3b4d195b49783beebe553249c0e79842935e219e
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71         HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79                 "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83         "Use 'simple mode' rather than 'performant mode'");
84
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1920},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1925},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x334d},
111         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
112                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
113         {0,}
114 };
115
116 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
117
118 /*  board_id = Subsystem Device ID & Vendor ID
119  *  product = Marketing Name for the board
120  *  access = Address of the struct of function pointers
121  */
122 static struct board_type products[] = {
123         {0x3241103C, "Smart Array P212", &SA5_access},
124         {0x3243103C, "Smart Array P410", &SA5_access},
125         {0x3245103C, "Smart Array P410i", &SA5_access},
126         {0x3247103C, "Smart Array P411", &SA5_access},
127         {0x3249103C, "Smart Array P812", &SA5_access},
128         {0x324a103C, "Smart Array P712m", &SA5_access},
129         {0x324b103C, "Smart Array P711m", &SA5_access},
130         {0x3350103C, "Smart Array P222", &SA5_access},
131         {0x3351103C, "Smart Array P420", &SA5_access},
132         {0x3352103C, "Smart Array P421", &SA5_access},
133         {0x3353103C, "Smart Array P822", &SA5_access},
134         {0x3354103C, "Smart Array P420i", &SA5_access},
135         {0x3355103C, "Smart Array P220i", &SA5_access},
136         {0x3356103C, "Smart Array P721m", &SA5_access},
137         {0x1920103C, "Smart Array", &SA5_access},
138         {0x1921103C, "Smart Array", &SA5_access},
139         {0x1922103C, "Smart Array", &SA5_access},
140         {0x1923103C, "Smart Array", &SA5_access},
141         {0x1924103C, "Smart Array", &SA5_access},
142         {0x1925103C, "Smart Array", &SA5_access},
143         {0x1926103C, "Smart Array", &SA5_access},
144         {0x1928103C, "Smart Array", &SA5_access},
145         {0x334d103C, "Smart Array P822se", &SA5_access},
146         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
147 };
148
149 static int number_of_controllers;
150
151 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
152 static spinlock_t lockup_detector_lock;
153 static struct task_struct *hpsa_lockup_detector;
154
155 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
156 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
157 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
158 static void start_io(struct ctlr_info *h);
159
160 #ifdef CONFIG_COMPAT
161 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
162 #endif
163
164 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
165 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
166 static struct CommandList *cmd_alloc(struct ctlr_info *h);
167 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
168 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
169         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
170         int cmd_type);
171
172 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
173 static void hpsa_scan_start(struct Scsi_Host *);
174 static int hpsa_scan_finished(struct Scsi_Host *sh,
175         unsigned long elapsed_time);
176 static int hpsa_change_queue_depth(struct scsi_device *sdev,
177         int qdepth, int reason);
178
179 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
180 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
181 static int hpsa_slave_alloc(struct scsi_device *sdev);
182 static void hpsa_slave_destroy(struct scsi_device *sdev);
183
184 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
185 static int check_for_unit_attention(struct ctlr_info *h,
186         struct CommandList *c);
187 static void check_ioctl_unit_attention(struct ctlr_info *h,
188         struct CommandList *c);
189 /* performant mode helper functions */
190 static void calc_bucket_map(int *bucket, int num_buckets,
191         int nsgs, int *bucket_map);
192 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
193 static inline u32 next_command(struct ctlr_info *h, u8 q);
194 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
195                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
196                                u64 *cfg_offset);
197 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
198                                     unsigned long *memory_bar);
199 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
200 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
201                                      int wait_for_ready);
202 static inline void finish_cmd(struct CommandList *c);
203 #define BOARD_NOT_READY 0
204 #define BOARD_READY 1
205
206 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
207 {
208         unsigned long *priv = shost_priv(sdev->host);
209         return (struct ctlr_info *) *priv;
210 }
211
212 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
213 {
214         unsigned long *priv = shost_priv(sh);
215         return (struct ctlr_info *) *priv;
216 }
217
218 static int check_for_unit_attention(struct ctlr_info *h,
219         struct CommandList *c)
220 {
221         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
222                 return 0;
223
224         switch (c->err_info->SenseInfo[12]) {
225         case STATE_CHANGED:
226                 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
227                         "detected, command retried\n", h->ctlr);
228                 break;
229         case LUN_FAILED:
230                 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
231                         "detected, action required\n", h->ctlr);
232                 break;
233         case REPORT_LUNS_CHANGED:
234                 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
235                         "changed, action required\n", h->ctlr);
236         /*
237          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
238          * target (array) devices.
239          */
240                 break;
241         case POWER_OR_RESET:
242                 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
243                         "or device reset detected\n", h->ctlr);
244                 break;
245         case UNIT_ATTENTION_CLEARED:
246                 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
247                     "cleared by another initiator\n", h->ctlr);
248                 break;
249         default:
250                 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
251                         "unit attention detected\n", h->ctlr);
252                 break;
253         }
254         return 1;
255 }
256
257 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
258 {
259         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
260                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
261                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
262                 return 0;
263         dev_warn(&h->pdev->dev, HPSA "device busy");
264         return 1;
265 }
266
267 static ssize_t host_store_rescan(struct device *dev,
268                                  struct device_attribute *attr,
269                                  const char *buf, size_t count)
270 {
271         struct ctlr_info *h;
272         struct Scsi_Host *shost = class_to_shost(dev);
273         h = shost_to_hba(shost);
274         hpsa_scan_start(h->scsi_host);
275         return count;
276 }
277
278 static ssize_t host_show_firmware_revision(struct device *dev,
279              struct device_attribute *attr, char *buf)
280 {
281         struct ctlr_info *h;
282         struct Scsi_Host *shost = class_to_shost(dev);
283         unsigned char *fwrev;
284
285         h = shost_to_hba(shost);
286         if (!h->hba_inquiry_data)
287                 return 0;
288         fwrev = &h->hba_inquiry_data[32];
289         return snprintf(buf, 20, "%c%c%c%c\n",
290                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
291 }
292
293 static ssize_t host_show_commands_outstanding(struct device *dev,
294              struct device_attribute *attr, char *buf)
295 {
296         struct Scsi_Host *shost = class_to_shost(dev);
297         struct ctlr_info *h = shost_to_hba(shost);
298
299         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
300 }
301
302 static ssize_t host_show_transport_mode(struct device *dev,
303         struct device_attribute *attr, char *buf)
304 {
305         struct ctlr_info *h;
306         struct Scsi_Host *shost = class_to_shost(dev);
307
308         h = shost_to_hba(shost);
309         return snprintf(buf, 20, "%s\n",
310                 h->transMethod & CFGTBL_Trans_Performant ?
311                         "performant" : "simple");
312 }
313
314 /* List of controllers which cannot be hard reset on kexec with reset_devices */
315 static u32 unresettable_controller[] = {
316         0x324a103C, /* Smart Array P712m */
317         0x324b103C, /* SmartArray P711m */
318         0x3223103C, /* Smart Array P800 */
319         0x3234103C, /* Smart Array P400 */
320         0x3235103C, /* Smart Array P400i */
321         0x3211103C, /* Smart Array E200i */
322         0x3212103C, /* Smart Array E200 */
323         0x3213103C, /* Smart Array E200i */
324         0x3214103C, /* Smart Array E200i */
325         0x3215103C, /* Smart Array E200i */
326         0x3237103C, /* Smart Array E500 */
327         0x323D103C, /* Smart Array P700m */
328         0x40800E11, /* Smart Array 5i */
329         0x409C0E11, /* Smart Array 6400 */
330         0x409D0E11, /* Smart Array 6400 EM */
331         0x40700E11, /* Smart Array 5300 */
332         0x40820E11, /* Smart Array 532 */
333         0x40830E11, /* Smart Array 5312 */
334         0x409A0E11, /* Smart Array 641 */
335         0x409B0E11, /* Smart Array 642 */
336         0x40910E11, /* Smart Array 6i */
337 };
338
339 /* List of controllers which cannot even be soft reset */
340 static u32 soft_unresettable_controller[] = {
341         0x40800E11, /* Smart Array 5i */
342         0x40700E11, /* Smart Array 5300 */
343         0x40820E11, /* Smart Array 532 */
344         0x40830E11, /* Smart Array 5312 */
345         0x409A0E11, /* Smart Array 641 */
346         0x409B0E11, /* Smart Array 642 */
347         0x40910E11, /* Smart Array 6i */
348         /* Exclude 640x boards.  These are two pci devices in one slot
349          * which share a battery backed cache module.  One controls the
350          * cache, the other accesses the cache through the one that controls
351          * it.  If we reset the one controlling the cache, the other will
352          * likely not be happy.  Just forbid resetting this conjoined mess.
353          * The 640x isn't really supported by hpsa anyway.
354          */
355         0x409C0E11, /* Smart Array 6400 */
356         0x409D0E11, /* Smart Array 6400 EM */
357 };
358
359 static int ctlr_is_hard_resettable(u32 board_id)
360 {
361         int i;
362
363         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
364                 if (unresettable_controller[i] == board_id)
365                         return 0;
366         return 1;
367 }
368
369 static int ctlr_is_soft_resettable(u32 board_id)
370 {
371         int i;
372
373         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
374                 if (soft_unresettable_controller[i] == board_id)
375                         return 0;
376         return 1;
377 }
378
379 static int ctlr_is_resettable(u32 board_id)
380 {
381         return ctlr_is_hard_resettable(board_id) ||
382                 ctlr_is_soft_resettable(board_id);
383 }
384
385 static ssize_t host_show_resettable(struct device *dev,
386         struct device_attribute *attr, char *buf)
387 {
388         struct ctlr_info *h;
389         struct Scsi_Host *shost = class_to_shost(dev);
390
391         h = shost_to_hba(shost);
392         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
393 }
394
395 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
396 {
397         return (scsi3addr[3] & 0xC0) == 0x40;
398 }
399
400 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
401         "1(ADM)", "UNKNOWN"
402 };
403 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
404
405 static ssize_t raid_level_show(struct device *dev,
406              struct device_attribute *attr, char *buf)
407 {
408         ssize_t l = 0;
409         unsigned char rlevel;
410         struct ctlr_info *h;
411         struct scsi_device *sdev;
412         struct hpsa_scsi_dev_t *hdev;
413         unsigned long flags;
414
415         sdev = to_scsi_device(dev);
416         h = sdev_to_hba(sdev);
417         spin_lock_irqsave(&h->lock, flags);
418         hdev = sdev->hostdata;
419         if (!hdev) {
420                 spin_unlock_irqrestore(&h->lock, flags);
421                 return -ENODEV;
422         }
423
424         /* Is this even a logical drive? */
425         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
426                 spin_unlock_irqrestore(&h->lock, flags);
427                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
428                 return l;
429         }
430
431         rlevel = hdev->raid_level;
432         spin_unlock_irqrestore(&h->lock, flags);
433         if (rlevel > RAID_UNKNOWN)
434                 rlevel = RAID_UNKNOWN;
435         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
436         return l;
437 }
438
439 static ssize_t lunid_show(struct device *dev,
440              struct device_attribute *attr, char *buf)
441 {
442         struct ctlr_info *h;
443         struct scsi_device *sdev;
444         struct hpsa_scsi_dev_t *hdev;
445         unsigned long flags;
446         unsigned char lunid[8];
447
448         sdev = to_scsi_device(dev);
449         h = sdev_to_hba(sdev);
450         spin_lock_irqsave(&h->lock, flags);
451         hdev = sdev->hostdata;
452         if (!hdev) {
453                 spin_unlock_irqrestore(&h->lock, flags);
454                 return -ENODEV;
455         }
456         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
457         spin_unlock_irqrestore(&h->lock, flags);
458         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
459                 lunid[0], lunid[1], lunid[2], lunid[3],
460                 lunid[4], lunid[5], lunid[6], lunid[7]);
461 }
462
463 static ssize_t unique_id_show(struct device *dev,
464              struct device_attribute *attr, char *buf)
465 {
466         struct ctlr_info *h;
467         struct scsi_device *sdev;
468         struct hpsa_scsi_dev_t *hdev;
469         unsigned long flags;
470         unsigned char sn[16];
471
472         sdev = to_scsi_device(dev);
473         h = sdev_to_hba(sdev);
474         spin_lock_irqsave(&h->lock, flags);
475         hdev = sdev->hostdata;
476         if (!hdev) {
477                 spin_unlock_irqrestore(&h->lock, flags);
478                 return -ENODEV;
479         }
480         memcpy(sn, hdev->device_id, sizeof(sn));
481         spin_unlock_irqrestore(&h->lock, flags);
482         return snprintf(buf, 16 * 2 + 2,
483                         "%02X%02X%02X%02X%02X%02X%02X%02X"
484                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
485                         sn[0], sn[1], sn[2], sn[3],
486                         sn[4], sn[5], sn[6], sn[7],
487                         sn[8], sn[9], sn[10], sn[11],
488                         sn[12], sn[13], sn[14], sn[15]);
489 }
490
491 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
492 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
493 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
494 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
495 static DEVICE_ATTR(firmware_revision, S_IRUGO,
496         host_show_firmware_revision, NULL);
497 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
498         host_show_commands_outstanding, NULL);
499 static DEVICE_ATTR(transport_mode, S_IRUGO,
500         host_show_transport_mode, NULL);
501 static DEVICE_ATTR(resettable, S_IRUGO,
502         host_show_resettable, NULL);
503
504 static struct device_attribute *hpsa_sdev_attrs[] = {
505         &dev_attr_raid_level,
506         &dev_attr_lunid,
507         &dev_attr_unique_id,
508         NULL,
509 };
510
511 static struct device_attribute *hpsa_shost_attrs[] = {
512         &dev_attr_rescan,
513         &dev_attr_firmware_revision,
514         &dev_attr_commands_outstanding,
515         &dev_attr_transport_mode,
516         &dev_attr_resettable,
517         NULL,
518 };
519
520 static struct scsi_host_template hpsa_driver_template = {
521         .module                 = THIS_MODULE,
522         .name                   = HPSA,
523         .proc_name              = HPSA,
524         .queuecommand           = hpsa_scsi_queue_command,
525         .scan_start             = hpsa_scan_start,
526         .scan_finished          = hpsa_scan_finished,
527         .change_queue_depth     = hpsa_change_queue_depth,
528         .this_id                = -1,
529         .use_clustering         = ENABLE_CLUSTERING,
530         .eh_abort_handler       = hpsa_eh_abort_handler,
531         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
532         .ioctl                  = hpsa_ioctl,
533         .slave_alloc            = hpsa_slave_alloc,
534         .slave_destroy          = hpsa_slave_destroy,
535 #ifdef CONFIG_COMPAT
536         .compat_ioctl           = hpsa_compat_ioctl,
537 #endif
538         .sdev_attrs = hpsa_sdev_attrs,
539         .shost_attrs = hpsa_shost_attrs,
540         .max_sectors = 8192,
541 };
542
543
544 /* Enqueuing and dequeuing functions for cmdlists. */
545 static inline void addQ(struct list_head *list, struct CommandList *c)
546 {
547         list_add_tail(&c->list, list);
548 }
549
550 static inline u32 next_command(struct ctlr_info *h, u8 q)
551 {
552         u32 a;
553         struct reply_pool *rq = &h->reply_queue[q];
554         unsigned long flags;
555
556         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
557                 return h->access.command_completed(h, q);
558
559         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
560                 a = rq->head[rq->current_entry];
561                 rq->current_entry++;
562                 spin_lock_irqsave(&h->lock, flags);
563                 h->commands_outstanding--;
564                 spin_unlock_irqrestore(&h->lock, flags);
565         } else {
566                 a = FIFO_EMPTY;
567         }
568         /* Check for wraparound */
569         if (rq->current_entry == h->max_commands) {
570                 rq->current_entry = 0;
571                 rq->wraparound ^= 1;
572         }
573         return a;
574 }
575
576 /* set_performant_mode: Modify the tag for cciss performant
577  * set bit 0 for pull model, bits 3-1 for block fetch
578  * register number
579  */
580 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
581 {
582         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
583                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
584                 if (likely(h->msix_vector))
585                         c->Header.ReplyQueue =
586                                 smp_processor_id() % h->nreply_queues;
587         }
588 }
589
590 static int is_firmware_flash_cmd(u8 *cdb)
591 {
592         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
593 }
594
595 /*
596  * During firmware flash, the heartbeat register may not update as frequently
597  * as it should.  So we dial down lockup detection during firmware flash. and
598  * dial it back up when firmware flash completes.
599  */
600 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
601 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
602 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
603                 struct CommandList *c)
604 {
605         if (!is_firmware_flash_cmd(c->Request.CDB))
606                 return;
607         atomic_inc(&h->firmware_flash_in_progress);
608         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
609 }
610
611 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
612                 struct CommandList *c)
613 {
614         if (is_firmware_flash_cmd(c->Request.CDB) &&
615                 atomic_dec_and_test(&h->firmware_flash_in_progress))
616                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
617 }
618
619 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
620         struct CommandList *c)
621 {
622         unsigned long flags;
623
624         set_performant_mode(h, c);
625         dial_down_lockup_detection_during_fw_flash(h, c);
626         spin_lock_irqsave(&h->lock, flags);
627         addQ(&h->reqQ, c);
628         h->Qdepth++;
629         spin_unlock_irqrestore(&h->lock, flags);
630         start_io(h);
631 }
632
633 static inline void removeQ(struct CommandList *c)
634 {
635         if (WARN_ON(list_empty(&c->list)))
636                 return;
637         list_del_init(&c->list);
638 }
639
640 static inline int is_hba_lunid(unsigned char scsi3addr[])
641 {
642         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
643 }
644
645 static inline int is_scsi_rev_5(struct ctlr_info *h)
646 {
647         if (!h->hba_inquiry_data)
648                 return 0;
649         if ((h->hba_inquiry_data[2] & 0x07) == 5)
650                 return 1;
651         return 0;
652 }
653
654 static int hpsa_find_target_lun(struct ctlr_info *h,
655         unsigned char scsi3addr[], int bus, int *target, int *lun)
656 {
657         /* finds an unused bus, target, lun for a new physical device
658          * assumes h->devlock is held
659          */
660         int i, found = 0;
661         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
662
663         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
664
665         for (i = 0; i < h->ndevices; i++) {
666                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
667                         __set_bit(h->dev[i]->target, lun_taken);
668         }
669
670         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
671         if (i < HPSA_MAX_DEVICES) {
672                 /* *bus = 1; */
673                 *target = i;
674                 *lun = 0;
675                 found = 1;
676         }
677         return !found;
678 }
679
680 /* Add an entry into h->dev[] array. */
681 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
682                 struct hpsa_scsi_dev_t *device,
683                 struct hpsa_scsi_dev_t *added[], int *nadded)
684 {
685         /* assumes h->devlock is held */
686         int n = h->ndevices;
687         int i;
688         unsigned char addr1[8], addr2[8];
689         struct hpsa_scsi_dev_t *sd;
690
691         if (n >= HPSA_MAX_DEVICES) {
692                 dev_err(&h->pdev->dev, "too many devices, some will be "
693                         "inaccessible.\n");
694                 return -1;
695         }
696
697         /* physical devices do not have lun or target assigned until now. */
698         if (device->lun != -1)
699                 /* Logical device, lun is already assigned. */
700                 goto lun_assigned;
701
702         /* If this device a non-zero lun of a multi-lun device
703          * byte 4 of the 8-byte LUN addr will contain the logical
704          * unit no, zero otherise.
705          */
706         if (device->scsi3addr[4] == 0) {
707                 /* This is not a non-zero lun of a multi-lun device */
708                 if (hpsa_find_target_lun(h, device->scsi3addr,
709                         device->bus, &device->target, &device->lun) != 0)
710                         return -1;
711                 goto lun_assigned;
712         }
713
714         /* This is a non-zero lun of a multi-lun device.
715          * Search through our list and find the device which
716          * has the same 8 byte LUN address, excepting byte 4.
717          * Assign the same bus and target for this new LUN.
718          * Use the logical unit number from the firmware.
719          */
720         memcpy(addr1, device->scsi3addr, 8);
721         addr1[4] = 0;
722         for (i = 0; i < n; i++) {
723                 sd = h->dev[i];
724                 memcpy(addr2, sd->scsi3addr, 8);
725                 addr2[4] = 0;
726                 /* differ only in byte 4? */
727                 if (memcmp(addr1, addr2, 8) == 0) {
728                         device->bus = sd->bus;
729                         device->target = sd->target;
730                         device->lun = device->scsi3addr[4];
731                         break;
732                 }
733         }
734         if (device->lun == -1) {
735                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
736                         " suspect firmware bug or unsupported hardware "
737                         "configuration.\n");
738                         return -1;
739         }
740
741 lun_assigned:
742
743         h->dev[n] = device;
744         h->ndevices++;
745         added[*nadded] = device;
746         (*nadded)++;
747
748         /* initially, (before registering with scsi layer) we don't
749          * know our hostno and we don't want to print anything first
750          * time anyway (the scsi layer's inquiries will show that info)
751          */
752         /* if (hostno != -1) */
753                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
754                         scsi_device_type(device->devtype), hostno,
755                         device->bus, device->target, device->lun);
756         return 0;
757 }
758
759 /* Update an entry in h->dev[] array. */
760 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
761         int entry, struct hpsa_scsi_dev_t *new_entry)
762 {
763         /* assumes h->devlock is held */
764         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
765
766         /* Raid level changed. */
767         h->dev[entry]->raid_level = new_entry->raid_level;
768         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
769                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
770                 new_entry->target, new_entry->lun);
771 }
772
773 /* Replace an entry from h->dev[] array. */
774 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
775         int entry, struct hpsa_scsi_dev_t *new_entry,
776         struct hpsa_scsi_dev_t *added[], int *nadded,
777         struct hpsa_scsi_dev_t *removed[], int *nremoved)
778 {
779         /* assumes h->devlock is held */
780         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
781         removed[*nremoved] = h->dev[entry];
782         (*nremoved)++;
783
784         /*
785          * New physical devices won't have target/lun assigned yet
786          * so we need to preserve the values in the slot we are replacing.
787          */
788         if (new_entry->target == -1) {
789                 new_entry->target = h->dev[entry]->target;
790                 new_entry->lun = h->dev[entry]->lun;
791         }
792
793         h->dev[entry] = new_entry;
794         added[*nadded] = new_entry;
795         (*nadded)++;
796         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
797                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
798                         new_entry->target, new_entry->lun);
799 }
800
801 /* Remove an entry from h->dev[] array. */
802 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
803         struct hpsa_scsi_dev_t *removed[], int *nremoved)
804 {
805         /* assumes h->devlock is held */
806         int i;
807         struct hpsa_scsi_dev_t *sd;
808
809         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
810
811         sd = h->dev[entry];
812         removed[*nremoved] = h->dev[entry];
813         (*nremoved)++;
814
815         for (i = entry; i < h->ndevices-1; i++)
816                 h->dev[i] = h->dev[i+1];
817         h->ndevices--;
818         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
819                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
820                 sd->lun);
821 }
822
823 #define SCSI3ADDR_EQ(a, b) ( \
824         (a)[7] == (b)[7] && \
825         (a)[6] == (b)[6] && \
826         (a)[5] == (b)[5] && \
827         (a)[4] == (b)[4] && \
828         (a)[3] == (b)[3] && \
829         (a)[2] == (b)[2] && \
830         (a)[1] == (b)[1] && \
831         (a)[0] == (b)[0])
832
833 static void fixup_botched_add(struct ctlr_info *h,
834         struct hpsa_scsi_dev_t *added)
835 {
836         /* called when scsi_add_device fails in order to re-adjust
837          * h->dev[] to match the mid layer's view.
838          */
839         unsigned long flags;
840         int i, j;
841
842         spin_lock_irqsave(&h->lock, flags);
843         for (i = 0; i < h->ndevices; i++) {
844                 if (h->dev[i] == added) {
845                         for (j = i; j < h->ndevices-1; j++)
846                                 h->dev[j] = h->dev[j+1];
847                         h->ndevices--;
848                         break;
849                 }
850         }
851         spin_unlock_irqrestore(&h->lock, flags);
852         kfree(added);
853 }
854
855 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
856         struct hpsa_scsi_dev_t *dev2)
857 {
858         /* we compare everything except lun and target as these
859          * are not yet assigned.  Compare parts likely
860          * to differ first
861          */
862         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
863                 sizeof(dev1->scsi3addr)) != 0)
864                 return 0;
865         if (memcmp(dev1->device_id, dev2->device_id,
866                 sizeof(dev1->device_id)) != 0)
867                 return 0;
868         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
869                 return 0;
870         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
871                 return 0;
872         if (dev1->devtype != dev2->devtype)
873                 return 0;
874         if (dev1->bus != dev2->bus)
875                 return 0;
876         return 1;
877 }
878
879 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
880         struct hpsa_scsi_dev_t *dev2)
881 {
882         /* Device attributes that can change, but don't mean
883          * that the device is a different device, nor that the OS
884          * needs to be told anything about the change.
885          */
886         if (dev1->raid_level != dev2->raid_level)
887                 return 1;
888         return 0;
889 }
890
891 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
892  * and return needle location in *index.  If scsi3addr matches, but not
893  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
894  * location in *index.
895  * In the case of a minor device attribute change, such as RAID level, just
896  * return DEVICE_UPDATED, along with the updated device's location in index.
897  * If needle not found, return DEVICE_NOT_FOUND.
898  */
899 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
900         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
901         int *index)
902 {
903         int i;
904 #define DEVICE_NOT_FOUND 0
905 #define DEVICE_CHANGED 1
906 #define DEVICE_SAME 2
907 #define DEVICE_UPDATED 3
908         for (i = 0; i < haystack_size; i++) {
909                 if (haystack[i] == NULL) /* previously removed. */
910                         continue;
911                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
912                         *index = i;
913                         if (device_is_the_same(needle, haystack[i])) {
914                                 if (device_updated(needle, haystack[i]))
915                                         return DEVICE_UPDATED;
916                                 return DEVICE_SAME;
917                         } else {
918                                 return DEVICE_CHANGED;
919                         }
920                 }
921         }
922         *index = -1;
923         return DEVICE_NOT_FOUND;
924 }
925
926 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
927         struct hpsa_scsi_dev_t *sd[], int nsds)
928 {
929         /* sd contains scsi3 addresses and devtypes, and inquiry
930          * data.  This function takes what's in sd to be the current
931          * reality and updates h->dev[] to reflect that reality.
932          */
933         int i, entry, device_change, changes = 0;
934         struct hpsa_scsi_dev_t *csd;
935         unsigned long flags;
936         struct hpsa_scsi_dev_t **added, **removed;
937         int nadded, nremoved;
938         struct Scsi_Host *sh = NULL;
939
940         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
941         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
942
943         if (!added || !removed) {
944                 dev_warn(&h->pdev->dev, "out of memory in "
945                         "adjust_hpsa_scsi_table\n");
946                 goto free_and_out;
947         }
948
949         spin_lock_irqsave(&h->devlock, flags);
950
951         /* find any devices in h->dev[] that are not in
952          * sd[] and remove them from h->dev[], and for any
953          * devices which have changed, remove the old device
954          * info and add the new device info.
955          * If minor device attributes change, just update
956          * the existing device structure.
957          */
958         i = 0;
959         nremoved = 0;
960         nadded = 0;
961         while (i < h->ndevices) {
962                 csd = h->dev[i];
963                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
964                 if (device_change == DEVICE_NOT_FOUND) {
965                         changes++;
966                         hpsa_scsi_remove_entry(h, hostno, i,
967                                 removed, &nremoved);
968                         continue; /* remove ^^^, hence i not incremented */
969                 } else if (device_change == DEVICE_CHANGED) {
970                         changes++;
971                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
972                                 added, &nadded, removed, &nremoved);
973                         /* Set it to NULL to prevent it from being freed
974                          * at the bottom of hpsa_update_scsi_devices()
975                          */
976                         sd[entry] = NULL;
977                 } else if (device_change == DEVICE_UPDATED) {
978                         hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
979                 }
980                 i++;
981         }
982
983         /* Now, make sure every device listed in sd[] is also
984          * listed in h->dev[], adding them if they aren't found
985          */
986
987         for (i = 0; i < nsds; i++) {
988                 if (!sd[i]) /* if already added above. */
989                         continue;
990                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
991                                         h->ndevices, &entry);
992                 if (device_change == DEVICE_NOT_FOUND) {
993                         changes++;
994                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
995                                 added, &nadded) != 0)
996                                 break;
997                         sd[i] = NULL; /* prevent from being freed later. */
998                 } else if (device_change == DEVICE_CHANGED) {
999                         /* should never happen... */
1000                         changes++;
1001                         dev_warn(&h->pdev->dev,
1002                                 "device unexpectedly changed.\n");
1003                         /* but if it does happen, we just ignore that device */
1004                 }
1005         }
1006         spin_unlock_irqrestore(&h->devlock, flags);
1007
1008         /* Don't notify scsi mid layer of any changes the first time through
1009          * (or if there are no changes) scsi_scan_host will do it later the
1010          * first time through.
1011          */
1012         if (hostno == -1 || !changes)
1013                 goto free_and_out;
1014
1015         sh = h->scsi_host;
1016         /* Notify scsi mid layer of any removed devices */
1017         for (i = 0; i < nremoved; i++) {
1018                 struct scsi_device *sdev =
1019                         scsi_device_lookup(sh, removed[i]->bus,
1020                                 removed[i]->target, removed[i]->lun);
1021                 if (sdev != NULL) {
1022                         scsi_remove_device(sdev);
1023                         scsi_device_put(sdev);
1024                 } else {
1025                         /* We don't expect to get here.
1026                          * future cmds to this device will get selection
1027                          * timeout as if the device was gone.
1028                          */
1029                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1030                                 " for removal.", hostno, removed[i]->bus,
1031                                 removed[i]->target, removed[i]->lun);
1032                 }
1033                 kfree(removed[i]);
1034                 removed[i] = NULL;
1035         }
1036
1037         /* Notify scsi mid layer of any added devices */
1038         for (i = 0; i < nadded; i++) {
1039                 if (scsi_add_device(sh, added[i]->bus,
1040                         added[i]->target, added[i]->lun) == 0)
1041                         continue;
1042                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1043                         "device not added.\n", hostno, added[i]->bus,
1044                         added[i]->target, added[i]->lun);
1045                 /* now we have to remove it from h->dev,
1046                  * since it didn't get added to scsi mid layer
1047                  */
1048                 fixup_botched_add(h, added[i]);
1049         }
1050
1051 free_and_out:
1052         kfree(added);
1053         kfree(removed);
1054 }
1055
1056 /*
1057  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
1058  * Assume's h->devlock is held.
1059  */
1060 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1061         int bus, int target, int lun)
1062 {
1063         int i;
1064         struct hpsa_scsi_dev_t *sd;
1065
1066         for (i = 0; i < h->ndevices; i++) {
1067                 sd = h->dev[i];
1068                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1069                         return sd;
1070         }
1071         return NULL;
1072 }
1073
1074 /* link sdev->hostdata to our per-device structure. */
1075 static int hpsa_slave_alloc(struct scsi_device *sdev)
1076 {
1077         struct hpsa_scsi_dev_t *sd;
1078         unsigned long flags;
1079         struct ctlr_info *h;
1080
1081         h = sdev_to_hba(sdev);
1082         spin_lock_irqsave(&h->devlock, flags);
1083         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1084                 sdev_id(sdev), sdev->lun);
1085         if (sd != NULL)
1086                 sdev->hostdata = sd;
1087         spin_unlock_irqrestore(&h->devlock, flags);
1088         return 0;
1089 }
1090
1091 static void hpsa_slave_destroy(struct scsi_device *sdev)
1092 {
1093         /* nothing to do. */
1094 }
1095
1096 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1097 {
1098         int i;
1099
1100         if (!h->cmd_sg_list)
1101                 return;
1102         for (i = 0; i < h->nr_cmds; i++) {
1103                 kfree(h->cmd_sg_list[i]);
1104                 h->cmd_sg_list[i] = NULL;
1105         }
1106         kfree(h->cmd_sg_list);
1107         h->cmd_sg_list = NULL;
1108 }
1109
1110 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1111 {
1112         int i;
1113
1114         if (h->chainsize <= 0)
1115                 return 0;
1116
1117         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1118                                 GFP_KERNEL);
1119         if (!h->cmd_sg_list)
1120                 return -ENOMEM;
1121         for (i = 0; i < h->nr_cmds; i++) {
1122                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1123                                                 h->chainsize, GFP_KERNEL);
1124                 if (!h->cmd_sg_list[i])
1125                         goto clean;
1126         }
1127         return 0;
1128
1129 clean:
1130         hpsa_free_sg_chain_blocks(h);
1131         return -ENOMEM;
1132 }
1133
1134 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1135         struct CommandList *c)
1136 {
1137         struct SGDescriptor *chain_sg, *chain_block;
1138         u64 temp64;
1139
1140         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1141         chain_block = h->cmd_sg_list[c->cmdindex];
1142         chain_sg->Ext = HPSA_SG_CHAIN;
1143         chain_sg->Len = sizeof(*chain_sg) *
1144                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1145         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1146                                 PCI_DMA_TODEVICE);
1147         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1148         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1149 }
1150
1151 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1152         struct CommandList *c)
1153 {
1154         struct SGDescriptor *chain_sg;
1155         union u64bit temp64;
1156
1157         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1158                 return;
1159
1160         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1161         temp64.val32.lower = chain_sg->Addr.lower;
1162         temp64.val32.upper = chain_sg->Addr.upper;
1163         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1164 }
1165
1166 static void complete_scsi_command(struct CommandList *cp)
1167 {
1168         struct scsi_cmnd *cmd;
1169         struct ctlr_info *h;
1170         struct ErrorInfo *ei;
1171
1172         unsigned char sense_key;
1173         unsigned char asc;      /* additional sense code */
1174         unsigned char ascq;     /* additional sense code qualifier */
1175         unsigned long sense_data_size;
1176
1177         ei = cp->err_info;
1178         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1179         h = cp->h;
1180
1181         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1182         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1183                 hpsa_unmap_sg_chain_block(h, cp);
1184
1185         cmd->result = (DID_OK << 16);           /* host byte */
1186         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1187         cmd->result |= ei->ScsiStatus;
1188
1189         /* copy the sense data whether we need to or not. */
1190         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1191                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1192         else
1193                 sense_data_size = sizeof(ei->SenseInfo);
1194         if (ei->SenseLen < sense_data_size)
1195                 sense_data_size = ei->SenseLen;
1196
1197         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1198         scsi_set_resid(cmd, ei->ResidualCnt);
1199
1200         if (ei->CommandStatus == 0) {
1201                 cmd->scsi_done(cmd);
1202                 cmd_free(h, cp);
1203                 return;
1204         }
1205
1206         /* an error has occurred */
1207         switch (ei->CommandStatus) {
1208
1209         case CMD_TARGET_STATUS:
1210                 if (ei->ScsiStatus) {
1211                         /* Get sense key */
1212                         sense_key = 0xf & ei->SenseInfo[2];
1213                         /* Get additional sense code */
1214                         asc = ei->SenseInfo[12];
1215                         /* Get addition sense code qualifier */
1216                         ascq = ei->SenseInfo[13];
1217                 }
1218
1219                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1220                         if (check_for_unit_attention(h, cp)) {
1221                                 cmd->result = DID_SOFT_ERROR << 16;
1222                                 break;
1223                         }
1224                         if (sense_key == ILLEGAL_REQUEST) {
1225                                 /*
1226                                  * SCSI REPORT_LUNS is commonly unsupported on
1227                                  * Smart Array.  Suppress noisy complaint.
1228                                  */
1229                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1230                                         break;
1231
1232                                 /* If ASC/ASCQ indicate Logical Unit
1233                                  * Not Supported condition,
1234                                  */
1235                                 if ((asc == 0x25) && (ascq == 0x0)) {
1236                                         dev_warn(&h->pdev->dev, "cp %p "
1237                                                 "has check condition\n", cp);
1238                                         break;
1239                                 }
1240                         }
1241
1242                         if (sense_key == NOT_READY) {
1243                                 /* If Sense is Not Ready, Logical Unit
1244                                  * Not ready, Manual Intervention
1245                                  * required
1246                                  */
1247                                 if ((asc == 0x04) && (ascq == 0x03)) {
1248                                         dev_warn(&h->pdev->dev, "cp %p "
1249                                                 "has check condition: unit "
1250                                                 "not ready, manual "
1251                                                 "intervention required\n", cp);
1252                                         break;
1253                                 }
1254                         }
1255                         if (sense_key == ABORTED_COMMAND) {
1256                                 /* Aborted command is retryable */
1257                                 dev_warn(&h->pdev->dev, "cp %p "
1258                                         "has check condition: aborted command: "
1259                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1260                                         cp, asc, ascq);
1261                                 cmd->result = DID_SOFT_ERROR << 16;
1262                                 break;
1263                         }
1264                         /* Must be some other type of check condition */
1265                         dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1266                                         "unknown type: "
1267                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1268                                         "Returning result: 0x%x, "
1269                                         "cmd=[%02x %02x %02x %02x %02x "
1270                                         "%02x %02x %02x %02x %02x %02x "
1271                                         "%02x %02x %02x %02x %02x]\n",
1272                                         cp, sense_key, asc, ascq,
1273                                         cmd->result,
1274                                         cmd->cmnd[0], cmd->cmnd[1],
1275                                         cmd->cmnd[2], cmd->cmnd[3],
1276                                         cmd->cmnd[4], cmd->cmnd[5],
1277                                         cmd->cmnd[6], cmd->cmnd[7],
1278                                         cmd->cmnd[8], cmd->cmnd[9],
1279                                         cmd->cmnd[10], cmd->cmnd[11],
1280                                         cmd->cmnd[12], cmd->cmnd[13],
1281                                         cmd->cmnd[14], cmd->cmnd[15]);
1282                         break;
1283                 }
1284
1285
1286                 /* Problem was not a check condition
1287                  * Pass it up to the upper layers...
1288                  */
1289                 if (ei->ScsiStatus) {
1290                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1291                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1292                                 "Returning result: 0x%x\n",
1293                                 cp, ei->ScsiStatus,
1294                                 sense_key, asc, ascq,
1295                                 cmd->result);
1296                 } else {  /* scsi status is zero??? How??? */
1297                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1298                                 "Returning no connection.\n", cp),
1299
1300                         /* Ordinarily, this case should never happen,
1301                          * but there is a bug in some released firmware
1302                          * revisions that allows it to happen if, for
1303                          * example, a 4100 backplane loses power and
1304                          * the tape drive is in it.  We assume that
1305                          * it's a fatal error of some kind because we
1306                          * can't show that it wasn't. We will make it
1307                          * look like selection timeout since that is
1308                          * the most common reason for this to occur,
1309                          * and it's severe enough.
1310                          */
1311
1312                         cmd->result = DID_NO_CONNECT << 16;
1313                 }
1314                 break;
1315
1316         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1317                 break;
1318         case CMD_DATA_OVERRUN:
1319                 dev_warn(&h->pdev->dev, "cp %p has"
1320                         " completed with data overrun "
1321                         "reported\n", cp);
1322                 break;
1323         case CMD_INVALID: {
1324                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1325                 print_cmd(cp); */
1326                 /* We get CMD_INVALID if you address a non-existent device
1327                  * instead of a selection timeout (no response).  You will
1328                  * see this if you yank out a drive, then try to access it.
1329                  * This is kind of a shame because it means that any other
1330                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1331                  * missing target. */
1332                 cmd->result = DID_NO_CONNECT << 16;
1333         }
1334                 break;
1335         case CMD_PROTOCOL_ERR:
1336                 cmd->result = DID_ERROR << 16;
1337                 dev_warn(&h->pdev->dev, "cp %p has "
1338                         "protocol error\n", cp);
1339                 break;
1340         case CMD_HARDWARE_ERR:
1341                 cmd->result = DID_ERROR << 16;
1342                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1343                 break;
1344         case CMD_CONNECTION_LOST:
1345                 cmd->result = DID_ERROR << 16;
1346                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1347                 break;
1348         case CMD_ABORTED:
1349                 cmd->result = DID_ABORT << 16;
1350                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1351                                 cp, ei->ScsiStatus);
1352                 break;
1353         case CMD_ABORT_FAILED:
1354                 cmd->result = DID_ERROR << 16;
1355                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1356                 break;
1357         case CMD_UNSOLICITED_ABORT:
1358                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1359                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1360                         "abort\n", cp);
1361                 break;
1362         case CMD_TIMEOUT:
1363                 cmd->result = DID_TIME_OUT << 16;
1364                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1365                 break;
1366         case CMD_UNABORTABLE:
1367                 cmd->result = DID_ERROR << 16;
1368                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1369                 break;
1370         default:
1371                 cmd->result = DID_ERROR << 16;
1372                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1373                                 cp, ei->CommandStatus);
1374         }
1375         cmd->scsi_done(cmd);
1376         cmd_free(h, cp);
1377 }
1378
1379 static void hpsa_pci_unmap(struct pci_dev *pdev,
1380         struct CommandList *c, int sg_used, int data_direction)
1381 {
1382         int i;
1383         union u64bit addr64;
1384
1385         for (i = 0; i < sg_used; i++) {
1386                 addr64.val32.lower = c->SG[i].Addr.lower;
1387                 addr64.val32.upper = c->SG[i].Addr.upper;
1388                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1389                         data_direction);
1390         }
1391 }
1392
1393 static void hpsa_map_one(struct pci_dev *pdev,
1394                 struct CommandList *cp,
1395                 unsigned char *buf,
1396                 size_t buflen,
1397                 int data_direction)
1398 {
1399         u64 addr64;
1400
1401         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1402                 cp->Header.SGList = 0;
1403                 cp->Header.SGTotal = 0;
1404                 return;
1405         }
1406
1407         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1408         if (dma_mapping_error(&pdev->dev, addr64)) {
1409                 cp->Header.SGList = 0;
1410                 cp->Header.SGTotal = 0;
1411                 return;
1412         }
1413         cp->SG[0].Addr.lower =
1414           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1415         cp->SG[0].Addr.upper =
1416           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1417         cp->SG[0].Len = buflen;
1418         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1419         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1420 }
1421
1422 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1423         struct CommandList *c)
1424 {
1425         DECLARE_COMPLETION_ONSTACK(wait);
1426
1427         c->waiting = &wait;
1428         enqueue_cmd_and_start_io(h, c);
1429         wait_for_completion(&wait);
1430 }
1431
1432 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1433         struct CommandList *c)
1434 {
1435         unsigned long flags;
1436
1437         /* If controller lockup detected, fake a hardware error. */
1438         spin_lock_irqsave(&h->lock, flags);
1439         if (unlikely(h->lockup_detected)) {
1440                 spin_unlock_irqrestore(&h->lock, flags);
1441                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1442         } else {
1443                 spin_unlock_irqrestore(&h->lock, flags);
1444                 hpsa_scsi_do_simple_cmd_core(h, c);
1445         }
1446 }
1447
1448 #define MAX_DRIVER_CMD_RETRIES 25
1449 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1450         struct CommandList *c, int data_direction)
1451 {
1452         int backoff_time = 10, retry_count = 0;
1453
1454         do {
1455                 memset(c->err_info, 0, sizeof(*c->err_info));
1456                 hpsa_scsi_do_simple_cmd_core(h, c);
1457                 retry_count++;
1458                 if (retry_count > 3) {
1459                         msleep(backoff_time);
1460                         if (backoff_time < 1000)
1461                                 backoff_time *= 2;
1462                 }
1463         } while ((check_for_unit_attention(h, c) ||
1464                         check_for_busy(h, c)) &&
1465                         retry_count <= MAX_DRIVER_CMD_RETRIES);
1466         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1467 }
1468
1469 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1470 {
1471         struct ErrorInfo *ei;
1472         struct device *d = &cp->h->pdev->dev;
1473
1474         ei = cp->err_info;
1475         switch (ei->CommandStatus) {
1476         case CMD_TARGET_STATUS:
1477                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1478                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1479                                 ei->ScsiStatus);
1480                 if (ei->ScsiStatus == 0)
1481                         dev_warn(d, "SCSI status is abnormally zero.  "
1482                         "(probably indicates selection timeout "
1483                         "reported incorrectly due to a known "
1484                         "firmware bug, circa July, 2001.)\n");
1485                 break;
1486         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1487                         dev_info(d, "UNDERRUN\n");
1488                 break;
1489         case CMD_DATA_OVERRUN:
1490                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1491                 break;
1492         case CMD_INVALID: {
1493                 /* controller unfortunately reports SCSI passthru's
1494                  * to non-existent targets as invalid commands.
1495                  */
1496                 dev_warn(d, "cp %p is reported invalid (probably means "
1497                         "target device no longer present)\n", cp);
1498                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1499                 print_cmd(cp);  */
1500                 }
1501                 break;
1502         case CMD_PROTOCOL_ERR:
1503                 dev_warn(d, "cp %p has protocol error \n", cp);
1504                 break;
1505         case CMD_HARDWARE_ERR:
1506                 /* cmd->result = DID_ERROR << 16; */
1507                 dev_warn(d, "cp %p had hardware error\n", cp);
1508                 break;
1509         case CMD_CONNECTION_LOST:
1510                 dev_warn(d, "cp %p had connection lost\n", cp);
1511                 break;
1512         case CMD_ABORTED:
1513                 dev_warn(d, "cp %p was aborted\n", cp);
1514                 break;
1515         case CMD_ABORT_FAILED:
1516                 dev_warn(d, "cp %p reports abort failed\n", cp);
1517                 break;
1518         case CMD_UNSOLICITED_ABORT:
1519                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1520                 break;
1521         case CMD_TIMEOUT:
1522                 dev_warn(d, "cp %p timed out\n", cp);
1523                 break;
1524         case CMD_UNABORTABLE:
1525                 dev_warn(d, "Command unabortable\n");
1526                 break;
1527         default:
1528                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1529                                 ei->CommandStatus);
1530         }
1531 }
1532
1533 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1534                         unsigned char page, unsigned char *buf,
1535                         unsigned char bufsize)
1536 {
1537         int rc = IO_OK;
1538         struct CommandList *c;
1539         struct ErrorInfo *ei;
1540
1541         c = cmd_special_alloc(h);
1542
1543         if (c == NULL) {                        /* trouble... */
1544                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1545                 return -ENOMEM;
1546         }
1547
1548         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1549         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1550         ei = c->err_info;
1551         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1552                 hpsa_scsi_interpret_error(c);
1553                 rc = -1;
1554         }
1555         cmd_special_free(h, c);
1556         return rc;
1557 }
1558
1559 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1560 {
1561         int rc = IO_OK;
1562         struct CommandList *c;
1563         struct ErrorInfo *ei;
1564
1565         c = cmd_special_alloc(h);
1566
1567         if (c == NULL) {                        /* trouble... */
1568                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1569                 return -ENOMEM;
1570         }
1571
1572         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1573         hpsa_scsi_do_simple_cmd_core(h, c);
1574         /* no unmap needed here because no data xfer. */
1575
1576         ei = c->err_info;
1577         if (ei->CommandStatus != 0) {
1578                 hpsa_scsi_interpret_error(c);
1579                 rc = -1;
1580         }
1581         cmd_special_free(h, c);
1582         return rc;
1583 }
1584
1585 static void hpsa_get_raid_level(struct ctlr_info *h,
1586         unsigned char *scsi3addr, unsigned char *raid_level)
1587 {
1588         int rc;
1589         unsigned char *buf;
1590
1591         *raid_level = RAID_UNKNOWN;
1592         buf = kzalloc(64, GFP_KERNEL);
1593         if (!buf)
1594                 return;
1595         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1596         if (rc == 0)
1597                 *raid_level = buf[8];
1598         if (*raid_level > RAID_UNKNOWN)
1599                 *raid_level = RAID_UNKNOWN;
1600         kfree(buf);
1601         return;
1602 }
1603
1604 /* Get the device id from inquiry page 0x83 */
1605 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1606         unsigned char *device_id, int buflen)
1607 {
1608         int rc;
1609         unsigned char *buf;
1610
1611         if (buflen > 16)
1612                 buflen = 16;
1613         buf = kzalloc(64, GFP_KERNEL);
1614         if (!buf)
1615                 return -1;
1616         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1617         if (rc == 0)
1618                 memcpy(device_id, &buf[8], buflen);
1619         kfree(buf);
1620         return rc != 0;
1621 }
1622
1623 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1624                 struct ReportLUNdata *buf, int bufsize,
1625                 int extended_response)
1626 {
1627         int rc = IO_OK;
1628         struct CommandList *c;
1629         unsigned char scsi3addr[8];
1630         struct ErrorInfo *ei;
1631
1632         c = cmd_special_alloc(h);
1633         if (c == NULL) {                        /* trouble... */
1634                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1635                 return -1;
1636         }
1637         /* address the controller */
1638         memset(scsi3addr, 0, sizeof(scsi3addr));
1639         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1640                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1641         if (extended_response)
1642                 c->Request.CDB[1] = extended_response;
1643         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1644         ei = c->err_info;
1645         if (ei->CommandStatus != 0 &&
1646             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1647                 hpsa_scsi_interpret_error(c);
1648                 rc = -1;
1649         }
1650         cmd_special_free(h, c);
1651         return rc;
1652 }
1653
1654 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1655                 struct ReportLUNdata *buf,
1656                 int bufsize, int extended_response)
1657 {
1658         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1659 }
1660
1661 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1662                 struct ReportLUNdata *buf, int bufsize)
1663 {
1664         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1665 }
1666
1667 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1668         int bus, int target, int lun)
1669 {
1670         device->bus = bus;
1671         device->target = target;
1672         device->lun = lun;
1673 }
1674
1675 static int hpsa_update_device_info(struct ctlr_info *h,
1676         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1677         unsigned char *is_OBDR_device)
1678 {
1679
1680 #define OBDR_SIG_OFFSET 43
1681 #define OBDR_TAPE_SIG "$DR-10"
1682 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1683 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1684
1685         unsigned char *inq_buff;
1686         unsigned char *obdr_sig;
1687
1688         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1689         if (!inq_buff)
1690                 goto bail_out;
1691
1692         /* Do an inquiry to the device to see what it is. */
1693         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1694                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1695                 /* Inquiry failed (msg printed already) */
1696                 dev_err(&h->pdev->dev,
1697                         "hpsa_update_device_info: inquiry failed\n");
1698                 goto bail_out;
1699         }
1700
1701         this_device->devtype = (inq_buff[0] & 0x1f);
1702         memcpy(this_device->scsi3addr, scsi3addr, 8);
1703         memcpy(this_device->vendor, &inq_buff[8],
1704                 sizeof(this_device->vendor));
1705         memcpy(this_device->model, &inq_buff[16],
1706                 sizeof(this_device->model));
1707         memset(this_device->device_id, 0,
1708                 sizeof(this_device->device_id));
1709         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1710                 sizeof(this_device->device_id));
1711
1712         if (this_device->devtype == TYPE_DISK &&
1713                 is_logical_dev_addr_mode(scsi3addr))
1714                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1715         else
1716                 this_device->raid_level = RAID_UNKNOWN;
1717
1718         if (is_OBDR_device) {
1719                 /* See if this is a One-Button-Disaster-Recovery device
1720                  * by looking for "$DR-10" at offset 43 in inquiry data.
1721                  */
1722                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1723                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1724                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
1725                                                 OBDR_SIG_LEN) == 0);
1726         }
1727
1728         kfree(inq_buff);
1729         return 0;
1730
1731 bail_out:
1732         kfree(inq_buff);
1733         return 1;
1734 }
1735
1736 static unsigned char *ext_target_model[] = {
1737         "MSA2012",
1738         "MSA2024",
1739         "MSA2312",
1740         "MSA2324",
1741         "P2000 G3 SAS",
1742         NULL,
1743 };
1744
1745 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1746 {
1747         int i;
1748
1749         for (i = 0; ext_target_model[i]; i++)
1750                 if (strncmp(device->model, ext_target_model[i],
1751                         strlen(ext_target_model[i])) == 0)
1752                         return 1;
1753         return 0;
1754 }
1755
1756 /* Helper function to assign bus, target, lun mapping of devices.
1757  * Puts non-external target logical volumes on bus 0, external target logical
1758  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1759  * Logical drive target and lun are assigned at this time, but
1760  * physical device lun and target assignment are deferred (assigned
1761  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1762  */
1763 static void figure_bus_target_lun(struct ctlr_info *h,
1764         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1765 {
1766         u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1767
1768         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1769                 /* physical device, target and lun filled in later */
1770                 if (is_hba_lunid(lunaddrbytes))
1771                         hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1772                 else
1773                         /* defer target, lun assignment for physical devices */
1774                         hpsa_set_bus_target_lun(device, 2, -1, -1);
1775                 return;
1776         }
1777         /* It's a logical device */
1778         if (is_ext_target(h, device)) {
1779                 /* external target way, put logicals on bus 1
1780                  * and match target/lun numbers box
1781                  * reports, other smart array, bus 0, target 0, match lunid
1782                  */
1783                 hpsa_set_bus_target_lun(device,
1784                         1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1785                 return;
1786         }
1787         hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1788 }
1789
1790 /*
1791  * If there is no lun 0 on a target, linux won't find any devices.
1792  * For the external targets (arrays), we have to manually detect the enclosure
1793  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1794  * it for some reason.  *tmpdevice is the target we're adding,
1795  * this_device is a pointer into the current element of currentsd[]
1796  * that we're building up in update_scsi_devices(), below.
1797  * lunzerobits is a bitmap that tracks which targets already have a
1798  * lun 0 assigned.
1799  * Returns 1 if an enclosure was added, 0 if not.
1800  */
1801 static int add_ext_target_dev(struct ctlr_info *h,
1802         struct hpsa_scsi_dev_t *tmpdevice,
1803         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1804         unsigned long lunzerobits[], int *n_ext_target_devs)
1805 {
1806         unsigned char scsi3addr[8];
1807
1808         if (test_bit(tmpdevice->target, lunzerobits))
1809                 return 0; /* There is already a lun 0 on this target. */
1810
1811         if (!is_logical_dev_addr_mode(lunaddrbytes))
1812                 return 0; /* It's the logical targets that may lack lun 0. */
1813
1814         if (!is_ext_target(h, tmpdevice))
1815                 return 0; /* Only external target devices have this problem. */
1816
1817         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1818                 return 0;
1819
1820         memset(scsi3addr, 0, 8);
1821         scsi3addr[3] = tmpdevice->target;
1822         if (is_hba_lunid(scsi3addr))
1823                 return 0; /* Don't add the RAID controller here. */
1824
1825         if (is_scsi_rev_5(h))
1826                 return 0; /* p1210m doesn't need to do this. */
1827
1828         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1829                 dev_warn(&h->pdev->dev, "Maximum number of external "
1830                         "target devices exceeded.  Check your hardware "
1831                         "configuration.");
1832                 return 0;
1833         }
1834
1835         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1836                 return 0;
1837         (*n_ext_target_devs)++;
1838         hpsa_set_bus_target_lun(this_device,
1839                                 tmpdevice->bus, tmpdevice->target, 0);
1840         set_bit(tmpdevice->target, lunzerobits);
1841         return 1;
1842 }
1843
1844 /*
1845  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1846  * logdev.  The number of luns in physdev and logdev are returned in
1847  * *nphysicals and *nlogicals, respectively.
1848  * Returns 0 on success, -1 otherwise.
1849  */
1850 static int hpsa_gather_lun_info(struct ctlr_info *h,
1851         int reportlunsize,
1852         struct ReportLUNdata *physdev, u32 *nphysicals,
1853         struct ReportLUNdata *logdev, u32 *nlogicals)
1854 {
1855         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1856                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1857                 return -1;
1858         }
1859         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1860         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1861                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1862                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1863                         *nphysicals - HPSA_MAX_PHYS_LUN);
1864                 *nphysicals = HPSA_MAX_PHYS_LUN;
1865         }
1866         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1867                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1868                 return -1;
1869         }
1870         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1871         /* Reject Logicals in excess of our max capability. */
1872         if (*nlogicals > HPSA_MAX_LUN) {
1873                 dev_warn(&h->pdev->dev,
1874                         "maximum logical LUNs (%d) exceeded.  "
1875                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1876                         *nlogicals - HPSA_MAX_LUN);
1877                         *nlogicals = HPSA_MAX_LUN;
1878         }
1879         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1880                 dev_warn(&h->pdev->dev,
1881                         "maximum logical + physical LUNs (%d) exceeded. "
1882                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1883                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1884                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1885         }
1886         return 0;
1887 }
1888
1889 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1890         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1891         struct ReportLUNdata *logdev_list)
1892 {
1893         /* Helper function, figure out where the LUN ID info is coming from
1894          * given index i, lists of physical and logical devices, where in
1895          * the list the raid controller is supposed to appear (first or last)
1896          */
1897
1898         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1899         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1900
1901         if (i == raid_ctlr_position)
1902                 return RAID_CTLR_LUNID;
1903
1904         if (i < logicals_start)
1905                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1906
1907         if (i < last_device)
1908                 return &logdev_list->LUN[i - nphysicals -
1909                         (raid_ctlr_position == 0)][0];
1910         BUG();
1911         return NULL;
1912 }
1913
1914 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1915 {
1916         /* the idea here is we could get notified
1917          * that some devices have changed, so we do a report
1918          * physical luns and report logical luns cmd, and adjust
1919          * our list of devices accordingly.
1920          *
1921          * The scsi3addr's of devices won't change so long as the
1922          * adapter is not reset.  That means we can rescan and
1923          * tell which devices we already know about, vs. new
1924          * devices, vs.  disappearing devices.
1925          */
1926         struct ReportLUNdata *physdev_list = NULL;
1927         struct ReportLUNdata *logdev_list = NULL;
1928         u32 nphysicals = 0;
1929         u32 nlogicals = 0;
1930         u32 ndev_allocated = 0;
1931         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1932         int ncurrent = 0;
1933         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1934         int i, n_ext_target_devs, ndevs_to_allocate;
1935         int raid_ctlr_position;
1936         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1937
1938         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1939         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1940         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1941         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1942
1943         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1944                 dev_err(&h->pdev->dev, "out of memory\n");
1945                 goto out;
1946         }
1947         memset(lunzerobits, 0, sizeof(lunzerobits));
1948
1949         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1950                         logdev_list, &nlogicals))
1951                 goto out;
1952
1953         /* We might see up to the maximum number of logical and physical disks
1954          * plus external target devices, and a device for the local RAID
1955          * controller.
1956          */
1957         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
1958
1959         /* Allocate the per device structures */
1960         for (i = 0; i < ndevs_to_allocate; i++) {
1961                 if (i >= HPSA_MAX_DEVICES) {
1962                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1963                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
1964                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
1965                         break;
1966                 }
1967
1968                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1969                 if (!currentsd[i]) {
1970                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1971                                 __FILE__, __LINE__);
1972                         goto out;
1973                 }
1974                 ndev_allocated++;
1975         }
1976
1977         if (unlikely(is_scsi_rev_5(h)))
1978                 raid_ctlr_position = 0;
1979         else
1980                 raid_ctlr_position = nphysicals + nlogicals;
1981
1982         /* adjust our table of devices */
1983         n_ext_target_devs = 0;
1984         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1985                 u8 *lunaddrbytes, is_OBDR = 0;
1986
1987                 /* Figure out where the LUN ID info is coming from */
1988                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1989                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1990                 /* skip masked physical devices. */
1991                 if (lunaddrbytes[3] & 0xC0 &&
1992                         i < nphysicals + (raid_ctlr_position == 0))
1993                         continue;
1994
1995                 /* Get device type, vendor, model, device id */
1996                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1997                                                         &is_OBDR))
1998                         continue; /* skip it if we can't talk to it. */
1999                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
2000                 this_device = currentsd[ncurrent];
2001
2002                 /*
2003                  * For external target devices, we have to insert a LUN 0 which
2004                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
2005                  * is nonetheless an enclosure device there.  We have to
2006                  * present that otherwise linux won't find anything if
2007                  * there is no lun 0.
2008                  */
2009                 if (add_ext_target_dev(h, tmpdevice, this_device,
2010                                 lunaddrbytes, lunzerobits,
2011                                 &n_ext_target_devs)) {
2012                         ncurrent++;
2013                         this_device = currentsd[ncurrent];
2014                 }
2015
2016                 *this_device = *tmpdevice;
2017
2018                 switch (this_device->devtype) {
2019                 case TYPE_ROM:
2020                         /* We don't *really* support actual CD-ROM devices,
2021                          * just "One Button Disaster Recovery" tape drive
2022                          * which temporarily pretends to be a CD-ROM drive.
2023                          * So we check that the device is really an OBDR tape
2024                          * device by checking for "$DR-10" in bytes 43-48 of
2025                          * the inquiry data.
2026                          */
2027                         if (is_OBDR)
2028                                 ncurrent++;
2029                         break;
2030                 case TYPE_DISK:
2031                         if (i < nphysicals)
2032                                 break;
2033                         ncurrent++;
2034                         break;
2035                 case TYPE_TAPE:
2036                 case TYPE_MEDIUM_CHANGER:
2037                         ncurrent++;
2038                         break;
2039                 case TYPE_RAID:
2040                         /* Only present the Smartarray HBA as a RAID controller.
2041                          * If it's a RAID controller other than the HBA itself
2042                          * (an external RAID controller, MSA500 or similar)
2043                          * don't present it.
2044                          */
2045                         if (!is_hba_lunid(lunaddrbytes))
2046                                 break;
2047                         ncurrent++;
2048                         break;
2049                 default:
2050                         break;
2051                 }
2052                 if (ncurrent >= HPSA_MAX_DEVICES)
2053                         break;
2054         }
2055         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
2056 out:
2057         kfree(tmpdevice);
2058         for (i = 0; i < ndev_allocated; i++)
2059                 kfree(currentsd[i]);
2060         kfree(currentsd);
2061         kfree(physdev_list);
2062         kfree(logdev_list);
2063 }
2064
2065 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2066  * dma mapping  and fills in the scatter gather entries of the
2067  * hpsa command, cp.
2068  */
2069 static int hpsa_scatter_gather(struct ctlr_info *h,
2070                 struct CommandList *cp,
2071                 struct scsi_cmnd *cmd)
2072 {
2073         unsigned int len;
2074         struct scatterlist *sg;
2075         u64 addr64;
2076         int use_sg, i, sg_index, chained;
2077         struct SGDescriptor *curr_sg;
2078
2079         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2080
2081         use_sg = scsi_dma_map(cmd);
2082         if (use_sg < 0)
2083                 return use_sg;
2084
2085         if (!use_sg)
2086                 goto sglist_finished;
2087
2088         curr_sg = cp->SG;
2089         chained = 0;
2090         sg_index = 0;
2091         scsi_for_each_sg(cmd, sg, use_sg, i) {
2092                 if (i == h->max_cmd_sg_entries - 1 &&
2093                         use_sg > h->max_cmd_sg_entries) {
2094                         chained = 1;
2095                         curr_sg = h->cmd_sg_list[cp->cmdindex];
2096                         sg_index = 0;
2097                 }
2098                 addr64 = (u64) sg_dma_address(sg);
2099                 len  = sg_dma_len(sg);
2100                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2101                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2102                 curr_sg->Len = len;
2103                 curr_sg->Ext = 0;  /* we are not chaining */
2104                 curr_sg++;
2105         }
2106
2107         if (use_sg + chained > h->maxSG)
2108                 h->maxSG = use_sg + chained;
2109
2110         if (chained) {
2111                 cp->Header.SGList = h->max_cmd_sg_entries;
2112                 cp->Header.SGTotal = (u16) (use_sg + 1);
2113                 hpsa_map_sg_chain_block(h, cp);
2114                 return 0;
2115         }
2116
2117 sglist_finished:
2118
2119         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2120         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2121         return 0;
2122 }
2123
2124
2125 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2126         void (*done)(struct scsi_cmnd *))
2127 {
2128         struct ctlr_info *h;
2129         struct hpsa_scsi_dev_t *dev;
2130         unsigned char scsi3addr[8];
2131         struct CommandList *c;
2132         unsigned long flags;
2133
2134         /* Get the ptr to our adapter structure out of cmd->host. */
2135         h = sdev_to_hba(cmd->device);
2136         dev = cmd->device->hostdata;
2137         if (!dev) {
2138                 cmd->result = DID_NO_CONNECT << 16;
2139                 done(cmd);
2140                 return 0;
2141         }
2142         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2143
2144         spin_lock_irqsave(&h->lock, flags);
2145         if (unlikely(h->lockup_detected)) {
2146                 spin_unlock_irqrestore(&h->lock, flags);
2147                 cmd->result = DID_ERROR << 16;
2148                 done(cmd);
2149                 return 0;
2150         }
2151         spin_unlock_irqrestore(&h->lock, flags);
2152         c = cmd_alloc(h);
2153         if (c == NULL) {                        /* trouble... */
2154                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2155                 return SCSI_MLQUEUE_HOST_BUSY;
2156         }
2157
2158         /* Fill in the command list header */
2159
2160         cmd->scsi_done = done;    /* save this for use by completion code */
2161
2162         /* save c in case we have to abort it  */
2163         cmd->host_scribble = (unsigned char *) c;
2164
2165         c->cmd_type = CMD_SCSI;
2166         c->scsi_cmd = cmd;
2167         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2168         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2169         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2170         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2171
2172         /* Fill in the request block... */
2173
2174         c->Request.Timeout = 0;
2175         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2176         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2177         c->Request.CDBLen = cmd->cmd_len;
2178         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2179         c->Request.Type.Type = TYPE_CMD;
2180         c->Request.Type.Attribute = ATTR_SIMPLE;
2181         switch (cmd->sc_data_direction) {
2182         case DMA_TO_DEVICE:
2183                 c->Request.Type.Direction = XFER_WRITE;
2184                 break;
2185         case DMA_FROM_DEVICE:
2186                 c->Request.Type.Direction = XFER_READ;
2187                 break;
2188         case DMA_NONE:
2189                 c->Request.Type.Direction = XFER_NONE;
2190                 break;
2191         case DMA_BIDIRECTIONAL:
2192                 /* This can happen if a buggy application does a scsi passthru
2193                  * and sets both inlen and outlen to non-zero. ( see
2194                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2195                  */
2196
2197                 c->Request.Type.Direction = XFER_RSVD;
2198                 /* This is technically wrong, and hpsa controllers should
2199                  * reject it with CMD_INVALID, which is the most correct
2200                  * response, but non-fibre backends appear to let it
2201                  * slide by, and give the same results as if this field
2202                  * were set correctly.  Either way is acceptable for
2203                  * our purposes here.
2204                  */
2205
2206                 break;
2207
2208         default:
2209                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2210                         cmd->sc_data_direction);
2211                 BUG();
2212                 break;
2213         }
2214
2215         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2216                 cmd_free(h, c);
2217                 return SCSI_MLQUEUE_HOST_BUSY;
2218         }
2219         enqueue_cmd_and_start_io(h, c);
2220         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2221         return 0;
2222 }
2223
2224 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2225
2226 static void hpsa_scan_start(struct Scsi_Host *sh)
2227 {
2228         struct ctlr_info *h = shost_to_hba(sh);
2229         unsigned long flags;
2230
2231         /* wait until any scan already in progress is finished. */
2232         while (1) {
2233                 spin_lock_irqsave(&h->scan_lock, flags);
2234                 if (h->scan_finished)
2235                         break;
2236                 spin_unlock_irqrestore(&h->scan_lock, flags);
2237                 wait_event(h->scan_wait_queue, h->scan_finished);
2238                 /* Note: We don't need to worry about a race between this
2239                  * thread and driver unload because the midlayer will
2240                  * have incremented the reference count, so unload won't
2241                  * happen if we're in here.
2242                  */
2243         }
2244         h->scan_finished = 0; /* mark scan as in progress */
2245         spin_unlock_irqrestore(&h->scan_lock, flags);
2246
2247         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2248
2249         spin_lock_irqsave(&h->scan_lock, flags);
2250         h->scan_finished = 1; /* mark scan as finished. */
2251         wake_up_all(&h->scan_wait_queue);
2252         spin_unlock_irqrestore(&h->scan_lock, flags);
2253 }
2254
2255 static int hpsa_scan_finished(struct Scsi_Host *sh,
2256         unsigned long elapsed_time)
2257 {
2258         struct ctlr_info *h = shost_to_hba(sh);
2259         unsigned long flags;
2260         int finished;
2261
2262         spin_lock_irqsave(&h->scan_lock, flags);
2263         finished = h->scan_finished;
2264         spin_unlock_irqrestore(&h->scan_lock, flags);
2265         return finished;
2266 }
2267
2268 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2269         int qdepth, int reason)
2270 {
2271         struct ctlr_info *h = sdev_to_hba(sdev);
2272
2273         if (reason != SCSI_QDEPTH_DEFAULT)
2274                 return -ENOTSUPP;
2275
2276         if (qdepth < 1)
2277                 qdepth = 1;
2278         else
2279                 if (qdepth > h->nr_cmds)
2280                         qdepth = h->nr_cmds;
2281         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2282         return sdev->queue_depth;
2283 }
2284
2285 static void hpsa_unregister_scsi(struct ctlr_info *h)
2286 {
2287         /* we are being forcibly unloaded, and may not refuse. */
2288         scsi_remove_host(h->scsi_host);
2289         scsi_host_put(h->scsi_host);
2290         h->scsi_host = NULL;
2291 }
2292
2293 static int hpsa_register_scsi(struct ctlr_info *h)
2294 {
2295         struct Scsi_Host *sh;
2296         int error;
2297
2298         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2299         if (sh == NULL)
2300                 goto fail;
2301
2302         sh->io_port = 0;
2303         sh->n_io_port = 0;
2304         sh->this_id = -1;
2305         sh->max_channel = 3;
2306         sh->max_cmd_len = MAX_COMMAND_SIZE;
2307         sh->max_lun = HPSA_MAX_LUN;
2308         sh->max_id = HPSA_MAX_LUN;
2309         sh->can_queue = h->nr_cmds;
2310         sh->cmd_per_lun = h->nr_cmds;
2311         sh->sg_tablesize = h->maxsgentries;
2312         h->scsi_host = sh;
2313         sh->hostdata[0] = (unsigned long) h;
2314         sh->irq = h->intr[h->intr_mode];
2315         sh->unique_id = sh->irq;
2316         error = scsi_add_host(sh, &h->pdev->dev);
2317         if (error)
2318                 goto fail_host_put;
2319         scsi_scan_host(sh);
2320         return 0;
2321
2322  fail_host_put:
2323         dev_err(&h->pdev->dev, "%s: scsi_add_host"
2324                 " failed for controller %d\n", __func__, h->ctlr);
2325         scsi_host_put(sh);
2326         return error;
2327  fail:
2328         dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2329                 " failed for controller %d\n", __func__, h->ctlr);
2330         return -ENOMEM;
2331 }
2332
2333 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2334         unsigned char lunaddr[])
2335 {
2336         int rc = 0;
2337         int count = 0;
2338         int waittime = 1; /* seconds */
2339         struct CommandList *c;
2340
2341         c = cmd_special_alloc(h);
2342         if (!c) {
2343                 dev_warn(&h->pdev->dev, "out of memory in "
2344                         "wait_for_device_to_become_ready.\n");
2345                 return IO_ERROR;
2346         }
2347
2348         /* Send test unit ready until device ready, or give up. */
2349         while (count < HPSA_TUR_RETRY_LIMIT) {
2350
2351                 /* Wait for a bit.  do this first, because if we send
2352                  * the TUR right away, the reset will just abort it.
2353                  */
2354                 msleep(1000 * waittime);
2355                 count++;
2356
2357                 /* Increase wait time with each try, up to a point. */
2358                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2359                         waittime = waittime * 2;
2360
2361                 /* Send the Test Unit Ready */
2362                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2363                 hpsa_scsi_do_simple_cmd_core(h, c);
2364                 /* no unmap needed here because no data xfer. */
2365
2366                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2367                         break;
2368
2369                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2370                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2371                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2372                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2373                         break;
2374
2375                 dev_warn(&h->pdev->dev, "waiting %d secs "
2376                         "for device to become ready.\n", waittime);
2377                 rc = 1; /* device not ready. */
2378         }
2379
2380         if (rc)
2381                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2382         else
2383                 dev_warn(&h->pdev->dev, "device is ready.\n");
2384
2385         cmd_special_free(h, c);
2386         return rc;
2387 }
2388
2389 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2390  * complaining.  Doing a host- or bus-reset can't do anything good here.
2391  */
2392 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2393 {
2394         int rc;
2395         struct ctlr_info *h;
2396         struct hpsa_scsi_dev_t *dev;
2397
2398         /* find the controller to which the command to be aborted was sent */
2399         h = sdev_to_hba(scsicmd->device);
2400         if (h == NULL) /* paranoia */
2401                 return FAILED;
2402         dev = scsicmd->device->hostdata;
2403         if (!dev) {
2404                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2405                         "device lookup failed.\n");
2406                 return FAILED;
2407         }
2408         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2409                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2410         /* send a reset to the SCSI LUN which the command was sent to */
2411         rc = hpsa_send_reset(h, dev->scsi3addr);
2412         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2413                 return SUCCESS;
2414
2415         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2416         return FAILED;
2417 }
2418
2419 static void swizzle_abort_tag(u8 *tag)
2420 {
2421         u8 original_tag[8];
2422
2423         memcpy(original_tag, tag, 8);
2424         tag[0] = original_tag[3];
2425         tag[1] = original_tag[2];
2426         tag[2] = original_tag[1];
2427         tag[3] = original_tag[0];
2428         tag[4] = original_tag[7];
2429         tag[5] = original_tag[6];
2430         tag[6] = original_tag[5];
2431         tag[7] = original_tag[4];
2432 }
2433
2434 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2435         struct CommandList *abort, int swizzle)
2436 {
2437         int rc = IO_OK;
2438         struct CommandList *c;
2439         struct ErrorInfo *ei;
2440
2441         c = cmd_special_alloc(h);
2442         if (c == NULL) {        /* trouble... */
2443                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2444                 return -ENOMEM;
2445         }
2446
2447         fill_cmd(c, HPSA_ABORT_MSG, h, abort, 0, 0, scsi3addr, TYPE_MSG);
2448         if (swizzle)
2449                 swizzle_abort_tag(&c->Request.CDB[4]);
2450         hpsa_scsi_do_simple_cmd_core(h, c);
2451         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2452                 __func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
2453         /* no unmap needed here because no data xfer. */
2454
2455         ei = c->err_info;
2456         switch (ei->CommandStatus) {
2457         case CMD_SUCCESS:
2458                 break;
2459         case CMD_UNABORTABLE: /* Very common, don't make noise. */
2460                 rc = -1;
2461                 break;
2462         default:
2463                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2464                         __func__, abort->Header.Tag.upper,
2465                         abort->Header.Tag.lower);
2466                 hpsa_scsi_interpret_error(c);
2467                 rc = -1;
2468                 break;
2469         }
2470         cmd_special_free(h, c);
2471         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
2472                 abort->Header.Tag.upper, abort->Header.Tag.lower);
2473         return rc;
2474 }
2475
2476 /*
2477  * hpsa_find_cmd_in_queue
2478  *
2479  * Used to determine whether a command (find) is still present
2480  * in queue_head.   Optionally excludes the last element of queue_head.
2481  *
2482  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
2483  * not yet been submitted, and so can be aborted by the driver without
2484  * sending an abort to the hardware.
2485  *
2486  * Returns pointer to command if found in queue, NULL otherwise.
2487  */
2488 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
2489                         struct scsi_cmnd *find, struct list_head *queue_head)
2490 {
2491         unsigned long flags;
2492         struct CommandList *c = NULL;   /* ptr into cmpQ */
2493
2494         if (!find)
2495                 return 0;
2496         spin_lock_irqsave(&h->lock, flags);
2497         list_for_each_entry(c, queue_head, list) {
2498                 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
2499                         continue;
2500                 if (c->scsi_cmd == find) {
2501                         spin_unlock_irqrestore(&h->lock, flags);
2502                         return c;
2503                 }
2504         }
2505         spin_unlock_irqrestore(&h->lock, flags);
2506         return NULL;
2507 }
2508
2509 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
2510                                         u8 *tag, struct list_head *queue_head)
2511 {
2512         unsigned long flags;
2513         struct CommandList *c;
2514
2515         spin_lock_irqsave(&h->lock, flags);
2516         list_for_each_entry(c, queue_head, list) {
2517                 if (memcmp(&c->Header.Tag, tag, 8) != 0)
2518                         continue;
2519                 spin_unlock_irqrestore(&h->lock, flags);
2520                 return c;
2521         }
2522         spin_unlock_irqrestore(&h->lock, flags);
2523         return NULL;
2524 }
2525
2526 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
2527  * tell which kind we're dealing with, so we send the abort both ways.  There
2528  * shouldn't be any collisions between swizzled and unswizzled tags due to the
2529  * way we construct our tags but we check anyway in case the assumptions which
2530  * make this true someday become false.
2531  */
2532 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
2533         unsigned char *scsi3addr, struct CommandList *abort)
2534 {
2535         u8 swizzled_tag[8];
2536         struct CommandList *c;
2537         int rc = 0, rc2 = 0;
2538
2539         /* we do not expect to find the swizzled tag in our queue, but
2540          * check anyway just to be sure the assumptions which make this
2541          * the case haven't become wrong.
2542          */
2543         memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
2544         swizzle_abort_tag(swizzled_tag);
2545         c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
2546         if (c != NULL) {
2547                 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
2548                 return hpsa_send_abort(h, scsi3addr, abort, 0);
2549         }
2550         rc = hpsa_send_abort(h, scsi3addr, abort, 0);
2551
2552         /* if the command is still in our queue, we can't conclude that it was
2553          * aborted (it might have just completed normally) but in any case
2554          * we don't need to try to abort it another way.
2555          */
2556         c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
2557         if (c)
2558                 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
2559         return rc && rc2;
2560 }
2561
2562 /* Send an abort for the specified command.
2563  *      If the device and controller support it,
2564  *              send a task abort request.
2565  */
2566 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
2567 {
2568
2569         int i, rc;
2570         struct ctlr_info *h;
2571         struct hpsa_scsi_dev_t *dev;
2572         struct CommandList *abort; /* pointer to command to be aborted */
2573         struct CommandList *found;
2574         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
2575         char msg[256];          /* For debug messaging. */
2576         int ml = 0;
2577
2578         /* Find the controller of the command to be aborted */
2579         h = sdev_to_hba(sc->device);
2580         if (WARN(h == NULL,
2581                         "ABORT REQUEST FAILED, Controller lookup failed.\n"))
2582                 return FAILED;
2583
2584         /* Check that controller supports some kind of task abort */
2585         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
2586                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
2587                 return FAILED;
2588
2589         memset(msg, 0, sizeof(msg));
2590         ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2591                 h->scsi_host->host_no, sc->device->channel,
2592                 sc->device->id, sc->device->lun);
2593
2594         /* Find the device of the command to be aborted */
2595         dev = sc->device->hostdata;
2596         if (!dev) {
2597                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
2598                                 msg);
2599                 return FAILED;
2600         }
2601
2602         /* Get SCSI command to be aborted */
2603         abort = (struct CommandList *) sc->host_scribble;
2604         if (abort == NULL) {
2605                 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
2606                                 msg);
2607                 return FAILED;
2608         }
2609
2610         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
2611                 abort->Header.Tag.upper, abort->Header.Tag.lower);
2612         as  = (struct scsi_cmnd *) abort->scsi_cmd;
2613         if (as != NULL)
2614                 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
2615                         as->cmnd[0], as->serial_number);
2616         dev_dbg(&h->pdev->dev, "%s\n", msg);
2617         dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
2618                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2619
2620         /* Search reqQ to See if command is queued but not submitted,
2621          * if so, complete the command with aborted status and remove
2622          * it from the reqQ.
2623          */
2624         found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
2625         if (found) {
2626                 found->err_info->CommandStatus = CMD_ABORTED;
2627                 finish_cmd(found);
2628                 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
2629                                 msg);
2630                 return SUCCESS;
2631         }
2632
2633         /* not in reqQ, if also not in cmpQ, must have already completed */
2634         found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2635         if (!found)  {
2636                 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
2637                                 msg);
2638                 return SUCCESS;
2639         }
2640
2641         /*
2642          * Command is in flight, or possibly already completed
2643          * by the firmware (but not to the scsi mid layer) but we can't
2644          * distinguish which.  Send the abort down.
2645          */
2646         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2647         if (rc != 0) {
2648                 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
2649                 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2650                         h->scsi_host->host_no,
2651                         dev->bus, dev->target, dev->lun);
2652                 return FAILED;
2653         }
2654         dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
2655
2656         /* If the abort(s) above completed and actually aborted the
2657          * command, then the command to be aborted should already be
2658          * completed.  If not, wait around a bit more to see if they
2659          * manage to complete normally.
2660          */
2661 #define ABORT_COMPLETE_WAIT_SECS 30
2662         for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
2663                 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2664                 if (!found)
2665                         return SUCCESS;
2666                 msleep(100);
2667         }
2668         dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2669                 msg, ABORT_COMPLETE_WAIT_SECS);
2670         return FAILED;
2671 }
2672
2673
2674 /*
2675  * For operations that cannot sleep, a command block is allocated at init,
2676  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2677  * which ones are free or in use.  Lock must be held when calling this.
2678  * cmd_free() is the complement.
2679  */
2680 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2681 {
2682         struct CommandList *c;
2683         int i;
2684         union u64bit temp64;
2685         dma_addr_t cmd_dma_handle, err_dma_handle;
2686         unsigned long flags;
2687
2688         spin_lock_irqsave(&h->lock, flags);
2689         do {
2690                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2691                 if (i == h->nr_cmds) {
2692                         spin_unlock_irqrestore(&h->lock, flags);
2693                         return NULL;
2694                 }
2695         } while (test_and_set_bit
2696                  (i & (BITS_PER_LONG - 1),
2697                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2698         h->nr_allocs++;
2699         spin_unlock_irqrestore(&h->lock, flags);
2700
2701         c = h->cmd_pool + i;
2702         memset(c, 0, sizeof(*c));
2703         cmd_dma_handle = h->cmd_pool_dhandle
2704             + i * sizeof(*c);
2705         c->err_info = h->errinfo_pool + i;
2706         memset(c->err_info, 0, sizeof(*c->err_info));
2707         err_dma_handle = h->errinfo_pool_dhandle
2708             + i * sizeof(*c->err_info);
2709
2710         c->cmdindex = i;
2711
2712         INIT_LIST_HEAD(&c->list);
2713         c->busaddr = (u32) cmd_dma_handle;
2714         temp64.val = (u64) err_dma_handle;
2715         c->ErrDesc.Addr.lower = temp64.val32.lower;
2716         c->ErrDesc.Addr.upper = temp64.val32.upper;
2717         c->ErrDesc.Len = sizeof(*c->err_info);
2718
2719         c->h = h;
2720         return c;
2721 }
2722
2723 /* For operations that can wait for kmalloc to possibly sleep,
2724  * this routine can be called. Lock need not be held to call
2725  * cmd_special_alloc. cmd_special_free() is the complement.
2726  */
2727 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2728 {
2729         struct CommandList *c;
2730         union u64bit temp64;
2731         dma_addr_t cmd_dma_handle, err_dma_handle;
2732
2733         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2734         if (c == NULL)
2735                 return NULL;
2736         memset(c, 0, sizeof(*c));
2737
2738         c->cmdindex = -1;
2739
2740         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2741                     &err_dma_handle);
2742
2743         if (c->err_info == NULL) {
2744                 pci_free_consistent(h->pdev,
2745                         sizeof(*c), c, cmd_dma_handle);
2746                 return NULL;
2747         }
2748         memset(c->err_info, 0, sizeof(*c->err_info));
2749
2750         INIT_LIST_HEAD(&c->list);
2751         c->busaddr = (u32) cmd_dma_handle;
2752         temp64.val = (u64) err_dma_handle;
2753         c->ErrDesc.Addr.lower = temp64.val32.lower;
2754         c->ErrDesc.Addr.upper = temp64.val32.upper;
2755         c->ErrDesc.Len = sizeof(*c->err_info);
2756
2757         c->h = h;
2758         return c;
2759 }
2760
2761 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2762 {
2763         int i;
2764         unsigned long flags;
2765
2766         i = c - h->cmd_pool;
2767         spin_lock_irqsave(&h->lock, flags);
2768         clear_bit(i & (BITS_PER_LONG - 1),
2769                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2770         h->nr_frees++;
2771         spin_unlock_irqrestore(&h->lock, flags);
2772 }
2773
2774 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2775 {
2776         union u64bit temp64;
2777
2778         temp64.val32.lower = c->ErrDesc.Addr.lower;
2779         temp64.val32.upper = c->ErrDesc.Addr.upper;
2780         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2781                             c->err_info, (dma_addr_t) temp64.val);
2782         pci_free_consistent(h->pdev, sizeof(*c),
2783                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2784 }
2785
2786 #ifdef CONFIG_COMPAT
2787
2788 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2789 {
2790         IOCTL32_Command_struct __user *arg32 =
2791             (IOCTL32_Command_struct __user *) arg;
2792         IOCTL_Command_struct arg64;
2793         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2794         int err;
2795         u32 cp;
2796
2797         memset(&arg64, 0, sizeof(arg64));
2798         err = 0;
2799         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2800                            sizeof(arg64.LUN_info));
2801         err |= copy_from_user(&arg64.Request, &arg32->Request,
2802                            sizeof(arg64.Request));
2803         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2804                            sizeof(arg64.error_info));
2805         err |= get_user(arg64.buf_size, &arg32->buf_size);
2806         err |= get_user(cp, &arg32->buf);
2807         arg64.buf = compat_ptr(cp);
2808         err |= copy_to_user(p, &arg64, sizeof(arg64));
2809
2810         if (err)
2811                 return -EFAULT;
2812
2813         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2814         if (err)
2815                 return err;
2816         err |= copy_in_user(&arg32->error_info, &p->error_info,
2817                          sizeof(arg32->error_info));
2818         if (err)
2819                 return -EFAULT;
2820         return err;
2821 }
2822
2823 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2824         int cmd, void *arg)
2825 {
2826         BIG_IOCTL32_Command_struct __user *arg32 =
2827             (BIG_IOCTL32_Command_struct __user *) arg;
2828         BIG_IOCTL_Command_struct arg64;
2829         BIG_IOCTL_Command_struct __user *p =
2830             compat_alloc_user_space(sizeof(arg64));
2831         int err;
2832         u32 cp;
2833
2834         memset(&arg64, 0, sizeof(arg64));
2835         err = 0;
2836         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2837                            sizeof(arg64.LUN_info));
2838         err |= copy_from_user(&arg64.Request, &arg32->Request,
2839                            sizeof(arg64.Request));
2840         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2841                            sizeof(arg64.error_info));
2842         err |= get_user(arg64.buf_size, &arg32->buf_size);
2843         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2844         err |= get_user(cp, &arg32->buf);
2845         arg64.buf = compat_ptr(cp);
2846         err |= copy_to_user(p, &arg64, sizeof(arg64));
2847
2848         if (err)
2849                 return -EFAULT;
2850
2851         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2852         if (err)
2853                 return err;
2854         err |= copy_in_user(&arg32->error_info, &p->error_info,
2855                          sizeof(arg32->error_info));
2856         if (err)
2857                 return -EFAULT;
2858         return err;
2859 }
2860
2861 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2862 {
2863         switch (cmd) {
2864         case CCISS_GETPCIINFO:
2865         case CCISS_GETINTINFO:
2866         case CCISS_SETINTINFO:
2867         case CCISS_GETNODENAME:
2868         case CCISS_SETNODENAME:
2869         case CCISS_GETHEARTBEAT:
2870         case CCISS_GETBUSTYPES:
2871         case CCISS_GETFIRMVER:
2872         case CCISS_GETDRIVVER:
2873         case CCISS_REVALIDVOLS:
2874         case CCISS_DEREGDISK:
2875         case CCISS_REGNEWDISK:
2876         case CCISS_REGNEWD:
2877         case CCISS_RESCANDISK:
2878         case CCISS_GETLUNINFO:
2879                 return hpsa_ioctl(dev, cmd, arg);
2880
2881         case CCISS_PASSTHRU32:
2882                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2883         case CCISS_BIG_PASSTHRU32:
2884                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2885
2886         default:
2887                 return -ENOIOCTLCMD;
2888         }
2889 }
2890 #endif
2891
2892 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2893 {
2894         struct hpsa_pci_info pciinfo;
2895
2896         if (!argp)
2897                 return -EINVAL;
2898         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2899         pciinfo.bus = h->pdev->bus->number;
2900         pciinfo.dev_fn = h->pdev->devfn;
2901         pciinfo.board_id = h->board_id;
2902         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2903                 return -EFAULT;
2904         return 0;
2905 }
2906
2907 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2908 {
2909         DriverVer_type DriverVer;
2910         unsigned char vmaj, vmin, vsubmin;
2911         int rc;
2912
2913         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2914                 &vmaj, &vmin, &vsubmin);
2915         if (rc != 3) {
2916                 dev_info(&h->pdev->dev, "driver version string '%s' "
2917                         "unrecognized.", HPSA_DRIVER_VERSION);
2918                 vmaj = 0;
2919                 vmin = 0;
2920                 vsubmin = 0;
2921         }
2922         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2923         if (!argp)
2924                 return -EINVAL;
2925         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2926                 return -EFAULT;
2927         return 0;
2928 }
2929
2930 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2931 {
2932         IOCTL_Command_struct iocommand;
2933         struct CommandList *c;
2934         char *buff = NULL;
2935         union u64bit temp64;
2936
2937         if (!argp)
2938                 return -EINVAL;
2939         if (!capable(CAP_SYS_RAWIO))
2940                 return -EPERM;
2941         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2942                 return -EFAULT;
2943         if ((iocommand.buf_size < 1) &&
2944             (iocommand.Request.Type.Direction != XFER_NONE)) {
2945                 return -EINVAL;
2946         }
2947         if (iocommand.buf_size > 0) {
2948                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2949                 if (buff == NULL)
2950                         return -EFAULT;
2951                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2952                         /* Copy the data into the buffer we created */
2953                         if (copy_from_user(buff, iocommand.buf,
2954                                 iocommand.buf_size)) {
2955                                 kfree(buff);
2956                                 return -EFAULT;
2957                         }
2958                 } else {
2959                         memset(buff, 0, iocommand.buf_size);
2960                 }
2961         }
2962         c = cmd_special_alloc(h);
2963         if (c == NULL) {
2964                 kfree(buff);
2965                 return -ENOMEM;
2966         }
2967         /* Fill in the command type */
2968         c->cmd_type = CMD_IOCTL_PEND;
2969         /* Fill in Command Header */
2970         c->Header.ReplyQueue = 0; /* unused in simple mode */
2971         if (iocommand.buf_size > 0) {   /* buffer to fill */
2972                 c->Header.SGList = 1;
2973                 c->Header.SGTotal = 1;
2974         } else  { /* no buffers to fill */
2975                 c->Header.SGList = 0;
2976                 c->Header.SGTotal = 0;
2977         }
2978         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2979         /* use the kernel address the cmd block for tag */
2980         c->Header.Tag.lower = c->busaddr;
2981
2982         /* Fill in Request block */
2983         memcpy(&c->Request, &iocommand.Request,
2984                 sizeof(c->Request));
2985
2986         /* Fill in the scatter gather information */
2987         if (iocommand.buf_size > 0) {
2988                 temp64.val = pci_map_single(h->pdev, buff,
2989                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2990                 c->SG[0].Addr.lower = temp64.val32.lower;
2991                 c->SG[0].Addr.upper = temp64.val32.upper;
2992                 c->SG[0].Len = iocommand.buf_size;
2993                 c->SG[0].Ext = 0; /* we are not chaining*/
2994         }
2995         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2996         if (iocommand.buf_size > 0)
2997                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2998         check_ioctl_unit_attention(h, c);
2999
3000         /* Copy the error information out */
3001         memcpy(&iocommand.error_info, c->err_info,
3002                 sizeof(iocommand.error_info));
3003         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
3004                 kfree(buff);
3005                 cmd_special_free(h, c);
3006                 return -EFAULT;
3007         }
3008         if (iocommand.Request.Type.Direction == XFER_READ &&
3009                 iocommand.buf_size > 0) {
3010                 /* Copy the data out of the buffer we created */
3011                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
3012                         kfree(buff);
3013                         cmd_special_free(h, c);
3014                         return -EFAULT;
3015                 }
3016         }
3017         kfree(buff);
3018         cmd_special_free(h, c);
3019         return 0;
3020 }
3021
3022 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
3023 {
3024         BIG_IOCTL_Command_struct *ioc;
3025         struct CommandList *c;
3026         unsigned char **buff = NULL;
3027         int *buff_size = NULL;
3028         union u64bit temp64;
3029         BYTE sg_used = 0;
3030         int status = 0;
3031         int i;
3032         u32 left;
3033         u32 sz;
3034         BYTE __user *data_ptr;
3035
3036         if (!argp)
3037                 return -EINVAL;
3038         if (!capable(CAP_SYS_RAWIO))
3039                 return -EPERM;
3040         ioc = (BIG_IOCTL_Command_struct *)
3041             kmalloc(sizeof(*ioc), GFP_KERNEL);
3042         if (!ioc) {
3043                 status = -ENOMEM;
3044                 goto cleanup1;
3045         }
3046         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
3047                 status = -EFAULT;
3048                 goto cleanup1;
3049         }
3050         if ((ioc->buf_size < 1) &&
3051             (ioc->Request.Type.Direction != XFER_NONE)) {
3052                 status = -EINVAL;
3053                 goto cleanup1;
3054         }
3055         /* Check kmalloc limits  using all SGs */
3056         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
3057                 status = -EINVAL;
3058                 goto cleanup1;
3059         }
3060         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
3061                 status = -EINVAL;
3062                 goto cleanup1;
3063         }
3064         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
3065         if (!buff) {
3066                 status = -ENOMEM;
3067                 goto cleanup1;
3068         }
3069         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3070         if (!buff_size) {
3071                 status = -ENOMEM;
3072                 goto cleanup1;
3073         }
3074         left = ioc->buf_size;
3075         data_ptr = ioc->buf;
3076         while (left) {
3077                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
3078                 buff_size[sg_used] = sz;
3079                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
3080                 if (buff[sg_used] == NULL) {
3081                         status = -ENOMEM;
3082                         goto cleanup1;
3083                 }
3084                 if (ioc->Request.Type.Direction == XFER_WRITE) {
3085                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
3086                                 status = -ENOMEM;
3087                                 goto cleanup1;
3088                         }
3089                 } else
3090                         memset(buff[sg_used], 0, sz);
3091                 left -= sz;
3092                 data_ptr += sz;
3093                 sg_used++;
3094         }
3095         c = cmd_special_alloc(h);
3096         if (c == NULL) {
3097                 status = -ENOMEM;
3098                 goto cleanup1;
3099         }
3100         c->cmd_type = CMD_IOCTL_PEND;
3101         c->Header.ReplyQueue = 0;
3102         c->Header.SGList = c->Header.SGTotal = sg_used;
3103         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
3104         c->Header.Tag.lower = c->busaddr;
3105         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
3106         if (ioc->buf_size > 0) {
3107                 int i;
3108                 for (i = 0; i < sg_used; i++) {
3109                         temp64.val = pci_map_single(h->pdev, buff[i],
3110                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
3111                         c->SG[i].Addr.lower = temp64.val32.lower;
3112                         c->SG[i].Addr.upper = temp64.val32.upper;
3113                         c->SG[i].Len = buff_size[i];
3114                         /* we are not chaining */
3115                         c->SG[i].Ext = 0;
3116                 }
3117         }
3118         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3119         if (sg_used)
3120                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3121         check_ioctl_unit_attention(h, c);
3122         /* Copy the error information out */
3123         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
3124         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
3125                 cmd_special_free(h, c);
3126                 status = -EFAULT;
3127                 goto cleanup1;
3128         }
3129         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3130                 /* Copy the data out of the buffer we created */
3131                 BYTE __user *ptr = ioc->buf;
3132                 for (i = 0; i < sg_used; i++) {
3133                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
3134                                 cmd_special_free(h, c);
3135                                 status = -EFAULT;
3136                                 goto cleanup1;
3137                         }
3138                         ptr += buff_size[i];
3139                 }
3140         }
3141         cmd_special_free(h, c);
3142         status = 0;
3143 cleanup1:
3144         if (buff) {
3145                 for (i = 0; i < sg_used; i++)
3146                         kfree(buff[i]);
3147                 kfree(buff);
3148         }
3149         kfree(buff_size);
3150         kfree(ioc);
3151         return status;
3152 }
3153
3154 static void check_ioctl_unit_attention(struct ctlr_info *h,
3155         struct CommandList *c)
3156 {
3157         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
3158                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
3159                 (void) check_for_unit_attention(h, c);
3160 }
3161 /*
3162  * ioctl
3163  */
3164 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
3165 {
3166         struct ctlr_info *h;
3167         void __user *argp = (void __user *)arg;
3168
3169         h = sdev_to_hba(dev);
3170
3171         switch (cmd) {
3172         case CCISS_DEREGDISK:
3173         case CCISS_REGNEWDISK:
3174         case CCISS_REGNEWD:
3175                 hpsa_scan_start(h->scsi_host);
3176                 return 0;
3177         case CCISS_GETPCIINFO:
3178                 return hpsa_getpciinfo_ioctl(h, argp);
3179         case CCISS_GETDRIVVER:
3180                 return hpsa_getdrivver_ioctl(h, argp);
3181         case CCISS_PASSTHRU:
3182                 return hpsa_passthru_ioctl(h, argp);
3183         case CCISS_BIG_PASSTHRU:
3184                 return hpsa_big_passthru_ioctl(h, argp);
3185         default:
3186                 return -ENOTTY;
3187         }
3188 }
3189
3190 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3191                                 u8 reset_type)
3192 {
3193         struct CommandList *c;
3194
3195         c = cmd_alloc(h);
3196         if (!c)
3197                 return -ENOMEM;
3198         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3199                 RAID_CTLR_LUNID, TYPE_MSG);
3200         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
3201         c->waiting = NULL;
3202         enqueue_cmd_and_start_io(h, c);
3203         /* Don't wait for completion, the reset won't complete.  Don't free
3204          * the command either.  This is the last command we will send before
3205          * re-initializing everything, so it doesn't matter and won't leak.
3206          */
3207         return 0;
3208 }
3209
3210 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3211         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3212         int cmd_type)
3213 {
3214         int pci_dir = XFER_NONE;
3215         struct CommandList *a; /* for commands to be aborted */
3216
3217         c->cmd_type = CMD_IOCTL_PEND;
3218         c->Header.ReplyQueue = 0;
3219         if (buff != NULL && size > 0) {
3220                 c->Header.SGList = 1;
3221                 c->Header.SGTotal = 1;
3222         } else {
3223                 c->Header.SGList = 0;
3224                 c->Header.SGTotal = 0;
3225         }
3226         c->Header.Tag.lower = c->busaddr;
3227         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
3228
3229         c->Request.Type.Type = cmd_type;
3230         if (cmd_type == TYPE_CMD) {
3231                 switch (cmd) {
3232                 case HPSA_INQUIRY:
3233                         /* are we trying to read a vital product page */
3234                         if (page_code != 0) {
3235                                 c->Request.CDB[1] = 0x01;
3236                                 c->Request.CDB[2] = page_code;
3237                         }
3238                         c->Request.CDBLen = 6;
3239                         c->Request.Type.Attribute = ATTR_SIMPLE;
3240                         c->Request.Type.Direction = XFER_READ;
3241                         c->Request.Timeout = 0;
3242                         c->Request.CDB[0] = HPSA_INQUIRY;
3243                         c->Request.CDB[4] = size & 0xFF;
3244                         break;
3245                 case HPSA_REPORT_LOG:
3246                 case HPSA_REPORT_PHYS:
3247                         /* Talking to controller so It's a physical command
3248                            mode = 00 target = 0.  Nothing to write.
3249                          */
3250                         c->Request.CDBLen = 12;
3251                         c->Request.Type.Attribute = ATTR_SIMPLE;
3252                         c->Request.Type.Direction = XFER_READ;
3253                         c->Request.Timeout = 0;
3254                         c->Request.CDB[0] = cmd;
3255                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
3256                         c->Request.CDB[7] = (size >> 16) & 0xFF;
3257                         c->Request.CDB[8] = (size >> 8) & 0xFF;
3258                         c->Request.CDB[9] = size & 0xFF;
3259                         break;
3260                 case HPSA_CACHE_FLUSH:
3261                         c->Request.CDBLen = 12;
3262                         c->Request.Type.Attribute = ATTR_SIMPLE;
3263                         c->Request.Type.Direction = XFER_WRITE;
3264                         c->Request.Timeout = 0;
3265                         c->Request.CDB[0] = BMIC_WRITE;
3266                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3267                         c->Request.CDB[7] = (size >> 8) & 0xFF;
3268                         c->Request.CDB[8] = size & 0xFF;
3269                         break;
3270                 case TEST_UNIT_READY:
3271                         c->Request.CDBLen = 6;
3272                         c->Request.Type.Attribute = ATTR_SIMPLE;
3273                         c->Request.Type.Direction = XFER_NONE;
3274                         c->Request.Timeout = 0;
3275                         break;
3276                 default:
3277                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
3278                         BUG();
3279                         return;
3280                 }
3281         } else if (cmd_type == TYPE_MSG) {
3282                 switch (cmd) {
3283
3284                 case  HPSA_DEVICE_RESET_MSG:
3285                         c->Request.CDBLen = 16;
3286                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
3287                         c->Request.Type.Attribute = ATTR_SIMPLE;
3288                         c->Request.Type.Direction = XFER_NONE;
3289                         c->Request.Timeout = 0; /* Don't time out */
3290                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
3291                         c->Request.CDB[0] =  cmd;
3292                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
3293                         /* If bytes 4-7 are zero, it means reset the */
3294                         /* LunID device */
3295                         c->Request.CDB[4] = 0x00;
3296                         c->Request.CDB[5] = 0x00;
3297                         c->Request.CDB[6] = 0x00;
3298                         c->Request.CDB[7] = 0x00;
3299                         break;
3300                 case  HPSA_ABORT_MSG:
3301                         a = buff;       /* point to command to be aborted */
3302                         dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3303                                 a->Header.Tag.upper, a->Header.Tag.lower,
3304                                 c->Header.Tag.upper, c->Header.Tag.lower);
3305                         c->Request.CDBLen = 16;
3306                         c->Request.Type.Type = TYPE_MSG;
3307                         c->Request.Type.Attribute = ATTR_SIMPLE;
3308                         c->Request.Type.Direction = XFER_WRITE;
3309                         c->Request.Timeout = 0; /* Don't time out */
3310                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
3311                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
3312                         c->Request.CDB[2] = 0x00; /* reserved */
3313                         c->Request.CDB[3] = 0x00; /* reserved */
3314                         /* Tag to abort goes in CDB[4]-CDB[11] */
3315                         c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
3316                         c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
3317                         c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
3318                         c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
3319                         c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
3320                         c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
3321                         c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
3322                         c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
3323                         c->Request.CDB[12] = 0x00; /* reserved */
3324                         c->Request.CDB[13] = 0x00; /* reserved */
3325                         c->Request.CDB[14] = 0x00; /* reserved */
3326                         c->Request.CDB[15] = 0x00; /* reserved */
3327                 break;
3328                 default:
3329                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
3330                                 cmd);
3331                         BUG();
3332                 }
3333         } else {
3334                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
3335                 BUG();
3336         }
3337
3338         switch (c->Request.Type.Direction) {
3339         case XFER_READ:
3340                 pci_dir = PCI_DMA_FROMDEVICE;
3341                 break;
3342         case XFER_WRITE:
3343                 pci_dir = PCI_DMA_TODEVICE;
3344                 break;
3345         case XFER_NONE:
3346                 pci_dir = PCI_DMA_NONE;
3347                 break;
3348         default:
3349                 pci_dir = PCI_DMA_BIDIRECTIONAL;
3350         }
3351
3352         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
3353
3354         return;
3355 }
3356
3357 /*
3358  * Map (physical) PCI mem into (virtual) kernel space
3359  */
3360 static void __iomem *remap_pci_mem(ulong base, ulong size)
3361 {
3362         ulong page_base = ((ulong) base) & PAGE_MASK;
3363         ulong page_offs = ((ulong) base) - page_base;
3364         void __iomem *page_remapped = ioremap_nocache(page_base,
3365                 page_offs + size);
3366
3367         return page_remapped ? (page_remapped + page_offs) : NULL;
3368 }
3369
3370 /* Takes cmds off the submission queue and sends them to the hardware,
3371  * then puts them on the queue of cmds waiting for completion.
3372  */
3373 static void start_io(struct ctlr_info *h)
3374 {
3375         struct CommandList *c;
3376         unsigned long flags;
3377
3378         spin_lock_irqsave(&h->lock, flags);
3379         while (!list_empty(&h->reqQ)) {
3380                 c = list_entry(h->reqQ.next, struct CommandList, list);
3381                 /* can't do anything if fifo is full */
3382                 if ((h->access.fifo_full(h))) {
3383                         dev_warn(&h->pdev->dev, "fifo full\n");
3384                         break;
3385                 }
3386
3387                 /* Get the first entry from the Request Q */
3388                 removeQ(c);
3389                 h->Qdepth--;
3390
3391                 /* Put job onto the completed Q */
3392                 addQ(&h->cmpQ, c);
3393
3394                 /* Must increment commands_outstanding before unlocking
3395                  * and submitting to avoid race checking for fifo full
3396                  * condition.
3397                  */
3398                 h->commands_outstanding++;
3399                 if (h->commands_outstanding > h->max_outstanding)
3400                         h->max_outstanding = h->commands_outstanding;
3401
3402                 /* Tell the controller execute command */
3403                 spin_unlock_irqrestore(&h->lock, flags);
3404                 h->access.submit_command(h, c);
3405                 spin_lock_irqsave(&h->lock, flags);
3406         }
3407         spin_unlock_irqrestore(&h->lock, flags);
3408 }
3409
3410 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
3411 {
3412         return h->access.command_completed(h, q);
3413 }
3414
3415 static inline bool interrupt_pending(struct ctlr_info *h)
3416 {
3417         return h->access.intr_pending(h);
3418 }
3419
3420 static inline long interrupt_not_for_us(struct ctlr_info *h)
3421 {
3422         return (h->access.intr_pending(h) == 0) ||
3423                 (h->interrupts_enabled == 0);
3424 }
3425
3426 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3427         u32 raw_tag)
3428 {
3429         if (unlikely(tag_index >= h->nr_cmds)) {
3430                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3431                 return 1;
3432         }
3433         return 0;
3434 }
3435
3436 static inline void finish_cmd(struct CommandList *c)
3437 {
3438         unsigned long flags;
3439
3440         spin_lock_irqsave(&c->h->lock, flags);
3441         removeQ(c);
3442         spin_unlock_irqrestore(&c->h->lock, flags);
3443         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3444         if (likely(c->cmd_type == CMD_SCSI))
3445                 complete_scsi_command(c);
3446         else if (c->cmd_type == CMD_IOCTL_PEND)
3447                 complete(c->waiting);
3448 }
3449
3450 static inline u32 hpsa_tag_contains_index(u32 tag)
3451 {
3452         return tag & DIRECT_LOOKUP_BIT;
3453 }
3454
3455 static inline u32 hpsa_tag_to_index(u32 tag)
3456 {
3457         return tag >> DIRECT_LOOKUP_SHIFT;
3458 }
3459
3460
3461 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3462 {
3463 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3464 #define HPSA_SIMPLE_ERROR_BITS 0x03
3465         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3466                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3467         return tag & ~HPSA_PERF_ERROR_BITS;
3468 }
3469
3470 /* process completion of an indexed ("direct lookup") command */
3471 static inline void process_indexed_cmd(struct ctlr_info *h,
3472         u32 raw_tag)
3473 {
3474         u32 tag_index;
3475         struct CommandList *c;
3476
3477         tag_index = hpsa_tag_to_index(raw_tag);
3478         if (!bad_tag(h, tag_index, raw_tag)) {
3479                 c = h->cmd_pool + tag_index;
3480                 finish_cmd(c);
3481         }
3482 }
3483
3484 /* process completion of a non-indexed command */
3485 static inline void process_nonindexed_cmd(struct ctlr_info *h,
3486         u32 raw_tag)
3487 {
3488         u32 tag;
3489         struct CommandList *c = NULL;
3490         unsigned long flags;
3491
3492         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3493         spin_lock_irqsave(&h->lock, flags);
3494         list_for_each_entry(c, &h->cmpQ, list) {
3495                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3496                         spin_unlock_irqrestore(&h->lock, flags);
3497                         finish_cmd(c);
3498                         return;
3499                 }
3500         }
3501         spin_unlock_irqrestore(&h->lock, flags);
3502         bad_tag(h, h->nr_cmds + 1, raw_tag);
3503 }
3504
3505 /* Some controllers, like p400, will give us one interrupt
3506  * after a soft reset, even if we turned interrupts off.
3507  * Only need to check for this in the hpsa_xxx_discard_completions
3508  * functions.
3509  */
3510 static int ignore_bogus_interrupt(struct ctlr_info *h)
3511 {
3512         if (likely(!reset_devices))
3513                 return 0;
3514
3515         if (likely(h->interrupts_enabled))
3516                 return 0;
3517
3518         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3519                 "(known firmware bug.)  Ignoring.\n");
3520
3521         return 1;
3522 }
3523
3524 /*
3525  * Convert &h->q[x] (passed to interrupt handlers) back to h.
3526  * Relies on (h-q[x] == x) being true for x such that
3527  * 0 <= x < MAX_REPLY_QUEUES.
3528  */
3529 static struct ctlr_info *queue_to_hba(u8 *queue)
3530 {
3531         return container_of((queue - *queue), struct ctlr_info, q[0]);
3532 }
3533
3534 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
3535 {
3536         struct ctlr_info *h = queue_to_hba(queue);
3537         u8 q = *(u8 *) queue;
3538         u32 raw_tag;
3539
3540         if (ignore_bogus_interrupt(h))
3541                 return IRQ_NONE;
3542
3543         if (interrupt_not_for_us(h))
3544                 return IRQ_NONE;
3545         h->last_intr_timestamp = get_jiffies_64();
3546         while (interrupt_pending(h)) {
3547                 raw_tag = get_next_completion(h, q);
3548                 while (raw_tag != FIFO_EMPTY)
3549                         raw_tag = next_command(h, q);
3550         }
3551         return IRQ_HANDLED;
3552 }
3553
3554 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
3555 {
3556         struct ctlr_info *h = queue_to_hba(queue);
3557         u32 raw_tag;
3558         u8 q = *(u8 *) queue;
3559
3560         if (ignore_bogus_interrupt(h))
3561                 return IRQ_NONE;
3562
3563         h->last_intr_timestamp = get_jiffies_64();
3564         raw_tag = get_next_completion(h, q);
3565         while (raw_tag != FIFO_EMPTY)
3566                 raw_tag = next_command(h, q);
3567         return IRQ_HANDLED;
3568 }
3569
3570 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
3571 {
3572         struct ctlr_info *h = queue_to_hba((u8 *) queue);
3573         u32 raw_tag;
3574         u8 q = *(u8 *) queue;
3575
3576         if (interrupt_not_for_us(h))
3577                 return IRQ_NONE;
3578         h->last_intr_timestamp = get_jiffies_64();
3579         while (interrupt_pending(h)) {
3580                 raw_tag = get_next_completion(h, q);
3581                 while (raw_tag != FIFO_EMPTY) {
3582                         if (likely(hpsa_tag_contains_index(raw_tag)))
3583                                 process_indexed_cmd(h, raw_tag);
3584                         else
3585                                 process_nonindexed_cmd(h, raw_tag);
3586                         raw_tag = next_command(h, q);
3587                 }
3588         }
3589         return IRQ_HANDLED;
3590 }
3591
3592 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
3593 {
3594         struct ctlr_info *h = queue_to_hba(queue);
3595         u32 raw_tag;
3596         u8 q = *(u8 *) queue;
3597
3598         h->last_intr_timestamp = get_jiffies_64();
3599         raw_tag = get_next_completion(h, q);
3600         while (raw_tag != FIFO_EMPTY) {
3601                 if (likely(hpsa_tag_contains_index(raw_tag)))
3602                         process_indexed_cmd(h, raw_tag);
3603                 else
3604                         process_nonindexed_cmd(h, raw_tag);
3605                 raw_tag = next_command(h, q);
3606         }
3607         return IRQ_HANDLED;
3608 }
3609
3610 /* Send a message CDB to the firmware. Careful, this only works
3611  * in simple mode, not performant mode due to the tag lookup.
3612  * We only ever use this immediately after a controller reset.
3613  */
3614 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3615                         unsigned char type)
3616 {
3617         struct Command {
3618                 struct CommandListHeader CommandHeader;
3619                 struct RequestBlock Request;
3620                 struct ErrDescriptor ErrorDescriptor;
3621         };
3622         struct Command *cmd;
3623         static const size_t cmd_sz = sizeof(*cmd) +
3624                                         sizeof(cmd->ErrorDescriptor);
3625         dma_addr_t paddr64;
3626         uint32_t paddr32, tag;
3627         void __iomem *vaddr;
3628         int i, err;
3629
3630         vaddr = pci_ioremap_bar(pdev, 0);
3631         if (vaddr == NULL)
3632                 return -ENOMEM;
3633
3634         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3635          * CCISS commands, so they must be allocated from the lower 4GiB of
3636          * memory.
3637          */
3638         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3639         if (err) {
3640                 iounmap(vaddr);
3641                 return -ENOMEM;
3642         }
3643
3644         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3645         if (cmd == NULL) {
3646                 iounmap(vaddr);
3647                 return -ENOMEM;
3648         }
3649
3650         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3651          * although there's no guarantee, we assume that the address is at
3652          * least 4-byte aligned (most likely, it's page-aligned).
3653          */
3654         paddr32 = paddr64;
3655
3656         cmd->CommandHeader.ReplyQueue = 0;
3657         cmd->CommandHeader.SGList = 0;
3658         cmd->CommandHeader.SGTotal = 0;
3659         cmd->CommandHeader.Tag.lower = paddr32;
3660         cmd->CommandHeader.Tag.upper = 0;
3661         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3662
3663         cmd->Request.CDBLen = 16;
3664         cmd->Request.Type.Type = TYPE_MSG;
3665         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3666         cmd->Request.Type.Direction = XFER_NONE;
3667         cmd->Request.Timeout = 0; /* Don't time out */
3668         cmd->Request.CDB[0] = opcode;
3669         cmd->Request.CDB[1] = type;
3670         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3671         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3672         cmd->ErrorDescriptor.Addr.upper = 0;
3673         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3674
3675         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3676
3677         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3678                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3679                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3680                         break;
3681                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3682         }
3683
3684         iounmap(vaddr);
3685
3686         /* we leak the DMA buffer here ... no choice since the controller could
3687          *  still complete the command.
3688          */
3689         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3690                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3691                         opcode, type);
3692                 return -ETIMEDOUT;
3693         }
3694
3695         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3696
3697         if (tag & HPSA_ERROR_BIT) {
3698                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3699                         opcode, type);
3700                 return -EIO;
3701         }
3702
3703         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3704                 opcode, type);
3705         return 0;
3706 }
3707
3708 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3709
3710 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3711         void * __iomem vaddr, u32 use_doorbell)
3712 {
3713         u16 pmcsr;
3714         int pos;
3715
3716         if (use_doorbell) {
3717                 /* For everything after the P600, the PCI power state method
3718                  * of resetting the controller doesn't work, so we have this
3719                  * other way using the doorbell register.
3720                  */
3721                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3722                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3723         } else { /* Try to do it the PCI power state way */
3724
3725                 /* Quoting from the Open CISS Specification: "The Power
3726                  * Management Control/Status Register (CSR) controls the power
3727                  * state of the device.  The normal operating state is D0,
3728                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3729                  * the controller, place the interface device in D3 then to D0,
3730                  * this causes a secondary PCI reset which will reset the
3731                  * controller." */
3732
3733                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3734                 if (pos == 0) {
3735                         dev_err(&pdev->dev,
3736                                 "hpsa_reset_controller: "
3737                                 "PCI PM not supported\n");
3738                         return -ENODEV;
3739                 }
3740                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3741                 /* enter the D3hot power management state */
3742                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3743                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3744                 pmcsr |= PCI_D3hot;
3745                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3746
3747                 msleep(500);
3748
3749                 /* enter the D0 power management state */
3750                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3751                 pmcsr |= PCI_D0;
3752                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3753
3754                 /*
3755                  * The P600 requires a small delay when changing states.
3756                  * Otherwise we may think the board did not reset and we bail.
3757                  * This for kdump only and is particular to the P600.
3758                  */
3759                 msleep(500);
3760         }
3761         return 0;
3762 }
3763
3764 static void init_driver_version(char *driver_version, int len)
3765 {
3766         memset(driver_version, 0, len);
3767         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3768 }
3769
3770 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
3771 {
3772         char *driver_version;
3773         int i, size = sizeof(cfgtable->driver_version);
3774
3775         driver_version = kmalloc(size, GFP_KERNEL);
3776         if (!driver_version)
3777                 return -ENOMEM;
3778
3779         init_driver_version(driver_version, size);
3780         for (i = 0; i < size; i++)
3781                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3782         kfree(driver_version);
3783         return 0;
3784 }
3785
3786 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
3787                                           unsigned char *driver_ver)
3788 {
3789         int i;
3790
3791         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3792                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3793 }
3794
3795 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
3796 {
3797
3798         char *driver_ver, *old_driver_ver;
3799         int rc, size = sizeof(cfgtable->driver_version);
3800
3801         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3802         if (!old_driver_ver)
3803                 return -ENOMEM;
3804         driver_ver = old_driver_ver + size;
3805
3806         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3807          * should have been changed, otherwise we know the reset failed.
3808          */
3809         init_driver_version(old_driver_ver, size);
3810         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3811         rc = !memcmp(driver_ver, old_driver_ver, size);
3812         kfree(old_driver_ver);
3813         return rc;
3814 }
3815 /* This does a hard reset of the controller using PCI power management
3816  * states or the using the doorbell register.
3817  */
3818 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3819 {
3820         u64 cfg_offset;
3821         u32 cfg_base_addr;
3822         u64 cfg_base_addr_index;
3823         void __iomem *vaddr;
3824         unsigned long paddr;
3825         u32 misc_fw_support;
3826         int rc;
3827         struct CfgTable __iomem *cfgtable;
3828         u32 use_doorbell;
3829         u32 board_id;
3830         u16 command_register;
3831
3832         /* For controllers as old as the P600, this is very nearly
3833          * the same thing as
3834          *
3835          * pci_save_state(pci_dev);
3836          * pci_set_power_state(pci_dev, PCI_D3hot);
3837          * pci_set_power_state(pci_dev, PCI_D0);
3838          * pci_restore_state(pci_dev);
3839          *
3840          * For controllers newer than the P600, the pci power state
3841          * method of resetting doesn't work so we have another way
3842          * using the doorbell register.
3843          */
3844
3845         rc = hpsa_lookup_board_id(pdev, &board_id);
3846         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3847                 dev_warn(&pdev->dev, "Not resetting device.\n");
3848                 return -ENODEV;
3849         }
3850
3851         /* if controller is soft- but not hard resettable... */
3852         if (!ctlr_is_hard_resettable(board_id))
3853                 return -ENOTSUPP; /* try soft reset later. */
3854
3855         /* Save the PCI command register */
3856         pci_read_config_word(pdev, 4, &command_register);
3857         /* Turn the board off.  This is so that later pci_restore_state()
3858          * won't turn the board on before the rest of config space is ready.
3859          */
3860         pci_disable_device(pdev);
3861         pci_save_state(pdev);
3862
3863         /* find the first memory BAR, so we can find the cfg table */
3864         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3865         if (rc)
3866                 return rc;
3867         vaddr = remap_pci_mem(paddr, 0x250);
3868         if (!vaddr)
3869                 return -ENOMEM;
3870
3871         /* find cfgtable in order to check if reset via doorbell is supported */
3872         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3873                                         &cfg_base_addr_index, &cfg_offset);
3874         if (rc)
3875                 goto unmap_vaddr;
3876         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3877                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3878         if (!cfgtable) {
3879                 rc = -ENOMEM;
3880                 goto unmap_vaddr;
3881         }
3882         rc = write_driver_ver_to_cfgtable(cfgtable);
3883         if (rc)
3884                 goto unmap_vaddr;
3885
3886         /* If reset via doorbell register is supported, use that.
3887          * There are two such methods.  Favor the newest method.
3888          */
3889         misc_fw_support = readl(&cfgtable->misc_fw_support);
3890         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3891         if (use_doorbell) {
3892                 use_doorbell = DOORBELL_CTLR_RESET2;
3893         } else {
3894                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3895                 if (use_doorbell) {
3896                         dev_warn(&pdev->dev, "Soft reset not supported. "
3897                                 "Firmware update is required.\n");
3898                         rc = -ENOTSUPP; /* try soft reset */
3899                         goto unmap_cfgtable;
3900                 }
3901         }
3902
3903         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3904         if (rc)
3905                 goto unmap_cfgtable;
3906
3907         pci_restore_state(pdev);
3908         rc = pci_enable_device(pdev);
3909         if (rc) {
3910                 dev_warn(&pdev->dev, "failed to enable device.\n");
3911                 goto unmap_cfgtable;
3912         }
3913         pci_write_config_word(pdev, 4, command_register);
3914
3915         /* Some devices (notably the HP Smart Array 5i Controller)
3916            need a little pause here */
3917         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3918
3919         /* Wait for board to become not ready, then ready. */
3920         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3921         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3922         if (rc) {
3923                 dev_warn(&pdev->dev,
3924                         "failed waiting for board to reset."
3925                         " Will try soft reset.\n");
3926                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3927                 goto unmap_cfgtable;
3928         }
3929         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3930         if (rc) {
3931                 dev_warn(&pdev->dev,
3932                         "failed waiting for board to become ready "
3933                         "after hard reset\n");
3934                 goto unmap_cfgtable;
3935         }
3936
3937         rc = controller_reset_failed(vaddr);
3938         if (rc < 0)
3939                 goto unmap_cfgtable;
3940         if (rc) {
3941                 dev_warn(&pdev->dev, "Unable to successfully reset "
3942                         "controller. Will try soft reset.\n");
3943                 rc = -ENOTSUPP;
3944         } else {
3945                 dev_info(&pdev->dev, "board ready after hard reset.\n");
3946         }
3947
3948 unmap_cfgtable:
3949         iounmap(cfgtable);
3950
3951 unmap_vaddr:
3952         iounmap(vaddr);
3953         return rc;
3954 }
3955
3956 /*
3957  *  We cannot read the structure directly, for portability we must use
3958  *   the io functions.
3959  *   This is for debug only.
3960  */
3961 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3962 {
3963 #ifdef HPSA_DEBUG
3964         int i;
3965         char temp_name[17];
3966
3967         dev_info(dev, "Controller Configuration information\n");
3968         dev_info(dev, "------------------------------------\n");
3969         for (i = 0; i < 4; i++)
3970                 temp_name[i] = readb(&(tb->Signature[i]));
3971         temp_name[4] = '\0';
3972         dev_info(dev, "   Signature = %s\n", temp_name);
3973         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3974         dev_info(dev, "   Transport methods supported = 0x%x\n",
3975                readl(&(tb->TransportSupport)));
3976         dev_info(dev, "   Transport methods active = 0x%x\n",
3977                readl(&(tb->TransportActive)));
3978         dev_info(dev, "   Requested transport Method = 0x%x\n",
3979                readl(&(tb->HostWrite.TransportRequest)));
3980         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3981                readl(&(tb->HostWrite.CoalIntDelay)));
3982         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3983                readl(&(tb->HostWrite.CoalIntCount)));
3984         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3985                readl(&(tb->CmdsOutMax)));
3986         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3987         for (i = 0; i < 16; i++)
3988                 temp_name[i] = readb(&(tb->ServerName[i]));
3989         temp_name[16] = '\0';
3990         dev_info(dev, "   Server Name = %s\n", temp_name);
3991         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3992                 readl(&(tb->HeartBeat)));
3993 #endif                          /* HPSA_DEBUG */
3994 }
3995
3996 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3997 {
3998         int i, offset, mem_type, bar_type;
3999
4000         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
4001                 return 0;
4002         offset = 0;
4003         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4004                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
4005                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
4006                         offset += 4;
4007                 else {
4008                         mem_type = pci_resource_flags(pdev, i) &
4009                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
4010                         switch (mem_type) {
4011                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
4012                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
4013                                 offset += 4;    /* 32 bit */
4014                                 break;
4015                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
4016                                 offset += 8;
4017                                 break;
4018                         default:        /* reserved in PCI 2.2 */
4019                                 dev_warn(&pdev->dev,
4020                                        "base address is invalid\n");
4021                                 return -1;
4022                                 break;
4023                         }
4024                 }
4025                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
4026                         return i + 1;
4027         }
4028         return -1;
4029 }
4030
4031 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4032  * controllers that are capable. If not, we use IO-APIC mode.
4033  */
4034
4035 static void hpsa_interrupt_mode(struct ctlr_info *h)
4036 {
4037 #ifdef CONFIG_PCI_MSI
4038         int err, i;
4039         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
4040
4041         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
4042                 hpsa_msix_entries[i].vector = 0;
4043                 hpsa_msix_entries[i].entry = i;
4044         }
4045
4046         /* Some boards advertise MSI but don't really support it */
4047         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4048             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4049                 goto default_int_mode;
4050         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4051                 dev_info(&h->pdev->dev, "MSIX\n");
4052                 err = pci_enable_msix(h->pdev, hpsa_msix_entries,
4053                                                 MAX_REPLY_QUEUES);
4054                 if (!err) {
4055                         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4056                                 h->intr[i] = hpsa_msix_entries[i].vector;
4057                         h->msix_vector = 1;
4058                         return;
4059                 }
4060                 if (err > 0) {
4061                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
4062                                "available\n", err);
4063                         goto default_int_mode;
4064                 } else {
4065                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
4066                                err);
4067                         goto default_int_mode;
4068                 }
4069         }
4070         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4071                 dev_info(&h->pdev->dev, "MSI\n");
4072                 if (!pci_enable_msi(h->pdev))
4073                         h->msi_vector = 1;
4074                 else
4075                         dev_warn(&h->pdev->dev, "MSI init failed\n");
4076         }
4077 default_int_mode:
4078 #endif                          /* CONFIG_PCI_MSI */
4079         /* if we get here we're going to use the default interrupt mode */
4080         h->intr[h->intr_mode] = h->pdev->irq;
4081 }
4082
4083 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4084 {
4085         int i;
4086         u32 subsystem_vendor_id, subsystem_device_id;
4087
4088         subsystem_vendor_id = pdev->subsystem_vendor;
4089         subsystem_device_id = pdev->subsystem_device;
4090         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4091                     subsystem_vendor_id;
4092
4093         for (i = 0; i < ARRAY_SIZE(products); i++)
4094                 if (*board_id == products[i].board_id)
4095                         return i;
4096
4097         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
4098                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
4099                 !hpsa_allow_any) {
4100                 dev_warn(&pdev->dev, "unrecognized board ID: "
4101                         "0x%08x, ignoring.\n", *board_id);
4102                         return -ENODEV;
4103         }
4104         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
4105 }
4106
4107 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
4108                                     unsigned long *memory_bar)
4109 {
4110         int i;
4111
4112         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4113                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4114                         /* addressing mode bits already removed */
4115                         *memory_bar = pci_resource_start(pdev, i);
4116                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4117                                 *memory_bar);
4118                         return 0;
4119                 }
4120         dev_warn(&pdev->dev, "no memory BAR found\n");
4121         return -ENODEV;
4122 }
4123
4124 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
4125                                      int wait_for_ready)
4126 {
4127         int i, iterations;
4128         u32 scratchpad;
4129         if (wait_for_ready)
4130                 iterations = HPSA_BOARD_READY_ITERATIONS;
4131         else
4132                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4133
4134         for (i = 0; i < iterations; i++) {
4135                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4136                 if (wait_for_ready) {
4137                         if (scratchpad == HPSA_FIRMWARE_READY)
4138                                 return 0;
4139                 } else {
4140                         if (scratchpad != HPSA_FIRMWARE_READY)
4141                                 return 0;
4142                 }
4143                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
4144         }
4145         dev_warn(&pdev->dev, "board not ready, timed out.\n");
4146         return -ENODEV;
4147 }
4148
4149 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4150                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4151                                u64 *cfg_offset)
4152 {
4153         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4154         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4155         *cfg_base_addr &= (u32) 0x0000ffff;
4156         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4157         if (*cfg_base_addr_index == -1) {
4158                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
4159                 return -ENODEV;
4160         }
4161         return 0;
4162 }
4163
4164 static int hpsa_find_cfgtables(struct ctlr_info *h)
4165 {
4166         u64 cfg_offset;
4167         u32 cfg_base_addr;
4168         u64 cfg_base_addr_index;
4169         u32 trans_offset;
4170         int rc;
4171
4172         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4173                 &cfg_base_addr_index, &cfg_offset);
4174         if (rc)
4175                 return rc;
4176         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4177                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4178         if (!h->cfgtable)
4179                 return -ENOMEM;
4180         rc = write_driver_ver_to_cfgtable(h->cfgtable);
4181         if (rc)
4182                 return rc;
4183         /* Find performant mode table. */
4184         trans_offset = readl(&h->cfgtable->TransMethodOffset);
4185         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4186                                 cfg_base_addr_index)+cfg_offset+trans_offset,
4187                                 sizeof(*h->transtable));
4188         if (!h->transtable)
4189                 return -ENOMEM;
4190         return 0;
4191 }
4192
4193 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4194 {
4195         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4196
4197         /* Limit commands in memory limited kdump scenario. */
4198         if (reset_devices && h->max_commands > 32)
4199                 h->max_commands = 32;
4200
4201         if (h->max_commands < 16) {
4202                 dev_warn(&h->pdev->dev, "Controller reports "
4203                         "max supported commands of %d, an obvious lie. "
4204                         "Using 16.  Ensure that firmware is up to date.\n",
4205                         h->max_commands);
4206                 h->max_commands = 16;
4207         }
4208 }
4209
4210 /* Interrogate the hardware for some limits:
4211  * max commands, max SG elements without chaining, and with chaining,
4212  * SG chain block size, etc.
4213  */
4214 static void hpsa_find_board_params(struct ctlr_info *h)
4215 {
4216         hpsa_get_max_perf_mode_cmds(h);
4217         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4218         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
4219         /*
4220          * Limit in-command s/g elements to 32 save dma'able memory.
4221          * Howvever spec says if 0, use 31
4222          */
4223         h->max_cmd_sg_entries = 31;
4224         if (h->maxsgentries > 512) {
4225                 h->max_cmd_sg_entries = 32;
4226                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
4227                 h->maxsgentries--; /* save one for chain pointer */
4228         } else {
4229                 h->maxsgentries = 31; /* default to traditional values */
4230                 h->chainsize = 0;
4231         }
4232
4233         /* Find out what task management functions are supported and cache */
4234         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4235 }
4236
4237 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
4238 {
4239         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4240                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4241                 return false;
4242         }
4243         return true;
4244 }
4245
4246 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4247 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
4248 {
4249 #ifdef CONFIG_X86
4250         u32 prefetch;
4251
4252         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4253         prefetch |= 0x100;
4254         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4255 #endif
4256 }
4257
4258 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4259  * in a prefetch beyond physical memory.
4260  */
4261 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
4262 {
4263         u32 dma_prefetch;
4264
4265         if (h->board_id != 0x3225103C)
4266                 return;
4267         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4268         dma_prefetch |= 0x8000;
4269         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4270 }
4271
4272 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4273 {
4274         int i;
4275         u32 doorbell_value;
4276         unsigned long flags;
4277
4278         /* under certain very rare conditions, this can take awhile.
4279          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4280          * as we enter this code.)
4281          */
4282         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4283                 spin_lock_irqsave(&h->lock, flags);
4284                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
4285                 spin_unlock_irqrestore(&h->lock, flags);
4286                 if (!(doorbell_value & CFGTBL_ChangeReq))
4287                         break;
4288                 /* delay and try again */
4289                 usleep_range(10000, 20000);
4290         }
4291 }
4292
4293 static int hpsa_enter_simple_mode(struct ctlr_info *h)
4294 {
4295         u32 trans_support;
4296
4297         trans_support = readl(&(h->cfgtable->TransportSupport));
4298         if (!(trans_support & SIMPLE_MODE))
4299                 return -ENOTSUPP;
4300
4301         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
4302         /* Update the field, and then ring the doorbell */
4303         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
4304         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4305         hpsa_wait_for_mode_change_ack(h);
4306         print_cfg_table(&h->pdev->dev, h->cfgtable);
4307         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
4308                 dev_warn(&h->pdev->dev,
4309                         "unable to get board into simple mode\n");
4310                 return -ENODEV;
4311         }
4312         h->transMethod = CFGTBL_Trans_Simple;
4313         return 0;
4314 }
4315
4316 static int hpsa_pci_init(struct ctlr_info *h)
4317 {
4318         int prod_index, err;
4319
4320         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
4321         if (prod_index < 0)
4322                 return -ENODEV;
4323         h->product_name = products[prod_index].product_name;
4324         h->access = *(products[prod_index].access);
4325
4326         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4327                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4328
4329         err = pci_enable_device(h->pdev);
4330         if (err) {
4331                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4332                 return err;
4333         }
4334
4335         /* Enable bus mastering (pci_disable_device may disable this) */
4336         pci_set_master(h->pdev);
4337
4338         err = pci_request_regions(h->pdev, HPSA);
4339         if (err) {
4340                 dev_err(&h->pdev->dev,
4341                         "cannot obtain PCI resources, aborting\n");
4342                 return err;
4343         }
4344         hpsa_interrupt_mode(h);
4345         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4346         if (err)
4347                 goto err_out_free_res;
4348         h->vaddr = remap_pci_mem(h->paddr, 0x250);
4349         if (!h->vaddr) {
4350                 err = -ENOMEM;
4351                 goto err_out_free_res;
4352         }
4353         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4354         if (err)
4355                 goto err_out_free_res;
4356         err = hpsa_find_cfgtables(h);
4357         if (err)
4358                 goto err_out_free_res;
4359         hpsa_find_board_params(h);
4360
4361         if (!hpsa_CISS_signature_present(h)) {
4362                 err = -ENODEV;
4363                 goto err_out_free_res;
4364         }
4365         hpsa_enable_scsi_prefetch(h);
4366         hpsa_p600_dma_prefetch_quirk(h);
4367         err = hpsa_enter_simple_mode(h);
4368         if (err)
4369                 goto err_out_free_res;
4370         return 0;
4371
4372 err_out_free_res:
4373         if (h->transtable)
4374                 iounmap(h->transtable);
4375         if (h->cfgtable)
4376                 iounmap(h->cfgtable);
4377         if (h->vaddr)
4378                 iounmap(h->vaddr);
4379         pci_disable_device(h->pdev);
4380         pci_release_regions(h->pdev);
4381         return err;
4382 }
4383
4384 static void hpsa_hba_inquiry(struct ctlr_info *h)
4385 {
4386         int rc;
4387
4388 #define HBA_INQUIRY_BYTE_COUNT 64
4389         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4390         if (!h->hba_inquiry_data)
4391                 return;
4392         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4393                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4394         if (rc != 0) {
4395                 kfree(h->hba_inquiry_data);
4396                 h->hba_inquiry_data = NULL;
4397         }
4398 }
4399
4400 static int hpsa_init_reset_devices(struct pci_dev *pdev)
4401 {
4402         int rc, i;
4403
4404         if (!reset_devices)
4405                 return 0;
4406
4407         /* Reset the controller with a PCI power-cycle or via doorbell */
4408         rc = hpsa_kdump_hard_reset_controller(pdev);
4409
4410         /* -ENOTSUPP here means we cannot reset the controller
4411          * but it's already (and still) up and running in
4412          * "performant mode".  Or, it might be 640x, which can't reset
4413          * due to concerns about shared bbwc between 6402/6404 pair.
4414          */
4415         if (rc == -ENOTSUPP)
4416                 return rc; /* just try to do the kdump anyhow. */
4417         if (rc)
4418                 return -ENODEV;
4419
4420         /* Now try to get the controller to respond to a no-op */
4421         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4422         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4423                 if (hpsa_noop(pdev) == 0)
4424                         break;
4425                 else
4426                         dev_warn(&pdev->dev, "no-op failed%s\n",
4427                                         (i < 11 ? "; re-trying" : ""));
4428         }
4429         return 0;
4430 }
4431
4432 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4433 {
4434         h->cmd_pool_bits = kzalloc(
4435                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4436                 sizeof(unsigned long), GFP_KERNEL);
4437         h->cmd_pool = pci_alloc_consistent(h->pdev,
4438                     h->nr_cmds * sizeof(*h->cmd_pool),
4439                     &(h->cmd_pool_dhandle));
4440         h->errinfo_pool = pci_alloc_consistent(h->pdev,
4441                     h->nr_cmds * sizeof(*h->errinfo_pool),
4442                     &(h->errinfo_pool_dhandle));
4443         if ((h->cmd_pool_bits == NULL)
4444             || (h->cmd_pool == NULL)
4445             || (h->errinfo_pool == NULL)) {
4446                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4447                 return -ENOMEM;
4448         }
4449         return 0;
4450 }
4451
4452 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4453 {
4454         kfree(h->cmd_pool_bits);
4455         if (h->cmd_pool)
4456                 pci_free_consistent(h->pdev,
4457                             h->nr_cmds * sizeof(struct CommandList),
4458                             h->cmd_pool, h->cmd_pool_dhandle);
4459         if (h->errinfo_pool)
4460                 pci_free_consistent(h->pdev,
4461                             h->nr_cmds * sizeof(struct ErrorInfo),
4462                             h->errinfo_pool,
4463                             h->errinfo_pool_dhandle);
4464 }
4465
4466 static int hpsa_request_irq(struct ctlr_info *h,
4467         irqreturn_t (*msixhandler)(int, void *),
4468         irqreturn_t (*intxhandler)(int, void *))
4469 {
4470         int rc, i;
4471
4472         /*
4473          * initialize h->q[x] = x so that interrupt handlers know which
4474          * queue to process.
4475          */
4476         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4477                 h->q[i] = (u8) i;
4478
4479         if (h->intr_mode == PERF_MODE_INT && h->msix_vector) {
4480                 /* If performant mode and MSI-X, use multiple reply queues */
4481                 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4482                         rc = request_irq(h->intr[i], msixhandler,
4483                                         0, h->devname,
4484                                         &h->q[i]);
4485         } else {
4486                 /* Use single reply pool */
4487                 if (h->msix_vector || h->msi_vector) {
4488                         rc = request_irq(h->intr[h->intr_mode],
4489                                 msixhandler, 0, h->devname,
4490                                 &h->q[h->intr_mode]);
4491                 } else {
4492                         rc = request_irq(h->intr[h->intr_mode],
4493                                 intxhandler, IRQF_SHARED, h->devname,
4494                                 &h->q[h->intr_mode]);
4495                 }
4496         }
4497         if (rc) {
4498                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4499                        h->intr[h->intr_mode], h->devname);
4500                 return -ENODEV;
4501         }
4502         return 0;
4503 }
4504
4505 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
4506 {
4507         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4508                 HPSA_RESET_TYPE_CONTROLLER)) {
4509                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4510                 return -EIO;
4511         }
4512
4513         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4514         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4515                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4516                 return -1;
4517         }
4518
4519         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4520         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4521                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4522                         "after soft reset.\n");
4523                 return -1;
4524         }
4525
4526         return 0;
4527 }
4528
4529 static void free_irqs(struct ctlr_info *h)
4530 {
4531         int i;
4532
4533         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
4534                 /* Single reply queue, only one irq to free */
4535                 i = h->intr_mode;
4536                 free_irq(h->intr[i], &h->q[i]);
4537                 return;
4538         }
4539
4540         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4541                 free_irq(h->intr[i], &h->q[i]);
4542 }
4543
4544 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
4545 {
4546         free_irqs(h);
4547 #ifdef CONFIG_PCI_MSI
4548         if (h->msix_vector) {
4549                 if (h->pdev->msix_enabled)
4550                         pci_disable_msix(h->pdev);
4551         } else if (h->msi_vector) {
4552                 if (h->pdev->msi_enabled)
4553                         pci_disable_msi(h->pdev);
4554         }
4555 #endif /* CONFIG_PCI_MSI */
4556 }
4557
4558 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4559 {
4560         hpsa_free_irqs_and_disable_msix(h);
4561         hpsa_free_sg_chain_blocks(h);
4562         hpsa_free_cmd_pool(h);
4563         kfree(h->blockFetchTable);
4564         pci_free_consistent(h->pdev, h->reply_pool_size,
4565                 h->reply_pool, h->reply_pool_dhandle);
4566         if (h->vaddr)
4567                 iounmap(h->vaddr);
4568         if (h->transtable)
4569                 iounmap(h->transtable);
4570         if (h->cfgtable)
4571                 iounmap(h->cfgtable);
4572         pci_release_regions(h->pdev);
4573         kfree(h);
4574 }
4575
4576 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4577 {
4578         assert_spin_locked(&lockup_detector_lock);
4579         if (!hpsa_lockup_detector)
4580                 return;
4581         if (h->lockup_detected)
4582                 return; /* already stopped the lockup detector */
4583         list_del(&h->lockup_list);
4584 }
4585
4586 /* Called when controller lockup detected. */
4587 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4588 {
4589         struct CommandList *c = NULL;
4590
4591         assert_spin_locked(&h->lock);
4592         /* Mark all outstanding commands as failed and complete them. */
4593         while (!list_empty(list)) {
4594                 c = list_entry(list->next, struct CommandList, list);
4595                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4596                 finish_cmd(c);
4597         }
4598 }
4599
4600 static void controller_lockup_detected(struct ctlr_info *h)
4601 {
4602         unsigned long flags;
4603
4604         assert_spin_locked(&lockup_detector_lock);
4605         remove_ctlr_from_lockup_detector_list(h);
4606         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4607         spin_lock_irqsave(&h->lock, flags);
4608         h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4609         spin_unlock_irqrestore(&h->lock, flags);
4610         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4611                         h->lockup_detected);
4612         pci_disable_device(h->pdev);
4613         spin_lock_irqsave(&h->lock, flags);
4614         fail_all_cmds_on_list(h, &h->cmpQ);
4615         fail_all_cmds_on_list(h, &h->reqQ);
4616         spin_unlock_irqrestore(&h->lock, flags);
4617 }
4618
4619 static void detect_controller_lockup(struct ctlr_info *h)
4620 {
4621         u64 now;
4622         u32 heartbeat;
4623         unsigned long flags;
4624
4625         assert_spin_locked(&lockup_detector_lock);
4626         now = get_jiffies_64();
4627         /* If we've received an interrupt recently, we're ok. */
4628         if (time_after64(h->last_intr_timestamp +
4629                                 (h->heartbeat_sample_interval), now))
4630                 return;
4631
4632         /*
4633          * If we've already checked the heartbeat recently, we're ok.
4634          * This could happen if someone sends us a signal. We
4635          * otherwise don't care about signals in this thread.
4636          */
4637         if (time_after64(h->last_heartbeat_timestamp +
4638                                 (h->heartbeat_sample_interval), now))
4639                 return;
4640
4641         /* If heartbeat has not changed since we last looked, we're not ok. */
4642         spin_lock_irqsave(&h->lock, flags);
4643         heartbeat = readl(&h->cfgtable->HeartBeat);
4644         spin_unlock_irqrestore(&h->lock, flags);
4645         if (h->last_heartbeat == heartbeat) {
4646                 controller_lockup_detected(h);
4647                 return;
4648         }
4649
4650         /* We're ok. */
4651         h->last_heartbeat = heartbeat;
4652         h->last_heartbeat_timestamp = now;
4653 }
4654
4655 static int detect_controller_lockup_thread(void *notused)
4656 {
4657         struct ctlr_info *h;
4658         unsigned long flags;
4659
4660         while (1) {
4661                 struct list_head *this, *tmp;
4662
4663                 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4664                 if (kthread_should_stop())
4665                         break;
4666                 spin_lock_irqsave(&lockup_detector_lock, flags);
4667                 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4668                         h = list_entry(this, struct ctlr_info, lockup_list);
4669                         detect_controller_lockup(h);
4670                 }
4671                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4672         }
4673         return 0;
4674 }
4675
4676 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4677 {
4678         unsigned long flags;
4679
4680         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
4681         spin_lock_irqsave(&lockup_detector_lock, flags);
4682         list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4683         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4684 }
4685
4686 static void start_controller_lockup_detector(struct ctlr_info *h)
4687 {
4688         /* Start the lockup detector thread if not already started */
4689         if (!hpsa_lockup_detector) {
4690                 spin_lock_init(&lockup_detector_lock);
4691                 hpsa_lockup_detector =
4692                         kthread_run(detect_controller_lockup_thread,
4693                                                 NULL, HPSA);
4694         }
4695         if (!hpsa_lockup_detector) {
4696                 dev_warn(&h->pdev->dev,
4697                         "Could not start lockup detector thread\n");
4698                 return;
4699         }
4700         add_ctlr_to_lockup_detector_list(h);
4701 }
4702
4703 static void stop_controller_lockup_detector(struct ctlr_info *h)
4704 {
4705         unsigned long flags;
4706
4707         spin_lock_irqsave(&lockup_detector_lock, flags);
4708         remove_ctlr_from_lockup_detector_list(h);
4709         /* If the list of ctlr's to monitor is empty, stop the thread */
4710         if (list_empty(&hpsa_ctlr_list)) {
4711                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4712                 kthread_stop(hpsa_lockup_detector);
4713                 spin_lock_irqsave(&lockup_detector_lock, flags);
4714                 hpsa_lockup_detector = NULL;
4715         }
4716         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4717 }
4718
4719 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4720 {
4721         int dac, rc;
4722         struct ctlr_info *h;
4723         int try_soft_reset = 0;
4724         unsigned long flags;
4725
4726         if (number_of_controllers == 0)
4727                 printk(KERN_INFO DRIVER_NAME "\n");
4728
4729         rc = hpsa_init_reset_devices(pdev);
4730         if (rc) {
4731                 if (rc != -ENOTSUPP)
4732                         return rc;
4733                 /* If the reset fails in a particular way (it has no way to do
4734                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4735                  * a soft reset once we get the controller configured up to the
4736                  * point that it can accept a command.
4737                  */
4738                 try_soft_reset = 1;
4739                 rc = 0;
4740         }
4741
4742 reinit_after_soft_reset:
4743
4744         /* Command structures must be aligned on a 32-byte boundary because
4745          * the 5 lower bits of the address are used by the hardware. and by
4746          * the driver.  See comments in hpsa.h for more info.
4747          */
4748 #define COMMANDLIST_ALIGNMENT 32
4749         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4750         h = kzalloc(sizeof(*h), GFP_KERNEL);
4751         if (!h)
4752                 return -ENOMEM;
4753
4754         h->pdev = pdev;
4755         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4756         INIT_LIST_HEAD(&h->cmpQ);
4757         INIT_LIST_HEAD(&h->reqQ);
4758         spin_lock_init(&h->lock);
4759         spin_lock_init(&h->scan_lock);
4760         rc = hpsa_pci_init(h);
4761         if (rc != 0)
4762                 goto clean1;
4763
4764         sprintf(h->devname, HPSA "%d", number_of_controllers);
4765         h->ctlr = number_of_controllers;
4766         number_of_controllers++;
4767
4768         /* configure PCI DMA stuff */
4769         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4770         if (rc == 0) {
4771                 dac = 1;
4772         } else {
4773                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4774                 if (rc == 0) {
4775                         dac = 0;
4776                 } else {
4777                         dev_err(&pdev->dev, "no suitable DMA available\n");
4778                         goto clean1;
4779                 }
4780         }
4781
4782         /* make sure the board interrupts are off */
4783         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4784
4785         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4786                 goto clean2;
4787         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4788                h->devname, pdev->device,
4789                h->intr[h->intr_mode], dac ? "" : " not");
4790         if (hpsa_allocate_cmd_pool(h))
4791                 goto clean4;
4792         if (hpsa_allocate_sg_chain_blocks(h))
4793                 goto clean4;
4794         init_waitqueue_head(&h->scan_wait_queue);
4795         h->scan_finished = 1; /* no scan currently in progress */
4796
4797         pci_set_drvdata(pdev, h);
4798         h->ndevices = 0;
4799         h->scsi_host = NULL;
4800         spin_lock_init(&h->devlock);
4801         hpsa_put_ctlr_into_performant_mode(h);
4802
4803         /* At this point, the controller is ready to take commands.
4804          * Now, if reset_devices and the hard reset didn't work, try
4805          * the soft reset and see if that works.
4806          */
4807         if (try_soft_reset) {
4808
4809                 /* This is kind of gross.  We may or may not get a completion
4810                  * from the soft reset command, and if we do, then the value
4811                  * from the fifo may or may not be valid.  So, we wait 10 secs
4812                  * after the reset throwing away any completions we get during
4813                  * that time.  Unregister the interrupt handler and register
4814                  * fake ones to scoop up any residual completions.
4815                  */
4816                 spin_lock_irqsave(&h->lock, flags);
4817                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4818                 spin_unlock_irqrestore(&h->lock, flags);
4819                 free_irqs(h);
4820                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4821                                         hpsa_intx_discard_completions);
4822                 if (rc) {
4823                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4824                                 "soft reset.\n");
4825                         goto clean4;
4826                 }
4827
4828                 rc = hpsa_kdump_soft_reset(h);
4829                 if (rc)
4830                         /* Neither hard nor soft reset worked, we're hosed. */
4831                         goto clean4;
4832
4833                 dev_info(&h->pdev->dev, "Board READY.\n");
4834                 dev_info(&h->pdev->dev,
4835                         "Waiting for stale completions to drain.\n");
4836                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4837                 msleep(10000);
4838                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4839
4840                 rc = controller_reset_failed(h->cfgtable);
4841                 if (rc)
4842                         dev_info(&h->pdev->dev,
4843                                 "Soft reset appears to have failed.\n");
4844
4845                 /* since the controller's reset, we have to go back and re-init
4846                  * everything.  Easiest to just forget what we've done and do it
4847                  * all over again.
4848                  */
4849                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4850                 try_soft_reset = 0;
4851                 if (rc)
4852                         /* don't go to clean4, we already unallocated */
4853                         return -ENODEV;
4854
4855                 goto reinit_after_soft_reset;
4856         }
4857
4858         /* Turn the interrupts on so we can service requests */
4859         h->access.set_intr_mask(h, HPSA_INTR_ON);
4860
4861         hpsa_hba_inquiry(h);
4862         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4863         start_controller_lockup_detector(h);
4864         return 1;
4865
4866 clean4:
4867         hpsa_free_sg_chain_blocks(h);
4868         hpsa_free_cmd_pool(h);
4869         free_irqs(h);
4870 clean2:
4871 clean1:
4872         kfree(h);
4873         return rc;
4874 }
4875
4876 static void hpsa_flush_cache(struct ctlr_info *h)
4877 {
4878         char *flush_buf;
4879         struct CommandList *c;
4880
4881         flush_buf = kzalloc(4, GFP_KERNEL);
4882         if (!flush_buf)
4883                 return;
4884
4885         c = cmd_special_alloc(h);
4886         if (!c) {
4887                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4888                 goto out_of_memory;
4889         }
4890         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4891                 RAID_CTLR_LUNID, TYPE_CMD);
4892         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4893         if (c->err_info->CommandStatus != 0)
4894                 dev_warn(&h->pdev->dev,
4895                         "error flushing cache on controller\n");
4896         cmd_special_free(h, c);
4897 out_of_memory:
4898         kfree(flush_buf);
4899 }
4900
4901 static void hpsa_shutdown(struct pci_dev *pdev)
4902 {
4903         struct ctlr_info *h;
4904
4905         h = pci_get_drvdata(pdev);
4906         /* Turn board interrupts off  and send the flush cache command
4907          * sendcmd will turn off interrupt, and send the flush...
4908          * To write all data in the battery backed cache to disks
4909          */
4910         hpsa_flush_cache(h);
4911         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4912         hpsa_free_irqs_and_disable_msix(h);
4913 }
4914
4915 static void hpsa_free_device_info(struct ctlr_info *h)
4916 {
4917         int i;
4918
4919         for (i = 0; i < h->ndevices; i++)
4920                 kfree(h->dev[i]);
4921 }
4922
4923 static void hpsa_remove_one(struct pci_dev *pdev)
4924 {
4925         struct ctlr_info *h;
4926
4927         if (pci_get_drvdata(pdev) == NULL) {
4928                 dev_err(&pdev->dev, "unable to remove device\n");
4929                 return;
4930         }
4931         h = pci_get_drvdata(pdev);
4932         stop_controller_lockup_detector(h);
4933         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
4934         hpsa_shutdown(pdev);
4935         iounmap(h->vaddr);
4936         iounmap(h->transtable);
4937         iounmap(h->cfgtable);
4938         hpsa_free_device_info(h);
4939         hpsa_free_sg_chain_blocks(h);
4940         pci_free_consistent(h->pdev,
4941                 h->nr_cmds * sizeof(struct CommandList),
4942                 h->cmd_pool, h->cmd_pool_dhandle);
4943         pci_free_consistent(h->pdev,
4944                 h->nr_cmds * sizeof(struct ErrorInfo),
4945                 h->errinfo_pool, h->errinfo_pool_dhandle);
4946         pci_free_consistent(h->pdev, h->reply_pool_size,
4947                 h->reply_pool, h->reply_pool_dhandle);
4948         kfree(h->cmd_pool_bits);
4949         kfree(h->blockFetchTable);
4950         kfree(h->hba_inquiry_data);
4951         pci_disable_device(pdev);
4952         pci_release_regions(pdev);
4953         pci_set_drvdata(pdev, NULL);
4954         kfree(h);
4955 }
4956
4957 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4958         __attribute__((unused)) pm_message_t state)
4959 {
4960         return -ENOSYS;
4961 }
4962
4963 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4964 {
4965         return -ENOSYS;
4966 }
4967
4968 static struct pci_driver hpsa_pci_driver = {
4969         .name = HPSA,
4970         .probe = hpsa_init_one,
4971         .remove = hpsa_remove_one,
4972         .id_table = hpsa_pci_device_id, /* id_table */
4973         .shutdown = hpsa_shutdown,
4974         .suspend = hpsa_suspend,
4975         .resume = hpsa_resume,
4976 };
4977
4978 /* Fill in bucket_map[], given nsgs (the max number of
4979  * scatter gather elements supported) and bucket[],
4980  * which is an array of 8 integers.  The bucket[] array
4981  * contains 8 different DMA transfer sizes (in 16
4982  * byte increments) which the controller uses to fetch
4983  * commands.  This function fills in bucket_map[], which
4984  * maps a given number of scatter gather elements to one of
4985  * the 8 DMA transfer sizes.  The point of it is to allow the
4986  * controller to only do as much DMA as needed to fetch the
4987  * command, with the DMA transfer size encoded in the lower
4988  * bits of the command address.
4989  */
4990 static void  calc_bucket_map(int bucket[], int num_buckets,
4991         int nsgs, int *bucket_map)
4992 {
4993         int i, j, b, size;
4994
4995         /* even a command with 0 SGs requires 4 blocks */
4996 #define MINIMUM_TRANSFER_BLOCKS 4
4997 #define NUM_BUCKETS 8
4998         /* Note, bucket_map must have nsgs+1 entries. */
4999         for (i = 0; i <= nsgs; i++) {
5000                 /* Compute size of a command with i SG entries */
5001                 size = i + MINIMUM_TRANSFER_BLOCKS;
5002                 b = num_buckets; /* Assume the biggest bucket */
5003                 /* Find the bucket that is just big enough */
5004                 for (j = 0; j < 8; j++) {
5005                         if (bucket[j] >= size) {
5006                                 b = j;
5007                                 break;
5008                         }
5009                 }
5010                 /* for a command with i SG entries, use bucket b. */
5011                 bucket_map[i] = b;
5012         }
5013 }
5014
5015 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 use_short_tags)
5016 {
5017         int i;
5018         unsigned long register_value;
5019
5020         /* This is a bit complicated.  There are 8 registers on
5021          * the controller which we write to to tell it 8 different
5022          * sizes of commands which there may be.  It's a way of
5023          * reducing the DMA done to fetch each command.  Encoded into
5024          * each command's tag are 3 bits which communicate to the controller
5025          * which of the eight sizes that command fits within.  The size of
5026          * each command depends on how many scatter gather entries there are.
5027          * Each SG entry requires 16 bytes.  The eight registers are programmed
5028          * with the number of 16-byte blocks a command of that size requires.
5029          * The smallest command possible requires 5 such 16 byte blocks.
5030          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5031          * blocks.  Note, this only extends to the SG entries contained
5032          * within the command block, and does not extend to chained blocks
5033          * of SG elements.   bft[] contains the eight values we write to
5034          * the registers.  They are not evenly distributed, but have more
5035          * sizes for small commands, and fewer sizes for larger commands.
5036          */
5037         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
5038         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
5039         /*  5 = 1 s/g entry or 4k
5040          *  6 = 2 s/g entry or 8k
5041          *  8 = 4 s/g entry or 16k
5042          * 10 = 6 s/g entry or 24k
5043          */
5044
5045         /* Controller spec: zero out this buffer. */
5046         memset(h->reply_pool, 0, h->reply_pool_size);
5047
5048         bft[7] = SG_ENTRIES_IN_CMD + 4;
5049         calc_bucket_map(bft, ARRAY_SIZE(bft),
5050                                 SG_ENTRIES_IN_CMD, h->blockFetchTable);
5051         for (i = 0; i < 8; i++)
5052                 writel(bft[i], &h->transtable->BlockFetch[i]);
5053
5054         /* size of controller ring buffer */
5055         writel(h->max_commands, &h->transtable->RepQSize);
5056         writel(h->nreply_queues, &h->transtable->RepQCount);
5057         writel(0, &h->transtable->RepQCtrAddrLow32);
5058         writel(0, &h->transtable->RepQCtrAddrHigh32);
5059
5060         for (i = 0; i < h->nreply_queues; i++) {
5061                 writel(0, &h->transtable->RepQAddr[i].upper);
5062                 writel(h->reply_pool_dhandle +
5063                         (h->max_commands * sizeof(u64) * i),
5064                         &h->transtable->RepQAddr[i].lower);
5065         }
5066
5067         writel(CFGTBL_Trans_Performant | use_short_tags |
5068                 CFGTBL_Trans_enable_directed_msix,
5069                 &(h->cfgtable->HostWrite.TransportRequest));
5070         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5071         hpsa_wait_for_mode_change_ack(h);
5072         register_value = readl(&(h->cfgtable->TransportActive));
5073         if (!(register_value & CFGTBL_Trans_Performant)) {
5074                 dev_warn(&h->pdev->dev, "unable to get board into"
5075                                         " performant mode\n");
5076                 return;
5077         }
5078         /* Change the access methods to the performant access methods */
5079         h->access = SA5_performant_access;
5080         h->transMethod = CFGTBL_Trans_Performant;
5081 }
5082
5083 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
5084 {
5085         u32 trans_support;
5086         int i;
5087
5088         if (hpsa_simple_mode)
5089                 return;
5090
5091         trans_support = readl(&(h->cfgtable->TransportSupport));
5092         if (!(trans_support & PERFORMANT_MODE))
5093                 return;
5094
5095         h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1;
5096         hpsa_get_max_perf_mode_cmds(h);
5097         /* Performant mode ring buffer and supporting data structures */
5098         h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
5099         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
5100                                 &(h->reply_pool_dhandle));
5101
5102         for (i = 0; i < h->nreply_queues; i++) {
5103                 h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
5104                 h->reply_queue[i].size = h->max_commands;
5105                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
5106                 h->reply_queue[i].current_entry = 0;
5107         }
5108
5109         /* Need a block fetch table for performant mode */
5110         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
5111                                 sizeof(u32)), GFP_KERNEL);
5112
5113         if ((h->reply_pool == NULL)
5114                 || (h->blockFetchTable == NULL))
5115                 goto clean_up;
5116
5117         hpsa_enter_performant_mode(h,
5118                 trans_support & CFGTBL_Trans_use_short_tags);
5119
5120         return;
5121
5122 clean_up:
5123         if (h->reply_pool)
5124                 pci_free_consistent(h->pdev, h->reply_pool_size,
5125                         h->reply_pool, h->reply_pool_dhandle);
5126         kfree(h->blockFetchTable);
5127 }
5128
5129 /*
5130  *  This is it.  Register the PCI driver information for the cards we control
5131  *  the OS will call our registered routines when it finds one of our cards.
5132  */
5133 static int __init hpsa_init(void)
5134 {
5135         return pci_register_driver(&hpsa_pci_driver);
5136 }
5137
5138 static void __exit hpsa_cleanup(void)
5139 {
5140         pci_unregister_driver(&hpsa_pci_driver);
5141 }
5142
5143 module_init(hpsa_init);
5144 module_exit(hpsa_cleanup);