data);
7699                 h->hba_inquiry_data = NULL;
7700         }
7701 }
7702
7703 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7704 {
7705         int rc, i;
7706         void __iomem *vaddr;
7707
7708         if (!reset_devices)
7709                 return 0;
7710
7711         /* kdump kernel is loading, we don't know in which state is
7712          * the pci interface. The dev->enable_cnt is equal zero
7713          * so we call enable+disable, wait a while and switch it on.
7714          */
7715         rc = pci_enable_device(pdev);
7716         if (rc) {
7717                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7718                 return -ENODEV;
7719         }
7720         pci_disable_device(pdev);
7721         msleep(260);                    /* a randomly chosen number */
7722         rc = pci_enable_device(pdev);
7723         if (rc) {
7724                 dev_warn(&pdev->dev, "failed to enable device.\n");
7725                 return -ENODEV;
7726         }
7727
7728         pci_set_master(pdev);
7729
7730         vaddr = pci_ioremap_bar(pdev, 0);
7731         if (vaddr == NULL) {
7732                 rc = -ENOMEM;
7733                 goto out_disable;
7734         }
7735         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7736         iounmap(vaddr);
7737
7738         /* Reset the controller with a PCI power-cycle or via doorbell */
7739         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7740
7741         /* -ENOTSUPP here means we cannot reset the controller
7742          * but it's already (and still) up and running in
7743          * "performant mode".  Or, it might be 640x, which can't reset
7744          * due to concerns about shared bbwc between 6402/6404 pair.
7745          */
7746         if (rc)
7747                 goto out_disable;
7748
7749         /* Now try to get the controller to respond to a no-op */
7750         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7751         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7752                 if (hpsa_noop(pdev) == 0)
7753                         break;
7754                 else
7755                         dev_warn(&pdev->dev, "no-op failed%s\n",
7756                                         (i < 11 ? "; re-trying" : ""));
7757         }
7758
7759 out_disable:
7760
7761         pci_disable_device(pdev);
7762         return rc;
7763 }
7764
7765 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7766 {
7767         kfree(h->cmd_pool_bits);
7768         h->cmd_pool_bits = NULL;
7769         if (h->cmd_pool) {
7770                 pci_free_consistent(h->pdev,
7771                                 h->nr_cmds * sizeof(struct CommandList),
7772                                 h->cmd_pool,
7773                                 h->cmd_pool_dhandle);
7774                 h->cmd_pool = NULL;
7775                 h->cmd_pool_dhandle = 0;
7776         }
7777         if (h->errinfo_pool) {
7778                 pci_free_consistent(h->pdev,
7779                                 h->nr_cmds * sizeof(struct ErrorInfo),
7780                                 h->errinfo_pool,
7781                                 h->errinfo_pool_dhandle);
7782                 h->errinfo_pool = NULL;
7783                 h->errinfo_pool_dhandle = 0;
7784         }
7785 }
7786
7787 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7788 {
7789         h->cmd_pool_bits = kzalloc(
7790                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7791                 sizeof(unsigned long), GFP_KERNEL);
7792         h->cmd_pool = pci_alloc_consistent(h->pdev,
7793                     h->nr_cmds * sizeof(*h->cmd_pool),
7794                     &(h->cmd_pool_dhandle));
7795         h->errinfo_pool = pci_alloc_consistent(h->pdev,
7796                     h->nr_cmds * sizeof(*h->errinfo_pool),
7797                     &(h->errinfo_pool_dhandle));
7798         if ((h->cmd_pool_bits == NULL)
7799             || (h->cmd_pool == NULL)
7800             || (h->errinfo_pool == NULL)) {
7801                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7802                 goto clean_up;
7803         }
7804         hpsa_preinitialize_commands(h);
7805         return 0;
7806 clean_up:
7807         hpsa_free_cmd_pool(h);
7808         return -ENOMEM;
7809 }
7810
7811 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7812 static void hpsa_free_irqs(struct ctlr_info *h)
7813 {
7814         int i;
7815
7816         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7817                 /* Single reply queue, only one irq to free */
7818                 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7819                 h->q[h->intr_mode] = 0;
7820                 return;
7821         }
7822
7823         for (i = 0; i < h->msix_vectors; i++) {
7824                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7825                 h->q[i] = 0;
7826         }
7827         for (; i < MAX_REPLY_QUEUES; i++)
7828                 h->q[i] = 0;
7829 }
7830
7831 /* returns 0 on success; cleans up and returns -Enn on error */
7832 static int hpsa_request_irqs(struct ctlr_info *h,
7833         irqreturn_t (*msixhandler)(int, void *),
7834         irqreturn_t (*intxhandler)(int, void *))
7835 {
7836         int rc, i;
7837
7838         /*
7839          * initialize h->q[x] = x so that interrupt handlers know which
7840          * queue to process.
7841          */
7842         for (i = 0; i < MAX_REPLY_QUEUES; i++)
7843                 h->q[i] = (u8) i;
7844
7845         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7846                 /* If performant mode and MSI-X, use multiple reply queues */
7847                 for (i = 0; i < h->msix_vectors; i++) {
7848                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7849                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7850                                         0, h->intrname[i],
7851                                         &h->q[i]);
7852                         if (rc) {
7853                                 int j;
7854
7855                                 dev_err(&h->pdev->dev,
7856                                         "failed to get irq %d for %s\n",
7857                                        pci_irq_vector(h->pdev, i), h->devname);
7858                                 for (j = 0; j < i; j++) {
7859                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
7860                                         h->q[j] = 0;
7861                                 }
7862                                 for (; j < MAX_REPLY_QUEUES; j++)
7863                                         h->q[j] = 0;
7864                                 return rc;
7865                         }
7866                 }
7867         } else {
7868                 /* Use single reply pool */
7869                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
7870                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
7871                                 h->msix_vectors ? "x" : "");
7872                         rc = request_irq(pci_irq_vector(h->pdev, 0),
7873                                 msixhandler, 0,
7874                                 h->intrname[0],
7875                                 &h->q[h->intr_mode]);
7876                 } else {
7877                         sprintf(h->intrname[h->intr_mode],
7878                                 "%s-intx", h->devname);
7879                         rc = request_irq(pci_irq_vector(h->pdev, 0),
7880                                 intxhandler, IRQF_SHARED,
7881                                 h->intrname[0],
7882                                 &h->q[h->intr_mode]);
7883                 }
7884         }
7885         if (rc) {
7886                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7887                        pci_irq_vector(h->pdev, 0), h->devname);
7888                 hpsa_free_irqs(h);
7889                 return -ENODEV;
7890         }
7891         return 0;
7892 }
7893
7894 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7895 {
7896         int rc;
7897         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7898
7899         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7900         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7901         if (rc) {
7902                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7903                 return rc;
7904         }
7905
7906         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7907         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7908         if (rc) {
7909                 dev_warn(&h->pdev->dev, "Board failed to become ready "
7910                         "after soft reset.\n");
7911                 return rc;
7912         }
7913
7914         return 0;
7915 }
7916
7917 static void hpsa_free_reply_queues(struct ctlr_info *h)
7918 {
7919         int i;
7920
7921         for (i = 0; i < h->nreply_queues; i++) {
7922                 if (!h->reply_queue[i].head)
7923                         continue;
7924                 pci_free_consistent(h->pdev,
7925                                         h->reply_queue_size,
7926                                         h->reply_queue[i].head,
7927                                         h->reply_queue[i].busaddr);
7928                 h->reply_queue[i].head = NULL;
7929                 h->reply_queue[i].busaddr = 0;
7930         }
7931         h->reply_queue_size = 0;
7932 }
7933
7934 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
7935 {
7936         hpsa_free_performant_mode(h);           /* init_one 7 */
7937         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
7938         hpsa_free_cmd_pool(h);                  /* init_one 5 */
7939         hpsa_free_irqs(h);                      /* init_one 4 */
7940         scsi_host_put(h->scsi_host);            /* init_one 3 */
7941         h->scsi_host = NULL;                    /* init_one 3 */
7942         hpsa_free_pci_init(h);                  /* init_one 2_5 */
7943         free_percpu(h->lockup_detected);        /* init_one 2 */
7944         h->lockup_detected = NULL;              /* init_one 2 */
7945         if (h->resubmit_wq) {
7946                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
7947                 h->resubmit_wq = NULL;
7948         }
7949         if (h->rescan_ctlr_wq) {
7950                 destroy_workqueue(h->rescan_ctlr_wq);
7951                 h->rescan_ctlr_wq = NULL;
7952         }
7953         kfree(h);                               /* init_one 1 */
7954 }
7955
7956 /* Called when controller lockup detected. */
7957 static void fail_all_outstanding_cmds(struct ctlr_info *h)
7958 {
7959         int i, refcount;
7960         struct CommandList *c;
7961         int failcount = 0;
7962
7963         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7964         for (i = 0; i < h->nr_cmds; i++) {
7965                 c = h->cmd_pool + i;
7966                 refcount = atomic_inc_return(&c->refcount);
7967                 if (refcount > 1) {
7968                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7969                         finish_cmd(c);
7970                         atomic_dec(&h->commands_outstanding);
7971                         failcount++;
7972                 }
7973                 cmd_free(h, c);
7974         }
7975         dev_warn(&h->pdev->dev,
7976                 "failed %d commands in fail_all\n", failcount);
7977 }
7978
7979 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
7980 {
7981         int cpu;
7982
7983         for_each_online_cpu(cpu) {
7984                 u32 *lockup_detected;
7985                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
7986                 *lockup_detected = value;
7987         }
7988         wmb(); /* be sure the per-cpu variables are out to memory */
7989 }
7990
7991 static void controller_lockup_detected(struct ctlr_info *h)
7992 {
7993         unsigned long flags;
7994         u32 lockup_detected;
7995
7996         h->access.set_intr_mask(h, HPSA_INTR_OFF);
7997         spin_lock_irqsave(&h->lock, flags);
7998         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
7999         if (!lockup_detected) {
8000                 /* no heartbeat, but controller gave us a zero. */
8001                 dev_warn(&h->pdev->dev,
8002                         "lockup detected after %d but scratchpad register is zero\n",
8003                         h->heartbeat_sample_interval / HZ);
8004                 lockup_detected = 0xffffffff;
8005         }
8006         set_lockup_detected_for_all_cpus(h, lockup_detected);
8007         spin_unlock_irqrestore(&h->lock, flags);
8008         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8009                         lockup_detected, h->heartbeat_sample_interval / HZ);
8010         pci_disable_device(h->pdev);
8011         fail_all_outstanding_cmds(h);
8012 }
8013
8014 static int detect_controller_lockup(struct ctlr_info *h)
8015 {
8016         u64 now;
8017         u32 heartbeat;
8018         unsigned long flags;
8019
8020         now = get_jiffies_64();
8021         /* If we've received an interrupt recently, we're ok. */
8022         if (time_after64(h->last_intr_timestamp +
8023                                 (h->heartbeat_sample_interval), now))
8024                 return false;
8025
8026         /*
8027          * If we've already checked the heartbeat recently, we're ok.
8028          * This could happen if someone sends us a signal. We
8029          * otherwise don't care about signals in this thread.
8030          */
8031         if (time_after64(h->last_heartbeat_timestamp +
8032                                 (h->heartbeat_sample_interval), now))
8033                 return false;
8034
8035         /* If heartbeat has not changed since we last looked, we're not ok. */
8036         spin_lock_irqsave(&h->lock, flags);
8037         heartbeat = readl(&h->cfgtable->HeartBeat);
8038         spin_unlock_irqrestore(&h->lock, flags);
8039         if (h->last_heartbeat == heartbeat) {
8040                 controller_lockup_detected(h);
8041                 return true;
8042         }
8043
8044         /* We're ok. */
8045         h->last_heartbeat = heartbeat;
8046         h->last_heartbeat_timestamp = now;
8047         return false;
8048 }
8049
8050 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8051 {
8052         int i;
8053         char *event_type;
8054
8055         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8056                 return;
8057
8058         /* Ask the controller to clear the events we're handling. */
8059         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8060                         | CFGTBL_Trans_io_accel2)) &&
8061                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8062                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8063
8064                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8065                         event_type = "state change";
8066                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8067                         event_type = "configuration change";
8068                 /* Stop sending new RAID offload reqs via the IO accelerator */
8069                 scsi_block_requests(h->scsi_host);
8070                 for (i = 0; i < h->ndevices; i++) {
8071                         h->dev[i]->offload_enabled = 0;
8072                         h->dev[i]->offload_to_be_enabled = 0;
8073                 }
8074                 hpsa_drain_accel_commands(h);
8075                 /* Set 'accelerator path config change' bit */
8076                 dev_warn(&h->pdev->dev,
8077                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8078                         h->events, event_type);
8079                 writel(h->events, &(h->cfgtable->clear_event_notify));
8080                 /* Set the "clear event notify field update" bit 6 */
8081                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8082                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8083                 hpsa_wait_for_clear_event_notify_ack(h);
8084                 scsi_unblock_requests(h->scsi_host);
8085         } else {
8086                 /* Acknowledge controller notification events. */
8087                 writel(h->events, &(h->cfgtable->clear_event_notify));
8088                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8089                 hpsa_wait_for_clear_event_notify_ack(h);
8090 #if 0
8091                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8092                 hpsa_wait_for_mode_change_ack(h);
8093 #endif
8094         }
8095         return;
8096 }
8097
8098 /* Check a register on the controller to see if there are configuration
8099  * changes (added/changed/removed logical drives, etc.) which mean that
8100  * we should rescan the controller for devices.
8101  * Also check flag for driver-initiated rescan.
8102  */
8103 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8104 {
8105         if (h->drv_req_rescan) {
8106                 h->drv_req_rescan = 0;
8107                 return 1;
8108         }
8109
8110         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8111                 return 0;
8112
8113         h->events = readl(&(h->cfgtable->event_notify));
8114         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8115 }
8116
8117 /*
8118  * Check if any of the offline devices have become ready
8119  */
8120 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8121 {
8122         unsigned long flags;
8123         struct offline_device_entry *d;
8124         struct list_head *this, *tmp;
8125
8126         spin_lock_irqsave(&h->offline_device_lock, flags);
8127         list_for_each_safe(this, tmp, &h->offline_device_list) {
8128                 d = list_entry(this, struct offline_device_entry,
8129                                 offline_list);
8130                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8131                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8132                         spin_lock_irqsave(&h->offline_device_lock, flags);
8133                         list_del(&d->offline_list);
8134                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8135                         return 1;
8136                 }
8137                 spin_lock_irqsave(&h->offline_device_lock, flags);
8138         }
8139         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8140         return 0;
8141 }
8142
8143 static int hpsa_luns_changed(struct ctlr_info *h)
8144 {
8145         int rc = 1; /* assume there are changes */
8146         struct ReportLUNdata *logdev = NULL;
8147
8148         /* if we can't find out if lun data has changed,
8149          * assume that it has.
8150          */
8151
8152         if (!h->lastlogicals)
8153                 return rc;
8154
8155         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8156         if (!logdev)
8157                 return rc;
8158
8159         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8160                 dev_warn(&h->pdev->dev,
8161                         "report luns failed, can't track lun changes.\n");
8162                 goto out;
8163         }
8164         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8165                 dev_info(&h->pdev->dev,
8166                         "Lun changes detected.\n");
8167                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8168                 goto out;
8169         } else
8170                 rc = 0; /* no changes detected. */
8171 out:
8172         kfree(logdev);
8173         return rc;
8174 }
8175
8176 static void hpsa_perform_rescan(struct ctlr_info *h)
8177 {
8178         struct Scsi_Host *sh = NULL;
8179         unsigned long flags;
8180
8181         /*
8182          * Do the scan after the reset
8183          */
8184         spin_lock_irqsave(&h->reset_lock, flags);
8185         if (h->reset_in_progress) {
8186                 h->drv_req_rescan = 1;
8187                 spin_unlock_irqrestore(&h->reset_lock, flags);
8188                 return;
8189         }
8190         spin_unlock_irqrestore(&h->reset_lock, flags);
8191
8192         sh = scsi_host_get(h->scsi_host);
8193         if (sh != NULL) {
8194                 hpsa_scan_start(sh);
8195                 scsi_host_put(sh);
8196                 h->drv_req_rescan = 0;
8197         }
8198 }
8199
8200 /*
8201  * watch for controller events
8202  */
8203 static void hpsa_event_monitor_worker(struct work_struct *work)
8204 {
8205         struct ctlr_info *h = container_of(to_delayed_work(work),
8206                                         struct ctlr_info, event_monitor_work);
8207         unsigned long flags;
8208
8209         spin_lock_irqsave(&h->lock, flags);
8210         if (h->remove_in_progress) {
8211                 spin_unlock_irqrestore(&h->lock, flags);
8212                 return;
8213         }
8214         spin_unlock_irqrestore(&h->lock, flags);
8215
8216         if (hpsa_ctlr_needs_rescan(h)) {
8217                 hpsa_ack_ctlr_events(h);
8218                 hpsa_perform_rescan(h);
8219         }
8220
8221         spin_lock_irqsave(&h->lock, flags);
8222         if (!h->remove_in_progress)
8223                 schedule_delayed_work(&h->event_monitor_work,
8224                                         HPSA_EVENT_MONITOR_INTERVAL);
8225         spin_unlock_irqrestore(&h->lock, flags);
8226 }
8227
8228 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8229 {
8230         unsigned long flags;
8231         struct ctlr_info *h = container_of(to_delayed_work(work),
8232                                         struct ctlr_info, rescan_ctlr_work);
8233
8234         spin_lock_irqsave(&h->lock, flags);
8235         if (h->remove_in_progress) {
8236                 spin_unlock_irqrestore(&h->lock, flags);
8237                 return;
8238         }
8239         spin_unlock_irqrestore(&h->lock, flags);
8240
8241         if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8242                 hpsa_perform_rescan(h);
8243         } else if (h->discovery_polling) {
8244                 hpsa_disable_rld_caching(h);
8245                 if (hpsa_luns_changed(h)) {
8246                         dev_info(&h->pdev->dev,
8247                                 "driver discovery polling rescan.\n");
8248                         hpsa_perform_rescan(h);
8249                 }
8250         }
8251         spin_lock_irqsave(&h->lock, flags);
8252         if (!h->remove_in_progress)
8253                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8254                                 h->heartbeat_sample_interval);
8255         spin_unlock_irqrestore(&h->lock, flags);
8256 }
8257
8258 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8259 {
8260         unsigned long flags;
8261         struct ctlr_info *h = container_of(to_delayed_work(work),
8262                                         struct ctlr_info, monitor_ctlr_work);
8263
8264         detect_controller_lockup(h);
8265         if (lockup_detected(h))
8266                 return;
8267
8268         spin_lock_irqsave(&h->lock, flags);
8269         if (!h->remove_in_progress)
8270                 schedule_delayed_work(&h->monitor_ctlr_work,
8271                                 h->heartbeat_sample_interval);
8272         spin_unlock_irqrestore(&h->lock, flags);
8273 }
8274
8275 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8276                                                 char *name)
8277 {
8278         struct workqueue_struct *wq = NULL;
8279
8280         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8281         if (!wq)
8282                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8283
8284         return wq;
8285 }
8286
8287 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8288 {
8289         int dac, rc;
8290         struct ctlr_info *h;
8291         int try_soft_reset = 0;
8292         unsigned long flags;
8293         u32 board_id;
8294
8295         if (number_of_controllers == 0)
8296                 printk(KERN_INFO DRIVER_NAME "\n");
8297
8298         rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8299         if (rc < 0) {
8300                 dev_warn(&pdev->dev, "Board ID not found\n");
8301                 return rc;
8302         }
8303
8304         rc = hpsa_init_reset_devices(pdev, board_id);
8305         if (rc) {
8306                 if (rc != -ENOTSUPP)
8307                         return rc;
8308                 /* If the reset fails in a particular way (it has no way to do
8309                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8310                  * a soft reset once we get the controller configured up to the
8311                  * point that it can accept a command.
8312                  */
8313                 try_soft_reset = 1;
8314                 rc = 0;
8315         }
8316
8317 reinit_after_soft_reset:
8318
8319         /* Command structures must be aligned on a 32-byte boundary because
8320          * the 5 lower bits of the address are used by the hardware. and by
8321          * the driver.  See comments in hpsa.h for more info.
8322          */
8323         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8324         h = kzalloc(sizeof(*h), GFP_KERNEL);
8325         if (!h) {
8326                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8327                 return -ENOMEM;
8328         }
8329
8330         h->pdev = pdev;
8331
8332         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8333         INIT_LIST_HEAD(&h->offline_device_list);
8334         spin_lock_init(&h->lock);
8335         spin_lock_init(&h->offline_device_lock);
8336         spin_lock_init(&h->scan_lock);
8337         spin_lock_init(&h->reset_lock);
8338         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8339
8340         /* Allocate and clear per-cpu variable lockup_detected */
8341         h->lockup_detected = alloc_percpu(u32);
8342         if (!h->lockup_detected) {
8343                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8344                 rc = -ENOMEM;
8345                 goto clean1;    /* aer/h */
8346         }
8347         set_lockup_detected_for_all_cpus(h, 0);
8348
8349         rc = hpsa_pci_init(h);
8350         if (rc)
8351                 goto clean2;    /* lu, aer/h */
8352
8353         /* relies on h-> settings made by hpsa_pci_init, including
8354          * interrupt_mode h->intr */
8355         rc = hpsa_scsi_host_alloc(h);
8356         if (rc)
8357                 goto clean2_5;  /* pci, lu, aer/h */
8358
8359         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8360         h->ctlr = number_of_controllers;
8361         number_of_controllers++;
8362
8363         /* configure PCI DMA stuff */
8364         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8365         if (rc == 0) {
8366                 dac = 1;
8367         } else {
8368                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8369                 if (rc == 0) {
8370                         dac = 0;
8371                 } else {
8372                         dev_err(&pdev->dev, "no suitable DMA available\n");
8373                         goto clean3;    /* shost, pci, lu, aer/h */
8374                 }
8375         }
8376
8377         /* make sure the board interrupts are off */
8378         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8379
8380         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8381         if (rc)
8382                 goto clean3;    /* shost, pci, lu, aer/h */
8383         rc = hpsa_alloc_cmd_pool(h);
8384         if (rc)
8385                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8386         rc = hpsa_alloc_sg_chain_blocks(h);
8387         if (rc)
8388                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8389         init_waitqueue_head(&h->scan_wait_queue);
8390         init_waitqueue_head(&h->event_sync_wait_queue);
8391         mutex_init(&h->reset_mutex);
8392         h->scan_finished = 1; /* no scan currently in progress */
8393         h->scan_waiting = 0;
8394
8395         pci_set_drvdata(pdev, h);
8396         h->ndevices = 0;
8397
8398         spin_lock_init(&h->devlock);
8399         rc = hpsa_put_ctlr_into_performant_mode(h);
8400         if (rc)
8401                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8402
8403         /* create the resubmit workqueue */
8404         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8405         if (!h->rescan_ctlr_wq) {
8406                 rc = -ENOMEM;
8407                 goto clean7;
8408         }
8409
8410         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8411         if (!h->resubmit_wq) {
8412                 rc = -ENOMEM;
8413                 goto clean7;    /* aer/h */
8414         }
8415
8416         /*
8417          * At this point, the controller is ready to take commands.
8418          * Now, if reset_devices and the hard reset didn't work, try
8419          * the soft reset and see if that works.
8420          */
8421         if (try_soft_reset) {
8422
8423                 /* This is kind of gross.  We may or may not get a completion
8424                  * from the soft reset command, and if we do, then the value
8425                  * from the fifo may or may not be valid.  So, we wait 10 secs
8426                  * after the reset throwing away any completions we get during
8427                  * that time.  Unregister the interrupt handler and register
8428                  * fake ones to scoop up any residual completions.
8429                  */
8430                 spin_lock_irqsave(&h->lock, flags);
8431                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8432                 spin_unlock_irqrestore(&h->lock, flags);
8433                 hpsa_free_irqs(h);
8434                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8435                                         hpsa_intx_discard_completions);
8436                 if (rc) {
8437                         dev_warn(&h->pdev->dev,
8438                                 "Failed to request_irq after soft reset.\n");
8439                         /*
8440                          * cannot goto clean7 or free_irqs will be called
8441                          * again. Instead, do its work
8442                          */
8443                         hpsa_free_performant_mode(h);   /* clean7 */
8444                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8445                         hpsa_free_cmd_pool(h);          /* clean5 */
8446                         /*
8447                          * skip hpsa_free_irqs(h) clean4 since that
8448                          * was just called before request_irqs failed
8449                          */
8450                         goto clean3;
8451                 }
8452
8453                 rc = hpsa_kdump_soft_reset(h);
8454                 if (rc)
8455                         /* Neither hard nor soft reset worked, we're hosed. */
8456                         goto clean7;
8457
8458                 dev_info(&h->pdev->dev, "Board READY.\n");
8459                 dev_info(&h->pdev->dev,
8460                         "Waiting for stale completions to drain.\n");
8461                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8462                 msleep(10000);
8463                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8464
8465                 rc = controller_reset_failed(h->cfgtable);
8466                 if (rc)
8467                         dev_info(&h->pdev->dev,
8468                                 "Soft reset appears to have failed.\n");
8469
8470                 /* since the controller's reset, we have to go back and re-init
8471                  * everything.  Easiest to just forget what we've done and do it
8472                  * all over again.
8473                  */
8474                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8475                 try_soft_reset = 0;
8476                 if (rc)
8477                         /* don't goto clean, we already unallocated */
8478                         return -ENODEV;
8479
8480                 goto reinit_after_soft_reset;
8481         }
8482
8483         /* Enable Accelerated IO path at driver layer */
8484         h->acciopath_status = 1;
8485         /* Disable discovery polling.*/
8486         h->discovery_polling = 0;
8487
8488
8489         /* Turn the interrupts on so we can service requests */
8490         h->access.set_intr_mask(h, HPSA_INTR_ON);
8491
8492         hpsa_hba_inquiry(h);
8493
8494         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8495         if (!h->lastlogicals)
8496                 dev_info(&h->pdev->dev,
8497                         "Can't track change to report lun data\n");
8498
8499         /* hook into SCSI subsystem */
8500         rc = hpsa_scsi_add_host(h);
8501         if (rc)
8502                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8503
8504         /* Monitor the controller for firmware lockups */
8505         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8506         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8507         schedule_delayed_work(&h->monitor_ctlr_work,
8508                                 h->heartbeat_sample_interval);
8509         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8510         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8511                                 h->heartbeat_sample_interval);
8512         INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8513         schedule_delayed_work(&h->event_monitor_work,
8514                                 HPSA_EVENT_MONITOR_INTERVAL);
8515         return 0;
8516
8517 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8518         hpsa_free_performant_mode(h);
8519         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8520 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8521         hpsa_free_sg_chain_blocks(h);
8522 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8523         hpsa_free_cmd_pool(h);
8524 clean4: /* irq, shost, pci, lu, aer/h */
8525         hpsa_free_irqs(h);
8526 clean3: /* shost, pci, lu, aer/h */
8527         scsi_host_put(h->scsi_host);
8528         h->scsi_host = NULL;
8529 clean2_5: /* pci, lu, aer/h */
8530         hpsa_free_pci_init(h);
8531 clean2: /* lu, aer/h */
8532         if (h->lockup_detected) {
8533                 free_percpu(h->lockup_detected);
8534                 h->lockup_detected = NULL;
8535         }
8536 clean1: /* wq/aer/h */
8537         if (h->resubmit_wq) {
8538                 destroy_workqueue(h->resubmit_wq);
8539                 h->resubmit_wq = NULL;
8540         }
8541         if (h->rescan_ctlr_wq) {
8542                 destroy_workqueue(h->rescan_ctlr_wq);
8543                 h->rescan_ctlr_wq = NULL;
8544         }
8545         kfree(h);
8546         return rc;
8547 }
8548
8549 static void hpsa_flush_cache(struct ctlr_info *h)
8550 {
8551         char *flush_buf;
8552         struct CommandList *c;
8553         int rc;
8554
8555         if (unlikely(lockup_detected(h)))
8556                 return;
8557         flush_buf = kzalloc(4, GFP_KERNEL);
8558         if (!flush_buf)
8559                 return;
8560
8561         c = cmd_alloc(h);
8562
8563         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8564                 RAID_CTLR_LUNID, TYPE_CMD)) {
8565                 goto out;
8566         }
8567         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8568                                         PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8569         if (rc)
8570                 goto out;
8571         if (c->err_info->CommandStatus != 0)
8572 out:
8573                 dev_warn(&h->pdev->dev,
8574                         "error flushing cache on controller\n");
8575         cmd_free(h, c);
8576         kfree(flush_buf);
8577 }
8578
8579 /* Make controller gather fresh report lun data each time we
8580  * send down a report luns request
8581  */
8582 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8583 {
8584         u32 *options;
8585         struct CommandList *c;
8586         int rc;
8587
8588         /* Don't bother trying to set diag options if locked up */
8589         if (unlikely(h->lockup_detected))
8590                 return;
8591
8592         options = kzalloc(sizeof(*options), GFP_KERNEL);
8593         if (!options)
8594                 return;
8595
8596         c = cmd_alloc(h);
8597
8598         /* first, get the current diag options settings */
8599         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8600                 RAID_CTLR_LUNID, TYPE_CMD))
8601                 goto errout;
8602
8603         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8604                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8605         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8606                 goto errout;
8607
8608         /* Now, set the bit for disabling the RLD caching */
8609         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8610
8611         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8612                 RAID_CTLR_LUNID, TYPE_CMD))
8613                 goto errout;
8614
8615         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8616                 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8617         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8618                 goto errout;
8619
8620         /* Now verify that it got set: */
8621         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8622                 RAID_CTLR_LUNID, TYPE_CMD))
8623                 goto errout;
8624
8625         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8626                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8627         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8628                 goto errout;
8629
8630         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8631                 goto out;
8632
8633 errout:
8634         dev_err(&h->pdev->dev,
8635                         "Error: failed to disable report lun data caching.\n");
8636 out:
8637         cmd_free(h, c);
8638         kfree(options);
8639 }
8640
8641 static void hpsa_shutdown(struct pci_dev *pdev)
8642 {
8643         struct ctlr_info *h;
8644
8645         h = pci_get_drvdata(pdev);
8646         /* Turn board interrupts off  and send the flush cache command
8647          * sendcmd will turn off interrupt, and send the flush...
8648          * To write all data in the battery backed cache to disks
8649          */
8650         hpsa_flush_cache(h);
8651         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8652         hpsa_free_irqs(h);                      /* init_one 4 */
8653         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8654 }
8655
8656 static void hpsa_free_device_info(struct ctlr_info *h)
8657 {
8658         int i;
8659
8660         for (i = 0; i < h->ndevices; i++) {
8661                 kfree(h->dev[i]);
8662                 h->dev[i] = NULL;
8663         }
8664 }
8665
8666 static void hpsa_remove_one(struct pci_dev *pdev)
8667 {
8668         struct ctlr_info *h;
8669         unsigned long flags;
8670
8671         if (pci_get_drvdata(pdev) == NULL) {
8672                 dev_err(&pdev->dev, "unable to remove device\n");
8673                 return;
8674         }
8675         h = pci_get_drvdata(pdev);
8676
8677         /* Get rid of any controller monitoring work items */
8678         spin_lock_irqsave(&h->lock, flags);
8679         h->remove_in_progress = 1;
8680         spin_unlock_irqrestore(&h->lock, flags);
8681         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8682         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8683         cancel_delayed_work_sync(&h->event_monitor_work);
8684         destroy_workqueue(h->rescan_ctlr_wq);
8685         destroy_workqueue(h->resubmit_wq);
8686
8687         hpsa_delete_sas_host(h);
8688
8689         /*
8690          * Call before disabling interrupts.
8691          * scsi_remove_host can trigger I/O operations especially
8692          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8693          * operations which cannot complete and will hang the system.
8694          */
8695         if (h->scsi_host)
8696                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8697         /* includes hpsa_free_irqs - init_one 4 */
8698         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8699         hpsa_shutdown(pdev);
8700
8701         hpsa_free_device_info(h);               /* scan */
8702
8703         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8704         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8705         hpsa_free_ioaccel2_sg_chain_blocks(h);
8706         hpsa_free_performant_mode(h);                   /* init_one 7 */
8707         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8708         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8709         kfree(h->lastlogicals);
8710
8711         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8712
8713         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8714         h->scsi_host = NULL;                            /* init_one 3 */
8715
8716         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8717         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8718
8719         free_percpu(h->lockup_detected);                /* init_one 2 */
8720         h->lockup_detected = NULL;                      /* init_one 2 */
8721         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8722
8723         kfree(h);                                       /* init_one 1 */
8724 }
8725
8726 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8727         __attribute__((unused)) pm_message_t state)
8728 {
8729         return -ENOSYS;
8730 }
8731
8732 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8733 {
8734         return -ENOSYS;
8735 }
8736
8737 static struct pci_driver hpsa_pci_driver = {
8738         .name = HPSA,
8739         .probe = hpsa_init_one,
8740         .remove = hpsa_remove_one,
8741         .id_table = hpsa_pci_device_id, /* id_table */
8742         .shutdown = hpsa_shutdown,
8743         .suspend = hpsa_suspend,
8744         .resume = hpsa_resume,
8745 };
8746
8747 /* Fill in bucket_map[], given nsgs (the max number of
8748  * scatter gather elements supported) and bucket[],
8749  * which is an array of 8 integers.  The bucket[] array
8750  * contains 8 different DMA transfer sizes (in 16
8751  * byte increments) which the controller uses to fetch
8752  * commands.  This function fills in bucket_map[], which
8753  * maps a given number of scatter gather elements to one of
8754  * the 8 DMA transfer sizes.  The point of it is to allow the
8755  * controller to only do as much DMA as needed to fetch the
8756  * command, with the DMA transfer size encoded in the lower
8757  * bits of the command address.
8758  */
8759 static void  calc_bucket_map(int bucket[], int num_buckets,
8760         int nsgs, int min_blocks, u32 *bucket_map)
8761 {
8762         int i, j, b, size;
8763
8764         /* Note, bucket_map must have nsgs+1 entries. */
8765         for (i = 0; i <= nsgs; i++) {
8766                 /* Compute size of a command with i SG entries */
8767                 size = i + min_blocks;
8768                 b = num_buckets; /* Assume the biggest bucket */
8769                 /* Find the bucket that is just big enough */
8770                 for (j = 0; j < num_buckets; j++) {
8771                         if (bucket[j] >= size) {
8772                                 b = j;
8773                                 break;
8774                         }
8775                 }
8776                 /* for a command with i SG entries, use bucket b. */
8777                 bucket_map[i] = b;
8778         }
8779 }
8780
8781 /*
8782  * return -ENODEV on err, 0 on success (or no action)
8783  * allocates numerous items that must be freed later
8784  */
8785 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8786 {
8787         int i;
8788         unsigned long register_value;
8789         unsigned long transMethod = CFGTBL_Trans_Performant |
8790                         (trans_support & CFGTBL_Trans_use_short_tags) |
8791                                 CFGTBL_Trans_enable_directed_msix |
8792                         (trans_support & (CFGTBL_Trans_io_accel1 |
8793                                 CFGTBL_Trans_io_accel2));
8794         struct access_method access = SA5_performant_access;
8795
8796         /* This is a bit complicated.  There are 8 registers on
8797          * the controller which we write to to tell it 8 different
8798          * sizes of commands which there may be.  It's a way of
8799          * reducing the DMA done to fetch each command.  Encoded into
8800          * each command's tag are 3 bits which communicate to the controller
8801          * which of the eight sizes that command fits within.  The size of
8802          * each command depends on how many scatter gather entries there are.
8803          * Each SG entry requires 16 bytes.  The eight registers are programmed
8804          * with the number of 16-byte blocks a command of that size requires.
8805          * The smallest command possible requires 5 such 16 byte blocks.
8806          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8807          * blocks.  Note, this only extends to the SG entries contained
8808          * within the command block, and does not extend to chained blocks
8809          * of SG elements.   bft[] contains the eight values we write to
8810          * the registers.  They are not evenly distributed, but have more
8811          * sizes for small commands, and fewer sizes for larger commands.
8812          */
8813         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8814 #define MIN_IOACCEL2_BFT_ENTRY 5
8815 #define HPSA_IOACCEL2_HEADER_SZ 4
8816         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8817                         13, 14, 15, 16, 17, 18, 19,
8818                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8819         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8820         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8821         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8822                                  16 * MIN_IOACCEL2_BFT_ENTRY);
8823         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8824         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8825         /*  5 = 1 s/g entry or 4k
8826          *  6 = 2 s/g entry or 8k
8827          *  8 = 4 s/g entry or 16k
8828          * 10 = 6 s/g entry or 24k
8829          */
8830
8831         /* If the controller supports either ioaccel method then
8832          * we can also use the RAID stack submit path that does not
8833          * perform the superfluous readl() after each command submission.
8834          */
8835         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8836                 access = SA5_performant_access_no_read;
8837
8838         /* Controller spec: zero out this buffer. */
8839         for (i = 0; i < h->nreply_queues; i++)
8840                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8841
8842         bft[7] = SG_ENTRIES_IN_CMD + 4;
8843         calc_bucket_map(bft, ARRAY_SIZE(bft),
8844                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8845         for (i = 0; i < 8; i++)
8846                 writel(bft[i], &h->transtable->BlockFetch[i]);
8847
8848         /* size of controller ring buffer */
8849         writel(h->max_commands, &h->transtable->RepQSize);
8850         writel(h->nreply_queues, &h->transtable->RepQCount);
8851         writel(0, &h->transtable->RepQCtrAddrLow32);
8852         writel(0, &h->transtable->RepQCtrAddrHigh32);
8853
8854         for (i = 0; i < h->nreply_queues; i++) {
8855                 writel(0, &h->transtable->RepQAddr[i].upper);
8856                 writel(h->reply_queue[i].busaddr,
8857                         &h->transtable->RepQAddr[i].lower);
8858         }
8859
8860         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8861         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8862         /*
8863          * enable outbound interrupt coalescing in accelerator mode;
8864          */
8865         if (trans_support & CFGTBL_Trans_io_accel1) {
8866                 access = SA5_ioaccel_mode1_access;
8867                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8868                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8869         } else
8870                 if (trans_support & CFGTBL_Trans_io_accel2)
8871                         access = SA5_ioaccel_mode2_access;
8872         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8873         if (hpsa_wait_for_mode_change_ack(h)) {
8874                 dev_err(&h->pdev->dev,
8875                         "performant mode problem - doorbell timeout\n");
8876                 return -ENODEV;
8877         }
8878         register_value = readl(&(h->cfgtable->TransportActive));
8879         if (!(register_value & CFGTBL_Trans_Performant)) {
8880                 dev_err(&h->pdev->dev,
8881                         "performant mode problem - transport not active\n");
8882                 return -ENODEV;
8883         }
8884         /* Change the access methods to the performant access methods */
8885         h->access = access;
8886         h->transMethod = transMethod;
8887
8888         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8889                 (trans_support & CFGTBL_Trans_io_accel2)))
8890                 return 0;
8891
8892         if (trans_support & CFGTBL_Trans_io_accel1) {
8893                 /* Set up I/O accelerator mode */
8894                 for (i = 0; i < h->nreply_queues; i++) {
8895                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8896                         h->reply_queue[i].current_entry =
8897                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8898                 }
8899                 bft[7] = h->ioaccel_maxsg + 8;
8900                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8901                                 h->ioaccel1_blockFetchTable);
8902
8903                 /* initialize all reply queue entries to unused */
8904                 for (i = 0; i < h->nreply_queues; i++)
8905                         memset(h->reply_queue[i].head,
8906                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
8907                                 h->reply_queue_size);
8908
8909                 /* set all the constant fields in the accelerator command
8910                  * frames once at init time to save CPU cycles later.
8911                  */
8912                 for (i = 0; i < h->nr_cmds; i++) {
8913                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8914
8915                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
8916                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
8917                                         (i * sizeof(struct ErrorInfo)));
8918                         cp->err_info_len = sizeof(struct ErrorInfo);
8919                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
8920                         cp->host_context_flags =
8921                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8922                         cp->timeout_sec = 0;
8923                         cp->ReplyQueue = 0;
8924                         cp->tag =
8925                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8926                         cp->host_addr =
8927                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8928                                         (i * sizeof(struct io_accel1_cmd)));
8929                 }
8930         } else if (trans_support & CFGTBL_Trans_io_accel2) {
8931                 u64 cfg_offset, cfg_base_addr_index;
8932                 u32 bft2_offset, cfg_base_addr;
8933                 int rc;
8934
8935                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8936                         &cfg_base_addr_index, &cfg_offset);
8937                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8938                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8939                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8940                                 4, h->ioaccel2_blockFetchTable);
8941                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8942                 BUILD_BUG_ON(offsetof(struct CfgTable,
8943                                 io_accel_request_size_offset) != 0xb8);
8944                 h->ioaccel2_bft2_regs =
8945                         remap_pci_mem(pci_resource_start(h->pdev,
8946                                         cfg_base_addr_index) +
8947                                         cfg_offset + bft2_offset,
8948                                         ARRAY_SIZE(bft2) *
8949                                         sizeof(*h->ioaccel2_bft2_regs));
8950                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
8951                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8952         }
8953         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8954         if (hpsa_wait_for_mode_change_ack(h)) {
8955                 dev_err(&h->pdev->dev,
8956                         "performant mode problem - enabling ioaccel mode\n");
8957                 return -ENODEV;
8958         }
8959         return 0;
8960 }
8961
8962 /* Free ioaccel1 mode command blocks and block fetch table */
8963 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8964 {
8965         if (h->ioaccel_cmd_pool) {
8966                 pci_free_consistent(h->pdev,
8967                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8968                         h->ioaccel_cmd_pool,
8969                         h->ioaccel_cmd_pool_dhandle);
8970                 h->ioaccel_cmd_pool = NULL;
8971                 h->ioaccel_cmd_pool_dhandle = 0;
8972         }
8973         kfree(h->ioaccel1_blockFetchTable);
8974         h->ioaccel1_blockFetchTable = NULL;
8975 }
8976
8977 /* Allocate ioaccel1 mode command blocks and block fetch table */
8978 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8979 {
8980         h->ioaccel_maxsg =
8981                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8982         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
8983                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
8984
8985         /* Command structures must be aligned on a 128-byte boundary
8986          * because the 7 lower bits of the address are used by the
8987          * hardware.
8988          */
8989         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
8990                         IOACCEL1_COMMANDLIST_ALIGNMENT);
8991         h->ioaccel_cmd_pool =
8992                 pci_alloc_consistent(h->pdev,
8993                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8994                         &(h->ioaccel_cmd_pool_dhandle));
8995
8996         h->ioaccel1_blockFetchTable =
8997                 kmalloc(((h->ioaccel_maxsg + 1) *
8998                                 sizeof(u32)), GFP_KERNEL);
8999
9000         if ((h->ioaccel_cmd_pool == NULL) ||
9001                 (h->ioaccel1_blockFetchTable == NULL))
9002                 goto clean_up;
9003
9004         memset(h->ioaccel_cmd_pool, 0,
9005                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9006         return 0;
9007
9008 clean_up:
9009         hpsa_free_ioaccel1_cmd_and_bft(h);
9010         return -ENOMEM;
9011 }
9012
9013 /* Free ioaccel2 mode command blocks and block fetch table */
9014 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9015 {
9016         hpsa_free_ioaccel2_sg_chain_blocks(h);
9017
9018         if (h->ioaccel2_cmd_pool) {
9019                 pci_free_consistent(h->pdev,
9020                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9021                         h->ioaccel2_cmd_pool,
9022                         h->ioaccel2_cmd_pool_dhandle);
9023                 h->ioaccel2_cmd_pool = NULL;
9024                 h->ioaccel2_cmd_pool_dhandle = 0;
9025         }
9026         kfree(h->ioaccel2_blockFetchTable);
9027         h->ioaccel2_blockFetchTable = NULL;
9028 }
9029
9030 /* Allocate ioaccel2 mode command blocks and block fetch table */
9031 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9032 {
9033         int rc;
9034
9035         /* Allocate ioaccel2 mode command blocks and block fetch table */
9036
9037         h->ioaccel_maxsg =
9038                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9039         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9040                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9041
9042         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9043                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9044         h->ioaccel2_cmd_pool =
9045                 pci_alloc_consistent(h->pdev,
9046                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9047                         &(h->ioaccel2_cmd_pool_dhandle));
9048
9049         h->ioaccel2_blockFetchTable =
9050                 kmalloc(((h->ioaccel_maxsg + 1) *
9051                                 sizeof(u32)), GFP_KERNEL);
9052
9053         if ((h->ioaccel2_cmd_pool == NULL) ||
9054                 (h->ioaccel2_blockFetchTable == NULL)) {
9055                 rc = -ENOMEM;
9056                 goto clean_up;
9057         }
9058
9059         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9060         if (rc)
9061                 goto clean_up;
9062
9063         memset(h->ioaccel2_cmd_pool, 0,
9064                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9065         return 0;
9066
9067 clean_up:
9068         hpsa_free_ioaccel2_cmd_and_bft(h);
9069         return rc;
9070 }
9071
9072 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9073 static void hpsa_free_performant_mode(struct ctlr_info *h)
9074 {
9075         kfree(h->blockFetchTable);
9076         h->blockFetchTable = NULL;
9077         hpsa_free_reply_queues(h);
9078         hpsa_free_ioaccel1_cmd_and_bft(h);
9079         hpsa_free_ioaccel2_cmd_and_bft(h);
9080 }
9081
9082 /* return -ENODEV on error, 0 on success (or no action)
9083  * allocates numerous items that must be freed later
9084  */
9085 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9086 {
9087         u32 trans_support;
9088         unsigned long transMethod = CFGTBL_Trans_Performant |
9089                                         CFGTBL_Trans_use_short_tags;
9090         int i, rc;
9091
9092         if (hpsa_simple_mode)
9093                 return 0;
9094
9095         trans_support = readl(&(h->cfgtable->TransportSupport));
9096         if (!(trans_support & PERFORMANT_MODE))
9097                 return 0;
9098
9099         /* Check for I/O accelerator mode support */
9100         if (trans_support & CFGTBL_Trans_io_accel1) {
9101                 transMethod |= CFGTBL_Trans_io_accel1 |
9102                                 CFGTBL_Trans_enable_directed_msix;
9103                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9104                 if (rc)
9105                         return rc;
9106         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9107                 transMethod |= CFGTBL_Trans_io_accel2 |
9108                                 CFGTBL_Trans_enable_directed_msix;
9109                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9110                 if (rc)
9111                         return rc;
9112         }
9113
9114         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9115         hpsa_get_max_perf_mode_cmds(h);
9116         /* Performant mode ring buffer and supporting data structures */
9117         h->reply_queue_size = h->max_commands * sizeof(u64);
9118
9119         for (i = 0; i < h->nreply_queues; i++) {
9120                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9121                                                 h->reply_queue_size,
9122                                                 &(h->reply_queue[i].busaddr));
9123                 if (!h->reply_queue[i].head) {
9124                         rc = -ENOMEM;
9125                         goto clean1;    /* rq, ioaccel */
9126                 }
9127                 h->reply_queue[i].size = h->max_commands;
9128                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9129                 h->reply_queue[i].current_entry = 0;
9130         }
9131
9132         /* Need a block fetch table for performant mode */
9133         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9134                                 sizeof(u32)), GFP_KERNEL);
9135         if (!h->blockFetchTable) {
9136                 rc = -ENOMEM;
9137                 goto clean1;    /* rq, ioaccel */
9138         }
9139
9140         rc = hpsa_enter_performant_mode(h, trans_support);
9141         if (rc)
9142                 goto clean2;    /* bft, rq, ioaccel */
9143         return 0;
9144
9145 clean2: /* bft, rq, ioaccel */
9146         kfree(h->blockFetchTable);
9147         h->blockFetchTable = NULL;
9148 clean1: /* rq, ioaccel */
9149         hpsa_free_reply_queues(h);
9150         hpsa_free_ioaccel1_cmd_and_bft(h);
9151         hpsa_free_ioaccel2_cmd_and_bft(h);
9152         return rc;
9153 }
9154
9155 static int is_accelerated_cmd(struct CommandList *c)
9156 {
9157         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9158 }
9159
9160 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9161 {
9162         struct CommandList *c = NULL;
9163         int i, accel_cmds_out;
9164         int refcount;
9165
9166         do { /* wait for all outstanding ioaccel commands to drain out */
9167                 accel_cmds_out = 0;
9168                 for (i = 0; i < h->nr_cmds; i++) {
9169                         c = h->cmd_pool + i;
9170                         refcount = atomic_inc_return(&c->refcount);
9171                         if (refcount > 1) /* Command is allocated */
9172                                 accel_cmds_out += is_accelerated_cmd(c);
9173                         cmd_free(h, c);
9174                 }
9175                 if (accel_cmds_out <= 0)
9176                         break;
9177                 msleep(100);
9178         } while (1);
9179 }
9180
9181 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9182                                 struct hpsa_sas_port *hpsa_sas_port)
9183 {
9184         struct hpsa_sas_phy *hpsa_sas_phy;
9185         struct sas_phy *phy;
9186
9187         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9188         if (!hpsa_sas_phy)
9189                 return NULL;
9190
9191         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9192                 hpsa_sas_port->next_phy_index);
9193         if (!phy) {
9194                 kfree(hpsa_sas_phy);
9195                 return NULL;
9196         }
9197
9198         hpsa_sas_port->next_phy_index++;
9199         hpsa_sas_phy->phy = phy;
9200         hpsa_sas_phy->parent_port = hpsa_sas_port;
9201
9202         return hpsa_sas_phy;
9203 }
9204
9205 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9206 {
9207         struct sas_phy *phy = hpsa_sas_phy->phy;
9208
9209         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9210         if (hpsa_sas_phy->added_to_port)
9211                 list_del(&hpsa_sas_phy->phy_list_entry);
9212         sas_phy_delete(phy);
9213         kfree(hpsa_sas_phy);
9214 }
9215
9216 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9217 {
9218         int rc;
9219         struct hpsa_sas_port *hpsa_sas_port;
9220         struct sas_phy *phy;
9221         struct sas_identify *identify;
9222
9223         hpsa_sas_port = hpsa_sas_phy->parent_port;
9224         phy = hpsa_sas_phy->phy;
9225
9226         identify = &phy->identify;
9227         memset(identify, 0, sizeof(*identify));
9228         identify->sas_address = hpsa_sas_port->sas_address;
9229         identify->device_type = SAS_END_DEVICE;
9230         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9231         identify->target_port_protocols = SAS_PROTOCOL_STP;
9232         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9233         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9234         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9235         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9236         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9237
9238         rc = sas_phy_add(hpsa_sas_phy->phy);
9239         if (rc)
9240                 return rc;
9241
9242         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9243         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9244                         &hpsa_sas_port->phy_list_head);
9245         hpsa_sas_phy->added_to_port = true;
9246
9247         return 0;
9248 }
9249
9250 static int
9251         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9252                                 struct sas_rphy *rphy)
9253 {
9254         struct sas_identify *identify;
9255
9256         identify = &rphy->identify;
9257         identify->sas_address = hpsa_sas_port->sas_address;
9258         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9259         identify->target_port_protocols = SAS_PROTOCOL_STP;
9260
9261         return sas_rphy_add(rphy);
9262 }
9263
9264 static struct hpsa_sas_port
9265         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9266                                 u64 sas_address)
9267 {
9268         int rc;
9269         struct hpsa_sas_port *hpsa_sas_port;
9270         struct sas_port *port;
9271
9272         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9273         if (!hpsa_sas_port)
9274                 return NULL;
9275
9276         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9277         hpsa_sas_port->parent_node = hpsa_sas_node;
9278
9279         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9280         if (!port)
9281                 goto free_hpsa_port;
9282
9283         rc = sas_port_add(port);
9284         if (rc)
9285                 goto free_sas_port;
9286
9287         hpsa_sas_port->port = port;
9288         hpsa_sas_port->sas_address = sas_address;
9289         list_add_tail(&hpsa_sas_port->port_list_entry,
9290                         &hpsa_sas_node->port_list_head);
9291
9292         return hpsa_sas_port;
9293
9294 free_sas_port:
9295         sas_port_free(port);
9296 free_hpsa_port:
9297         kfree(hpsa_sas_port);
9298
9299         return NULL;
9300 }
9301
9302 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9303 {
9304         struct hpsa_sas_phy *hpsa_sas_phy;
9305         struct hpsa_sas_phy *next;
9306
9307         list_for_each_entry_safe(hpsa_sas_phy, next,
9308                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9309                 hpsa_free_sas_phy(hpsa_sas_phy);
9310
9311         sas_port_delete(hpsa_sas_port->port);
9312         list_del(&hpsa_sas_port->port_list_entry);
9313         kfree(hpsa_sas_port);
9314 }
9315
9316 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9317 {
9318         struct hpsa_sas_node *hpsa_sas_node;
9319
9320         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9321         if (hpsa_sas_node) {
9322                 hpsa_sas_node->parent_dev = parent_dev;
9323                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9324         }
9325
9326         return hpsa_sas_node;
9327 }
9328
9329 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9330 {
9331         struct hpsa_sas_port *hpsa_sas_port;
9332         struct hpsa_sas_port *next;
9333
9334         if (!hpsa_sas_node)
9335                 return;
9336
9337         list_for_each_entry_safe(hpsa_sas_port, next,
9338                         &hpsa_sas_node->port_list_head, port_list_entry)
9339                 hpsa_free_sas_port(hpsa_sas_port);
9340
9341         kfree(hpsa_sas_node);
9342 }
9343
9344 static struct hpsa_scsi_dev_t
9345         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9346                                         struct sas_rphy *rphy)
9347 {
9348         int i;
9349         struct hpsa_scsi_dev_t *device;
9350
9351         for (i = 0; i < h->ndevices; i++) {
9352                 device = h->dev[i];
9353                 if (!device->sas_port)
9354                         continue;
9355                 if (device->sas_port->rphy == rphy)
9356                         return device;
9357         }
9358
9359         return NULL;
9360 }
9361
9362 static int hpsa_add_sas_host(struct ctlr_info *h)
9363 {
9364         int rc;
9365         struct device *parent_dev;
9366         struct hpsa_sas_node *hpsa_sas_node;
9367         struct hpsa_sas_port *hpsa_sas_port;
9368         struct hpsa_sas_phy *hpsa_sas_phy;
9369
9370         parent_dev = &h->scsi_host->shost_gendev;
9371
9372         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9373         if (!hpsa_sas_node)
9374                 return -ENOMEM;
9375
9376         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9377         if (!hpsa_sas_port) {
9378                 rc = -ENODEV;
9379                 goto free_sas_node;
9380         }
9381
9382         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9383         if (!hpsa_sas_phy) {
9384                 rc = -ENODEV;
9385                 goto free_sas_port;
9386         }
9387
9388         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9389         if (rc)
9390                 goto free_sas_phy;
9391
9392         h->sas_host = hpsa_sas_node;
9393
9394         return 0;
9395
9396 free_sas_phy:
9397         hpsa_free_sas_phy(hpsa_sas_phy);
9398 free_sas_port:
9399         hpsa_free_sas_port(hpsa_sas_port);
9400 free_sas_node:
9401         hpsa_free_sas_node(hpsa_sas_node);
9402
9403         return rc;
9404 }
9405
9406 static void hpsa_delete_sas_host(struct ctlr_info *h)
9407 {
9408         hpsa_free_sas_node(h->sas_host);
9409 }
9410
9411 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9412                                 struct hpsa_scsi_dev_t *device)
9413 {
9414         int rc;
9415         struct hpsa_sas_port *hpsa_sas_port;
9416         struct sas_rphy *rphy;
9417
9418         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9419         if (!hpsa_sas_port)
9420                 return -ENOMEM;
9421
9422         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9423         if (!rphy) {
9424                 rc = -ENODEV;
9425                 goto free_sas_port;
9426         }
9427
9428         hpsa_sas_port->rphy = rphy;
9429         device->sas_port = hpsa_sas_port;
9430
9431         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9432         if (rc)
9433                 goto free_sas_port;
9434
9435         return 0;
9436
9437 free_sas_port:
9438         hpsa_free_sas_port(hpsa_sas_port);
9439         device->sas_port = NULL;
9440
9441         return rc;
9442 }
9443
9444 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9445 {
9446         if (device->sas_port) {
9447                 hpsa_free_sas_port(device->sas_port);
9448                 device->sas_port = NULL;
9449         }
9450 }
9451
9452 static int
9453 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9454 {
9455         return 0;
9456 }
9457
9458 static int
9459 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9460 {
9461         *identifier = 0;
9462         return 0;
9463 }
9464
9465 static int
9466 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9467 {
9468         return -ENXIO;
9469 }
9470
9471 static int
9472 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9473 {
9474         return 0;
9475 }
9476
9477 static int
9478 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9479 {
9480         return 0;
9481 }
9482
9483 static int
9484 hpsa_sas_phy_setup(struct sas_phy *phy)
9485 {
9486         return 0;
9487 }
9488
9489 static void
9490 hpsa_sas_phy_release(struct sas_phy *phy)
9491 {
9492 }
9493
9494 static int
9495 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9496 {
9497         return -EINVAL;
9498 }
9499
9500 static struct sas_function_template hpsa_sas_transport_functions = {
9501         .get_linkerrors = hpsa_sas_get_linkerrors,
9502         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9503         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9504         .phy_reset = hpsa_sas_phy_reset,
9505         .phy_enable = hpsa_sas_phy_enable,
9506         .phy_setup = hpsa_sas_phy_setup,
9507         .phy_release = hpsa_sas_phy_release,
9508         .set_phy_speed = hpsa_sas_phy_speed,
9509 };
9510
9511 /*
9512  *  This is it.  Register the PCI driver information for the cards we control
9513  *  the OS will call our registered routines when it finds one of our cards.
9514  */
9515 static int __init hpsa_init(void)
9516 {
9517         int rc;
9518
9519         hpsa_sas_transport_template =
9520                 sas_attach_transport(&hpsa_sas_transport_functions);
9521         if (!hpsa_sas_transport_template)
9522                 return -ENODEV;
9523
9524         rc = pci_register_driver(&hpsa_pci_driver);
9525
9526         if (rc)
9527                 sas_release_transport(hpsa_sas_transport_template);
9528
9529         return rc;
9530 }
9531
9532 static void __exit hpsa_cleanup(void)
9533 {
9534         pci_unregister_driver(&hpsa_pci_driver);
9535         sas_release_transport(hpsa_sas_transport_template);
9536 }
9537
9538 static void __attribute__((unused)) verify_offsets(void)
9539 {
9540 #define VERIFY_OFFSET(member, offset) \
9541         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9542
9543         VERIFY_OFFSET(structure_size, 0);
9544         VERIFY_OFFSET(volume_blk_size, 4);
9545         VERIFY_OFFSET(volume_blk_cnt, 8);
9546         VERIFY_OFFSET(phys_blk_shift, 16);
9547         VERIFY_OFFSET(parity_rotation_shift, 17);
9548         VERIFY_OFFSET(strip_size, 18);
9549         VERIFY_OFFSET(disk_starting_blk, 20);
9550         VERIFY_OFFSET(disk_blk_cnt, 28);
9551         VERIFY_OFFSET(data_disks_per_row, 36);
9552         VERIFY_OFFSET(metadata_disks_per_row, 38);
9553         VERIFY_OFFSET(row_cnt, 40);
9554         VERIFY_OFFSET(layout_map_count, 42);
9555         VERIFY_OFFSET(flags, 44);
9556         VERIFY_OFFSET(dekindex, 46);
9557         /* VERIFY_OFFSET(reserved, 48 */
9558         VERIFY_OFFSET(data, 64);
9559
9560 #undef VERIFY_OFFSET
9561
9562 #define VERIFY_OFFSET(member, offset) \
9563         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9564
9565         VERIFY_OFFSET(IU_type, 0);
9566         VERIFY_OFFSET(direction, 1);
9567         VERIFY_OFFSET(reply_queue, 2);
9568         /* VERIFY_OFFSET(reserved1, 3);  */
9569         VERIFY_OFFSET(scsi_nexus, 4);
9570         VERIFY_OFFSET(Tag, 8);
9571         VERIFY_OFFSET(cdb, 16);
9572         VERIFY_OFFSET(cciss_lun, 32);
9573         VERIFY_OFFSET(data_len, 40);
9574         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9575         VERIFY_OFFSET(sg_count, 45);
9576         /* VERIFY_OFFSET(reserved3 */
9577         VERIFY_OFFSET(err_ptr, 48);
9578         VERIFY_OFFSET(err_len, 56);
9579         /* VERIFY_OFFSET(reserved4  */
9580         VERIFY_OFFSET(sg, 64);
9581
9582 #undef VERIFY_OFFSET
9583
9584 #define VERIFY_OFFSET(member, offset) \
9585         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9586
9587         VERIFY_OFFSET(dev_handle, 0x00);
9588         VERIFY_OFFSET(reserved1, 0x02);
9589         VERIFY_OFFSET(function, 0x03);
9590         VERIFY_OFFSET(reserved2, 0x04);
9591         VERIFY_OFFSET(err_info, 0x0C);
9592         VERIFY_OFFSET(reserved3, 0x10);
9593         VERIFY_OFFSET(err_info_len, 0x12);
9594         VERIFY_OFFSET(reserved4, 0x13);
9595         VERIFY_OFFSET(sgl_offset, 0x14);
9596         VERIFY_OFFSET(reserved5, 0x15);
9597         VERIFY_OFFSET(transfer_len, 0x1C);
9598         VERIFY_OFFSET(reserved6, 0x20);
9599         VERIFY_OFFSET(io_flags, 0x24);
9600         VERIFY_OFFSET(reserved7, 0x26);
9601         VERIFY_OFFSET(LUN, 0x34);
9602         VERIFY_OFFSET(control, 0x3C);
9603         VERIFY_OFFSET(CDB, 0x40);
9604         VERIFY_OFFSET(reserved8, 0x50);
9605         VERIFY_OFFSET(host_context_flags, 0x60);
9606         VERIFY_OFFSET(timeout_sec, 0x62);
9607         VERIFY_OFFSET(ReplyQueue, 0x64);
9608         VERIFY_OFFSET(reserved9, 0x65);
9609         VERIFY_OFFSET(tag, 0x68);
9610         VERIFY_OFFSET(host_addr, 0x70);
9611         VERIFY_OFFSET(CISS_LUN, 0x78);
9612         VERIFY_OFFSET(SG, 0x78 + 8);
9613 #undef VERIFY_OFFSET
9614 }
9615
9616 module_init(hpsa_init);
9617 module_exit(hpsa_cleanup);