[SCSI] hpsa: Check for dma_mapping_error for all code paths using fill_cmd
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71         HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79                 "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83         "Use 'simple mode' rather than 'performant mode'");
84
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1920},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1925},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x334d},
111         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
112                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
113         {0,}
114 };
115
116 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
117
118 /*  board_id = Subsystem Device ID & Vendor ID
119  *  product = Marketing Name for the board
120  *  access = Address of the struct of function pointers
121  */
122 static struct board_type products[] = {
123         {0x3241103C, "Smart Array P212", &SA5_access},
124         {0x3243103C, "Smart Array P410", &SA5_access},
125         {0x3245103C, "Smart Array P410i", &SA5_access},
126         {0x3247103C, "Smart Array P411", &SA5_access},
127         {0x3249103C, "Smart Array P812", &SA5_access},
128         {0x324a103C, "Smart Array P712m", &SA5_access},
129         {0x324b103C, "Smart Array P711m", &SA5_access},
130         {0x3350103C, "Smart Array P222", &SA5_access},
131         {0x3351103C, "Smart Array P420", &SA5_access},
132         {0x3352103C, "Smart Array P421", &SA5_access},
133         {0x3353103C, "Smart Array P822", &SA5_access},
134         {0x3354103C, "Smart Array P420i", &SA5_access},
135         {0x3355103C, "Smart Array P220i", &SA5_access},
136         {0x3356103C, "Smart Array P721m", &SA5_access},
137         {0x1920103C, "Smart Array", &SA5_access},
138         {0x1921103C, "Smart Array", &SA5_access},
139         {0x1922103C, "Smart Array", &SA5_access},
140         {0x1923103C, "Smart Array", &SA5_access},
141         {0x1924103C, "Smart Array", &SA5_access},
142         {0x1925103C, "Smart Array", &SA5_access},
143         {0x1926103C, "Smart Array", &SA5_access},
144         {0x1928103C, "Smart Array", &SA5_access},
145         {0x334d103C, "Smart Array P822se", &SA5_access},
146         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
147 };
148
149 static int number_of_controllers;
150
151 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
152 static spinlock_t lockup_detector_lock;
153 static struct task_struct *hpsa_lockup_detector;
154
155 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
156 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
157 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
158 static void start_io(struct ctlr_info *h);
159
160 #ifdef CONFIG_COMPAT
161 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
162 #endif
163
164 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
165 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
166 static struct CommandList *cmd_alloc(struct ctlr_info *h);
167 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
168 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
169         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
170         int cmd_type);
171
172 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
173 static void hpsa_scan_start(struct Scsi_Host *);
174 static int hpsa_scan_finished(struct Scsi_Host *sh,
175         unsigned long elapsed_time);
176 static int hpsa_change_queue_depth(struct scsi_device *sdev,
177         int qdepth, int reason);
178
179 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
180 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
181 static int hpsa_slave_alloc(struct scsi_device *sdev);
182 static void hpsa_slave_destroy(struct scsi_device *sdev);
183
184 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
185 static int check_for_unit_attention(struct ctlr_info *h,
186         struct CommandList *c);
187 static void check_ioctl_unit_attention(struct ctlr_info *h,
188         struct CommandList *c);
189 /* performant mode helper functions */
190 static void calc_bucket_map(int *bucket, int num_buckets,
191         int nsgs, int *bucket_map);
192 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
193 static inline u32 next_command(struct ctlr_info *h, u8 q);
194 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
195                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
196                                u64 *cfg_offset);
197 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
198                                     unsigned long *memory_bar);
199 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
200 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
201                                      int wait_for_ready);
202 static inline void finish_cmd(struct CommandList *c);
203 #define BOARD_NOT_READY 0
204 #define BOARD_READY 1
205
206 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
207 {
208         unsigned long *priv = shost_priv(sdev->host);
209         return (struct ctlr_info *) *priv;
210 }
211
212 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
213 {
214         unsigned long *priv = shost_priv(sh);
215         return (struct ctlr_info *) *priv;
216 }
217
218 static int check_for_unit_attention(struct ctlr_info *h,
219         struct CommandList *c)
220 {
221         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
222                 return 0;
223
224         switch (c->err_info->SenseInfo[12]) {
225         case STATE_CHANGED:
226                 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
227                         "detected, command retried\n", h->ctlr);
228                 break;
229         case LUN_FAILED:
230                 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
231                         "detected, action required\n", h->ctlr);
232                 break;
233         case REPORT_LUNS_CHANGED:
234                 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
235                         "changed, action required\n", h->ctlr);
236         /*
237          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
238          * target (array) devices.
239          */
240                 break;
241         case POWER_OR_RESET:
242                 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
243                         "or device reset detected\n", h->ctlr);
244                 break;
245         case UNIT_ATTENTION_CLEARED:
246                 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
247                     "cleared by another initiator\n", h->ctlr);
248                 break;
249         default:
250                 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
251                         "unit attention detected\n", h->ctlr);
252                 break;
253         }
254         return 1;
255 }
256
257 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
258 {
259         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
260                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
261                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
262                 return 0;
263         dev_warn(&h->pdev->dev, HPSA "device busy");
264         return 1;
265 }
266
267 static ssize_t host_store_rescan(struct device *dev,
268                                  struct device_attribute *attr,
269                                  const char *buf, size_t count)
270 {
271         struct ctlr_info *h;
272         struct Scsi_Host *shost = class_to_shost(dev);
273         h = shost_to_hba(shost);
274         hpsa_scan_start(h->scsi_host);
275         return count;
276 }
277
278 static ssize_t host_show_firmware_revision(struct device *dev,
279              struct device_attribute *attr, char *buf)
280 {
281         struct ctlr_info *h;
282         struct Scsi_Host *shost = class_to_shost(dev);
283         unsigned char *fwrev;
284
285         h = shost_to_hba(shost);
286         if (!h->hba_inquiry_data)
287                 return 0;
288         fwrev = &h->hba_inquiry_data[32];
289         return snprintf(buf, 20, "%c%c%c%c\n",
290                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
291 }
292
293 static ssize_t host_show_commands_outstanding(struct device *dev,
294              struct device_attribute *attr, char *buf)
295 {
296         struct Scsi_Host *shost = class_to_shost(dev);
297         struct ctlr_info *h = shost_to_hba(shost);
298
299         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
300 }
301
302 static ssize_t host_show_transport_mode(struct device *dev,
303         struct device_attribute *attr, char *buf)
304 {
305         struct ctlr_info *h;
306         struct Scsi_Host *shost = class_to_shost(dev);
307
308         h = shost_to_hba(shost);
309         return snprintf(buf, 20, "%s\n",
310                 h->transMethod & CFGTBL_Trans_Performant ?
311                         "performant" : "simple");
312 }
313
314 /* List of controllers which cannot be hard reset on kexec with reset_devices */
315 static u32 unresettable_controller[] = {
316         0x324a103C, /* Smart Array P712m */
317         0x324b103C, /* SmartArray P711m */
318         0x3223103C, /* Smart Array P800 */
319         0x3234103C, /* Smart Array P400 */
320         0x3235103C, /* Smart Array P400i */
321         0x3211103C, /* Smart Array E200i */
322         0x3212103C, /* Smart Array E200 */
323         0x3213103C, /* Smart Array E200i */
324         0x3214103C, /* Smart Array E200i */
325         0x3215103C, /* Smart Array E200i */
326         0x3237103C, /* Smart Array E500 */
327         0x323D103C, /* Smart Array P700m */
328         0x40800E11, /* Smart Array 5i */
329         0x409C0E11, /* Smart Array 6400 */
330         0x409D0E11, /* Smart Array 6400 EM */
331         0x40700E11, /* Smart Array 5300 */
332         0x40820E11, /* Smart Array 532 */
333         0x40830E11, /* Smart Array 5312 */
334         0x409A0E11, /* Smart Array 641 */
335         0x409B0E11, /* Smart Array 642 */
336         0x40910E11, /* Smart Array 6i */
337 };
338
339 /* List of controllers which cannot even be soft reset */
340 static u32 soft_unresettable_controller[] = {
341         0x40800E11, /* Smart Array 5i */
342         0x40700E11, /* Smart Array 5300 */
343         0x40820E11, /* Smart Array 532 */
344         0x40830E11, /* Smart Array 5312 */
345         0x409A0E11, /* Smart Array 641 */
346         0x409B0E11, /* Smart Array 642 */
347         0x40910E11, /* Smart Array 6i */
348         /* Exclude 640x boards.  These are two pci devices in one slot
349          * which share a battery backed cache module.  One controls the
350          * cache, the other accesses the cache through the one that controls
351          * it.  If we reset the one controlling the cache, the other will
352          * likely not be happy.  Just forbid resetting this conjoined mess.
353          * The 640x isn't really supported by hpsa anyway.
354          */
355         0x409C0E11, /* Smart Array 6400 */
356         0x409D0E11, /* Smart Array 6400 EM */
357 };
358
359 static int ctlr_is_hard_resettable(u32 board_id)
360 {
361         int i;
362
363         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
364                 if (unresettable_controller[i] == board_id)
365                         return 0;
366         return 1;
367 }
368
369 static int ctlr_is_soft_resettable(u32 board_id)
370 {
371         int i;
372
373         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
374                 if (soft_unresettable_controller[i] == board_id)
375                         return 0;
376         return 1;
377 }
378
379 static int ctlr_is_resettable(u32 board_id)
380 {
381         return ctlr_is_hard_resettable(board_id) ||
382                 ctlr_is_soft_resettable(board_id);
383 }
384
385 static ssize_t host_show_resettable(struct device *dev,
386         struct device_attribute *attr, char *buf)
387 {
388         struct ctlr_info *h;
389         struct Scsi_Host *shost = class_to_shost(dev);
390
391         h = shost_to_hba(shost);
392         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
393 }
394
395 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
396 {
397         return (scsi3addr[3] & 0xC0) == 0x40;
398 }
399
400 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
401         "1(ADM)", "UNKNOWN"
402 };
403 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
404
405 static ssize_t raid_level_show(struct device *dev,
406              struct device_attribute *attr, char *buf)
407 {
408         ssize_t l = 0;
409         unsigned char rlevel;
410         struct ctlr_info *h;
411         struct scsi_device *sdev;
412         struct hpsa_scsi_dev_t *hdev;
413         unsigned long flags;
414
415         sdev = to_scsi_device(dev);
416         h = sdev_to_hba(sdev);
417         spin_lock_irqsave(&h->lock, flags);
418         hdev = sdev->hostdata;
419         if (!hdev) {
420                 spin_unlock_irqrestore(&h->lock, flags);
421                 return -ENODEV;
422         }
423
424         /* Is this even a logical drive? */
425         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
426                 spin_unlock_irqrestore(&h->lock, flags);
427                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
428                 return l;
429         }
430
431         rlevel = hdev->raid_level;
432         spin_unlock_irqrestore(&h->lock, flags);
433         if (rlevel > RAID_UNKNOWN)
434                 rlevel = RAID_UNKNOWN;
435         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
436         return l;
437 }
438
439 static ssize_t lunid_show(struct device *dev,
440              struct device_attribute *attr, char *buf)
441 {
442         struct ctlr_info *h;
443         struct scsi_device *sdev;
444         struct hpsa_scsi_dev_t *hdev;
445         unsigned long flags;
446         unsigned char lunid[8];
447
448         sdev = to_scsi_device(dev);
449         h = sdev_to_hba(sdev);
450         spin_lock_irqsave(&h->lock, flags);
451         hdev = sdev->hostdata;
452         if (!hdev) {
453                 spin_unlock_irqrestore(&h->lock, flags);
454                 return -ENODEV;
455         }
456         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
457         spin_unlock_irqrestore(&h->lock, flags);
458         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
459                 lunid[0], lunid[1], lunid[2], lunid[3],
460                 lunid[4], lunid[5], lunid[6], lunid[7]);
461 }
462
463 static ssize_t unique_id_show(struct device *dev,
464              struct device_attribute *attr, char *buf)
465 {
466         struct ctlr_info *h;
467         struct scsi_device *sdev;
468         struct hpsa_scsi_dev_t *hdev;
469         unsigned long flags;
470         unsigned char sn[16];
471
472         sdev = to_scsi_device(dev);
473         h = sdev_to_hba(sdev);
474         spin_lock_irqsave(&h->lock, flags);
475         hdev = sdev->hostdata;
476         if (!hdev) {
477                 spin_unlock_irqrestore(&h->lock, flags);
478                 return -ENODEV;
479         }
480         memcpy(sn, hdev->device_id, sizeof(sn));
481         spin_unlock_irqrestore(&h->lock, flags);
482         return snprintf(buf, 16 * 2 + 2,
483                         "%02X%02X%02X%02X%02X%02X%02X%02X"
484                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
485                         sn[0], sn[1], sn[2], sn[3],
486                         sn[4], sn[5], sn[6], sn[7],
487                         sn[8], sn[9], sn[10], sn[11],
488                         sn[12], sn[13], sn[14], sn[15]);
489 }
490
491 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
492 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
493 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
494 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
495 static DEVICE_ATTR(firmware_revision, S_IRUGO,
496         host_show_firmware_revision, NULL);
497 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
498         host_show_commands_outstanding, NULL);
499 static DEVICE_ATTR(transport_mode, S_IRUGO,
500         host_show_transport_mode, NULL);
501 static DEVICE_ATTR(resettable, S_IRUGO,
502         host_show_resettable, NULL);
503
504 static struct device_attribute *hpsa_sdev_attrs[] = {
505         &dev_attr_raid_level,
506         &dev_attr_lunid,
507         &dev_attr_unique_id,
508         NULL,
509 };
510
511 static struct device_attribute *hpsa_shost_attrs[] = {
512         &dev_attr_rescan,
513         &dev_attr_firmware_revision,
514         &dev_attr_commands_outstanding,
515         &dev_attr_transport_mode,
516         &dev_attr_resettable,
517         NULL,
518 };
519
520 static struct scsi_host_template hpsa_driver_template = {
521         .module                 = THIS_MODULE,
522         .name                   = HPSA,
523         .proc_name              = HPSA,
524         .queuecommand           = hpsa_scsi_queue_command,
525         .scan_start             = hpsa_scan_start,
526         .scan_finished          = hpsa_scan_finished,
527         .change_queue_depth     = hpsa_change_queue_depth,
528         .this_id                = -1,
529         .use_clustering         = ENABLE_CLUSTERING,
530         .eh_abort_handler       = hpsa_eh_abort_handler,
531         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
532         .ioctl                  = hpsa_ioctl,
533         .slave_alloc            = hpsa_slave_alloc,
534         .slave_destroy          = hpsa_slave_destroy,
535 #ifdef CONFIG_COMPAT
536         .compat_ioctl           = hpsa_compat_ioctl,
537 #endif
538         .sdev_attrs = hpsa_sdev_attrs,
539         .shost_attrs = hpsa_shost_attrs,
540         .max_sectors = 8192,
541 };
542
543
544 /* Enqueuing and dequeuing functions for cmdlists. */
545 static inline void addQ(struct list_head *list, struct CommandList *c)
546 {
547         list_add_tail(&c->list, list);
548 }
549
550 static inline u32 next_command(struct ctlr_info *h, u8 q)
551 {
552         u32 a;
553         struct reply_pool *rq = &h->reply_queue[q];
554         unsigned long flags;
555
556         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
557                 return h->access.command_completed(h, q);
558
559         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
560                 a = rq->head[rq->current_entry];
561                 rq->current_entry++;
562                 spin_lock_irqsave(&h->lock, flags);
563                 h->commands_outstanding--;
564                 spin_unlock_irqrestore(&h->lock, flags);
565         } else {
566                 a = FIFO_EMPTY;
567         }
568         /* Check for wraparound */
569         if (rq->current_entry == h->max_commands) {
570                 rq->current_entry = 0;
571                 rq->wraparound ^= 1;
572         }
573         return a;
574 }
575
576 /* set_performant_mode: Modify the tag for cciss performant
577  * set bit 0 for pull model, bits 3-1 for block fetch
578  * register number
579  */
580 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
581 {
582         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
583                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
584                 if (likely(h->msix_vector))
585                         c->Header.ReplyQueue =
586                                 smp_processor_id() % h->nreply_queues;
587         }
588 }
589
590 static int is_firmware_flash_cmd(u8 *cdb)
591 {
592         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
593 }
594
595 /*
596  * During firmware flash, the heartbeat register may not update as frequently
597  * as it should.  So we dial down lockup detection during firmware flash. and
598  * dial it back up when firmware flash completes.
599  */
600 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
601 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
602 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
603                 struct CommandList *c)
604 {
605         if (!is_firmware_flash_cmd(c->Request.CDB))
606                 return;
607         atomic_inc(&h->firmware_flash_in_progress);
608         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
609 }
610
611 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
612                 struct CommandList *c)
613 {
614         if (is_firmware_flash_cmd(c->Request.CDB) &&
615                 atomic_dec_and_test(&h->firmware_flash_in_progress))
616                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
617 }
618
619 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
620         struct CommandList *c)
621 {
622         unsigned long flags;
623
624         set_performant_mode(h, c);
625         dial_down_lockup_detection_during_fw_flash(h, c);
626         spin_lock_irqsave(&h->lock, flags);
627         addQ(&h->reqQ, c);
628         h->Qdepth++;
629         spin_unlock_irqrestore(&h->lock, flags);
630         start_io(h);
631 }
632
633 static inline void removeQ(struct CommandList *c)
634 {
635         if (WARN_ON(list_empty(&c->list)))
636                 return;
637         list_del_init(&c->list);
638 }
639
640 static inline int is_hba_lunid(unsigned char scsi3addr[])
641 {
642         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
643 }
644
645 static inline int is_scsi_rev_5(struct ctlr_info *h)
646 {
647         if (!h->hba_inquiry_data)
648                 return 0;
649         if ((h->hba_inquiry_data[2] & 0x07) == 5)
650                 return 1;
651         return 0;
652 }
653
654 static int hpsa_find_target_lun(struct ctlr_info *h,
655         unsigned char scsi3addr[], int bus, int *target, int *lun)
656 {
657         /* finds an unused bus, target, lun for a new physical device
658          * assumes h->devlock is held
659          */
660         int i, found = 0;
661         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
662
663         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
664
665         for (i = 0; i < h->ndevices; i++) {
666                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
667                         __set_bit(h->dev[i]->target, lun_taken);
668         }
669
670         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
671         if (i < HPSA_MAX_DEVICES) {
672                 /* *bus = 1; */
673                 *target = i;
674                 *lun = 0;
675                 found = 1;
676         }
677         return !found;
678 }
679
680 /* Add an entry into h->dev[] array. */
681 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
682                 struct hpsa_scsi_dev_t *device,
683                 struct hpsa_scsi_dev_t *added[], int *nadded)
684 {
685         /* assumes h->devlock is held */
686         int n = h->ndevices;
687         int i;
688         unsigned char addr1[8], addr2[8];
689         struct hpsa_scsi_dev_t *sd;
690
691         if (n >= HPSA_MAX_DEVICES) {
692                 dev_err(&h->pdev->dev, "too many devices, some will be "
693                         "inaccessible.\n");
694                 return -1;
695         }
696
697         /* physical devices do not have lun or target assigned until now. */
698         if (device->lun != -1)
699                 /* Logical device, lun is already assigned. */
700                 goto lun_assigned;
701
702         /* If this device a non-zero lun of a multi-lun device
703          * byte 4 of the 8-byte LUN addr will contain the logical
704          * unit no, zero otherise.
705          */
706         if (device->scsi3addr[4] == 0) {
707                 /* This is not a non-zero lun of a multi-lun device */
708                 if (hpsa_find_target_lun(h, device->scsi3addr,
709                         device->bus, &device->target, &device->lun) != 0)
710                         return -1;
711                 goto lun_assigned;
712         }
713
714         /* This is a non-zero lun of a multi-lun device.
715          * Search through our list and find the device which
716          * has the same 8 byte LUN address, excepting byte 4.
717          * Assign the same bus and target for this new LUN.
718          * Use the logical unit number from the firmware.
719          */
720         memcpy(addr1, device->scsi3addr, 8);
721         addr1[4] = 0;
722         for (i = 0; i < n; i++) {
723                 sd = h->dev[i];
724                 memcpy(addr2, sd->scsi3addr, 8);
725                 addr2[4] = 0;
726                 /* differ only in byte 4? */
727                 if (memcmp(addr1, addr2, 8) == 0) {
728                         device->bus = sd->bus;
729                         device->target = sd->target;
730                         device->lun = device->scsi3addr[4];
731                         break;
732                 }
733         }
734         if (device->lun == -1) {
735                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
736                         " suspect firmware bug or unsupported hardware "
737                         "configuration.\n");
738                         return -1;
739         }
740
741 lun_assigned:
742
743         h->dev[n] = device;
744         h->ndevices++;
745         added[*nadded] = device;
746         (*nadded)++;
747
748         /* initially, (before registering with scsi layer) we don't
749          * know our hostno and we don't want to print anything first
750          * time anyway (the scsi layer's inquiries will show that info)
751          */
752         /* if (hostno != -1) */
753                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
754                         scsi_device_type(device->devtype), hostno,
755                         device->bus, device->target, device->lun);
756         return 0;
757 }
758
759 /* Update an entry in h->dev[] array. */
760 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
761         int entry, struct hpsa_scsi_dev_t *new_entry)
762 {
763         /* assumes h->devlock is held */
764         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
765
766         /* Raid level changed. */
767         h->dev[entry]->raid_level = new_entry->raid_level;
768         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
769                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
770                 new_entry->target, new_entry->lun);
771 }
772
773 /* Replace an entry from h->dev[] array. */
774 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
775         int entry, struct hpsa_scsi_dev_t *new_entry,
776         struct hpsa_scsi_dev_t *added[], int *nadded,
777         struct hpsa_scsi_dev_t *removed[], int *nremoved)
778 {
779         /* assumes h->devlock is held */
780         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
781         removed[*nremoved] = h->dev[entry];
782         (*nremoved)++;
783
784         /*
785          * New physical devices won't have target/lun assigned yet
786          * so we need to preserve the values in the slot we are replacing.
787          */
788         if (new_entry->target == -1) {
789                 new_entry->target = h->dev[entry]->target;
790                 new_entry->lun = h->dev[entry]->lun;
791         }
792
793         h->dev[entry] = new_entry;
794         added[*nadded] = new_entry;
795         (*nadded)++;
796         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
797                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
798                         new_entry->target, new_entry->lun);
799 }
800
801 /* Remove an entry from h->dev[] array. */
802 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
803         struct hpsa_scsi_dev_t *removed[], int *nremoved)
804 {
805         /* assumes h->devlock is held */
806         int i;
807         struct hpsa_scsi_dev_t *sd;
808
809         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
810
811         sd = h->dev[entry];
812         removed[*nremoved] = h->dev[entry];
813         (*nremoved)++;
814
815         for (i = entry; i < h->ndevices-1; i++)
816                 h->dev[i] = h->dev[i+1];
817         h->ndevices--;
818         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
819                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
820                 sd->lun);
821 }
822
823 #define SCSI3ADDR_EQ(a, b) ( \
824         (a)[7] == (b)[7] && \
825         (a)[6] == (b)[6] && \
826         (a)[5] == (b)[5] && \
827         (a)[4] == (b)[4] && \
828         (a)[3] == (b)[3] && \
829         (a)[2] == (b)[2] && \
830         (a)[1] == (b)[1] && \
831         (a)[0] == (b)[0])
832
833 static void fixup_botched_add(struct ctlr_info *h,
834         struct hpsa_scsi_dev_t *added)
835 {
836         /* called when scsi_add_device fails in order to re-adjust
837          * h->dev[] to match the mid layer's view.
838          */
839         unsigned long flags;
840         int i, j;
841
842         spin_lock_irqsave(&h->lock, flags);
843         for (i = 0; i < h->ndevices; i++) {
844                 if (h->dev[i] == added) {
845                         for (j = i; j < h->ndevices-1; j++)
846                                 h->dev[j] = h->dev[j+1];
847                         h->ndevices--;
848                         break;
849                 }
850         }
851         spin_unlock_irqrestore(&h->lock, flags);
852         kfree(added);
853 }
854
855 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
856         struct hpsa_scsi_dev_t *dev2)
857 {
858         /* we compare everything except lun and target as these
859          * are not yet assigned.  Compare parts likely
860          * to differ first
861          */
862         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
863                 sizeof(dev1->scsi3addr)) != 0)
864                 return 0;
865         if (memcmp(dev1->device_id, dev2->device_id,
866                 sizeof(dev1->device_id)) != 0)
867                 return 0;
868         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
869                 return 0;
870         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
871                 return 0;
872         if (dev1->devtype != dev2->devtype)
873                 return 0;
874         if (dev1->bus != dev2->bus)
875                 return 0;
876         return 1;
877 }
878
879 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
880         struct hpsa_scsi_dev_t *dev2)
881 {
882         /* Device attributes that can change, but don't mean
883          * that the device is a different device, nor that the OS
884          * needs to be told anything about the change.
885          */
886         if (dev1->raid_level != dev2->raid_level)
887                 return 1;
888         return 0;
889 }
890
891 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
892  * and return needle location in *index.  If scsi3addr matches, but not
893  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
894  * location in *index.
895  * In the case of a minor device attribute change, such as RAID level, just
896  * return DEVICE_UPDATED, along with the updated device's location in index.
897  * If needle not found, return DEVICE_NOT_FOUND.
898  */
899 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
900         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
901         int *index)
902 {
903         int i;
904 #define DEVICE_NOT_FOUND 0
905 #define DEVICE_CHANGED 1
906 #define DEVICE_SAME 2
907 #define DEVICE_UPDATED 3
908         for (i = 0; i < haystack_size; i++) {
909                 if (haystack[i] == NULL) /* previously removed. */
910                         continue;
911                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
912                         *index = i;
913                         if (device_is_the_same(needle, haystack[i])) {
914                                 if (device_updated(needle, haystack[i]))
915                                         return DEVICE_UPDATED;
916                                 return DEVICE_SAME;
917                         } else {
918                                 return DEVICE_CHANGED;
919                         }
920                 }
921         }
922         *index = -1;
923         return DEVICE_NOT_FOUND;
924 }
925
926 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
927         struct hpsa_scsi_dev_t *sd[], int nsds)
928 {
929         /* sd contains scsi3 addresses and devtypes, and inquiry
930          * data.  This function takes what's in sd to be the current
931          * reality and updates h->dev[] to reflect that reality.
932          */
933         int i, entry, device_change, changes = 0;
934         struct hpsa_scsi_dev_t *csd;
935         unsigned long flags;
936         struct hpsa_scsi_dev_t **added, **removed;
937         int nadded, nremoved;
938         struct Scsi_Host *sh = NULL;
939
940         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
941         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
942
943         if (!added || !removed) {
944                 dev_warn(&h->pdev->dev, "out of memory in "
945                         "adjust_hpsa_scsi_table\n");
946                 goto free_and_out;
947         }
948
949         spin_lock_irqsave(&h->devlock, flags);
950
951         /* find any devices in h->dev[] that are not in
952          * sd[] and remove them from h->dev[], and for any
953          * devices which have changed, remove the old device
954          * info and add the new device info.
955          * If minor device attributes change, just update
956          * the existing device structure.
957          */
958         i = 0;
959         nremoved = 0;
960         nadded = 0;
961         while (i < h->ndevices) {
962                 csd = h->dev[i];
963                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
964                 if (device_change == DEVICE_NOT_FOUND) {
965                         changes++;
966                         hpsa_scsi_remove_entry(h, hostno, i,
967                                 removed, &nremoved);
968                         continue; /* remove ^^^, hence i not incremented */
969                 } else if (device_change == DEVICE_CHANGED) {
970                         changes++;
971                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
972                                 added, &nadded, removed, &nremoved);
973                         /* Set it to NULL to prevent it from being freed
974                          * at the bottom of hpsa_update_scsi_devices()
975                          */
976                         sd[entry] = NULL;
977                 } else if (device_change == DEVICE_UPDATED) {
978                         hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
979                 }
980                 i++;
981         }
982
983         /* Now, make sure every device listed in sd[] is also
984          * listed in h->dev[], adding them if they aren't found
985          */
986
987         for (i = 0; i < nsds; i++) {
988                 if (!sd[i]) /* if already added above. */
989                         continue;
990                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
991                                         h->ndevices, &entry);
992                 if (device_change == DEVICE_NOT_FOUND) {
993                         changes++;
994                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
995                                 added, &nadded) != 0)
996                                 break;
997                         sd[i] = NULL; /* prevent from being freed later. */
998                 } else if (device_change == DEVICE_CHANGED) {
999                         /* should never happen... */
1000                         changes++;
1001                         dev_warn(&h->pdev->dev,
1002                                 "device unexpectedly changed.\n");
1003                         /* but if it does happen, we just ignore that device */
1004                 }
1005         }
1006         spin_unlock_irqrestore(&h->devlock, flags);
1007
1008         /* Don't notify scsi mid layer of any changes the first time through
1009          * (or if there are no changes) scsi_scan_host will do it later the
1010          * first time through.
1011          */
1012         if (hostno == -1 || !changes)
1013                 goto free_and_out;
1014
1015         sh = h->scsi_host;
1016         /* Notify scsi mid layer of any removed devices */
1017         for (i = 0; i < nremoved; i++) {
1018                 struct scsi_device *sdev =
1019                         scsi_device_lookup(sh, removed[i]->bus,
1020                                 removed[i]->target, removed[i]->lun);
1021                 if (sdev != NULL) {
1022                         scsi_remove_device(sdev);
1023                         scsi_device_put(sdev);
1024                 } else {
1025                         /* We don't expect to get here.
1026                          * future cmds to this device will get selection
1027                          * timeout as if the device was gone.
1028                          */
1029                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1030                                 " for removal.", hostno, removed[i]->bus,
1031                                 removed[i]->target, removed[i]->lun);
1032                 }
1033                 kfree(removed[i]);
1034                 removed[i] = NULL;
1035         }
1036
1037         /* Notify scsi mid layer of any added devices */
1038         for (i = 0; i < nadded; i++) {
1039                 if (scsi_add_device(sh, added[i]->bus,
1040                         added[i]->target, added[i]->lun) == 0)
1041                         continue;
1042                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1043                         "device not added.\n", hostno, added[i]->bus,
1044                         added[i]->target, added[i]->lun);
1045                 /* now we have to remove it from h->dev,
1046                  * since it didn't get added to scsi mid layer
1047                  */
1048                 fixup_botched_add(h, added[i]);
1049         }
1050
1051 free_and_out:
1052         kfree(added);
1053         kfree(removed);
1054 }
1055
1056 /*
1057  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
1058  * Assume's h->devlock is held.
1059  */
1060 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1061         int bus, int target, int lun)
1062 {
1063         int i;
1064         struct hpsa_scsi_dev_t *sd;
1065
1066         for (i = 0; i < h->ndevices; i++) {
1067                 sd = h->dev[i];
1068                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1069                         return sd;
1070         }
1071         return NULL;
1072 }
1073
1074 /* link sdev->hostdata to our per-device structure. */
1075 static int hpsa_slave_alloc(struct scsi_device *sdev)
1076 {
1077         struct hpsa_scsi_dev_t *sd;
1078         unsigned long flags;
1079         struct ctlr_info *h;
1080
1081         h = sdev_to_hba(sdev);
1082         spin_lock_irqsave(&h->devlock, flags);
1083         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1084                 sdev_id(sdev), sdev->lun);
1085         if (sd != NULL)
1086                 sdev->hostdata = sd;
1087         spin_unlock_irqrestore(&h->devlock, flags);
1088         return 0;
1089 }
1090
1091 static void hpsa_slave_destroy(struct scsi_device *sdev)
1092 {
1093         /* nothing to do. */
1094 }
1095
1096 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1097 {
1098         int i;
1099
1100         if (!h->cmd_sg_list)
1101                 return;
1102         for (i = 0; i < h->nr_cmds; i++) {
1103                 kfree(h->cmd_sg_list[i]);
1104                 h->cmd_sg_list[i] = NULL;
1105         }
1106         kfree(h->cmd_sg_list);
1107         h->cmd_sg_list = NULL;
1108 }
1109
1110 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1111 {
1112         int i;
1113
1114         if (h->chainsize <= 0)
1115                 return 0;
1116
1117         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1118                                 GFP_KERNEL);
1119         if (!h->cmd_sg_list)
1120                 return -ENOMEM;
1121         for (i = 0; i < h->nr_cmds; i++) {
1122                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1123                                                 h->chainsize, GFP_KERNEL);
1124                 if (!h->cmd_sg_list[i])
1125                         goto clean;
1126         }
1127         return 0;
1128
1129 clean:
1130         hpsa_free_sg_chain_blocks(h);
1131         return -ENOMEM;
1132 }
1133
1134 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1135         struct CommandList *c)
1136 {
1137         struct SGDescriptor *chain_sg, *chain_block;
1138         u64 temp64;
1139
1140         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1141         chain_block = h->cmd_sg_list[c->cmdindex];
1142         chain_sg->Ext = HPSA_SG_CHAIN;
1143         chain_sg->Len = sizeof(*chain_sg) *
1144                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1145         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1146                                 PCI_DMA_TODEVICE);
1147         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1148         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1149 }
1150
1151 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1152         struct CommandList *c)
1153 {
1154         struct SGDescriptor *chain_sg;
1155         union u64bit temp64;
1156
1157         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1158                 return;
1159
1160         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1161         temp64.val32.lower = chain_sg->Addr.lower;
1162         temp64.val32.upper = chain_sg->Addr.upper;
1163         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1164 }
1165
1166 static void complete_scsi_command(struct CommandList *cp)
1167 {
1168         struct scsi_cmnd *cmd;
1169         struct ctlr_info *h;
1170         struct ErrorInfo *ei;
1171
1172         unsigned char sense_key;
1173         unsigned char asc;      /* additional sense code */
1174         unsigned char ascq;     /* additional sense code qualifier */
1175         unsigned long sense_data_size;
1176
1177         ei = cp->err_info;
1178         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1179         h = cp->h;
1180
1181         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1182         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1183                 hpsa_unmap_sg_chain_block(h, cp);
1184
1185         cmd->result = (DID_OK << 16);           /* host byte */
1186         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1187         cmd->result |= ei->ScsiStatus;
1188
1189         /* copy the sense data whether we need to or not. */
1190         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1191                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1192         else
1193                 sense_data_size = sizeof(ei->SenseInfo);
1194         if (ei->SenseLen < sense_data_size)
1195                 sense_data_size = ei->SenseLen;
1196
1197         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1198         scsi_set_resid(cmd, ei->ResidualCnt);
1199
1200         if (ei->CommandStatus == 0) {
1201                 cmd->scsi_done(cmd);
1202                 cmd_free(h, cp);
1203                 return;
1204         }
1205
1206         /* an error has occurred */
1207         switch (ei->CommandStatus) {
1208
1209         case CMD_TARGET_STATUS:
1210                 if (ei->ScsiStatus) {
1211                         /* Get sense key */
1212                         sense_key = 0xf & ei->SenseInfo[2];
1213                         /* Get additional sense code */
1214                         asc = ei->SenseInfo[12];
1215                         /* Get addition sense code qualifier */
1216                         ascq = ei->SenseInfo[13];
1217                 }
1218
1219                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1220                         if (check_for_unit_attention(h, cp)) {
1221                                 cmd->result = DID_SOFT_ERROR << 16;
1222                                 break;
1223                         }
1224                         if (sense_key == ILLEGAL_REQUEST) {
1225                                 /*
1226                                  * SCSI REPORT_LUNS is commonly unsupported on
1227                                  * Smart Array.  Suppress noisy complaint.
1228                                  */
1229                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1230                                         break;
1231
1232                                 /* If ASC/ASCQ indicate Logical Unit
1233                                  * Not Supported condition,
1234                                  */
1235                                 if ((asc == 0x25) && (ascq == 0x0)) {
1236                                         dev_warn(&h->pdev->dev, "cp %p "
1237                                                 "has check condition\n", cp);
1238                                         break;
1239                                 }
1240                         }
1241
1242                         if (sense_key == NOT_READY) {
1243                                 /* If Sense is Not Ready, Logical Unit
1244                                  * Not ready, Manual Intervention
1245                                  * required
1246                                  */
1247                                 if ((asc == 0x04) && (ascq == 0x03)) {
1248                                         dev_warn(&h->pdev->dev, "cp %p "
1249                                                 "has check condition: unit "
1250                                                 "not ready, manual "
1251                                                 "intervention required\n", cp);
1252                                         break;
1253                                 }
1254                         }
1255                         if (sense_key == ABORTED_COMMAND) {
1256                                 /* Aborted command is retryable */
1257                                 dev_warn(&h->pdev->dev, "cp %p "
1258                                         "has check condition: aborted command: "
1259                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1260                                         cp, asc, ascq);
1261                                 cmd->result = DID_SOFT_ERROR << 16;
1262                                 break;
1263                         }
1264                         /* Must be some other type of check condition */
1265                         dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1266                                         "unknown type: "
1267                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1268                                         "Returning result: 0x%x, "
1269                                         "cmd=[%02x %02x %02x %02x %02x "
1270                                         "%02x %02x %02x %02x %02x %02x "
1271                                         "%02x %02x %02x %02x %02x]\n",
1272                                         cp, sense_key, asc, ascq,
1273                                         cmd->result,
1274                                         cmd->cmnd[0], cmd->cmnd[1],
1275                                         cmd->cmnd[2], cmd->cmnd[3],
1276                                         cmd->cmnd[4], cmd->cmnd[5],
1277                                         cmd->cmnd[6], cmd->cmnd[7],
1278                                         cmd->cmnd[8], cmd->cmnd[9],
1279                                         cmd->cmnd[10], cmd->cmnd[11],
1280                                         cmd->cmnd[12], cmd->cmnd[13],
1281                                         cmd->cmnd[14], cmd->cmnd[15]);
1282                         break;
1283                 }
1284
1285
1286                 /* Problem was not a check condition
1287                  * Pass it up to the upper layers...
1288                  */
1289                 if (ei->ScsiStatus) {
1290                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1291                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1292                                 "Returning result: 0x%x\n",
1293                                 cp, ei->ScsiStatus,
1294                                 sense_key, asc, ascq,
1295                                 cmd->result);
1296                 } else {  /* scsi status is zero??? How??? */
1297                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1298                                 "Returning no connection.\n", cp),
1299
1300                         /* Ordinarily, this case should never happen,
1301                          * but there is a bug in some released firmware
1302                          * revisions that allows it to happen if, for
1303                          * example, a 4100 backplane loses power and
1304                          * the tape drive is in it.  We assume that
1305                          * it's a fatal error of some kind because we
1306                          * can't show that it wasn't. We will make it
1307                          * look like selection timeout since that is
1308                          * the most common reason for this to occur,
1309                          * and it's severe enough.
1310                          */
1311
1312                         cmd->result = DID_NO_CONNECT << 16;
1313                 }
1314                 break;
1315
1316         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1317                 break;
1318         case CMD_DATA_OVERRUN:
1319                 dev_warn(&h->pdev->dev, "cp %p has"
1320                         " completed with data overrun "
1321                         "reported\n", cp);
1322                 break;
1323         case CMD_INVALID: {
1324                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1325                 print_cmd(cp); */
1326                 /* We get CMD_INVALID if you address a non-existent device
1327                  * instead of a selection timeout (no response).  You will
1328                  * see this if you yank out a drive, then try to access it.
1329                  * This is kind of a shame because it means that any other
1330                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1331                  * missing target. */
1332                 cmd->result = DID_NO_CONNECT << 16;
1333         }
1334                 break;
1335         case CMD_PROTOCOL_ERR:
1336                 cmd->result = DID_ERROR << 16;
1337                 dev_warn(&h->pdev->dev, "cp %p has "
1338                         "protocol error\n", cp);
1339                 break;
1340         case CMD_HARDWARE_ERR:
1341                 cmd->result = DID_ERROR << 16;
1342                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1343                 break;
1344         case CMD_CONNECTION_LOST:
1345                 cmd->result = DID_ERROR << 16;
1346                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1347                 break;
1348         case CMD_ABORTED:
1349                 cmd->result = DID_ABORT << 16;
1350                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1351                                 cp, ei->ScsiStatus);
1352                 break;
1353         case CMD_ABORT_FAILED:
1354                 cmd->result = DID_ERROR << 16;
1355                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1356                 break;
1357         case CMD_UNSOLICITED_ABORT:
1358                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1359                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1360                         "abort\n", cp);
1361                 break;
1362         case CMD_TIMEOUT:
1363                 cmd->result = DID_TIME_OUT << 16;
1364                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1365                 break;
1366         case CMD_UNABORTABLE:
1367                 cmd->result = DID_ERROR << 16;
1368                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1369                 break;
1370         default:
1371                 cmd->result = DID_ERROR << 16;
1372                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1373                                 cp, ei->CommandStatus);
1374         }
1375         cmd->scsi_done(cmd);
1376         cmd_free(h, cp);
1377 }
1378
1379 static void hpsa_pci_unmap(struct pci_dev *pdev,
1380         struct CommandList *c, int sg_used, int data_direction)
1381 {
1382         int i;
1383         union u64bit addr64;
1384
1385         for (i = 0; i < sg_used; i++) {
1386                 addr64.val32.lower = c->SG[i].Addr.lower;
1387                 addr64.val32.upper = c->SG[i].Addr.upper;
1388                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1389                         data_direction);
1390         }
1391 }
1392
1393 static int hpsa_map_one(struct pci_dev *pdev,
1394                 struct CommandList *cp,
1395                 unsigned char *buf,
1396                 size_t buflen,
1397                 int data_direction)
1398 {
1399         u64 addr64;
1400
1401         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1402                 cp->Header.SGList = 0;
1403                 cp->Header.SGTotal = 0;
1404                 return 0;
1405         }
1406
1407         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1408         if (dma_mapping_error(&pdev->dev, addr64)) {
1409                 /* Prevent subsequent unmap of something never mapped */
1410                 cp->Header.SGList = 0;
1411                 cp->Header.SGTotal = 0;
1412                 return -1;
1413         }
1414         cp->SG[0].Addr.lower =
1415           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1416         cp->SG[0].Addr.upper =
1417           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1418         cp->SG[0].Len = buflen;
1419         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1420         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1421         return 0;
1422 }
1423
1424 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1425         struct CommandList *c)
1426 {
1427         DECLARE_COMPLETION_ONSTACK(wait);
1428
1429         c->waiting = &wait;
1430         enqueue_cmd_and_start_io(h, c);
1431         wait_for_completion(&wait);
1432 }
1433
1434 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1435         struct CommandList *c)
1436 {
1437         unsigned long flags;
1438
1439         /* If controller lockup detected, fake a hardware error. */
1440         spin_lock_irqsave(&h->lock, flags);
1441         if (unlikely(h->lockup_detected)) {
1442                 spin_unlock_irqrestore(&h->lock, flags);
1443                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1444         } else {
1445                 spin_unlock_irqrestore(&h->lock, flags);
1446                 hpsa_scsi_do_simple_cmd_core(h, c);
1447         }
1448 }
1449
1450 #define MAX_DRIVER_CMD_RETRIES 25
1451 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1452         struct CommandList *c, int data_direction)
1453 {
1454         int backoff_time = 10, retry_count = 0;
1455
1456         do {
1457                 memset(c->err_info, 0, sizeof(*c->err_info));
1458                 hpsa_scsi_do_simple_cmd_core(h, c);
1459                 retry_count++;
1460                 if (retry_count > 3) {
1461                         msleep(backoff_time);
1462                         if (backoff_time < 1000)
1463                                 backoff_time *= 2;
1464                 }
1465         } while ((check_for_unit_attention(h, c) ||
1466                         check_for_busy(h, c)) &&
1467                         retry_count <= MAX_DRIVER_CMD_RETRIES);
1468         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1469 }
1470
1471 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1472 {
1473         struct ErrorInfo *ei;
1474         struct device *d = &cp->h->pdev->dev;
1475
1476         ei = cp->err_info;
1477         switch (ei->CommandStatus) {
1478         case CMD_TARGET_STATUS:
1479                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1480                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1481                                 ei->ScsiStatus);
1482                 if (ei->ScsiStatus == 0)
1483                         dev_warn(d, "SCSI status is abnormally zero.  "
1484                         "(probably indicates selection timeout "
1485                         "reported incorrectly due to a known "
1486                         "firmware bug, circa July, 2001.)\n");
1487                 break;
1488         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1489                         dev_info(d, "UNDERRUN\n");
1490                 break;
1491         case CMD_DATA_OVERRUN:
1492                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1493                 break;
1494         case CMD_INVALID: {
1495                 /* controller unfortunately reports SCSI passthru's
1496                  * to non-existent targets as invalid commands.
1497                  */
1498                 dev_warn(d, "cp %p is reported invalid (probably means "
1499                         "target device no longer present)\n", cp);
1500                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1501                 print_cmd(cp);  */
1502                 }
1503                 break;
1504         case CMD_PROTOCOL_ERR:
1505                 dev_warn(d, "cp %p has protocol error \n", cp);
1506                 break;
1507         case CMD_HARDWARE_ERR:
1508                 /* cmd->result = DID_ERROR << 16; */
1509                 dev_warn(d, "cp %p had hardware error\n", cp);
1510                 break;
1511         case CMD_CONNECTION_LOST:
1512                 dev_warn(d, "cp %p had connection lost\n", cp);
1513                 break;
1514         case CMD_ABORTED:
1515                 dev_warn(d, "cp %p was aborted\n", cp);
1516                 break;
1517         case CMD_ABORT_FAILED:
1518                 dev_warn(d, "cp %p reports abort failed\n", cp);
1519                 break;
1520         case CMD_UNSOLICITED_ABORT:
1521                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1522                 break;
1523         case CMD_TIMEOUT:
1524                 dev_warn(d, "cp %p timed out\n", cp);
1525                 break;
1526         case CMD_UNABORTABLE:
1527                 dev_warn(d, "Command unabortable\n");
1528                 break;
1529         default:
1530                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1531                                 ei->CommandStatus);
1532         }
1533 }
1534
1535 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1536                         unsigned char page, unsigned char *buf,
1537                         unsigned char bufsize)
1538 {
1539         int rc = IO_OK;
1540         struct CommandList *c;
1541         struct ErrorInfo *ei;
1542
1543         c = cmd_special_alloc(h);
1544
1545         if (c == NULL) {                        /* trouble... */
1546                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1547                 return -ENOMEM;
1548         }
1549
1550         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
1551                         page, scsi3addr, TYPE_CMD)) {
1552                 rc = -1;
1553                 goto out;
1554         }
1555         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1556         ei = c->err_info;
1557         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1558                 hpsa_scsi_interpret_error(c);
1559                 rc = -1;
1560         }
1561 out:
1562         cmd_special_free(h, c);
1563         return rc;
1564 }
1565
1566 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1567 {
1568         int rc = IO_OK;
1569         struct CommandList *c;
1570         struct ErrorInfo *ei;
1571
1572         c = cmd_special_alloc(h);
1573
1574         if (c == NULL) {                        /* trouble... */
1575                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1576                 return -ENOMEM;
1577         }
1578
1579         /* fill_cmd can't fail here, no data buffer to map. */
1580         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h,
1581                         NULL, 0, 0, scsi3addr, TYPE_MSG);
1582         hpsa_scsi_do_simple_cmd_core(h, c);
1583         /* no unmap needed here because no data xfer. */
1584
1585         ei = c->err_info;
1586         if (ei->CommandStatus != 0) {
1587                 hpsa_scsi_interpret_error(c);
1588                 rc = -1;
1589         }
1590         cmd_special_free(h, c);
1591         return rc;
1592 }
1593
1594 static void hpsa_get_raid_level(struct ctlr_info *h,
1595         unsigned char *scsi3addr, unsigned char *raid_level)
1596 {
1597         int rc;
1598         unsigned char *buf;
1599
1600         *raid_level = RAID_UNKNOWN;
1601         buf = kzalloc(64, GFP_KERNEL);
1602         if (!buf)
1603                 return;
1604         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1605         if (rc == 0)
1606                 *raid_level = buf[8];
1607         if (*raid_level > RAID_UNKNOWN)
1608                 *raid_level = RAID_UNKNOWN;
1609         kfree(buf);
1610         return;
1611 }
1612
1613 /* Get the device id from inquiry page 0x83 */
1614 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1615         unsigned char *device_id, int buflen)
1616 {
1617         int rc;
1618         unsigned char *buf;
1619
1620         if (buflen > 16)
1621                 buflen = 16;
1622         buf = kzalloc(64, GFP_KERNEL);
1623         if (!buf)
1624                 return -1;
1625         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1626         if (rc == 0)
1627                 memcpy(device_id, &buf[8], buflen);
1628         kfree(buf);
1629         return rc != 0;
1630 }
1631
1632 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1633                 struct ReportLUNdata *buf, int bufsize,
1634                 int extended_response)
1635 {
1636         int rc = IO_OK;
1637         struct CommandList *c;
1638         unsigned char scsi3addr[8];
1639         struct ErrorInfo *ei;
1640
1641         c = cmd_special_alloc(h);
1642         if (c == NULL) {                        /* trouble... */
1643                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1644                 return -1;
1645         }
1646         /* address the controller */
1647         memset(scsi3addr, 0, sizeof(scsi3addr));
1648         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1649                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
1650                 rc = -1;
1651                 goto out;
1652         }
1653         if (extended_response)
1654                 c->Request.CDB[1] = extended_response;
1655         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1656         ei = c->err_info;
1657         if (ei->CommandStatus != 0 &&
1658             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1659                 hpsa_scsi_interpret_error(c);
1660                 rc = -1;
1661         }
1662 out:
1663         cmd_special_free(h, c);
1664         return rc;
1665 }
1666
1667 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1668                 struct ReportLUNdata *buf,
1669                 int bufsize, int extended_response)
1670 {
1671         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1672 }
1673
1674 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1675                 struct ReportLUNdata *buf, int bufsize)
1676 {
1677         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1678 }
1679
1680 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1681         int bus, int target, int lun)
1682 {
1683         device->bus = bus;
1684         device->target = target;
1685         device->lun = lun;
1686 }
1687
1688 static int hpsa_update_device_info(struct ctlr_info *h,
1689         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1690         unsigned char *is_OBDR_device)
1691 {
1692
1693 #define OBDR_SIG_OFFSET 43
1694 #define OBDR_TAPE_SIG "$DR-10"
1695 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1696 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1697
1698         unsigned char *inq_buff;
1699         unsigned char *obdr_sig;
1700
1701         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1702         if (!inq_buff)
1703                 goto bail_out;
1704
1705         /* Do an inquiry to the device to see what it is. */
1706         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1707                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1708                 /* Inquiry failed (msg printed already) */
1709                 dev_err(&h->pdev->dev,
1710                         "hpsa_update_device_info: inquiry failed\n");
1711                 goto bail_out;
1712         }
1713
1714         this_device->devtype = (inq_buff[0] & 0x1f);
1715         memcpy(this_device->scsi3addr, scsi3addr, 8);
1716         memcpy(this_device->vendor, &inq_buff[8],
1717                 sizeof(this_device->vendor));
1718         memcpy(this_device->model, &inq_buff[16],
1719                 sizeof(this_device->model));
1720         memset(this_device->device_id, 0,
1721                 sizeof(this_device->device_id));
1722         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1723                 sizeof(this_device->device_id));
1724
1725         if (this_device->devtype == TYPE_DISK &&
1726                 is_logical_dev_addr_mode(scsi3addr))
1727                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1728         else
1729                 this_device->raid_level = RAID_UNKNOWN;
1730
1731         if (is_OBDR_device) {
1732                 /* See if this is a One-Button-Disaster-Recovery device
1733                  * by looking for "$DR-10" at offset 43 in inquiry data.
1734                  */
1735                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1736                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1737                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
1738                                                 OBDR_SIG_LEN) == 0);
1739         }
1740
1741         kfree(inq_buff);
1742         return 0;
1743
1744 bail_out:
1745         kfree(inq_buff);
1746         return 1;
1747 }
1748
1749 static unsigned char *ext_target_model[] = {
1750         "MSA2012",
1751         "MSA2024",
1752         "MSA2312",
1753         "MSA2324",
1754         "P2000 G3 SAS",
1755         NULL,
1756 };
1757
1758 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1759 {
1760         int i;
1761
1762         for (i = 0; ext_target_model[i]; i++)
1763                 if (strncmp(device->model, ext_target_model[i],
1764                         strlen(ext_target_model[i])) == 0)
1765                         return 1;
1766         return 0;
1767 }
1768
1769 /* Helper function to assign bus, target, lun mapping of devices.
1770  * Puts non-external target logical volumes on bus 0, external target logical
1771  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1772  * Logical drive target and lun are assigned at this time, but
1773  * physical device lun and target assignment are deferred (assigned
1774  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1775  */
1776 static void figure_bus_target_lun(struct ctlr_info *h,
1777         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1778 {
1779         u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1780
1781         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1782                 /* physical device, target and lun filled in later */
1783                 if (is_hba_lunid(lunaddrbytes))
1784                         hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1785                 else
1786                         /* defer target, lun assignment for physical devices */
1787                         hpsa_set_bus_target_lun(device, 2, -1, -1);
1788                 return;
1789         }
1790         /* It's a logical device */
1791         if (is_ext_target(h, device)) {
1792                 /* external target way, put logicals on bus 1
1793                  * and match target/lun numbers box
1794                  * reports, other smart array, bus 0, target 0, match lunid
1795                  */
1796                 hpsa_set_bus_target_lun(device,
1797                         1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1798                 return;
1799         }
1800         hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1801 }
1802
1803 /*
1804  * If there is no lun 0 on a target, linux won't find any devices.
1805  * For the external targets (arrays), we have to manually detect the enclosure
1806  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1807  * it for some reason.  *tmpdevice is the target we're adding,
1808  * this_device is a pointer into the current element of currentsd[]
1809  * that we're building up in update_scsi_devices(), below.
1810  * lunzerobits is a bitmap that tracks which targets already have a
1811  * lun 0 assigned.
1812  * Returns 1 if an enclosure was added, 0 if not.
1813  */
1814 static int add_ext_target_dev(struct ctlr_info *h,
1815         struct hpsa_scsi_dev_t *tmpdevice,
1816         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1817         unsigned long lunzerobits[], int *n_ext_target_devs)
1818 {
1819         unsigned char scsi3addr[8];
1820
1821         if (test_bit(tmpdevice->target, lunzerobits))
1822                 return 0; /* There is already a lun 0 on this target. */
1823
1824         if (!is_logical_dev_addr_mode(lunaddrbytes))
1825                 return 0; /* It's the logical targets that may lack lun 0. */
1826
1827         if (!is_ext_target(h, tmpdevice))
1828                 return 0; /* Only external target devices have this problem. */
1829
1830         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1831                 return 0;
1832
1833         memset(scsi3addr, 0, 8);
1834         scsi3addr[3] = tmpdevice->target;
1835         if (is_hba_lunid(scsi3addr))
1836                 return 0; /* Don't add the RAID controller here. */
1837
1838         if (is_scsi_rev_5(h))
1839                 return 0; /* p1210m doesn't need to do this. */
1840
1841         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1842                 dev_warn(&h->pdev->dev, "Maximum number of external "
1843                         "target devices exceeded.  Check your hardware "
1844                         "configuration.");
1845                 return 0;
1846         }
1847
1848         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1849                 return 0;
1850         (*n_ext_target_devs)++;
1851         hpsa_set_bus_target_lun(this_device,
1852                                 tmpdevice->bus, tmpdevice->target, 0);
1853         set_bit(tmpdevice->target, lunzerobits);
1854         return 1;
1855 }
1856
1857 /*
1858  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1859  * logdev.  The number of luns in physdev and logdev are returned in
1860  * *nphysicals and *nlogicals, respectively.
1861  * Returns 0 on success, -1 otherwise.
1862  */
1863 static int hpsa_gather_lun_info(struct ctlr_info *h,
1864         int reportlunsize,
1865         struct ReportLUNdata *physdev, u32 *nphysicals,
1866         struct ReportLUNdata *logdev, u32 *nlogicals)
1867 {
1868         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1869                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1870                 return -1;
1871         }
1872         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1873         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1874                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1875                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1876                         *nphysicals - HPSA_MAX_PHYS_LUN);
1877                 *nphysicals = HPSA_MAX_PHYS_LUN;
1878         }
1879         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1880                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1881                 return -1;
1882         }
1883         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1884         /* Reject Logicals in excess of our max capability. */
1885         if (*nlogicals > HPSA_MAX_LUN) {
1886                 dev_warn(&h->pdev->dev,
1887                         "maximum logical LUNs (%d) exceeded.  "
1888                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1889                         *nlogicals - HPSA_MAX_LUN);
1890                         *nlogicals = HPSA_MAX_LUN;
1891         }
1892         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1893                 dev_warn(&h->pdev->dev,
1894                         "maximum logical + physical LUNs (%d) exceeded. "
1895                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1896                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1897                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1898         }
1899         return 0;
1900 }
1901
1902 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1903         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1904         struct ReportLUNdata *logdev_list)
1905 {
1906         /* Helper function, figure out where the LUN ID info is coming from
1907          * given index i, lists of physical and logical devices, where in
1908          * the list the raid controller is supposed to appear (first or last)
1909          */
1910
1911         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1912         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1913
1914         if (i == raid_ctlr_position)
1915                 return RAID_CTLR_LUNID;
1916
1917         if (i < logicals_start)
1918                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1919
1920         if (i < last_device)
1921                 return &logdev_list->LUN[i - nphysicals -
1922                         (raid_ctlr_position == 0)][0];
1923         BUG();
1924         return NULL;
1925 }
1926
1927 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1928 {
1929         /* the idea here is we could get notified
1930          * that some devices have changed, so we do a report
1931          * physical luns and report logical luns cmd, and adjust
1932          * our list of devices accordingly.
1933          *
1934          * The scsi3addr's of devices won't change so long as the
1935          * adapter is not reset.  That means we can rescan and
1936          * tell which devices we already know about, vs. new
1937          * devices, vs.  disappearing devices.
1938          */
1939         struct ReportLUNdata *physdev_list = NULL;
1940         struct ReportLUNdata *logdev_list = NULL;
1941         u32 nphysicals = 0;
1942         u32 nlogicals = 0;
1943         u32 ndev_allocated = 0;
1944         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1945         int ncurrent = 0;
1946         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1947         int i, n_ext_target_devs, ndevs_to_allocate;
1948         int raid_ctlr_position;
1949         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1950
1951         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1952         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1953         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1954         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1955
1956         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1957                 dev_err(&h->pdev->dev, "out of memory\n");
1958                 goto out;
1959         }
1960         memset(lunzerobits, 0, sizeof(lunzerobits));
1961
1962         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1963                         logdev_list, &nlogicals))
1964                 goto out;
1965
1966         /* We might see up to the maximum number of logical and physical disks
1967          * plus external target devices, and a device for the local RAID
1968          * controller.
1969          */
1970         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
1971
1972         /* Allocate the per device structures */
1973         for (i = 0; i < ndevs_to_allocate; i++) {
1974                 if (i >= HPSA_MAX_DEVICES) {
1975                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1976                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
1977                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
1978                         break;
1979                 }
1980
1981                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1982                 if (!currentsd[i]) {
1983                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1984                                 __FILE__, __LINE__);
1985                         goto out;
1986                 }
1987                 ndev_allocated++;
1988         }
1989
1990         if (unlikely(is_scsi_rev_5(h)))
1991                 raid_ctlr_position = 0;
1992         else
1993                 raid_ctlr_position = nphysicals + nlogicals;
1994
1995         /* adjust our table of devices */
1996         n_ext_target_devs = 0;
1997         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1998                 u8 *lunaddrbytes, is_OBDR = 0;
1999
2000                 /* Figure out where the LUN ID info is coming from */
2001                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
2002                         i, nphysicals, nlogicals, physdev_list, logdev_list);
2003                 /* skip masked physical devices. */
2004                 if (lunaddrbytes[3] & 0xC0 &&
2005                         i < nphysicals + (raid_ctlr_position == 0))
2006                         continue;
2007
2008                 /* Get device type, vendor, model, device id */
2009                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
2010                                                         &is_OBDR))
2011                         continue; /* skip it if we can't talk to it. */
2012                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
2013                 this_device = currentsd[ncurrent];
2014
2015                 /*
2016                  * For external target devices, we have to insert a LUN 0 which
2017                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
2018                  * is nonetheless an enclosure device there.  We have to
2019                  * present that otherwise linux won't find anything if
2020                  * there is no lun 0.
2021                  */
2022                 if (add_ext_target_dev(h, tmpdevice, this_device,
2023                                 lunaddrbytes, lunzerobits,
2024                                 &n_ext_target_devs)) {
2025                         ncurrent++;
2026                         this_device = currentsd[ncurrent];
2027                 }
2028
2029                 *this_device = *tmpdevice;
2030
2031                 switch (this_device->devtype) {
2032                 case TYPE_ROM:
2033                         /* We don't *really* support actual CD-ROM devices,
2034                          * just "One Button Disaster Recovery" tape drive
2035                          * which temporarily pretends to be a CD-ROM drive.
2036                          * So we check that the device is really an OBDR tape
2037                          * device by checking for "$DR-10" in bytes 43-48 of
2038                          * the inquiry data.
2039                          */
2040                         if (is_OBDR)
2041                                 ncurrent++;
2042                         break;
2043                 case TYPE_DISK:
2044                         if (i < nphysicals)
2045                                 break;
2046                         ncurrent++;
2047                         break;
2048                 case TYPE_TAPE:
2049                 case TYPE_MEDIUM_CHANGER:
2050                         ncurrent++;
2051                         break;
2052                 case TYPE_RAID:
2053                         /* Only present the Smartarray HBA as a RAID controller.
2054                          * If it's a RAID controller other than the HBA itself
2055                          * (an external RAID controller, MSA500 or similar)
2056                          * don't present it.
2057                          */
2058                         if (!is_hba_lunid(lunaddrbytes))
2059                                 break;
2060                         ncurrent++;
2061                         break;
2062                 default:
2063                         break;
2064                 }
2065                 if (ncurrent >= HPSA_MAX_DEVICES)
2066                         break;
2067         }
2068         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
2069 out:
2070         kfree(tmpdevice);
2071         for (i = 0; i < ndev_allocated; i++)
2072                 kfree(currentsd[i]);
2073         kfree(currentsd);
2074         kfree(physdev_list);
2075         kfree(logdev_list);
2076 }
2077
2078 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2079  * dma mapping  and fills in the scatter gather entries of the
2080  * hpsa command, cp.
2081  */
2082 static int hpsa_scatter_gather(struct ctlr_info *h,
2083                 struct CommandList *cp,
2084                 struct scsi_cmnd *cmd)
2085 {
2086         unsigned int len;
2087         struct scatterlist *sg;
2088         u64 addr64;
2089         int use_sg, i, sg_index, chained;
2090         struct SGDescriptor *curr_sg;
2091
2092         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2093
2094         use_sg = scsi_dma_map(cmd);
2095         if (use_sg < 0)
2096                 return use_sg;
2097
2098         if (!use_sg)
2099                 goto sglist_finished;
2100
2101         curr_sg = cp->SG;
2102         chained = 0;
2103         sg_index = 0;
2104         scsi_for_each_sg(cmd, sg, use_sg, i) {
2105                 if (i == h->max_cmd_sg_entries - 1 &&
2106                         use_sg > h->max_cmd_sg_entries) {
2107                         chained = 1;
2108                         curr_sg = h->cmd_sg_list[cp->cmdindex];
2109                         sg_index = 0;
2110                 }
2111                 addr64 = (u64) sg_dma_address(sg);
2112                 len  = sg_dma_len(sg);
2113                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2114                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2115                 curr_sg->Len = len;
2116                 curr_sg->Ext = 0;  /* we are not chaining */
2117                 curr_sg++;
2118         }
2119
2120         if (use_sg + chained > h->maxSG)
2121                 h->maxSG = use_sg + chained;
2122
2123         if (chained) {
2124                 cp->Header.SGList = h->max_cmd_sg_entries;
2125                 cp->Header.SGTotal = (u16) (use_sg + 1);
2126                 hpsa_map_sg_chain_block(h, cp);
2127                 return 0;
2128         }
2129
2130 sglist_finished:
2131
2132         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2133         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2134         return 0;
2135 }
2136
2137
2138 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2139         void (*done)(struct scsi_cmnd *))
2140 {
2141         struct ctlr_info *h;
2142         struct hpsa_scsi_dev_t *dev;
2143         unsigned char scsi3addr[8];
2144         struct CommandList *c;
2145         unsigned long flags;
2146
2147         /* Get the ptr to our adapter structure out of cmd->host. */
2148         h = sdev_to_hba(cmd->device);
2149         dev = cmd->device->hostdata;
2150         if (!dev) {
2151                 cmd->result = DID_NO_CONNECT << 16;
2152                 done(cmd);
2153                 return 0;
2154         }
2155         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2156
2157         spin_lock_irqsave(&h->lock, flags);
2158         if (unlikely(h->lockup_detected)) {
2159                 spin_unlock_irqrestore(&h->lock, flags);
2160                 cmd->result = DID_ERROR << 16;
2161                 done(cmd);
2162                 return 0;
2163         }
2164         spin_unlock_irqrestore(&h->lock, flags);
2165         c = cmd_alloc(h);
2166         if (c == NULL) {                        /* trouble... */
2167                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2168                 return SCSI_MLQUEUE_HOST_BUSY;
2169         }
2170
2171         /* Fill in the command list header */
2172
2173         cmd->scsi_done = done;    /* save this for use by completion code */
2174
2175         /* save c in case we have to abort it  */
2176         cmd->host_scribble = (unsigned char *) c;
2177
2178         c->cmd_type = CMD_SCSI;
2179         c->scsi_cmd = cmd;
2180         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2181         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2182         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2183         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2184
2185         /* Fill in the request block... */
2186
2187         c->Request.Timeout = 0;
2188         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2189         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2190         c->Request.CDBLen = cmd->cmd_len;
2191         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2192         c->Request.Type.Type = TYPE_CMD;
2193         c->Request.Type.Attribute = ATTR_SIMPLE;
2194         switch (cmd->sc_data_direction) {
2195         case DMA_TO_DEVICE:
2196                 c->Request.Type.Direction = XFER_WRITE;
2197                 break;
2198         case DMA_FROM_DEVICE:
2199                 c->Request.Type.Direction = XFER_READ;
2200                 break;
2201         case DMA_NONE:
2202                 c->Request.Type.Direction = XFER_NONE;
2203                 break;
2204         case DMA_BIDIRECTIONAL:
2205                 /* This can happen if a buggy application does a scsi passthru
2206                  * and sets both inlen and outlen to non-zero. ( see
2207                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2208                  */
2209
2210                 c->Request.Type.Direction = XFER_RSVD;
2211                 /* This is technically wrong, and hpsa controllers should
2212                  * reject it with CMD_INVALID, which is the most correct
2213                  * response, but non-fibre backends appear to let it
2214                  * slide by, and give the same results as if this field
2215                  * were set correctly.  Either way is acceptable for
2216                  * our purposes here.
2217                  */
2218
2219                 break;
2220
2221         default:
2222                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2223                         cmd->sc_data_direction);
2224                 BUG();
2225                 break;
2226         }
2227
2228         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2229                 cmd_free(h, c);
2230                 return SCSI_MLQUEUE_HOST_BUSY;
2231         }
2232         enqueue_cmd_and_start_io(h, c);
2233         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2234         return 0;
2235 }
2236
2237 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2238
2239 static void hpsa_scan_start(struct Scsi_Host *sh)
2240 {
2241         struct ctlr_info *h = shost_to_hba(sh);
2242         unsigned long flags;
2243
2244         /* wait until any scan already in progress is finished. */
2245         while (1) {
2246                 spin_lock_irqsave(&h->scan_lock, flags);
2247                 if (h->scan_finished)
2248                         break;
2249                 spin_unlock_irqrestore(&h->scan_lock, flags);
2250                 wait_event(h->scan_wait_queue, h->scan_finished);
2251                 /* Note: We don't need to worry about a race between this
2252                  * thread and driver unload because the midlayer will
2253                  * have incremented the reference count, so unload won't
2254                  * happen if we're in here.
2255                  */
2256         }
2257         h->scan_finished = 0; /* mark scan as in progress */
2258         spin_unlock_irqrestore(&h->scan_lock, flags);
2259
2260         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2261
2262         spin_lock_irqsave(&h->scan_lock, flags);
2263         h->scan_finished = 1; /* mark scan as finished. */
2264         wake_up_all(&h->scan_wait_queue);
2265         spin_unlock_irqrestore(&h->scan_lock, flags);
2266 }
2267
2268 static int hpsa_scan_finished(struct Scsi_Host *sh,
2269         unsigned long elapsed_time)
2270 {
2271         struct ctlr_info *h = shost_to_hba(sh);
2272         unsigned long flags;
2273         int finished;
2274
2275         spin_lock_irqsave(&h->scan_lock, flags);
2276         finished = h->scan_finished;
2277         spin_unlock_irqrestore(&h->scan_lock, flags);
2278         return finished;
2279 }
2280
2281 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2282         int qdepth, int reason)
2283 {
2284         struct ctlr_info *h = sdev_to_hba(sdev);
2285
2286         if (reason != SCSI_QDEPTH_DEFAULT)
2287                 return -ENOTSUPP;
2288
2289         if (qdepth < 1)
2290                 qdepth = 1;
2291         else
2292                 if (qdepth > h->nr_cmds)
2293                         qdepth = h->nr_cmds;
2294         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2295         return sdev->queue_depth;
2296 }
2297
2298 static void hpsa_unregister_scsi(struct ctlr_info *h)
2299 {
2300         /* we are being forcibly unloaded, and may not refuse. */
2301         scsi_remove_host(h->scsi_host);
2302         scsi_host_put(h->scsi_host);
2303         h->scsi_host = NULL;
2304 }
2305
2306 static int hpsa_register_scsi(struct ctlr_info *h)
2307 {
2308         struct Scsi_Host *sh;
2309         int error;
2310
2311         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2312         if (sh == NULL)
2313                 goto fail;
2314
2315         sh->io_port = 0;
2316         sh->n_io_port = 0;
2317         sh->this_id = -1;
2318         sh->max_channel = 3;
2319         sh->max_cmd_len = MAX_COMMAND_SIZE;
2320         sh->max_lun = HPSA_MAX_LUN;
2321         sh->max_id = HPSA_MAX_LUN;
2322         sh->can_queue = h->nr_cmds;
2323         sh->cmd_per_lun = h->nr_cmds;
2324         sh->sg_tablesize = h->maxsgentries;
2325         h->scsi_host = sh;
2326         sh->hostdata[0] = (unsigned long) h;
2327         sh->irq = h->intr[h->intr_mode];
2328         sh->unique_id = sh->irq;
2329         error = scsi_add_host(sh, &h->pdev->dev);
2330         if (error)
2331                 goto fail_host_put;
2332         scsi_scan_host(sh);
2333         return 0;
2334
2335  fail_host_put:
2336         dev_err(&h->pdev->dev, "%s: scsi_add_host"
2337                 " failed for controller %d\n", __func__, h->ctlr);
2338         scsi_host_put(sh);
2339         return error;
2340  fail:
2341         dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2342                 " failed for controller %d\n", __func__, h->ctlr);
2343         return -ENOMEM;
2344 }
2345
2346 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2347         unsigned char lunaddr[])
2348 {
2349         int rc = 0;
2350         int count = 0;
2351         int waittime = 1; /* seconds */
2352         struct CommandList *c;
2353
2354         c = cmd_special_alloc(h);
2355         if (!c) {
2356                 dev_warn(&h->pdev->dev, "out of memory in "
2357                         "wait_for_device_to_become_ready.\n");
2358                 return IO_ERROR;
2359         }
2360
2361         /* Send test unit ready until device ready, or give up. */
2362         while (count < HPSA_TUR_RETRY_LIMIT) {
2363
2364                 /* Wait for a bit.  do this first, because if we send
2365                  * the TUR right away, the reset will just abort it.
2366                  */
2367                 msleep(1000 * waittime);
2368                 count++;
2369
2370                 /* Increase wait time with each try, up to a point. */
2371                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2372                         waittime = waittime * 2;
2373
2374                 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
2375                 (void) fill_cmd(c, TEST_UNIT_READY, h,
2376                                 NULL, 0, 0, lunaddr, TYPE_CMD);
2377                 hpsa_scsi_do_simple_cmd_core(h, c);
2378                 /* no unmap needed here because no data xfer. */
2379
2380                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2381                         break;
2382
2383                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2384                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2385                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2386                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2387                         break;
2388
2389                 dev_warn(&h->pdev->dev, "waiting %d secs "
2390                         "for device to become ready.\n", waittime);
2391                 rc = 1; /* device not ready. */
2392         }
2393
2394         if (rc)
2395                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2396         else
2397                 dev_warn(&h->pdev->dev, "device is ready.\n");
2398
2399         cmd_special_free(h, c);
2400         return rc;
2401 }
2402
2403 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2404  * complaining.  Doing a host- or bus-reset can't do anything good here.
2405  */
2406 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2407 {
2408         int rc;
2409         struct ctlr_info *h;
2410         struct hpsa_scsi_dev_t *dev;
2411
2412         /* find the controller to which the command to be aborted was sent */
2413         h = sdev_to_hba(scsicmd->device);
2414         if (h == NULL) /* paranoia */
2415                 return FAILED;
2416         dev = scsicmd->device->hostdata;
2417         if (!dev) {
2418                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2419                         "device lookup failed.\n");
2420                 return FAILED;
2421         }
2422         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2423                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2424         /* send a reset to the SCSI LUN which the command was sent to */
2425         rc = hpsa_send_reset(h, dev->scsi3addr);
2426         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2427                 return SUCCESS;
2428
2429         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2430         return FAILED;
2431 }
2432
2433 static void swizzle_abort_tag(u8 *tag)
2434 {
2435         u8 original_tag[8];
2436
2437         memcpy(original_tag, tag, 8);
2438         tag[0] = original_tag[3];
2439         tag[1] = original_tag[2];
2440         tag[2] = original_tag[1];
2441         tag[3] = original_tag[0];
2442         tag[4] = original_tag[7];
2443         tag[5] = original_tag[6];
2444         tag[6] = original_tag[5];
2445         tag[7] = original_tag[4];
2446 }
2447
2448 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2449         struct CommandList *abort, int swizzle)
2450 {
2451         int rc = IO_OK;
2452         struct CommandList *c;
2453         struct ErrorInfo *ei;
2454
2455         c = cmd_special_alloc(h);
2456         if (c == NULL) {        /* trouble... */
2457                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2458                 return -ENOMEM;
2459         }
2460
2461         /* fill_cmd can't fail here, no buffer to map */
2462         (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
2463                 0, 0, scsi3addr, TYPE_MSG);
2464         if (swizzle)
2465                 swizzle_abort_tag(&c->Request.CDB[4]);
2466         hpsa_scsi_do_simple_cmd_core(h, c);
2467         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2468                 __func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
2469         /* no unmap needed here because no data xfer. */
2470
2471         ei = c->err_info;
2472         switch (ei->CommandStatus) {
2473         case CMD_SUCCESS:
2474                 break;
2475         case CMD_UNABORTABLE: /* Very common, don't make noise. */
2476                 rc = -1;
2477                 break;
2478         default:
2479                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2480                         __func__, abort->Header.Tag.upper,
2481                         abort->Header.Tag.lower);
2482                 hpsa_scsi_interpret_error(c);
2483                 rc = -1;
2484                 break;
2485         }
2486         cmd_special_free(h, c);
2487         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
2488                 abort->Header.Tag.upper, abort->Header.Tag.lower);
2489         return rc;
2490 }
2491
2492 /*
2493  * hpsa_find_cmd_in_queue
2494  *
2495  * Used to determine whether a command (find) is still present
2496  * in queue_head.   Optionally excludes the last element of queue_head.
2497  *
2498  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
2499  * not yet been submitted, and so can be aborted by the driver without
2500  * sending an abort to the hardware.
2501  *
2502  * Returns pointer to command if found in queue, NULL otherwise.
2503  */
2504 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
2505                         struct scsi_cmnd *find, struct list_head *queue_head)
2506 {
2507         unsigned long flags;
2508         struct CommandList *c = NULL;   /* ptr into cmpQ */
2509
2510         if (!find)
2511                 return 0;
2512         spin_lock_irqsave(&h->lock, flags);
2513         list_for_each_entry(c, queue_head, list) {
2514                 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
2515                         continue;
2516                 if (c->scsi_cmd == find) {
2517                         spin_unlock_irqrestore(&h->lock, flags);
2518                         return c;
2519                 }
2520         }
2521         spin_unlock_irqrestore(&h->lock, flags);
2522         return NULL;
2523 }
2524
2525 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
2526                                         u8 *tag, struct list_head *queue_head)
2527 {
2528         unsigned long flags;
2529         struct CommandList *c;
2530
2531         spin_lock_irqsave(&h->lock, flags);
2532         list_for_each_entry(c, queue_head, list) {
2533                 if (memcmp(&c->Header.Tag, tag, 8) != 0)
2534                         continue;
2535                 spin_unlock_irqrestore(&h->lock, flags);
2536                 return c;
2537         }
2538         spin_unlock_irqrestore(&h->lock, flags);
2539         return NULL;
2540 }
2541
2542 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
2543  * tell which kind we're dealing with, so we send the abort both ways.  There
2544  * shouldn't be any collisions between swizzled and unswizzled tags due to the
2545  * way we construct our tags but we check anyway in case the assumptions which
2546  * make this true someday become false.
2547  */
2548 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
2549         unsigned char *scsi3addr, struct CommandList *abort)
2550 {
2551         u8 swizzled_tag[8];
2552         struct CommandList *c;
2553         int rc = 0, rc2 = 0;
2554
2555         /* we do not expect to find the swizzled tag in our queue, but
2556          * check anyway just to be sure the assumptions which make this
2557          * the case haven't become wrong.
2558          */
2559         memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
2560         swizzle_abort_tag(swizzled_tag);
2561         c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
2562         if (c != NULL) {
2563                 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
2564                 return hpsa_send_abort(h, scsi3addr, abort, 0);
2565         }
2566         rc = hpsa_send_abort(h, scsi3addr, abort, 0);
2567
2568         /* if the command is still in our queue, we can't conclude that it was
2569          * aborted (it might have just completed normally) but in any case
2570          * we don't need to try to abort it another way.
2571          */
2572         c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
2573         if (c)
2574                 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
2575         return rc && rc2;
2576 }
2577
2578 /* Send an abort for the specified command.
2579  *      If the device and controller support it,
2580  *              send a task abort request.
2581  */
2582 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
2583 {
2584
2585         int i, rc;
2586         struct ctlr_info *h;
2587         struct hpsa_scsi_dev_t *dev;
2588         struct CommandList *abort; /* pointer to command to be aborted */
2589         struct CommandList *found;
2590         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
2591         char msg[256];          /* For debug messaging. */
2592         int ml = 0;
2593
2594         /* Find the controller of the command to be aborted */
2595         h = sdev_to_hba(sc->device);
2596         if (WARN(h == NULL,
2597                         "ABORT REQUEST FAILED, Controller lookup failed.\n"))
2598                 return FAILED;
2599
2600         /* Check that controller supports some kind of task abort */
2601         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
2602                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
2603                 return FAILED;
2604
2605         memset(msg, 0, sizeof(msg));
2606         ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2607                 h->scsi_host->host_no, sc->device->channel,
2608                 sc->device->id, sc->device->lun);
2609
2610         /* Find the device of the command to be aborted */
2611         dev = sc->device->hostdata;
2612         if (!dev) {
2613                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
2614                                 msg);
2615                 return FAILED;
2616         }
2617
2618         /* Get SCSI command to be aborted */
2619         abort = (struct CommandList *) sc->host_scribble;
2620         if (abort == NULL) {
2621                 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
2622                                 msg);
2623                 return FAILED;
2624         }
2625
2626         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
2627                 abort->Header.Tag.upper, abort->Header.Tag.lower);
2628         as  = (struct scsi_cmnd *) abort->scsi_cmd;
2629         if (as != NULL)
2630                 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
2631                         as->cmnd[0], as->serial_number);
2632         dev_dbg(&h->pdev->dev, "%s\n", msg);
2633         dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
2634                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2635
2636         /* Search reqQ to See if command is queued but not submitted,
2637          * if so, complete the command with aborted status and remove
2638          * it from the reqQ.
2639          */
2640         found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
2641         if (found) {
2642                 found->err_info->CommandStatus = CMD_ABORTED;
2643                 finish_cmd(found);
2644                 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
2645                                 msg);
2646                 return SUCCESS;
2647         }
2648
2649         /* not in reqQ, if also not in cmpQ, must have already completed */
2650         found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2651         if (!found)  {
2652                 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
2653                                 msg);
2654                 return SUCCESS;
2655         }
2656
2657         /*
2658          * Command is in flight, or possibly already completed
2659          * by the firmware (but not to the scsi mid layer) but we can't
2660          * distinguish which.  Send the abort down.
2661          */
2662         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2663         if (rc != 0) {
2664                 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
2665                 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2666                         h->scsi_host->host_no,
2667                         dev->bus, dev->target, dev->lun);
2668                 return FAILED;
2669         }
2670         dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
2671
2672         /* If the abort(s) above completed and actually aborted the
2673          * command, then the command to be aborted should already be
2674          * completed.  If not, wait around a bit more to see if they
2675          * manage to complete normally.
2676          */
2677 #define ABORT_COMPLETE_WAIT_SECS 30
2678         for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
2679                 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2680                 if (!found)
2681                         return SUCCESS;
2682                 msleep(100);
2683         }
2684         dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2685                 msg, ABORT_COMPLETE_WAIT_SECS);
2686         return FAILED;
2687 }
2688
2689
2690 /*
2691  * For operations that cannot sleep, a command block is allocated at init,
2692  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2693  * which ones are free or in use.  Lock must be held when calling this.
2694  * cmd_free() is the complement.
2695  */
2696 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2697 {
2698         struct CommandList *c;
2699         int i;
2700         union u64bit temp64;
2701         dma_addr_t cmd_dma_handle, err_dma_handle;
2702         unsigned long flags;
2703
2704         spin_lock_irqsave(&h->lock, flags);
2705         do {
2706                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2707                 if (i == h->nr_cmds) {
2708                         spin_unlock_irqrestore(&h->lock, flags);
2709                         return NULL;
2710                 }
2711         } while (test_and_set_bit
2712                  (i & (BITS_PER_LONG - 1),
2713                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2714         h->nr_allocs++;
2715         spin_unlock_irqrestore(&h->lock, flags);
2716
2717         c = h->cmd_pool + i;
2718         memset(c, 0, sizeof(*c));
2719         cmd_dma_handle = h->cmd_pool_dhandle
2720             + i * sizeof(*c);
2721         c->err_info = h->errinfo_pool + i;
2722         memset(c->err_info, 0, sizeof(*c->err_info));
2723         err_dma_handle = h->errinfo_pool_dhandle
2724             + i * sizeof(*c->err_info);
2725
2726         c->cmdindex = i;
2727
2728         INIT_LIST_HEAD(&c->list);
2729         c->busaddr = (u32) cmd_dma_handle;
2730         temp64.val = (u64) err_dma_handle;
2731         c->ErrDesc.Addr.lower = temp64.val32.lower;
2732         c->ErrDesc.Addr.upper = temp64.val32.upper;
2733         c->ErrDesc.Len = sizeof(*c->err_info);
2734
2735         c->h = h;
2736         return c;
2737 }
2738
2739 /* For operations that can wait for kmalloc to possibly sleep,
2740  * this routine can be called. Lock need not be held to call
2741  * cmd_special_alloc. cmd_special_free() is the complement.
2742  */
2743 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2744 {
2745         struct CommandList *c;
2746         union u64bit temp64;
2747         dma_addr_t cmd_dma_handle, err_dma_handle;
2748
2749         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2750         if (c == NULL)
2751                 return NULL;
2752         memset(c, 0, sizeof(*c));
2753
2754         c->cmdindex = -1;
2755
2756         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2757                     &err_dma_handle);
2758
2759         if (c->err_info == NULL) {
2760                 pci_free_consistent(h->pdev,
2761                         sizeof(*c), c, cmd_dma_handle);
2762                 return NULL;
2763         }
2764         memset(c->err_info, 0, sizeof(*c->err_info));
2765
2766         INIT_LIST_HEAD(&c->list);
2767         c->busaddr = (u32) cmd_dma_handle;
2768         temp64.val = (u64) err_dma_handle;
2769         c->ErrDesc.Addr.lower = temp64.val32.lower;
2770         c->ErrDesc.Addr.upper = temp64.val32.upper;
2771         c->ErrDesc.Len = sizeof(*c->err_info);
2772
2773         c->h = h;
2774         return c;
2775 }
2776
2777 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2778 {
2779         int i;
2780         unsigned long flags;
2781
2782         i = c - h->cmd_pool;
2783         spin_lock_irqsave(&h->lock, flags);
2784         clear_bit(i & (BITS_PER_LONG - 1),
2785                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2786         h->nr_frees++;
2787         spin_unlock_irqrestore(&h->lock, flags);
2788 }
2789
2790 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2791 {
2792         union u64bit temp64;
2793
2794         temp64.val32.lower = c->ErrDesc.Addr.lower;
2795         temp64.val32.upper = c->ErrDesc.Addr.upper;
2796         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2797                             c->err_info, (dma_addr_t) temp64.val);
2798         pci_free_consistent(h->pdev, sizeof(*c),
2799                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2800 }
2801
2802 #ifdef CONFIG_COMPAT
2803
2804 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2805 {
2806         IOCTL32_Command_struct __user *arg32 =
2807             (IOCTL32_Command_struct __user *) arg;
2808         IOCTL_Command_struct arg64;
2809         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2810         int err;
2811         u32 cp;
2812
2813         memset(&arg64, 0, sizeof(arg64));
2814         err = 0;
2815         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2816                            sizeof(arg64.LUN_info));
2817         err |= copy_from_user(&arg64.Request, &arg32->Request,
2818                            sizeof(arg64.Request));
2819         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2820                            sizeof(arg64.error_info));
2821         err |= get_user(arg64.buf_size, &arg32->buf_size);
2822         err |= get_user(cp, &arg32->buf);
2823         arg64.buf = compat_ptr(cp);
2824         err |= copy_to_user(p, &arg64, sizeof(arg64));
2825
2826         if (err)
2827                 return -EFAULT;
2828
2829         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2830         if (err)
2831                 return err;
2832         err |= copy_in_user(&arg32->error_info, &p->error_info,
2833                          sizeof(arg32->error_info));
2834         if (err)
2835                 return -EFAULT;
2836         return err;
2837 }
2838
2839 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2840         int cmd, void *arg)
2841 {
2842         BIG_IOCTL32_Command_struct __user *arg32 =
2843             (BIG_IOCTL32_Command_struct __user *) arg;
2844         BIG_IOCTL_Command_struct arg64;
2845         BIG_IOCTL_Command_struct __user *p =
2846             compat_alloc_user_space(sizeof(arg64));
2847         int err;
2848         u32 cp;
2849
2850         memset(&arg64, 0, sizeof(arg64));
2851         err = 0;
2852         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2853                            sizeof(arg64.LUN_info));
2854         err |= copy_from_user(&arg64.Request, &arg32->Request,
2855                            sizeof(arg64.Request));
2856         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2857                            sizeof(arg64.error_info));
2858         err |= get_user(arg64.buf_size, &arg32->buf_size);
2859         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2860         err |= get_user(cp, &arg32->buf);
2861         arg64.buf = compat_ptr(cp);
2862         err |= copy_to_user(p, &arg64, sizeof(arg64));
2863
2864         if (err)
2865                 return -EFAULT;
2866
2867         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2868         if (err)
2869                 return err;
2870         err |= copy_in_user(&arg32->error_info, &p->error_info,
2871                          sizeof(arg32->error_info));
2872         if (err)
2873                 return -EFAULT;
2874         return err;
2875 }
2876
2877 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2878 {
2879         switch (cmd) {
2880         case CCISS_GETPCIINFO:
2881         case CCISS_GETINTINFO:
2882         case CCISS_SETINTINFO:
2883         case CCISS_GETNODENAME:
2884         case CCISS_SETNODENAME:
2885         case CCISS_GETHEARTBEAT:
2886         case CCISS_GETBUSTYPES:
2887         case CCISS_GETFIRMVER:
2888         case CCISS_GETDRIVVER:
2889         case CCISS_REVALIDVOLS:
2890         case CCISS_DEREGDISK:
2891         case CCISS_REGNEWDISK:
2892         case CCISS_REGNEWD:
2893         case CCISS_RESCANDISK:
2894         case CCISS_GETLUNINFO:
2895                 return hpsa_ioctl(dev, cmd, arg);
2896
2897         case CCISS_PASSTHRU32:
2898                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2899         case CCISS_BIG_PASSTHRU32:
2900                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2901
2902         default:
2903                 return -ENOIOCTLCMD;
2904         }
2905 }
2906 #endif
2907
2908 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2909 {
2910         struct hpsa_pci_info pciinfo;
2911
2912         if (!argp)
2913                 return -EINVAL;
2914         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2915         pciinfo.bus = h->pdev->bus->number;
2916         pciinfo.dev_fn = h->pdev->devfn;
2917         pciinfo.board_id = h->board_id;
2918         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2919                 return -EFAULT;
2920         return 0;
2921 }
2922
2923 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2924 {
2925         DriverVer_type DriverVer;
2926         unsigned char vmaj, vmin, vsubmin;
2927         int rc;
2928
2929         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2930                 &vmaj, &vmin, &vsubmin);
2931         if (rc != 3) {
2932                 dev_info(&h->pdev->dev, "driver version string '%s' "
2933                         "unrecognized.", HPSA_DRIVER_VERSION);
2934                 vmaj = 0;
2935                 vmin = 0;
2936                 vsubmin = 0;
2937         }
2938         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2939         if (!argp)
2940                 return -EINVAL;
2941         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2942                 return -EFAULT;
2943         return 0;
2944 }
2945
2946 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2947 {
2948         IOCTL_Command_struct iocommand;
2949         struct CommandList *c;
2950         char *buff = NULL;
2951         union u64bit temp64;
2952
2953         if (!argp)
2954                 return -EINVAL;
2955         if (!capable(CAP_SYS_RAWIO))
2956                 return -EPERM;
2957         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2958                 return -EFAULT;
2959         if ((iocommand.buf_size < 1) &&
2960             (iocommand.Request.Type.Direction != XFER_NONE)) {
2961                 return -EINVAL;
2962         }
2963         if (iocommand.buf_size > 0) {
2964                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2965                 if (buff == NULL)
2966                         return -EFAULT;
2967                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2968                         /* Copy the data into the buffer we created */
2969                         if (copy_from_user(buff, iocommand.buf,
2970                                 iocommand.buf_size)) {
2971                                 kfree(buff);
2972                                 return -EFAULT;
2973                         }
2974                 } else {
2975                         memset(buff, 0, iocommand.buf_size);
2976                 }
2977         }
2978         c = cmd_special_alloc(h);
2979         if (c == NULL) {
2980                 kfree(buff);
2981                 return -ENOMEM;
2982         }
2983         /* Fill in the command type */
2984         c->cmd_type = CMD_IOCTL_PEND;
2985         /* Fill in Command Header */
2986         c->Header.ReplyQueue = 0; /* unused in simple mode */
2987         if (iocommand.buf_size > 0) {   /* buffer to fill */
2988                 c->Header.SGList = 1;
2989                 c->Header.SGTotal = 1;
2990         } else  { /* no buffers to fill */
2991                 c->Header.SGList = 0;
2992                 c->Header.SGTotal = 0;
2993         }
2994         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2995         /* use the kernel address the cmd block for tag */
2996         c->Header.Tag.lower = c->busaddr;
2997
2998         /* Fill in Request block */
2999         memcpy(&c->Request, &iocommand.Request,
3000                 sizeof(c->Request));
3001
3002         /* Fill in the scatter gather information */
3003         if (iocommand.buf_size > 0) {
3004                 temp64.val = pci_map_single(h->pdev, buff,
3005                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
3006                 c->SG[0].Addr.lower = temp64.val32.lower;
3007                 c->SG[0].Addr.upper = temp64.val32.upper;
3008                 c->SG[0].Len = iocommand.buf_size;
3009                 c->SG[0].Ext = 0; /* we are not chaining*/
3010         }
3011         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3012         if (iocommand.buf_size > 0)
3013                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
3014         check_ioctl_unit_attention(h, c);
3015
3016         /* Copy the error information out */
3017         memcpy(&iocommand.error_info, c->err_info,
3018                 sizeof(iocommand.error_info));
3019         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
3020                 kfree(buff);
3021                 cmd_special_free(h, c);
3022                 return -EFAULT;
3023         }
3024         if (iocommand.Request.Type.Direction == XFER_READ &&
3025                 iocommand.buf_size > 0) {
3026                 /* Copy the data out of the buffer we created */
3027                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
3028                         kfree(buff);
3029                         cmd_special_free(h, c);
3030                         return -EFAULT;
3031                 }
3032         }
3033         kfree(buff);
3034         cmd_special_free(h, c);
3035         return 0;
3036 }
3037
3038 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
3039 {
3040         BIG_IOCTL_Command_struct *ioc;
3041         struct CommandList *c;
3042         unsigned char **buff = NULL;
3043         int *buff_size = NULL;
3044         union u64bit temp64;
3045         BYTE sg_used = 0;
3046         int status = 0;
3047         int i;
3048         u32 left;
3049         u32 sz;
3050         BYTE __user *data_ptr;
3051
3052         if (!argp)
3053                 return -EINVAL;
3054         if (!capable(CAP_SYS_RAWIO))
3055                 return -EPERM;
3056         ioc = (BIG_IOCTL_Command_struct *)
3057             kmalloc(sizeof(*ioc), GFP_KERNEL);
3058         if (!ioc) {
3059                 status = -ENOMEM;
3060                 goto cleanup1;
3061         }
3062         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
3063                 status = -EFAULT;
3064                 goto cleanup1;
3065         }
3066         if ((ioc->buf_size < 1) &&
3067             (ioc->Request.Type.Direction != XFER_NONE)) {
3068                 status = -EINVAL;
3069                 goto cleanup1;
3070         }
3071         /* Check kmalloc limits  using all SGs */
3072         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
3073                 status = -EINVAL;
3074                 goto cleanup1;
3075         }
3076         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
3077                 status = -EINVAL;
3078                 goto cleanup1;
3079         }
3080         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
3081         if (!buff) {
3082                 status = -ENOMEM;
3083                 goto cleanup1;
3084         }
3085         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3086         if (!buff_size) {
3087                 status = -ENOMEM;
3088                 goto cleanup1;
3089         }
3090         left = ioc->buf_size;
3091         data_ptr = ioc->buf;
3092         while (left) {
3093                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
3094                 buff_size[sg_used] = sz;
3095                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
3096                 if (buff[sg_used] == NULL) {
3097                         status = -ENOMEM;
3098                         goto cleanup1;
3099                 }
3100                 if (ioc->Request.Type.Direction == XFER_WRITE) {
3101                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
3102                                 status = -ENOMEM;
3103                                 goto cleanup1;
3104                         }
3105                 } else
3106                         memset(buff[sg_used], 0, sz);
3107                 left -= sz;
3108                 data_ptr += sz;
3109                 sg_used++;
3110         }
3111         c = cmd_special_alloc(h);
3112         if (c == NULL) {
3113                 status = -ENOMEM;
3114                 goto cleanup1;
3115         }
3116         c->cmd_type = CMD_IOCTL_PEND;
3117         c->Header.ReplyQueue = 0;
3118         c->Header.SGList = c->Header.SGTotal = sg_used;
3119         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
3120         c->Header.Tag.lower = c->busaddr;
3121         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
3122         if (ioc->buf_size > 0) {
3123                 int i;
3124                 for (i = 0; i < sg_used; i++) {
3125                         temp64.val = pci_map_single(h->pdev, buff[i],
3126                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
3127                         c->SG[i].Addr.lower = temp64.val32.lower;
3128                         c->SG[i].Addr.upper = temp64.val32.upper;
3129                         c->SG[i].Len = buff_size[i];
3130                         /* we are not chaining */
3131                         c->SG[i].Ext = 0;
3132                 }
3133         }
3134         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3135         if (sg_used)
3136                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3137         check_ioctl_unit_attention(h, c);
3138         /* Copy the error information out */
3139         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
3140         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
3141                 cmd_special_free(h, c);
3142                 status = -EFAULT;
3143                 goto cleanup1;
3144         }
3145         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3146                 /* Copy the data out of the buffer we created */
3147                 BYTE __user *ptr = ioc->buf;
3148                 for (i = 0; i < sg_used; i++) {
3149                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
3150                                 cmd_special_free(h, c);
3151                                 status = -EFAULT;
3152                                 goto cleanup1;
3153                         }
3154                         ptr += buff_size[i];
3155                 }
3156         }
3157         cmd_special_free(h, c);
3158         status = 0;
3159 cleanup1:
3160         if (buff) {
3161                 for (i = 0; i < sg_used; i++)
3162                         kfree(buff[i]);
3163                 kfree(buff);
3164         }
3165         kfree(buff_size);
3166         kfree(ioc);
3167         return status;
3168 }
3169
3170 static void check_ioctl_unit_attention(struct ctlr_info *h,
3171         struct CommandList *c)
3172 {
3173         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
3174                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
3175                 (void) check_for_unit_attention(h, c);
3176 }
3177 /*
3178  * ioctl
3179  */
3180 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
3181 {
3182         struct ctlr_info *h;
3183         void __user *argp = (void __user *)arg;
3184
3185         h = sdev_to_hba(dev);
3186
3187         switch (cmd) {
3188         case CCISS_DEREGDISK:
3189         case CCISS_REGNEWDISK:
3190         case CCISS_REGNEWD:
3191                 hpsa_scan_start(h->scsi_host);
3192                 return 0;
3193         case CCISS_GETPCIINFO:
3194                 return hpsa_getpciinfo_ioctl(h, argp);
3195         case CCISS_GETDRIVVER:
3196                 return hpsa_getdrivver_ioctl(h, argp);
3197         case CCISS_PASSTHRU:
3198                 return hpsa_passthru_ioctl(h, argp);
3199         case CCISS_BIG_PASSTHRU:
3200                 return hpsa_big_passthru_ioctl(h, argp);
3201         default:
3202                 return -ENOTTY;
3203         }
3204 }
3205
3206 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3207                                 u8 reset_type)
3208 {
3209         struct CommandList *c;
3210
3211         c = cmd_alloc(h);
3212         if (!c)
3213                 return -ENOMEM;
3214         /* fill_cmd can't fail here, no data buffer to map */
3215         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3216                 RAID_CTLR_LUNID, TYPE_MSG);
3217         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
3218         c->waiting = NULL;
3219         enqueue_cmd_and_start_io(h, c);
3220         /* Don't wait for completion, the reset won't complete.  Don't free
3221          * the command either.  This is the last command we will send before
3222          * re-initializing everything, so it doesn't matter and won't leak.
3223          */
3224         return 0;
3225 }
3226
3227 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3228         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3229         int cmd_type)
3230 {
3231         int pci_dir = XFER_NONE;
3232         struct CommandList *a; /* for commands to be aborted */
3233
3234         c->cmd_type = CMD_IOCTL_PEND;
3235         c->Header.ReplyQueue = 0;
3236         if (buff != NULL && size > 0) {
3237                 c->Header.SGList = 1;
3238                 c->Header.SGTotal = 1;
3239         } else {
3240                 c->Header.SGList = 0;
3241                 c->Header.SGTotal = 0;
3242         }
3243         c->Header.Tag.lower = c->busaddr;
3244         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
3245
3246         c->Request.Type.Type = cmd_type;
3247         if (cmd_type == TYPE_CMD) {
3248                 switch (cmd) {
3249                 case HPSA_INQUIRY:
3250                         /* are we trying to read a vital product page */
3251                         if (page_code != 0) {
3252                                 c->Request.CDB[1] = 0x01;
3253                                 c->Request.CDB[2] = page_code;
3254                         }
3255                         c->Request.CDBLen = 6;
3256                         c->Request.Type.Attribute = ATTR_SIMPLE;
3257                         c->Request.Type.Direction = XFER_READ;
3258                         c->Request.Timeout = 0;
3259                         c->Request.CDB[0] = HPSA_INQUIRY;
3260                         c->Request.CDB[4] = size & 0xFF;
3261                         break;
3262                 case HPSA_REPORT_LOG:
3263                 case HPSA_REPORT_PHYS:
3264                         /* Talking to controller so It's a physical command
3265                            mode = 00 target = 0.  Nothing to write.
3266                          */
3267                         c->Request.CDBLen = 12;
3268                         c->Request.Type.Attribute = ATTR_SIMPLE;
3269                         c->Request.Type.Direction = XFER_READ;
3270                         c->Request.Timeout = 0;
3271                         c->Request.CDB[0] = cmd;
3272                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
3273                         c->Request.CDB[7] = (size >> 16) & 0xFF;
3274                         c->Request.CDB[8] = (size >> 8) & 0xFF;
3275                         c->Request.CDB[9] = size & 0xFF;
3276                         break;
3277                 case HPSA_CACHE_FLUSH:
3278                         c->Request.CDBLen = 12;
3279                         c->Request.Type.Attribute = ATTR_SIMPLE;
3280                         c->Request.Type.Direction = XFER_WRITE;
3281                         c->Request.Timeout = 0;
3282                         c->Request.CDB[0] = BMIC_WRITE;
3283                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3284                         c->Request.CDB[7] = (size >> 8) & 0xFF;
3285                         c->Request.CDB[8] = size & 0xFF;
3286                         break;
3287                 case TEST_UNIT_READY:
3288                         c->Request.CDBLen = 6;
3289                         c->Request.Type.Attribute = ATTR_SIMPLE;
3290                         c->Request.Type.Direction = XFER_NONE;
3291                         c->Request.Timeout = 0;
3292                         break;
3293                 default:
3294                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
3295                         BUG();
3296                         return -1;
3297                 }
3298         } else if (cmd_type == TYPE_MSG) {
3299                 switch (cmd) {
3300
3301                 case  HPSA_DEVICE_RESET_MSG:
3302                         c->Request.CDBLen = 16;
3303                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
3304                         c->Request.Type.Attribute = ATTR_SIMPLE;
3305                         c->Request.Type.Direction = XFER_NONE;
3306                         c->Request.Timeout = 0; /* Don't time out */
3307                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
3308                         c->Request.CDB[0] =  cmd;
3309                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
3310                         /* If bytes 4-7 are zero, it means reset the */
3311                         /* LunID device */
3312                         c->Request.CDB[4] = 0x00;
3313                         c->Request.CDB[5] = 0x00;
3314                         c->Request.CDB[6] = 0x00;
3315                         c->Request.CDB[7] = 0x00;
3316                         break;
3317                 case  HPSA_ABORT_MSG:
3318                         a = buff;       /* point to command to be aborted */
3319                         dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3320                                 a->Header.Tag.upper, a->Header.Tag.lower,
3321                                 c->Header.Tag.upper, c->Header.Tag.lower);
3322                         c->Request.CDBLen = 16;
3323                         c->Request.Type.Type = TYPE_MSG;
3324                         c->Request.Type.Attribute = ATTR_SIMPLE;
3325                         c->Request.Type.Direction = XFER_WRITE;
3326                         c->Request.Timeout = 0; /* Don't time out */
3327                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
3328                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
3329                         c->Request.CDB[2] = 0x00; /* reserved */
3330                         c->Request.CDB[3] = 0x00; /* reserved */
3331                         /* Tag to abort goes in CDB[4]-CDB[11] */
3332                         c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
3333                         c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
3334                         c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
3335                         c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
3336                         c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
3337                         c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
3338                         c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
3339                         c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
3340                         c->Request.CDB[12] = 0x00; /* reserved */
3341                         c->Request.CDB[13] = 0x00; /* reserved */
3342                         c->Request.CDB[14] = 0x00; /* reserved */
3343                         c->Request.CDB[15] = 0x00; /* reserved */
3344                 break;
3345                 default:
3346                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
3347                                 cmd);
3348                         BUG();
3349                 }
3350         } else {
3351                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
3352                 BUG();
3353         }
3354
3355         switch (c->Request.Type.Direction) {
3356         case XFER_READ:
3357                 pci_dir = PCI_DMA_FROMDEVICE;
3358                 break;
3359         case XFER_WRITE:
3360                 pci_dir = PCI_DMA_TODEVICE;
3361                 break;
3362         case XFER_NONE:
3363                 pci_dir = PCI_DMA_NONE;
3364                 break;
3365         default:
3366                 pci_dir = PCI_DMA_BIDIRECTIONAL;
3367         }
3368         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
3369                 return -1;
3370         return 0;
3371 }
3372
3373 /*
3374  * Map (physical) PCI mem into (virtual) kernel space
3375  */
3376 static void __iomem *remap_pci_mem(ulong base, ulong size)
3377 {
3378         ulong page_base = ((ulong) base) & PAGE_MASK;
3379         ulong page_offs = ((ulong) base) - page_base;
3380         void __iomem *page_remapped = ioremap_nocache(page_base,
3381                 page_offs + size);
3382
3383         return page_remapped ? (page_remapped + page_offs) : NULL;
3384 }
3385
3386 /* Takes cmds off the submission queue and sends them to the hardware,
3387  * then puts them on the queue of cmds waiting for completion.
3388  */
3389 static void start_io(struct ctlr_info *h)
3390 {
3391         struct CommandList *c;
3392         unsigned long flags;
3393
3394         spin_lock_irqsave(&h->lock, flags);
3395         while (!list_empty(&h->reqQ)) {
3396                 c = list_entry(h->reqQ.next, struct CommandList, list);
3397                 /* can't do anything if fifo is full */
3398                 if ((h->access.fifo_full(h))) {
3399                         dev_warn(&h->pdev->dev, "fifo full\n");
3400                         break;
3401                 }
3402
3403                 /* Get the first entry from the Request Q */
3404                 removeQ(c);
3405                 h->Qdepth--;
3406
3407                 /* Put job onto the completed Q */
3408                 addQ(&h->cmpQ, c);
3409
3410                 /* Must increment commands_outstanding before unlocking
3411                  * and submitting to avoid race checking for fifo full
3412                  * condition.
3413                  */
3414                 h->commands_outstanding++;
3415                 if (h->commands_outstanding > h->max_outstanding)
3416                         h->max_outstanding = h->commands_outstanding;
3417
3418                 /* Tell the controller execute command */
3419                 spin_unlock_irqrestore(&h->lock, flags);
3420                 h->access.submit_command(h, c);
3421                 spin_lock_irqsave(&h->lock, flags);
3422         }
3423         spin_unlock_irqrestore(&h->lock, flags);
3424 }
3425
3426 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
3427 {
3428         return h->access.command_completed(h, q);
3429 }
3430
3431 static inline bool interrupt_pending(struct ctlr_info *h)
3432 {
3433         return h->access.intr_pending(h);
3434 }
3435
3436 static inline long interrupt_not_for_us(struct ctlr_info *h)
3437 {
3438         return (h->access.intr_pending(h) == 0) ||
3439                 (h->interrupts_enabled == 0);
3440 }
3441
3442 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3443         u32 raw_tag)
3444 {
3445         if (unlikely(tag_index >= h->nr_cmds)) {
3446                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3447                 return 1;
3448         }
3449         return 0;
3450 }
3451
3452 static inline void finish_cmd(struct CommandList *c)
3453 {
3454         unsigned long flags;
3455
3456         spin_lock_irqsave(&c->h->lock, flags);
3457         removeQ(c);
3458         spin_unlock_irqrestore(&c->h->lock, flags);
3459         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3460         if (likely(c->cmd_type == CMD_SCSI))
3461                 complete_scsi_command(c);
3462         else if (c->cmd_type == CMD_IOCTL_PEND)
3463                 complete(c->waiting);
3464 }
3465
3466 static inline u32 hpsa_tag_contains_index(u32 tag)
3467 {
3468         return tag & DIRECT_LOOKUP_BIT;
3469 }
3470
3471 static inline u32 hpsa_tag_to_index(u32 tag)
3472 {
3473         return tag >> DIRECT_LOOKUP_SHIFT;
3474 }
3475
3476
3477 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3478 {
3479 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3480 #define HPSA_SIMPLE_ERROR_BITS 0x03
3481         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3482                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3483         return tag & ~HPSA_PERF_ERROR_BITS;
3484 }
3485
3486 /* process completion of an indexed ("direct lookup") command */
3487 static inline void process_indexed_cmd(struct ctlr_info *h,
3488         u32 raw_tag)
3489 {
3490         u32 tag_index;
3491         struct CommandList *c;
3492
3493         tag_index = hpsa_tag_to_index(raw_tag);
3494         if (!bad_tag(h, tag_index, raw_tag)) {
3495                 c = h->cmd_pool + tag_index;
3496                 finish_cmd(c);
3497         }
3498 }
3499
3500 /* process completion of a non-indexed command */
3501 static inline void process_nonindexed_cmd(struct ctlr_info *h,
3502         u32 raw_tag)
3503 {
3504         u32 tag;
3505         struct CommandList *c = NULL;
3506         unsigned long flags;
3507
3508         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3509         spin_lock_irqsave(&h->lock, flags);
3510         list_for_each_entry(c, &h->cmpQ, list) {
3511                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3512                         spin_unlock_irqrestore(&h->lock, flags);
3513                         finish_cmd(c);
3514                         return;
3515                 }
3516         }
3517         spin_unlock_irqrestore(&h->lock, flags);
3518         bad_tag(h, h->nr_cmds + 1, raw_tag);
3519 }
3520
3521 /* Some controllers, like p400, will give us one interrupt
3522  * after a soft reset, even if we turned interrupts off.
3523  * Only need to check for this in the hpsa_xxx_discard_completions
3524  * functions.
3525  */
3526 static int ignore_bogus_interrupt(struct ctlr_info *h)
3527 {
3528         if (likely(!reset_devices))
3529                 return 0;
3530
3531         if (likely(h->interrupts_enabled))
3532                 return 0;
3533
3534         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3535                 "(known firmware bug.)  Ignoring.\n");
3536
3537         return 1;
3538 }
3539
3540 /*
3541  * Convert &h->q[x] (passed to interrupt handlers) back to h.
3542  * Relies on (h-q[x] == x) being true for x such that
3543  * 0 <= x < MAX_REPLY_QUEUES.
3544  */
3545 static struct ctlr_info *queue_to_hba(u8 *queue)
3546 {
3547         return container_of((queue - *queue), struct ctlr_info, q[0]);
3548 }
3549
3550 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
3551 {
3552         struct ctlr_info *h = queue_to_hba(queue);
3553         u8 q = *(u8 *) queue;
3554         u32 raw_tag;
3555
3556         if (ignore_bogus_interrupt(h))
3557                 return IRQ_NONE;
3558
3559         if (interrupt_not_for_us(h))
3560                 return IRQ_NONE;
3561         h->last_intr_timestamp = get_jiffies_64();
3562         while (interrupt_pending(h)) {
3563                 raw_tag = get_next_completion(h, q);
3564                 while (raw_tag != FIFO_EMPTY)
3565                         raw_tag = next_command(h, q);
3566         }
3567         return IRQ_HANDLED;
3568 }
3569
3570 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
3571 {
3572         struct ctlr_info *h = queue_to_hba(queue);
3573         u32 raw_tag;
3574         u8 q = *(u8 *) queue;
3575
3576         if (ignore_bogus_interrupt(h))
3577                 return IRQ_NONE;
3578
3579         h->last_intr_timestamp = get_jiffies_64();
3580         raw_tag = get_next_completion(h, q);
3581         while (raw_tag != FIFO_EMPTY)
3582                 raw_tag = next_command(h, q);
3583         return IRQ_HANDLED;
3584 }
3585
3586 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
3587 {
3588         struct ctlr_info *h = queue_to_hba((u8 *) queue);
3589         u32 raw_tag;
3590         u8 q = *(u8 *) queue;
3591
3592         if (interrupt_not_for_us(h))
3593                 return IRQ_NONE;
3594         h->last_intr_timestamp = get_jiffies_64();
3595         while (interrupt_pending(h)) {
3596                 raw_tag = get_next_completion(h, q);
3597                 while (raw_tag != FIFO_EMPTY) {
3598                         if (likely(hpsa_tag_contains_index(raw_tag)))
3599                                 process_indexed_cmd(h, raw_tag);
3600                         else
3601                                 process_nonindexed_cmd(h, raw_tag);
3602                         raw_tag = next_command(h, q);
3603                 }
3604         }
3605         return IRQ_HANDLED;
3606 }
3607
3608 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
3609 {
3610         struct ctlr_info *h = queue_to_hba(queue);
3611         u32 raw_tag;
3612         u8 q = *(u8 *) queue;
3613
3614         h->last_intr_timestamp = get_jiffies_64();
3615         raw_tag = get_next_completion(h, q);
3616         while (raw_tag != FIFO_EMPTY) {
3617                 if (likely(hpsa_tag_contains_index(raw_tag)))
3618                         process_indexed_cmd(h, raw_tag);
3619                 else
3620                         process_nonindexed_cmd(h, raw_tag);
3621                 raw_tag = next_command(h, q);
3622         }
3623         return IRQ_HANDLED;
3624 }
3625
3626 /* Send a message CDB to the firmware. Careful, this only works
3627  * in simple mode, not performant mode due to the tag lookup.
3628  * We only ever use this immediately after a controller reset.
3629  */
3630 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3631                         unsigned char type)
3632 {
3633         struct Command {
3634                 struct CommandListHeader CommandHeader;
3635                 struct RequestBlock Request;
3636                 struct ErrDescriptor ErrorDescriptor;
3637         };
3638         struct Command *cmd;
3639         static const size_t cmd_sz = sizeof(*cmd) +
3640                                         sizeof(cmd->ErrorDescriptor);
3641         dma_addr_t paddr64;
3642         uint32_t paddr32, tag;
3643         void __iomem *vaddr;
3644         int i, err;
3645
3646         vaddr = pci_ioremap_bar(pdev, 0);
3647         if (vaddr == NULL)
3648                 return -ENOMEM;
3649
3650         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3651          * CCISS commands, so they must be allocated from the lower 4GiB of
3652          * memory.
3653          */
3654         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3655         if (err) {
3656                 iounmap(vaddr);
3657                 return -ENOMEM;
3658         }
3659
3660         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3661         if (cmd == NULL) {
3662                 iounmap(vaddr);
3663                 return -ENOMEM;
3664         }
3665
3666         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3667          * although there's no guarantee, we assume that the address is at
3668          * least 4-byte aligned (most likely, it's page-aligned).
3669          */
3670         paddr32 = paddr64;
3671
3672         cmd->CommandHeader.ReplyQueue = 0;
3673         cmd->CommandHeader.SGList = 0;
3674         cmd->CommandHeader.SGTotal = 0;
3675         cmd->CommandHeader.Tag.lower = paddr32;
3676         cmd->CommandHeader.Tag.upper = 0;
3677         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3678
3679         cmd->Request.CDBLen = 16;
3680         cmd->Request.Type.Type = TYPE_MSG;
3681         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3682         cmd->Request.Type.Direction = XFER_NONE;
3683         cmd->Request.Timeout = 0; /* Don't time out */
3684         cmd->Request.CDB[0] = opcode;
3685         cmd->Request.CDB[1] = type;
3686         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3687         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3688         cmd->ErrorDescriptor.Addr.upper = 0;
3689         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3690
3691         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3692
3693         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3694                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3695                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3696                         break;
3697                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3698         }
3699
3700         iounmap(vaddr);
3701
3702         /* we leak the DMA buffer here ... no choice since the controller could
3703          *  still complete the command.
3704          */
3705         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3706                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3707                         opcode, type);
3708                 return -ETIMEDOUT;
3709         }
3710
3711         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3712
3713         if (tag & HPSA_ERROR_BIT) {
3714                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3715                         opcode, type);
3716                 return -EIO;
3717         }
3718
3719         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3720                 opcode, type);
3721         return 0;
3722 }
3723
3724 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3725
3726 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3727         void * __iomem vaddr, u32 use_doorbell)
3728 {
3729         u16 pmcsr;
3730         int pos;
3731
3732         if (use_doorbell) {
3733                 /* For everything after the P600, the PCI power state method
3734                  * of resetting the controller doesn't work, so we have this
3735                  * other way using the doorbell register.
3736                  */
3737                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3738                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3739         } else { /* Try to do it the PCI power state way */
3740
3741                 /* Quoting from the Open CISS Specification: "The Power
3742                  * Management Control/Status Register (CSR) controls the power
3743                  * state of the device.  The normal operating state is D0,
3744                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3745                  * the controller, place the interface device in D3 then to D0,
3746                  * this causes a secondary PCI reset which will reset the
3747                  * controller." */
3748
3749                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3750                 if (pos == 0) {
3751                         dev_err(&pdev->dev,
3752                                 "hpsa_reset_controller: "
3753                                 "PCI PM not supported\n");
3754                         return -ENODEV;
3755                 }
3756                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3757                 /* enter the D3hot power management state */
3758                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3759                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3760                 pmcsr |= PCI_D3hot;
3761                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3762
3763                 msleep(500);
3764
3765                 /* enter the D0 power management state */
3766                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3767                 pmcsr |= PCI_D0;
3768                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3769
3770                 /*
3771                  * The P600 requires a small delay when changing states.
3772                  * Otherwise we may think the board did not reset and we bail.
3773                  * This for kdump only and is particular to the P600.
3774                  */
3775                 msleep(500);
3776         }
3777         return 0;
3778 }
3779
3780 static void init_driver_version(char *driver_version, int len)
3781 {
3782         memset(driver_version, 0, len);
3783         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3784 }
3785
3786 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
3787 {
3788         char *driver_version;
3789         int i, size = sizeof(cfgtable->driver_version);
3790
3791         driver_version = kmalloc(size, GFP_KERNEL);
3792         if (!driver_version)
3793                 return -ENOMEM;
3794
3795         init_driver_version(driver_version, size);
3796         for (i = 0; i < size; i++)
3797                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3798         kfree(driver_version);
3799         return 0;
3800 }
3801
3802 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
3803                                           unsigned char *driver_ver)
3804 {
3805         int i;
3806
3807         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3808                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3809 }
3810
3811 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
3812 {
3813
3814         char *driver_ver, *old_driver_ver;
3815         int rc, size = sizeof(cfgtable->driver_version);
3816
3817         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3818         if (!old_driver_ver)
3819                 return -ENOMEM;
3820         driver_ver = old_driver_ver + size;
3821
3822         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3823          * should have been changed, otherwise we know the reset failed.
3824          */
3825         init_driver_version(old_driver_ver, size);
3826         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3827         rc = !memcmp(driver_ver, old_driver_ver, size);
3828         kfree(old_driver_ver);
3829         return rc;
3830 }
3831 /* This does a hard reset of the controller using PCI power management
3832  * states or the using the doorbell register.
3833  */
3834 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3835 {
3836         u64 cfg_offset;
3837         u32 cfg_base_addr;
3838         u64 cfg_base_addr_index;
3839         void __iomem *vaddr;
3840         unsigned long paddr;
3841         u32 misc_fw_support;
3842         int rc;
3843         struct CfgTable __iomem *cfgtable;
3844         u32 use_doorbell;
3845         u32 board_id;
3846         u16 command_register;
3847
3848         /* For controllers as old as the P600, this is very nearly
3849          * the same thing as
3850          *
3851          * pci_save_state(pci_dev);
3852          * pci_set_power_state(pci_dev, PCI_D3hot);
3853          * pci_set_power_state(pci_dev, PCI_D0);
3854          * pci_restore_state(pci_dev);
3855          *
3856          * For controllers newer than the P600, the pci power state
3857          * method of resetting doesn't work so we have another way
3858          * using the doorbell register.
3859          */
3860
3861         rc = hpsa_lookup_board_id(pdev, &board_id);
3862         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3863                 dev_warn(&pdev->dev, "Not resetting device.\n");
3864                 return -ENODEV;
3865         }
3866
3867         /* if controller is soft- but not hard resettable... */
3868         if (!ctlr_is_hard_resettable(board_id))
3869                 return -ENOTSUPP; /* try soft reset later. */
3870
3871         /* Save the PCI command register */
3872         pci_read_config_word(pdev, 4, &command_register);
3873         /* Turn the board off.  This is so that later pci_restore_state()
3874          * won't turn the board on before the rest of config space is ready.
3875          */
3876         pci_disable_device(pdev);
3877         pci_save_state(pdev);
3878
3879         /* find the first memory BAR, so we can find the cfg table */
3880         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3881         if (rc)
3882                 return rc;
3883         vaddr = remap_pci_mem(paddr, 0x250);
3884         if (!vaddr)
3885                 return -ENOMEM;
3886
3887         /* find cfgtable in order to check if reset via doorbell is supported */
3888         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3889                                         &cfg_base_addr_index, &cfg_offset);
3890         if (rc)
3891                 goto unmap_vaddr;
3892         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3893                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3894         if (!cfgtable) {
3895                 rc = -ENOMEM;
3896                 goto unmap_vaddr;
3897         }
3898         rc = write_driver_ver_to_cfgtable(cfgtable);
3899         if (rc)
3900                 goto unmap_vaddr;
3901
3902         /* If reset via doorbell register is supported, use that.
3903          * There are two such methods.  Favor the newest method.
3904          */
3905         misc_fw_support = readl(&cfgtable->misc_fw_support);
3906         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3907         if (use_doorbell) {
3908                 use_doorbell = DOORBELL_CTLR_RESET2;
3909         } else {
3910                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3911                 if (use_doorbell) {
3912                         dev_warn(&pdev->dev, "Soft reset not supported. "
3913                                 "Firmware update is required.\n");
3914                         rc = -ENOTSUPP; /* try soft reset */
3915                         goto unmap_cfgtable;
3916                 }
3917         }
3918
3919         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3920         if (rc)
3921                 goto unmap_cfgtable;
3922
3923         pci_restore_state(pdev);
3924         rc = pci_enable_device(pdev);
3925         if (rc) {
3926                 dev_warn(&pdev->dev, "failed to enable device.\n");
3927                 goto unmap_cfgtable;
3928         }
3929         pci_write_config_word(pdev, 4, command_register);
3930
3931         /* Some devices (notably the HP Smart Array 5i Controller)
3932            need a little pause here */
3933         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3934
3935         /* Wait for board to become not ready, then ready. */
3936         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3937         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3938         if (rc) {
3939                 dev_warn(&pdev->dev,
3940                         "failed waiting for board to reset."
3941                         " Will try soft reset.\n");
3942                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3943                 goto unmap_cfgtable;
3944         }
3945         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3946         if (rc) {
3947                 dev_warn(&pdev->dev,
3948                         "failed waiting for board to become ready "
3949                         "after hard reset\n");
3950                 goto unmap_cfgtable;
3951         }
3952
3953         rc = controller_reset_failed(vaddr);
3954         if (rc < 0)
3955                 goto unmap_cfgtable;
3956         if (rc) {
3957                 dev_warn(&pdev->dev, "Unable to successfully reset "
3958                         "controller. Will try soft reset.\n");
3959                 rc = -ENOTSUPP;
3960         } else {
3961                 dev_info(&pdev->dev, "board ready after hard reset.\n");
3962         }
3963
3964 unmap_cfgtable:
3965         iounmap(cfgtable);
3966
3967 unmap_vaddr:
3968         iounmap(vaddr);
3969         return rc;
3970 }
3971
3972 /*
3973  *  We cannot read the structure directly, for portability we must use
3974  *   the io functions.
3975  *   This is for debug only.
3976  */
3977 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3978 {
3979 #ifdef HPSA_DEBUG
3980         int i;
3981         char temp_name[17];
3982
3983         dev_info(dev, "Controller Configuration information\n");
3984         dev_info(dev, "------------------------------------\n");
3985         for (i = 0; i < 4; i++)
3986                 temp_name[i] = readb(&(tb->Signature[i]));
3987         temp_name[4] = '\0';
3988         dev_info(dev, "   Signature = %s\n", temp_name);
3989         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3990         dev_info(dev, "   Transport methods supported = 0x%x\n",
3991                readl(&(tb->TransportSupport)));
3992         dev_info(dev, "   Transport methods active = 0x%x\n",
3993                readl(&(tb->TransportActive)));
3994         dev_info(dev, "   Requested transport Method = 0x%x\n",
3995                readl(&(tb->HostWrite.TransportRequest)));
3996         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3997                readl(&(tb->HostWrite.CoalIntDelay)));
3998         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3999                readl(&(tb->HostWrite.CoalIntCount)));
4000         dev_info(dev, "   Max outstanding commands = 0x%d\n",
4001                readl(&(tb->CmdsOutMax)));
4002         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
4003         for (i = 0; i < 16; i++)
4004                 temp_name[i] = readb(&(tb->ServerName[i]));
4005         temp_name[16] = '\0';
4006         dev_info(dev, "   Server Name = %s\n", temp_name);
4007         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
4008                 readl(&(tb->HeartBeat)));
4009 #endif                          /* HPSA_DEBUG */
4010 }
4011
4012 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
4013 {
4014         int i, offset, mem_type, bar_type;
4015
4016         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
4017                 return 0;
4018         offset = 0;
4019         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4020                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
4021                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
4022                         offset += 4;
4023                 else {
4024                         mem_type = pci_resource_flags(pdev, i) &
4025                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
4026                         switch (mem_type) {
4027                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
4028                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
4029                                 offset += 4;    /* 32 bit */
4030                                 break;
4031                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
4032                                 offset += 8;
4033                                 break;
4034                         default:        /* reserved in PCI 2.2 */
4035                                 dev_warn(&pdev->dev,
4036                                        "base address is invalid\n");
4037                                 return -1;
4038                                 break;
4039                         }
4040                 }
4041                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
4042                         return i + 1;
4043         }
4044         return -1;
4045 }
4046
4047 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4048  * controllers that are capable. If not, we use IO-APIC mode.
4049  */
4050
4051 static void hpsa_interrupt_mode(struct ctlr_info *h)
4052 {
4053 #ifdef CONFIG_PCI_MSI
4054         int err, i;
4055         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
4056
4057         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
4058                 hpsa_msix_entries[i].vector = 0;
4059                 hpsa_msix_entries[i].entry = i;
4060         }
4061
4062         /* Some boards advertise MSI but don't really support it */
4063         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4064             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4065                 goto default_int_mode;
4066         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4067                 dev_info(&h->pdev->dev, "MSIX\n");
4068                 err = pci_enable_msix(h->pdev, hpsa_msix_entries,
4069                                                 MAX_REPLY_QUEUES);
4070                 if (!err) {
4071                         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4072                                 h->intr[i] = hpsa_msix_entries[i].vector;
4073                         h->msix_vector = 1;
4074                         return;
4075                 }
4076                 if (err > 0) {
4077                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
4078                                "available\n", err);
4079                         goto default_int_mode;
4080                 } else {
4081                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
4082                                err);
4083                         goto default_int_mode;
4084                 }
4085         }
4086         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4087                 dev_info(&h->pdev->dev, "MSI\n");
4088                 if (!pci_enable_msi(h->pdev))
4089                         h->msi_vector = 1;
4090                 else
4091                         dev_warn(&h->pdev->dev, "MSI init failed\n");
4092         }
4093 default_int_mode:
4094 #endif                          /* CONFIG_PCI_MSI */
4095         /* if we get here we're going to use the default interrupt mode */
4096         h->intr[h->intr_mode] = h->pdev->irq;
4097 }
4098
4099 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4100 {
4101         int i;
4102         u32 subsystem_vendor_id, subsystem_device_id;
4103
4104         subsystem_vendor_id = pdev->subsystem_vendor;
4105         subsystem_device_id = pdev->subsystem_device;
4106         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4107                     subsystem_vendor_id;
4108
4109         for (i = 0; i < ARRAY_SIZE(products); i++)
4110                 if (*board_id == products[i].board_id)
4111                         return i;
4112
4113         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
4114                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
4115                 !hpsa_allow_any) {
4116                 dev_warn(&pdev->dev, "unrecognized board ID: "
4117                         "0x%08x, ignoring.\n", *board_id);
4118                         return -ENODEV;
4119         }
4120         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
4121 }
4122
4123 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
4124                                     unsigned long *memory_bar)
4125 {
4126         int i;
4127
4128         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4129                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4130                         /* addressing mode bits already removed */
4131                         *memory_bar = pci_resource_start(pdev, i);
4132                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4133                                 *memory_bar);
4134                         return 0;
4135                 }
4136         dev_warn(&pdev->dev, "no memory BAR found\n");
4137         return -ENODEV;
4138 }
4139
4140 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
4141                                      int wait_for_ready)
4142 {
4143         int i, iterations;
4144         u32 scratchpad;
4145         if (wait_for_ready)
4146                 iterations = HPSA_BOARD_READY_ITERATIONS;
4147         else
4148                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4149
4150         for (i = 0; i < iterations; i++) {
4151                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4152                 if (wait_for_ready) {
4153                         if (scratchpad == HPSA_FIRMWARE_READY)
4154                                 return 0;
4155                 } else {
4156                         if (scratchpad != HPSA_FIRMWARE_READY)
4157                                 return 0;
4158                 }
4159                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
4160         }
4161         dev_warn(&pdev->dev, "board not ready, timed out.\n");
4162         return -ENODEV;
4163 }
4164
4165 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4166                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4167                                u64 *cfg_offset)
4168 {
4169         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4170         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4171         *cfg_base_addr &= (u32) 0x0000ffff;
4172         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4173         if (*cfg_base_addr_index == -1) {
4174                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
4175                 return -ENODEV;
4176         }
4177         return 0;
4178 }
4179
4180 static int hpsa_find_cfgtables(struct ctlr_info *h)
4181 {
4182         u64 cfg_offset;
4183         u32 cfg_base_addr;
4184         u64 cfg_base_addr_index;
4185         u32 trans_offset;
4186         int rc;
4187
4188         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4189                 &cfg_base_addr_index, &cfg_offset);
4190         if (rc)
4191                 return rc;
4192         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4193                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4194         if (!h->cfgtable)
4195                 return -ENOMEM;
4196         rc = write_driver_ver_to_cfgtable(h->cfgtable);
4197         if (rc)
4198                 return rc;
4199         /* Find performant mode table. */
4200         trans_offset = readl(&h->cfgtable->TransMethodOffset);
4201         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4202                                 cfg_base_addr_index)+cfg_offset+trans_offset,
4203                                 sizeof(*h->transtable));
4204         if (!h->transtable)
4205                 return -ENOMEM;
4206         return 0;
4207 }
4208
4209 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4210 {
4211         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4212
4213         /* Limit commands in memory limited kdump scenario. */
4214         if (reset_devices && h->max_commands > 32)
4215                 h->max_commands = 32;
4216
4217         if (h->max_commands < 16) {
4218                 dev_warn(&h->pdev->dev, "Controller reports "
4219                         "max supported commands of %d, an obvious lie. "
4220                         "Using 16.  Ensure that firmware is up to date.\n",
4221                         h->max_commands);
4222                 h->max_commands = 16;
4223         }
4224 }
4225
4226 /* Interrogate the hardware for some limits:
4227  * max commands, max SG elements without chaining, and with chaining,
4228  * SG chain block size, etc.
4229  */
4230 static void hpsa_find_board_params(struct ctlr_info *h)
4231 {
4232         hpsa_get_max_perf_mode_cmds(h);
4233         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4234         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
4235         /*
4236          * Limit in-command s/g elements to 32 save dma'able memory.
4237          * Howvever spec says if 0, use 31
4238          */
4239         h->max_cmd_sg_entries = 31;
4240         if (h->maxsgentries > 512) {
4241                 h->max_cmd_sg_entries = 32;
4242                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
4243                 h->maxsgentries--; /* save one for chain pointer */
4244         } else {
4245                 h->maxsgentries = 31; /* default to traditional values */
4246                 h->chainsize = 0;
4247         }
4248
4249         /* Find out what task management functions are supported and cache */
4250         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4251 }
4252
4253 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
4254 {
4255         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4256                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4257                 return false;
4258         }
4259         return true;
4260 }
4261
4262 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4263 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
4264 {
4265 #ifdef CONFIG_X86
4266         u32 prefetch;
4267
4268         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4269         prefetch |= 0x100;
4270         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4271 #endif
4272 }
4273
4274 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4275  * in a prefetch beyond physical memory.
4276  */
4277 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
4278 {
4279         u32 dma_prefetch;
4280
4281         if (h->board_id != 0x3225103C)
4282                 return;
4283         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4284         dma_prefetch |= 0x8000;
4285         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4286 }
4287
4288 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4289 {
4290         int i;
4291         u32 doorbell_value;
4292         unsigned long flags;
4293
4294         /* under certain very rare conditions, this can take awhile.
4295          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4296          * as we enter this code.)
4297          */
4298         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4299                 spin_lock_irqsave(&h->lock, flags);
4300                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
4301                 spin_unlock_irqrestore(&h->lock, flags);
4302                 if (!(doorbell_value & CFGTBL_ChangeReq))
4303                         break;
4304                 /* delay and try again */
4305                 usleep_range(10000, 20000);
4306         }
4307 }
4308
4309 static int hpsa_enter_simple_mode(struct ctlr_info *h)
4310 {
4311         u32 trans_support;
4312
4313         trans_support = readl(&(h->cfgtable->TransportSupport));
4314         if (!(trans_support & SIMPLE_MODE))
4315                 return -ENOTSUPP;
4316
4317         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
4318         /* Update the field, and then ring the doorbell */
4319         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
4320         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4321         hpsa_wait_for_mode_change_ack(h);
4322         print_cfg_table(&h->pdev->dev, h->cfgtable);
4323         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
4324                 dev_warn(&h->pdev->dev,
4325                         "unable to get board into simple mode\n");
4326                 return -ENODEV;
4327         }
4328         h->transMethod = CFGTBL_Trans_Simple;
4329         return 0;
4330 }
4331
4332 static int hpsa_pci_init(struct ctlr_info *h)
4333 {
4334         int prod_index, err;
4335
4336         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
4337         if (prod_index < 0)
4338                 return -ENODEV;
4339         h->product_name = products[prod_index].product_name;
4340         h->access = *(products[prod_index].access);
4341
4342         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4343                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4344
4345         err = pci_enable_device(h->pdev);
4346         if (err) {
4347                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4348                 return err;
4349         }
4350
4351         /* Enable bus mastering (pci_disable_device may disable this) */
4352         pci_set_master(h->pdev);
4353
4354         err = pci_request_regions(h->pdev, HPSA);
4355         if (err) {
4356                 dev_err(&h->pdev->dev,
4357                         "cannot obtain PCI resources, aborting\n");
4358                 return err;
4359         }
4360         hpsa_interrupt_mode(h);
4361         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4362         if (err)
4363                 goto err_out_free_res;
4364         h->vaddr = remap_pci_mem(h->paddr, 0x250);
4365         if (!h->vaddr) {
4366                 err = -ENOMEM;
4367                 goto err_out_free_res;
4368         }
4369         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4370         if (err)
4371                 goto err_out_free_res;
4372         err = hpsa_find_cfgtables(h);
4373         if (err)
4374                 goto err_out_free_res;
4375         hpsa_find_board_params(h);
4376
4377         if (!hpsa_CISS_signature_present(h)) {
4378                 err = -ENODEV;
4379                 goto err_out_free_res;
4380         }
4381         hpsa_enable_scsi_prefetch(h);
4382         hpsa_p600_dma_prefetch_quirk(h);
4383         err = hpsa_enter_simple_mode(h);
4384         if (err)
4385                 goto err_out_free_res;
4386         return 0;
4387
4388 err_out_free_res:
4389         if (h->transtable)
4390                 iounmap(h->transtable);
4391         if (h->cfgtable)
4392                 iounmap(h->cfgtable);
4393         if (h->vaddr)
4394                 iounmap(h->vaddr);
4395         pci_disable_device(h->pdev);
4396         pci_release_regions(h->pdev);
4397         return err;
4398 }
4399
4400 static void hpsa_hba_inquiry(struct ctlr_info *h)
4401 {
4402         int rc;
4403
4404 #define HBA_INQUIRY_BYTE_COUNT 64
4405         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4406         if (!h->hba_inquiry_data)
4407                 return;
4408         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4409                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4410         if (rc != 0) {
4411                 kfree(h->hba_inquiry_data);
4412                 h->hba_inquiry_data = NULL;
4413         }
4414 }
4415
4416 static int hpsa_init_reset_devices(struct pci_dev *pdev)
4417 {
4418         int rc, i;
4419
4420         if (!reset_devices)
4421                 return 0;
4422
4423         /* Reset the controller with a PCI power-cycle or via doorbell */
4424         rc = hpsa_kdump_hard_reset_controller(pdev);
4425
4426         /* -ENOTSUPP here means we cannot reset the controller
4427          * but it's already (and still) up and running in
4428          * "performant mode".  Or, it might be 640x, which can't reset
4429          * due to concerns about shared bbwc between 6402/6404 pair.
4430          */
4431         if (rc == -ENOTSUPP)
4432                 return rc; /* just try to do the kdump anyhow. */
4433         if (rc)
4434                 return -ENODEV;
4435
4436         /* Now try to get the controller to respond to a no-op */
4437         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4438         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4439                 if (hpsa_noop(pdev) == 0)
4440                         break;
4441                 else
4442                         dev_warn(&pdev->dev, "no-op failed%s\n",
4443                                         (i < 11 ? "; re-trying" : ""));
4444         }
4445         return 0;
4446 }
4447
4448 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4449 {
4450         h->cmd_pool_bits = kzalloc(
4451                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4452                 sizeof(unsigned long), GFP_KERNEL);
4453         h->cmd_pool = pci_alloc_consistent(h->pdev,
4454                     h->nr_cmds * sizeof(*h->cmd_pool),
4455                     &(h->cmd_pool_dhandle));
4456         h->errinfo_pool = pci_alloc_consistent(h->pdev,
4457                     h->nr_cmds * sizeof(*h->errinfo_pool),
4458                     &(h->errinfo_pool_dhandle));
4459         if ((h->cmd_pool_bits == NULL)
4460             || (h->cmd_pool == NULL)
4461             || (h->errinfo_pool == NULL)) {
4462                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4463                 return -ENOMEM;
4464         }
4465         return 0;
4466 }
4467
4468 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4469 {
4470         kfree(h->cmd_pool_bits);
4471         if (h->cmd_pool)
4472                 pci_free_consistent(h->pdev,
4473                             h->nr_cmds * sizeof(struct CommandList),
4474                             h->cmd_pool, h->cmd_pool_dhandle);
4475         if (h->errinfo_pool)
4476                 pci_free_consistent(h->pdev,
4477                             h->nr_cmds * sizeof(struct ErrorInfo),
4478                             h->errinfo_pool,
4479                             h->errinfo_pool_dhandle);
4480 }
4481
4482 static int hpsa_request_irq(struct ctlr_info *h,
4483         irqreturn_t (*msixhandler)(int, void *),
4484         irqreturn_t (*intxhandler)(int, void *))
4485 {
4486         int rc, i;
4487
4488         /*
4489          * initialize h->q[x] = x so that interrupt handlers know which
4490          * queue to process.
4491          */
4492         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4493                 h->q[i] = (u8) i;
4494
4495         if (h->intr_mode == PERF_MODE_INT && h->msix_vector) {
4496                 /* If performant mode and MSI-X, use multiple reply queues */
4497                 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4498                         rc = request_irq(h->intr[i], msixhandler,
4499                                         0, h->devname,
4500                                         &h->q[i]);
4501         } else {
4502                 /* Use single reply pool */
4503                 if (h->msix_vector || h->msi_vector) {
4504                         rc = request_irq(h->intr[h->intr_mode],
4505                                 msixhandler, 0, h->devname,
4506                                 &h->q[h->intr_mode]);
4507                 } else {
4508                         rc = request_irq(h->intr[h->intr_mode],
4509                                 intxhandler, IRQF_SHARED, h->devname,
4510                                 &h->q[h->intr_mode]);
4511                 }
4512         }
4513         if (rc) {
4514                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4515                        h->intr[h->intr_mode], h->devname);
4516                 return -ENODEV;
4517         }
4518         return 0;
4519 }
4520
4521 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
4522 {
4523         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4524                 HPSA_RESET_TYPE_CONTROLLER)) {
4525                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4526                 return -EIO;
4527         }
4528
4529         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4530         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4531                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4532                 return -1;
4533         }
4534
4535         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4536         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4537                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4538                         "after soft reset.\n");
4539                 return -1;
4540         }
4541
4542         return 0;
4543 }
4544
4545 static void free_irqs(struct ctlr_info *h)
4546 {
4547         int i;
4548
4549         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
4550                 /* Single reply queue, only one irq to free */
4551                 i = h->intr_mode;
4552                 free_irq(h->intr[i], &h->q[i]);
4553                 return;
4554         }
4555
4556         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4557                 free_irq(h->intr[i], &h->q[i]);
4558 }
4559
4560 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
4561 {
4562         free_irqs(h);
4563 #ifdef CONFIG_PCI_MSI
4564         if (h->msix_vector) {
4565                 if (h->pdev->msix_enabled)
4566                         pci_disable_msix(h->pdev);
4567         } else if (h->msi_vector) {
4568                 if (h->pdev->msi_enabled)
4569                         pci_disable_msi(h->pdev);
4570         }
4571 #endif /* CONFIG_PCI_MSI */
4572 }
4573
4574 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4575 {
4576         hpsa_free_irqs_and_disable_msix(h);
4577         hpsa_free_sg_chain_blocks(h);
4578         hpsa_free_cmd_pool(h);
4579         kfree(h->blockFetchTable);
4580         pci_free_consistent(h->pdev, h->reply_pool_size,
4581                 h->reply_pool, h->reply_pool_dhandle);
4582         if (h->vaddr)
4583                 iounmap(h->vaddr);
4584         if (h->transtable)
4585                 iounmap(h->transtable);
4586         if (h->cfgtable)
4587                 iounmap(h->cfgtable);
4588         pci_release_regions(h->pdev);
4589         kfree(h);
4590 }
4591
4592 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4593 {
4594         assert_spin_locked(&lockup_detector_lock);
4595         if (!hpsa_lockup_detector)
4596                 return;
4597         if (h->lockup_detected)
4598                 return; /* already stopped the lockup detector */
4599         list_del(&h->lockup_list);
4600 }
4601
4602 /* Called when controller lockup detected. */
4603 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4604 {
4605         struct CommandList *c = NULL;
4606
4607         assert_spin_locked(&h->lock);
4608         /* Mark all outstanding commands as failed and complete them. */
4609         while (!list_empty(list)) {
4610                 c = list_entry(list->next, struct CommandList, list);
4611                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4612                 finish_cmd(c);
4613         }
4614 }
4615
4616 static void controller_lockup_detected(struct ctlr_info *h)
4617 {
4618         unsigned long flags;
4619
4620         assert_spin_locked(&lockup_detector_lock);
4621         remove_ctlr_from_lockup_detector_list(h);
4622         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4623         spin_lock_irqsave(&h->lock, flags);
4624         h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4625         spin_unlock_irqrestore(&h->lock, flags);
4626         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4627                         h->lockup_detected);
4628         pci_disable_device(h->pdev);
4629         spin_lock_irqsave(&h->lock, flags);
4630         fail_all_cmds_on_list(h, &h->cmpQ);
4631         fail_all_cmds_on_list(h, &h->reqQ);
4632         spin_unlock_irqrestore(&h->lock, flags);
4633 }
4634
4635 static void detect_controller_lockup(struct ctlr_info *h)
4636 {
4637         u64 now;
4638         u32 heartbeat;
4639         unsigned long flags;
4640
4641         assert_spin_locked(&lockup_detector_lock);
4642         now = get_jiffies_64();
4643         /* If we've received an interrupt recently, we're ok. */
4644         if (time_after64(h->last_intr_timestamp +
4645                                 (h->heartbeat_sample_interval), now))
4646                 return;
4647
4648         /*
4649          * If we've already checked the heartbeat recently, we're ok.
4650          * This could happen if someone sends us a signal. We
4651          * otherwise don't care about signals in this thread.
4652          */
4653         if (time_after64(h->last_heartbeat_timestamp +
4654                                 (h->heartbeat_sample_interval), now))
4655                 return;
4656
4657         /* If heartbeat has not changed since we last looked, we're not ok. */
4658         spin_lock_irqsave(&h->lock, flags);
4659         heartbeat = readl(&h->cfgtable->HeartBeat);
4660         spin_unlock_irqrestore(&h->lock, flags);
4661         if (h->last_heartbeat == heartbeat) {
4662                 controller_lockup_detected(h);
4663                 return;
4664         }
4665
4666         /* We're ok. */
4667         h->last_heartbeat = heartbeat;
4668         h->last_heartbeat_timestamp = now;
4669 }
4670
4671 static int detect_controller_lockup_thread(void *notused)
4672 {
4673         struct ctlr_info *h;
4674         unsigned long flags;
4675
4676         while (1) {
4677                 struct list_head *this, *tmp;
4678
4679                 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4680                 if (kthread_should_stop())
4681                         break;
4682                 spin_lock_irqsave(&lockup_detector_lock, flags);
4683                 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4684                         h = list_entry(this, struct ctlr_info, lockup_list);
4685                         detect_controller_lockup(h);
4686                 }
4687                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4688         }
4689         return 0;
4690 }
4691
4692 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4693 {
4694         unsigned long flags;
4695
4696         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
4697         spin_lock_irqsave(&lockup_detector_lock, flags);
4698         list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4699         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4700 }
4701
4702 static void start_controller_lockup_detector(struct ctlr_info *h)
4703 {
4704         /* Start the lockup detector thread if not already started */
4705         if (!hpsa_lockup_detector) {
4706                 spin_lock_init(&lockup_detector_lock);
4707                 hpsa_lockup_detector =
4708                         kthread_run(detect_controller_lockup_thread,
4709                                                 NULL, HPSA);
4710         }
4711         if (!hpsa_lockup_detector) {
4712                 dev_warn(&h->pdev->dev,
4713                         "Could not start lockup detector thread\n");
4714                 return;
4715         }
4716         add_ctlr_to_lockup_detector_list(h);
4717 }
4718
4719 static void stop_controller_lockup_detector(struct ctlr_info *h)
4720 {
4721         unsigned long flags;
4722
4723         spin_lock_irqsave(&lockup_detector_lock, flags);
4724         remove_ctlr_from_lockup_detector_list(h);
4725         /* If the list of ctlr's to monitor is empty, stop the thread */
4726         if (list_empty(&hpsa_ctlr_list)) {
4727                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4728                 kthread_stop(hpsa_lockup_detector);
4729                 spin_lock_irqsave(&lockup_detector_lock, flags);
4730                 hpsa_lockup_detector = NULL;
4731         }
4732         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4733 }
4734
4735 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4736 {
4737         int dac, rc;
4738         struct ctlr_info *h;
4739         int try_soft_reset = 0;
4740         unsigned long flags;
4741
4742         if (number_of_controllers == 0)
4743                 printk(KERN_INFO DRIVER_NAME "\n");
4744
4745         rc = hpsa_init_reset_devices(pdev);
4746         if (rc) {
4747                 if (rc != -ENOTSUPP)
4748                         return rc;
4749                 /* If the reset fails in a particular way (it has no way to do
4750                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4751                  * a soft reset once we get the controller configured up to the
4752                  * point that it can accept a command.
4753                  */
4754                 try_soft_reset = 1;
4755                 rc = 0;
4756         }
4757
4758 reinit_after_soft_reset:
4759
4760         /* Command structures must be aligned on a 32-byte boundary because
4761          * the 5 lower bits of the address are used by the hardware. and by
4762          * the driver.  See comments in hpsa.h for more info.
4763          */
4764 #define COMMANDLIST_ALIGNMENT 32
4765         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4766         h = kzalloc(sizeof(*h), GFP_KERNEL);
4767         if (!h)
4768                 return -ENOMEM;
4769
4770         h->pdev = pdev;
4771         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4772         INIT_LIST_HEAD(&h->cmpQ);
4773         INIT_LIST_HEAD(&h->reqQ);
4774         spin_lock_init(&h->lock);
4775         spin_lock_init(&h->scan_lock);
4776         rc = hpsa_pci_init(h);
4777         if (rc != 0)
4778                 goto clean1;
4779
4780         sprintf(h->devname, HPSA "%d", number_of_controllers);
4781         h->ctlr = number_of_controllers;
4782         number_of_controllers++;
4783
4784         /* configure PCI DMA stuff */
4785         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4786         if (rc == 0) {
4787                 dac = 1;
4788         } else {
4789                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4790                 if (rc == 0) {
4791                         dac = 0;
4792                 } else {
4793                         dev_err(&pdev->dev, "no suitable DMA available\n");
4794                         goto clean1;
4795                 }
4796         }
4797
4798         /* make sure the board interrupts are off */
4799         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4800
4801         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4802                 goto clean2;
4803         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4804                h->devname, pdev->device,
4805                h->intr[h->intr_mode], dac ? "" : " not");
4806         if (hpsa_allocate_cmd_pool(h))
4807                 goto clean4;
4808         if (hpsa_allocate_sg_chain_blocks(h))
4809                 goto clean4;
4810         init_waitqueue_head(&h->scan_wait_queue);
4811         h->scan_finished = 1; /* no scan currently in progress */
4812
4813         pci_set_drvdata(pdev, h);
4814         h->ndevices = 0;
4815         h->scsi_host = NULL;
4816         spin_lock_init(&h->devlock);
4817         hpsa_put_ctlr_into_performant_mode(h);
4818
4819         /* At this point, the controller is ready to take commands.
4820          * Now, if reset_devices and the hard reset didn't work, try
4821          * the soft reset and see if that works.
4822          */
4823         if (try_soft_reset) {
4824
4825                 /* This is kind of gross.  We may or may not get a completion
4826                  * from the soft reset command, and if we do, then the value
4827                  * from the fifo may or may not be valid.  So, we wait 10 secs
4828                  * after the reset throwing away any completions we get during
4829                  * that time.  Unregister the interrupt handler and register
4830                  * fake ones to scoop up any residual completions.
4831                  */
4832                 spin_lock_irqsave(&h->lock, flags);
4833                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4834                 spin_unlock_irqrestore(&h->lock, flags);
4835                 free_irqs(h);
4836                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4837                                         hpsa_intx_discard_completions);
4838                 if (rc) {
4839                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4840                                 "soft reset.\n");
4841                         goto clean4;
4842                 }
4843
4844                 rc = hpsa_kdump_soft_reset(h);
4845                 if (rc)
4846                         /* Neither hard nor soft reset worked, we're hosed. */
4847                         goto clean4;
4848
4849                 dev_info(&h->pdev->dev, "Board READY.\n");
4850                 dev_info(&h->pdev->dev,
4851                         "Waiting for stale completions to drain.\n");
4852                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4853                 msleep(10000);
4854                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4855
4856                 rc = controller_reset_failed(h->cfgtable);
4857                 if (rc)
4858                         dev_info(&h->pdev->dev,
4859                                 "Soft reset appears to have failed.\n");
4860
4861                 /* since the controller's reset, we have to go back and re-init
4862                  * everything.  Easiest to just forget what we've done and do it
4863                  * all over again.
4864                  */
4865                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4866                 try_soft_reset = 0;
4867                 if (rc)
4868                         /* don't go to clean4, we already unallocated */
4869                         return -ENODEV;
4870
4871                 goto reinit_after_soft_reset;
4872         }
4873
4874         /* Turn the interrupts on so we can service requests */
4875         h->access.set_intr_mask(h, HPSA_INTR_ON);
4876
4877         hpsa_hba_inquiry(h);
4878         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4879         start_controller_lockup_detector(h);
4880         return 1;
4881
4882 clean4:
4883         hpsa_free_sg_chain_blocks(h);
4884         hpsa_free_cmd_pool(h);
4885         free_irqs(h);
4886 clean2:
4887 clean1:
4888         kfree(h);
4889         return rc;
4890 }
4891
4892 static void hpsa_flush_cache(struct ctlr_info *h)
4893 {
4894         char *flush_buf;
4895         struct CommandList *c;
4896
4897         flush_buf = kzalloc(4, GFP_KERNEL);
4898         if (!flush_buf)
4899                 return;
4900
4901         c = cmd_special_alloc(h);
4902         if (!c) {
4903                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4904                 goto out_of_memory;
4905         }
4906         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4907                 RAID_CTLR_LUNID, TYPE_CMD)) {
4908                 goto out;
4909         }
4910         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4911         if (c->err_info->CommandStatus != 0)
4912 out:
4913                 dev_warn(&h->pdev->dev,
4914                         "error flushing cache on controller\n");
4915         cmd_special_free(h, c);
4916 out_of_memory:
4917         kfree(flush_buf);
4918 }
4919
4920 static void hpsa_shutdown(struct pci_dev *pdev)
4921 {
4922         struct ctlr_info *h;
4923
4924         h = pci_get_drvdata(pdev);
4925         /* Turn board interrupts off  and send the flush cache command
4926          * sendcmd will turn off interrupt, and send the flush...
4927          * To write all data in the battery backed cache to disks
4928          */
4929         hpsa_flush_cache(h);
4930         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4931         hpsa_free_irqs_and_disable_msix(h);
4932 }
4933
4934 static void hpsa_free_device_info(struct ctlr_info *h)
4935 {
4936         int i;
4937
4938         for (i = 0; i < h->ndevices; i++)
4939                 kfree(h->dev[i]);
4940 }
4941
4942 static void hpsa_remove_one(struct pci_dev *pdev)
4943 {
4944         struct ctlr_info *h;
4945
4946         if (pci_get_drvdata(pdev) == NULL) {
4947                 dev_err(&pdev->dev, "unable to remove device\n");
4948                 return;
4949         }
4950         h = pci_get_drvdata(pdev);
4951         stop_controller_lockup_detector(h);
4952         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
4953         hpsa_shutdown(pdev);
4954         iounmap(h->vaddr);
4955         iounmap(h->transtable);
4956         iounmap(h->cfgtable);
4957         hpsa_free_device_info(h);
4958         hpsa_free_sg_chain_blocks(h);
4959         pci_free_consistent(h->pdev,
4960                 h->nr_cmds * sizeof(struct CommandList),
4961                 h->cmd_pool, h->cmd_pool_dhandle);
4962         pci_free_consistent(h->pdev,
4963                 h->nr_cmds * sizeof(struct ErrorInfo),
4964                 h->errinfo_pool, h->errinfo_pool_dhandle);
4965         pci_free_consistent(h->pdev, h->reply_pool_size,
4966                 h->reply_pool, h->reply_pool_dhandle);
4967         kfree(h->cmd_pool_bits);
4968         kfree(h->blockFetchTable);
4969         kfree(h->hba_inquiry_data);
4970         pci_disable_device(pdev);
4971         pci_release_regions(pdev);
4972         pci_set_drvdata(pdev, NULL);
4973         kfree(h);
4974 }
4975
4976 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4977         __attribute__((unused)) pm_message_t state)
4978 {
4979         return -ENOSYS;
4980 }
4981
4982 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4983 {
4984         return -ENOSYS;
4985 }
4986
4987 static struct pci_driver hpsa_pci_driver = {
4988         .name = HPSA,
4989         .probe = hpsa_init_one,
4990         .remove = hpsa_remove_one,
4991         .id_table = hpsa_pci_device_id, /* id_table */
4992         .shutdown = hpsa_shutdown,
4993         .suspend = hpsa_suspend,
4994         .resume = hpsa_resume,
4995 };
4996
4997 /* Fill in bucket_map[], given nsgs (the max number of
4998  * scatter gather elements supported) and bucket[],
4999  * which is an array of 8 integers.  The bucket[] array
5000  * contains 8 different DMA transfer sizes (in 16
5001  * byte increments) which the controller uses to fetch
5002  * commands.  This function fills in bucket_map[], which
5003  * maps a given number of scatter gather elements to one of
5004  * the 8 DMA transfer sizes.  The point of it is to allow the
5005  * controller to only do as much DMA as needed to fetch the
5006  * command, with the DMA transfer size encoded in the lower
5007  * bits of the command address.
5008  */
5009 static void  calc_bucket_map(int bucket[], int num_buckets,
5010         int nsgs, int *bucket_map)
5011 {
5012         int i, j, b, size;
5013
5014         /* even a command with 0 SGs requires 4 blocks */
5015 #define MINIMUM_TRANSFER_BLOCKS 4
5016 #define NUM_BUCKETS 8
5017         /* Note, bucket_map must have nsgs+1 entries. */
5018         for (i = 0; i <= nsgs; i++) {
5019                 /* Compute size of a command with i SG entries */
5020                 size = i + MINIMUM_TRANSFER_BLOCKS;
5021                 b = num_buckets; /* Assume the biggest bucket */
5022                 /* Find the bucket that is just big enough */
5023                 for (j = 0; j < 8; j++) {
5024                         if (bucket[j] >= size) {
5025                                 b = j;
5026                                 break;
5027                         }
5028                 }
5029                 /* for a command with i SG entries, use bucket b. */
5030                 bucket_map[i] = b;
5031         }
5032 }
5033
5034 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 use_short_tags)
5035 {
5036         int i;
5037         unsigned long register_value;
5038
5039         /* This is a bit complicated.  There are 8 registers on
5040          * the controller which we write to to tell it 8 different
5041          * sizes of commands which there may be.  It's a way of
5042          * reducing the DMA done to fetch each command.  Encoded into
5043          * each command's tag are 3 bits which communicate to the controller
5044          * which of the eight sizes that command fits within.  The size of
5045          * each command depends on how many scatter gather entries there are.
5046          * Each SG entry requires 16 bytes.  The eight registers are programmed
5047          * with the number of 16-byte blocks a command of that size requires.
5048          * The smallest command possible requires 5 such 16 byte blocks.
5049          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5050          * blocks.  Note, this only extends to the SG entries contained
5051          * within the command block, and does not extend to chained blocks
5052          * of SG elements.   bft[] contains the eight values we write to
5053          * the registers.  They are not evenly distributed, but have more
5054          * sizes for small commands, and fewer sizes for larger commands.
5055          */
5056         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
5057         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
5058         /*  5 = 1 s/g entry or 4k
5059          *  6 = 2 s/g entry or 8k
5060          *  8 = 4 s/g entry or 16k
5061          * 10 = 6 s/g entry or 24k
5062          */
5063
5064         /* Controller spec: zero out this buffer. */
5065         memset(h->reply_pool, 0, h->reply_pool_size);
5066
5067         bft[7] = SG_ENTRIES_IN_CMD + 4;
5068         calc_bucket_map(bft, ARRAY_SIZE(bft),
5069                                 SG_ENTRIES_IN_CMD, h->blockFetchTable);
5070         for (i = 0; i < 8; i++)
5071                 writel(bft[i], &h->transtable->BlockFetch[i]);
5072
5073         /* size of controller ring buffer */
5074         writel(h->max_commands, &h->transtable->RepQSize);
5075         writel(h->nreply_queues, &h->transtable->RepQCount);
5076         writel(0, &h->transtable->RepQCtrAddrLow32);
5077         writel(0, &h->transtable->RepQCtrAddrHigh32);
5078
5079         for (i = 0; i < h->nreply_queues; i++) {
5080                 writel(0, &h->transtable->RepQAddr[i].upper);
5081                 writel(h->reply_pool_dhandle +
5082                         (h->max_commands * sizeof(u64) * i),
5083                         &h->transtable->RepQAddr[i].lower);
5084         }
5085
5086         writel(CFGTBL_Trans_Performant | use_short_tags |
5087                 CFGTBL_Trans_enable_directed_msix,
5088                 &(h->cfgtable->HostWrite.TransportRequest));
5089         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5090         hpsa_wait_for_mode_change_ack(h);
5091         register_value = readl(&(h->cfgtable->TransportActive));
5092         if (!(register_value & CFGTBL_Trans_Performant)) {
5093                 dev_warn(&h->pdev->dev, "unable to get board into"
5094                                         " performant mode\n");
5095                 return;
5096         }
5097         /* Change the access methods to the performant access methods */
5098         h->access = SA5_performant_access;
5099         h->transMethod = CFGTBL_Trans_Performant;
5100 }
5101
5102 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
5103 {
5104         u32 trans_support;
5105         int i;
5106
5107         if (hpsa_simple_mode)
5108                 return;
5109
5110         trans_support = readl(&(h->cfgtable->TransportSupport));
5111         if (!(trans_support & PERFORMANT_MODE))
5112                 return;
5113
5114         h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1;
5115         hpsa_get_max_perf_mode_cmds(h);
5116         /* Performant mode ring buffer and supporting data structures */
5117         h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
5118         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
5119                                 &(h->reply_pool_dhandle));
5120
5121         for (i = 0; i < h->nreply_queues; i++) {
5122                 h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
5123                 h->reply_queue[i].size = h->max_commands;
5124                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
5125                 h->reply_queue[i].current_entry = 0;
5126         }
5127
5128         /* Need a block fetch table for performant mode */
5129         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
5130                                 sizeof(u32)), GFP_KERNEL);
5131
5132         if ((h->reply_pool == NULL)
5133                 || (h->blockFetchTable == NULL))
5134                 goto clean_up;
5135
5136         hpsa_enter_performant_mode(h,
5137                 trans_support & CFGTBL_Trans_use_short_tags);
5138
5139         return;
5140
5141 clean_up:
5142         if (h->reply_pool)
5143                 pci_free_consistent(h->pdev, h->reply_pool_size,
5144                         h->reply_pool, h->reply_pool_dhandle);
5145         kfree(h->blockFetchTable);
5146 }
5147
5148 /*
5149  *  This is it.  Register the PCI driver information for the cards we control
5150  *  the OS will call our registered routines when it finds one of our cards.
5151  */
5152 static int __init hpsa_init(void)
5153 {
5154         return pci_register_driver(&hpsa_pci_driver);
5155 }
5156
5157 static void __exit hpsa_cleanup(void)
5158 {
5159         pci_unregister_driver(&hpsa_pci_driver);
5160 }
5161
5162 module_init(hpsa_init);
5163 module_exit(hpsa_cleanup);