5ed5859f4b6cb2fb5ce8e0918d799eaa17300979
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71         HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79                 "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83         "Use 'simple mode' rather than 'performant mode'");
84
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
102         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
103                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
104         {0,}
105 };
106
107 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
108
109 /*  board_id = Subsystem Device ID & Vendor ID
110  *  product = Marketing Name for the board
111  *  access = Address of the struct of function pointers
112  */
113 static struct board_type products[] = {
114         {0x3241103C, "Smart Array P212", &SA5_access},
115         {0x3243103C, "Smart Array P410", &SA5_access},
116         {0x3245103C, "Smart Array P410i", &SA5_access},
117         {0x3247103C, "Smart Array P411", &SA5_access},
118         {0x3249103C, "Smart Array P812", &SA5_access},
119         {0x324a103C, "Smart Array P712m", &SA5_access},
120         {0x324b103C, "Smart Array P711m", &SA5_access},
121         {0x3350103C, "Smart Array", &SA5_access},
122         {0x3351103C, "Smart Array", &SA5_access},
123         {0x3352103C, "Smart Array", &SA5_access},
124         {0x3353103C, "Smart Array", &SA5_access},
125         {0x3354103C, "Smart Array", &SA5_access},
126         {0x3355103C, "Smart Array", &SA5_access},
127         {0x3356103C, "Smart Array", &SA5_access},
128         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
129 };
130
131 static int number_of_controllers;
132
133 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
134 static spinlock_t lockup_detector_lock;
135 static struct task_struct *hpsa_lockup_detector;
136
137 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
138 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
139 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
140 static void start_io(struct ctlr_info *h);
141
142 #ifdef CONFIG_COMPAT
143 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
144 #endif
145
146 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
147 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
148 static struct CommandList *cmd_alloc(struct ctlr_info *h);
149 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
150 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
151         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
152         int cmd_type);
153
154 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
155 static void hpsa_scan_start(struct Scsi_Host *);
156 static int hpsa_scan_finished(struct Scsi_Host *sh,
157         unsigned long elapsed_time);
158 static int hpsa_change_queue_depth(struct scsi_device *sdev,
159         int qdepth, int reason);
160
161 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
162 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
163 static int hpsa_slave_alloc(struct scsi_device *sdev);
164 static void hpsa_slave_destroy(struct scsi_device *sdev);
165
166 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
167 static int check_for_unit_attention(struct ctlr_info *h,
168         struct CommandList *c);
169 static void check_ioctl_unit_attention(struct ctlr_info *h,
170         struct CommandList *c);
171 /* performant mode helper functions */
172 static void calc_bucket_map(int *bucket, int num_buckets,
173         int nsgs, int *bucket_map);
174 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
175 static inline u32 next_command(struct ctlr_info *h, u8 q);
176 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
177         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
178         u64 *cfg_offset);
179 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
180         unsigned long *memory_bar);
181 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
182 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
183         void __iomem *vaddr, int wait_for_ready);
184 static inline void finish_cmd(struct CommandList *c);
185 #define BOARD_NOT_READY 0
186 #define BOARD_READY 1
187
188 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
189 {
190         unsigned long *priv = shost_priv(sdev->host);
191         return (struct ctlr_info *) *priv;
192 }
193
194 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
195 {
196         unsigned long *priv = shost_priv(sh);
197         return (struct ctlr_info *) *priv;
198 }
199
200 static int check_for_unit_attention(struct ctlr_info *h,
201         struct CommandList *c)
202 {
203         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
204                 return 0;
205
206         switch (c->err_info->SenseInfo[12]) {
207         case STATE_CHANGED:
208                 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
209                         "detected, command retried\n", h->ctlr);
210                 break;
211         case LUN_FAILED:
212                 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
213                         "detected, action required\n", h->ctlr);
214                 break;
215         case REPORT_LUNS_CHANGED:
216                 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
217                         "changed, action required\n", h->ctlr);
218         /*
219          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
220          * target (array) devices.
221          */
222                 break;
223         case POWER_OR_RESET:
224                 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
225                         "or device reset detected\n", h->ctlr);
226                 break;
227         case UNIT_ATTENTION_CLEARED:
228                 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
229                     "cleared by another initiator\n", h->ctlr);
230                 break;
231         default:
232                 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
233                         "unit attention detected\n", h->ctlr);
234                 break;
235         }
236         return 1;
237 }
238
239 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
240 {
241         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
242                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
243                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
244                 return 0;
245         dev_warn(&h->pdev->dev, HPSA "device busy");
246         return 1;
247 }
248
249 static ssize_t host_store_rescan(struct device *dev,
250                                  struct device_attribute *attr,
251                                  const char *buf, size_t count)
252 {
253         struct ctlr_info *h;
254         struct Scsi_Host *shost = class_to_shost(dev);
255         h = shost_to_hba(shost);
256         hpsa_scan_start(h->scsi_host);
257         return count;
258 }
259
260 static ssize_t host_show_firmware_revision(struct device *dev,
261              struct device_attribute *attr, char *buf)
262 {
263         struct ctlr_info *h;
264         struct Scsi_Host *shost = class_to_shost(dev);
265         unsigned char *fwrev;
266
267         h = shost_to_hba(shost);
268         if (!h->hba_inquiry_data)
269                 return 0;
270         fwrev = &h->hba_inquiry_data[32];
271         return snprintf(buf, 20, "%c%c%c%c\n",
272                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
273 }
274
275 static ssize_t host_show_commands_outstanding(struct device *dev,
276              struct device_attribute *attr, char *buf)
277 {
278         struct Scsi_Host *shost = class_to_shost(dev);
279         struct ctlr_info *h = shost_to_hba(shost);
280
281         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
282 }
283
284 static ssize_t host_show_transport_mode(struct device *dev,
285         struct device_attribute *attr, char *buf)
286 {
287         struct ctlr_info *h;
288         struct Scsi_Host *shost = class_to_shost(dev);
289
290         h = shost_to_hba(shost);
291         return snprintf(buf, 20, "%s\n",
292                 h->transMethod & CFGTBL_Trans_Performant ?
293                         "performant" : "simple");
294 }
295
296 /* List of controllers which cannot be hard reset on kexec with reset_devices */
297 static u32 unresettable_controller[] = {
298         0x324a103C, /* Smart Array P712m */
299         0x324b103C, /* SmartArray P711m */
300         0x3223103C, /* Smart Array P800 */
301         0x3234103C, /* Smart Array P400 */
302         0x3235103C, /* Smart Array P400i */
303         0x3211103C, /* Smart Array E200i */
304         0x3212103C, /* Smart Array E200 */
305         0x3213103C, /* Smart Array E200i */
306         0x3214103C, /* Smart Array E200i */
307         0x3215103C, /* Smart Array E200i */
308         0x3237103C, /* Smart Array E500 */
309         0x323D103C, /* Smart Array P700m */
310         0x40800E11, /* Smart Array 5i */
311         0x409C0E11, /* Smart Array 6400 */
312         0x409D0E11, /* Smart Array 6400 EM */
313         0x40700E11, /* Smart Array 5300 */
314         0x40820E11, /* Smart Array 532 */
315         0x40830E11, /* Smart Array 5312 */
316         0x409A0E11, /* Smart Array 641 */
317         0x409B0E11, /* Smart Array 642 */
318         0x40910E11, /* Smart Array 6i */
319 };
320
321 /* List of controllers which cannot even be soft reset */
322 static u32 soft_unresettable_controller[] = {
323         0x40800E11, /* Smart Array 5i */
324         0x40700E11, /* Smart Array 5300 */
325         0x40820E11, /* Smart Array 532 */
326         0x40830E11, /* Smart Array 5312 */
327         0x409A0E11, /* Smart Array 641 */
328         0x409B0E11, /* Smart Array 642 */
329         0x40910E11, /* Smart Array 6i */
330         /* Exclude 640x boards.  These are two pci devices in one slot
331          * which share a battery backed cache module.  One controls the
332          * cache, the other accesses the cache through the one that controls
333          * it.  If we reset the one controlling the cache, the other will
334          * likely not be happy.  Just forbid resetting this conjoined mess.
335          * The 640x isn't really supported by hpsa anyway.
336          */
337         0x409C0E11, /* Smart Array 6400 */
338         0x409D0E11, /* Smart Array 6400 EM */
339 };
340
341 static int ctlr_is_hard_resettable(u32 board_id)
342 {
343         int i;
344
345         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
346                 if (unresettable_controller[i] == board_id)
347                         return 0;
348         return 1;
349 }
350
351 static int ctlr_is_soft_resettable(u32 board_id)
352 {
353         int i;
354
355         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
356                 if (soft_unresettable_controller[i] == board_id)
357                         return 0;
358         return 1;
359 }
360
361 static int ctlr_is_resettable(u32 board_id)
362 {
363         return ctlr_is_hard_resettable(board_id) ||
364                 ctlr_is_soft_resettable(board_id);
365 }
366
367 static ssize_t host_show_resettable(struct device *dev,
368         struct device_attribute *attr, char *buf)
369 {
370         struct ctlr_info *h;
371         struct Scsi_Host *shost = class_to_shost(dev);
372
373         h = shost_to_hba(shost);
374         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
375 }
376
377 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
378 {
379         return (scsi3addr[3] & 0xC0) == 0x40;
380 }
381
382 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
383         "1(ADM)", "UNKNOWN"
384 };
385 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
386
387 static ssize_t raid_level_show(struct device *dev,
388              struct device_attribute *attr, char *buf)
389 {
390         ssize_t l = 0;
391         unsigned char rlevel;
392         struct ctlr_info *h;
393         struct scsi_device *sdev;
394         struct hpsa_scsi_dev_t *hdev;
395         unsigned long flags;
396
397         sdev = to_scsi_device(dev);
398         h = sdev_to_hba(sdev);
399         spin_lock_irqsave(&h->lock, flags);
400         hdev = sdev->hostdata;
401         if (!hdev) {
402                 spin_unlock_irqrestore(&h->lock, flags);
403                 return -ENODEV;
404         }
405
406         /* Is this even a logical drive? */
407         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
408                 spin_unlock_irqrestore(&h->lock, flags);
409                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
410                 return l;
411         }
412
413         rlevel = hdev->raid_level;
414         spin_unlock_irqrestore(&h->lock, flags);
415         if (rlevel > RAID_UNKNOWN)
416                 rlevel = RAID_UNKNOWN;
417         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
418         return l;
419 }
420
421 static ssize_t lunid_show(struct device *dev,
422              struct device_attribute *attr, char *buf)
423 {
424         struct ctlr_info *h;
425         struct scsi_device *sdev;
426         struct hpsa_scsi_dev_t *hdev;
427         unsigned long flags;
428         unsigned char lunid[8];
429
430         sdev = to_scsi_device(dev);
431         h = sdev_to_hba(sdev);
432         spin_lock_irqsave(&h->lock, flags);
433         hdev = sdev->hostdata;
434         if (!hdev) {
435                 spin_unlock_irqrestore(&h->lock, flags);
436                 return -ENODEV;
437         }
438         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
439         spin_unlock_irqrestore(&h->lock, flags);
440         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
441                 lunid[0], lunid[1], lunid[2], lunid[3],
442                 lunid[4], lunid[5], lunid[6], lunid[7]);
443 }
444
445 static ssize_t unique_id_show(struct device *dev,
446              struct device_attribute *attr, char *buf)
447 {
448         struct ctlr_info *h;
449         struct scsi_device *sdev;
450         struct hpsa_scsi_dev_t *hdev;
451         unsigned long flags;
452         unsigned char sn[16];
453
454         sdev = to_scsi_device(dev);
455         h = sdev_to_hba(sdev);
456         spin_lock_irqsave(&h->lock, flags);
457         hdev = sdev->hostdata;
458         if (!hdev) {
459                 spin_unlock_irqrestore(&h->lock, flags);
460                 return -ENODEV;
461         }
462         memcpy(sn, hdev->device_id, sizeof(sn));
463         spin_unlock_irqrestore(&h->lock, flags);
464         return snprintf(buf, 16 * 2 + 2,
465                         "%02X%02X%02X%02X%02X%02X%02X%02X"
466                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
467                         sn[0], sn[1], sn[2], sn[3],
468                         sn[4], sn[5], sn[6], sn[7],
469                         sn[8], sn[9], sn[10], sn[11],
470                         sn[12], sn[13], sn[14], sn[15]);
471 }
472
473 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
474 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
475 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
476 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
477 static DEVICE_ATTR(firmware_revision, S_IRUGO,
478         host_show_firmware_revision, NULL);
479 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
480         host_show_commands_outstanding, NULL);
481 static DEVICE_ATTR(transport_mode, S_IRUGO,
482         host_show_transport_mode, NULL);
483 static DEVICE_ATTR(resettable, S_IRUGO,
484         host_show_resettable, NULL);
485
486 static struct device_attribute *hpsa_sdev_attrs[] = {
487         &dev_attr_raid_level,
488         &dev_attr_lunid,
489         &dev_attr_unique_id,
490         NULL,
491 };
492
493 static struct device_attribute *hpsa_shost_attrs[] = {
494         &dev_attr_rescan,
495         &dev_attr_firmware_revision,
496         &dev_attr_commands_outstanding,
497         &dev_attr_transport_mode,
498         &dev_attr_resettable,
499         NULL,
500 };
501
502 static struct scsi_host_template hpsa_driver_template = {
503         .module                 = THIS_MODULE,
504         .name                   = HPSA,
505         .proc_name              = HPSA,
506         .queuecommand           = hpsa_scsi_queue_command,
507         .scan_start             = hpsa_scan_start,
508         .scan_finished          = hpsa_scan_finished,
509         .change_queue_depth     = hpsa_change_queue_depth,
510         .this_id                = -1,
511         .use_clustering         = ENABLE_CLUSTERING,
512         .eh_abort_handler       = hpsa_eh_abort_handler,
513         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
514         .ioctl                  = hpsa_ioctl,
515         .slave_alloc            = hpsa_slave_alloc,
516         .slave_destroy          = hpsa_slave_destroy,
517 #ifdef CONFIG_COMPAT
518         .compat_ioctl           = hpsa_compat_ioctl,
519 #endif
520         .sdev_attrs = hpsa_sdev_attrs,
521         .shost_attrs = hpsa_shost_attrs,
522         .max_sectors = 8192,
523 };
524
525
526 /* Enqueuing and dequeuing functions for cmdlists. */
527 static inline void addQ(struct list_head *list, struct CommandList *c)
528 {
529         list_add_tail(&c->list, list);
530 }
531
532 static inline u32 next_command(struct ctlr_info *h, u8 q)
533 {
534         u32 a;
535         struct reply_pool *rq = &h->reply_queue[q];
536         unsigned long flags;
537
538         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
539                 return h->access.command_completed(h, q);
540
541         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
542                 a = rq->head[rq->current_entry];
543                 rq->current_entry++;
544                 spin_lock_irqsave(&h->lock, flags);
545                 h->commands_outstanding--;
546                 spin_unlock_irqrestore(&h->lock, flags);
547         } else {
548                 a = FIFO_EMPTY;
549         }
550         /* Check for wraparound */
551         if (rq->current_entry == h->max_commands) {
552                 rq->current_entry = 0;
553                 rq->wraparound ^= 1;
554         }
555         return a;
556 }
557
558 /* set_performant_mode: Modify the tag for cciss performant
559  * set bit 0 for pull model, bits 3-1 for block fetch
560  * register number
561  */
562 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
563 {
564         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
565                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
566                 if (likely(h->msix_vector))
567                         c->Header.ReplyQueue =
568                                 smp_processor_id() % h->nreply_queues;
569         }
570 }
571
572 static int is_firmware_flash_cmd(u8 *cdb)
573 {
574         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
575 }
576
577 /*
578  * During firmware flash, the heartbeat register may not update as frequently
579  * as it should.  So we dial down lockup detection during firmware flash. and
580  * dial it back up when firmware flash completes.
581  */
582 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
583 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
584 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
585                 struct CommandList *c)
586 {
587         if (!is_firmware_flash_cmd(c->Request.CDB))
588                 return;
589         atomic_inc(&h->firmware_flash_in_progress);
590         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
591 }
592
593 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
594                 struct CommandList *c)
595 {
596         if (is_firmware_flash_cmd(c->Request.CDB) &&
597                 atomic_dec_and_test(&h->firmware_flash_in_progress))
598                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
599 }
600
601 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
602         struct CommandList *c)
603 {
604         unsigned long flags;
605
606         set_performant_mode(h, c);
607         dial_down_lockup_detection_during_fw_flash(h, c);
608         spin_lock_irqsave(&h->lock, flags);
609         addQ(&h->reqQ, c);
610         h->Qdepth++;
611         spin_unlock_irqrestore(&h->lock, flags);
612         start_io(h);
613 }
614
615 static inline void removeQ(struct CommandList *c)
616 {
617         if (WARN_ON(list_empty(&c->list)))
618                 return;
619         list_del_init(&c->list);
620 }
621
622 static inline int is_hba_lunid(unsigned char scsi3addr[])
623 {
624         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
625 }
626
627 static inline int is_scsi_rev_5(struct ctlr_info *h)
628 {
629         if (!h->hba_inquiry_data)
630                 return 0;
631         if ((h->hba_inquiry_data[2] & 0x07) == 5)
632                 return 1;
633         return 0;
634 }
635
636 static int hpsa_find_target_lun(struct ctlr_info *h,
637         unsigned char scsi3addr[], int bus, int *target, int *lun)
638 {
639         /* finds an unused bus, target, lun for a new physical device
640          * assumes h->devlock is held
641          */
642         int i, found = 0;
643         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
644
645         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
646
647         for (i = 0; i < h->ndevices; i++) {
648                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
649                         __set_bit(h->dev[i]->target, lun_taken);
650         }
651
652         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
653         if (i < HPSA_MAX_DEVICES) {
654                 /* *bus = 1; */
655                 *target = i;
656                 *lun = 0;
657                 found = 1;
658         }
659         return !found;
660 }
661
662 /* Add an entry into h->dev[] array. */
663 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
664                 struct hpsa_scsi_dev_t *device,
665                 struct hpsa_scsi_dev_t *added[], int *nadded)
666 {
667         /* assumes h->devlock is held */
668         int n = h->ndevices;
669         int i;
670         unsigned char addr1[8], addr2[8];
671         struct hpsa_scsi_dev_t *sd;
672
673         if (n >= HPSA_MAX_DEVICES) {
674                 dev_err(&h->pdev->dev, "too many devices, some will be "
675                         "inaccessible.\n");
676                 return -1;
677         }
678
679         /* physical devices do not have lun or target assigned until now. */
680         if (device->lun != -1)
681                 /* Logical device, lun is already assigned. */
682                 goto lun_assigned;
683
684         /* If this device a non-zero lun of a multi-lun device
685          * byte 4 of the 8-byte LUN addr will contain the logical
686          * unit no, zero otherise.
687          */
688         if (device->scsi3addr[4] == 0) {
689                 /* This is not a non-zero lun of a multi-lun device */
690                 if (hpsa_find_target_lun(h, device->scsi3addr,
691                         device->bus, &device->target, &device->lun) != 0)
692                         return -1;
693                 goto lun_assigned;
694         }
695
696         /* This is a non-zero lun of a multi-lun device.
697          * Search through our list and find the device which
698          * has the same 8 byte LUN address, excepting byte 4.
699          * Assign the same bus and target for this new LUN.
700          * Use the logical unit number from the firmware.
701          */
702         memcpy(addr1, device->scsi3addr, 8);
703         addr1[4] = 0;
704         for (i = 0; i < n; i++) {
705                 sd = h->dev[i];
706                 memcpy(addr2, sd->scsi3addr, 8);
707                 addr2[4] = 0;
708                 /* differ only in byte 4? */
709                 if (memcmp(addr1, addr2, 8) == 0) {
710                         device->bus = sd->bus;
711                         device->target = sd->target;
712                         device->lun = device->scsi3addr[4];
713                         break;
714                 }
715         }
716         if (device->lun == -1) {
717                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
718                         " suspect firmware bug or unsupported hardware "
719                         "configuration.\n");
720                         return -1;
721         }
722
723 lun_assigned:
724
725         h->dev[n] = device;
726         h->ndevices++;
727         added[*nadded] = device;
728         (*nadded)++;
729
730         /* initially, (before registering with scsi layer) we don't
731          * know our hostno and we don't want to print anything first
732          * time anyway (the scsi layer's inquiries will show that info)
733          */
734         /* if (hostno != -1) */
735                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
736                         scsi_device_type(device->devtype), hostno,
737                         device->bus, device->target, device->lun);
738         return 0;
739 }
740
741 /* Update an entry in h->dev[] array. */
742 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
743         int entry, struct hpsa_scsi_dev_t *new_entry)
744 {
745         /* assumes h->devlock is held */
746         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
747
748         /* Raid level changed. */
749         h->dev[entry]->raid_level = new_entry->raid_level;
750         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
751                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
752                 new_entry->target, new_entry->lun);
753 }
754
755 /* Replace an entry from h->dev[] array. */
756 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
757         int entry, struct hpsa_scsi_dev_t *new_entry,
758         struct hpsa_scsi_dev_t *added[], int *nadded,
759         struct hpsa_scsi_dev_t *removed[], int *nremoved)
760 {
761         /* assumes h->devlock is held */
762         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
763         removed[*nremoved] = h->dev[entry];
764         (*nremoved)++;
765
766         /*
767          * New physical devices won't have target/lun assigned yet
768          * so we need to preserve the values in the slot we are replacing.
769          */
770         if (new_entry->target == -1) {
771                 new_entry->target = h->dev[entry]->target;
772                 new_entry->lun = h->dev[entry]->lun;
773         }
774
775         h->dev[entry] = new_entry;
776         added[*nadded] = new_entry;
777         (*nadded)++;
778         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
779                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
780                         new_entry->target, new_entry->lun);
781 }
782
783 /* Remove an entry from h->dev[] array. */
784 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
785         struct hpsa_scsi_dev_t *removed[], int *nremoved)
786 {
787         /* assumes h->devlock is held */
788         int i;
789         struct hpsa_scsi_dev_t *sd;
790
791         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
792
793         sd = h->dev[entry];
794         removed[*nremoved] = h->dev[entry];
795         (*nremoved)++;
796
797         for (i = entry; i < h->ndevices-1; i++)
798                 h->dev[i] = h->dev[i+1];
799         h->ndevices--;
800         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
801                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
802                 sd->lun);
803 }
804
805 #define SCSI3ADDR_EQ(a, b) ( \
806         (a)[7] == (b)[7] && \
807         (a)[6] == (b)[6] && \
808         (a)[5] == (b)[5] && \
809         (a)[4] == (b)[4] && \
810         (a)[3] == (b)[3] && \
811         (a)[2] == (b)[2] && \
812         (a)[1] == (b)[1] && \
813         (a)[0] == (b)[0])
814
815 static void fixup_botched_add(struct ctlr_info *h,
816         struct hpsa_scsi_dev_t *added)
817 {
818         /* called when scsi_add_device fails in order to re-adjust
819          * h->dev[] to match the mid layer's view.
820          */
821         unsigned long flags;
822         int i, j;
823
824         spin_lock_irqsave(&h->lock, flags);
825         for (i = 0; i < h->ndevices; i++) {
826                 if (h->dev[i] == added) {
827                         for (j = i; j < h->ndevices-1; j++)
828                                 h->dev[j] = h->dev[j+1];
829                         h->ndevices--;
830                         break;
831                 }
832         }
833         spin_unlock_irqrestore(&h->lock, flags);
834         kfree(added);
835 }
836
837 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
838         struct hpsa_scsi_dev_t *dev2)
839 {
840         /* we compare everything except lun and target as these
841          * are not yet assigned.  Compare parts likely
842          * to differ first
843          */
844         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
845                 sizeof(dev1->scsi3addr)) != 0)
846                 return 0;
847         if (memcmp(dev1->device_id, dev2->device_id,
848                 sizeof(dev1->device_id)) != 0)
849                 return 0;
850         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
851                 return 0;
852         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
853                 return 0;
854         if (dev1->devtype != dev2->devtype)
855                 return 0;
856         if (dev1->bus != dev2->bus)
857                 return 0;
858         return 1;
859 }
860
861 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
862         struct hpsa_scsi_dev_t *dev2)
863 {
864         /* Device attributes that can change, but don't mean
865          * that the device is a different device, nor that the OS
866          * needs to be told anything about the change.
867          */
868         if (dev1->raid_level != dev2->raid_level)
869                 return 1;
870         return 0;
871 }
872
873 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
874  * and return needle location in *index.  If scsi3addr matches, but not
875  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
876  * location in *index.
877  * In the case of a minor device attribute change, such as RAID level, just
878  * return DEVICE_UPDATED, along with the updated device's location in index.
879  * If needle not found, return DEVICE_NOT_FOUND.
880  */
881 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
882         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
883         int *index)
884 {
885         int i;
886 #define DEVICE_NOT_FOUND 0
887 #define DEVICE_CHANGED 1
888 #define DEVICE_SAME 2
889 #define DEVICE_UPDATED 3
890         for (i = 0; i < haystack_size; i++) {
891                 if (haystack[i] == NULL) /* previously removed. */
892                         continue;
893                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
894                         *index = i;
895                         if (device_is_the_same(needle, haystack[i])) {
896                                 if (device_updated(needle, haystack[i]))
897                                         return DEVICE_UPDATED;
898                                 return DEVICE_SAME;
899                         } else {
900                                 return DEVICE_CHANGED;
901                         }
902                 }
903         }
904         *index = -1;
905         return DEVICE_NOT_FOUND;
906 }
907
908 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
909         struct hpsa_scsi_dev_t *sd[], int nsds)
910 {
911         /* sd contains scsi3 addresses and devtypes, and inquiry
912          * data.  This function takes what's in sd to be the current
913          * reality and updates h->dev[] to reflect that reality.
914          */
915         int i, entry, device_change, changes = 0;
916         struct hpsa_scsi_dev_t *csd;
917         unsigned long flags;
918         struct hpsa_scsi_dev_t **added, **removed;
919         int nadded, nremoved;
920         struct Scsi_Host *sh = NULL;
921
922         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
923         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
924
925         if (!added || !removed) {
926                 dev_warn(&h->pdev->dev, "out of memory in "
927                         "adjust_hpsa_scsi_table\n");
928                 goto free_and_out;
929         }
930
931         spin_lock_irqsave(&h->devlock, flags);
932
933         /* find any devices in h->dev[] that are not in
934          * sd[] and remove them from h->dev[], and for any
935          * devices which have changed, remove the old device
936          * info and add the new device info.
937          * If minor device attributes change, just update
938          * the existing device structure.
939          */
940         i = 0;
941         nremoved = 0;
942         nadded = 0;
943         while (i < h->ndevices) {
944                 csd = h->dev[i];
945                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
946                 if (device_change == DEVICE_NOT_FOUND) {
947                         changes++;
948                         hpsa_scsi_remove_entry(h, hostno, i,
949                                 removed, &nremoved);
950                         continue; /* remove ^^^, hence i not incremented */
951                 } else if (device_change == DEVICE_CHANGED) {
952                         changes++;
953                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
954                                 added, &nadded, removed, &nremoved);
955                         /* Set it to NULL to prevent it from being freed
956                          * at the bottom of hpsa_update_scsi_devices()
957                          */
958                         sd[entry] = NULL;
959                 } else if (device_change == DEVICE_UPDATED) {
960                         hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
961                 }
962                 i++;
963         }
964
965         /* Now, make sure every device listed in sd[] is also
966          * listed in h->dev[], adding them if they aren't found
967          */
968
969         for (i = 0; i < nsds; i++) {
970                 if (!sd[i]) /* if already added above. */
971                         continue;
972                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
973                                         h->ndevices, &entry);
974                 if (device_change == DEVICE_NOT_FOUND) {
975                         changes++;
976                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
977                                 added, &nadded) != 0)
978                                 break;
979                         sd[i] = NULL; /* prevent from being freed later. */
980                 } else if (device_change == DEVICE_CHANGED) {
981                         /* should never happen... */
982                         changes++;
983                         dev_warn(&h->pdev->dev,
984                                 "device unexpectedly changed.\n");
985                         /* but if it does happen, we just ignore that device */
986                 }
987         }
988         spin_unlock_irqrestore(&h->devlock, flags);
989
990         /* Don't notify scsi mid layer of any changes the first time through
991          * (or if there are no changes) scsi_scan_host will do it later the
992          * first time through.
993          */
994         if (hostno == -1 || !changes)
995                 goto free_and_out;
996
997         sh = h->scsi_host;
998         /* Notify scsi mid layer of any removed devices */
999         for (i = 0; i < nremoved; i++) {
1000                 struct scsi_device *sdev =
1001                         scsi_device_lookup(sh, removed[i]->bus,
1002                                 removed[i]->target, removed[i]->lun);
1003                 if (sdev != NULL) {
1004                         scsi_remove_device(sdev);
1005                         scsi_device_put(sdev);
1006                 } else {
1007                         /* We don't expect to get here.
1008                          * future cmds to this device will get selection
1009                          * timeout as if the device was gone.
1010                          */
1011                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1012                                 " for removal.", hostno, removed[i]->bus,
1013                                 removed[i]->target, removed[i]->lun);
1014                 }
1015                 kfree(removed[i]);
1016                 removed[i] = NULL;
1017         }
1018
1019         /* Notify scsi mid layer of any added devices */
1020         for (i = 0; i < nadded; i++) {
1021                 if (scsi_add_device(sh, added[i]->bus,
1022                         added[i]->target, added[i]->lun) == 0)
1023                         continue;
1024                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1025                         "device not added.\n", hostno, added[i]->bus,
1026                         added[i]->target, added[i]->lun);
1027                 /* now we have to remove it from h->dev,
1028                  * since it didn't get added to scsi mid layer
1029                  */
1030                 fixup_botched_add(h, added[i]);
1031         }
1032
1033 free_and_out:
1034         kfree(added);
1035         kfree(removed);
1036 }
1037
1038 /*
1039  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
1040  * Assume's h->devlock is held.
1041  */
1042 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1043         int bus, int target, int lun)
1044 {
1045         int i;
1046         struct hpsa_scsi_dev_t *sd;
1047
1048         for (i = 0; i < h->ndevices; i++) {
1049                 sd = h->dev[i];
1050                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1051                         return sd;
1052         }
1053         return NULL;
1054 }
1055
1056 /* link sdev->hostdata to our per-device structure. */
1057 static int hpsa_slave_alloc(struct scsi_device *sdev)
1058 {
1059         struct hpsa_scsi_dev_t *sd;
1060         unsigned long flags;
1061         struct ctlr_info *h;
1062
1063         h = sdev_to_hba(sdev);
1064         spin_lock_irqsave(&h->devlock, flags);
1065         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1066                 sdev_id(sdev), sdev->lun);
1067         if (sd != NULL)
1068                 sdev->hostdata = sd;
1069         spin_unlock_irqrestore(&h->devlock, flags);
1070         return 0;
1071 }
1072
1073 static void hpsa_slave_destroy(struct scsi_device *sdev)
1074 {
1075         /* nothing to do. */
1076 }
1077
1078 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1079 {
1080         int i;
1081
1082         if (!h->cmd_sg_list)
1083                 return;
1084         for (i = 0; i < h->nr_cmds; i++) {
1085                 kfree(h->cmd_sg_list[i]);
1086                 h->cmd_sg_list[i] = NULL;
1087         }
1088         kfree(h->cmd_sg_list);
1089         h->cmd_sg_list = NULL;
1090 }
1091
1092 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1093 {
1094         int i;
1095
1096         if (h->chainsize <= 0)
1097                 return 0;
1098
1099         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1100                                 GFP_KERNEL);
1101         if (!h->cmd_sg_list)
1102                 return -ENOMEM;
1103         for (i = 0; i < h->nr_cmds; i++) {
1104                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1105                                                 h->chainsize, GFP_KERNEL);
1106                 if (!h->cmd_sg_list[i])
1107                         goto clean;
1108         }
1109         return 0;
1110
1111 clean:
1112         hpsa_free_sg_chain_blocks(h);
1113         return -ENOMEM;
1114 }
1115
1116 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1117         struct CommandList *c)
1118 {
1119         struct SGDescriptor *chain_sg, *chain_block;
1120         u64 temp64;
1121
1122         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1123         chain_block = h->cmd_sg_list[c->cmdindex];
1124         chain_sg->Ext = HPSA_SG_CHAIN;
1125         chain_sg->Len = sizeof(*chain_sg) *
1126                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1127         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1128                                 PCI_DMA_TODEVICE);
1129         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1130         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1131 }
1132
1133 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1134         struct CommandList *c)
1135 {
1136         struct SGDescriptor *chain_sg;
1137         union u64bit temp64;
1138
1139         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1140                 return;
1141
1142         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1143         temp64.val32.lower = chain_sg->Addr.lower;
1144         temp64.val32.upper = chain_sg->Addr.upper;
1145         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1146 }
1147
1148 static void complete_scsi_command(struct CommandList *cp)
1149 {
1150         struct scsi_cmnd *cmd;
1151         struct ctlr_info *h;
1152         struct ErrorInfo *ei;
1153
1154         unsigned char sense_key;
1155         unsigned char asc;      /* additional sense code */
1156         unsigned char ascq;     /* additional sense code qualifier */
1157         unsigned long sense_data_size;
1158
1159         ei = cp->err_info;
1160         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1161         h = cp->h;
1162
1163         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1164         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1165                 hpsa_unmap_sg_chain_block(h, cp);
1166
1167         cmd->result = (DID_OK << 16);           /* host byte */
1168         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1169         cmd->result |= ei->ScsiStatus;
1170
1171         /* copy the sense data whether we need to or not. */
1172         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1173                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1174         else
1175                 sense_data_size = sizeof(ei->SenseInfo);
1176         if (ei->SenseLen < sense_data_size)
1177                 sense_data_size = ei->SenseLen;
1178
1179         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1180         scsi_set_resid(cmd, ei->ResidualCnt);
1181
1182         if (ei->CommandStatus == 0) {
1183                 cmd->scsi_done(cmd);
1184                 cmd_free(h, cp);
1185                 return;
1186         }
1187
1188         /* an error has occurred */
1189         switch (ei->CommandStatus) {
1190
1191         case CMD_TARGET_STATUS:
1192                 if (ei->ScsiStatus) {
1193                         /* Get sense key */
1194                         sense_key = 0xf & ei->SenseInfo[2];
1195                         /* Get additional sense code */
1196                         asc = ei->SenseInfo[12];
1197                         /* Get addition sense code qualifier */
1198                         ascq = ei->SenseInfo[13];
1199                 }
1200
1201                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1202                         if (check_for_unit_attention(h, cp)) {
1203                                 cmd->result = DID_SOFT_ERROR << 16;
1204                                 break;
1205                         }
1206                         if (sense_key == ILLEGAL_REQUEST) {
1207                                 /*
1208                                  * SCSI REPORT_LUNS is commonly unsupported on
1209                                  * Smart Array.  Suppress noisy complaint.
1210                                  */
1211                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1212                                         break;
1213
1214                                 /* If ASC/ASCQ indicate Logical Unit
1215                                  * Not Supported condition,
1216                                  */
1217                                 if ((asc == 0x25) && (ascq == 0x0)) {
1218                                         dev_warn(&h->pdev->dev, "cp %p "
1219                                                 "has check condition\n", cp);
1220                                         break;
1221                                 }
1222                         }
1223
1224                         if (sense_key == NOT_READY) {
1225                                 /* If Sense is Not Ready, Logical Unit
1226                                  * Not ready, Manual Intervention
1227                                  * required
1228                                  */
1229                                 if ((asc == 0x04) && (ascq == 0x03)) {
1230                                         dev_warn(&h->pdev->dev, "cp %p "
1231                                                 "has check condition: unit "
1232                                                 "not ready, manual "
1233                                                 "intervention required\n", cp);
1234                                         break;
1235                                 }
1236                         }
1237                         if (sense_key == ABORTED_COMMAND) {
1238                                 /* Aborted command is retryable */
1239                                 dev_warn(&h->pdev->dev, "cp %p "
1240                                         "has check condition: aborted command: "
1241                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1242                                         cp, asc, ascq);
1243                                 cmd->result = DID_SOFT_ERROR << 16;
1244                                 break;
1245                         }
1246                         /* Must be some other type of check condition */
1247                         dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1248                                         "unknown type: "
1249                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1250                                         "Returning result: 0x%x, "
1251                                         "cmd=[%02x %02x %02x %02x %02x "
1252                                         "%02x %02x %02x %02x %02x %02x "
1253                                         "%02x %02x %02x %02x %02x]\n",
1254                                         cp, sense_key, asc, ascq,
1255                                         cmd->result,
1256                                         cmd->cmnd[0], cmd->cmnd[1],
1257                                         cmd->cmnd[2], cmd->cmnd[3],
1258                                         cmd->cmnd[4], cmd->cmnd[5],
1259                                         cmd->cmnd[6], cmd->cmnd[7],
1260                                         cmd->cmnd[8], cmd->cmnd[9],
1261                                         cmd->cmnd[10], cmd->cmnd[11],
1262                                         cmd->cmnd[12], cmd->cmnd[13],
1263                                         cmd->cmnd[14], cmd->cmnd[15]);
1264                         break;
1265                 }
1266
1267
1268                 /* Problem was not a check condition
1269                  * Pass it up to the upper layers...
1270                  */
1271                 if (ei->ScsiStatus) {
1272                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1273                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1274                                 "Returning result: 0x%x\n",
1275                                 cp, ei->ScsiStatus,
1276                                 sense_key, asc, ascq,
1277                                 cmd->result);
1278                 } else {  /* scsi status is zero??? How??? */
1279                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1280                                 "Returning no connection.\n", cp),
1281
1282                         /* Ordinarily, this case should never happen,
1283                          * but there is a bug in some released firmware
1284                          * revisions that allows it to happen if, for
1285                          * example, a 4100 backplane loses power and
1286                          * the tape drive is in it.  We assume that
1287                          * it's a fatal error of some kind because we
1288                          * can't show that it wasn't. We will make it
1289                          * look like selection timeout since that is
1290                          * the most common reason for this to occur,
1291                          * and it's severe enough.
1292                          */
1293
1294                         cmd->result = DID_NO_CONNECT << 16;
1295                 }
1296                 break;
1297
1298         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1299                 break;
1300         case CMD_DATA_OVERRUN:
1301                 dev_warn(&h->pdev->dev, "cp %p has"
1302                         " completed with data overrun "
1303                         "reported\n", cp);
1304                 break;
1305         case CMD_INVALID: {
1306                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1307                 print_cmd(cp); */
1308                 /* We get CMD_INVALID if you address a non-existent device
1309                  * instead of a selection timeout (no response).  You will
1310                  * see this if you yank out a drive, then try to access it.
1311                  * This is kind of a shame because it means that any other
1312                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1313                  * missing target. */
1314                 cmd->result = DID_NO_CONNECT << 16;
1315         }
1316                 break;
1317         case CMD_PROTOCOL_ERR:
1318                 dev_warn(&h->pdev->dev, "cp %p has "
1319                         "protocol error \n", cp);
1320                 break;
1321         case CMD_HARDWARE_ERR:
1322                 cmd->result = DID_ERROR << 16;
1323                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1324                 break;
1325         case CMD_CONNECTION_LOST:
1326                 cmd->result = DID_ERROR << 16;
1327                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1328                 break;
1329         case CMD_ABORTED:
1330                 cmd->result = DID_ABORT << 16;
1331                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1332                                 cp, ei->ScsiStatus);
1333                 break;
1334         case CMD_ABORT_FAILED:
1335                 cmd->result = DID_ERROR << 16;
1336                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1337                 break;
1338         case CMD_UNSOLICITED_ABORT:
1339                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1340                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1341                         "abort\n", cp);
1342                 break;
1343         case CMD_TIMEOUT:
1344                 cmd->result = DID_TIME_OUT << 16;
1345                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1346                 break;
1347         case CMD_UNABORTABLE:
1348                 cmd->result = DID_ERROR << 16;
1349                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1350                 break;
1351         default:
1352                 cmd->result = DID_ERROR << 16;
1353                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1354                                 cp, ei->CommandStatus);
1355         }
1356         cmd->scsi_done(cmd);
1357         cmd_free(h, cp);
1358 }
1359
1360 static void hpsa_pci_unmap(struct pci_dev *pdev,
1361         struct CommandList *c, int sg_used, int data_direction)
1362 {
1363         int i;
1364         union u64bit addr64;
1365
1366         for (i = 0; i < sg_used; i++) {
1367                 addr64.val32.lower = c->SG[i].Addr.lower;
1368                 addr64.val32.upper = c->SG[i].Addr.upper;
1369                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1370                         data_direction);
1371         }
1372 }
1373
1374 static void hpsa_map_one(struct pci_dev *pdev,
1375                 struct CommandList *cp,
1376                 unsigned char *buf,
1377                 size_t buflen,
1378                 int data_direction)
1379 {
1380         u64 addr64;
1381
1382         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1383                 cp->Header.SGList = 0;
1384                 cp->Header.SGTotal = 0;
1385                 return;
1386         }
1387
1388         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1389         cp->SG[0].Addr.lower =
1390           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1391         cp->SG[0].Addr.upper =
1392           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1393         cp->SG[0].Len = buflen;
1394         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1395         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1396 }
1397
1398 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1399         struct CommandList *c)
1400 {
1401         DECLARE_COMPLETION_ONSTACK(wait);
1402
1403         c->waiting = &wait;
1404         enqueue_cmd_and_start_io(h, c);
1405         wait_for_completion(&wait);
1406 }
1407
1408 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1409         struct CommandList *c)
1410 {
1411         unsigned long flags;
1412
1413         /* If controller lockup detected, fake a hardware error. */
1414         spin_lock_irqsave(&h->lock, flags);
1415         if (unlikely(h->lockup_detected)) {
1416                 spin_unlock_irqrestore(&h->lock, flags);
1417                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1418         } else {
1419                 spin_unlock_irqrestore(&h->lock, flags);
1420                 hpsa_scsi_do_simple_cmd_core(h, c);
1421         }
1422 }
1423
1424 #define MAX_DRIVER_CMD_RETRIES 25
1425 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1426         struct CommandList *c, int data_direction)
1427 {
1428         int backoff_time = 10, retry_count = 0;
1429
1430         do {
1431                 memset(c->err_info, 0, sizeof(*c->err_info));
1432                 hpsa_scsi_do_simple_cmd_core(h, c);
1433                 retry_count++;
1434                 if (retry_count > 3) {
1435                         msleep(backoff_time);
1436                         if (backoff_time < 1000)
1437                                 backoff_time *= 2;
1438                 }
1439         } while ((check_for_unit_attention(h, c) ||
1440                         check_for_busy(h, c)) &&
1441                         retry_count <= MAX_DRIVER_CMD_RETRIES);
1442         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1443 }
1444
1445 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1446 {
1447         struct ErrorInfo *ei;
1448         struct device *d = &cp->h->pdev->dev;
1449
1450         ei = cp->err_info;
1451         switch (ei->CommandStatus) {
1452         case CMD_TARGET_STATUS:
1453                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1454                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1455                                 ei->ScsiStatus);
1456                 if (ei->ScsiStatus == 0)
1457                         dev_warn(d, "SCSI status is abnormally zero.  "
1458                         "(probably indicates selection timeout "
1459                         "reported incorrectly due to a known "
1460                         "firmware bug, circa July, 2001.)\n");
1461                 break;
1462         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1463                         dev_info(d, "UNDERRUN\n");
1464                 break;
1465         case CMD_DATA_OVERRUN:
1466                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1467                 break;
1468         case CMD_INVALID: {
1469                 /* controller unfortunately reports SCSI passthru's
1470                  * to non-existent targets as invalid commands.
1471                  */
1472                 dev_warn(d, "cp %p is reported invalid (probably means "
1473                         "target device no longer present)\n", cp);
1474                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1475                 print_cmd(cp);  */
1476                 }
1477                 break;
1478         case CMD_PROTOCOL_ERR:
1479                 dev_warn(d, "cp %p has protocol error \n", cp);
1480                 break;
1481         case CMD_HARDWARE_ERR:
1482                 /* cmd->result = DID_ERROR << 16; */
1483                 dev_warn(d, "cp %p had hardware error\n", cp);
1484                 break;
1485         case CMD_CONNECTION_LOST:
1486                 dev_warn(d, "cp %p had connection lost\n", cp);
1487                 break;
1488         case CMD_ABORTED:
1489                 dev_warn(d, "cp %p was aborted\n", cp);
1490                 break;
1491         case CMD_ABORT_FAILED:
1492                 dev_warn(d, "cp %p reports abort failed\n", cp);
1493                 break;
1494         case CMD_UNSOLICITED_ABORT:
1495                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1496                 break;
1497         case CMD_TIMEOUT:
1498                 dev_warn(d, "cp %p timed out\n", cp);
1499                 break;
1500         case CMD_UNABORTABLE:
1501                 dev_warn(d, "Command unabortable\n");
1502                 break;
1503         default:
1504                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1505                                 ei->CommandStatus);
1506         }
1507 }
1508
1509 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1510                         unsigned char page, unsigned char *buf,
1511                         unsigned char bufsize)
1512 {
1513         int rc = IO_OK;
1514         struct CommandList *c;
1515         struct ErrorInfo *ei;
1516
1517         c = cmd_special_alloc(h);
1518
1519         if (c == NULL) {                        /* trouble... */
1520                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1521                 return -ENOMEM;
1522         }
1523
1524         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1525         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1526         ei = c->err_info;
1527         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1528                 hpsa_scsi_interpret_error(c);
1529                 rc = -1;
1530         }
1531         cmd_special_free(h, c);
1532         return rc;
1533 }
1534
1535 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1536 {
1537         int rc = IO_OK;
1538         struct CommandList *c;
1539         struct ErrorInfo *ei;
1540
1541         c = cmd_special_alloc(h);
1542
1543         if (c == NULL) {                        /* trouble... */
1544                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1545                 return -ENOMEM;
1546         }
1547
1548         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1549         hpsa_scsi_do_simple_cmd_core(h, c);
1550         /* no unmap needed here because no data xfer. */
1551
1552         ei = c->err_info;
1553         if (ei->CommandStatus != 0) {
1554                 hpsa_scsi_interpret_error(c);
1555                 rc = -1;
1556         }
1557         cmd_special_free(h, c);
1558         return rc;
1559 }
1560
1561 static void hpsa_get_raid_level(struct ctlr_info *h,
1562         unsigned char *scsi3addr, unsigned char *raid_level)
1563 {
1564         int rc;
1565         unsigned char *buf;
1566
1567         *raid_level = RAID_UNKNOWN;
1568         buf = kzalloc(64, GFP_KERNEL);
1569         if (!buf)
1570                 return;
1571         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1572         if (rc == 0)
1573                 *raid_level = buf[8];
1574         if (*raid_level > RAID_UNKNOWN)
1575                 *raid_level = RAID_UNKNOWN;
1576         kfree(buf);
1577         return;
1578 }
1579
1580 /* Get the device id from inquiry page 0x83 */
1581 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1582         unsigned char *device_id, int buflen)
1583 {
1584         int rc;
1585         unsigned char *buf;
1586
1587         if (buflen > 16)
1588                 buflen = 16;
1589         buf = kzalloc(64, GFP_KERNEL);
1590         if (!buf)
1591                 return -1;
1592         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1593         if (rc == 0)
1594                 memcpy(device_id, &buf[8], buflen);
1595         kfree(buf);
1596         return rc != 0;
1597 }
1598
1599 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1600                 struct ReportLUNdata *buf, int bufsize,
1601                 int extended_response)
1602 {
1603         int rc = IO_OK;
1604         struct CommandList *c;
1605         unsigned char scsi3addr[8];
1606         struct ErrorInfo *ei;
1607
1608         c = cmd_special_alloc(h);
1609         if (c == NULL) {                        /* trouble... */
1610                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1611                 return -1;
1612         }
1613         /* address the controller */
1614         memset(scsi3addr, 0, sizeof(scsi3addr));
1615         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1616                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1617         if (extended_response)
1618                 c->Request.CDB[1] = extended_response;
1619         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1620         ei = c->err_info;
1621         if (ei->CommandStatus != 0 &&
1622             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1623                 hpsa_scsi_interpret_error(c);
1624                 rc = -1;
1625         }
1626         cmd_special_free(h, c);
1627         return rc;
1628 }
1629
1630 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1631                 struct ReportLUNdata *buf,
1632                 int bufsize, int extended_response)
1633 {
1634         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1635 }
1636
1637 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1638                 struct ReportLUNdata *buf, int bufsize)
1639 {
1640         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1641 }
1642
1643 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1644         int bus, int target, int lun)
1645 {
1646         device->bus = bus;
1647         device->target = target;
1648         device->lun = lun;
1649 }
1650
1651 static int hpsa_update_device_info(struct ctlr_info *h,
1652         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1653         unsigned char *is_OBDR_device)
1654 {
1655
1656 #define OBDR_SIG_OFFSET 43
1657 #define OBDR_TAPE_SIG "$DR-10"
1658 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1659 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1660
1661         unsigned char *inq_buff;
1662         unsigned char *obdr_sig;
1663
1664         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1665         if (!inq_buff)
1666                 goto bail_out;
1667
1668         /* Do an inquiry to the device to see what it is. */
1669         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1670                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1671                 /* Inquiry failed (msg printed already) */
1672                 dev_err(&h->pdev->dev,
1673                         "hpsa_update_device_info: inquiry failed\n");
1674                 goto bail_out;
1675         }
1676
1677         this_device->devtype = (inq_buff[0] & 0x1f);
1678         memcpy(this_device->scsi3addr, scsi3addr, 8);
1679         memcpy(this_device->vendor, &inq_buff[8],
1680                 sizeof(this_device->vendor));
1681         memcpy(this_device->model, &inq_buff[16],
1682                 sizeof(this_device->model));
1683         memset(this_device->device_id, 0,
1684                 sizeof(this_device->device_id));
1685         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1686                 sizeof(this_device->device_id));
1687
1688         if (this_device->devtype == TYPE_DISK &&
1689                 is_logical_dev_addr_mode(scsi3addr))
1690                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1691         else
1692                 this_device->raid_level = RAID_UNKNOWN;
1693
1694         if (is_OBDR_device) {
1695                 /* See if this is a One-Button-Disaster-Recovery device
1696                  * by looking for "$DR-10" at offset 43 in inquiry data.
1697                  */
1698                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1699                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1700                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
1701                                                 OBDR_SIG_LEN) == 0);
1702         }
1703
1704         kfree(inq_buff);
1705         return 0;
1706
1707 bail_out:
1708         kfree(inq_buff);
1709         return 1;
1710 }
1711
1712 static unsigned char *ext_target_model[] = {
1713         "MSA2012",
1714         "MSA2024",
1715         "MSA2312",
1716         "MSA2324",
1717         "P2000 G3 SAS",
1718         NULL,
1719 };
1720
1721 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1722 {
1723         int i;
1724
1725         for (i = 0; ext_target_model[i]; i++)
1726                 if (strncmp(device->model, ext_target_model[i],
1727                         strlen(ext_target_model[i])) == 0)
1728                         return 1;
1729         return 0;
1730 }
1731
1732 /* Helper function to assign bus, target, lun mapping of devices.
1733  * Puts non-external target logical volumes on bus 0, external target logical
1734  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1735  * Logical drive target and lun are assigned at this time, but
1736  * physical device lun and target assignment are deferred (assigned
1737  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1738  */
1739 static void figure_bus_target_lun(struct ctlr_info *h,
1740         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1741 {
1742         u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1743
1744         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1745                 /* physical device, target and lun filled in later */
1746                 if (is_hba_lunid(lunaddrbytes))
1747                         hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1748                 else
1749                         /* defer target, lun assignment for physical devices */
1750                         hpsa_set_bus_target_lun(device, 2, -1, -1);
1751                 return;
1752         }
1753         /* It's a logical device */
1754         if (is_ext_target(h, device)) {
1755                 /* external target way, put logicals on bus 1
1756                  * and match target/lun numbers box
1757                  * reports, other smart array, bus 0, target 0, match lunid
1758                  */
1759                 hpsa_set_bus_target_lun(device,
1760                         1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1761                 return;
1762         }
1763         hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1764 }
1765
1766 /*
1767  * If there is no lun 0 on a target, linux won't find any devices.
1768  * For the external targets (arrays), we have to manually detect the enclosure
1769  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1770  * it for some reason.  *tmpdevice is the target we're adding,
1771  * this_device is a pointer into the current element of currentsd[]
1772  * that we're building up in update_scsi_devices(), below.
1773  * lunzerobits is a bitmap that tracks which targets already have a
1774  * lun 0 assigned.
1775  * Returns 1 if an enclosure was added, 0 if not.
1776  */
1777 static int add_ext_target_dev(struct ctlr_info *h,
1778         struct hpsa_scsi_dev_t *tmpdevice,
1779         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1780         unsigned long lunzerobits[], int *n_ext_target_devs)
1781 {
1782         unsigned char scsi3addr[8];
1783
1784         if (test_bit(tmpdevice->target, lunzerobits))
1785                 return 0; /* There is already a lun 0 on this target. */
1786
1787         if (!is_logical_dev_addr_mode(lunaddrbytes))
1788                 return 0; /* It's the logical targets that may lack lun 0. */
1789
1790         if (!is_ext_target(h, tmpdevice))
1791                 return 0; /* Only external target devices have this problem. */
1792
1793         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1794                 return 0;
1795
1796         memset(scsi3addr, 0, 8);
1797         scsi3addr[3] = tmpdevice->target;
1798         if (is_hba_lunid(scsi3addr))
1799                 return 0; /* Don't add the RAID controller here. */
1800
1801         if (is_scsi_rev_5(h))
1802                 return 0; /* p1210m doesn't need to do this. */
1803
1804         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1805                 dev_warn(&h->pdev->dev, "Maximum number of external "
1806                         "target devices exceeded.  Check your hardware "
1807                         "configuration.");
1808                 return 0;
1809         }
1810
1811         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1812                 return 0;
1813         (*n_ext_target_devs)++;
1814         hpsa_set_bus_target_lun(this_device,
1815                                 tmpdevice->bus, tmpdevice->target, 0);
1816         set_bit(tmpdevice->target, lunzerobits);
1817         return 1;
1818 }
1819
1820 /*
1821  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1822  * logdev.  The number of luns in physdev and logdev are returned in
1823  * *nphysicals and *nlogicals, respectively.
1824  * Returns 0 on success, -1 otherwise.
1825  */
1826 static int hpsa_gather_lun_info(struct ctlr_info *h,
1827         int reportlunsize,
1828         struct ReportLUNdata *physdev, u32 *nphysicals,
1829         struct ReportLUNdata *logdev, u32 *nlogicals)
1830 {
1831         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1832                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1833                 return -1;
1834         }
1835         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1836         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1837                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1838                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1839                         *nphysicals - HPSA_MAX_PHYS_LUN);
1840                 *nphysicals = HPSA_MAX_PHYS_LUN;
1841         }
1842         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1843                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1844                 return -1;
1845         }
1846         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1847         /* Reject Logicals in excess of our max capability. */
1848         if (*nlogicals > HPSA_MAX_LUN) {
1849                 dev_warn(&h->pdev->dev,
1850                         "maximum logical LUNs (%d) exceeded.  "
1851                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1852                         *nlogicals - HPSA_MAX_LUN);
1853                         *nlogicals = HPSA_MAX_LUN;
1854         }
1855         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1856                 dev_warn(&h->pdev->dev,
1857                         "maximum logical + physical LUNs (%d) exceeded. "
1858                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1859                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1860                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1861         }
1862         return 0;
1863 }
1864
1865 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1866         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1867         struct ReportLUNdata *logdev_list)
1868 {
1869         /* Helper function, figure out where the LUN ID info is coming from
1870          * given index i, lists of physical and logical devices, where in
1871          * the list the raid controller is supposed to appear (first or last)
1872          */
1873
1874         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1875         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1876
1877         if (i == raid_ctlr_position)
1878                 return RAID_CTLR_LUNID;
1879
1880         if (i < logicals_start)
1881                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1882
1883         if (i < last_device)
1884                 return &logdev_list->LUN[i - nphysicals -
1885                         (raid_ctlr_position == 0)][0];
1886         BUG();
1887         return NULL;
1888 }
1889
1890 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1891 {
1892         /* the idea here is we could get notified
1893          * that some devices have changed, so we do a report
1894          * physical luns and report logical luns cmd, and adjust
1895          * our list of devices accordingly.
1896          *
1897          * The scsi3addr's of devices won't change so long as the
1898          * adapter is not reset.  That means we can rescan and
1899          * tell which devices we already know about, vs. new
1900          * devices, vs.  disappearing devices.
1901          */
1902         struct ReportLUNdata *physdev_list = NULL;
1903         struct ReportLUNdata *logdev_list = NULL;
1904         u32 nphysicals = 0;
1905         u32 nlogicals = 0;
1906         u32 ndev_allocated = 0;
1907         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1908         int ncurrent = 0;
1909         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1910         int i, n_ext_target_devs, ndevs_to_allocate;
1911         int raid_ctlr_position;
1912         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1913
1914         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1915         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1916         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1917         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1918
1919         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1920                 dev_err(&h->pdev->dev, "out of memory\n");
1921                 goto out;
1922         }
1923         memset(lunzerobits, 0, sizeof(lunzerobits));
1924
1925         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1926                         logdev_list, &nlogicals))
1927                 goto out;
1928
1929         /* We might see up to the maximum number of logical and physical disks
1930          * plus external target devices, and a device for the local RAID
1931          * controller.
1932          */
1933         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
1934
1935         /* Allocate the per device structures */
1936         for (i = 0; i < ndevs_to_allocate; i++) {
1937                 if (i >= HPSA_MAX_DEVICES) {
1938                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1939                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
1940                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
1941                         break;
1942                 }
1943
1944                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1945                 if (!currentsd[i]) {
1946                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1947                                 __FILE__, __LINE__);
1948                         goto out;
1949                 }
1950                 ndev_allocated++;
1951         }
1952
1953         if (unlikely(is_scsi_rev_5(h)))
1954                 raid_ctlr_position = 0;
1955         else
1956                 raid_ctlr_position = nphysicals + nlogicals;
1957
1958         /* adjust our table of devices */
1959         n_ext_target_devs = 0;
1960         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1961                 u8 *lunaddrbytes, is_OBDR = 0;
1962
1963                 /* Figure out where the LUN ID info is coming from */
1964                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1965                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1966                 /* skip masked physical devices. */
1967                 if (lunaddrbytes[3] & 0xC0 &&
1968                         i < nphysicals + (raid_ctlr_position == 0))
1969                         continue;
1970
1971                 /* Get device type, vendor, model, device id */
1972                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1973                                                         &is_OBDR))
1974                         continue; /* skip it if we can't talk to it. */
1975                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
1976                 this_device = currentsd[ncurrent];
1977
1978                 /*
1979                  * For external target devices, we have to insert a LUN 0 which
1980                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1981                  * is nonetheless an enclosure device there.  We have to
1982                  * present that otherwise linux won't find anything if
1983                  * there is no lun 0.
1984                  */
1985                 if (add_ext_target_dev(h, tmpdevice, this_device,
1986                                 lunaddrbytes, lunzerobits,
1987                                 &n_ext_target_devs)) {
1988                         ncurrent++;
1989                         this_device = currentsd[ncurrent];
1990                 }
1991
1992                 *this_device = *tmpdevice;
1993
1994                 switch (this_device->devtype) {
1995                 case TYPE_ROM:
1996                         /* We don't *really* support actual CD-ROM devices,
1997                          * just "One Button Disaster Recovery" tape drive
1998                          * which temporarily pretends to be a CD-ROM drive.
1999                          * So we check that the device is really an OBDR tape
2000                          * device by checking for "$DR-10" in bytes 43-48 of
2001                          * the inquiry data.
2002                          */
2003                         if (is_OBDR)
2004                                 ncurrent++;
2005                         break;
2006                 case TYPE_DISK:
2007                         if (i < nphysicals)
2008                                 break;
2009                         ncurrent++;
2010                         break;
2011                 case TYPE_TAPE:
2012                 case TYPE_MEDIUM_CHANGER:
2013                         ncurrent++;
2014                         break;
2015                 case TYPE_RAID:
2016                         /* Only present the Smartarray HBA as a RAID controller.
2017                          * If it's a RAID controller other than the HBA itself
2018                          * (an external RAID controller, MSA500 or similar)
2019                          * don't present it.
2020                          */
2021                         if (!is_hba_lunid(lunaddrbytes))
2022                                 break;
2023                         ncurrent++;
2024                         break;
2025                 default:
2026                         break;
2027                 }
2028                 if (ncurrent >= HPSA_MAX_DEVICES)
2029                         break;
2030         }
2031         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
2032 out:
2033         kfree(tmpdevice);
2034         for (i = 0; i < ndev_allocated; i++)
2035                 kfree(currentsd[i]);
2036         kfree(currentsd);
2037         kfree(physdev_list);
2038         kfree(logdev_list);
2039 }
2040
2041 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2042  * dma mapping  and fills in the scatter gather entries of the
2043  * hpsa command, cp.
2044  */
2045 static int hpsa_scatter_gather(struct ctlr_info *h,
2046                 struct CommandList *cp,
2047                 struct scsi_cmnd *cmd)
2048 {
2049         unsigned int len;
2050         struct scatterlist *sg;
2051         u64 addr64;
2052         int use_sg, i, sg_index, chained;
2053         struct SGDescriptor *curr_sg;
2054
2055         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2056
2057         use_sg = scsi_dma_map(cmd);
2058         if (use_sg < 0)
2059                 return use_sg;
2060
2061         if (!use_sg)
2062                 goto sglist_finished;
2063
2064         curr_sg = cp->SG;
2065         chained = 0;
2066         sg_index = 0;
2067         scsi_for_each_sg(cmd, sg, use_sg, i) {
2068                 if (i == h->max_cmd_sg_entries - 1 &&
2069                         use_sg > h->max_cmd_sg_entries) {
2070                         chained = 1;
2071                         curr_sg = h->cmd_sg_list[cp->cmdindex];
2072                         sg_index = 0;
2073                 }
2074                 addr64 = (u64) sg_dma_address(sg);
2075                 len  = sg_dma_len(sg);
2076                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2077                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2078                 curr_sg->Len = len;
2079                 curr_sg->Ext = 0;  /* we are not chaining */
2080                 curr_sg++;
2081         }
2082
2083         if (use_sg + chained > h->maxSG)
2084                 h->maxSG = use_sg + chained;
2085
2086         if (chained) {
2087                 cp->Header.SGList = h->max_cmd_sg_entries;
2088                 cp->Header.SGTotal = (u16) (use_sg + 1);
2089                 hpsa_map_sg_chain_block(h, cp);
2090                 return 0;
2091         }
2092
2093 sglist_finished:
2094
2095         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2096         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2097         return 0;
2098 }
2099
2100
2101 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2102         void (*done)(struct scsi_cmnd *))
2103 {
2104         struct ctlr_info *h;
2105         struct hpsa_scsi_dev_t *dev;
2106         unsigned char scsi3addr[8];
2107         struct CommandList *c;
2108         unsigned long flags;
2109
2110         /* Get the ptr to our adapter structure out of cmd->host. */
2111         h = sdev_to_hba(cmd->device);
2112         dev = cmd->device->hostdata;
2113         if (!dev) {
2114                 cmd->result = DID_NO_CONNECT << 16;
2115                 done(cmd);
2116                 return 0;
2117         }
2118         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2119
2120         spin_lock_irqsave(&h->lock, flags);
2121         if (unlikely(h->lockup_detected)) {
2122                 spin_unlock_irqrestore(&h->lock, flags);
2123                 cmd->result = DID_ERROR << 16;
2124                 done(cmd);
2125                 return 0;
2126         }
2127         spin_unlock_irqrestore(&h->lock, flags);
2128         c = cmd_alloc(h);
2129         if (c == NULL) {                        /* trouble... */
2130                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2131                 return SCSI_MLQUEUE_HOST_BUSY;
2132         }
2133
2134         /* Fill in the command list header */
2135
2136         cmd->scsi_done = done;    /* save this for use by completion code */
2137
2138         /* save c in case we have to abort it  */
2139         cmd->host_scribble = (unsigned char *) c;
2140
2141         c->cmd_type = CMD_SCSI;
2142         c->scsi_cmd = cmd;
2143         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2144         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2145         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2146         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2147
2148         /* Fill in the request block... */
2149
2150         c->Request.Timeout = 0;
2151         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2152         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2153         c->Request.CDBLen = cmd->cmd_len;
2154         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2155         c->Request.Type.Type = TYPE_CMD;
2156         c->Request.Type.Attribute = ATTR_SIMPLE;
2157         switch (cmd->sc_data_direction) {
2158         case DMA_TO_DEVICE:
2159                 c->Request.Type.Direction = XFER_WRITE;
2160                 break;
2161         case DMA_FROM_DEVICE:
2162                 c->Request.Type.Direction = XFER_READ;
2163                 break;
2164         case DMA_NONE:
2165                 c->Request.Type.Direction = XFER_NONE;
2166                 break;
2167         case DMA_BIDIRECTIONAL:
2168                 /* This can happen if a buggy application does a scsi passthru
2169                  * and sets both inlen and outlen to non-zero. ( see
2170                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2171                  */
2172
2173                 c->Request.Type.Direction = XFER_RSVD;
2174                 /* This is technically wrong, and hpsa controllers should
2175                  * reject it with CMD_INVALID, which is the most correct
2176                  * response, but non-fibre backends appear to let it
2177                  * slide by, and give the same results as if this field
2178                  * were set correctly.  Either way is acceptable for
2179                  * our purposes here.
2180                  */
2181
2182                 break;
2183
2184         default:
2185                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2186                         cmd->sc_data_direction);
2187                 BUG();
2188                 break;
2189         }
2190
2191         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2192                 cmd_free(h, c);
2193                 return SCSI_MLQUEUE_HOST_BUSY;
2194         }
2195         enqueue_cmd_and_start_io(h, c);
2196         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2197         return 0;
2198 }
2199
2200 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2201
2202 static void hpsa_scan_start(struct Scsi_Host *sh)
2203 {
2204         struct ctlr_info *h = shost_to_hba(sh);
2205         unsigned long flags;
2206
2207         /* wait until any scan already in progress is finished. */
2208         while (1) {
2209                 spin_lock_irqsave(&h->scan_lock, flags);
2210                 if (h->scan_finished)
2211                         break;
2212                 spin_unlock_irqrestore(&h->scan_lock, flags);
2213                 wait_event(h->scan_wait_queue, h->scan_finished);
2214                 /* Note: We don't need to worry about a race between this
2215                  * thread and driver unload because the midlayer will
2216                  * have incremented the reference count, so unload won't
2217                  * happen if we're in here.
2218                  */
2219         }
2220         h->scan_finished = 0; /* mark scan as in progress */
2221         spin_unlock_irqrestore(&h->scan_lock, flags);
2222
2223         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2224
2225         spin_lock_irqsave(&h->scan_lock, flags);
2226         h->scan_finished = 1; /* mark scan as finished. */
2227         wake_up_all(&h->scan_wait_queue);
2228         spin_unlock_irqrestore(&h->scan_lock, flags);
2229 }
2230
2231 static int hpsa_scan_finished(struct Scsi_Host *sh,
2232         unsigned long elapsed_time)
2233 {
2234         struct ctlr_info *h = shost_to_hba(sh);
2235         unsigned long flags;
2236         int finished;
2237
2238         spin_lock_irqsave(&h->scan_lock, flags);
2239         finished = h->scan_finished;
2240         spin_unlock_irqrestore(&h->scan_lock, flags);
2241         return finished;
2242 }
2243
2244 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2245         int qdepth, int reason)
2246 {
2247         struct ctlr_info *h = sdev_to_hba(sdev);
2248
2249         if (reason != SCSI_QDEPTH_DEFAULT)
2250                 return -ENOTSUPP;
2251
2252         if (qdepth < 1)
2253                 qdepth = 1;
2254         else
2255                 if (qdepth > h->nr_cmds)
2256                         qdepth = h->nr_cmds;
2257         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2258         return sdev->queue_depth;
2259 }
2260
2261 static void hpsa_unregister_scsi(struct ctlr_info *h)
2262 {
2263         /* we are being forcibly unloaded, and may not refuse. */
2264         scsi_remove_host(h->scsi_host);
2265         scsi_host_put(h->scsi_host);
2266         h->scsi_host = NULL;
2267 }
2268
2269 static int hpsa_register_scsi(struct ctlr_info *h)
2270 {
2271         struct Scsi_Host *sh;
2272         int error;
2273
2274         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2275         if (sh == NULL)
2276                 goto fail;
2277
2278         sh->io_port = 0;
2279         sh->n_io_port = 0;
2280         sh->this_id = -1;
2281         sh->max_channel = 3;
2282         sh->max_cmd_len = MAX_COMMAND_SIZE;
2283         sh->max_lun = HPSA_MAX_LUN;
2284         sh->max_id = HPSA_MAX_LUN;
2285         sh->can_queue = h->nr_cmds;
2286         sh->cmd_per_lun = h->nr_cmds;
2287         sh->sg_tablesize = h->maxsgentries;
2288         h->scsi_host = sh;
2289         sh->hostdata[0] = (unsigned long) h;
2290         sh->irq = h->intr[h->intr_mode];
2291         sh->unique_id = sh->irq;
2292         error = scsi_add_host(sh, &h->pdev->dev);
2293         if (error)
2294                 goto fail_host_put;
2295         scsi_scan_host(sh);
2296         return 0;
2297
2298  fail_host_put:
2299         dev_err(&h->pdev->dev, "%s: scsi_add_host"
2300                 " failed for controller %d\n", __func__, h->ctlr);
2301         scsi_host_put(sh);
2302         return error;
2303  fail:
2304         dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2305                 " failed for controller %d\n", __func__, h->ctlr);
2306         return -ENOMEM;
2307 }
2308
2309 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2310         unsigned char lunaddr[])
2311 {
2312         int rc = 0;
2313         int count = 0;
2314         int waittime = 1; /* seconds */
2315         struct CommandList *c;
2316
2317         c = cmd_special_alloc(h);
2318         if (!c) {
2319                 dev_warn(&h->pdev->dev, "out of memory in "
2320                         "wait_for_device_to_become_ready.\n");
2321                 return IO_ERROR;
2322         }
2323
2324         /* Send test unit ready until device ready, or give up. */
2325         while (count < HPSA_TUR_RETRY_LIMIT) {
2326
2327                 /* Wait for a bit.  do this first, because if we send
2328                  * the TUR right away, the reset will just abort it.
2329                  */
2330                 msleep(1000 * waittime);
2331                 count++;
2332
2333                 /* Increase wait time with each try, up to a point. */
2334                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2335                         waittime = waittime * 2;
2336
2337                 /* Send the Test Unit Ready */
2338                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2339                 hpsa_scsi_do_simple_cmd_core(h, c);
2340                 /* no unmap needed here because no data xfer. */
2341
2342                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2343                         break;
2344
2345                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2346                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2347                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2348                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2349                         break;
2350
2351                 dev_warn(&h->pdev->dev, "waiting %d secs "
2352                         "for device to become ready.\n", waittime);
2353                 rc = 1; /* device not ready. */
2354         }
2355
2356         if (rc)
2357                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2358         else
2359                 dev_warn(&h->pdev->dev, "device is ready.\n");
2360
2361         cmd_special_free(h, c);
2362         return rc;
2363 }
2364
2365 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2366  * complaining.  Doing a host- or bus-reset can't do anything good here.
2367  */
2368 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2369 {
2370         int rc;
2371         struct ctlr_info *h;
2372         struct hpsa_scsi_dev_t *dev;
2373
2374         /* find the controller to which the command to be aborted was sent */
2375         h = sdev_to_hba(scsicmd->device);
2376         if (h == NULL) /* paranoia */
2377                 return FAILED;
2378         dev = scsicmd->device->hostdata;
2379         if (!dev) {
2380                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2381                         "device lookup failed.\n");
2382                 return FAILED;
2383         }
2384         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2385                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2386         /* send a reset to the SCSI LUN which the command was sent to */
2387         rc = hpsa_send_reset(h, dev->scsi3addr);
2388         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2389                 return SUCCESS;
2390
2391         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2392         return FAILED;
2393 }
2394
2395 static void swizzle_abort_tag(u8 *tag)
2396 {
2397         u8 original_tag[8];
2398
2399         memcpy(original_tag, tag, 8);
2400         tag[0] = original_tag[3];
2401         tag[1] = original_tag[2];
2402         tag[2] = original_tag[1];
2403         tag[3] = original_tag[0];
2404         tag[4] = original_tag[7];
2405         tag[5] = original_tag[6];
2406         tag[6] = original_tag[5];
2407         tag[7] = original_tag[4];
2408 }
2409
2410 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2411         struct CommandList *abort, int swizzle)
2412 {
2413         int rc = IO_OK;
2414         struct CommandList *c;
2415         struct ErrorInfo *ei;
2416
2417         c = cmd_special_alloc(h);
2418         if (c == NULL) {        /* trouble... */
2419                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2420                 return -ENOMEM;
2421         }
2422
2423         fill_cmd(c, HPSA_ABORT_MSG, h, abort, 0, 0, scsi3addr, TYPE_MSG);
2424         if (swizzle)
2425                 swizzle_abort_tag(&c->Request.CDB[4]);
2426         hpsa_scsi_do_simple_cmd_core(h, c);
2427         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2428                 __func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
2429         /* no unmap needed here because no data xfer. */
2430
2431         ei = c->err_info;
2432         switch (ei->CommandStatus) {
2433         case CMD_SUCCESS:
2434                 break;
2435         case CMD_UNABORTABLE: /* Very common, don't make noise. */
2436                 rc = -1;
2437                 break;
2438         default:
2439                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2440                         __func__, abort->Header.Tag.upper,
2441                         abort->Header.Tag.lower);
2442                 hpsa_scsi_interpret_error(c);
2443                 rc = -1;
2444                 break;
2445         }
2446         cmd_special_free(h, c);
2447         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
2448                 abort->Header.Tag.upper, abort->Header.Tag.lower);
2449         return rc;
2450 }
2451
2452 /*
2453  * hpsa_find_cmd_in_queue
2454  *
2455  * Used to determine whether a command (find) is still present
2456  * in queue_head.   Optionally excludes the last element of queue_head.
2457  *
2458  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
2459  * not yet been submitted, and so can be aborted by the driver without
2460  * sending an abort to the hardware.
2461  *
2462  * Returns pointer to command if found in queue, NULL otherwise.
2463  */
2464 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
2465                         struct scsi_cmnd *find, struct list_head *queue_head)
2466 {
2467         unsigned long flags;
2468         struct CommandList *c = NULL;   /* ptr into cmpQ */
2469
2470         if (!find)
2471                 return 0;
2472         spin_lock_irqsave(&h->lock, flags);
2473         list_for_each_entry(c, queue_head, list) {
2474                 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
2475                         continue;
2476                 if (c->scsi_cmd == find) {
2477                         spin_unlock_irqrestore(&h->lock, flags);
2478                         return c;
2479                 }
2480         }
2481         spin_unlock_irqrestore(&h->lock, flags);
2482         return NULL;
2483 }
2484
2485 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
2486                                         u8 *tag, struct list_head *queue_head)
2487 {
2488         unsigned long flags;
2489         struct CommandList *c;
2490
2491         spin_lock_irqsave(&h->lock, flags);
2492         list_for_each_entry(c, queue_head, list) {
2493                 if (memcmp(&c->Header.Tag, tag, 8) != 0)
2494                         continue;
2495                 spin_unlock_irqrestore(&h->lock, flags);
2496                 return c;
2497         }
2498         spin_unlock_irqrestore(&h->lock, flags);
2499         return NULL;
2500 }
2501
2502 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
2503  * tell which kind we're dealing with, so we send the abort both ways.  There
2504  * shouldn't be any collisions between swizzled and unswizzled tags due to the
2505  * way we construct our tags but we check anyway in case the assumptions which
2506  * make this true someday become false.
2507  */
2508 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
2509         unsigned char *scsi3addr, struct CommandList *abort)
2510 {
2511         u8 swizzled_tag[8];
2512         struct CommandList *c;
2513         int rc = 0, rc2 = 0;
2514
2515         /* we do not expect to find the swizzled tag in our queue, but
2516          * check anyway just to be sure the assumptions which make this
2517          * the case haven't become wrong.
2518          */
2519         memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
2520         swizzle_abort_tag(swizzled_tag);
2521         c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
2522         if (c != NULL) {
2523                 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
2524                 return hpsa_send_abort(h, scsi3addr, abort, 0);
2525         }
2526         rc = hpsa_send_abort(h, scsi3addr, abort, 0);
2527
2528         /* if the command is still in our queue, we can't conclude that it was
2529          * aborted (it might have just completed normally) but in any case
2530          * we don't need to try to abort it another way.
2531          */
2532         c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
2533         if (c)
2534                 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
2535         return rc && rc2;
2536 }
2537
2538 /* Send an abort for the specified command.
2539  *      If the device and controller support it,
2540  *              send a task abort request.
2541  */
2542 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
2543 {
2544
2545         int i, rc;
2546         struct ctlr_info *h;
2547         struct hpsa_scsi_dev_t *dev;
2548         struct CommandList *abort; /* pointer to command to be aborted */
2549         struct CommandList *found;
2550         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
2551         char msg[256];          /* For debug messaging. */
2552         int ml = 0;
2553
2554         /* Find the controller of the command to be aborted */
2555         h = sdev_to_hba(sc->device);
2556         if (WARN(h == NULL,
2557                         "ABORT REQUEST FAILED, Controller lookup failed.\n"))
2558                 return FAILED;
2559
2560         /* Check that controller supports some kind of task abort */
2561         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
2562                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
2563                 return FAILED;
2564
2565         memset(msg, 0, sizeof(msg));
2566         ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2567                 h->scsi_host->host_no, sc->device->channel,
2568                 sc->device->id, sc->device->lun);
2569
2570         /* Find the device of the command to be aborted */
2571         dev = sc->device->hostdata;
2572         if (!dev) {
2573                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
2574                                 msg);
2575                 return FAILED;
2576         }
2577
2578         /* Get SCSI command to be aborted */
2579         abort = (struct CommandList *) sc->host_scribble;
2580         if (abort == NULL) {
2581                 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
2582                                 msg);
2583                 return FAILED;
2584         }
2585
2586         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
2587                 abort->Header.Tag.upper, abort->Header.Tag.lower);
2588         as  = (struct scsi_cmnd *) abort->scsi_cmd;
2589         if (as != NULL)
2590                 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
2591                         as->cmnd[0], as->serial_number);
2592         dev_dbg(&h->pdev->dev, "%s\n", msg);
2593         dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
2594                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2595
2596         /* Search reqQ to See if command is queued but not submitted,
2597          * if so, complete the command with aborted status and remove
2598          * it from the reqQ.
2599          */
2600         found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
2601         if (found) {
2602                 found->err_info->CommandStatus = CMD_ABORTED;
2603                 finish_cmd(found);
2604                 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
2605                                 msg);
2606                 return SUCCESS;
2607         }
2608
2609         /* not in reqQ, if also not in cmpQ, must have already completed */
2610         found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2611         if (!found)  {
2612                 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
2613                                 msg);
2614                 return SUCCESS;
2615         }
2616
2617         /*
2618          * Command is in flight, or possibly already completed
2619          * by the firmware (but not to the scsi mid layer) but we can't
2620          * distinguish which.  Send the abort down.
2621          */
2622         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2623         if (rc != 0) {
2624                 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
2625                 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2626                         h->scsi_host->host_no,
2627                         dev->bus, dev->target, dev->lun);
2628                 return FAILED;
2629         }
2630         dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
2631
2632         /* If the abort(s) above completed and actually aborted the
2633          * command, then the command to be aborted should already be
2634          * completed.  If not, wait around a bit more to see if they
2635          * manage to complete normally.
2636          */
2637 #define ABORT_COMPLETE_WAIT_SECS 30
2638         for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
2639                 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2640                 if (!found)
2641                         return SUCCESS;
2642                 msleep(100);
2643         }
2644         dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2645                 msg, ABORT_COMPLETE_WAIT_SECS);
2646         return FAILED;
2647 }
2648
2649
2650 /*
2651  * For operations that cannot sleep, a command block is allocated at init,
2652  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2653  * which ones are free or in use.  Lock must be held when calling this.
2654  * cmd_free() is the complement.
2655  */
2656 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2657 {
2658         struct CommandList *c;
2659         int i;
2660         union u64bit temp64;
2661         dma_addr_t cmd_dma_handle, err_dma_handle;
2662         unsigned long flags;
2663
2664         spin_lock_irqsave(&h->lock, flags);
2665         do {
2666                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2667                 if (i == h->nr_cmds) {
2668                         spin_unlock_irqrestore(&h->lock, flags);
2669                         return NULL;
2670                 }
2671         } while (test_and_set_bit
2672                  (i & (BITS_PER_LONG - 1),
2673                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2674         h->nr_allocs++;
2675         spin_unlock_irqrestore(&h->lock, flags);
2676
2677         c = h->cmd_pool + i;
2678         memset(c, 0, sizeof(*c));
2679         cmd_dma_handle = h->cmd_pool_dhandle
2680             + i * sizeof(*c);
2681         c->err_info = h->errinfo_pool + i;
2682         memset(c->err_info, 0, sizeof(*c->err_info));
2683         err_dma_handle = h->errinfo_pool_dhandle
2684             + i * sizeof(*c->err_info);
2685
2686         c->cmdindex = i;
2687
2688         INIT_LIST_HEAD(&c->list);
2689         c->busaddr = (u32) cmd_dma_handle;
2690         temp64.val = (u64) err_dma_handle;
2691         c->ErrDesc.Addr.lower = temp64.val32.lower;
2692         c->ErrDesc.Addr.upper = temp64.val32.upper;
2693         c->ErrDesc.Len = sizeof(*c->err_info);
2694
2695         c->h = h;
2696         return c;
2697 }
2698
2699 /* For operations that can wait for kmalloc to possibly sleep,
2700  * this routine can be called. Lock need not be held to call
2701  * cmd_special_alloc. cmd_special_free() is the complement.
2702  */
2703 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2704 {
2705         struct CommandList *c;
2706         union u64bit temp64;
2707         dma_addr_t cmd_dma_handle, err_dma_handle;
2708
2709         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2710         if (c == NULL)
2711                 return NULL;
2712         memset(c, 0, sizeof(*c));
2713
2714         c->cmdindex = -1;
2715
2716         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2717                     &err_dma_handle);
2718
2719         if (c->err_info == NULL) {
2720                 pci_free_consistent(h->pdev,
2721                         sizeof(*c), c, cmd_dma_handle);
2722                 return NULL;
2723         }
2724         memset(c->err_info, 0, sizeof(*c->err_info));
2725
2726         INIT_LIST_HEAD(&c->list);
2727         c->busaddr = (u32) cmd_dma_handle;
2728         temp64.val = (u64) err_dma_handle;
2729         c->ErrDesc.Addr.lower = temp64.val32.lower;
2730         c->ErrDesc.Addr.upper = temp64.val32.upper;
2731         c->ErrDesc.Len = sizeof(*c->err_info);
2732
2733         c->h = h;
2734         return c;
2735 }
2736
2737 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2738 {
2739         int i;
2740         unsigned long flags;
2741
2742         i = c - h->cmd_pool;
2743         spin_lock_irqsave(&h->lock, flags);
2744         clear_bit(i & (BITS_PER_LONG - 1),
2745                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2746         h->nr_frees++;
2747         spin_unlock_irqrestore(&h->lock, flags);
2748 }
2749
2750 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2751 {
2752         union u64bit temp64;
2753
2754         temp64.val32.lower = c->ErrDesc.Addr.lower;
2755         temp64.val32.upper = c->ErrDesc.Addr.upper;
2756         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2757                             c->err_info, (dma_addr_t) temp64.val);
2758         pci_free_consistent(h->pdev, sizeof(*c),
2759                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2760 }
2761
2762 #ifdef CONFIG_COMPAT
2763
2764 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2765 {
2766         IOCTL32_Command_struct __user *arg32 =
2767             (IOCTL32_Command_struct __user *) arg;
2768         IOCTL_Command_struct arg64;
2769         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2770         int err;
2771         u32 cp;
2772
2773         memset(&arg64, 0, sizeof(arg64));
2774         err = 0;
2775         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2776                            sizeof(arg64.LUN_info));
2777         err |= copy_from_user(&arg64.Request, &arg32->Request,
2778                            sizeof(arg64.Request));
2779         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2780                            sizeof(arg64.error_info));
2781         err |= get_user(arg64.buf_size, &arg32->buf_size);
2782         err |= get_user(cp, &arg32->buf);
2783         arg64.buf = compat_ptr(cp);
2784         err |= copy_to_user(p, &arg64, sizeof(arg64));
2785
2786         if (err)
2787                 return -EFAULT;
2788
2789         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2790         if (err)
2791                 return err;
2792         err |= copy_in_user(&arg32->error_info, &p->error_info,
2793                          sizeof(arg32->error_info));
2794         if (err)
2795                 return -EFAULT;
2796         return err;
2797 }
2798
2799 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2800         int cmd, void *arg)
2801 {
2802         BIG_IOCTL32_Command_struct __user *arg32 =
2803             (BIG_IOCTL32_Command_struct __user *) arg;
2804         BIG_IOCTL_Command_struct arg64;
2805         BIG_IOCTL_Command_struct __user *p =
2806             compat_alloc_user_space(sizeof(arg64));
2807         int err;
2808         u32 cp;
2809
2810         memset(&arg64, 0, sizeof(arg64));
2811         err = 0;
2812         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2813                            sizeof(arg64.LUN_info));
2814         err |= copy_from_user(&arg64.Request, &arg32->Request,
2815                            sizeof(arg64.Request));
2816         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2817                            sizeof(arg64.error_info));
2818         err |= get_user(arg64.buf_size, &arg32->buf_size);
2819         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2820         err |= get_user(cp, &arg32->buf);
2821         arg64.buf = compat_ptr(cp);
2822         err |= copy_to_user(p, &arg64, sizeof(arg64));
2823
2824         if (err)
2825                 return -EFAULT;
2826
2827         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2828         if (err)
2829                 return err;
2830         err |= copy_in_user(&arg32->error_info, &p->error_info,
2831                          sizeof(arg32->error_info));
2832         if (err)
2833                 return -EFAULT;
2834         return err;
2835 }
2836
2837 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2838 {
2839         switch (cmd) {
2840         case CCISS_GETPCIINFO:
2841         case CCISS_GETINTINFO:
2842         case CCISS_SETINTINFO:
2843         case CCISS_GETNODENAME:
2844         case CCISS_SETNODENAME:
2845         case CCISS_GETHEARTBEAT:
2846         case CCISS_GETBUSTYPES:
2847         case CCISS_GETFIRMVER:
2848         case CCISS_GETDRIVVER:
2849         case CCISS_REVALIDVOLS:
2850         case CCISS_DEREGDISK:
2851         case CCISS_REGNEWDISK:
2852         case CCISS_REGNEWD:
2853         case CCISS_RESCANDISK:
2854         case CCISS_GETLUNINFO:
2855                 return hpsa_ioctl(dev, cmd, arg);
2856
2857         case CCISS_PASSTHRU32:
2858                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2859         case CCISS_BIG_PASSTHRU32:
2860                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2861
2862         default:
2863                 return -ENOIOCTLCMD;
2864         }
2865 }
2866 #endif
2867
2868 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2869 {
2870         struct hpsa_pci_info pciinfo;
2871
2872         if (!argp)
2873                 return -EINVAL;
2874         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2875         pciinfo.bus = h->pdev->bus->number;
2876         pciinfo.dev_fn = h->pdev->devfn;
2877         pciinfo.board_id = h->board_id;
2878         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2879                 return -EFAULT;
2880         return 0;
2881 }
2882
2883 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2884 {
2885         DriverVer_type DriverVer;
2886         unsigned char vmaj, vmin, vsubmin;
2887         int rc;
2888
2889         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2890                 &vmaj, &vmin, &vsubmin);
2891         if (rc != 3) {
2892                 dev_info(&h->pdev->dev, "driver version string '%s' "
2893                         "unrecognized.", HPSA_DRIVER_VERSION);
2894                 vmaj = 0;
2895                 vmin = 0;
2896                 vsubmin = 0;
2897         }
2898         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2899         if (!argp)
2900                 return -EINVAL;
2901         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2902                 return -EFAULT;
2903         return 0;
2904 }
2905
2906 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2907 {
2908         IOCTL_Command_struct iocommand;
2909         struct CommandList *c;
2910         char *buff = NULL;
2911         union u64bit temp64;
2912
2913         if (!argp)
2914                 return -EINVAL;
2915         if (!capable(CAP_SYS_RAWIO))
2916                 return -EPERM;
2917         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2918                 return -EFAULT;
2919         if ((iocommand.buf_size < 1) &&
2920             (iocommand.Request.Type.Direction != XFER_NONE)) {
2921                 return -EINVAL;
2922         }
2923         if (iocommand.buf_size > 0) {
2924                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2925                 if (buff == NULL)
2926                         return -EFAULT;
2927                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2928                         /* Copy the data into the buffer we created */
2929                         if (copy_from_user(buff, iocommand.buf,
2930                                 iocommand.buf_size)) {
2931                                 kfree(buff);
2932                                 return -EFAULT;
2933                         }
2934                 } else {
2935                         memset(buff, 0, iocommand.buf_size);
2936                 }
2937         }
2938         c = cmd_special_alloc(h);
2939         if (c == NULL) {
2940                 kfree(buff);
2941                 return -ENOMEM;
2942         }
2943         /* Fill in the command type */
2944         c->cmd_type = CMD_IOCTL_PEND;
2945         /* Fill in Command Header */
2946         c->Header.ReplyQueue = 0; /* unused in simple mode */
2947         if (iocommand.buf_size > 0) {   /* buffer to fill */
2948                 c->Header.SGList = 1;
2949                 c->Header.SGTotal = 1;
2950         } else  { /* no buffers to fill */
2951                 c->Header.SGList = 0;
2952                 c->Header.SGTotal = 0;
2953         }
2954         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2955         /* use the kernel address the cmd block for tag */
2956         c->Header.Tag.lower = c->busaddr;
2957
2958         /* Fill in Request block */
2959         memcpy(&c->Request, &iocommand.Request,
2960                 sizeof(c->Request));
2961
2962         /* Fill in the scatter gather information */
2963         if (iocommand.buf_size > 0) {
2964                 temp64.val = pci_map_single(h->pdev, buff,
2965                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2966                 c->SG[0].Addr.lower = temp64.val32.lower;
2967                 c->SG[0].Addr.upper = temp64.val32.upper;
2968                 c->SG[0].Len = iocommand.buf_size;
2969                 c->SG[0].Ext = 0; /* we are not chaining*/
2970         }
2971         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2972         if (iocommand.buf_size > 0)
2973                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2974         check_ioctl_unit_attention(h, c);
2975
2976         /* Copy the error information out */
2977         memcpy(&iocommand.error_info, c->err_info,
2978                 sizeof(iocommand.error_info));
2979         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2980                 kfree(buff);
2981                 cmd_special_free(h, c);
2982                 return -EFAULT;
2983         }
2984         if (iocommand.Request.Type.Direction == XFER_READ &&
2985                 iocommand.buf_size > 0) {
2986                 /* Copy the data out of the buffer we created */
2987                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2988                         kfree(buff);
2989                         cmd_special_free(h, c);
2990                         return -EFAULT;
2991                 }
2992         }
2993         kfree(buff);
2994         cmd_special_free(h, c);
2995         return 0;
2996 }
2997
2998 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2999 {
3000         BIG_IOCTL_Command_struct *ioc;
3001         struct CommandList *c;
3002         unsigned char **buff = NULL;
3003         int *buff_size = NULL;
3004         union u64bit temp64;
3005         BYTE sg_used = 0;
3006         int status = 0;
3007         int i;
3008         u32 left;
3009         u32 sz;
3010         BYTE __user *data_ptr;
3011
3012         if (!argp)
3013                 return -EINVAL;
3014         if (!capable(CAP_SYS_RAWIO))
3015                 return -EPERM;
3016         ioc = (BIG_IOCTL_Command_struct *)
3017             kmalloc(sizeof(*ioc), GFP_KERNEL);
3018         if (!ioc) {
3019                 status = -ENOMEM;
3020                 goto cleanup1;
3021         }
3022         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
3023                 status = -EFAULT;
3024                 goto cleanup1;
3025         }
3026         if ((ioc->buf_size < 1) &&
3027             (ioc->Request.Type.Direction != XFER_NONE)) {
3028                 status = -EINVAL;
3029                 goto cleanup1;
3030         }
3031         /* Check kmalloc limits  using all SGs */
3032         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
3033                 status = -EINVAL;
3034                 goto cleanup1;
3035         }
3036         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
3037                 status = -EINVAL;
3038                 goto cleanup1;
3039         }
3040         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
3041         if (!buff) {
3042                 status = -ENOMEM;
3043                 goto cleanup1;
3044         }
3045         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3046         if (!buff_size) {
3047                 status = -ENOMEM;
3048                 goto cleanup1;
3049         }
3050         left = ioc->buf_size;
3051         data_ptr = ioc->buf;
3052         while (left) {
3053                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
3054                 buff_size[sg_used] = sz;
3055                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
3056                 if (buff[sg_used] == NULL) {
3057                         status = -ENOMEM;
3058                         goto cleanup1;
3059                 }
3060                 if (ioc->Request.Type.Direction == XFER_WRITE) {
3061                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
3062                                 status = -ENOMEM;
3063                                 goto cleanup1;
3064                         }
3065                 } else
3066                         memset(buff[sg_used], 0, sz);
3067                 left -= sz;
3068                 data_ptr += sz;
3069                 sg_used++;
3070         }
3071         c = cmd_special_alloc(h);
3072         if (c == NULL) {
3073                 status = -ENOMEM;
3074                 goto cleanup1;
3075         }
3076         c->cmd_type = CMD_IOCTL_PEND;
3077         c->Header.ReplyQueue = 0;
3078         c->Header.SGList = c->Header.SGTotal = sg_used;
3079         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
3080         c->Header.Tag.lower = c->busaddr;
3081         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
3082         if (ioc->buf_size > 0) {
3083                 int i;
3084                 for (i = 0; i < sg_used; i++) {
3085                         temp64.val = pci_map_single(h->pdev, buff[i],
3086                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
3087                         c->SG[i].Addr.lower = temp64.val32.lower;
3088                         c->SG[i].Addr.upper = temp64.val32.upper;
3089                         c->SG[i].Len = buff_size[i];
3090                         /* we are not chaining */
3091                         c->SG[i].Ext = 0;
3092                 }
3093         }
3094         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3095         if (sg_used)
3096                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3097         check_ioctl_unit_attention(h, c);
3098         /* Copy the error information out */
3099         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
3100         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
3101                 cmd_special_free(h, c);
3102                 status = -EFAULT;
3103                 goto cleanup1;
3104         }
3105         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3106                 /* Copy the data out of the buffer we created */
3107                 BYTE __user *ptr = ioc->buf;
3108                 for (i = 0; i < sg_used; i++) {
3109                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
3110                                 cmd_special_free(h, c);
3111                                 status = -EFAULT;
3112                                 goto cleanup1;
3113                         }
3114                         ptr += buff_size[i];
3115                 }
3116         }
3117         cmd_special_free(h, c);
3118         status = 0;
3119 cleanup1:
3120         if (buff) {
3121                 for (i = 0; i < sg_used; i++)
3122                         kfree(buff[i]);
3123                 kfree(buff);
3124         }
3125         kfree(buff_size);
3126         kfree(ioc);
3127         return status;
3128 }
3129
3130 static void check_ioctl_unit_attention(struct ctlr_info *h,
3131         struct CommandList *c)
3132 {
3133         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
3134                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
3135                 (void) check_for_unit_attention(h, c);
3136 }
3137 /*
3138  * ioctl
3139  */
3140 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
3141 {
3142         struct ctlr_info *h;
3143         void __user *argp = (void __user *)arg;
3144
3145         h = sdev_to_hba(dev);
3146
3147         switch (cmd) {
3148         case CCISS_DEREGDISK:
3149         case CCISS_REGNEWDISK:
3150         case CCISS_REGNEWD:
3151                 hpsa_scan_start(h->scsi_host);
3152                 return 0;
3153         case CCISS_GETPCIINFO:
3154                 return hpsa_getpciinfo_ioctl(h, argp);
3155         case CCISS_GETDRIVVER:
3156                 return hpsa_getdrivver_ioctl(h, argp);
3157         case CCISS_PASSTHRU:
3158                 return hpsa_passthru_ioctl(h, argp);
3159         case CCISS_BIG_PASSTHRU:
3160                 return hpsa_big_passthru_ioctl(h, argp);
3161         default:
3162                 return -ENOTTY;
3163         }
3164 }
3165
3166 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
3167         unsigned char *scsi3addr, u8 reset_type)
3168 {
3169         struct CommandList *c;
3170
3171         c = cmd_alloc(h);
3172         if (!c)
3173                 return -ENOMEM;
3174         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3175                 RAID_CTLR_LUNID, TYPE_MSG);
3176         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
3177         c->waiting = NULL;
3178         enqueue_cmd_and_start_io(h, c);
3179         /* Don't wait for completion, the reset won't complete.  Don't free
3180          * the command either.  This is the last command we will send before
3181          * re-initializing everything, so it doesn't matter and won't leak.
3182          */
3183         return 0;
3184 }
3185
3186 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3187         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3188         int cmd_type)
3189 {
3190         int pci_dir = XFER_NONE;
3191         struct CommandList *a; /* for commands to be aborted */
3192
3193         c->cmd_type = CMD_IOCTL_PEND;
3194         c->Header.ReplyQueue = 0;
3195         if (buff != NULL && size > 0) {
3196                 c->Header.SGList = 1;
3197                 c->Header.SGTotal = 1;
3198         } else {
3199                 c->Header.SGList = 0;
3200                 c->Header.SGTotal = 0;
3201         }
3202         c->Header.Tag.lower = c->busaddr;
3203         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
3204
3205         c->Request.Type.Type = cmd_type;
3206         if (cmd_type == TYPE_CMD) {
3207                 switch (cmd) {
3208                 case HPSA_INQUIRY:
3209                         /* are we trying to read a vital product page */
3210                         if (page_code != 0) {
3211                                 c->Request.CDB[1] = 0x01;
3212                                 c->Request.CDB[2] = page_code;
3213                         }
3214                         c->Request.CDBLen = 6;
3215                         c->Request.Type.Attribute = ATTR_SIMPLE;
3216                         c->Request.Type.Direction = XFER_READ;
3217                         c->Request.Timeout = 0;
3218                         c->Request.CDB[0] = HPSA_INQUIRY;
3219                         c->Request.CDB[4] = size & 0xFF;
3220                         break;
3221                 case HPSA_REPORT_LOG:
3222                 case HPSA_REPORT_PHYS:
3223                         /* Talking to controller so It's a physical command
3224                            mode = 00 target = 0.  Nothing to write.
3225                          */
3226                         c->Request.CDBLen = 12;
3227                         c->Request.Type.Attribute = ATTR_SIMPLE;
3228                         c->Request.Type.Direction = XFER_READ;
3229                         c->Request.Timeout = 0;
3230                         c->Request.CDB[0] = cmd;
3231                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
3232                         c->Request.CDB[7] = (size >> 16) & 0xFF;
3233                         c->Request.CDB[8] = (size >> 8) & 0xFF;
3234                         c->Request.CDB[9] = size & 0xFF;
3235                         break;
3236                 case HPSA_CACHE_FLUSH:
3237                         c->Request.CDBLen = 12;
3238                         c->Request.Type.Attribute = ATTR_SIMPLE;
3239                         c->Request.Type.Direction = XFER_WRITE;
3240                         c->Request.Timeout = 0;
3241                         c->Request.CDB[0] = BMIC_WRITE;
3242                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3243                         c->Request.CDB[7] = (size >> 8) & 0xFF;
3244                         c->Request.CDB[8] = size & 0xFF;
3245                         break;
3246                 case TEST_UNIT_READY:
3247                         c->Request.CDBLen = 6;
3248                         c->Request.Type.Attribute = ATTR_SIMPLE;
3249                         c->Request.Type.Direction = XFER_NONE;
3250                         c->Request.Timeout = 0;
3251                         break;
3252                 default:
3253                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
3254                         BUG();
3255                         return;
3256                 }
3257         } else if (cmd_type == TYPE_MSG) {
3258                 switch (cmd) {
3259
3260                 case  HPSA_DEVICE_RESET_MSG:
3261                         c->Request.CDBLen = 16;
3262                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
3263                         c->Request.Type.Attribute = ATTR_SIMPLE;
3264                         c->Request.Type.Direction = XFER_NONE;
3265                         c->Request.Timeout = 0; /* Don't time out */
3266                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
3267                         c->Request.CDB[0] =  cmd;
3268                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
3269                         /* If bytes 4-7 are zero, it means reset the */
3270                         /* LunID device */
3271                         c->Request.CDB[4] = 0x00;
3272                         c->Request.CDB[5] = 0x00;
3273                         c->Request.CDB[6] = 0x00;
3274                         c->Request.CDB[7] = 0x00;
3275                         break;
3276                 case  HPSA_ABORT_MSG:
3277                         a = buff;       /* point to command to be aborted */
3278                         dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3279                                 a->Header.Tag.upper, a->Header.Tag.lower,
3280                                 c->Header.Tag.upper, c->Header.Tag.lower);
3281                         c->Request.CDBLen = 16;
3282                         c->Request.Type.Type = TYPE_MSG;
3283                         c->Request.Type.Attribute = ATTR_SIMPLE;
3284                         c->Request.Type.Direction = XFER_WRITE;
3285                         c->Request.Timeout = 0; /* Don't time out */
3286                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
3287                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
3288                         c->Request.CDB[2] = 0x00; /* reserved */
3289                         c->Request.CDB[3] = 0x00; /* reserved */
3290                         /* Tag to abort goes in CDB[4]-CDB[11] */
3291                         c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
3292                         c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
3293                         c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
3294                         c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
3295                         c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
3296                         c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
3297                         c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
3298                         c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
3299                         c->Request.CDB[12] = 0x00; /* reserved */
3300                         c->Request.CDB[13] = 0x00; /* reserved */
3301                         c->Request.CDB[14] = 0x00; /* reserved */
3302                         c->Request.CDB[15] = 0x00; /* reserved */
3303                 break;
3304                 default:
3305                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
3306                                 cmd);
3307                         BUG();
3308                 }
3309         } else {
3310                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
3311                 BUG();
3312         }
3313
3314         switch (c->Request.Type.Direction) {
3315         case XFER_READ:
3316                 pci_dir = PCI_DMA_FROMDEVICE;
3317                 break;
3318         case XFER_WRITE:
3319                 pci_dir = PCI_DMA_TODEVICE;
3320                 break;
3321         case XFER_NONE:
3322                 pci_dir = PCI_DMA_NONE;
3323                 break;
3324         default:
3325                 pci_dir = PCI_DMA_BIDIRECTIONAL;
3326         }
3327
3328         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
3329
3330         return;
3331 }
3332
3333 /*
3334  * Map (physical) PCI mem into (virtual) kernel space
3335  */
3336 static void __iomem *remap_pci_mem(ulong base, ulong size)
3337 {
3338         ulong page_base = ((ulong) base) & PAGE_MASK;
3339         ulong page_offs = ((ulong) base) - page_base;
3340         void __iomem *page_remapped = ioremap_nocache(page_base,
3341                 page_offs + size);
3342
3343         return page_remapped ? (page_remapped + page_offs) : NULL;
3344 }
3345
3346 /* Takes cmds off the submission queue and sends them to the hardware,
3347  * then puts them on the queue of cmds waiting for completion.
3348  */
3349 static void start_io(struct ctlr_info *h)
3350 {
3351         struct CommandList *c;
3352         unsigned long flags;
3353
3354         spin_lock_irqsave(&h->lock, flags);
3355         while (!list_empty(&h->reqQ)) {
3356                 c = list_entry(h->reqQ.next, struct CommandList, list);
3357                 /* can't do anything if fifo is full */
3358                 if ((h->access.fifo_full(h))) {
3359                         dev_warn(&h->pdev->dev, "fifo full\n");
3360                         break;
3361                 }
3362
3363                 /* Get the first entry from the Request Q */
3364                 removeQ(c);
3365                 h->Qdepth--;
3366
3367                 /* Put job onto the completed Q */
3368                 addQ(&h->cmpQ, c);
3369
3370                 /* Must increment commands_outstanding before unlocking
3371                  * and submitting to avoid race checking for fifo full
3372                  * condition.
3373                  */
3374                 h->commands_outstanding++;
3375                 if (h->commands_outstanding > h->max_outstanding)
3376                         h->max_outstanding = h->commands_outstanding;
3377
3378                 /* Tell the controller execute command */
3379                 spin_unlock_irqrestore(&h->lock, flags);
3380                 h->access.submit_command(h, c);
3381                 spin_lock_irqsave(&h->lock, flags);
3382         }
3383         spin_unlock_irqrestore(&h->lock, flags);
3384 }
3385
3386 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
3387 {
3388         return h->access.command_completed(h, q);
3389 }
3390
3391 static inline bool interrupt_pending(struct ctlr_info *h)
3392 {
3393         return h->access.intr_pending(h);
3394 }
3395
3396 static inline long interrupt_not_for_us(struct ctlr_info *h)
3397 {
3398         return (h->access.intr_pending(h) == 0) ||
3399                 (h->interrupts_enabled == 0);
3400 }
3401
3402 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3403         u32 raw_tag)
3404 {
3405         if (unlikely(tag_index >= h->nr_cmds)) {
3406                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3407                 return 1;
3408         }
3409         return 0;
3410 }
3411
3412 static inline void finish_cmd(struct CommandList *c)
3413 {
3414         unsigned long flags;
3415
3416         spin_lock_irqsave(&c->h->lock, flags);
3417         removeQ(c);
3418         spin_unlock_irqrestore(&c->h->lock, flags);
3419         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3420         if (likely(c->cmd_type == CMD_SCSI))
3421                 complete_scsi_command(c);
3422         else if (c->cmd_type == CMD_IOCTL_PEND)
3423                 complete(c->waiting);
3424 }
3425
3426 static inline u32 hpsa_tag_contains_index(u32 tag)
3427 {
3428         return tag & DIRECT_LOOKUP_BIT;
3429 }
3430
3431 static inline u32 hpsa_tag_to_index(u32 tag)
3432 {
3433         return tag >> DIRECT_LOOKUP_SHIFT;
3434 }
3435
3436
3437 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3438 {
3439 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3440 #define HPSA_SIMPLE_ERROR_BITS 0x03
3441         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3442                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3443         return tag & ~HPSA_PERF_ERROR_BITS;
3444 }
3445
3446 /* process completion of an indexed ("direct lookup") command */
3447 static inline void process_indexed_cmd(struct ctlr_info *h,
3448         u32 raw_tag)
3449 {
3450         u32 tag_index;
3451         struct CommandList *c;
3452
3453         tag_index = hpsa_tag_to_index(raw_tag);
3454         if (!bad_tag(h, tag_index, raw_tag)) {
3455                 c = h->cmd_pool + tag_index;
3456                 finish_cmd(c);
3457         }
3458 }
3459
3460 /* process completion of a non-indexed command */
3461 static inline void process_nonindexed_cmd(struct ctlr_info *h,
3462         u32 raw_tag)
3463 {
3464         u32 tag;
3465         struct CommandList *c = NULL;
3466         unsigned long flags;
3467
3468         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3469         spin_lock_irqsave(&h->lock, flags);
3470         list_for_each_entry(c, &h->cmpQ, list) {
3471                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3472                         spin_unlock_irqrestore(&h->lock, flags);
3473                         finish_cmd(c);
3474                         return;
3475                 }
3476         }
3477         spin_unlock_irqrestore(&h->lock, flags);
3478         bad_tag(h, h->nr_cmds + 1, raw_tag);
3479 }
3480
3481 /* Some controllers, like p400, will give us one interrupt
3482  * after a soft reset, even if we turned interrupts off.
3483  * Only need to check for this in the hpsa_xxx_discard_completions
3484  * functions.
3485  */
3486 static int ignore_bogus_interrupt(struct ctlr_info *h)
3487 {
3488         if (likely(!reset_devices))
3489                 return 0;
3490
3491         if (likely(h->interrupts_enabled))
3492                 return 0;
3493
3494         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3495                 "(known firmware bug.)  Ignoring.\n");
3496
3497         return 1;
3498 }
3499
3500 /*
3501  * Convert &h->q[x] (passed to interrupt handlers) back to h.
3502  * Relies on (h-q[x] == x) being true for x such that
3503  * 0 <= x < MAX_REPLY_QUEUES.
3504  */
3505 static struct ctlr_info *queue_to_hba(u8 *queue)
3506 {
3507         return container_of((queue - *queue), struct ctlr_info, q[0]);
3508 }
3509
3510 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
3511 {
3512         struct ctlr_info *h = queue_to_hba(queue);
3513         u8 q = *(u8 *) queue;
3514         u32 raw_tag;
3515
3516         if (ignore_bogus_interrupt(h))
3517                 return IRQ_NONE;
3518
3519         if (interrupt_not_for_us(h))
3520                 return IRQ_NONE;
3521         h->last_intr_timestamp = get_jiffies_64();
3522         while (interrupt_pending(h)) {
3523                 raw_tag = get_next_completion(h, q);
3524                 while (raw_tag != FIFO_EMPTY)
3525                         raw_tag = next_command(h, q);
3526         }
3527         return IRQ_HANDLED;
3528 }
3529
3530 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
3531 {
3532         struct ctlr_info *h = queue_to_hba(queue);
3533         u32 raw_tag;
3534         u8 q = *(u8 *) queue;
3535
3536         if (ignore_bogus_interrupt(h))
3537                 return IRQ_NONE;
3538
3539         h->last_intr_timestamp = get_jiffies_64();
3540         raw_tag = get_next_completion(h, q);
3541         while (raw_tag != FIFO_EMPTY)
3542                 raw_tag = next_command(h, q);
3543         return IRQ_HANDLED;
3544 }
3545
3546 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
3547 {
3548         struct ctlr_info *h = queue_to_hba((u8 *) queue);
3549         u32 raw_tag;
3550         u8 q = *(u8 *) queue;
3551
3552         if (interrupt_not_for_us(h))
3553                 return IRQ_NONE;
3554         h->last_intr_timestamp = get_jiffies_64();
3555         while (interrupt_pending(h)) {
3556                 raw_tag = get_next_completion(h, q);
3557                 while (raw_tag != FIFO_EMPTY) {
3558                         if (likely(hpsa_tag_contains_index(raw_tag)))
3559                                 process_indexed_cmd(h, raw_tag);
3560                         else
3561                                 process_nonindexed_cmd(h, raw_tag);
3562                         raw_tag = next_command(h, q);
3563                 }
3564         }
3565         return IRQ_HANDLED;
3566 }
3567
3568 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
3569 {
3570         struct ctlr_info *h = queue_to_hba(queue);
3571         u32 raw_tag;
3572         u8 q = *(u8 *) queue;
3573
3574         h->last_intr_timestamp = get_jiffies_64();
3575         raw_tag = get_next_completion(h, q);
3576         while (raw_tag != FIFO_EMPTY) {
3577                 if (likely(hpsa_tag_contains_index(raw_tag)))
3578                         process_indexed_cmd(h, raw_tag);
3579                 else
3580                         process_nonindexed_cmd(h, raw_tag);
3581                 raw_tag = next_command(h, q);
3582         }
3583         return IRQ_HANDLED;
3584 }
3585
3586 /* Send a message CDB to the firmware. Careful, this only works
3587  * in simple mode, not performant mode due to the tag lookup.
3588  * We only ever use this immediately after a controller reset.
3589  */
3590 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3591                                                 unsigned char type)
3592 {
3593         struct Command {
3594                 struct CommandListHeader CommandHeader;
3595                 struct RequestBlock Request;
3596                 struct ErrDescriptor ErrorDescriptor;
3597         };
3598         struct Command *cmd;
3599         static const size_t cmd_sz = sizeof(*cmd) +
3600                                         sizeof(cmd->ErrorDescriptor);
3601         dma_addr_t paddr64;
3602         uint32_t paddr32, tag;
3603         void __iomem *vaddr;
3604         int i, err;
3605
3606         vaddr = pci_ioremap_bar(pdev, 0);
3607         if (vaddr == NULL)
3608                 return -ENOMEM;
3609
3610         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3611          * CCISS commands, so they must be allocated from the lower 4GiB of
3612          * memory.
3613          */
3614         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3615         if (err) {
3616                 iounmap(vaddr);
3617                 return -ENOMEM;
3618         }
3619
3620         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3621         if (cmd == NULL) {
3622                 iounmap(vaddr);
3623                 return -ENOMEM;
3624         }
3625
3626         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3627          * although there's no guarantee, we assume that the address is at
3628          * least 4-byte aligned (most likely, it's page-aligned).
3629          */
3630         paddr32 = paddr64;
3631
3632         cmd->CommandHeader.ReplyQueue = 0;
3633         cmd->CommandHeader.SGList = 0;
3634         cmd->CommandHeader.SGTotal = 0;
3635         cmd->CommandHeader.Tag.lower = paddr32;
3636         cmd->CommandHeader.Tag.upper = 0;
3637         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3638
3639         cmd->Request.CDBLen = 16;
3640         cmd->Request.Type.Type = TYPE_MSG;
3641         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3642         cmd->Request.Type.Direction = XFER_NONE;
3643         cmd->Request.Timeout = 0; /* Don't time out */
3644         cmd->Request.CDB[0] = opcode;
3645         cmd->Request.CDB[1] = type;
3646         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3647         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3648         cmd->ErrorDescriptor.Addr.upper = 0;
3649         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3650
3651         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3652
3653         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3654                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3655                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3656                         break;
3657                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3658         }
3659
3660         iounmap(vaddr);
3661
3662         /* we leak the DMA buffer here ... no choice since the controller could
3663          *  still complete the command.
3664          */
3665         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3666                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3667                         opcode, type);
3668                 return -ETIMEDOUT;
3669         }
3670
3671         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3672
3673         if (tag & HPSA_ERROR_BIT) {
3674                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3675                         opcode, type);
3676                 return -EIO;
3677         }
3678
3679         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3680                 opcode, type);
3681         return 0;
3682 }
3683
3684 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3685
3686 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3687         void * __iomem vaddr, u32 use_doorbell)
3688 {
3689         u16 pmcsr;
3690         int pos;
3691
3692         if (use_doorbell) {
3693                 /* For everything after the P600, the PCI power state method
3694                  * of resetting the controller doesn't work, so we have this
3695                  * other way using the doorbell register.
3696                  */
3697                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3698                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3699         } else { /* Try to do it the PCI power state way */
3700
3701                 /* Quoting from the Open CISS Specification: "The Power
3702                  * Management Control/Status Register (CSR) controls the power
3703                  * state of the device.  The normal operating state is D0,
3704                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3705                  * the controller, place the interface device in D3 then to D0,
3706                  * this causes a secondary PCI reset which will reset the
3707                  * controller." */
3708
3709                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3710                 if (pos == 0) {
3711                         dev_err(&pdev->dev,
3712                                 "hpsa_reset_controller: "
3713                                 "PCI PM not supported\n");
3714                         return -ENODEV;
3715                 }
3716                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3717                 /* enter the D3hot power management state */
3718                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3719                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3720                 pmcsr |= PCI_D3hot;
3721                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3722
3723                 msleep(500);
3724
3725                 /* enter the D0 power management state */
3726                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3727                 pmcsr |= PCI_D0;
3728                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3729
3730                 /*
3731                  * The P600 requires a small delay when changing states.
3732                  * Otherwise we may think the board did not reset and we bail.
3733                  * This for kdump only and is particular to the P600.
3734                  */
3735                 msleep(500);
3736         }
3737         return 0;
3738 }
3739
3740 static __devinit void init_driver_version(char *driver_version, int len)
3741 {
3742         memset(driver_version, 0, len);
3743         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3744 }
3745
3746 static __devinit int write_driver_ver_to_cfgtable(
3747         struct CfgTable __iomem *cfgtable)
3748 {
3749         char *driver_version;
3750         int i, size = sizeof(cfgtable->driver_version);
3751
3752         driver_version = kmalloc(size, GFP_KERNEL);
3753         if (!driver_version)
3754                 return -ENOMEM;
3755
3756         init_driver_version(driver_version, size);
3757         for (i = 0; i < size; i++)
3758                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3759         kfree(driver_version);
3760         return 0;
3761 }
3762
3763 static __devinit void read_driver_ver_from_cfgtable(
3764         struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3765 {
3766         int i;
3767
3768         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3769                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3770 }
3771
3772 static __devinit int controller_reset_failed(
3773         struct CfgTable __iomem *cfgtable)
3774 {
3775
3776         char *driver_ver, *old_driver_ver;
3777         int rc, size = sizeof(cfgtable->driver_version);
3778
3779         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3780         if (!old_driver_ver)
3781                 return -ENOMEM;
3782         driver_ver = old_driver_ver + size;
3783
3784         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3785          * should have been changed, otherwise we know the reset failed.
3786          */
3787         init_driver_version(old_driver_ver, size);
3788         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3789         rc = !memcmp(driver_ver, old_driver_ver, size);
3790         kfree(old_driver_ver);
3791         return rc;
3792 }
3793 /* This does a hard reset of the controller using PCI power management
3794  * states or the using the doorbell register.
3795  */
3796 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3797 {
3798         u64 cfg_offset;
3799         u32 cfg_base_addr;
3800         u64 cfg_base_addr_index;
3801         void __iomem *vaddr;
3802         unsigned long paddr;
3803         u32 misc_fw_support;
3804         int rc;
3805         struct CfgTable __iomem *cfgtable;
3806         u32 use_doorbell;
3807         u32 board_id;
3808         u16 command_register;
3809
3810         /* For controllers as old as the P600, this is very nearly
3811          * the same thing as
3812          *
3813          * pci_save_state(pci_dev);
3814          * pci_set_power_state(pci_dev, PCI_D3hot);
3815          * pci_set_power_state(pci_dev, PCI_D0);
3816          * pci_restore_state(pci_dev);
3817          *
3818          * For controllers newer than the P600, the pci power state
3819          * method of resetting doesn't work so we have another way
3820          * using the doorbell register.
3821          */
3822
3823         rc = hpsa_lookup_board_id(pdev, &board_id);
3824         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3825                 dev_warn(&pdev->dev, "Not resetting device.\n");
3826                 return -ENODEV;
3827         }
3828
3829         /* if controller is soft- but not hard resettable... */
3830         if (!ctlr_is_hard_resettable(board_id))
3831                 return -ENOTSUPP; /* try soft reset later. */
3832
3833         /* Save the PCI command register */
3834         pci_read_config_word(pdev, 4, &command_register);
3835         /* Turn the board off.  This is so that later pci_restore_state()
3836          * won't turn the board on before the rest of config space is ready.
3837          */
3838         pci_disable_device(pdev);
3839         pci_save_state(pdev);
3840
3841         /* find the first memory BAR, so we can find the cfg table */
3842         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3843         if (rc)
3844                 return rc;
3845         vaddr = remap_pci_mem(paddr, 0x250);
3846         if (!vaddr)
3847                 return -ENOMEM;
3848
3849         /* find cfgtable in order to check if reset via doorbell is supported */
3850         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3851                                         &cfg_base_addr_index, &cfg_offset);
3852         if (rc)
3853                 goto unmap_vaddr;
3854         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3855                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3856         if (!cfgtable) {
3857                 rc = -ENOMEM;
3858                 goto unmap_vaddr;
3859         }
3860         rc = write_driver_ver_to_cfgtable(cfgtable);
3861         if (rc)
3862                 goto unmap_vaddr;
3863
3864         /* If reset via doorbell register is supported, use that.
3865          * There are two such methods.  Favor the newest method.
3866          */
3867         misc_fw_support = readl(&cfgtable->misc_fw_support);
3868         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3869         if (use_doorbell) {
3870                 use_doorbell = DOORBELL_CTLR_RESET2;
3871         } else {
3872                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3873                 if (use_doorbell) {
3874                         dev_warn(&pdev->dev, "Soft reset not supported. "
3875                                 "Firmware update is required.\n");
3876                         rc = -ENOTSUPP; /* try soft reset */
3877                         goto unmap_cfgtable;
3878                 }
3879         }
3880
3881         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3882         if (rc)
3883                 goto unmap_cfgtable;
3884
3885         pci_restore_state(pdev);
3886         rc = pci_enable_device(pdev);
3887         if (rc) {
3888                 dev_warn(&pdev->dev, "failed to enable device.\n");
3889                 goto unmap_cfgtable;
3890         }
3891         pci_write_config_word(pdev, 4, command_register);
3892
3893         /* Some devices (notably the HP Smart Array 5i Controller)
3894            need a little pause here */
3895         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3896
3897         /* Wait for board to become not ready, then ready. */
3898         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3899         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3900         if (rc) {
3901                 dev_warn(&pdev->dev,
3902                         "failed waiting for board to reset."
3903                         " Will try soft reset.\n");
3904                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3905                 goto unmap_cfgtable;
3906         }
3907         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3908         if (rc) {
3909                 dev_warn(&pdev->dev,
3910                         "failed waiting for board to become ready "
3911                         "after hard reset\n");
3912                 goto unmap_cfgtable;
3913         }
3914
3915         rc = controller_reset_failed(vaddr);
3916         if (rc < 0)
3917                 goto unmap_cfgtable;
3918         if (rc) {
3919                 dev_warn(&pdev->dev, "Unable to successfully reset "
3920                         "controller. Will try soft reset.\n");
3921                 rc = -ENOTSUPP;
3922         } else {
3923                 dev_info(&pdev->dev, "board ready after hard reset.\n");
3924         }
3925
3926 unmap_cfgtable:
3927         iounmap(cfgtable);
3928
3929 unmap_vaddr:
3930         iounmap(vaddr);
3931         return rc;
3932 }
3933
3934 /*
3935  *  We cannot read the structure directly, for portability we must use
3936  *   the io functions.
3937  *   This is for debug only.
3938  */
3939 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3940 {
3941 #ifdef HPSA_DEBUG
3942         int i;
3943         char temp_name[17];
3944
3945         dev_info(dev, "Controller Configuration information\n");
3946         dev_info(dev, "------------------------------------\n");
3947         for (i = 0; i < 4; i++)
3948                 temp_name[i] = readb(&(tb->Signature[i]));
3949         temp_name[4] = '\0';
3950         dev_info(dev, "   Signature = %s\n", temp_name);
3951         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3952         dev_info(dev, "   Transport methods supported = 0x%x\n",
3953                readl(&(tb->TransportSupport)));
3954         dev_info(dev, "   Transport methods active = 0x%x\n",
3955                readl(&(tb->TransportActive)));
3956         dev_info(dev, "   Requested transport Method = 0x%x\n",
3957                readl(&(tb->HostWrite.TransportRequest)));
3958         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3959                readl(&(tb->HostWrite.CoalIntDelay)));
3960         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3961                readl(&(tb->HostWrite.CoalIntCount)));
3962         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3963                readl(&(tb->CmdsOutMax)));
3964         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3965         for (i = 0; i < 16; i++)
3966                 temp_name[i] = readb(&(tb->ServerName[i]));
3967         temp_name[16] = '\0';
3968         dev_info(dev, "   Server Name = %s\n", temp_name);
3969         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3970                 readl(&(tb->HeartBeat)));
3971 #endif                          /* HPSA_DEBUG */
3972 }
3973
3974 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3975 {
3976         int i, offset, mem_type, bar_type;
3977
3978         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3979                 return 0;
3980         offset = 0;
3981         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3982                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3983                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3984                         offset += 4;
3985                 else {
3986                         mem_type = pci_resource_flags(pdev, i) &
3987                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3988                         switch (mem_type) {
3989                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3990                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3991                                 offset += 4;    /* 32 bit */
3992                                 break;
3993                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3994                                 offset += 8;
3995                                 break;
3996                         default:        /* reserved in PCI 2.2 */
3997                                 dev_warn(&pdev->dev,
3998                                        "base address is invalid\n");
3999                                 return -1;
4000                                 break;
4001                         }
4002                 }
4003                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
4004                         return i + 1;
4005         }
4006         return -1;
4007 }
4008
4009 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4010  * controllers that are capable. If not, we use IO-APIC mode.
4011  */
4012
4013 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
4014 {
4015 #ifdef CONFIG_PCI_MSI
4016         int err, i;
4017         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
4018
4019         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
4020                 hpsa_msix_entries[i].vector = 0;
4021                 hpsa_msix_entries[i].entry = i;
4022         }
4023
4024         /* Some boards advertise MSI but don't really support it */
4025         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4026             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4027                 goto default_int_mode;
4028         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4029                 dev_info(&h->pdev->dev, "MSIX\n");
4030                 err = pci_enable_msix(h->pdev, hpsa_msix_entries,
4031                                                 MAX_REPLY_QUEUES);
4032                 if (!err) {
4033                         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4034                                 h->intr[i] = hpsa_msix_entries[i].vector;
4035                         h->msix_vector = 1;
4036                         return;
4037                 }
4038                 if (err > 0) {
4039                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
4040                                "available\n", err);
4041                         goto default_int_mode;
4042                 } else {
4043                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
4044                                err);
4045                         goto default_int_mode;
4046                 }
4047         }
4048         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4049                 dev_info(&h->pdev->dev, "MSI\n");
4050                 if (!pci_enable_msi(h->pdev))
4051                         h->msi_vector = 1;
4052                 else
4053                         dev_warn(&h->pdev->dev, "MSI init failed\n");
4054         }
4055 default_int_mode:
4056 #endif                          /* CONFIG_PCI_MSI */
4057         /* if we get here we're going to use the default interrupt mode */
4058         h->intr[h->intr_mode] = h->pdev->irq;
4059 }
4060
4061 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4062 {
4063         int i;
4064         u32 subsystem_vendor_id, subsystem_device_id;
4065
4066         subsystem_vendor_id = pdev->subsystem_vendor;
4067         subsystem_device_id = pdev->subsystem_device;
4068         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4069                     subsystem_vendor_id;
4070
4071         for (i = 0; i < ARRAY_SIZE(products); i++)
4072                 if (*board_id == products[i].board_id)
4073                         return i;
4074
4075         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
4076                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
4077                 !hpsa_allow_any) {
4078                 dev_warn(&pdev->dev, "unrecognized board ID: "
4079                         "0x%08x, ignoring.\n", *board_id);
4080                         return -ENODEV;
4081         }
4082         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
4083 }
4084
4085 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
4086         unsigned long *memory_bar)
4087 {
4088         int i;
4089
4090         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4091                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4092                         /* addressing mode bits already removed */
4093                         *memory_bar = pci_resource_start(pdev, i);
4094                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4095                                 *memory_bar);
4096                         return 0;
4097                 }
4098         dev_warn(&pdev->dev, "no memory BAR found\n");
4099         return -ENODEV;
4100 }
4101
4102 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
4103         void __iomem *vaddr, int wait_for_ready)
4104 {
4105         int i, iterations;
4106         u32 scratchpad;
4107         if (wait_for_ready)
4108                 iterations = HPSA_BOARD_READY_ITERATIONS;
4109         else
4110                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4111
4112         for (i = 0; i < iterations; i++) {
4113                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4114                 if (wait_for_ready) {
4115                         if (scratchpad == HPSA_FIRMWARE_READY)
4116                                 return 0;
4117                 } else {
4118                         if (scratchpad != HPSA_FIRMWARE_READY)
4119                                 return 0;
4120                 }
4121                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
4122         }
4123         dev_warn(&pdev->dev, "board not ready, timed out.\n");
4124         return -ENODEV;
4125 }
4126
4127 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
4128         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4129         u64 *cfg_offset)
4130 {
4131         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4132         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4133         *cfg_base_addr &= (u32) 0x0000ffff;
4134         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4135         if (*cfg_base_addr_index == -1) {
4136                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
4137                 return -ENODEV;
4138         }
4139         return 0;
4140 }
4141
4142 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
4143 {
4144         u64 cfg_offset;
4145         u32 cfg_base_addr;
4146         u64 cfg_base_addr_index;
4147         u32 trans_offset;
4148         int rc;
4149
4150         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4151                 &cfg_base_addr_index, &cfg_offset);
4152         if (rc)
4153                 return rc;
4154         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4155                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4156         if (!h->cfgtable)
4157                 return -ENOMEM;
4158         rc = write_driver_ver_to_cfgtable(h->cfgtable);
4159         if (rc)
4160                 return rc;
4161         /* Find performant mode table. */
4162         trans_offset = readl(&h->cfgtable->TransMethodOffset);
4163         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4164                                 cfg_base_addr_index)+cfg_offset+trans_offset,
4165                                 sizeof(*h->transtable));
4166         if (!h->transtable)
4167                 return -ENOMEM;
4168         return 0;
4169 }
4170
4171 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4172 {
4173         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4174
4175         /* Limit commands in memory limited kdump scenario. */
4176         if (reset_devices && h->max_commands > 32)
4177                 h->max_commands = 32;
4178
4179         if (h->max_commands < 16) {
4180                 dev_warn(&h->pdev->dev, "Controller reports "
4181                         "max supported commands of %d, an obvious lie. "
4182                         "Using 16.  Ensure that firmware is up to date.\n",
4183                         h->max_commands);
4184                 h->max_commands = 16;
4185         }
4186 }
4187
4188 /* Interrogate the hardware for some limits:
4189  * max commands, max SG elements without chaining, and with chaining,
4190  * SG chain block size, etc.
4191  */
4192 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
4193 {
4194         hpsa_get_max_perf_mode_cmds(h);
4195         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4196         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
4197         /*
4198          * Limit in-command s/g elements to 32 save dma'able memory.
4199          * Howvever spec says if 0, use 31
4200          */
4201         h->max_cmd_sg_entries = 31;
4202         if (h->maxsgentries > 512) {
4203                 h->max_cmd_sg_entries = 32;
4204                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
4205                 h->maxsgentries--; /* save one for chain pointer */
4206         } else {
4207                 h->maxsgentries = 31; /* default to traditional values */
4208                 h->chainsize = 0;
4209         }
4210
4211         /* Find out what task management functions are supported and cache */
4212         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4213 }
4214
4215 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
4216 {
4217         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4218                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4219                 return false;
4220         }
4221         return true;
4222 }
4223
4224 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4225 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
4226 {
4227 #ifdef CONFIG_X86
4228         u32 prefetch;
4229
4230         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4231         prefetch |= 0x100;
4232         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4233 #endif
4234 }
4235
4236 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4237  * in a prefetch beyond physical memory.
4238  */
4239 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
4240 {
4241         u32 dma_prefetch;
4242
4243         if (h->board_id != 0x3225103C)
4244                 return;
4245         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4246         dma_prefetch |= 0x8000;
4247         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4248 }
4249
4250 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4251 {
4252         int i;
4253         u32 doorbell_value;
4254         unsigned long flags;
4255
4256         /* under certain very rare conditions, this can take awhile.
4257          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4258          * as we enter this code.)
4259          */
4260         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4261                 spin_lock_irqsave(&h->lock, flags);
4262                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
4263                 spin_unlock_irqrestore(&h->lock, flags);
4264                 if (!(doorbell_value & CFGTBL_ChangeReq))
4265                         break;
4266                 /* delay and try again */
4267                 usleep_range(10000, 20000);
4268         }
4269 }
4270
4271 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
4272 {
4273         u32 trans_support;
4274
4275         trans_support = readl(&(h->cfgtable->TransportSupport));
4276         if (!(trans_support & SIMPLE_MODE))
4277                 return -ENOTSUPP;
4278
4279         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
4280         /* Update the field, and then ring the doorbell */
4281         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
4282         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4283         hpsa_wait_for_mode_change_ack(h);
4284         print_cfg_table(&h->pdev->dev, h->cfgtable);
4285         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
4286                 dev_warn(&h->pdev->dev,
4287                         "unable to get board into simple mode\n");
4288                 return -ENODEV;
4289         }
4290         h->transMethod = CFGTBL_Trans_Simple;
4291         return 0;
4292 }
4293
4294 static int __devinit hpsa_pci_init(struct ctlr_info *h)
4295 {
4296         int prod_index, err;
4297
4298         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
4299         if (prod_index < 0)
4300                 return -ENODEV;
4301         h->product_name = products[prod_index].product_name;
4302         h->access = *(products[prod_index].access);
4303
4304         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4305                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4306
4307         err = pci_enable_device(h->pdev);
4308         if (err) {
4309                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4310                 return err;
4311         }
4312
4313         /* Enable bus mastering (pci_disable_device may disable this) */
4314         pci_set_master(h->pdev);
4315
4316         err = pci_request_regions(h->pdev, HPSA);
4317         if (err) {
4318                 dev_err(&h->pdev->dev,
4319                         "cannot obtain PCI resources, aborting\n");
4320                 return err;
4321         }
4322         hpsa_interrupt_mode(h);
4323         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4324         if (err)
4325                 goto err_out_free_res;
4326         h->vaddr = remap_pci_mem(h->paddr, 0x250);
4327         if (!h->vaddr) {
4328                 err = -ENOMEM;
4329                 goto err_out_free_res;
4330         }
4331         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4332         if (err)
4333                 goto err_out_free_res;
4334         err = hpsa_find_cfgtables(h);
4335         if (err)
4336                 goto err_out_free_res;
4337         hpsa_find_board_params(h);
4338
4339         if (!hpsa_CISS_signature_present(h)) {
4340                 err = -ENODEV;
4341                 goto err_out_free_res;
4342         }
4343         hpsa_enable_scsi_prefetch(h);
4344         hpsa_p600_dma_prefetch_quirk(h);
4345         err = hpsa_enter_simple_mode(h);
4346         if (err)
4347                 goto err_out_free_res;
4348         return 0;
4349
4350 err_out_free_res:
4351         if (h->transtable)
4352                 iounmap(h->transtable);
4353         if (h->cfgtable)
4354                 iounmap(h->cfgtable);
4355         if (h->vaddr)
4356                 iounmap(h->vaddr);
4357         pci_disable_device(h->pdev);
4358         pci_release_regions(h->pdev);
4359         return err;
4360 }
4361
4362 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
4363 {
4364         int rc;
4365
4366 #define HBA_INQUIRY_BYTE_COUNT 64
4367         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4368         if (!h->hba_inquiry_data)
4369                 return;
4370         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4371                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4372         if (rc != 0) {
4373                 kfree(h->hba_inquiry_data);
4374                 h->hba_inquiry_data = NULL;
4375         }
4376 }
4377
4378 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
4379 {
4380         int rc, i;
4381
4382         if (!reset_devices)
4383                 return 0;
4384
4385         /* Reset the controller with a PCI power-cycle or via doorbell */
4386         rc = hpsa_kdump_hard_reset_controller(pdev);
4387
4388         /* -ENOTSUPP here means we cannot reset the controller
4389          * but it's already (and still) up and running in
4390          * "performant mode".  Or, it might be 640x, which can't reset
4391          * due to concerns about shared bbwc between 6402/6404 pair.
4392          */
4393         if (rc == -ENOTSUPP)
4394                 return rc; /* just try to do the kdump anyhow. */
4395         if (rc)
4396                 return -ENODEV;
4397
4398         /* Now try to get the controller to respond to a no-op */
4399         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4400         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4401                 if (hpsa_noop(pdev) == 0)
4402                         break;
4403                 else
4404                         dev_warn(&pdev->dev, "no-op failed%s\n",
4405                                         (i < 11 ? "; re-trying" : ""));
4406         }
4407         return 0;
4408 }
4409
4410 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4411 {
4412         h->cmd_pool_bits = kzalloc(
4413                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4414                 sizeof(unsigned long), GFP_KERNEL);
4415         h->cmd_pool = pci_alloc_consistent(h->pdev,
4416                     h->nr_cmds * sizeof(*h->cmd_pool),
4417                     &(h->cmd_pool_dhandle));
4418         h->errinfo_pool = pci_alloc_consistent(h->pdev,
4419                     h->nr_cmds * sizeof(*h->errinfo_pool),
4420                     &(h->errinfo_pool_dhandle));
4421         if ((h->cmd_pool_bits == NULL)
4422             || (h->cmd_pool == NULL)
4423             || (h->errinfo_pool == NULL)) {
4424                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4425                 return -ENOMEM;
4426         }
4427         return 0;
4428 }
4429
4430 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4431 {
4432         kfree(h->cmd_pool_bits);
4433         if (h->cmd_pool)
4434                 pci_free_consistent(h->pdev,
4435                             h->nr_cmds * sizeof(struct CommandList),
4436                             h->cmd_pool, h->cmd_pool_dhandle);
4437         if (h->errinfo_pool)
4438                 pci_free_consistent(h->pdev,
4439                             h->nr_cmds * sizeof(struct ErrorInfo),
4440                             h->errinfo_pool,
4441                             h->errinfo_pool_dhandle);
4442 }
4443
4444 static int hpsa_request_irq(struct ctlr_info *h,
4445         irqreturn_t (*msixhandler)(int, void *),
4446         irqreturn_t (*intxhandler)(int, void *))
4447 {
4448         int rc, i;
4449
4450         /*
4451          * initialize h->q[x] = x so that interrupt handlers know which
4452          * queue to process.
4453          */
4454         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4455                 h->q[i] = (u8) i;
4456
4457         if (h->intr_mode == PERF_MODE_INT && h->msix_vector) {
4458                 /* If performant mode and MSI-X, use multiple reply queues */
4459                 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4460                         rc = request_irq(h->intr[i], msixhandler,
4461                                         0, h->devname,
4462                                         &h->q[i]);
4463         } else {
4464                 /* Use single reply pool */
4465                 if (h->msix_vector || h->msi_vector) {
4466                         rc = request_irq(h->intr[h->intr_mode],
4467                                 msixhandler, 0, h->devname,
4468                                 &h->q[h->intr_mode]);
4469                 } else {
4470                         rc = request_irq(h->intr[h->intr_mode],
4471                                 intxhandler, IRQF_SHARED, h->devname,
4472                                 &h->q[h->intr_mode]);
4473                 }
4474         }
4475         if (rc) {
4476                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4477                        h->intr[h->intr_mode], h->devname);
4478                 return -ENODEV;
4479         }
4480         return 0;
4481 }
4482
4483 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4484 {
4485         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4486                 HPSA_RESET_TYPE_CONTROLLER)) {
4487                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4488                 return -EIO;
4489         }
4490
4491         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4492         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4493                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4494                 return -1;
4495         }
4496
4497         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4498         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4499                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4500                         "after soft reset.\n");
4501                 return -1;
4502         }
4503
4504         return 0;
4505 }
4506
4507 static void free_irqs(struct ctlr_info *h)
4508 {
4509         int i;
4510
4511         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
4512                 /* Single reply queue, only one irq to free */
4513                 i = h->intr_mode;
4514                 free_irq(h->intr[i], &h->q[i]);
4515                 return;
4516         }
4517
4518         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4519                 free_irq(h->intr[i], &h->q[i]);
4520 }
4521
4522 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
4523 {
4524         free_irqs(h);
4525 #ifdef CONFIG_PCI_MSI
4526         if (h->msix_vector) {
4527                 if (h->pdev->msix_enabled)
4528                         pci_disable_msix(h->pdev);
4529         } else if (h->msi_vector) {
4530                 if (h->pdev->msi_enabled)
4531                         pci_disable_msi(h->pdev);
4532         }
4533 #endif /* CONFIG_PCI_MSI */
4534 }
4535
4536 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4537 {
4538         hpsa_free_irqs_and_disable_msix(h);
4539         hpsa_free_sg_chain_blocks(h);
4540         hpsa_free_cmd_pool(h);
4541         kfree(h->blockFetchTable);
4542         pci_free_consistent(h->pdev, h->reply_pool_size,
4543                 h->reply_pool, h->reply_pool_dhandle);
4544         if (h->vaddr)
4545                 iounmap(h->vaddr);
4546         if (h->transtable)
4547                 iounmap(h->transtable);
4548         if (h->cfgtable)
4549                 iounmap(h->cfgtable);
4550         pci_release_regions(h->pdev);
4551         kfree(h);
4552 }
4553
4554 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4555 {
4556         assert_spin_locked(&lockup_detector_lock);
4557         if (!hpsa_lockup_detector)
4558                 return;
4559         if (h->lockup_detected)
4560                 return; /* already stopped the lockup detector */
4561         list_del(&h->lockup_list);
4562 }
4563
4564 /* Called when controller lockup detected. */
4565 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4566 {
4567         struct CommandList *c = NULL;
4568
4569         assert_spin_locked(&h->lock);
4570         /* Mark all outstanding commands as failed and complete them. */
4571         while (!list_empty(list)) {
4572                 c = list_entry(list->next, struct CommandList, list);
4573                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4574                 finish_cmd(c);
4575         }
4576 }
4577
4578 static void controller_lockup_detected(struct ctlr_info *h)
4579 {
4580         unsigned long flags;
4581
4582         assert_spin_locked(&lockup_detector_lock);
4583         remove_ctlr_from_lockup_detector_list(h);
4584         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4585         spin_lock_irqsave(&h->lock, flags);
4586         h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4587         spin_unlock_irqrestore(&h->lock, flags);
4588         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4589                         h->lockup_detected);
4590         pci_disable_device(h->pdev);
4591         spin_lock_irqsave(&h->lock, flags);
4592         fail_all_cmds_on_list(h, &h->cmpQ);
4593         fail_all_cmds_on_list(h, &h->reqQ);
4594         spin_unlock_irqrestore(&h->lock, flags);
4595 }
4596
4597 static void detect_controller_lockup(struct ctlr_info *h)
4598 {
4599         u64 now;
4600         u32 heartbeat;
4601         unsigned long flags;
4602
4603         assert_spin_locked(&lockup_detector_lock);
4604         now = get_jiffies_64();
4605         /* If we've received an interrupt recently, we're ok. */
4606         if (time_after64(h->last_intr_timestamp +
4607                                 (h->heartbeat_sample_interval), now))
4608                 return;
4609
4610         /*
4611          * If we've already checked the heartbeat recently, we're ok.
4612          * This could happen if someone sends us a signal. We
4613          * otherwise don't care about signals in this thread.
4614          */
4615         if (time_after64(h->last_heartbeat_timestamp +
4616                                 (h->heartbeat_sample_interval), now))
4617                 return;
4618
4619         /* If heartbeat has not changed since we last looked, we're not ok. */
4620         spin_lock_irqsave(&h->lock, flags);
4621         heartbeat = readl(&h->cfgtable->HeartBeat);
4622         spin_unlock_irqrestore(&h->lock, flags);
4623         if (h->last_heartbeat == heartbeat) {
4624                 controller_lockup_detected(h);
4625                 return;
4626         }
4627
4628         /* We're ok. */
4629         h->last_heartbeat = heartbeat;
4630         h->last_heartbeat_timestamp = now;
4631 }
4632
4633 static int detect_controller_lockup_thread(void *notused)
4634 {
4635         struct ctlr_info *h;
4636         unsigned long flags;
4637
4638         while (1) {
4639                 struct list_head *this, *tmp;
4640
4641                 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4642                 if (kthread_should_stop())
4643                         break;
4644                 spin_lock_irqsave(&lockup_detector_lock, flags);
4645                 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4646                         h = list_entry(this, struct ctlr_info, lockup_list);
4647                         detect_controller_lockup(h);
4648                 }
4649                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4650         }
4651         return 0;
4652 }
4653
4654 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4655 {
4656         unsigned long flags;
4657
4658         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
4659         spin_lock_irqsave(&lockup_detector_lock, flags);
4660         list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4661         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4662 }
4663
4664 static void start_controller_lockup_detector(struct ctlr_info *h)
4665 {
4666         /* Start the lockup detector thread if not already started */
4667         if (!hpsa_lockup_detector) {
4668                 spin_lock_init(&lockup_detector_lock);
4669                 hpsa_lockup_detector =
4670                         kthread_run(detect_controller_lockup_thread,
4671                                                 NULL, HPSA);
4672         }
4673         if (!hpsa_lockup_detector) {
4674                 dev_warn(&h->pdev->dev,
4675                         "Could not start lockup detector thread\n");
4676                 return;
4677         }
4678         add_ctlr_to_lockup_detector_list(h);
4679 }
4680
4681 static void stop_controller_lockup_detector(struct ctlr_info *h)
4682 {
4683         unsigned long flags;
4684
4685         spin_lock_irqsave(&lockup_detector_lock, flags);
4686         remove_ctlr_from_lockup_detector_list(h);
4687         /* If the list of ctlr's to monitor is empty, stop the thread */
4688         if (list_empty(&hpsa_ctlr_list)) {
4689                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4690                 kthread_stop(hpsa_lockup_detector);
4691                 spin_lock_irqsave(&lockup_detector_lock, flags);
4692                 hpsa_lockup_detector = NULL;
4693         }
4694         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4695 }
4696
4697 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4698                                     const struct pci_device_id *ent)
4699 {
4700         int dac, rc;
4701         struct ctlr_info *h;
4702         int try_soft_reset = 0;
4703         unsigned long flags;
4704
4705         if (number_of_controllers == 0)
4706                 printk(KERN_INFO DRIVER_NAME "\n");
4707
4708         rc = hpsa_init_reset_devices(pdev);
4709         if (rc) {
4710                 if (rc != -ENOTSUPP)
4711                         return rc;
4712                 /* If the reset fails in a particular way (it has no way to do
4713                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4714                  * a soft reset once we get the controller configured up to the
4715                  * point that it can accept a command.
4716                  */
4717                 try_soft_reset = 1;
4718                 rc = 0;
4719         }
4720
4721 reinit_after_soft_reset:
4722
4723         /* Command structures must be aligned on a 32-byte boundary because
4724          * the 5 lower bits of the address are used by the hardware. and by
4725          * the driver.  See comments in hpsa.h for more info.
4726          */
4727 #define COMMANDLIST_ALIGNMENT 32
4728         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4729         h = kzalloc(sizeof(*h), GFP_KERNEL);
4730         if (!h)
4731                 return -ENOMEM;
4732
4733         h->pdev = pdev;
4734         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4735         INIT_LIST_HEAD(&h->cmpQ);
4736         INIT_LIST_HEAD(&h->reqQ);
4737         spin_lock_init(&h->lock);
4738         spin_lock_init(&h->scan_lock);
4739         rc = hpsa_pci_init(h);
4740         if (rc != 0)
4741                 goto clean1;
4742
4743         sprintf(h->devname, HPSA "%d", number_of_controllers);
4744         h->ctlr = number_of_controllers;
4745         number_of_controllers++;
4746
4747         /* configure PCI DMA stuff */
4748         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4749         if (rc == 0) {
4750                 dac = 1;
4751         } else {
4752                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4753                 if (rc == 0) {
4754                         dac = 0;
4755                 } else {
4756                         dev_err(&pdev->dev, "no suitable DMA available\n");
4757                         goto clean1;
4758                 }
4759         }
4760
4761         /* make sure the board interrupts are off */
4762         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4763
4764         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4765                 goto clean2;
4766         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4767                h->devname, pdev->device,
4768                h->intr[h->intr_mode], dac ? "" : " not");
4769         if (hpsa_allocate_cmd_pool(h))
4770                 goto clean4;
4771         if (hpsa_allocate_sg_chain_blocks(h))
4772                 goto clean4;
4773         init_waitqueue_head(&h->scan_wait_queue);
4774         h->scan_finished = 1; /* no scan currently in progress */
4775
4776         pci_set_drvdata(pdev, h);
4777         h->ndevices = 0;
4778         h->scsi_host = NULL;
4779         spin_lock_init(&h->devlock);
4780         hpsa_put_ctlr_into_performant_mode(h);
4781
4782         /* At this point, the controller is ready to take commands.
4783          * Now, if reset_devices and the hard reset didn't work, try
4784          * the soft reset and see if that works.
4785          */
4786         if (try_soft_reset) {
4787
4788                 /* This is kind of gross.  We may or may not get a completion
4789                  * from the soft reset command, and if we do, then the value
4790                  * from the fifo may or may not be valid.  So, we wait 10 secs
4791                  * after the reset throwing away any completions we get during
4792                  * that time.  Unregister the interrupt handler and register
4793                  * fake ones to scoop up any residual completions.
4794                  */
4795                 spin_lock_irqsave(&h->lock, flags);
4796                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4797                 spin_unlock_irqrestore(&h->lock, flags);
4798                 free_irqs(h);
4799                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4800                                         hpsa_intx_discard_completions);
4801                 if (rc) {
4802                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4803                                 "soft reset.\n");
4804                         goto clean4;
4805                 }
4806
4807                 rc = hpsa_kdump_soft_reset(h);
4808                 if (rc)
4809                         /* Neither hard nor soft reset worked, we're hosed. */
4810                         goto clean4;
4811
4812                 dev_info(&h->pdev->dev, "Board READY.\n");
4813                 dev_info(&h->pdev->dev,
4814                         "Waiting for stale completions to drain.\n");
4815                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4816                 msleep(10000);
4817                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4818
4819                 rc = controller_reset_failed(h->cfgtable);
4820                 if (rc)
4821                         dev_info(&h->pdev->dev,
4822                                 "Soft reset appears to have failed.\n");
4823
4824                 /* since the controller's reset, we have to go back and re-init
4825                  * everything.  Easiest to just forget what we've done and do it
4826                  * all over again.
4827                  */
4828                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4829                 try_soft_reset = 0;
4830                 if (rc)
4831                         /* don't go to clean4, we already unallocated */
4832                         return -ENODEV;
4833
4834                 goto reinit_after_soft_reset;
4835         }
4836
4837         /* Turn the interrupts on so we can service requests */
4838         h->access.set_intr_mask(h, HPSA_INTR_ON);
4839
4840         hpsa_hba_inquiry(h);
4841         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4842         start_controller_lockup_detector(h);
4843         return 1;
4844
4845 clean4:
4846         hpsa_free_sg_chain_blocks(h);
4847         hpsa_free_cmd_pool(h);
4848         free_irqs(h);
4849 clean2:
4850 clean1:
4851         kfree(h);
4852         return rc;
4853 }
4854
4855 static void hpsa_flush_cache(struct ctlr_info *h)
4856 {
4857         char *flush_buf;
4858         struct CommandList *c;
4859
4860         flush_buf = kzalloc(4, GFP_KERNEL);
4861         if (!flush_buf)
4862                 return;
4863
4864         c = cmd_special_alloc(h);
4865         if (!c) {
4866                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4867                 goto out_of_memory;
4868         }
4869         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4870                 RAID_CTLR_LUNID, TYPE_CMD);
4871         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4872         if (c->err_info->CommandStatus != 0)
4873                 dev_warn(&h->pdev->dev,
4874                         "error flushing cache on controller\n");
4875         cmd_special_free(h, c);
4876 out_of_memory:
4877         kfree(flush_buf);
4878 }
4879
4880 static void hpsa_shutdown(struct pci_dev *pdev)
4881 {
4882         struct ctlr_info *h;
4883
4884         h = pci_get_drvdata(pdev);
4885         /* Turn board interrupts off  and send the flush cache command
4886          * sendcmd will turn off interrupt, and send the flush...
4887          * To write all data in the battery backed cache to disks
4888          */
4889         hpsa_flush_cache(h);
4890         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4891         hpsa_free_irqs_and_disable_msix(h);
4892 }
4893
4894 static void __devexit hpsa_free_device_info(struct ctlr_info *h)
4895 {
4896         int i;
4897
4898         for (i = 0; i < h->ndevices; i++)
4899                 kfree(h->dev[i]);
4900 }
4901
4902 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4903 {
4904         struct ctlr_info *h;
4905
4906         if (pci_get_drvdata(pdev) == NULL) {
4907                 dev_err(&pdev->dev, "unable to remove device\n");
4908                 return;
4909         }
4910         h = pci_get_drvdata(pdev);
4911         stop_controller_lockup_detector(h);
4912         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
4913         hpsa_shutdown(pdev);
4914         iounmap(h->vaddr);
4915         iounmap(h->transtable);
4916         iounmap(h->cfgtable);
4917         hpsa_free_device_info(h);
4918         hpsa_free_sg_chain_blocks(h);
4919         pci_free_consistent(h->pdev,
4920                 h->nr_cmds * sizeof(struct CommandList),
4921                 h->cmd_pool, h->cmd_pool_dhandle);
4922         pci_free_consistent(h->pdev,
4923                 h->nr_cmds * sizeof(struct ErrorInfo),
4924                 h->errinfo_pool, h->errinfo_pool_dhandle);
4925         pci_free_consistent(h->pdev, h->reply_pool_size,
4926                 h->reply_pool, h->reply_pool_dhandle);
4927         kfree(h->cmd_pool_bits);
4928         kfree(h->blockFetchTable);
4929         kfree(h->hba_inquiry_data);
4930         pci_disable_device(pdev);
4931         pci_release_regions(pdev);
4932         pci_set_drvdata(pdev, NULL);
4933         kfree(h);
4934 }
4935
4936 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4937         __attribute__((unused)) pm_message_t state)
4938 {
4939         return -ENOSYS;
4940 }
4941
4942 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4943 {
4944         return -ENOSYS;
4945 }
4946
4947 static struct pci_driver hpsa_pci_driver = {
4948         .name = HPSA,
4949         .probe = hpsa_init_one,
4950         .remove = __devexit_p(hpsa_remove_one),
4951         .id_table = hpsa_pci_device_id, /* id_table */
4952         .shutdown = hpsa_shutdown,
4953         .suspend = hpsa_suspend,
4954         .resume = hpsa_resume,
4955 };
4956
4957 /* Fill in bucket_map[], given nsgs (the max number of
4958  * scatter gather elements supported) and bucket[],
4959  * which is an array of 8 integers.  The bucket[] array
4960  * contains 8 different DMA transfer sizes (in 16
4961  * byte increments) which the controller uses to fetch
4962  * commands.  This function fills in bucket_map[], which
4963  * maps a given number of scatter gather elements to one of
4964  * the 8 DMA transfer sizes.  The point of it is to allow the
4965  * controller to only do as much DMA as needed to fetch the
4966  * command, with the DMA transfer size encoded in the lower
4967  * bits of the command address.
4968  */
4969 static void  calc_bucket_map(int bucket[], int num_buckets,
4970         int nsgs, int *bucket_map)
4971 {
4972         int i, j, b, size;
4973
4974         /* even a command with 0 SGs requires 4 blocks */
4975 #define MINIMUM_TRANSFER_BLOCKS 4
4976 #define NUM_BUCKETS 8
4977         /* Note, bucket_map must have nsgs+1 entries. */
4978         for (i = 0; i <= nsgs; i++) {
4979                 /* Compute size of a command with i SG entries */
4980                 size = i + MINIMUM_TRANSFER_BLOCKS;
4981                 b = num_buckets; /* Assume the biggest bucket */
4982                 /* Find the bucket that is just big enough */
4983                 for (j = 0; j < 8; j++) {
4984                         if (bucket[j] >= size) {
4985                                 b = j;
4986                                 break;
4987                         }
4988                 }
4989                 /* for a command with i SG entries, use bucket b. */
4990                 bucket_map[i] = b;
4991         }
4992 }
4993
4994 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4995         u32 use_short_tags)
4996 {
4997         int i;
4998         unsigned long register_value;
4999
5000         /* This is a bit complicated.  There are 8 registers on
5001          * the controller which we write to to tell it 8 different
5002          * sizes of commands which there may be.  It's a way of
5003          * reducing the DMA done to fetch each command.  Encoded into
5004          * each command's tag are 3 bits which communicate to the controller
5005          * which of the eight sizes that command fits within.  The size of
5006          * each command depends on how many scatter gather entries there are.
5007          * Each SG entry requires 16 bytes.  The eight registers are programmed
5008          * with the number of 16-byte blocks a command of that size requires.
5009          * The smallest command possible requires 5 such 16 byte blocks.
5010          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5011          * blocks.  Note, this only extends to the SG entries contained
5012          * within the command block, and does not extend to chained blocks
5013          * of SG elements.   bft[] contains the eight values we write to
5014          * the registers.  They are not evenly distributed, but have more
5015          * sizes for small commands, and fewer sizes for larger commands.
5016          */
5017         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
5018         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
5019         /*  5 = 1 s/g entry or 4k
5020          *  6 = 2 s/g entry or 8k
5021          *  8 = 4 s/g entry or 16k
5022          * 10 = 6 s/g entry or 24k
5023          */
5024
5025         /* Controller spec: zero out this buffer. */
5026         memset(h->reply_pool, 0, h->reply_pool_size);
5027
5028         bft[7] = SG_ENTRIES_IN_CMD + 4;
5029         calc_bucket_map(bft, ARRAY_SIZE(bft),
5030                                 SG_ENTRIES_IN_CMD, h->blockFetchTable);
5031         for (i = 0; i < 8; i++)
5032                 writel(bft[i], &h->transtable->BlockFetch[i]);
5033
5034         /* size of controller ring buffer */
5035         writel(h->max_commands, &h->transtable->RepQSize);
5036         writel(h->nreply_queues, &h->transtable->RepQCount);
5037         writel(0, &h->transtable->RepQCtrAddrLow32);
5038         writel(0, &h->transtable->RepQCtrAddrHigh32);
5039
5040         for (i = 0; i < h->nreply_queues; i++) {
5041                 writel(0, &h->transtable->RepQAddr[i].upper);
5042                 writel(h->reply_pool_dhandle +
5043                         (h->max_commands * sizeof(u64) * i),
5044                         &h->transtable->RepQAddr[i].lower);
5045         }
5046
5047         writel(CFGTBL_Trans_Performant | use_short_tags |
5048                 CFGTBL_Trans_enable_directed_msix,
5049                 &(h->cfgtable->HostWrite.TransportRequest));
5050         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5051         hpsa_wait_for_mode_change_ack(h);
5052         register_value = readl(&(h->cfgtable->TransportActive));
5053         if (!(register_value & CFGTBL_Trans_Performant)) {
5054                 dev_warn(&h->pdev->dev, "unable to get board into"
5055                                         " performant mode\n");
5056                 return;
5057         }
5058         /* Change the access methods to the performant access methods */
5059         h->access = SA5_performant_access;
5060         h->transMethod = CFGTBL_Trans_Performant;
5061 }
5062
5063 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
5064 {
5065         u32 trans_support;
5066         int i;
5067
5068         if (hpsa_simple_mode)
5069                 return;
5070
5071         trans_support = readl(&(h->cfgtable->TransportSupport));
5072         if (!(trans_support & PERFORMANT_MODE))
5073                 return;
5074
5075         h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1;
5076         hpsa_get_max_perf_mode_cmds(h);
5077         /* Performant mode ring buffer and supporting data structures */
5078         h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
5079         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
5080                                 &(h->reply_pool_dhandle));
5081
5082         for (i = 0; i < h->nreply_queues; i++) {
5083                 h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
5084                 h->reply_queue[i].size = h->max_commands;
5085                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
5086                 h->reply_queue[i].current_entry = 0;
5087         }
5088
5089         /* Need a block fetch table for performant mode */
5090         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
5091                                 sizeof(u32)), GFP_KERNEL);
5092
5093         if ((h->reply_pool == NULL)
5094                 || (h->blockFetchTable == NULL))
5095                 goto clean_up;
5096
5097         hpsa_enter_performant_mode(h,
5098                 trans_support & CFGTBL_Trans_use_short_tags);
5099
5100         return;
5101
5102 clean_up:
5103         if (h->reply_pool)
5104                 pci_free_consistent(h->pdev, h->reply_pool_size,
5105                         h->reply_pool, h->reply_pool_dhandle);
5106         kfree(h->blockFetchTable);
5107 }
5108
5109 /*
5110  *  This is it.  Register the PCI driver information for the cards we control
5111  *  the OS will call our registered routines when it finds one of our cards.
5112  */
5113 static int __init hpsa_init(void)
5114 {
5115         return pci_register_driver(&hpsa_pci_driver);
5116 }
5117
5118 static void __exit hpsa_cleanup(void)
5119 {
5120         pci_unregister_driver(&hpsa_pci_driver);
5121 }
5122
5123 module_init(hpsa_init);
5124 module_exit(hpsa_cleanup);