Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / scsi / aic7xxx_old.c
1 /*+M*************************************************************************
2  * Adaptec AIC7xxx device driver for Linux.
3  *
4  * Copyright (c) 1994 John Aycock
5  *   The University of Calgary Department of Computer Science.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; see the file COPYING.  If not, write to
19  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  * Sources include the Adaptec 1740 driver (aha1740.c), the Ultrastor 24F
22  * driver (ultrastor.c), various Linux kernel source, the Adaptec EISA
23  * config file (!adp7771.cfg), the Adaptec AHA-2740A Series User's Guide,
24  * the Linux Kernel Hacker's Guide, Writing a SCSI Device Driver for Linux,
25  * the Adaptec 1542 driver (aha1542.c), the Adaptec EISA overlay file
26  * (adp7770.ovl), the Adaptec AHA-2740 Series Technical Reference Manual,
27  * the Adaptec AIC-7770 Data Book, the ANSI SCSI specification, the
28  * ANSI SCSI-2 specification (draft 10c), ...
29  *
30  * --------------------------------------------------------------------------
31  *
32  *  Modifications by Daniel M. Eischen (deischen@iworks.InterWorks.org):
33  *
34  *  Substantially modified to include support for wide and twin bus
35  *  adapters, DMAing of SCBs, tagged queueing, IRQ sharing, bug fixes,
36  *  SCB paging, and other rework of the code.
37  *
38  *  Parts of this driver were also based on the FreeBSD driver by
39  *  Justin T. Gibbs.  His copyright follows:
40  *
41  * --------------------------------------------------------------------------  
42  * Copyright (c) 1994-1997 Justin Gibbs.
43  * All rights reserved.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  *    notice, this list of conditions, and the following disclaimer,
50  *    without modification, immediately at the beginning of the file.
51  * 2. Redistributions in binary form must reproduce the above copyright
52  *    notice, this list of conditions and the following disclaimer in the
53  *    documentation and/or other materials provided with the distribution.
54  * 3. The name of the author may not be used to endorse or promote products
55  *    derived from this software without specific prior written permission.
56  *
57  * Where this Software is combined with software released under the terms of 
58  * the GNU General Public License ("GPL") and the terms of the GPL would require the 
59  * combined work to also be released under the terms of the GPL, the terms
60  * and conditions of this License will apply in addition to those of the
61  * GPL with the exception of any terms or conditions of this License that
62  * conflict with, or are expressly prohibited by, the GPL.
63  *
64  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
68  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74  * SUCH DAMAGE.
75  *
76  *      $Id: aic7xxx.c,v 1.119 1997/06/27 19:39:18 gibbs Exp $
77  *---------------------------------------------------------------------------
78  *
79  *  Thanks also go to (in alphabetical order) the following:
80  *
81  *    Rory Bolt     - Sequencer bug fixes
82  *    Jay Estabrook - Initial DEC Alpha support
83  *    Doug Ledford  - Much needed abort/reset bug fixes
84  *    Kai Makisara  - DMAing of SCBs
85  *
86  *  A Boot time option was also added for not resetting the scsi bus.
87  *
88  *    Form:  aic7xxx=extended
89  *           aic7xxx=no_reset
90  *           aic7xxx=ultra
91  *           aic7xxx=irq_trigger:[0,1]  # 0 edge, 1 level
92  *           aic7xxx=verbose
93  *
94  *  Daniel M. Eischen, deischen@iworks.InterWorks.org, 1/23/97
95  *
96  *  $Id: aic7xxx.c,v 4.1 1997/06/12 08:23:42 deang Exp $
97  *-M*************************************************************************/
98
99 /*+M**************************************************************************
100  *
101  * Further driver modifications made by Doug Ledford <dledford@redhat.com>
102  *
103  * Copyright (c) 1997-1999 Doug Ledford
104  *
105  * These changes are released under the same licensing terms as the FreeBSD
106  * driver written by Justin Gibbs.  Please see his Copyright notice above
107  * for the exact terms and conditions covering my changes as well as the
108  * warranty statement.
109  *
110  * Modifications made to the aic7xxx.c,v 4.1 driver from Dan Eischen include
111  * but are not limited to:
112  *
113  *  1: Import of the latest FreeBSD sequencer code for this driver
114  *  2: Modification of kernel code to accommodate different sequencer semantics
115  *  3: Extensive changes throughout kernel portion of driver to improve
116  *     abort/reset processing and error hanndling
117  *  4: Other work contributed by various people on the Internet
118  *  5: Changes to printk information and verbosity selection code
119  *  6: General reliability related changes, especially in IRQ management
120  *  7: Modifications to the default probe/attach order for supported cards
121  *  8: SMP friendliness has been improved
122  *
123  * Overall, this driver represents a significant departure from the official
124  * aic7xxx driver released by Dan Eischen in two ways.  First, in the code
125  * itself.  A diff between the two version of the driver is now a several
126  * thousand line diff.  Second, in approach to solving the same problem.  The
127  * problem is importing the FreeBSD aic7xxx driver code to linux can be a
128  * difficult and time consuming process, that also can be error prone.  Dan
129  * Eischen's official driver uses the approach that the linux and FreeBSD
130  * drivers should be as identical as possible.  To that end, his next version
131  * of this driver will be using a mid-layer code library that he is developing
132  * to moderate communications between the linux mid-level SCSI code and the
133  * low level FreeBSD driver.  He intends to be able to essentially drop the
134  * FreeBSD driver into the linux kernel with only a few minor tweaks to some
135  * include files and the like and get things working, making for fast easy
136  * imports of the FreeBSD code into linux.
137  *
138  * I disagree with Dan's approach.  Not that I don't think his way of doing
139  * things would be nice, easy to maintain, and create a more uniform driver
140  * between FreeBSD and Linux.  I have no objection to those issues.  My
141  * disagreement is on the needed functionality.  There simply are certain
142  * things that are done differently in FreeBSD than linux that will cause
143  * problems for this driver regardless of any middle ware Dan implements.
144  * The biggest example of this at the moment is interrupt semantics.  Linux
145  * doesn't provide the same protection techniques as FreeBSD does, nor can
146  * they be easily implemented in any middle ware code since they would truly
147  * belong in the kernel proper and would effect all drivers.  For the time
148  * being, I see issues such as these as major stumbling blocks to the 
149  * reliability of code based upon such middle ware.  Therefore, I choose to
150  * use a different approach to importing the FreeBSD code that doesn't
151  * involve any middle ware type code.  My approach is to import the sequencer
152  * code from FreeBSD wholesale.  Then, to only make changes in the kernel
153  * portion of the driver as they are needed for the new sequencer semantics.
154  * In this way, the portion of the driver that speaks to the rest of the
155  * linux kernel is fairly static and can be changed/modified to solve
156  * any problems one might encounter without concern for the FreeBSD driver.
157  *
158  * Note: If time and experience should prove me wrong that the middle ware
159  * code Dan writes is reliable in its operation, then I'll retract my above
160  * statements.  But, for those that don't know, I'm from Missouri (in the US)
161  * and our state motto is "The Show-Me State".  Well, before I will put
162  * faith into it, you'll have to show me that it works :)
163  *
164  *_M*************************************************************************/
165
166 /*
167  * The next three defines are user configurable.  These should be the only
168  * defines a user might need to get in here and change.  There are other
169  * defines buried deeper in the code, but those really shouldn't need touched
170  * under normal conditions.
171  */
172
173 /*
174  * AIC7XXX_STRICT_PCI_SETUP
175  *   Should we assume the PCI config options on our controllers are set with
176  *   sane and proper values, or should we be anal about our PCI config
177  *   registers and force them to what we want?  The main advantage to
178  *   defining this option is on non-Intel hardware where the BIOS may not
179  *   have been run to set things up, or if you have one of the BIOSless
180  *   Adaptec controllers, such as a 2910, that don't get set up by the
181  *   BIOS.  However, keep in mind that we really do set the most important
182  *   items in the driver regardless of this setting, this only controls some
183  *   of the more esoteric PCI options on these cards.  In that sense, I
184  *   would default to leaving this off.  However, if people wish to try
185  *   things both ways, that would also help me to know if there are some
186  *   machines where it works one way but not another.
187  *
188  *   -- July 7, 17:09
189  *     OK...I need this on my machine for testing, so the default is to
190  *     leave it defined.
191  *
192  *   -- July 7, 18:49
193  *     I needed it for testing, but it didn't make any difference, so back
194  *     off she goes.
195  *
196  *   -- July 16, 23:04
197  *     I turned it back on to try and compensate for the 2.1.x PCI code
198  *     which no longer relies solely on the BIOS and now tries to set
199  *     things itself.
200  */
201
202 #define AIC7XXX_STRICT_PCI_SETUP
203
204 /*
205  * AIC7XXX_VERBOSE_DEBUGGING
206  *   This option enables a lot of extra printk();s in the code, surrounded
207  *   by if (aic7xxx_verbose ...) statements.  Executing all of those if
208  *   statements and the extra checks can get to where it actually does have
209  *   an impact on CPU usage and such, as well as code size.  Disabling this
210  *   define will keep some of those from becoming part of the code.
211  *
212  *   NOTE:  Currently, this option has no real effect, I will be adding the
213  *   various #ifdef's in the code later when I've decided a section is
214  *   complete and no longer needs debugging.  OK...a lot of things are now
215  *   surrounded by this define, so turning this off does have an impact.
216  */
217  
218 /*
219  * #define AIC7XXX_VERBOSE_DEBUGGING
220  */
221  
222 #include <linux/module.h>
223 #include <stdarg.h>
224 #include <asm/io.h>
225 #include <asm/irq.h>
226 #include <asm/byteorder.h>
227 #include <linux/string.h>
228 #include <linux/errno.h>
229 #include <linux/kernel.h>
230 #include <linux/ioport.h>
231 #include <linux/delay.h>
232 #include <linux/pci.h>
233 #include <linux/proc_fs.h>
234 #include <linux/blkdev.h>
235 #include <linux/init.h>
236 #include <linux/spinlock.h>
237 #include <linux/smp.h>
238 #include <linux/interrupt.h>
239 #include "scsi.h"
240 #include <scsi/scsi_host.h>
241 #include "aic7xxx_old/aic7xxx.h"
242
243 #include "aic7xxx_old/sequencer.h"
244 #include "aic7xxx_old/scsi_message.h"
245 #include "aic7xxx_old/aic7xxx_reg.h"
246 #include <scsi/scsicam.h>
247
248 #include <linux/stat.h>
249 #include <linux/slab.h>        /* for kmalloc() */
250
251 #define AIC7XXX_C_VERSION  "5.2.6"
252
253 #define ALL_TARGETS -1
254 #define ALL_CHANNELS -1
255 #define ALL_LUNS -1
256 #define MAX_TARGETS  16
257 #define MAX_LUNS     8
258 #ifndef TRUE
259 #  define TRUE 1
260 #endif
261 #ifndef FALSE
262 #  define FALSE 0
263 #endif
264
265 #if defined(__powerpc__) || defined(__i386__) || defined(__x86_64__)
266 #  define MMAPIO
267 #endif
268
269 /*
270  * You can try raising me for better performance or lowering me if you have
271  * flaky devices that go off the scsi bus when hit with too many tagged
272  * commands (like some IBM SCSI-3 LVD drives).
273  */
274 #define AIC7XXX_CMDS_PER_DEVICE 32
275
276 typedef struct
277 {
278   unsigned char tag_commands[16];   /* Allow for wide/twin adapters. */
279 } adapter_tag_info_t;
280
281 /*
282  * Make a define that will tell the driver not to the default tag depth
283  * everywhere.
284  */
285 #define DEFAULT_TAG_COMMANDS {0, 0, 0, 0, 0, 0, 0, 0,\
286                               0, 0, 0, 0, 0, 0, 0, 0}
287
288 /*
289  * Modify this as you see fit for your system.  By setting tag_commands
290  * to 0, the driver will use it's own algorithm for determining the
291  * number of commands to use (see above).  When 255, the driver will
292  * not enable tagged queueing for that particular device.  When positive
293  * (> 0) and (< 255) the values in the array are used for the queue_depth.
294  * Note that the maximum value for an entry is 254, but you're insane if
295  * you try to use that many commands on one device.
296  *
297  * In this example, the first line will disable tagged queueing for all
298  * the devices on the first probed aic7xxx adapter.
299  *
300  * The second line enables tagged queueing with 4 commands/LUN for IDs
301  * (1, 2-11, 13-15), disables tagged queueing for ID 12, and tells the
302  * driver to use its own algorithm for ID 1.
303  *
304  * The third line is the same as the first line.
305  *
306  * The fourth line disables tagged queueing for devices 0 and 3.  It
307  * enables tagged queueing for the other IDs, with 16 commands/LUN
308  * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for
309  * IDs 2, 5-7, and 9-15.
310  */
311
312 /*
313  * NOTE: The below structure is for reference only, the actual structure
314  *       to modify in order to change things is found after this fake one.
315  *
316 adapter_tag_info_t aic7xxx_tag_info[] =
317 {
318   {DEFAULT_TAG_COMMANDS},
319   {{4, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 255, 4, 4, 4}},
320   {DEFAULT_TAG_COMMANDS},
321   {{255, 16, 4, 255, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}}
322 };
323 */
324
325 static adapter_tag_info_t aic7xxx_tag_info[] =
326 {
327   {DEFAULT_TAG_COMMANDS},
328   {DEFAULT_TAG_COMMANDS},
329   {DEFAULT_TAG_COMMANDS},
330   {DEFAULT_TAG_COMMANDS},
331   {DEFAULT_TAG_COMMANDS},
332   {DEFAULT_TAG_COMMANDS},
333   {DEFAULT_TAG_COMMANDS},
334   {DEFAULT_TAG_COMMANDS},
335   {DEFAULT_TAG_COMMANDS},
336   {DEFAULT_TAG_COMMANDS},
337   {DEFAULT_TAG_COMMANDS},
338   {DEFAULT_TAG_COMMANDS},
339   {DEFAULT_TAG_COMMANDS},
340   {DEFAULT_TAG_COMMANDS},
341   {DEFAULT_TAG_COMMANDS},
342   {DEFAULT_TAG_COMMANDS}
343 };
344
345
346 /*
347  * Define an array of board names that can be indexed by aha_type.
348  * Don't forget to change this when changing the types!
349  */
350 static const char *board_names[] = {
351   "AIC-7xxx Unknown",                                   /* AIC_NONE */
352   "Adaptec AIC-7810 Hardware RAID Controller",          /* AIC_7810 */
353   "Adaptec AIC-7770 SCSI host adapter",                 /* AIC_7770 */
354   "Adaptec AHA-274X SCSI host adapter",                 /* AIC_7771 */
355   "Adaptec AHA-284X SCSI host adapter",                 /* AIC_284x */
356   "Adaptec AIC-7850 SCSI host adapter",                 /* AIC_7850 */
357   "Adaptec AIC-7855 SCSI host adapter",                 /* AIC_7855 */
358   "Adaptec AIC-7860 Ultra SCSI host adapter",           /* AIC_7860 */
359   "Adaptec AHA-2940A Ultra SCSI host adapter",          /* AIC_7861 */
360   "Adaptec AIC-7870 SCSI host adapter",                 /* AIC_7870 */
361   "Adaptec AHA-294X SCSI host adapter",                 /* AIC_7871 */
362   "Adaptec AHA-394X SCSI host adapter",                 /* AIC_7872 */
363   "Adaptec AHA-398X SCSI host adapter",                 /* AIC_7873 */
364   "Adaptec AHA-2944 SCSI host adapter",                 /* AIC_7874 */
365   "Adaptec AIC-7880 Ultra SCSI host adapter",           /* AIC_7880 */
366   "Adaptec AHA-294X Ultra SCSI host adapter",           /* AIC_7881 */
367   "Adaptec AHA-394X Ultra SCSI host adapter",           /* AIC_7882 */
368   "Adaptec AHA-398X Ultra SCSI host adapter",           /* AIC_7883 */
369   "Adaptec AHA-2944 Ultra SCSI host adapter",           /* AIC_7884 */
370   "Adaptec AHA-2940UW Pro Ultra SCSI host adapter",     /* AIC_7887 */
371   "Adaptec AIC-7895 Ultra SCSI host adapter",           /* AIC_7895 */
372   "Adaptec AIC-7890/1 Ultra2 SCSI host adapter",        /* AIC_7890 */
373   "Adaptec AHA-293X Ultra2 SCSI host adapter",          /* AIC_7890 */
374   "Adaptec AHA-294X Ultra2 SCSI host adapter",          /* AIC_7890 */
375   "Adaptec AIC-7896/7 Ultra2 SCSI host adapter",        /* AIC_7896 */
376   "Adaptec AHA-394X Ultra2 SCSI host adapter",          /* AIC_7897 */
377   "Adaptec AHA-395X Ultra2 SCSI host adapter",          /* AIC_7897 */
378   "Adaptec PCMCIA SCSI controller",                     /* card bus stuff */
379   "Adaptec AIC-7892 Ultra 160/m SCSI host adapter",     /* AIC_7892 */
380   "Adaptec AIC-7899 Ultra 160/m SCSI host adapter",     /* AIC_7899 */
381 };
382
383 /*
384  * There should be a specific return value for this in scsi.h, but
385  * it seems that most drivers ignore it.
386  */
387 #define DID_UNDERFLOW   DID_ERROR
388
389 /*
390  *  What we want to do is have the higher level scsi driver requeue
391  *  the command to us. There is no specific driver status for this
392  *  condition, but the higher level scsi driver will requeue the
393  *  command on a DID_BUS_BUSY error.
394  *
395  *  Upon further inspection and testing, it seems that DID_BUS_BUSY
396  *  will *always* retry the command.  We can get into an infinite loop
397  *  if this happens when we really want some sort of counter that
398  *  will automatically abort/reset the command after so many retries.
399  *  Using DID_ERROR will do just that.  (Made by a suggestion by
400  *  Doug Ledford 8/1/96)
401  */
402 #define DID_RETRY_COMMAND DID_ERROR
403
404 #define HSCSIID        0x07
405 #define SCSI_RESET     0x040
406
407 /*
408  * EISA/VL-bus stuff
409  */
410 #define MINSLOT                1
411 #define MAXSLOT                15
412 #define SLOTBASE(x)        ((x) << 12)
413 #define BASE_TO_SLOT(x) ((x) >> 12)
414
415 /*
416  * Standard EISA Host ID regs  (Offset from slot base)
417  */
418 #define AHC_HID0              0x80   /* 0,1: msb of ID2, 2-7: ID1      */
419 #define AHC_HID1              0x81   /* 0-4: ID3, 5-7: LSB ID2         */
420 #define AHC_HID2              0x82   /* product                        */
421 #define AHC_HID3              0x83   /* firmware revision              */
422
423 /*
424  * AIC-7770 I/O range to reserve for a card
425  */
426 #define MINREG                0xC00
427 #define MAXREG                0xCFF
428
429 #define INTDEF                0x5C      /* Interrupt Definition Register */
430
431 /*
432  * AIC-78X0 PCI registers
433  */
434 #define        CLASS_PROGIF_REVID        0x08
435 #define                DEVREVID        0x000000FFul
436 #define                PROGINFC        0x0000FF00ul
437 #define                SUBCLASS        0x00FF0000ul
438 #define                BASECLASS        0xFF000000ul
439
440 #define        CSIZE_LATTIME                0x0C
441 #define                CACHESIZE        0x0000003Ful        /* only 5 bits */
442 #define                LATTIME                0x0000FF00ul
443
444 #define        DEVCONFIG                0x40
445 #define                SCBSIZE32        0x00010000ul        /* aic789X only */
446 #define                MPORTMODE        0x00000400ul        /* aic7870 only */
447 #define                RAMPSM           0x00000200ul        /* aic7870 only */
448 #define                RAMPSM_ULTRA2    0x00000004
449 #define                VOLSENSE         0x00000100ul
450 #define                SCBRAMSEL        0x00000080ul
451 #define                SCBRAMSEL_ULTRA2 0x00000008
452 #define                MRDCEN           0x00000040ul
453 #define                EXTSCBTIME       0x00000020ul        /* aic7870 only */
454 #define                EXTSCBPEN        0x00000010ul        /* aic7870 only */
455 #define                BERREN           0x00000008ul
456 #define                DACEN            0x00000004ul
457 #define                STPWLEVEL        0x00000002ul
458 #define                DIFACTNEGEN      0x00000001ul        /* aic7870 only */
459
460 #define        SCAMCTL                  0x1a                /* Ultra2 only  */
461 #define        CCSCBBADDR               0xf0                /* aic7895/6/7  */
462
463 /*
464  * Define the different types of SEEPROMs on aic7xxx adapters
465  * and make it also represent the address size used in accessing
466  * its registers.  The 93C46 chips have 1024 bits organized into
467  * 64 16-bit words, while the 93C56 chips have 2048 bits organized
468  * into 128 16-bit words.  The C46 chips use 6 bits to address
469  * each word, while the C56 and C66 (4096 bits) use 8 bits to
470  * address each word.
471  */
472 typedef enum {C46 = 6, C56_66 = 8} seeprom_chip_type;
473
474 /*
475  *
476  * Define the format of the SEEPROM registers (16 bits).
477  *
478  */
479 struct seeprom_config {
480
481 /*
482  * SCSI ID Configuration Flags
483  */
484 #define CFXFER                0x0007      /* synchronous transfer rate */
485 #define CFSYNCH               0x0008      /* enable synchronous transfer */
486 #define CFDISC                0x0010      /* enable disconnection */
487 #define CFWIDEB               0x0020      /* wide bus device (wide card) */
488 #define CFSYNCHISULTRA        0x0040      /* CFSYNC is an ultra offset */
489 #define CFNEWULTRAFORMAT      0x0080      /* Use the Ultra2 SEEPROM format */
490 #define CFSTART               0x0100      /* send start unit SCSI command */
491 #define CFINCBIOS             0x0200      /* include in BIOS scan */
492 #define CFRNFOUND             0x0400      /* report even if not found */
493 #define CFMULTILUN            0x0800      /* probe mult luns in BIOS scan */
494 #define CFWBCACHEYES          0x4000      /* Enable W-Behind Cache on drive */
495 #define CFWBCACHENC           0xc000      /* Don't change W-Behind Cache */
496 /* UNUSED                0x3000 */
497   unsigned short device_flags[16];        /* words 0-15 */
498
499 /*
500  * BIOS Control Bits
501  */
502 #define CFSUPREM        0x0001  /* support all removable drives */
503 #define CFSUPREMB       0x0002  /* support removable drives for boot only */
504 #define CFBIOSEN        0x0004  /* BIOS enabled */
505 /* UNUSED                0x0008 */
506 #define CFSM2DRV        0x0010  /* support more than two drives */
507 #define CF284XEXTEND    0x0020  /* extended translation (284x cards) */
508 /* UNUSED                0x0040 */
509 #define CFEXTEND        0x0080  /* extended translation enabled */
510 /* UNUSED                0xFF00 */
511   unsigned short bios_control;  /* word 16 */
512
513 /*
514  * Host Adapter Control Bits
515  */
516 #define CFAUTOTERM      0x0001  /* Perform Auto termination */
517 #define CFULTRAEN       0x0002  /* Ultra SCSI speed enable (Ultra cards) */
518 #define CF284XSELTO     0x0003  /* Selection timeout (284x cards) */
519 #define CF284XFIFO      0x000C  /* FIFO Threshold (284x cards) */
520 #define CFSTERM         0x0004  /* SCSI low byte termination */
521 #define CFWSTERM        0x0008  /* SCSI high byte termination (wide card) */
522 #define CFSPARITY       0x0010  /* SCSI parity */
523 #define CF284XSTERM     0x0020  /* SCSI low byte termination (284x cards) */
524 #define CFRESETB        0x0040  /* reset SCSI bus at boot */
525 #define CFBPRIMARY      0x0100  /* Channel B primary on 7895 chipsets */
526 #define CFSEAUTOTERM    0x0400  /* aic7890 Perform SE Auto Term */
527 #define CFLVDSTERM      0x0800  /* aic7890 LVD Termination */
528 /* UNUSED                0xF280 */
529   unsigned short adapter_control;        /* word 17 */
530
531 /*
532  * Bus Release, Host Adapter ID
533  */
534 #define CFSCSIID        0x000F                /* host adapter SCSI ID */
535 /* UNUSED                0x00F0 */
536 #define CFBRTIME        0xFF00                /* bus release time */
537   unsigned short brtime_id;                /* word 18 */
538
539 /*
540  * Maximum targets
541  */
542 #define CFMAXTARG        0x00FF        /* maximum targets */
543 /* UNUSED                0xFF00 */
544   unsigned short max_targets;                /* word 19 */
545
546   unsigned short res_1[11];                /* words 20-30 */
547   unsigned short checksum;                /* word 31 */
548 };
549
550 #define SELBUS_MASK                0x0a
551 #define         SELNARROW        0x00
552 #define         SELBUSB                0x08
553 #define SINGLE_BUS                0x00
554
555 #define SCB_TARGET(scb)         \
556        (((scb)->hscb->target_channel_lun & TID) >> 4)
557 #define SCB_LUN(scb)            \
558        ((scb)->hscb->target_channel_lun & LID)
559 #define SCB_IS_SCSIBUS_B(scb)   \
560        (((scb)->hscb->target_channel_lun & SELBUSB) != 0)
561
562 /*
563  * If an error occurs during a data transfer phase, run the command
564  * to completion - it's easier that way - making a note of the error
565  * condition in this location. This then will modify a DID_OK status
566  * into an appropriate error for the higher-level SCSI code.
567  */
568 #define aic7xxx_error(cmd)        ((cmd)->SCp.Status)
569
570 /*
571  * Keep track of the targets returned status.
572  */
573 #define aic7xxx_status(cmd)        ((cmd)->SCp.sent_command)
574
575 /*
576  * The position of the SCSI commands scb within the scb array.
577  */
578 #define aic7xxx_position(cmd)        ((cmd)->SCp.have_data_in)
579
580 /*
581  * The stored DMA mapping for single-buffer data transfers.
582  */
583 #define aic7xxx_mapping(cmd)         ((cmd)->SCp.phase)
584
585 /*
586  * Get out private data area from a scsi cmd pointer
587  */
588 #define AIC_DEV(cmd)    ((struct aic_dev_data *)(cmd)->device->hostdata)
589
590 /*
591  * So we can keep track of our host structs
592  */
593 static struct aic7xxx_host *first_aic7xxx = NULL;
594
595 /*
596  * As of Linux 2.1, the mid-level SCSI code uses virtual addresses
597  * in the scatter-gather lists.  We need to convert the virtual
598  * addresses to physical addresses.
599  */
600 struct hw_scatterlist {
601   unsigned int address;
602   unsigned int length;
603 };
604
605 /*
606  * Maximum number of SG segments these cards can support.
607  */
608 #define        AIC7XXX_MAX_SG 128
609
610 /*
611  * The maximum number of SCBs we could have for ANY type
612  * of card. DON'T FORGET TO CHANGE THE SCB MASK IN THE
613  * SEQUENCER CODE IF THIS IS MODIFIED!
614  */
615 #define AIC7XXX_MAXSCB        255
616
617
618 struct aic7xxx_hwscb {
619 /* ------------    Begin hardware supported fields    ---------------- */
620 /* 0*/  unsigned char control;
621 /* 1*/  unsigned char target_channel_lun;       /* 4/1/3 bits */
622 /* 2*/  unsigned char target_status;
623 /* 3*/  unsigned char SG_segment_count;
624 /* 4*/  unsigned int  SG_list_pointer;
625 /* 8*/  unsigned char residual_SG_segment_count;
626 /* 9*/  unsigned char residual_data_count[3];
627 /*12*/  unsigned int  data_pointer;
628 /*16*/  unsigned int  data_count;
629 /*20*/  unsigned int  SCSI_cmd_pointer;
630 /*24*/  unsigned char SCSI_cmd_length;
631 /*25*/  unsigned char tag;          /* Index into our kernel SCB array.
632                                      * Also used as the tag for tagged I/O
633                                      */
634 #define SCB_PIO_TRANSFER_SIZE  26   /* amount we need to upload/download
635                                      * via PIO to initialize a transaction.
636                                      */
637 /*26*/  unsigned char next;         /* Used to thread SCBs awaiting selection
638                                      * or disconnected down in the sequencer.
639                                      */
640 /*27*/  unsigned char prev;
641 /*28*/  unsigned int pad;           /*
642                                      * Unused by the kernel, but we require
643                                      * the padding so that the array of
644                                      * hardware SCBs is aligned on 32 byte
645                                      * boundaries so the sequencer can index
646                                      */
647 };
648
649 typedef enum {
650         SCB_FREE                = 0x0000,
651         SCB_DTR_SCB             = 0x0001,
652         SCB_WAITINGQ            = 0x0002,
653         SCB_ACTIVE              = 0x0004,
654         SCB_SENSE               = 0x0008,
655         SCB_ABORT               = 0x0010,
656         SCB_DEVICE_RESET        = 0x0020,
657         SCB_RESET               = 0x0040,
658         SCB_RECOVERY_SCB        = 0x0080,
659         SCB_MSGOUT_PPR          = 0x0100,
660         SCB_MSGOUT_SENT         = 0x0200,
661         SCB_MSGOUT_SDTR         = 0x0400,
662         SCB_MSGOUT_WDTR         = 0x0800,
663         SCB_MSGOUT_BITS         = SCB_MSGOUT_PPR |
664                                   SCB_MSGOUT_SENT | 
665                                   SCB_MSGOUT_SDTR |
666                                   SCB_MSGOUT_WDTR,
667         SCB_QUEUED_ABORT        = 0x1000,
668         SCB_QUEUED_FOR_DONE     = 0x2000,
669         SCB_WAS_BUSY            = 0x4000,
670         SCB_QUEUE_FULL          = 0x8000
671 } scb_flag_type;
672
673 typedef enum {
674         AHC_FNONE                 = 0x00000000,
675         AHC_PAGESCBS              = 0x00000001,
676         AHC_CHANNEL_B_PRIMARY     = 0x00000002,
677         AHC_USEDEFAULTS           = 0x00000004,
678         AHC_INDIRECT_PAGING       = 0x00000008,
679         AHC_CHNLB                 = 0x00000020,
680         AHC_CHNLC                 = 0x00000040,
681         AHC_EXTEND_TRANS_A        = 0x00000100,
682         AHC_EXTEND_TRANS_B        = 0x00000200,
683         AHC_TERM_ENB_A            = 0x00000400,
684         AHC_TERM_ENB_SE_LOW       = 0x00000400,
685         AHC_TERM_ENB_B            = 0x00000800,
686         AHC_TERM_ENB_SE_HIGH      = 0x00000800,
687         AHC_HANDLING_REQINITS     = 0x00001000,
688         AHC_TARGETMODE            = 0x00002000,
689         AHC_NEWEEPROM_FMT         = 0x00004000,
690  /*
691   *  Here ends the FreeBSD defined flags and here begins the linux defined
692   *  flags.  NOTE: I did not preserve the old flag name during this change
693   *  specifically to force me to evaluate what flags were being used properly
694   *  and what flags weren't.  This way, I could clean up the flag usage on
695   *  a use by use basis.  Doug Ledford
696   */
697         AHC_MOTHERBOARD           = 0x00020000,
698         AHC_NO_STPWEN             = 0x00040000,
699         AHC_RESET_DELAY           = 0x00080000,
700         AHC_A_SCANNED             = 0x00100000,
701         AHC_B_SCANNED             = 0x00200000,
702         AHC_MULTI_CHANNEL         = 0x00400000,
703         AHC_BIOS_ENABLED          = 0x00800000,
704         AHC_SEEPROM_FOUND         = 0x01000000,
705         AHC_TERM_ENB_LVD          = 0x02000000,
706         AHC_ABORT_PENDING         = 0x04000000,
707         AHC_RESET_PENDING         = 0x08000000,
708 #define AHC_IN_ISR_BIT              28
709         AHC_IN_ISR                = 0x10000000,
710         AHC_IN_ABORT              = 0x20000000,
711         AHC_IN_RESET              = 0x40000000,
712         AHC_EXTERNAL_SRAM         = 0x80000000
713 } ahc_flag_type;
714
715 typedef enum {
716   AHC_NONE             = 0x0000,
717   AHC_CHIPID_MASK      = 0x00ff,
718   AHC_AIC7770          = 0x0001,
719   AHC_AIC7850          = 0x0002,
720   AHC_AIC7860          = 0x0003,
721   AHC_AIC7870          = 0x0004,
722   AHC_AIC7880          = 0x0005,
723   AHC_AIC7890          = 0x0006,
724   AHC_AIC7895          = 0x0007,
725   AHC_AIC7896          = 0x0008,
726   AHC_AIC7892          = 0x0009,
727   AHC_AIC7899          = 0x000a,
728   AHC_VL               = 0x0100,
729   AHC_EISA             = 0x0200,
730   AHC_PCI              = 0x0400,
731 } ahc_chip;
732
733 typedef enum {
734   AHC_FENONE           = 0x0000,
735   AHC_ULTRA            = 0x0001,
736   AHC_ULTRA2           = 0x0002,
737   AHC_WIDE             = 0x0004,
738   AHC_TWIN             = 0x0008,
739   AHC_MORE_SRAM        = 0x0010,
740   AHC_CMD_CHAN         = 0x0020,
741   AHC_QUEUE_REGS       = 0x0040,
742   AHC_SG_PRELOAD       = 0x0080,
743   AHC_SPIOCAP          = 0x0100,
744   AHC_ULTRA3           = 0x0200,
745   AHC_NEW_AUTOTERM     = 0x0400,
746   AHC_AIC7770_FE       = AHC_FENONE,
747   AHC_AIC7850_FE       = AHC_SPIOCAP,
748   AHC_AIC7860_FE       = AHC_ULTRA|AHC_SPIOCAP,
749   AHC_AIC7870_FE       = AHC_FENONE,
750   AHC_AIC7880_FE       = AHC_ULTRA,
751   AHC_AIC7890_FE       = AHC_MORE_SRAM|AHC_CMD_CHAN|AHC_ULTRA2|
752                          AHC_QUEUE_REGS|AHC_SG_PRELOAD|AHC_NEW_AUTOTERM,
753   AHC_AIC7895_FE       = AHC_MORE_SRAM|AHC_CMD_CHAN|AHC_ULTRA,
754   AHC_AIC7896_FE       = AHC_AIC7890_FE,
755   AHC_AIC7892_FE       = AHC_AIC7890_FE|AHC_ULTRA3,
756   AHC_AIC7899_FE       = AHC_AIC7890_FE|AHC_ULTRA3,
757 } ahc_feature;
758
759 #define SCB_DMA_ADDR(scb, addr) ((unsigned long)(addr) + (scb)->scb_dma->dma_offset)
760
761 struct aic7xxx_scb_dma {
762         unsigned long          dma_offset;    /* Correction you have to add
763                                                * to virtual address to get
764                                                * dma handle in this region */
765         dma_addr_t             dma_address;   /* DMA handle of the start,
766                                                * for unmap */
767         unsigned int           dma_len;       /* DMA length */
768 };
769
770 typedef enum {
771   AHC_BUG_NONE            = 0x0000,
772   AHC_BUG_TMODE_WIDEODD   = 0x0001,
773   AHC_BUG_AUTOFLUSH       = 0x0002,
774   AHC_BUG_CACHETHEN       = 0x0004,
775   AHC_BUG_CACHETHEN_DIS   = 0x0008,
776   AHC_BUG_PCI_2_1_RETRY   = 0x0010,
777   AHC_BUG_PCI_MWI         = 0x0020,
778   AHC_BUG_SCBCHAN_UPLOAD  = 0x0040,
779 } ahc_bugs;
780
781 struct aic7xxx_scb {
782         struct aic7xxx_hwscb    *hscb;          /* corresponding hardware scb */
783         struct scsi_cmnd        *cmd;           /* scsi_cmnd for this scb */
784         struct aic7xxx_scb      *q_next;        /* next scb in queue */
785         volatile scb_flag_type  flags;          /* current state of scb */
786         struct hw_scatterlist   *sg_list;       /* SG list in adapter format */
787         unsigned char           tag_action;
788         unsigned char           sg_count;
789         unsigned char           *sense_cmd;     /*
790                                                  * Allocate 6 characters for
791                                                  * sense command.
792                                                  */
793         unsigned char           *cmnd;
794         unsigned int            sg_length;      /*
795                                                  * We init this during
796                                                  * buildscb so we don't have
797                                                  * to calculate anything during
798                                                  * underflow/overflow/stat code
799                                                  */
800         void                    *kmalloc_ptr;
801         struct aic7xxx_scb_dma  *scb_dma;
802 };
803
804 /*
805  * Define a linked list of SCBs.
806  */
807 typedef struct {
808   struct aic7xxx_scb *head;
809   struct aic7xxx_scb *tail;
810 } scb_queue_type;
811
812 static struct {
813   unsigned char errno;
814   const char *errmesg;
815 } hard_error[] = {
816   { ILLHADDR,  "Illegal Host Access" },
817   { ILLSADDR,  "Illegal Sequencer Address referenced" },
818   { ILLOPCODE, "Illegal Opcode in sequencer program" },
819   { SQPARERR,  "Sequencer Ram Parity Error" },
820   { DPARERR,   "Data-Path Ram Parity Error" },
821   { MPARERR,   "Scratch Ram/SCB Array Ram Parity Error" },
822   { PCIERRSTAT,"PCI Error detected" },
823   { CIOPARERR, "CIOBUS Parity Error" }
824 };
825
826 static unsigned char
827 generic_sense[] = { REQUEST_SENSE, 0, 0, 0, 255, 0 };
828
829 typedef struct {
830   scb_queue_type free_scbs;        /*
831                                     * SCBs assigned to free slot on
832                                     * card (no paging required)
833                                     */
834   struct aic7xxx_scb   *scb_array[AIC7XXX_MAXSCB];
835   struct aic7xxx_hwscb *hscbs;
836   unsigned char  numscbs;          /* current number of scbs */
837   unsigned char  maxhscbs;         /* hardware scbs */
838   unsigned char  maxscbs;          /* max scbs including pageable scbs */
839   dma_addr_t     hscbs_dma;        /* DMA handle to hscbs */
840   unsigned int   hscbs_dma_len;    /* length of the above DMA area */
841   void          *hscb_kmalloc_ptr;
842 } scb_data_type;
843
844 struct target_cmd {
845   unsigned char mesg_bytes[4];
846   unsigned char command[28];
847 };
848
849 #define AHC_TRANS_CUR    0x0001
850 #define AHC_TRANS_ACTIVE 0x0002
851 #define AHC_TRANS_GOAL   0x0004
852 #define AHC_TRANS_USER   0x0008
853 #define AHC_TRANS_QUITE  0x0010
854 typedef struct {
855   unsigned char width;
856   unsigned char period;
857   unsigned char offset;
858   unsigned char options;
859 } transinfo_type;
860
861 struct aic_dev_data {
862   volatile scb_queue_type  delayed_scbs;
863   volatile unsigned short  temp_q_depth;
864   unsigned short           max_q_depth;
865   volatile unsigned char   active_cmds;
866   /*
867    * Statistics Kept:
868    *
869    * Total Xfers (count for each command that has a data xfer),
870    * broken down by reads && writes.
871    *
872    * Further sorted into a few bins for keeping tabs on how many commands
873    * we get of various sizes.
874    *
875    */
876   long w_total;                          /* total writes */
877   long r_total;                          /* total reads */
878   long barrier_total;                    /* total num of REQ_BARRIER commands */
879   long ordered_total;                    /* How many REQ_BARRIER commands we
880                                             used ordered tags to satisfy */
881   long w_bins[6];                       /* binned write */
882   long r_bins[6];                       /* binned reads */
883   transinfo_type        cur;
884   transinfo_type        goal;
885 #define  BUS_DEVICE_RESET_PENDING       0x01
886 #define  DEVICE_RESET_DELAY             0x02
887 #define  DEVICE_PRINT_DTR               0x04
888 #define  DEVICE_WAS_BUSY                0x08
889 #define  DEVICE_DTR_SCANNED             0x10
890 #define  DEVICE_SCSI_3                  0x20
891   volatile unsigned char   flags;
892   unsigned needppr:1;
893   unsigned needppr_copy:1;
894   unsigned needsdtr:1;
895   unsigned needsdtr_copy:1;
896   unsigned needwdtr:1;
897   unsigned needwdtr_copy:1;
898   unsigned dtr_pending:1;
899   struct scsi_device *SDptr;
900   struct list_head list;
901 };
902
903 /*
904  * Define a structure used for each host adapter.  Note, in order to avoid
905  * problems with architectures I can't test on (because I don't have one,
906  * such as the Alpha based systems) which happen to give faults for
907  * non-aligned memory accesses, care was taken to align this structure
908  * in a way that guaranteed all accesses larger than 8 bits were aligned
909  * on the appropriate boundary.  It's also organized to try and be more
910  * cache line efficient.  Be careful when changing this lest you might hurt
911  * overall performance and bring down the wrath of the masses.
912  */
913 struct aic7xxx_host {
914   /*
915    *  This is the first 64 bytes in the host struct
916    */
917
918   /*
919    * We are grouping things here....first, items that get either read or
920    * written with nearly every interrupt
921    */
922         volatile long   flags;
923         ahc_feature     features;       /* chip features */
924         unsigned long   base;           /* card base address */
925         volatile unsigned char  __iomem *maddr; /* memory mapped address */
926         unsigned long   isr_count;      /* Interrupt count */
927         unsigned long   spurious_int;
928         scb_data_type   *scb_data;
929         struct aic7xxx_cmd_queue {
930                 struct scsi_cmnd *head;
931                 struct scsi_cmnd *tail;
932         } completeq;
933
934         /*
935         * Things read/written on nearly every entry into aic7xxx_queue()
936         */
937         volatile scb_queue_type waiting_scbs;
938         unsigned char   unpause;        /* unpause value for HCNTRL */
939         unsigned char   pause;          /* pause value for HCNTRL */
940         volatile unsigned char  qoutfifonext;
941         volatile unsigned char  activescbs;     /* active scbs */
942         volatile unsigned char  max_activescbs;
943         volatile unsigned char  qinfifonext;
944         volatile unsigned char  *untagged_scbs;
945         volatile unsigned char  *qoutfifo;
946         volatile unsigned char  *qinfifo;
947
948         unsigned char   dev_last_queue_full[MAX_TARGETS];
949         unsigned char   dev_last_queue_full_count[MAX_TARGETS];
950         unsigned short  ultraenb; /* Gets downloaded to card as a bitmap */
951         unsigned short  discenable; /* Gets downloaded to card as a bitmap */
952         transinfo_type  user[MAX_TARGETS];
953
954         unsigned char   msg_buf[13];    /* The message for the target */
955         unsigned char   msg_type;
956 #define MSG_TYPE_NONE              0x00
957 #define MSG_TYPE_INITIATOR_MSGOUT  0x01
958 #define MSG_TYPE_INITIATOR_MSGIN   0x02
959         unsigned char   msg_len;        /* Length of message */
960         unsigned char   msg_index;      /* Index into msg_buf array */
961
962
963         /*
964          * We put the less frequently used host structure items
965          * after the more frequently used items to try and ease
966          * the burden on the cache subsystem.
967          * These entries are not *commonly* accessed, whereas
968          * the preceding entries are accessed very often.
969          */
970
971         unsigned int    irq;            /* IRQ for this adapter */
972         int             instance;       /* aic7xxx instance number */
973         int             scsi_id;        /* host adapter SCSI ID */
974         int             scsi_id_b;      /* channel B for twin adapters */
975         unsigned int    bios_address;
976         int             board_name_index;
977         unsigned short  bios_control;           /* bios control - SEEPROM */
978         unsigned short  adapter_control;        /* adapter control - SEEPROM */
979         struct pci_dev  *pdev;
980         unsigned char   pci_bus;
981         unsigned char   pci_device_fn;
982         struct seeprom_config   sc;
983         unsigned short  sc_type;
984         unsigned short  sc_size;
985         struct aic7xxx_host     *next;  /* allow for multiple IRQs */
986         struct Scsi_Host        *host;  /* pointer to scsi host */
987         struct list_head         aic_devs; /* all aic_dev structs on host */
988         int             host_no;        /* SCSI host number */
989         unsigned long   mbase;          /* I/O memory address */
990         ahc_chip        chip;           /* chip type */
991         ahc_bugs        bugs;
992         dma_addr_t      fifo_dma;       /* DMA handle for fifo arrays */
993 };
994
995 /*
996  * Valid SCSIRATE values. (p. 3-17)
997  * Provides a mapping of transfer periods in ns/4 to the proper value to
998  * stick in the SCSIRATE reg to use that transfer rate.
999  */
1000 #define AHC_SYNCRATE_ULTRA3 0
1001 #define AHC_SYNCRATE_ULTRA2 1
1002 #define AHC_SYNCRATE_ULTRA  3
1003 #define AHC_SYNCRATE_FAST   6
1004 #define AHC_SYNCRATE_CRC 0x40
1005 #define AHC_SYNCRATE_SE  0x10
1006 static struct aic7xxx_syncrate {
1007   /* Rates in Ultra mode have bit 8 of sxfr set */
1008 #define                ULTRA_SXFR 0x100
1009   int sxfr_ultra2;
1010   int sxfr;
1011   unsigned char period;
1012   const char *rate[2];
1013 } aic7xxx_syncrates[] = {
1014   { 0x42,  0x000,   9,  {"80.0", "160.0"} },
1015   { 0x13,  0x000,  10,  {"40.0", "80.0"} },
1016   { 0x14,  0x000,  11,  {"33.0", "66.6"} },
1017   { 0x15,  0x100,  12,  {"20.0", "40.0"} },
1018   { 0x16,  0x110,  15,  {"16.0", "32.0"} },
1019   { 0x17,  0x120,  18,  {"13.4", "26.8"} },
1020   { 0x18,  0x000,  25,  {"10.0", "20.0"} },
1021   { 0x19,  0x010,  31,  {"8.0",  "16.0"} },
1022   { 0x1a,  0x020,  37,  {"6.67", "13.3"} },
1023   { 0x1b,  0x030,  43,  {"5.7",  "11.4"} },
1024   { 0x10,  0x040,  50,  {"5.0",  "10.0"} },
1025   { 0x00,  0x050,  56,  {"4.4",  "8.8" } },
1026   { 0x00,  0x060,  62,  {"4.0",  "8.0" } },
1027   { 0x00,  0x070,  68,  {"3.6",  "7.2" } },
1028   { 0x00,  0x000,  0,   {NULL, NULL}   },
1029 };
1030
1031 #define CTL_OF_SCB(scb) (((scb->hscb)->target_channel_lun >> 3) & 0x1),  \
1032                         (((scb->hscb)->target_channel_lun >> 4) & 0xf), \
1033                         ((scb->hscb)->target_channel_lun & 0x07)
1034
1035 #define CTL_OF_CMD(cmd) ((cmd->device->channel) & 0x01),  \
1036                         ((cmd->device->id) & 0x0f), \
1037                         ((cmd->device->lun) & 0x07)
1038
1039 #define TARGET_INDEX(cmd)  ((cmd)->device->id | ((cmd)->device->channel << 3))
1040
1041 /*
1042  * A nice little define to make doing our printks a little easier
1043  */
1044
1045 #define WARN_LEAD KERN_WARNING "(scsi%d:%d:%d:%d) "
1046 #define INFO_LEAD KERN_INFO "(scsi%d:%d:%d:%d) "
1047
1048 /*
1049  * XXX - these options apply unilaterally to _all_ 274x/284x/294x
1050  *       cards in the system.  This should be fixed.  Exceptions to this
1051  *       rule are noted in the comments.
1052  */
1053
1054 /*
1055  * Use this as the default queue depth when setting tagged queueing on.
1056  */
1057 static unsigned int aic7xxx_default_queue_depth = AIC7XXX_CMDS_PER_DEVICE;
1058
1059 /*
1060  * Skip the scsi bus reset.  Non 0 make us skip the reset at startup.  This
1061  * has no effect on any later resets that might occur due to things like
1062  * SCSI bus timeouts.
1063  */
1064 static unsigned int aic7xxx_no_reset = 0;
1065 /*
1066  * Certain PCI motherboards will scan PCI devices from highest to lowest,
1067  * others scan from lowest to highest, and they tend to do all kinds of
1068  * strange things when they come into contact with PCI bridge chips.  The
1069  * net result of all this is that the PCI card that is actually used to boot
1070  * the machine is very hard to detect.  Most motherboards go from lowest
1071  * PCI slot number to highest, and the first SCSI controller found is the
1072  * one you boot from.  The only exceptions to this are when a controller
1073  * has its BIOS disabled.  So, we by default sort all of our SCSI controllers
1074  * from lowest PCI slot number to highest PCI slot number.  We also force
1075  * all controllers with their BIOS disabled to the end of the list.  This
1076  * works on *almost* all computers.  Where it doesn't work, we have this
1077  * option.  Setting this option to non-0 will reverse the order of the sort
1078  * to highest first, then lowest, but will still leave cards with their BIOS
1079  * disabled at the very end.  That should fix everyone up unless there are
1080  * really strange cirumstances.
1081  */
1082 static int aic7xxx_reverse_scan = 0;
1083 /*
1084  * Should we force EXTENDED translation on a controller.
1085  *     0 == Use whatever is in the SEEPROM or default to off
1086  *     1 == Use whatever is in the SEEPROM or default to on
1087  */
1088 static unsigned int aic7xxx_extended = 0;
1089 /*
1090  * The IRQ trigger method used on EISA controllers. Does not effect PCI cards.
1091  *   -1 = Use detected settings.
1092  *    0 = Force Edge triggered mode.
1093  *    1 = Force Level triggered mode.
1094  */
1095 static int aic7xxx_irq_trigger = -1;
1096 /*
1097  * This variable is used to override the termination settings on a controller.
1098  * This should not be used under normal conditions.  However, in the case
1099  * that a controller does not have a readable SEEPROM (so that we can't
1100  * read the SEEPROM settings directly) and that a controller has a buggered
1101  * version of the cable detection logic, this can be used to force the 
1102  * correct termination.  It is preferable to use the manual termination
1103  * settings in the BIOS if possible, but some motherboard controllers store
1104  * those settings in a format we can't read.  In other cases, auto term
1105  * should also work, but the chipset was put together with no auto term
1106  * logic (common on motherboard controllers).  In those cases, we have
1107  * 32 bits here to work with.  That's good for 8 controllers/channels.  The
1108  * bits are organized as 4 bits per channel, with scsi0 getting the lowest
1109  * 4 bits in the int.  A 1 in a bit position indicates the termination setting
1110  * that corresponds to that bit should be enabled, a 0 is disabled.
1111  * It looks something like this:
1112  *
1113  *    0x0f =  1111-Single Ended Low Byte Termination on/off
1114  *            ||\-Single Ended High Byte Termination on/off
1115  *            |\-LVD Low Byte Termination on/off
1116  *            \-LVD High Byte Termination on/off
1117  *
1118  * For non-Ultra2 controllers, the upper 2 bits are not important.  So, to
1119  * enable both high byte and low byte termination on scsi0, I would need to
1120  * make sure that the override_term variable was set to 0x03 (bits 0011).
1121  * To make sure that all termination is enabled on an Ultra2 controller at
1122  * scsi2 and only high byte termination on scsi1 and high and low byte
1123  * termination on scsi0, I would set override_term=0xf23 (bits 1111 0010 0011)
1124  *
1125  * For the most part, users should never have to use this, that's why I
1126  * left it fairly cryptic instead of easy to understand.  If you need it,
1127  * most likely someone will be telling you what your's needs to be set to.
1128  */
1129 static int aic7xxx_override_term = -1;
1130 /*
1131  * Certain motherboard chipset controllers tend to screw
1132  * up the polarity of the term enable output pin.  Use this variable
1133  * to force the correct polarity for your system.  This is a bitfield variable
1134  * similar to the previous one, but this one has one bit per channel instead
1135  * of four.
1136  *    0 = Force the setting to active low.
1137  *    1 = Force setting to active high.
1138  * Most Adaptec cards are active high, several motherboards are active low.
1139  * To force a 2940 card at SCSI 0 to active high and a motherboard 7895
1140  * controller at scsi1 and scsi2 to active low, and a 2910 card at scsi3
1141  * to active high, you would need to set stpwlev=0x9 (bits 1001).
1142  *
1143  * People shouldn't need to use this, but if you are experiencing lots of
1144  * SCSI timeout problems, this may help.  There is one sure way to test what
1145  * this option needs to be.  Using a boot floppy to boot the system, configure
1146  * your system to enable all SCSI termination (in the Adaptec SCSI BIOS) and
1147  * if needed then also pass a value to override_term to make sure that the
1148  * driver is enabling SCSI termination, then set this variable to either 0
1149  * or 1.  When the driver boots, make sure there are *NO* SCSI cables
1150  * connected to your controller.  If it finds and inits the controller
1151  * without problem, then the setting you passed to stpwlev was correct.  If
1152  * the driver goes into a reset loop and hangs the system, then you need the
1153  * other setting for this variable.  If neither setting lets the machine
1154  * boot then you have definite termination problems that may not be fixable.
1155  */
1156 static int aic7xxx_stpwlev = -1;
1157 /*
1158  * Set this to non-0 in order to force the driver to panic the kernel
1159  * and print out debugging info on a SCSI abort or reset cycle.
1160  */
1161 static int aic7xxx_panic_on_abort = 0;
1162 /*
1163  * PCI bus parity checking of the Adaptec controllers.  This is somewhat
1164  * dubious at best.  To my knowledge, this option has never actually
1165  * solved a PCI parity problem, but on certain machines with broken PCI
1166  * chipset configurations, it can generate tons of false error messages.
1167  * It's included in the driver for completeness.
1168  *   0 = Shut off PCI parity check
1169  *  -1 = Normal polarity pci parity checking
1170  *   1 = reverse polarity pci parity checking
1171  *
1172  * NOTE: you can't actually pass -1 on the lilo prompt.  So, to set this
1173  * variable to -1 you would actually want to simply pass the variable
1174  * name without a number.  That will invert the 0 which will result in
1175  * -1.
1176  */
1177 static int aic7xxx_pci_parity = 0;
1178 /*
1179  * Set this to any non-0 value to cause us to dump the contents of all
1180  * the card's registers in a hex dump format tailored to each model of
1181  * controller.
1182  * 
1183  * NOTE: THE CONTROLLER IS LEFT IN AN UNUSABLE STATE BY THIS OPTION.
1184  *       YOU CANNOT BOOT UP WITH THIS OPTION, IT IS FOR DEBUGGING PURPOSES
1185  *       ONLY
1186  */
1187 static int aic7xxx_dump_card = 0;
1188 /*
1189  * Set this to a non-0 value to make us dump out the 32 bit instruction
1190  * registers on the card after completing the sequencer download.  This
1191  * allows the actual sequencer download to be verified.  It is possible
1192  * to use this option and still boot up and run your system.  This is
1193  * only intended for debugging purposes.
1194  */
1195 static int aic7xxx_dump_sequencer = 0;
1196 /*
1197  * Certain newer motherboards have put new PCI based devices into the
1198  * IO spaces that used to typically be occupied by VLB or EISA cards.
1199  * This overlap can cause these newer motherboards to lock up when scanned
1200  * for older EISA and VLB devices.  Setting this option to non-0 will
1201  * cause the driver to skip scanning for any VLB or EISA controllers and
1202  * only support the PCI controllers.  NOTE: this means that if the kernel
1203  * os compiled with PCI support disabled, then setting this to non-0
1204  * would result in never finding any devices :)
1205  */
1206 static int aic7xxx_no_probe = 0;
1207 /*
1208  * On some machines, enabling the external SCB RAM isn't reliable yet.  I
1209  * haven't had time to make test patches for things like changing the
1210  * timing mode on that external RAM either.  Some of those changes may
1211  * fix the problem.  Until then though, we default to external SCB RAM
1212  * off and give a command line option to enable it.
1213  */
1214 static int aic7xxx_scbram = 0;
1215 /*
1216  * So that we can set how long each device is given as a selection timeout.
1217  * The table of values goes like this:
1218  *   0 - 256ms
1219  *   1 - 128ms
1220  *   2 - 64ms
1221  *   3 - 32ms
1222  * We default to 64ms because it's fast.  Some old SCSI-I devices need a
1223  * longer time.  The final value has to be left shifted by 3, hence 0x10
1224  * is the final value.
1225  */
1226 static int aic7xxx_seltime = 0x10;
1227 /*
1228  * So that insmod can find the variable and make it point to something
1229  */
1230 #ifdef MODULE
1231 static char * aic7xxx = NULL;
1232 module_param(aic7xxx, charp, 0);
1233 #endif
1234
1235 #define VERBOSE_NORMAL         0x0000
1236 #define VERBOSE_NEGOTIATION    0x0001
1237 #define VERBOSE_SEQINT         0x0002
1238 #define VERBOSE_SCSIINT        0x0004
1239 #define VERBOSE_PROBE          0x0008
1240 #define VERBOSE_PROBE2         0x0010
1241 #define VERBOSE_NEGOTIATION2   0x0020
1242 #define VERBOSE_MINOR_ERROR    0x0040
1243 #define VERBOSE_TRACING        0x0080
1244 #define VERBOSE_ABORT          0x0f00
1245 #define VERBOSE_ABORT_MID      0x0100
1246 #define VERBOSE_ABORT_FIND     0x0200
1247 #define VERBOSE_ABORT_PROCESS  0x0400
1248 #define VERBOSE_ABORT_RETURN   0x0800
1249 #define VERBOSE_RESET          0xf000
1250 #define VERBOSE_RESET_MID      0x1000
1251 #define VERBOSE_RESET_FIND     0x2000
1252 #define VERBOSE_RESET_PROCESS  0x4000
1253 #define VERBOSE_RESET_RETURN   0x8000
1254 static int aic7xxx_verbose = VERBOSE_NORMAL | VERBOSE_NEGOTIATION |
1255            VERBOSE_PROBE;                     /* verbose messages */
1256
1257
1258 /****************************************************************************
1259  *
1260  * We're going to start putting in function declarations so that order of
1261  * functions is no longer important.  As needed, they are added here.
1262  *
1263  ***************************************************************************/
1264
1265 static int aic7xxx_release(struct Scsi_Host *host);
1266 static void aic7xxx_set_syncrate(struct aic7xxx_host *p, 
1267                 struct aic7xxx_syncrate *syncrate, int target, int channel,
1268                 unsigned int period, unsigned int offset, unsigned char options,
1269                 unsigned int type, struct aic_dev_data *aic_dev);
1270 static void aic7xxx_set_width(struct aic7xxx_host *p, int target, int channel,
1271                 int lun, unsigned int width, unsigned int type,
1272                 struct aic_dev_data *aic_dev);
1273 static void aic7xxx_panic_abort(struct aic7xxx_host *p, struct scsi_cmnd *cmd);
1274 static void aic7xxx_print_card(struct aic7xxx_host *p);
1275 static void aic7xxx_print_scratch_ram(struct aic7xxx_host *p);
1276 static void aic7xxx_print_sequencer(struct aic7xxx_host *p, int downloaded);
1277 #ifdef AIC7XXX_VERBOSE_DEBUGGING
1278 static void aic7xxx_check_scbs(struct aic7xxx_host *p, char *buffer);
1279 #endif
1280
1281 /****************************************************************************
1282  *
1283  * These functions are now used.  They happen to be wrapped in useless
1284  * inb/outb port read/writes around the real reads and writes because it
1285  * seems that certain very fast CPUs have a problem dealing with us when
1286  * going at full speed.
1287  *
1288  ***************************************************************************/
1289
1290 static unsigned char
1291 aic_inb(struct aic7xxx_host *p, long port)
1292 {
1293 #ifdef MMAPIO
1294   unsigned char x;
1295   if(p->maddr)
1296   {
1297     x = readb(p->maddr + port);
1298   }
1299   else
1300   {
1301     x = inb(p->base + port);
1302   }
1303   return(x);
1304 #else
1305   return(inb(p->base + port));
1306 #endif
1307 }
1308
1309 static void
1310 aic_outb(struct aic7xxx_host *p, unsigned char val, long port)
1311 {
1312 #ifdef MMAPIO
1313   if(p->maddr)
1314   {
1315     writeb(val, p->maddr + port);
1316     mb(); /* locked operation in order to force CPU ordering */
1317     readb(p->maddr + HCNTRL); /* dummy read to flush the PCI write */
1318   }
1319   else
1320   {
1321     outb(val, p->base + port);
1322     mb(); /* locked operation in order to force CPU ordering */
1323   }
1324 #else
1325   outb(val, p->base + port);
1326   mb(); /* locked operation in order to force CPU ordering */
1327 #endif
1328 }
1329
1330 /*+F*************************************************************************
1331  * Function:
1332  *   aic7xxx_setup
1333  *
1334  * Description:
1335  *   Handle Linux boot parameters. This routine allows for assigning a value
1336  *   to a parameter with a ':' between the parameter and the value.
1337  *   ie. aic7xxx=unpause:0x0A,extended
1338  *-F*************************************************************************/
1339 static int
1340 aic7xxx_setup(char *s)
1341 {
1342   int   i, n;
1343   char *p;
1344   char *end;
1345
1346   static struct {
1347     const char *name;
1348     unsigned int *flag;
1349   } options[] = {
1350     { "extended",    &aic7xxx_extended },
1351     { "no_reset",    &aic7xxx_no_reset },
1352     { "irq_trigger", &aic7xxx_irq_trigger },
1353     { "verbose",     &aic7xxx_verbose },
1354     { "reverse_scan",&aic7xxx_reverse_scan },
1355     { "override_term", &aic7xxx_override_term },
1356     { "stpwlev", &aic7xxx_stpwlev },
1357     { "no_probe", &aic7xxx_no_probe },
1358     { "panic_on_abort", &aic7xxx_panic_on_abort },
1359     { "pci_parity", &aic7xxx_pci_parity },
1360     { "dump_card", &aic7xxx_dump_card },
1361     { "dump_sequencer", &aic7xxx_dump_sequencer },
1362     { "default_queue_depth", &aic7xxx_default_queue_depth },
1363     { "scbram", &aic7xxx_scbram },
1364     { "seltime", &aic7xxx_seltime },
1365     { "tag_info",    NULL }
1366   };
1367
1368   end = strchr(s, '\0');
1369
1370   while ((p = strsep(&s, ",.")) != NULL)
1371   {
1372     for (i = 0; i < ARRAY_SIZE(options); i++)
1373     {
1374       n = strlen(options[i].name);
1375       if (!strncmp(options[i].name, p, n))
1376       {
1377         if (!strncmp(p, "tag_info", n))
1378         {
1379           if (p[n] == ':')
1380           {
1381             char *base;
1382             char *tok, *tok_end, *tok_end2;
1383             char tok_list[] = { '.', ',', '{', '}', '\0' };
1384             int i, instance = -1, device = -1;
1385             unsigned char done = FALSE;
1386
1387             base = p;
1388             tok = base + n + 1;  /* Forward us just past the ':' */
1389             tok_end = strchr(tok, '\0');
1390             if (tok_end < end)
1391               *tok_end = ',';
1392             while(!done)
1393             {
1394               switch(*tok)
1395               {
1396                 case '{':
1397                   if (instance == -1)
1398                     instance = 0;
1399                   else if (device == -1)
1400                     device = 0;
1401                   tok++;
1402                   break;
1403                 case '}':
1404                   if (device != -1)
1405                     device = -1;
1406                   else if (instance != -1)
1407                     instance = -1;
1408                   tok++;
1409                   break;
1410                 case ',':
1411                 case '.':
1412                   if (instance == -1)
1413                     done = TRUE;
1414                   else if (device >= 0)
1415                     device++;
1416                   else if (instance >= 0)
1417                     instance++;
1418                   if ( (device >= MAX_TARGETS) || 
1419                        (instance >= ARRAY_SIZE(aic7xxx_tag_info)) )
1420                     done = TRUE;
1421                   tok++;
1422                   if (!done)
1423                   {
1424                     base = tok;
1425                   }
1426                   break;
1427                 case '\0':
1428                   done = TRUE;
1429                   break;
1430                 default:
1431                   done = TRUE;
1432                   tok_end = strchr(tok, '\0');
1433                   for(i=0; tok_list[i]; i++)
1434                   {
1435                     tok_end2 = strchr(tok, tok_list[i]);
1436                     if ( (tok_end2) && (tok_end2 < tok_end) )
1437                     {
1438                       tok_end = tok_end2;
1439                       done = FALSE;
1440                     }
1441                   }
1442                   if ( (instance >= 0) && (device >= 0) &&
1443                        (instance < ARRAY_SIZE(aic7xxx_tag_info)) &&
1444                        (device < MAX_TARGETS) )
1445                     aic7xxx_tag_info[instance].tag_commands[device] =
1446                       simple_strtoul(tok, NULL, 0) & 0xff;
1447                   tok = tok_end;
1448                   break;
1449               }
1450             }
1451             while((p != base) && (p != NULL))
1452               p = strsep(&s, ",.");
1453           }
1454         }
1455         else if (p[n] == ':')
1456         {
1457           *(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0);
1458           if(!strncmp(p, "seltime", n))
1459           {
1460             *(options[i].flag) = (*(options[i].flag) % 4) << 3;
1461           }
1462         }
1463         else if (!strncmp(p, "verbose", n))
1464         {
1465           *(options[i].flag) = 0xff29;
1466         }
1467         else
1468         {
1469           *(options[i].flag) = ~(*(options[i].flag));
1470           if(!strncmp(p, "seltime", n))
1471           {
1472             *(options[i].flag) = (*(options[i].flag) % 4) << 3;
1473           }
1474         }
1475       }
1476     }
1477   }
1478   return 1;
1479 }
1480
1481 __setup("aic7xxx=", aic7xxx_setup);
1482
1483 /*+F*************************************************************************
1484  * Function:
1485  *   pause_sequencer
1486  *
1487  * Description:
1488  *   Pause the sequencer and wait for it to actually stop - this
1489  *   is important since the sequencer can disable pausing for critical
1490  *   sections.
1491  *-F*************************************************************************/
1492 static void
1493 pause_sequencer(struct aic7xxx_host *p)
1494 {
1495   aic_outb(p, p->pause, HCNTRL);
1496   while ((aic_inb(p, HCNTRL) & PAUSE) == 0)
1497   {
1498     ;
1499   }
1500   if(p->features & AHC_ULTRA2)
1501   {
1502     aic_inb(p, CCSCBCTL);
1503   }
1504 }
1505
1506 /*+F*************************************************************************
1507  * Function:
1508  *   unpause_sequencer
1509  *
1510  * Description:
1511  *   Unpause the sequencer. Unremarkable, yet done often enough to
1512  *   warrant an easy way to do it.
1513  *-F*************************************************************************/
1514 static void
1515 unpause_sequencer(struct aic7xxx_host *p, int unpause_always)
1516 {
1517   if (unpause_always ||
1518       ( !(aic_inb(p, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) &&
1519         !(p->flags & AHC_HANDLING_REQINITS) ) )
1520   {
1521     aic_outb(p, p->unpause, HCNTRL);
1522   }
1523 }
1524
1525 /*+F*************************************************************************
1526  * Function:
1527  *   restart_sequencer
1528  *
1529  * Description:
1530  *   Restart the sequencer program from address zero.  This assumes
1531  *   that the sequencer is already paused.
1532  *-F*************************************************************************/
1533 static void
1534 restart_sequencer(struct aic7xxx_host *p)
1535 {
1536   aic_outb(p, 0, SEQADDR0);
1537   aic_outb(p, 0, SEQADDR1);
1538   aic_outb(p, FASTMODE, SEQCTL);
1539 }
1540
1541 /*
1542  * We include the aic7xxx_seq.c file here so that the other defines have
1543  * already been made, and so that it comes before the code that actually
1544  * downloads the instructions (since we don't typically use function
1545  * prototype, our code has to be ordered that way, it's a left-over from
1546  * the original driver days.....I should fix it some time DL).
1547  */
1548 #include "aic7xxx_old/aic7xxx_seq.c"
1549
1550 /*+F*************************************************************************
1551  * Function:
1552  *   aic7xxx_check_patch
1553  *
1554  * Description:
1555  *   See if the next patch to download should be downloaded.
1556  *-F*************************************************************************/
1557 static int
1558 aic7xxx_check_patch(struct aic7xxx_host *p,
1559   struct sequencer_patch **start_patch, int start_instr, int *skip_addr)
1560 {
1561   struct sequencer_patch *cur_patch;
1562   struct sequencer_patch *last_patch;
1563   int num_patches;
1564
1565   num_patches = ARRAY_SIZE(sequencer_patches);
1566   last_patch = &sequencer_patches[num_patches];
1567   cur_patch = *start_patch;
1568
1569   while ((cur_patch < last_patch) && (start_instr == cur_patch->begin))
1570   {
1571     if (cur_patch->patch_func(p) == 0)
1572     {
1573       /*
1574        * Start rejecting code.
1575        */
1576       *skip_addr = start_instr + cur_patch->skip_instr;
1577       cur_patch += cur_patch->skip_patch;
1578     }
1579     else
1580     {
1581       /*
1582        * Found an OK patch.  Advance the patch pointer to the next patch
1583        * and wait for our instruction pointer to get here.
1584        */
1585       cur_patch++;
1586     }
1587   }
1588
1589   *start_patch = cur_patch;
1590   if (start_instr < *skip_addr)
1591     /*
1592      * Still skipping
1593      */
1594     return (0);
1595   return(1);
1596 }
1597
1598
1599 /*+F*************************************************************************
1600  * Function:
1601  *   aic7xxx_download_instr
1602  *
1603  * Description:
1604  *   Find the next patch to download.
1605  *-F*************************************************************************/
1606 static void
1607 aic7xxx_download_instr(struct aic7xxx_host *p, int instrptr,
1608   unsigned char *dconsts)
1609 {
1610   union ins_formats instr;
1611   struct ins_format1 *fmt1_ins;
1612   struct ins_format3 *fmt3_ins;
1613   unsigned char opcode;
1614
1615   instr = *(union ins_formats*) &seqprog[instrptr * 4];
1616
1617   instr.integer = le32_to_cpu(instr.integer);
1618   
1619   fmt1_ins = &instr.format1;
1620   fmt3_ins = NULL;
1621
1622   /* Pull the opcode */
1623   opcode = instr.format1.opcode;
1624   switch (opcode)
1625   {
1626     case AIC_OP_JMP:
1627     case AIC_OP_JC:
1628     case AIC_OP_JNC:
1629     case AIC_OP_CALL:
1630     case AIC_OP_JNE:
1631     case AIC_OP_JNZ:
1632     case AIC_OP_JE:
1633     case AIC_OP_JZ:
1634     {
1635       struct sequencer_patch *cur_patch;
1636       int address_offset;
1637       unsigned int address;
1638       int skip_addr;
1639       int i;
1640
1641       fmt3_ins = &instr.format3;
1642       address_offset = 0;
1643       address = fmt3_ins->address;
1644       cur_patch = sequencer_patches;
1645       skip_addr = 0;
1646
1647       for (i = 0; i < address;)
1648       {
1649         aic7xxx_check_patch(p, &cur_patch, i, &skip_addr);
1650         if (skip_addr > i)
1651         {
1652           int end_addr;
1653
1654           end_addr = min_t(int, address, skip_addr);
1655           address_offset += end_addr - i;
1656           i = skip_addr;
1657         }
1658         else
1659         {
1660           i++;
1661         }
1662       }
1663       address -= address_offset;
1664       fmt3_ins->address = address;
1665       /* Fall Through to the next code section */
1666     }
1667     case AIC_OP_OR:
1668     case AIC_OP_AND:
1669     case AIC_OP_XOR:
1670     case AIC_OP_ADD:
1671     case AIC_OP_ADC:
1672     case AIC_OP_BMOV:
1673       if (fmt1_ins->parity != 0)
1674       {
1675         fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
1676       }
1677       fmt1_ins->parity = 0;
1678       /* Fall Through to the next code section */
1679     case AIC_OP_ROL:
1680       if ((p->features & AHC_ULTRA2) != 0)
1681       {
1682         int i, count;
1683
1684         /* Calculate odd parity for the instruction */
1685         for ( i=0, count=0; i < 31; i++)
1686         {
1687           unsigned int mask;
1688
1689           mask = 0x01 << i;
1690           if ((instr.integer & mask) != 0)
1691             count++;
1692         }
1693         if (!(count & 0x01))
1694           instr.format1.parity = 1;
1695       }
1696       else
1697       {
1698         if (fmt3_ins != NULL)
1699         {
1700           instr.integer =  fmt3_ins->immediate |
1701                           (fmt3_ins->source << 8) |
1702                           (fmt3_ins->address << 16) |
1703                           (fmt3_ins->opcode << 25);
1704         }
1705         else
1706         {
1707           instr.integer =  fmt1_ins->immediate |
1708                           (fmt1_ins->source << 8) |
1709                           (fmt1_ins->destination << 16) |
1710                           (fmt1_ins->ret << 24) |
1711                           (fmt1_ins->opcode << 25);
1712         }
1713       }
1714       aic_outb(p, (instr.integer & 0xff), SEQRAM);
1715       aic_outb(p, ((instr.integer >> 8) & 0xff), SEQRAM);
1716       aic_outb(p, ((instr.integer >> 16) & 0xff), SEQRAM);
1717       aic_outb(p, ((instr.integer >> 24) & 0xff), SEQRAM);
1718       udelay(10);
1719       break;
1720
1721     default:
1722       panic("aic7xxx: Unknown opcode encountered in sequencer program.");
1723       break;
1724   }
1725 }
1726
1727
1728 /*+F*************************************************************************
1729  * Function:
1730  *   aic7xxx_loadseq
1731  *
1732  * Description:
1733  *   Load the sequencer code into the controller memory.
1734  *-F*************************************************************************/
1735 static void
1736 aic7xxx_loadseq(struct aic7xxx_host *p)
1737 {
1738   struct sequencer_patch *cur_patch;
1739   int i;
1740   int downloaded;
1741   int skip_addr;
1742   unsigned char download_consts[4] = {0, 0, 0, 0};
1743
1744   if (aic7xxx_verbose & VERBOSE_PROBE)
1745   {
1746     printk(KERN_INFO "(scsi%d) Downloading sequencer code...", p->host_no);
1747   }
1748 #if 0
1749   download_consts[TMODE_NUMCMDS] = p->num_targetcmds;
1750 #endif
1751   download_consts[TMODE_NUMCMDS] = 0;
1752   cur_patch = &sequencer_patches[0];
1753   downloaded = 0;
1754   skip_addr = 0;
1755
1756   aic_outb(p, PERRORDIS|LOADRAM|FAILDIS|FASTMODE, SEQCTL);
1757   aic_outb(p, 0, SEQADDR0);
1758   aic_outb(p, 0, SEQADDR1);
1759
1760   for (i = 0; i < sizeof(seqprog) / 4;  i++)
1761   {
1762     if (aic7xxx_check_patch(p, &cur_patch, i, &skip_addr) == 0)
1763     {
1764       /* Skip this instruction for this configuration. */
1765       continue;
1766     }
1767     aic7xxx_download_instr(p, i, &download_consts[0]);
1768     downloaded++;
1769   }
1770
1771   aic_outb(p, 0, SEQADDR0);
1772   aic_outb(p, 0, SEQADDR1);
1773   aic_outb(p, FASTMODE | FAILDIS, SEQCTL);
1774   unpause_sequencer(p, TRUE);
1775   mdelay(1);
1776   pause_sequencer(p);
1777   aic_outb(p, FASTMODE, SEQCTL);
1778   if (aic7xxx_verbose & VERBOSE_PROBE)
1779   {
1780     printk(" %d instructions downloaded\n", downloaded);
1781   }
1782   if (aic7xxx_dump_sequencer)
1783     aic7xxx_print_sequencer(p, downloaded);
1784 }
1785
1786 /*+F*************************************************************************
1787  * Function:
1788  *   aic7xxx_print_sequencer
1789  *
1790  * Description:
1791  *   Print the contents of the sequencer memory to the screen.
1792  *-F*************************************************************************/
1793 static void
1794 aic7xxx_print_sequencer(struct aic7xxx_host *p, int downloaded)
1795 {
1796   int i, k, temp;
1797   
1798   aic_outb(p, PERRORDIS|LOADRAM|FAILDIS|FASTMODE, SEQCTL);
1799   aic_outb(p, 0, SEQADDR0);
1800   aic_outb(p, 0, SEQADDR1);
1801
1802   k = 0;
1803   for (i=0; i < downloaded; i++)
1804   {
1805     if ( k == 0 )
1806       printk("%03x: ", i);
1807     temp = aic_inb(p, SEQRAM);
1808     temp |= (aic_inb(p, SEQRAM) << 8);
1809     temp |= (aic_inb(p, SEQRAM) << 16);
1810     temp |= (aic_inb(p, SEQRAM) << 24);
1811     printk("%08x", temp);
1812     if ( ++k == 8 )
1813     {
1814       printk("\n");
1815       k = 0;
1816     }
1817     else
1818       printk(" ");
1819   }
1820   aic_outb(p, 0, SEQADDR0);
1821   aic_outb(p, 0, SEQADDR1);
1822   aic_outb(p, FASTMODE | FAILDIS, SEQCTL);
1823   unpause_sequencer(p, TRUE);
1824   mdelay(1);
1825   pause_sequencer(p);
1826   aic_outb(p, FASTMODE, SEQCTL);
1827   printk("\n");
1828 }
1829
1830 /*+F*************************************************************************
1831  * Function:
1832  *   aic7xxx_info
1833  *
1834  * Description:
1835  *   Return a string describing the driver.
1836  *-F*************************************************************************/
1837 static const char *
1838 aic7xxx_info(struct Scsi_Host *dooh)
1839 {
1840   static char buffer[256];
1841   char *bp;
1842   struct aic7xxx_host *p;
1843
1844   bp = &buffer[0];
1845   p = (struct aic7xxx_host *)dooh->hostdata;
1846   memset(bp, 0, sizeof(buffer));
1847   strcpy(bp, "Adaptec AHA274x/284x/294x (EISA/VLB/PCI-Fast SCSI) ");
1848   strcat(bp, AIC7XXX_C_VERSION);
1849   strcat(bp, "/");
1850   strcat(bp, AIC7XXX_H_VERSION);
1851   strcat(bp, "\n");
1852   strcat(bp, "       <");
1853   strcat(bp, board_names[p->board_name_index]);
1854   strcat(bp, ">");
1855
1856   return(bp);
1857 }
1858
1859 /*+F*************************************************************************
1860  * Function:
1861  *   aic7xxx_find_syncrate
1862  *
1863  * Description:
1864  *   Look up the valid period to SCSIRATE conversion in our table
1865  *-F*************************************************************************/
1866 static struct aic7xxx_syncrate *
1867 aic7xxx_find_syncrate(struct aic7xxx_host *p, unsigned int *period,
1868   unsigned int maxsync, unsigned char *options)
1869 {
1870   struct aic7xxx_syncrate *syncrate;
1871   int done = FALSE;
1872
1873   switch(*options)
1874   {
1875     case MSG_EXT_PPR_OPTION_DT_CRC:
1876     case MSG_EXT_PPR_OPTION_DT_UNITS:
1877       if(!(p->features & AHC_ULTRA3))
1878       {
1879         *options = 0;
1880         maxsync = max_t(unsigned int, maxsync, AHC_SYNCRATE_ULTRA2);
1881       }
1882       break;
1883     case MSG_EXT_PPR_OPTION_DT_CRC_QUICK:
1884     case MSG_EXT_PPR_OPTION_DT_UNITS_QUICK:
1885       if(!(p->features & AHC_ULTRA3))
1886       {
1887         *options = 0;
1888         maxsync = max_t(unsigned int, maxsync, AHC_SYNCRATE_ULTRA2);
1889       }
1890       else
1891       {
1892         /*
1893          * we don't support the Quick Arbitration variants of dual edge
1894          * clocking.  As it turns out, we want to send back the
1895          * same basic option, but without the QA attribute.
1896          * We know that we are responding because we would never set
1897          * these options ourself, we would only respond to them.
1898          */
1899         switch(*options)
1900         {
1901           case MSG_EXT_PPR_OPTION_DT_CRC_QUICK:
1902             *options = MSG_EXT_PPR_OPTION_DT_CRC;
1903             break;
1904           case MSG_EXT_PPR_OPTION_DT_UNITS_QUICK:
1905             *options = MSG_EXT_PPR_OPTION_DT_UNITS;
1906             break;
1907         }
1908       }
1909       break;
1910     default:
1911       *options = 0;
1912       maxsync = max_t(unsigned int, maxsync, AHC_SYNCRATE_ULTRA2);
1913       break;
1914   }
1915   syncrate = &aic7xxx_syncrates[maxsync];
1916   while ( (syncrate->rate[0] != NULL) &&
1917          (!(p->features & AHC_ULTRA2) || syncrate->sxfr_ultra2) )
1918   {
1919     if (*period <= syncrate->period) 
1920     {
1921       switch(*options)
1922       {
1923         case MSG_EXT_PPR_OPTION_DT_CRC:
1924         case MSG_EXT_PPR_OPTION_DT_UNITS:
1925           if(!(syncrate->sxfr_ultra2 & AHC_SYNCRATE_CRC))
1926           {
1927             done = TRUE;
1928             /*
1929              * oops, we went too low for the CRC/DualEdge signalling, so
1930              * clear the options byte
1931              */
1932             *options = 0;
1933             /*
1934              * We'll be sending a reply to this packet to set the options
1935              * properly, so unilaterally set the period as well.
1936              */
1937             *period = syncrate->period;
1938           }
1939           else
1940           {
1941             done = TRUE;
1942             if(syncrate == &aic7xxx_syncrates[maxsync])
1943             {
1944               *period = syncrate->period;
1945             }
1946           }
1947           break;
1948         default:
1949           if(!(syncrate->sxfr_ultra2 & AHC_SYNCRATE_CRC))
1950           {
1951             done = TRUE;
1952             if(syncrate == &aic7xxx_syncrates[maxsync])
1953             {
1954               *period = syncrate->period;
1955             }
1956           }
1957           break;
1958       }
1959       if(done)
1960       {
1961         break;
1962       }
1963     }
1964     syncrate++;
1965   }
1966   if ( (*period == 0) || (syncrate->rate[0] == NULL) ||
1967        ((p->features & AHC_ULTRA2) && (syncrate->sxfr_ultra2 == 0)) )
1968   {
1969     /*
1970      * Use async transfers for this target
1971      */
1972     *options = 0;
1973     *period = 255;
1974     syncrate = NULL;
1975   }
1976   return (syncrate);
1977 }
1978
1979
1980 /*+F*************************************************************************
1981  * Function:
1982  *   aic7xxx_find_period
1983  *
1984  * Description:
1985  *   Look up the valid SCSIRATE to period conversion in our table
1986  *-F*************************************************************************/
1987 static unsigned int
1988 aic7xxx_find_period(struct aic7xxx_host *p, unsigned int scsirate,
1989   unsigned int maxsync)
1990 {
1991   struct aic7xxx_syncrate *syncrate;
1992
1993   if (p->features & AHC_ULTRA2)
1994   {
1995     scsirate &= SXFR_ULTRA2;
1996   }
1997   else
1998   {
1999     scsirate &= SXFR;
2000   }
2001
2002   syncrate = &aic7xxx_syncrates[maxsync];
2003   while (syncrate->rate[0] != NULL)
2004   {
2005     if (p->features & AHC_ULTRA2)
2006     {
2007       if (syncrate->sxfr_ultra2 == 0)
2008         break;
2009       else if (scsirate == syncrate->sxfr_ultra2)
2010         return (syncrate->period);
2011       else if (scsirate == (syncrate->sxfr_ultra2 & ~AHC_SYNCRATE_CRC))
2012         return (syncrate->period);
2013     }
2014     else if (scsirate == (syncrate->sxfr & ~ULTRA_SXFR))
2015     {
2016       return (syncrate->period);
2017     }
2018     syncrate++;
2019   }
2020   return (0); /* async */
2021 }
2022
2023 /*+F*************************************************************************
2024  * Function:
2025  *   aic7xxx_validate_offset
2026  *
2027  * Description:
2028  *   Set a valid offset value for a particular card in use and transfer
2029  *   settings in use.
2030  *-F*************************************************************************/
2031 static void
2032 aic7xxx_validate_offset(struct aic7xxx_host *p,
2033   struct aic7xxx_syncrate *syncrate, unsigned int *offset, int wide)
2034 {
2035   unsigned int maxoffset;
2036
2037   /* Limit offset to what the card (and device) can do */
2038   if (syncrate == NULL)
2039   {
2040     maxoffset = 0;
2041   }
2042   else if (p->features & AHC_ULTRA2)
2043   {
2044     maxoffset = MAX_OFFSET_ULTRA2;
2045   }
2046   else
2047   {
2048     if (wide)
2049       maxoffset = MAX_OFFSET_16BIT;
2050     else
2051       maxoffset = MAX_OFFSET_8BIT;
2052   }
2053   *offset = min(*offset, maxoffset);
2054 }
2055
2056 /*+F*************************************************************************
2057  * Function:
2058  *   aic7xxx_set_syncrate
2059  *
2060  * Description:
2061  *   Set the actual syncrate down in the card and in our host structs
2062  *-F*************************************************************************/
2063 static void
2064 aic7xxx_set_syncrate(struct aic7xxx_host *p, struct aic7xxx_syncrate *syncrate,
2065     int target, int channel, unsigned int period, unsigned int offset,
2066     unsigned char options, unsigned int type, struct aic_dev_data *aic_dev)
2067 {
2068   unsigned char tindex;
2069   unsigned short target_mask;
2070   unsigned char lun, old_options;
2071   unsigned int old_period, old_offset;
2072
2073   tindex = target | (channel << 3);
2074   target_mask = 0x01 << tindex;
2075   lun = aic_inb(p, SCB_TCL) & 0x07;
2076
2077   if (syncrate == NULL)
2078   {
2079     period = 0;
2080     offset = 0;
2081   }
2082
2083   old_period = aic_dev->cur.period;
2084   old_offset = aic_dev->cur.offset;
2085   old_options = aic_dev->cur.options;
2086
2087   
2088   if (type & AHC_TRANS_CUR)
2089   {
2090     unsigned int scsirate;
2091
2092     scsirate = aic_inb(p, TARG_SCSIRATE + tindex);
2093     if (p->features & AHC_ULTRA2)
2094     {
2095       scsirate &= ~SXFR_ULTRA2;
2096       if (syncrate != NULL)
2097       {
2098         switch(options)
2099         {
2100           case MSG_EXT_PPR_OPTION_DT_UNITS:
2101             /*
2102              * mask off the CRC bit in the xfer settings
2103              */
2104             scsirate |= (syncrate->sxfr_ultra2 & ~AHC_SYNCRATE_CRC);
2105             break;
2106           default:
2107             scsirate |= syncrate->sxfr_ultra2;
2108             break;
2109         }
2110       }
2111       if (type & AHC_TRANS_ACTIVE)
2112       {
2113         aic_outb(p, offset, SCSIOFFSET);
2114       }
2115       aic_outb(p, offset, TARG_OFFSET + tindex);
2116     }
2117     else /* Not an Ultra2 controller */
2118     {
2119       scsirate &= ~(SXFR|SOFS);
2120       p->ultraenb &= ~target_mask;
2121       if (syncrate != NULL)
2122       {
2123         if (syncrate->sxfr & ULTRA_SXFR)
2124         {
2125           p->ultraenb |= target_mask;
2126         }
2127         scsirate |= (syncrate->sxfr & SXFR);
2128         scsirate |= (offset & SOFS);
2129       }
2130       if (type & AHC_TRANS_ACTIVE)
2131       {
2132         unsigned char sxfrctl0;
2133
2134         sxfrctl0 = aic_inb(p, SXFRCTL0);
2135         sxfrctl0 &= ~FAST20;
2136         if (p->ultraenb & target_mask)
2137           sxfrctl0 |= FAST20;
2138         aic_outb(p, sxfrctl0, SXFRCTL0);
2139       }
2140       aic_outb(p, p->ultraenb & 0xff, ULTRA_ENB);
2141       aic_outb(p, (p->ultraenb >> 8) & 0xff, ULTRA_ENB + 1 );
2142     }
2143     if (type & AHC_TRANS_ACTIVE)
2144     {
2145       aic_outb(p, scsirate, SCSIRATE);
2146     }
2147     aic_outb(p, scsirate, TARG_SCSIRATE + tindex);
2148     aic_dev->cur.period = period;
2149     aic_dev->cur.offset = offset;
2150     aic_dev->cur.options = options;
2151     if ( !(type & AHC_TRANS_QUITE) &&
2152          (aic7xxx_verbose & VERBOSE_NEGOTIATION) &&
2153          (aic_dev->flags & DEVICE_PRINT_DTR) )
2154     {
2155       if (offset)
2156       {
2157         int rate_mod = (scsirate & WIDEXFER) ? 1 : 0;
2158       
2159         printk(INFO_LEAD "Synchronous at %s Mbyte/sec, "
2160                "offset %d.\n", p->host_no, channel, target, lun,
2161                syncrate->rate[rate_mod], offset);
2162       }
2163       else
2164       {
2165         printk(INFO_LEAD "Using asynchronous transfers.\n",
2166                p->host_no, channel, target, lun);
2167       }
2168       aic_dev->flags &= ~DEVICE_PRINT_DTR;
2169     }
2170   }
2171
2172   if (type & AHC_TRANS_GOAL)
2173   {
2174     aic_dev->goal.period = period;
2175     aic_dev->goal.offset = offset;
2176     aic_dev->goal.options = options;
2177   }
2178
2179   if (type & AHC_TRANS_USER)
2180   {
2181     p->user[tindex].period = period;
2182     p->user[tindex].offset = offset;
2183     p->user[tindex].options = options;
2184   }
2185 }
2186
2187 /*+F*************************************************************************
2188  * Function:
2189  *   aic7xxx_set_width
2190  *
2191  * Description:
2192  *   Set the actual width down in the card and in our host structs
2193  *-F*************************************************************************/
2194 static void
2195 aic7xxx_set_width(struct aic7xxx_host *p, int target, int channel, int lun,
2196     unsigned int width, unsigned int type, struct aic_dev_data *aic_dev)
2197 {
2198   unsigned char tindex;
2199   unsigned short target_mask;
2200   unsigned int old_width;
2201
2202   tindex = target | (channel << 3);
2203   target_mask = 1 << tindex;
2204   
2205   old_width = aic_dev->cur.width;
2206
2207   if (type & AHC_TRANS_CUR) 
2208   {
2209     unsigned char scsirate;
2210
2211     scsirate = aic_inb(p, TARG_SCSIRATE + tindex);
2212
2213     scsirate &= ~WIDEXFER;
2214     if (width == MSG_EXT_WDTR_BUS_16_BIT)
2215       scsirate |= WIDEXFER;
2216
2217     aic_outb(p, scsirate, TARG_SCSIRATE + tindex);
2218
2219     if (type & AHC_TRANS_ACTIVE)
2220       aic_outb(p, scsirate, SCSIRATE);
2221
2222     aic_dev->cur.width = width;
2223
2224     if ( !(type & AHC_TRANS_QUITE) &&
2225           (aic7xxx_verbose & VERBOSE_NEGOTIATION2) && 
2226           (aic_dev->flags & DEVICE_PRINT_DTR) )
2227     {
2228       printk(INFO_LEAD "Using %s transfers\n", p->host_no, channel, target,
2229         lun, (scsirate & WIDEXFER) ? "Wide(16bit)" : "Narrow(8bit)" );
2230     }
2231   }
2232
2233   if (type & AHC_TRANS_GOAL)
2234     aic_dev->goal.width = width;
2235   if (type & AHC_TRANS_USER)
2236     p->user[tindex].width = width;
2237
2238   if (aic_dev->goal.offset)
2239   {
2240     if (p->features & AHC_ULTRA2)
2241     {
2242       aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
2243     }
2244     else if (width == MSG_EXT_WDTR_BUS_16_BIT)
2245     {
2246       aic_dev->goal.offset = MAX_OFFSET_16BIT;
2247     }
2248     else
2249     {
2250       aic_dev->goal.offset = MAX_OFFSET_8BIT;
2251     }
2252   }
2253 }
2254       
2255 /*+F*************************************************************************
2256  * Function:
2257  *   scbq_init
2258  *
2259  * Description:
2260  *   SCB queue initialization.
2261  *
2262  *-F*************************************************************************/
2263 static void
2264 scbq_init(volatile scb_queue_type *queue)
2265 {
2266   queue->head = NULL;
2267   queue->tail = NULL;
2268 }
2269
2270 /*+F*************************************************************************
2271  * Function:
2272  *   scbq_insert_head
2273  *
2274  * Description:
2275  *   Add an SCB to the head of the list.
2276  *
2277  *-F*************************************************************************/
2278 static inline void
2279 scbq_insert_head(volatile scb_queue_type *queue, struct aic7xxx_scb *scb)
2280 {
2281   scb->q_next = queue->head;
2282   queue->head = scb;
2283   if (queue->tail == NULL)       /* If list was empty, update tail. */
2284     queue->tail = queue->head;
2285 }
2286
2287 /*+F*************************************************************************
2288  * Function:
2289  *   scbq_remove_head
2290  *
2291  * Description:
2292  *   Remove an SCB from the head of the list.
2293  *
2294  *-F*************************************************************************/
2295 static inline struct aic7xxx_scb *
2296 scbq_remove_head(volatile scb_queue_type *queue)
2297 {
2298   struct aic7xxx_scb * scbp;
2299
2300   scbp = queue->head;
2301   if (queue->head != NULL)
2302     queue->head = queue->head->q_next;
2303   if (queue->head == NULL)       /* If list is now empty, update tail. */
2304     queue->tail = NULL;
2305   return(scbp);
2306 }
2307
2308 /*+F*************************************************************************
2309  * Function:
2310  *   scbq_remove
2311  *
2312  * Description:
2313  *   Removes an SCB from the list.
2314  *
2315  *-F*************************************************************************/
2316 static inline void
2317 scbq_remove(volatile scb_queue_type *queue, struct aic7xxx_scb *scb)
2318 {
2319   if (queue->head == scb)
2320   {
2321     /* At beginning of queue, remove from head. */
2322     scbq_remove_head(queue);
2323   }
2324   else
2325   {
2326     struct aic7xxx_scb *curscb = queue->head;
2327
2328     /*
2329      * Search until the next scb is the one we're looking for, or
2330      * we run out of queue.
2331      */
2332     while ((curscb != NULL) && (curscb->q_next != scb))
2333     {
2334       curscb = curscb->q_next;
2335     }
2336     if (curscb != NULL)
2337     {
2338       /* Found it. */
2339       curscb->q_next = scb->q_next;
2340       if (scb->q_next == NULL)
2341       {
2342         /* Update the tail when removing the tail. */
2343         queue->tail = curscb;
2344       }
2345     }
2346   }
2347 }
2348
2349 /*+F*************************************************************************
2350  * Function:
2351  *   scbq_insert_tail
2352  *
2353  * Description:
2354  *   Add an SCB at the tail of the list.
2355  *
2356  *-F*************************************************************************/
2357 static inline void
2358 scbq_insert_tail(volatile scb_queue_type *queue, struct aic7xxx_scb *scb)
2359 {
2360   scb->q_next = NULL;
2361   if (queue->tail != NULL)       /* Add the scb at the end of the list. */
2362     queue->tail->q_next = scb;
2363   queue->tail = scb;             /* Update the tail. */
2364   if (queue->head == NULL)       /* If list was empty, update head. */
2365     queue->head = queue->tail;
2366 }
2367
2368 /*+F*************************************************************************
2369  * Function:
2370  *   aic7xxx_match_scb
2371  *
2372  * Description:
2373  *   Checks to see if an scb matches the target/channel as specified.
2374  *   If target is ALL_TARGETS (-1), then we're looking for any device
2375  *   on the specified channel; this happens when a channel is going
2376  *   to be reset and all devices on that channel must be aborted.
2377  *-F*************************************************************************/
2378 static int
2379 aic7xxx_match_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb,
2380     int target, int channel, int lun, unsigned char tag)
2381 {
2382   int targ = (scb->hscb->target_channel_lun >> 4) & 0x0F;
2383   int chan = (scb->hscb->target_channel_lun >> 3) & 0x01;
2384   int slun = scb->hscb->target_channel_lun & 0x07;
2385   int match;
2386
2387   match = ((chan == channel) || (channel == ALL_CHANNELS));
2388   if (match != 0)
2389     match = ((targ == target) || (target == ALL_TARGETS));
2390   if (match != 0)
2391     match = ((lun == slun) || (lun == ALL_LUNS));
2392   if (match != 0)
2393     match = ((tag == scb->hscb->tag) || (tag == SCB_LIST_NULL));
2394
2395   return (match);
2396 }
2397
2398 /*+F*************************************************************************
2399  * Function:
2400  *   aic7xxx_add_curscb_to_free_list
2401  *
2402  * Description:
2403  *   Adds the current scb (in SCBPTR) to the list of free SCBs.
2404  *-F*************************************************************************/
2405 static void
2406 aic7xxx_add_curscb_to_free_list(struct aic7xxx_host *p)
2407 {
2408   /*
2409    * Invalidate the tag so that aic7xxx_find_scb doesn't think
2410    * it's active
2411    */
2412   aic_outb(p, SCB_LIST_NULL, SCB_TAG);
2413   aic_outb(p, 0, SCB_CONTROL);
2414
2415   aic_outb(p, aic_inb(p, FREE_SCBH), SCB_NEXT);
2416   aic_outb(p, aic_inb(p, SCBPTR), FREE_SCBH);
2417 }
2418
2419 /*+F*************************************************************************
2420  * Function:
2421  *   aic7xxx_rem_scb_from_disc_list
2422  *
2423  * Description:
2424  *   Removes the current SCB from the disconnected list and adds it
2425  *   to the free list.
2426  *-F*************************************************************************/
2427 static unsigned char
2428 aic7xxx_rem_scb_from_disc_list(struct aic7xxx_host *p, unsigned char scbptr,
2429                                unsigned char prev)
2430 {
2431   unsigned char next;
2432
2433   aic_outb(p, scbptr, SCBPTR);
2434   next = aic_inb(p, SCB_NEXT);
2435   aic7xxx_add_curscb_to_free_list(p);
2436
2437   if (prev != SCB_LIST_NULL)
2438   {
2439     aic_outb(p, prev, SCBPTR);
2440     aic_outb(p, next, SCB_NEXT);
2441   }
2442   else
2443   {
2444     aic_outb(p, next, DISCONNECTED_SCBH);
2445   }
2446
2447   return next;
2448 }
2449
2450 /*+F*************************************************************************
2451  * Function:
2452  *   aic7xxx_busy_target
2453  *
2454  * Description:
2455  *   Set the specified target busy.
2456  *-F*************************************************************************/
2457 static inline void
2458 aic7xxx_busy_target(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
2459 {
2460   p->untagged_scbs[scb->hscb->target_channel_lun] = scb->hscb->tag;
2461 }
2462
2463 /*+F*************************************************************************
2464  * Function:
2465  *   aic7xxx_index_busy_target
2466  *
2467  * Description:
2468  *   Returns the index of the busy target, and optionally sets the
2469  *   target inactive.
2470  *-F*************************************************************************/
2471 static inline unsigned char
2472 aic7xxx_index_busy_target(struct aic7xxx_host *p, unsigned char tcl,
2473     int unbusy)
2474 {
2475   unsigned char busy_scbid;
2476
2477   busy_scbid = p->untagged_scbs[tcl];
2478   if (unbusy)
2479   {
2480     p->untagged_scbs[tcl] = SCB_LIST_NULL;
2481   }
2482   return (busy_scbid);
2483 }
2484
2485 /*+F*************************************************************************
2486  * Function:
2487  *   aic7xxx_find_scb
2488  *
2489  * Description:
2490  *   Look through the SCB array of the card and attempt to find the
2491  *   hardware SCB that corresponds to the passed in SCB.  Return
2492  *   SCB_LIST_NULL if unsuccessful.  This routine assumes that the
2493  *   card is already paused.
2494  *-F*************************************************************************/
2495 static unsigned char
2496 aic7xxx_find_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
2497 {
2498   unsigned char saved_scbptr;
2499   unsigned char curindex;
2500
2501   saved_scbptr = aic_inb(p, SCBPTR);
2502   curindex = 0;
2503   for (curindex = 0; curindex < p->scb_data->maxhscbs; curindex++)
2504   {
2505     aic_outb(p, curindex, SCBPTR);
2506     if (aic_inb(p, SCB_TAG) == scb->hscb->tag)
2507     {
2508       break;
2509     }
2510   }
2511   aic_outb(p, saved_scbptr, SCBPTR);
2512   if (curindex >= p->scb_data->maxhscbs)
2513   {
2514     curindex = SCB_LIST_NULL;
2515   }
2516
2517   return (curindex);
2518 }
2519
2520 /*+F*************************************************************************
2521  * Function:
2522  *   aic7xxx_allocate_scb
2523  *
2524  * Description:
2525  *   Get an SCB from the free list or by allocating a new one.
2526  *-F*************************************************************************/
2527 static int
2528 aic7xxx_allocate_scb(struct aic7xxx_host *p)
2529 {
2530   struct aic7xxx_scb   *scbp = NULL;
2531   int scb_size = (sizeof (struct hw_scatterlist) * AIC7XXX_MAX_SG) + 12 + 6;
2532   int i;
2533   int step = PAGE_SIZE / 1024;
2534   unsigned long scb_count = 0;
2535   struct hw_scatterlist *hsgp;
2536   struct aic7xxx_scb *scb_ap;
2537   struct aic7xxx_scb_dma *scb_dma;
2538   unsigned char *bufs;
2539
2540   if (p->scb_data->numscbs < p->scb_data->maxscbs)
2541   {
2542     /*
2543      * Calculate the optimal number of SCBs to allocate.
2544      *
2545      * NOTE: This formula works because the sizeof(sg_array) is always
2546      * 1024.  Therefore, scb_size * i would always be > PAGE_SIZE *
2547      * (i/step).  The (i-1) allows the left hand side of the equation
2548      * to grow into the right hand side to a point of near perfect
2549      * efficiency since scb_size * (i -1) is growing slightly faster
2550      * than the right hand side.  If the number of SG array elements
2551      * is changed, this function may not be near so efficient any more.
2552      *
2553      * Since the DMA'able buffers are now allocated in a separate
2554      * chunk this algorithm has been modified to match.  The '12'
2555      * and '6' factors in scb_size are for the DMA'able command byte
2556      * and sensebuffers respectively.  -DaveM
2557      */
2558     for ( i=step;; i *= 2 )
2559     {
2560       if ( (scb_size * (i-1)) >= ( (PAGE_SIZE * (i/step)) - 64 ) )
2561       {
2562         i /= 2;
2563         break;
2564       }
2565     }
2566     scb_count = min( (i-1), p->scb_data->maxscbs - p->scb_data->numscbs);
2567     scb_ap = kmalloc(sizeof (struct aic7xxx_scb) * scb_count
2568                                            + sizeof(struct aic7xxx_scb_dma), GFP_ATOMIC);
2569     if (scb_ap == NULL)
2570       return(0);
2571     scb_dma = (struct aic7xxx_scb_dma *)&scb_ap[scb_count];
2572     hsgp = (struct hw_scatterlist *)
2573       pci_alloc_consistent(p->pdev, scb_size * scb_count,
2574                            &scb_dma->dma_address);
2575     if (hsgp == NULL)
2576     {
2577       kfree(scb_ap);
2578       return(0);
2579     }
2580     bufs = (unsigned char *)&hsgp[scb_count * AIC7XXX_MAX_SG];
2581 #ifdef AIC7XXX_VERBOSE_DEBUGGING
2582     if (aic7xxx_verbose > 0xffff)
2583     {
2584       if (p->scb_data->numscbs == 0)
2585         printk(INFO_LEAD "Allocating initial %ld SCB structures.\n",
2586           p->host_no, -1, -1, -1, scb_count);
2587       else
2588         printk(INFO_LEAD "Allocating %ld additional SCB structures.\n",
2589           p->host_no, -1, -1, -1, scb_count);
2590     }
2591 #endif
2592     memset(scb_ap, 0, sizeof (struct aic7xxx_scb) * scb_count);
2593     scb_dma->dma_offset = (unsigned long)scb_dma->dma_address
2594                           - (unsigned long)hsgp;
2595     scb_dma->dma_len = scb_size * scb_count;
2596     for (i=0; i < scb_count; i++)
2597     {
2598       scbp = &scb_ap[i];
2599       scbp->hscb = &p->scb_data->hscbs[p->scb_data->numscbs];
2600       scbp->sg_list = &hsgp[i * AIC7XXX_MAX_SG];
2601       scbp->sense_cmd = bufs;
2602       scbp->cmnd = bufs + 6;
2603       bufs += 12 + 6;
2604       scbp->scb_dma = scb_dma;
2605       memset(scbp->hscb, 0, sizeof(struct aic7xxx_hwscb));
2606       scbp->hscb->tag = p->scb_data->numscbs;
2607       /*
2608        * Place in the scb array; never is removed
2609        */
2610       p->scb_data->scb_array[p->scb_data->numscbs++] = scbp;
2611       scbq_insert_tail(&p->scb_data->free_scbs, scbp);
2612     }
2613     scbp->kmalloc_ptr = scb_ap;
2614   }
2615   return(scb_count);
2616 }
2617
2618 /*+F*************************************************************************
2619  * Function:
2620  *   aic7xxx_queue_cmd_complete
2621  *
2622  * Description:
2623  *   Due to race conditions present in the SCSI subsystem, it is easier
2624  *   to queue completed commands, then call scsi_done() on them when
2625  *   we're finished.  This function queues the completed commands.
2626  *-F*************************************************************************/
2627 static void
2628 aic7xxx_queue_cmd_complete(struct aic7xxx_host *p, struct scsi_cmnd *cmd)
2629 {
2630   aic7xxx_position(cmd) = SCB_LIST_NULL;
2631   cmd->host_scribble = (char *)p->completeq.head;
2632   p->completeq.head = cmd;
2633 }
2634
2635 /*+F*************************************************************************
2636  * Function:
2637  *   aic7xxx_done_cmds_complete
2638  *
2639  * Description:
2640  *   Process the completed command queue.
2641  *-F*************************************************************************/
2642 static void aic7xxx_done_cmds_complete(struct aic7xxx_host *p)
2643 {
2644         struct scsi_cmnd *cmd;
2645
2646         while (p->completeq.head != NULL) {
2647                 cmd = p->completeq.head;
2648                 p->completeq.head = (struct scsi_cmnd *) cmd->host_scribble;
2649                 cmd->host_scribble = NULL;
2650                 cmd->scsi_done(cmd);
2651         }
2652 }
2653
2654 /*+F*************************************************************************
2655  * Function:
2656  *   aic7xxx_free_scb
2657  *
2658  * Description:
2659  *   Free the scb and insert into the free scb list.
2660  *-F*************************************************************************/
2661 static void
2662 aic7xxx_free_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
2663 {
2664
2665   scb->flags = SCB_FREE;
2666   scb->cmd = NULL;
2667   scb->sg_count = 0;
2668   scb->sg_length = 0;
2669   scb->tag_action = 0;
2670   scb->hscb->control = 0;
2671   scb->hscb->target_status = 0;
2672   scb->hscb->target_channel_lun = SCB_LIST_NULL;
2673
2674   scbq_insert_head(&p->scb_data->free_scbs, scb);
2675 }
2676
2677 /*+F*************************************************************************
2678  * Function:
2679  *   aic7xxx_done
2680  *
2681  * Description:
2682  *   Calls the higher level scsi done function and frees the scb.
2683  *-F*************************************************************************/
2684 static void
2685 aic7xxx_done(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
2686 {
2687         struct scsi_cmnd *cmd = scb->cmd;
2688         struct aic_dev_data *aic_dev = cmd->device->hostdata;
2689         int tindex = TARGET_INDEX(cmd);
2690         struct aic7xxx_scb *scbp;
2691         unsigned char queue_depth;
2692
2693         scsi_dma_unmap(cmd);
2694
2695   if (scb->flags & SCB_SENSE)
2696   {
2697     pci_unmap_single(p->pdev,
2698                      le32_to_cpu(scb->sg_list[0].address),
2699                      SCSI_SENSE_BUFFERSIZE,
2700                      PCI_DMA_FROMDEVICE);
2701   }
2702   if (scb->flags & SCB_RECOVERY_SCB)
2703   {
2704     p->flags &= ~AHC_ABORT_PENDING;
2705   }
2706   if (scb->flags & (SCB_RESET|SCB_ABORT))
2707   {
2708     cmd->result |= (DID_RESET << 16);
2709   }
2710
2711   if ((scb->flags & SCB_MSGOUT_BITS) != 0)
2712   {
2713     unsigned short mask;
2714     int message_error = FALSE;
2715
2716     mask = 0x01 << tindex;
2717  
2718     /*
2719      * Check to see if we get an invalid message or a message error
2720      * after failing to negotiate a wide or sync transfer message.
2721      */
2722     if ((scb->flags & SCB_SENSE) && 
2723           ((scb->cmd->sense_buffer[12] == 0x43) ||  /* INVALID_MESSAGE */
2724           (scb->cmd->sense_buffer[12] == 0x49))) /* MESSAGE_ERROR  */
2725     {
2726       message_error = TRUE;
2727     }
2728
2729     if (scb->flags & SCB_MSGOUT_WDTR)
2730     {
2731       if (message_error)
2732       {
2733         if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
2734              (aic_dev->flags & DEVICE_PRINT_DTR) )
2735         {
2736           printk(INFO_LEAD "Device failed to complete Wide Negotiation "
2737             "processing and\n", p->host_no, CTL_OF_SCB(scb));
2738           printk(INFO_LEAD "returned a sense error code for invalid message, "
2739             "disabling future\n", p->host_no, CTL_OF_SCB(scb));
2740           printk(INFO_LEAD "Wide negotiation to this device.\n", p->host_no,
2741             CTL_OF_SCB(scb));
2742         }
2743         aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
2744       }
2745     }
2746     if (scb->flags & SCB_MSGOUT_SDTR)
2747     {
2748       if (message_error)
2749       {
2750         if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
2751              (aic_dev->flags & DEVICE_PRINT_DTR) )
2752         {
2753           printk(INFO_LEAD "Device failed to complete Sync Negotiation "
2754             "processing and\n", p->host_no, CTL_OF_SCB(scb));
2755           printk(INFO_LEAD "returned a sense error code for invalid message, "
2756             "disabling future\n", p->host_no, CTL_OF_SCB(scb));
2757           printk(INFO_LEAD "Sync negotiation to this device.\n", p->host_no,
2758             CTL_OF_SCB(scb));
2759           aic_dev->flags &= ~DEVICE_PRINT_DTR;
2760         }
2761         aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
2762       }
2763     }
2764     if (scb->flags & SCB_MSGOUT_PPR)
2765     {
2766       if(message_error)
2767       {
2768         if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
2769              (aic_dev->flags & DEVICE_PRINT_DTR) )
2770         {
2771           printk(INFO_LEAD "Device failed to complete Parallel Protocol "
2772             "Request processing and\n", p->host_no, CTL_OF_SCB(scb));
2773           printk(INFO_LEAD "returned a sense error code for invalid message, "
2774             "disabling future\n", p->host_no, CTL_OF_SCB(scb));
2775           printk(INFO_LEAD "Parallel Protocol Request negotiation to this "
2776             "device.\n", p->host_no, CTL_OF_SCB(scb));
2777         }
2778         /*
2779          * Disable PPR negotiation and revert back to WDTR and SDTR setup
2780          */
2781         aic_dev->needppr = aic_dev->needppr_copy = 0;
2782         aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
2783         aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
2784       }
2785     }
2786   }
2787
2788   queue_depth = aic_dev->temp_q_depth;
2789   if (queue_depth >= aic_dev->active_cmds)
2790   {
2791     scbp = scbq_remove_head(&aic_dev->delayed_scbs);
2792     if (scbp)
2793     {
2794       if (queue_depth == 1)
2795       {
2796         /*
2797          * Give extra preference to untagged devices, such as CD-R devices
2798          * This makes it more likely that a drive *won't* stuff up while
2799          * waiting on data at a critical time, such as CD-R writing and
2800          * audio CD ripping operations.  Should also benefit tape drives.
2801          */
2802         scbq_insert_head(&p->waiting_scbs, scbp);
2803       }
2804       else
2805       {
2806         scbq_insert_tail(&p->waiting_scbs, scbp);
2807       }
2808 #ifdef AIC7XXX_VERBOSE_DEBUGGING
2809       if (aic7xxx_verbose > 0xffff)
2810         printk(INFO_LEAD "Moving SCB from delayed to waiting queue.\n",
2811                p->host_no, CTL_OF_SCB(scbp));
2812 #endif
2813       if (queue_depth > aic_dev->active_cmds)
2814       {
2815         scbp = scbq_remove_head(&aic_dev->delayed_scbs);
2816         if (scbp)
2817           scbq_insert_tail(&p->waiting_scbs, scbp);
2818       }
2819     }
2820   }
2821   if (!(scb->tag_action))
2822   {
2823     aic7xxx_index_busy_target(p, scb->hscb->target_channel_lun,
2824                               /* unbusy */ TRUE);
2825     if (cmd->device->simple_tags)
2826     {
2827       aic_dev->temp_q_depth = aic_dev->max_q_depth;
2828     }
2829   }
2830   if(scb->flags & SCB_DTR_SCB)
2831   {
2832     aic_dev->dtr_pending = 0;
2833   }
2834   aic_dev->active_cmds--;
2835   p->activescbs--;
2836
2837   if ((scb->sg_length >= 512) && (((cmd->result >> 16) & 0xf) == DID_OK))
2838   {
2839     long *ptr;
2840     int x, i;
2841
2842
2843     if (rq_data_dir(cmd->request) == WRITE)
2844     {
2845       aic_dev->w_total++;
2846       ptr = aic_dev->w_bins;
2847     }
2848     else
2849     {
2850       aic_dev->r_total++;
2851       ptr = aic_dev->r_bins;
2852     }
2853     x = scb->sg_length;
2854     x >>= 10;
2855     for(i=0; i<6; i++)
2856     {
2857       x >>= 2;
2858       if(!x) {
2859         ptr[i]++;
2860         break;
2861       }
2862     }
2863     if(i == 6 && x)
2864       ptr[5]++;
2865   }
2866   aic7xxx_free_scb(p, scb);
2867   aic7xxx_queue_cmd_complete(p, cmd);
2868
2869 }
2870
2871 /*+F*************************************************************************
2872  * Function:
2873  *   aic7xxx_run_done_queue
2874  *
2875  * Description:
2876  *   Calls the aic7xxx_done() for the scsi_cmnd of each scb in the
2877  *   aborted list, and adds each scb to the free list.  If complete
2878  *   is TRUE, we also process the commands complete list.
2879  *-F*************************************************************************/
2880 static void
2881 aic7xxx_run_done_queue(struct aic7xxx_host *p, /*complete*/ int complete)
2882 {
2883   struct aic7xxx_scb *scb;
2884   int i, found = 0;
2885
2886   for (i = 0; i < p->scb_data->numscbs; i++)
2887   {
2888     scb = p->scb_data->scb_array[i];
2889     if (scb->flags & SCB_QUEUED_FOR_DONE)
2890     {
2891       if (scb->flags & SCB_QUEUE_FULL)
2892       {
2893         scb->cmd->result = QUEUE_FULL << 1;
2894       }
2895       else
2896       {
2897         if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
2898           printk(INFO_LEAD "Aborting scb %d\n",
2899                p->host_no, CTL_OF_SCB(scb), scb->hscb->tag);
2900         /*
2901          * Clear any residual information since the normal aic7xxx_done() path
2902          * doesn't touch the residuals.
2903          */
2904         scb->hscb->residual_SG_segment_count = 0;
2905         scb->hscb->residual_data_count[0] = 0;
2906         scb->hscb->residual_data_count[1] = 0;
2907         scb->hscb->residual_data_count[2] = 0;
2908       }
2909       found++;
2910       aic7xxx_done(p, scb);
2911     }
2912   }
2913   if (aic7xxx_verbose & (VERBOSE_ABORT_RETURN | VERBOSE_RESET_RETURN))
2914   {
2915     printk(INFO_LEAD "%d commands found and queued for "
2916         "completion.\n", p->host_no, -1, -1, -1, found);
2917   }
2918   if (complete)
2919   {
2920     aic7xxx_done_cmds_complete(p);
2921   }
2922 }
2923
2924 /*+F*************************************************************************
2925  * Function:
2926  *   aic7xxx_abort_waiting_scb
2927  *
2928  * Description:
2929  *   Manipulate the waiting for selection list and return the
2930  *   scb that follows the one that we remove.
2931  *-F*************************************************************************/
2932 static unsigned char
2933 aic7xxx_abort_waiting_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb,
2934     unsigned char scbpos, unsigned char prev)
2935 {
2936   unsigned char curscb, next;
2937
2938   /*
2939    * Select the SCB we want to abort and pull the next pointer out of it.
2940    */
2941   curscb = aic_inb(p, SCBPTR);
2942   aic_outb(p, scbpos, SCBPTR);
2943   next = aic_inb(p, SCB_NEXT);
2944
2945   aic7xxx_add_curscb_to_free_list(p);
2946
2947   /*
2948    * Update the waiting list
2949    */
2950   if (prev == SCB_LIST_NULL)
2951   {
2952     /*
2953      * First in the list
2954      */
2955     aic_outb(p, next, WAITING_SCBH);
2956   }
2957   else
2958   {
2959     /*
2960      * Select the scb that pointed to us and update its next pointer.
2961      */
2962     aic_outb(p, prev, SCBPTR);
2963     aic_outb(p, next, SCB_NEXT);
2964   }
2965   /*
2966    * Point us back at the original scb position and inform the SCSI
2967    * system that the command has been aborted.
2968    */
2969   aic_outb(p, curscb, SCBPTR);
2970   return (next);
2971 }
2972
2973 /*+F*************************************************************************
2974  * Function:
2975  *   aic7xxx_search_qinfifo
2976  *
2977  * Description:
2978  *   Search the queue-in FIFO for matching SCBs and conditionally
2979  *   requeue.  Returns the number of matching SCBs.
2980  *-F*************************************************************************/
2981 static int
2982 aic7xxx_search_qinfifo(struct aic7xxx_host *p, int target, int channel,
2983     int lun, unsigned char tag, int flags, int requeue,
2984     volatile scb_queue_type *queue)
2985 {
2986   int      found;
2987   unsigned char qinpos, qintail;
2988   struct aic7xxx_scb *scbp;
2989
2990   found = 0;
2991   qinpos = aic_inb(p, QINPOS);
2992   qintail = p->qinfifonext;
2993
2994   p->qinfifonext = qinpos;
2995
2996   while (qinpos != qintail)
2997   {
2998     scbp = p->scb_data->scb_array[p->qinfifo[qinpos++]];
2999     if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
3000     {
3001        /*
3002         * We found an scb that needs to be removed.
3003         */
3004        if (requeue && (queue != NULL))
3005        {
3006          if (scbp->flags & SCB_WAITINGQ)
3007          {
3008            scbq_remove(queue, scbp);
3009            scbq_remove(&p->waiting_scbs, scbp);
3010            scbq_remove(&AIC_DEV(scbp->cmd)->delayed_scbs, scbp);
3011            AIC_DEV(scbp->cmd)->active_cmds++;
3012            p->activescbs++;
3013          }
3014          scbq_insert_tail(queue, scbp);
3015          AIC_DEV(scbp->cmd)->active_cmds--;
3016          p->activescbs--;
3017          scbp->flags |= SCB_WAITINGQ;
3018          if ( !(scbp->tag_action & TAG_ENB) )
3019          {
3020            aic7xxx_index_busy_target(p, scbp->hscb->target_channel_lun,
3021              TRUE);
3022          }
3023        }
3024        else if (requeue)
3025        {
3026          p->qinfifo[p->qinfifonext++] = scbp->hscb->tag;
3027        }
3028        else
3029        {
3030         /*
3031          * Preserve any SCB_RECOVERY_SCB flags on this scb then set the
3032          * flags we were called with, presumeably so aic7xxx_run_done_queue
3033          * can find this scb
3034          */
3035          scbp->flags = flags | (scbp->flags & SCB_RECOVERY_SCB);
3036          if (aic7xxx_index_busy_target(p, scbp->hscb->target_channel_lun,
3037                                        FALSE) == scbp->hscb->tag)
3038          {
3039            aic7xxx_index_busy_target(p, scbp->hscb->target_channel_lun,
3040              TRUE);
3041          }
3042        }
3043        found++;
3044     }
3045     else
3046     {
3047       p->qinfifo[p->qinfifonext++] = scbp->hscb->tag;
3048     }
3049   }
3050   /*
3051    * Now that we've done the work, clear out any left over commands in the
3052    * qinfifo and update the KERNEL_QINPOS down on the card.
3053    *
3054    *  NOTE: This routine expect the sequencer to already be paused when
3055    *        it is run....make sure it's that way!
3056    */
3057   qinpos = p->qinfifonext;
3058   while(qinpos != qintail)
3059   {
3060     p->qinfifo[qinpos++] = SCB_LIST_NULL;
3061   }
3062   if (p->features & AHC_QUEUE_REGS)
3063     aic_outb(p, p->qinfifonext, HNSCB_QOFF);
3064   else
3065     aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
3066
3067   return (found);
3068 }
3069
3070 /*+F*************************************************************************
3071  * Function:
3072  *   aic7xxx_scb_on_qoutfifo
3073  *
3074  * Description:
3075  *   Is the scb that was passed to us currently on the qoutfifo?
3076  *-F*************************************************************************/
3077 static int
3078 aic7xxx_scb_on_qoutfifo(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
3079 {
3080   int i=0;
3081
3082   while(p->qoutfifo[(p->qoutfifonext + i) & 0xff ] != SCB_LIST_NULL)
3083   {
3084     if(p->qoutfifo[(p->qoutfifonext + i) & 0xff ] == scb->hscb->tag)
3085       return TRUE;
3086     else
3087       i++;
3088   }
3089   return FALSE;
3090 }
3091
3092
3093 /*+F*************************************************************************
3094  * Function:
3095  *   aic7xxx_reset_device
3096  *
3097  * Description:
3098  *   The device at the given target/channel has been reset.  Abort
3099  *   all active and queued scbs for that target/channel.  This function
3100  *   need not worry about linked next pointers because if was a MSG_ABORT_TAG
3101  *   then we had a tagged command (no linked next), if it was MSG_ABORT or
3102  *   MSG_BUS_DEV_RESET then the device won't know about any commands any more
3103  *   and no busy commands will exist, and if it was a bus reset, then nothing
3104  *   knows about any linked next commands any more.  In all cases, we don't
3105  *   need to worry about the linked next or busy scb, we just need to clear
3106  *   them.
3107  *-F*************************************************************************/
3108 static void
3109 aic7xxx_reset_device(struct aic7xxx_host *p, int target, int channel,
3110                      int lun, unsigned char tag)
3111 {
3112   struct aic7xxx_scb *scbp, *prev_scbp;
3113   struct scsi_device *sd;
3114   unsigned char active_scb, tcl, scb_tag;
3115   int i = 0, init_lists = FALSE;
3116   struct aic_dev_data *aic_dev;
3117
3118   /*
3119    * Restore this when we're done
3120    */
3121   active_scb = aic_inb(p, SCBPTR);
3122   scb_tag = aic_inb(p, SCB_TAG);
3123
3124   if (aic7xxx_verbose & (VERBOSE_RESET_PROCESS | VERBOSE_ABORT_PROCESS))
3125   {
3126     printk(INFO_LEAD "Reset device, hardware_scb %d,\n",
3127          p->host_no, channel, target, lun, active_scb);
3128     printk(INFO_LEAD "Current scb %d, SEQADDR 0x%x, LASTPHASE "
3129            "0x%x\n",
3130          p->host_no, channel, target, lun, scb_tag,
3131          aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
3132          aic_inb(p, LASTPHASE));
3133     printk(INFO_LEAD "SG_CACHEPTR 0x%x, SG_COUNT %d, SCSISIGI 0x%x\n",
3134          p->host_no, channel, target, lun,
3135          (p->features & AHC_ULTRA2) ?  aic_inb(p, SG_CACHEPTR) : 0,
3136          aic_inb(p, SG_COUNT), aic_inb(p, SCSISIGI));
3137     printk(INFO_LEAD "SSTAT0 0x%x, SSTAT1 0x%x, SSTAT2 0x%x\n",
3138          p->host_no, channel, target, lun, aic_inb(p, SSTAT0),
3139          aic_inb(p, SSTAT1), aic_inb(p, SSTAT2));
3140   }
3141
3142   /*
3143    * Deal with the busy target and linked next issues.
3144    */
3145   list_for_each_entry(aic_dev, &p->aic_devs, list)
3146   {
3147     if (aic7xxx_verbose & (VERBOSE_RESET_PROCESS | VERBOSE_ABORT_PROCESS))
3148       printk(INFO_LEAD "processing aic_dev %p\n", p->host_no, channel, target,
3149                     lun, aic_dev);
3150     sd = aic_dev->SDptr;
3151
3152     if((target != ALL_TARGETS && target != sd->id) ||
3153        (channel != ALL_CHANNELS && channel != sd->channel))
3154       continue;
3155     if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3156         printk(INFO_LEAD "Cleaning up status information "
3157           "and delayed_scbs.\n", p->host_no, sd->channel, sd->id, sd->lun);
3158     aic_dev->flags &= ~BUS_DEVICE_RESET_PENDING;
3159     if ( tag == SCB_LIST_NULL )
3160     {
3161       aic_dev->dtr_pending = 0;
3162       aic_dev->needppr = aic_dev->needppr_copy;
3163       aic_dev->needsdtr = aic_dev->needsdtr_copy;
3164       aic_dev->needwdtr = aic_dev->needwdtr_copy;
3165       aic_dev->flags = DEVICE_PRINT_DTR;
3166       aic_dev->temp_q_depth = aic_dev->max_q_depth;
3167     }
3168     tcl = (sd->id << 4) | (sd->channel << 3) | sd->lun;
3169     if ( (aic7xxx_index_busy_target(p, tcl, FALSE) == tag) ||
3170          (tag == SCB_LIST_NULL) )
3171       aic7xxx_index_busy_target(p, tcl, /* unbusy */ TRUE);
3172     prev_scbp = NULL; 
3173     scbp = aic_dev->delayed_scbs.head;
3174     while (scbp != NULL)
3175     {
3176       prev_scbp = scbp;
3177       scbp = scbp->q_next;
3178       if (aic7xxx_match_scb(p, prev_scbp, target, channel, lun, tag))
3179       {
3180         scbq_remove(&aic_dev->delayed_scbs, prev_scbp);
3181         if (prev_scbp->flags & SCB_WAITINGQ)
3182         {
3183           aic_dev->active_cmds++;
3184           p->activescbs++;
3185         }
3186         prev_scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3187         prev_scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3188       }
3189     }
3190   }
3191
3192   if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3193     printk(INFO_LEAD "Cleaning QINFIFO.\n", p->host_no, channel, target, lun );
3194   aic7xxx_search_qinfifo(p, target, channel, lun, tag,
3195       SCB_RESET | SCB_QUEUED_FOR_DONE, /* requeue */ FALSE, NULL);
3196
3197 /*
3198  *  Search the waiting_scbs queue for matches, this catches any SCB_QUEUED
3199  *  ABORT/RESET commands.
3200  */
3201   if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3202     printk(INFO_LEAD "Cleaning waiting_scbs.\n", p->host_no, channel,
3203       target, lun );
3204   {
3205     struct aic7xxx_scb *scbp, *prev_scbp;
3206
3207     prev_scbp = NULL; 
3208     scbp = p->waiting_scbs.head;
3209     while (scbp != NULL)
3210     {
3211       prev_scbp = scbp;
3212       scbp = scbp->q_next;
3213       if (aic7xxx_match_scb(p, prev_scbp, target, channel, lun, tag))
3214       {
3215         scbq_remove(&p->waiting_scbs, prev_scbp);
3216         if (prev_scbp->flags & SCB_WAITINGQ)
3217         {
3218           AIC_DEV(prev_scbp->cmd)->active_cmds++;
3219           p->activescbs++;
3220         }
3221         prev_scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3222         prev_scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3223       }
3224     }
3225   }
3226
3227
3228   /*
3229    * Search waiting for selection list.
3230    */
3231   if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3232     printk(INFO_LEAD "Cleaning waiting for selection "
3233       "list.\n", p->host_no, channel, target, lun);
3234   {
3235     unsigned char next, prev, scb_index;
3236
3237     next = aic_inb(p, WAITING_SCBH);  /* Start at head of list. */
3238     prev = SCB_LIST_NULL;
3239     while (next != SCB_LIST_NULL)
3240     {
3241       aic_outb(p, next, SCBPTR);
3242       scb_index = aic_inb(p, SCB_TAG);
3243       if (scb_index >= p->scb_data->numscbs)
3244       {
3245        /*
3246         * No aic7xxx_verbose check here.....we want to see this since it
3247         * means either the kernel driver or the sequencer screwed things up
3248         */
3249         printk(WARN_LEAD "Waiting List inconsistency; SCB index=%d, "
3250           "numscbs=%d\n", p->host_no, channel, target, lun, scb_index,
3251           p->scb_data->numscbs);
3252         next = aic_inb(p, SCB_NEXT);
3253         aic7xxx_add_curscb_to_free_list(p);
3254       }
3255       else
3256       {
3257         scbp = p->scb_data->scb_array[scb_index];
3258         if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
3259         {
3260           next = aic7xxx_abort_waiting_scb(p, scbp, next, prev);
3261           if (scbp->flags & SCB_WAITINGQ)
3262           {
3263             AIC_DEV(scbp->cmd)->active_cmds++;
3264             p->activescbs++;
3265           }
3266           scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3267           scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3268           if (prev == SCB_LIST_NULL)
3269           {
3270             /*
3271              * This is either the first scb on the waiting list, or we
3272              * have already yanked the first and haven't left any behind.
3273              * Either way, we need to turn off the selection hardware if
3274              * it isn't already off.
3275              */
3276             aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
3277             aic_outb(p, CLRSELTIMEO, CLRSINT1);
3278           }
3279         }
3280         else
3281         {
3282           prev = next;
3283           next = aic_inb(p, SCB_NEXT);
3284         }
3285       }
3286     }
3287   }
3288
3289   /*
3290    * Go through disconnected list and remove any entries we have queued
3291    * for completion, zeroing their control byte too.
3292    */
3293   if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3294     printk(INFO_LEAD "Cleaning disconnected scbs "
3295       "list.\n", p->host_no, channel, target, lun);
3296   if (p->flags & AHC_PAGESCBS)
3297   {
3298     unsigned char next, prev, scb_index;
3299
3300     next = aic_inb(p, DISCONNECTED_SCBH);
3301     prev = SCB_LIST_NULL;
3302     while (next != SCB_LIST_NULL)
3303     {
3304       aic_outb(p, next, SCBPTR);
3305       scb_index = aic_inb(p, SCB_TAG);
3306       if (scb_index > p->scb_data->numscbs)
3307       {
3308         printk(WARN_LEAD "Disconnected List inconsistency; SCB index=%d, "
3309           "numscbs=%d\n", p->host_no, channel, target, lun, scb_index,
3310           p->scb_data->numscbs);
3311         next = aic7xxx_rem_scb_from_disc_list(p, next, prev);
3312       }
3313       else
3314       {
3315         scbp = p->scb_data->scb_array[scb_index];
3316         if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
3317         {
3318           next = aic7xxx_rem_scb_from_disc_list(p, next, prev);
3319           if (scbp->flags & SCB_WAITINGQ)
3320           {
3321             AIC_DEV(scbp->cmd)->active_cmds++;
3322             p->activescbs++;
3323           }
3324           scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3325           scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3326           scbp->hscb->control = 0;
3327         }
3328         else
3329         {
3330           prev = next;
3331           next = aic_inb(p, SCB_NEXT);
3332         }
3333       }
3334     }
3335   }
3336
3337   /*
3338    * Walk the free list making sure no entries on the free list have
3339    * a valid SCB_TAG value or SCB_CONTROL byte.
3340    */
3341   if (p->flags & AHC_PAGESCBS)
3342   {
3343     unsigned char next;
3344
3345     next = aic_inb(p, FREE_SCBH);
3346     while (next != SCB_LIST_NULL)
3347     {
3348       aic_outb(p, next, SCBPTR);
3349       if (aic_inb(p, SCB_TAG) < p->scb_data->numscbs)
3350       {
3351         printk(WARN_LEAD "Free list inconsistency!.\n", p->host_no, channel,
3352           target, lun);
3353         init_lists = TRUE;
3354         next = SCB_LIST_NULL;
3355       }
3356       else
3357       {
3358         aic_outb(p, SCB_LIST_NULL, SCB_TAG);
3359         aic_outb(p, 0, SCB_CONTROL);
3360         next = aic_inb(p, SCB_NEXT);
3361       }
3362     }
3363   }
3364
3365   /*
3366    * Go through the hardware SCB array looking for commands that
3367    * were active but not on any list.
3368    */
3369   if (init_lists)
3370   {
3371     aic_outb(p, SCB_LIST_NULL, FREE_SCBH);
3372     aic_outb(p, SCB_LIST_NULL, WAITING_SCBH);
3373     aic_outb(p, SCB_LIST_NULL, DISCONNECTED_SCBH);
3374   }
3375   for (i = p->scb_data->maxhscbs - 1; i >= 0; i--)
3376   {
3377     unsigned char scbid;
3378
3379     aic_outb(p, i, SCBPTR);
3380     if (init_lists)
3381     {
3382       aic_outb(p, SCB_LIST_NULL, SCB_TAG);
3383       aic_outb(p, SCB_LIST_NULL, SCB_NEXT);
3384       aic_outb(p, 0, SCB_CONTROL);
3385       aic7xxx_add_curscb_to_free_list(p);
3386     }
3387     else
3388     {
3389       scbid = aic_inb(p, SCB_TAG);
3390       if (scbid < p->scb_data->numscbs)
3391       {
3392         scbp = p->scb_data->scb_array[scbid];
3393         if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
3394         {
3395           aic_outb(p, 0, SCB_CONTROL);
3396           aic_outb(p, SCB_LIST_NULL, SCB_TAG);
3397           aic7xxx_add_curscb_to_free_list(p);
3398         }
3399       }
3400     }
3401   }
3402
3403   /*
3404    * Go through the entire SCB array now and look for commands for
3405    * for this target that are stillactive.  These are other (most likely
3406    * tagged) commands that were disconnected when the reset occurred.
3407    * Any commands we find here we know this about, it wasn't on any queue,
3408    * it wasn't in the qinfifo, it wasn't in the disconnected or waiting
3409    * lists, so it really must have been a paged out SCB.  In that case,
3410    * we shouldn't need to bother with updating any counters, just mark
3411    * the correct flags and go on.
3412    */
3413   for (i = 0; i < p->scb_data->numscbs; i++)
3414   {
3415     scbp = p->scb_data->scb_array[i];
3416     if ((scbp->flags & SCB_ACTIVE) &&
3417         aic7xxx_match_scb(p, scbp, target, channel, lun, tag) &&
3418         !aic7xxx_scb_on_qoutfifo(p, scbp))
3419     {
3420       if (scbp->flags & SCB_WAITINGQ)
3421       {
3422         scbq_remove(&p->waiting_scbs, scbp);
3423         scbq_remove(&AIC_DEV(scbp->cmd)->delayed_scbs, scbp);
3424         AIC_DEV(scbp->cmd)->active_cmds++;
3425         p->activescbs++;
3426       }
3427       scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3428       scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3429     }
3430   }
3431
3432   aic_outb(p, active_scb, SCBPTR);
3433 }
3434
3435
3436 /*+F*************************************************************************
3437  * Function:
3438  *   aic7xxx_clear_intstat
3439  *
3440  * Description:
3441  *   Clears the interrupt status.
3442  *-F*************************************************************************/
3443 static void
3444 aic7xxx_clear_intstat(struct aic7xxx_host *p)
3445 {
3446   /* Clear any interrupt conditions this may have caused. */
3447   aic_outb(p, CLRSELDO | CLRSELDI | CLRSELINGO, CLRSINT0);
3448   aic_outb(p, CLRSELTIMEO | CLRATNO | CLRSCSIRSTI | CLRBUSFREE | CLRSCSIPERR |
3449        CLRPHASECHG | CLRREQINIT, CLRSINT1);
3450   aic_outb(p, CLRSCSIINT | CLRSEQINT | CLRBRKADRINT | CLRPARERR, CLRINT);
3451 }
3452
3453 /*+F*************************************************************************
3454  * Function:
3455  *   aic7xxx_reset_current_bus
3456  *
3457  * Description:
3458  *   Reset the current SCSI bus.
3459  *-F*************************************************************************/
3460 static void
3461 aic7xxx_reset_current_bus(struct aic7xxx_host *p)
3462 {
3463
3464   /* Disable reset interrupts. */
3465   aic_outb(p, aic_inb(p, SIMODE1) & ~ENSCSIRST, SIMODE1);
3466
3467   /* Turn off the bus' current operations, after all, we shouldn't have any
3468    * valid commands left to cause a RSELI and SELO once we've tossed the
3469    * bus away with this reset, so we might as well shut down the sequencer
3470    * until the bus is restarted as opposed to saving the current settings
3471    * and restoring them (which makes no sense to me). */
3472
3473   /* Turn on the bus reset. */
3474   aic_outb(p, aic_inb(p, SCSISEQ) | SCSIRSTO, SCSISEQ);
3475   while ( (aic_inb(p, SCSISEQ) & SCSIRSTO) == 0)
3476     mdelay(5);
3477
3478   /*
3479    * Some of the new Ultra2 chipsets need a longer delay after a chip
3480    * reset than just the init setup creates, so we have to delay here
3481    * before we go into a reset in order to make the chips happy.
3482    */
3483   if (p->features & AHC_ULTRA2)
3484     mdelay(250);
3485   else
3486     mdelay(50);
3487
3488   /* Turn off the bus reset. */
3489   aic_outb(p, 0, SCSISEQ);
3490   mdelay(10);
3491
3492   aic7xxx_clear_intstat(p);
3493   /* Re-enable reset interrupts. */
3494   aic_outb(p, aic_inb(p, SIMODE1) | ENSCSIRST, SIMODE1);
3495
3496 }
3497
3498 /*+F*************************************************************************
3499  * Function:
3500  *   aic7xxx_reset_channel
3501  *
3502  * Description:
3503  *   Reset the channel.
3504  *-F*************************************************************************/
3505 static void
3506 aic7xxx_reset_channel(struct aic7xxx_host *p, int channel, int initiate_reset)
3507 {
3508   unsigned long offset_min, offset_max;
3509   unsigned char sblkctl;
3510   int cur_channel;
3511
3512   if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
3513     printk(INFO_LEAD "Reset channel called, %s initiate reset.\n",
3514       p->host_no, channel, -1, -1, (initiate_reset==TRUE) ? "will" : "won't" );
3515
3516
3517   if (channel == 1)
3518   {
3519     offset_min = 8;
3520     offset_max = 16;
3521   }
3522   else
3523   {
3524     if (p->features & AHC_TWIN)
3525     {
3526       /* Channel A */
3527       offset_min = 0;
3528       offset_max = 8;
3529     }
3530     else
3531     {
3532       offset_min = 0;
3533       if (p->features & AHC_WIDE)
3534       {
3535         offset_max = 16;
3536       }
3537       else
3538       {
3539         offset_max = 8;
3540       }
3541     }
3542   }
3543
3544   while (offset_min < offset_max)
3545   {
3546     /*
3547      * Revert to async/narrow transfers until we renegotiate.
3548      */
3549     aic_outb(p, 0, TARG_SCSIRATE + offset_min);
3550     if (p->features & AHC_ULTRA2)
3551     {
3552       aic_outb(p, 0, TARG_OFFSET + offset_min);
3553     }
3554     offset_min++;
3555   }
3556
3557   /*
3558    * Reset the bus and unpause/restart the controller
3559    */
3560   sblkctl = aic_inb(p, SBLKCTL);
3561   if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
3562     cur_channel = (sblkctl & SELBUSB) >> 3;
3563   else
3564     cur_channel = 0;
3565   if ( (cur_channel != channel) && (p->features & AHC_TWIN) )
3566   {
3567     /*
3568      * Case 1: Command for another bus is active
3569      */
3570     if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
3571       printk(INFO_LEAD "Stealthily resetting idle channel.\n", p->host_no,
3572         channel, -1, -1);
3573     /*
3574      * Stealthily reset the other bus without upsetting the current bus.
3575      */
3576     aic_outb(p, sblkctl ^ SELBUSB, SBLKCTL);
3577     aic_outb(p, aic_inb(p, SIMODE1) & ~ENBUSFREE, SIMODE1);
3578     if (initiate_reset)
3579     {
3580       aic7xxx_reset_current_bus(p);
3581     }
3582     aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP), SCSISEQ);
3583     aic7xxx_clear_intstat(p);
3584     aic_outb(p, sblkctl, SBLKCTL);
3585   }
3586   else
3587   {
3588     /*
3589      * Case 2: A command from this bus is active or we're idle.
3590      */
3591     if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
3592       printk(INFO_LEAD "Resetting currently active channel.\n", p->host_no,
3593         channel, -1, -1);
3594     aic_outb(p, aic_inb(p, SIMODE1) & ~(ENBUSFREE|ENREQINIT),
3595       SIMODE1);
3596     p->flags &= ~AHC_HANDLING_REQINITS;
3597     p->msg_type = MSG_TYPE_NONE;
3598     p->msg_len = 0;
3599     if (initiate_reset)
3600     {
3601       aic7xxx_reset_current_bus(p);
3602     }
3603     aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP), SCSISEQ);
3604     aic7xxx_clear_intstat(p);
3605   }
3606   if (aic7xxx_verbose & VERBOSE_RESET_RETURN)
3607     printk(INFO_LEAD "Channel reset\n", p->host_no, channel, -1, -1);
3608   /*
3609    * Clean up all the state information for the pending transactions
3610    * on this bus.
3611    */
3612   aic7xxx_reset_device(p, ALL_TARGETS, channel, ALL_LUNS, SCB_LIST_NULL);
3613
3614   if ( !(p->features & AHC_TWIN) )
3615   {
3616     restart_sequencer(p);
3617   }
3618
3619   return;
3620 }
3621
3622 /*+F*************************************************************************
3623  * Function:
3624  *   aic7xxx_run_waiting_queues
3625  *
3626  * Description:
3627  *   Scan the awaiting_scbs queue downloading and starting as many
3628  *   scbs as we can.
3629  *-F*************************************************************************/
3630 static void
3631 aic7xxx_run_waiting_queues(struct aic7xxx_host *p)
3632 {
3633   struct aic7xxx_scb *scb;
3634   struct aic_dev_data *aic_dev;
3635   int sent;
3636
3637
3638   if (p->waiting_scbs.head == NULL)
3639     return;
3640
3641   sent = 0;
3642
3643   /*
3644    * First handle SCBs that are waiting but have been assigned a slot.
3645    */
3646   while ((scb = scbq_remove_head(&p->waiting_scbs)) != NULL)
3647   {
3648     aic_dev = scb->cmd->device->hostdata;
3649     if ( !scb->tag_action )
3650     {
3651       aic_dev->temp_q_depth = 1;
3652     }
3653     if ( aic_dev->active_cmds >= aic_dev->temp_q_depth)
3654     {
3655       scbq_insert_tail(&aic_dev->delayed_scbs, scb);
3656     }
3657     else
3658     {
3659         scb->flags &= ~SCB_WAITINGQ;
3660         aic_dev->active_cmds++;
3661         p->activescbs++;
3662         if ( !(scb->tag_action) )
3663         {
3664           aic7xxx_busy_target(p, scb);
3665         }
3666         p->qinfifo[p->qinfifonext++] = scb->hscb->tag;
3667         sent++;
3668     }
3669   }
3670   if (sent)
3671   {
3672     if (p->features & AHC_QUEUE_REGS)
3673       aic_outb(p, p->qinfifonext, HNSCB_QOFF);
3674     else
3675     {
3676       pause_sequencer(p);
3677       aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
3678       unpause_sequencer(p, FALSE);
3679     }
3680     if (p->activescbs > p->max_activescbs)
3681       p->max_activescbs = p->activescbs;
3682   }
3683 }
3684
3685 #ifdef CONFIG_PCI
3686
3687 #define  DPE 0x80
3688 #define  SSE 0x40
3689 #define  RMA 0x20
3690 #define  RTA 0x10
3691 #define  STA 0x08
3692 #define  DPR 0x01
3693
3694 /*+F*************************************************************************
3695  * Function:
3696  *   aic7xxx_pci_intr
3697  *
3698  * Description:
3699  *   Check the scsi card for PCI errors and clear the interrupt
3700  *
3701  *   NOTE: If you don't have this function and a 2940 card encounters
3702  *         a PCI error condition, the machine will end up locked as the
3703  *         interrupt handler gets slammed with non-stop PCI error interrupts
3704  *-F*************************************************************************/
3705 static void
3706 aic7xxx_pci_intr(struct aic7xxx_host *p)
3707 {
3708   unsigned char status1;
3709
3710   pci_read_config_byte(p->pdev, PCI_STATUS + 1, &status1);
3711
3712   if ( (status1 & DPE) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3713     printk(WARN_LEAD "Data Parity Error during PCI address or PCI write"
3714       "phase.\n", p->host_no, -1, -1, -1);
3715   if ( (status1 & SSE) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3716     printk(WARN_LEAD "Signal System Error Detected\n", p->host_no,
3717       -1, -1, -1);
3718   if ( (status1 & RMA) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3719     printk(WARN_LEAD "Received a PCI Master Abort\n", p->host_no,
3720       -1, -1, -1);
3721   if ( (status1 & RTA) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3722     printk(WARN_LEAD "Received a PCI Target Abort\n", p->host_no,
3723       -1, -1, -1);
3724   if ( (status1 & STA) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3725     printk(WARN_LEAD "Signaled a PCI Target Abort\n", p->host_no,
3726       -1, -1, -1);
3727   if ( (status1 & DPR) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3728     printk(WARN_LEAD "Data Parity Error has been reported via PCI pin "
3729       "PERR#\n", p->host_no, -1, -1, -1);
3730   
3731   pci_write_config_byte(p->pdev, PCI_STATUS + 1, status1);
3732   if (status1 & (DPR|RMA|RTA))
3733     aic_outb(p,  CLRPARERR, CLRINT);
3734
3735   if ( (aic7xxx_panic_on_abort) && (p->spurious_int > 500) )
3736     aic7xxx_panic_abort(p, NULL);
3737
3738 }
3739 #endif /* CONFIG_PCI */
3740
3741 /*+F*************************************************************************
3742  * Function:
3743  *   aic7xxx_construct_ppr
3744  *
3745  * Description:
3746  *   Build up a Parallel Protocol Request message for use with SCSI-3
3747  *   devices.
3748  *-F*************************************************************************/
3749 static void
3750 aic7xxx_construct_ppr(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
3751 {
3752   p->msg_buf[p->msg_index++] = MSG_EXTENDED;
3753   p->msg_buf[p->msg_index++] = MSG_EXT_PPR_LEN;
3754   p->msg_buf[p->msg_index++] = MSG_EXT_PPR;
3755   p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.period;
3756   p->msg_buf[p->msg_index++] = 0;
3757   p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.offset;
3758   p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.width;
3759   p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.options;
3760   p->msg_len += 8;
3761 }
3762
3763 /*+F*************************************************************************
3764  * Function:
3765  *   aic7xxx_construct_sdtr
3766  *
3767  * Description:
3768  *   Constucts a synchronous data transfer message in the message
3769  *   buffer on the sequencer.
3770  *-F*************************************************************************/
3771 static void
3772 aic7xxx_construct_sdtr(struct aic7xxx_host *p, unsigned char period,
3773         unsigned char offset)
3774 {
3775   p->msg_buf[p->msg_index++] = MSG_EXTENDED;
3776   p->msg_buf[p->msg_index++] = MSG_EXT_SDTR_LEN;
3777   p->msg_buf[p->msg_index++] = MSG_EXT_SDTR;
3778   p->msg_buf[p->msg_index++] = period;
3779   p->msg_buf[p->msg_index++] = offset;
3780   p->msg_len += 5;
3781 }
3782
3783 /*+F*************************************************************************
3784  * Function:
3785  *   aic7xxx_construct_wdtr
3786  *
3787  * Description:
3788  *   Constucts a wide data transfer message in the message buffer
3789  *   on the sequencer.
3790  *-F*************************************************************************/
3791 static void
3792 aic7xxx_construct_wdtr(struct aic7xxx_host *p, unsigned char bus_width)
3793 {
3794   p->msg_buf[p->msg_index++] = MSG_EXTENDED;
3795   p->msg_buf[p->msg_index++] = MSG_EXT_WDTR_LEN;
3796   p->msg_buf[p->msg_index++] = MSG_EXT_WDTR;
3797   p->msg_buf[p->msg_index++] = bus_width;
3798   p->msg_len += 4;
3799 }
3800
3801 /*+F*************************************************************************
3802  * Function:
3803  *   aic7xxx_calc_residual
3804  *
3805  * Description:
3806  *   Calculate the residual data not yet transferred.
3807  *-F*************************************************************************/
3808 static void
3809 aic7xxx_calculate_residual (struct aic7xxx_host *p, struct aic7xxx_scb *scb)
3810 {
3811         struct aic7xxx_hwscb *hscb;
3812         struct scsi_cmnd *cmd;
3813         int actual, i;
3814
3815   cmd = scb->cmd;
3816   hscb = scb->hscb;
3817
3818   /*
3819    *  Don't destroy valid residual information with
3820    *  residual coming from a check sense operation.
3821    */
3822   if (((scb->hscb->control & DISCONNECTED) == 0) &&
3823       (scb->flags & SCB_SENSE) == 0)
3824   {
3825     /*
3826      *  We had an underflow. At this time, there's only
3827      *  one other driver that bothers to check for this,
3828      *  and cmd->underflow seems to be set rather half-
3829      *  heartedly in the higher-level SCSI code.
3830      */
3831     actual = scb->sg_length;
3832     for (i=1; i < hscb->residual_SG_segment_count; i++)
3833     {
3834       actual -= scb->sg_list[scb->sg_count - i].length;
3835     }
3836     actual -= (hscb->residual_data_count[2] << 16) |
3837               (hscb->residual_data_count[1] <<  8) |
3838               hscb->residual_data_count[0];
3839
3840     if (actual < cmd->underflow)
3841     {
3842       if (aic7xxx_verbose & VERBOSE_MINOR_ERROR)
3843       {
3844         printk(INFO_LEAD "Underflow - Wanted %u, %s %u, residual SG "
3845           "count %d.\n", p->host_no, CTL_OF_SCB(scb), cmd->underflow,
3846           (rq_data_dir(cmd->request) == WRITE) ? "wrote" : "read", actual,
3847           hscb->residual_SG_segment_count);
3848         printk(INFO_LEAD "status 0x%x.\n", p->host_no, CTL_OF_SCB(scb),
3849           hscb->target_status);
3850       }
3851       /*
3852        * In 2.4, only send back the residual information, don't flag this
3853        * as an error.  Before 2.4 we had to flag this as an error because
3854        * the mid layer didn't check residual data counts to see if the
3855        * command needs retried.
3856        */
3857       scsi_set_resid(cmd, scb->sg_length - actual);
3858       aic7xxx_status(cmd) = hscb->target_status;
3859     }
3860   }
3861
3862   /*
3863    * Clean out the residual information in the SCB for the
3864    * next consumer.
3865    */
3866   hscb->residual_data_count[2] = 0;
3867   hscb->residual_data_count[1] = 0;
3868   hscb->residual_data_count[0] = 0;
3869   hscb->residual_SG_segment_count = 0;
3870 }
3871
3872 /*+F*************************************************************************
3873  * Function:
3874  *   aic7xxx_handle_device_reset
3875  *
3876  * Description:
3877  *   Interrupt handler for sequencer interrupts (SEQINT).
3878  *-F*************************************************************************/
3879 static void
3880 aic7xxx_handle_device_reset(struct aic7xxx_host *p, int target, int channel)
3881 {
3882   unsigned char tindex = target;
3883
3884   tindex |= ((channel & 0x01) << 3);
3885
3886   /*
3887    * Go back to async/narrow transfers and renegotiate.
3888    */
3889   aic_outb(p, 0, TARG_SCSIRATE + tindex);
3890   if (p->features & AHC_ULTRA2)
3891     aic_outb(p, 0, TARG_OFFSET + tindex);
3892   aic7xxx_reset_device(p, target, channel, ALL_LUNS, SCB_LIST_NULL);
3893   if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
3894     printk(INFO_LEAD "Bus Device Reset delivered.\n", p->host_no, channel,
3895       target, -1);
3896   aic7xxx_run_done_queue(p, /*complete*/ TRUE);
3897 }
3898
3899 /*+F*************************************************************************
3900  * Function:
3901  *   aic7xxx_handle_seqint
3902  *
3903  * Description:
3904  *   Interrupt handler for sequencer interrupts (SEQINT).
3905  *-F*************************************************************************/
3906 static void
3907 aic7xxx_handle_seqint(struct aic7xxx_host *p, unsigned char intstat)
3908 {
3909   struct aic7xxx_scb *scb;
3910   struct aic_dev_data *aic_dev;
3911   unsigned short target_mask;
3912   unsigned char target, lun, tindex;
3913   unsigned char queue_flag = FALSE;
3914   char channel;
3915   int result;
3916
3917   target = ((aic_inb(p, SAVED_TCL) >> 4) & 0x0f);
3918   if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
3919     channel = (aic_inb(p, SBLKCTL) & SELBUSB) >> 3;
3920   else
3921     channel = 0;
3922   tindex = target + (channel << 3);
3923   lun = aic_inb(p, SAVED_TCL) & 0x07;
3924   target_mask = (0x01 << tindex);
3925
3926   /*
3927    * Go ahead and clear the SEQINT now, that avoids any interrupt race
3928    * conditions later on in case we enable some other interrupt.
3929    */
3930   aic_outb(p, CLRSEQINT, CLRINT);
3931   switch (intstat & SEQINT_MASK)
3932   {
3933     case NO_MATCH:
3934       {
3935         aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP),
3936                  SCSISEQ);
3937         printk(WARN_LEAD "No active SCB for reconnecting target - Issuing "
3938                "BUS DEVICE RESET.\n", p->host_no, channel, target, lun);
3939         printk(WARN_LEAD "      SAVED_TCL=0x%x, ARG_1=0x%x, SEQADDR=0x%x\n",
3940                p->host_no, channel, target, lun,
3941                aic_inb(p, SAVED_TCL), aic_inb(p, ARG_1),
3942                (aic_inb(p, SEQADDR1) << 8) | aic_inb(p, SEQADDR0));
3943         if (aic7xxx_panic_on_abort)
3944           aic7xxx_panic_abort(p, NULL);
3945       }
3946       break;
3947
3948     case SEND_REJECT:
3949       {
3950         if (aic7xxx_verbose & VERBOSE_MINOR_ERROR)
3951           printk(INFO_LEAD "Rejecting unknown message (0x%x) received from "
3952             "target, SEQ_FLAGS=0x%x\n", p->host_no, channel, target, lun,
3953             aic_inb(p, ACCUM), aic_inb(p, SEQ_FLAGS));
3954       }
3955       break;
3956
3957     case NO_IDENT:
3958       {
3959         /*
3960          * The reconnecting target either did not send an identify
3961          * message, or did, but we didn't find an SCB to match and
3962          * before it could respond to our ATN/abort, it hit a dataphase.
3963          * The only safe thing to do is to blow it away with a bus
3964          * reset.
3965          */
3966         if (aic7xxx_verbose & (VERBOSE_SEQINT | VERBOSE_RESET_MID))
3967           printk(INFO_LEAD "Target did not send an IDENTIFY message; "
3968             "LASTPHASE 0x%x, SAVED_TCL 0x%x\n", p->host_no, channel, target,
3969             lun, aic_inb(p, LASTPHASE), aic_inb(p, SAVED_TCL));
3970
3971         aic7xxx_reset_channel(p, channel, /*initiate reset*/ TRUE);
3972         aic7xxx_run_done_queue(p, TRUE);
3973
3974       }
3975       break;
3976
3977     case BAD_PHASE:
3978       if (aic_inb(p, LASTPHASE) == P_BUSFREE)
3979       {
3980         if (aic7xxx_verbose & VERBOSE_SEQINT)
3981           printk(INFO_LEAD "Missed busfree.\n", p->host_no, channel,
3982             target, lun);
3983         restart_sequencer(p);
3984       }
3985       else
3986       {
3987         if (aic7xxx_verbose & VERBOSE_SEQINT)
3988           printk(INFO_LEAD "Unknown scsi bus phase, continuing\n", p->host_no,
3989             channel, target, lun);
3990       }
3991       break;
3992
3993     case EXTENDED_MSG:
3994       {
3995         p->msg_type = MSG_TYPE_INITIATOR_MSGIN;
3996         p->msg_len = 0;
3997         p->msg_index = 0;
3998
3999 #ifdef AIC7XXX_VERBOSE_DEBUGGING
4000         if (aic7xxx_verbose > 0xffff)
4001           printk(INFO_LEAD "Enabling REQINITs for MSG_IN\n", p->host_no,
4002                  channel, target, lun);
4003 #endif
4004
4005        /*      
4006         * To actually receive the message, simply turn on
4007         * REQINIT interrupts and let our interrupt handler
4008         * do the rest (REQINIT should already be true).
4009         */
4010         p->flags |= AHC_HANDLING_REQINITS;
4011         aic_outb(p, aic_inb(p, SIMODE1) | ENREQINIT, SIMODE1);
4012
4013        /*
4014         * We don't want the sequencer unpaused yet so we return early
4015         */
4016         return;
4017       }
4018
4019     case REJECT_MSG:
4020       {
4021         /*
4022          * What we care about here is if we had an outstanding SDTR
4023          * or WDTR message for this target. If we did, this is a
4024          * signal that the target is refusing negotiation.
4025          */
4026         unsigned char scb_index;
4027         unsigned char last_msg;
4028
4029         scb_index = aic_inb(p, SCB_TAG);
4030         scb = p->scb_data->scb_array[scb_index];
4031         aic_dev = AIC_DEV(scb->cmd);
4032         last_msg = aic_inb(p, LAST_MSG);
4033
4034         if ( (last_msg == MSG_IDENTIFYFLAG) &&
4035              (scb->tag_action) &&
4036             !(scb->flags & SCB_MSGOUT_BITS) )
4037         {
4038           if (scb->tag_action == MSG_ORDERED_Q_TAG)
4039           {
4040             /*
4041              * OK...the device seems able to accept tagged commands, but
4042              * not ordered tag commands, only simple tag commands.  So, we
4043              * disable ordered tag commands and go on with life just like
4044              * normal.
4045              */
4046             scsi_adjust_queue_depth(scb->cmd->device, MSG_SIMPLE_TAG,
4047                             scb->cmd->device->queue_depth);
4048             scb->tag_action = MSG_SIMPLE_Q_TAG;
4049             scb->hscb->control &= ~SCB_TAG_TYPE;
4050             scb->hscb->control |= MSG_SIMPLE_Q_TAG;
4051             aic_outb(p, scb->hscb->control, SCB_CONTROL);
4052             /*
4053              * OK..we set the tag type to simple tag command, now we re-assert
4054              * ATNO and hope this will take us into the identify phase again
4055              * so we can resend the tag type and info to the device.
4056              */
4057             aic_outb(p, MSG_IDENTIFYFLAG, MSG_OUT);
4058             aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
4059           }
4060           else if (scb->tag_action == MSG_SIMPLE_Q_TAG)
4061           {
4062             unsigned char i;
4063             struct aic7xxx_scb *scbp;
4064             int old_verbose;
4065             /*
4066              * Hmmmm....the device is flaking out on tagged commands.
4067              */
4068             scsi_adjust_queue_depth(scb->cmd->device, 0 /* untagged */,
4069                             p->host->cmd_per_lun);
4070             aic_dev->max_q_depth = aic_dev->temp_q_depth = 1;
4071             /*
4072              * We set this command up as a bus device reset.  However, we have
4073              * to clear the tag type as it's causing us problems.  We shouldn't
4074              * have to worry about any other commands being active, since if
4075              * the device is refusing tagged commands, this should be the
4076              * first tagged command sent to the device, however, we do have
4077              * to worry about any other tagged commands that may already be
4078              * in the qinfifo.  The easiest way to do this, is to issue a BDR,
4079              * send all the commands back to the mid level code, then let them
4080              * come back and get rebuilt as untagged commands.
4081              */
4082             scb->tag_action = 0;
4083             scb->hscb->control &= ~(TAG_ENB | SCB_TAG_TYPE);
4084             aic_outb(p,  scb->hscb->control, SCB_CONTROL);
4085
4086             old_verbose = aic7xxx_verbose;
4087             aic7xxx_verbose &= ~(VERBOSE_RESET|VERBOSE_ABORT);
4088             for (i=0; i < p->scb_data->numscbs; i++)
4089             {
4090               scbp = p->scb_data->scb_array[i];
4091               if ((scbp->flags & SCB_ACTIVE) && (scbp != scb))
4092               {
4093                 if (aic7xxx_match_scb(p, scbp, target, channel, lun, i))
4094                 {
4095                   aic7xxx_reset_device(p, target, channel, lun, i);
4096                 }
4097               }
4098             }
4099             aic7xxx_run_done_queue(p, TRUE);
4100             aic7xxx_verbose = old_verbose;
4101             /*
4102              * Wait until after the for loop to set the busy index since
4103              * aic7xxx_reset_device will clear the busy index during its
4104              * operation.
4105              */
4106             aic7xxx_busy_target(p, scb);
4107             printk(INFO_LEAD "Device is refusing tagged commands, using "
4108               "untagged I/O.\n", p->host_no, channel, target, lun);
4109             aic_outb(p, MSG_IDENTIFYFLAG, MSG_OUT);
4110             aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
4111           }
4112         }
4113         else if (scb->flags & SCB_MSGOUT_PPR)
4114         {
4115           /*
4116            * As per the draft specs, any device capable of supporting any of
4117            * the option values other than 0 are not allowed to reject the
4118            * PPR message.  Instead, they must negotiate out what they do
4119            * support instead of rejecting our offering or else they cause
4120            * a parity error during msg_out phase to signal that they don't
4121            * like our settings.
4122            */
4123           aic_dev->needppr = aic_dev->needppr_copy = 0;
4124           aic7xxx_set_width(p, target, channel, lun, MSG_EXT_WDTR_BUS_8_BIT,
4125             (AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE), aic_dev);
4126           aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
4127                                AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
4128                                aic_dev);
4129           aic_dev->goal.options = aic_dev->dtr_pending = 0;
4130           scb->flags &= ~SCB_MSGOUT_BITS;
4131           if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4132           {
4133             printk(INFO_LEAD "Device is rejecting PPR messages, falling "
4134               "back.\n", p->host_no, channel, target, lun);
4135           }
4136           if ( aic_dev->goal.width )
4137           {
4138             aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
4139             aic_dev->dtr_pending = 1;
4140             scb->flags |= SCB_MSGOUT_WDTR;
4141           }
4142           if ( aic_dev->goal.offset )
4143           {
4144             aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
4145             if( !aic_dev->dtr_pending )
4146             {
4147               aic_dev->dtr_pending = 1;
4148               scb->flags |= SCB_MSGOUT_SDTR;
4149             }
4150           }
4151           if ( aic_dev->dtr_pending )
4152           {
4153             aic_outb(p, HOST_MSG, MSG_OUT);
4154             aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
4155           }
4156         }
4157         else if (scb->flags & SCB_MSGOUT_WDTR)
4158         {
4159           /*
4160            * note 8bit xfers and clear flag
4161            */
4162           aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
4163           scb->flags &= ~SCB_MSGOUT_BITS;
4164           aic7xxx_set_width(p, target, channel, lun, MSG_EXT_WDTR_BUS_8_BIT,
4165             (AHC_TRANS_ACTIVE|AHC_TRANS_GOAL|AHC_TRANS_CUR), aic_dev);
4166           aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
4167                                AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
4168                                aic_dev);
4169           if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4170           {
4171             printk(INFO_LEAD "Device is rejecting WDTR messages, using "
4172               "narrow transfers.\n", p->host_no, channel, target, lun);
4173           }
4174           aic_dev->needsdtr = aic_dev->needsdtr_copy;
4175         }
4176         else if (scb->flags & SCB_MSGOUT_SDTR)
4177         {
4178          /*
4179           * note asynch xfers and clear flag
4180           */
4181           aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
4182           scb->flags &= ~SCB_MSGOUT_BITS;
4183           aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
4184             (AHC_TRANS_CUR|AHC_TRANS_ACTIVE|AHC_TRANS_GOAL), aic_dev);
4185           if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4186           {
4187             printk(INFO_LEAD "Device is rejecting SDTR messages, using "
4188               "async transfers.\n", p->host_no, channel, target, lun);
4189           }
4190         }
4191         else if (aic7xxx_verbose & VERBOSE_SEQINT)
4192         {
4193           /*
4194            * Otherwise, we ignore it.
4195            */
4196           printk(INFO_LEAD "Received MESSAGE_REJECT for unknown cause.  "
4197             "Ignoring.\n", p->host_no, channel, target, lun);
4198         }
4199       }
4200       break;
4201
4202     case BAD_STATUS:
4203       {
4204         unsigned char scb_index;
4205         struct aic7xxx_hwscb *hscb;
4206         struct scsi_cmnd *cmd;
4207
4208         /* The sequencer will notify us when a command has an error that
4209          * would be of interest to the kernel.  This allows us to leave
4210          * the sequencer running in the common case of command completes
4211          * without error.  The sequencer will have DMA'd the SCB back
4212          * up to us, so we can reference the drivers SCB array.
4213          *
4214          * Set the default return value to 0 indicating not to send
4215          * sense.  The sense code will change this if needed and this
4216          * reduces code duplication.
4217          */
4218         aic_outb(p, 0, RETURN_1);
4219         scb_index = aic_inb(p, SCB_TAG);
4220         if (scb_index > p->scb_data->numscbs)
4221         {
4222           printk(WARN_LEAD "Invalid SCB during SEQINT 0x%02x, SCB_TAG %d.\n",
4223             p->host_no, channel, target, lun, intstat, scb_index);
4224           break;
4225         }
4226         scb = p->scb_data->scb_array[scb_index];
4227         hscb = scb->hscb;
4228
4229         if (!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
4230         {
4231           printk(WARN_LEAD "Invalid SCB during SEQINT 0x%x, scb %d, flags 0x%x,"
4232             " cmd 0x%lx.\n", p->host_no, channel, target, lun, intstat,
4233             scb_index, scb->flags, (unsigned long) scb->cmd);
4234         }
4235         else
4236         {
4237           cmd = scb->cmd;
4238           aic_dev = AIC_DEV(scb->cmd);
4239           hscb->target_status = aic_inb(p, SCB_TARGET_STATUS);
4240           aic7xxx_status(cmd) = hscb->target_status;
4241
4242           cmd->result = hscb->target_status;
4243
4244           switch (status_byte(hscb->target_status))
4245           {
4246             case GOOD:
4247               if (aic7xxx_verbose & VERBOSE_SEQINT)
4248                 printk(INFO_LEAD "Interrupted for status of GOOD???\n",
4249                   p->host_no, CTL_OF_SCB(scb));
4250               break;
4251
4252             case COMMAND_TERMINATED:
4253             case CHECK_CONDITION:
4254               if ( !(scb->flags & SCB_SENSE) )
4255               {
4256                 /*
4257                  * Send a sense command to the requesting target.
4258                  * XXX - revisit this and get rid of the memcopys.
4259                  */
4260                 memcpy(scb->sense_cmd, &generic_sense[0],
4261                        sizeof(generic_sense));
4262
4263                 scb->sense_cmd[1] = (cmd->device->lun << 5);
4264                 scb->sense_cmd[4] = SCSI_SENSE_BUFFERSIZE;
4265
4266                 scb->sg_list[0].length = 
4267                   cpu_to_le32(SCSI_SENSE_BUFFERSIZE);
4268                 scb->sg_list[0].address =
4269                         cpu_to_le32(pci_map_single(p->pdev, cmd->sense_buffer,
4270                                                    SCSI_SENSE_BUFFERSIZE,
4271                                                    PCI_DMA_FROMDEVICE));
4272
4273                 /*
4274                  * XXX - We should allow disconnection, but can't as it
4275                  * might allow overlapped tagged commands.
4276                  */
4277                 /* hscb->control &= DISCENB; */
4278                 hscb->control = 0;
4279                 hscb->target_status = 0;
4280                 hscb->SG_list_pointer = 
4281                   cpu_to_le32(SCB_DMA_ADDR(scb, scb->sg_list));
4282                 hscb->SCSI_cmd_pointer = 
4283                   cpu_to_le32(SCB_DMA_ADDR(scb, scb->sense_cmd));
4284                 hscb->data_count = scb->sg_list[0].length;
4285                 hscb->data_pointer = scb->sg_list[0].address;
4286                 hscb->SCSI_cmd_length = COMMAND_SIZE(scb->sense_cmd[0]);
4287                 hscb->residual_SG_segment_count = 0;
4288                 hscb->residual_data_count[0] = 0;
4289                 hscb->residual_data_count[1] = 0;
4290                 hscb->residual_data_count[2] = 0;
4291
4292                 scb->sg_count = hscb->SG_segment_count = 1;
4293                 scb->sg_length = SCSI_SENSE_BUFFERSIZE;
4294                 scb->tag_action = 0;
4295                 scb->flags |= SCB_SENSE;
4296                 /*
4297                  * Ensure the target is busy since this will be an
4298                  * an untagged request.
4299                  */
4300 #ifdef AIC7XXX_VERBOSE_DEBUGGING
4301                 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4302                 {
4303                   if (scb->flags & SCB_MSGOUT_BITS)
4304                     printk(INFO_LEAD "Requesting SENSE with %s\n", p->host_no,
4305                            CTL_OF_SCB(scb), (scb->flags & SCB_MSGOUT_SDTR) ?
4306                            "SDTR" : "WDTR");
4307                   else
4308                     printk(INFO_LEAD "Requesting SENSE, no MSG\n", p->host_no,
4309                            CTL_OF_SCB(scb));
4310                 }
4311 #endif
4312                 aic7xxx_busy_target(p, scb);
4313                 aic_outb(p, SEND_SENSE, RETURN_1);
4314                 aic7xxx_error(cmd) = DID_OK;
4315                 break;
4316               }  /* first time sense, no errors */
4317               printk(INFO_LEAD "CHECK_CONDITION on REQUEST_SENSE, returning "
4318                      "an error.\n", p->host_no, CTL_OF_SCB(scb));
4319               aic7xxx_error(cmd) = DID_ERROR;
4320               scb->flags &= ~SCB_SENSE;
4321               break;
4322
4323             case QUEUE_FULL:
4324               queue_flag = TRUE;    /* Mark that this is a QUEUE_FULL and */
4325             case BUSY:              /* drop through to here */
4326             {
4327               struct aic7xxx_scb *next_scbp, *prev_scbp;
4328               unsigned char active_hscb, next_hscb, prev_hscb, scb_index;
4329               /*
4330                * We have to look three places for queued commands:
4331                *  1: p->waiting_scbs queue
4332                *  2: QINFIFO
4333                *  3: WAITING_SCBS list on card (for commands that are started
4334                *     but haven't yet made it to the device)
4335                *
4336                * Of special note here is that commands on 2 or 3 above will
4337                * have already been marked as active, while commands on 1 will
4338                * not.  The aic7xxx_done() function will want to unmark them
4339                * from active, so any commands we pull off of 1 need to
4340                * up the active count.
4341                */
4342               next_scbp = p->waiting_scbs.head;
4343               while ( next_scbp != NULL )
4344               {
4345                 prev_scbp = next_scbp;
4346                 next_scbp = next_scbp->q_next;
4347                 if ( aic7xxx_match_scb(p, prev_scbp, target, channel, lun,
4348                      SCB_LIST_NULL) )
4349                 {
4350                   scbq_remove(&p->waiting_scbs, prev_scbp);
4351                   scb->flags = SCB_QUEUED_FOR_DONE | SCB_QUEUE_FULL;
4352                   p->activescbs++;
4353                   aic_dev->active_cmds++;
4354                 }
4355               }
4356               aic7xxx_search_qinfifo(p, target, channel, lun,
4357                 SCB_LIST_NULL, SCB_QUEUED_FOR_DONE | SCB_QUEUE_FULL,
4358                 FALSE, NULL);
4359               next_scbp = NULL;
4360               active_hscb = aic_inb(p, SCBPTR);
4361               prev_hscb = next_hscb = scb_index = SCB_LIST_NULL;
4362               next_hscb = aic_inb(p, WAITING_SCBH);
4363               while (next_hscb != SCB_LIST_NULL)
4364               {
4365                 aic_outb(p, next_hscb, SCBPTR);
4366                 scb_index = aic_inb(p, SCB_TAG);
4367                 if (scb_index < p->scb_data->numscbs)
4368                 {
4369                   next_scbp = p->scb_data->scb_array[scb_index];
4370                   if (aic7xxx_match_scb(p, next_scbp, target, channel, lun,
4371                       SCB_LIST_NULL) )
4372                   {
4373                     next_scbp->flags = SCB_QUEUED_FOR_DONE | SCB_QUEUE_FULL;
4374                     next_hscb = aic_inb(p, SCB_NEXT);
4375                     aic_outb(p, 0, SCB_CONTROL);
4376                     aic_outb(p, SCB_LIST_NULL, SCB_TAG);
4377                     aic7xxx_add_curscb_to_free_list(p);
4378                     if (prev_hscb == SCB_LIST_NULL)
4379                     {
4380                       /* We were first on the list,
4381                        * so we kill the selection
4382                        * hardware.  Let the sequencer
4383                        * re-init the hardware itself
4384                        */
4385                       aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
4386                       aic_outb(p, CLRSELTIMEO, CLRSINT1);
4387                       aic_outb(p, next_hscb, WAITING_SCBH);
4388                     }
4389                     else
4390                     {
4391                       aic_outb(p, prev_hscb, SCBPTR);
4392                       aic_outb(p, next_hscb, SCB_NEXT);
4393                     }
4394                   }
4395                   else
4396                   {
4397                     prev_hscb = next_hscb;
4398                     next_hscb = aic_inb(p, SCB_NEXT);
4399                   }
4400                 } /* scb_index >= p->scb_data->numscbs */
4401               }
4402               aic_outb(p, active_hscb, SCBPTR);
4403               aic7xxx_run_done_queue(p, FALSE);
4404                   
4405 #ifdef AIC7XXX_VERBOSE_DEBUGGING
4406               if( (aic7xxx_verbose & VERBOSE_MINOR_ERROR) ||
4407                   (aic7xxx_verbose > 0xffff) )
4408               {
4409                 if (queue_flag)
4410                   printk(INFO_LEAD "Queue full received; queue depth %d, "
4411                     "active %d\n", p->host_no, CTL_OF_SCB(scb),
4412                     aic_dev->max_q_depth, aic_dev->active_cmds);
4413                 else
4414                   printk(INFO_LEAD "Target busy\n", p->host_no, CTL_OF_SCB(scb));
4415               }
4416 #endif
4417               if (queue_flag)
4418               {
4419                 int diff;
4420                 result = scsi_track_queue_full(cmd->device,
4421                                 aic_dev->active_cmds);
4422                 if ( result < 0 )
4423                 {
4424                   if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4425                     printk(INFO_LEAD "Tagged Command Queueing disabled.\n",
4426                         p->host_no, CTL_OF_SCB(scb));
4427                   diff = aic_dev->max_q_depth - p->host->cmd_per_lun;
4428                   aic_dev->temp_q_depth = 1;
4429                   aic_dev->max_q_depth = 1;
4430                 }
4431                 else if ( result > 0 )
4432                 {
4433                   if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4434                     printk(INFO_LEAD "Queue depth reduced to %d\n", p->host_no,
4435                       CTL_OF_SCB(scb), result);
4436                   diff = aic_dev->max_q_depth - result;
4437                   aic_dev->max_q_depth = result;
4438                   /* temp_q_depth could have been dropped to 1 for an untagged
4439                    * command that might be coming up */
4440                   if(aic_dev->temp_q_depth > result)
4441                     aic_dev->temp_q_depth = result;
4442                 }
4443                 /* We should free up the no unused SCB entries.  But, that's
4444                  * a difficult thing to do because we use a direct indexed
4445                  * array, so we can't just take any entries and free them,
4446                  * we *have* to free the ones at the end of the array, and
4447                  * they very well could be in use right now, which means
4448                  * in order to do this right, we have to add a delayed
4449                  * freeing mechanism tied into the scb_free() code area.
4450                  * We'll add that later.
4451                  */
4452               }
4453               break;
4454             }
4455             
4456             default:
4457               if (aic7xxx_verbose & VERBOSE_SEQINT)
4458                 printk(INFO_LEAD "Unexpected target status 0x%x.\n", p->host_no,
4459                      CTL_OF_SCB(scb), scb->hscb->target_status);
4460               if (!aic7xxx_error(cmd))
4461               {
4462                 aic7xxx_error(cmd) = DID_RETRY_COMMAND;
4463               }
4464               break;
4465           }  /* end switch */
4466         }  /* end else of */
4467       }
4468       break;
4469
4470     case AWAITING_MSG:
4471       {
4472         unsigned char scb_index, msg_out;
4473
4474         scb_index = aic_inb(p, SCB_TAG);
4475         msg_out = aic_inb(p, MSG_OUT);
4476         scb = p->scb_data->scb_array[scb_index];
4477         aic_dev = AIC_DEV(scb->cmd);
4478         p->msg_index = p->msg_len = 0;
4479         /*
4480          * This SCB had a MK_MESSAGE set in its control byte informing
4481          * the sequencer that we wanted to send a special message to
4482          * this target.
4483          */
4484
4485         if ( !(scb->flags & SCB_DEVICE_RESET) &&
4486               (msg_out == MSG_IDENTIFYFLAG) &&
4487               (scb->hscb->control & TAG_ENB) )
4488         {
4489           p->msg_buf[p->msg_index++] = scb->tag_action;
4490           p->msg_buf[p->msg_index++] = scb->hscb->tag;
4491           p->msg_len += 2;
4492         }
4493
4494         if (scb->flags & SCB_DEVICE_RESET)
4495         {
4496           p->msg_buf[p->msg_index++] = MSG_BUS_DEV_RESET;
4497           p->msg_len++;
4498           if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
4499             printk(INFO_LEAD "Bus device reset mailed.\n",
4500                  p->host_no, CTL_OF_SCB(scb));
4501         }
4502         else if (scb->flags & SCB_ABORT)
4503         {
4504           if (scb->tag_action)
4505           {
4506             p->msg_buf[p->msg_index++] = MSG_ABORT_TAG;
4507           }
4508           else
4509           {
4510             p->msg_buf[p->msg_index++] = MSG_ABORT;
4511           }
4512           p->msg_len++;
4513           if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
4514             printk(INFO_LEAD "Abort message mailed.\n", p->host_no,
4515               CTL_OF_SCB(scb));
4516         }
4517         else if (scb->flags & SCB_MSGOUT_PPR)
4518         {
4519           if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4520           {
4521             printk(INFO_LEAD "Sending PPR (%d/%d/%d/%d) message.\n",
4522                    p->host_no, CTL_OF_SCB(scb),
4523                    aic_dev->goal.period,
4524                    aic_dev->goal.offset,
4525                    aic_dev->goal.width,
4526                    aic_dev->goal.options);
4527           }
4528           aic7xxx_construct_ppr(p, scb);
4529         }
4530         else if (scb->flags & SCB_MSGOUT_WDTR)
4531         {
4532           if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4533           {
4534             printk(INFO_LEAD "Sending WDTR message.\n", p->host_no,
4535                    CTL_OF_SCB(scb));
4536           }
4537           aic7xxx_construct_wdtr(p, aic_dev->goal.width);
4538         }
4539         else if (scb->flags & SCB_MSGOUT_SDTR)
4540         {
4541           unsigned int max_sync, period;
4542           unsigned char options = 0;
4543           /*
4544            * Now that the device is selected, use the bits in SBLKCTL and
4545            * SSTAT2 to determine the max sync rate for this device.
4546            */
4547           if (p->features & AHC_ULTRA2)
4548           {
4549             if ( (aic_inb(p, SBLKCTL) & ENAB40) &&
4550                 !(aic_inb(p, SSTAT2) & EXP_ACTIVE) )
4551             {
4552               max_sync = AHC_SYNCRATE_ULTRA2;
4553             }
4554             else
4555             {
4556               max_sync = AHC_SYNCRATE_ULTRA;
4557             }
4558           }
4559           else if (p->features & AHC_ULTRA)
4560           {
4561             max_sync = AHC_SYNCRATE_ULTRA;
4562           }
4563           else
4564           {
4565             max_sync = AHC_SYNCRATE_FAST;
4566           }
4567           period = aic_dev->goal.period;
4568           aic7xxx_find_syncrate(p, &period, max_sync, &options);
4569           if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4570           {
4571             printk(INFO_LEAD "Sending SDTR %d/%d message.\n", p->host_no,
4572                    CTL_OF_SCB(scb), period,
4573                    aic_dev->goal.offset);
4574           }
4575           aic7xxx_construct_sdtr(p, period, aic_dev->goal.offset);
4576         }
4577         else 
4578         {
4579           panic("aic7xxx: AWAITING_MSG for an SCB that does "
4580                 "not have a waiting message.\n");
4581         }
4582         /*
4583          * We've set everything up to send our message, now to actually do
4584          * so we need to enable reqinit interrupts and let the interrupt
4585          * handler do the rest.  We don't want to unpause the sequencer yet
4586          * though so we'll return early.  We also have to make sure that
4587          * we clear the SEQINT *BEFORE* we set the REQINIT handler active
4588          * or else it's possible on VLB cards to lose the first REQINIT
4589          * interrupt.  Edge triggered EISA cards could also lose this
4590          * interrupt, although PCI and level triggered cards should not
4591          * have this problem since they continually interrupt the kernel
4592          * until we take care of the situation.
4593          */
4594         scb->flags |= SCB_MSGOUT_SENT;
4595         p->msg_index = 0;
4596         p->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4597         p->flags |= AHC_HANDLING_REQINITS;
4598         aic_outb(p, aic_inb(p, SIMODE1) | ENREQINIT, SIMODE1);
4599         return;
4600       }
4601       break;
4602
4603     case DATA_OVERRUN:
4604       {
4605         unsigned char scb_index = aic_inb(p, SCB_TAG);
4606         unsigned char lastphase = aic_inb(p, LASTPHASE);
4607         unsigned int i;
4608
4609         scb = (p->scb_data->scb_array[scb_index]);
4610         /*
4611          * XXX - What do we really want to do on an overrun?  The
4612          *       mid-level SCSI code should handle this, but for now,
4613          *       we'll just indicate that the command should retried.
4614          *    If we retrieved sense info on this target, then the 
4615          *    base SENSE info should have been saved prior to the
4616          *    overrun error.  In that case, we return DID_OK and let
4617          *    the mid level code pick up on the sense info.  Otherwise
4618          *    we return DID_ERROR so the command will get retried.
4619          */
4620         if ( !(scb->flags & SCB_SENSE) )
4621         {
4622           printk(WARN_LEAD "Data overrun detected in %s phase, tag %d;\n",
4623             p->host_no, CTL_OF_SCB(scb), 
4624             (lastphase == P_DATAIN) ? "Data-In" : "Data-Out", scb->hscb->tag);
4625           printk(KERN_WARNING "  %s seen Data Phase. Length=%d, NumSGs=%d.\n",
4626             (aic_inb(p, SEQ_FLAGS) & DPHASE) ? "Have" : "Haven't",
4627             scb->sg_length, scb->sg_count);
4628           printk(KERN_WARNING "  Raw SCSI Command: 0x");
4629           for (i = 0; i < scb->hscb->SCSI_cmd_length; i++)
4630           {
4631             printk("%02x ", scb->cmd->cmnd[i]);
4632           }
4633           printk("\n");
4634           if(aic7xxx_verbose > 0xffff)
4635           {
4636             for (i = 0; i < scb->sg_count; i++)
4637             {
4638               printk(KERN_WARNING "     sg[%d] - Addr 0x%x : Length %d\n",
4639                  i, 
4640                  le32_to_cpu(scb->sg_list[i].address),
4641                  le32_to_cpu(scb->sg_list[i].length) );
4642             }
4643           }
4644           aic7xxx_error(scb->cmd) = DID_ERROR;
4645         }
4646         else
4647           printk(INFO_LEAD "Data Overrun during SEND_SENSE operation.\n",
4648             p->host_no, CTL_OF_SCB(scb));
4649       }
4650       break;
4651
4652     case WIDE_RESIDUE:
4653       {
4654         unsigned char resid_sgcnt, index;
4655         unsigned char scb_index = aic_inb(p, SCB_TAG);
4656         unsigned int cur_addr, resid_dcnt;
4657         unsigned int native_addr, native_length, sg_addr;
4658         int i;
4659
4660         if(scb_index > p->scb_data->numscbs)
4661         {
4662           printk(WARN_LEAD "invalid scb_index during WIDE_RESIDUE.\n",
4663             p->host_no, -1, -1, -1);
4664           /*
4665            * XXX: Add error handling here
4666            */
4667           break;
4668         }
4669         scb = p->scb_data->scb_array[scb_index];
4670         if(!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
4671         {
4672           printk(WARN_LEAD "invalid scb during WIDE_RESIDUE flags:0x%x "
4673                  "scb->cmd:0x%lx\n", p->host_no, CTL_OF_SCB(scb),
4674                  scb->flags, (unsigned long)scb->cmd);
4675           break;
4676         }
4677         if(aic7xxx_verbose & VERBOSE_MINOR_ERROR)
4678           printk(INFO_LEAD "Got WIDE_RESIDUE message, patching up data "
4679                  "pointer.\n", p->host_no, CTL_OF_SCB(scb));
4680
4681         /*
4682          * We have a valid scb to use on this WIDE_RESIDUE message, so
4683          * we need to walk the sg list looking for this particular sg
4684          * segment, then see if we happen to be at the very beginning of
4685          * the segment.  If we are, then we have to back things up to
4686          * the previous segment.  If not, then we simply need to remove
4687          * one byte from this segments address and add one to the byte
4688          * count.
4689          */
4690         cur_addr = aic_inb(p, SHADDR) | (aic_inb(p, SHADDR + 1) << 8) |
4691           (aic_inb(p, SHADDR + 2) << 16) | (aic_inb(p, SHADDR + 3) << 24);
4692         sg_addr = aic_inb(p, SG_COUNT + 1) | (aic_inb(p, SG_COUNT + 2) << 8) |
4693           (aic_inb(p, SG_COUNT + 3) << 16) | (aic_inb(p, SG_COUNT + 4) << 24);
4694         resid_sgcnt = aic_inb(p, SCB_RESID_SGCNT);
4695         resid_dcnt = aic_inb(p, SCB_RESID_DCNT) |
4696           (aic_inb(p, SCB_RESID_DCNT + 1) << 8) |
4697           (aic_inb(p, SCB_RESID_DCNT + 2) << 16);
4698         index = scb->sg_count - ((resid_sgcnt) ? resid_sgcnt : 1);
4699         native_addr = le32_to_cpu(scb->sg_list[index].address);
4700         native_length = le32_to_cpu(scb->sg_list[index].length);
4701         /*
4702          * If resid_dcnt == native_length, then we just loaded this SG
4703          * segment and we need to back it up one...
4704          */
4705         if(resid_dcnt == native_length)
4706         {
4707           if(index == 0)
4708           {
4709             /*
4710              * Oops, this isn't right, we can't back up to before the
4711              * beginning.  This must be a bogus message, ignore it.
4712              */
4713             break;
4714           }
4715           resid_dcnt = 1;
4716           resid_sgcnt += 1;
4717           native_addr = le32_to_cpu(scb->sg_list[index - 1].address);
4718           native_length = le32_to_cpu(scb->sg_list[index - 1].length);
4719           cur_addr = native_addr + (native_length - 1);
4720           sg_addr -= sizeof(struct hw_scatterlist);
4721         }
4722         else
4723         {
4724           /*
4725            * resid_dcnt != native_length, so we are in the middle of a SG
4726            * element.  Back it up one byte and leave the rest alone.
4727            */
4728           resid_dcnt += 1;
4729           cur_addr -= 1;
4730         }
4731         
4732         /*
4733          * Output the new addresses and counts to the right places on the
4734          * card.
4735          */
4736         aic_outb(p, resid_sgcnt, SG_COUNT);
4737         aic_outb(p, resid_sgcnt, SCB_RESID_SGCNT);
4738         aic_outb(p, sg_addr & 0xff, SG_COUNT + 1);
4739         aic_outb(p, (sg_addr >> 8) & 0xff, SG_COUNT + 2);
4740         aic_outb(p, (sg_addr >> 16) & 0xff, SG_COUNT + 3);
4741         aic_outb(p, (sg_addr >> 24) & 0xff, SG_COUNT + 4);
4742         aic_outb(p, resid_dcnt & 0xff, SCB_RESID_DCNT);
4743         aic_outb(p, (resid_dcnt >> 8) & 0xff, SCB_RESID_DCNT + 1);
4744         aic_outb(p, (resid_dcnt >> 16) & 0xff, SCB_RESID_DCNT + 2);
4745
4746         /*
4747          * The sequencer actually wants to find the new address
4748          * in the SHADDR register set.  On the Ultra2 and later controllers
4749          * this register set is readonly.  In order to get the right number
4750          * into the register, you actually have to enter it in HADDR and then
4751          * use the PRELOADEN bit of DFCNTRL to drop it through from the
4752          * HADDR register to the SHADDR register.  On non-Ultra2 controllers,
4753          * we simply write it direct.
4754          */
4755         if(p->features & AHC_ULTRA2)
4756         {
4757           /*
4758            * We might as well be accurate and drop both the resid_dcnt and
4759            * cur_addr into HCNT and HADDR and have both of them drop
4760            * through to the shadow layer together.
4761            */
4762           aic_outb(p, resid_dcnt & 0xff, HCNT);
4763           aic_outb(p, (resid_dcnt >> 8) & 0xff, HCNT + 1);
4764           aic_outb(p, (resid_dcnt >> 16) & 0xff, HCNT + 2);
4765           aic_outb(p, cur_addr & 0xff, HADDR);
4766           aic_outb(p, (cur_addr >> 8) & 0xff, HADDR + 1);
4767           aic_outb(p, (cur_addr >> 16) & 0xff, HADDR + 2);
4768           aic_outb(p, (cur_addr >> 24) & 0xff, HADDR + 3);
4769           aic_outb(p, aic_inb(p, DMAPARAMS) | PRELOADEN, DFCNTRL);
4770           udelay(1);
4771           aic_outb(p, aic_inb(p, DMAPARAMS) & ~(SCSIEN|HDMAEN), DFCNTRL);
4772           i=0;
4773           while(((aic_inb(p, DFCNTRL) & (SCSIEN|HDMAEN)) != 0) && (i++ < 1000))
4774           {
4775             udelay(1);
4776           }
4777         }
4778         else
4779         {
4780           aic_outb(p, cur_addr & 0xff, SHADDR);
4781           aic_outb(p, (cur_addr >> 8) & 0xff, SHADDR + 1);
4782           aic_outb(p, (cur_addr >> 16) & 0xff, SHADDR + 2);
4783           aic_outb(p, (cur_addr >> 24) & 0xff, SHADDR + 3);
4784         }
4785       }
4786       break;
4787
4788     case SEQ_SG_FIXUP:
4789     {
4790       unsigned char scb_index, tmp;
4791       int sg_addr, sg_length;
4792
4793       scb_index = aic_inb(p, SCB_TAG);
4794
4795       if(scb_index > p->scb_data->numscbs)
4796       {
4797         printk(WARN_LEAD "invalid scb_index during SEQ_SG_FIXUP.\n",
4798           p->host_no, -1, -1, -1);
4799         printk(INFO_LEAD "SCSISIGI 0x%x, SEQADDR 0x%x, SSTAT0 0x%x, SSTAT1 "
4800            "0x%x\n", p->host_no, -1, -1, -1,
4801            aic_inb(p, SCSISIGI),
4802            aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
4803            aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
4804         printk(INFO_LEAD "SG_CACHEPTR 0x%x, SSTAT2 0x%x, STCNT 0x%x\n",
4805            p->host_no, -1, -1, -1, aic_inb(p, SG_CACHEPTR),
4806            aic_inb(p, SSTAT2), aic_inb(p, STCNT + 2) << 16 |
4807            aic_inb(p, STCNT + 1) << 8 | aic_inb(p, STCNT));
4808         /*
4809          * XXX: Add error handling here
4810          */
4811         break;
4812       }
4813       scb = p->scb_data->scb_array[scb_index];
4814       if(!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
4815       {
4816         printk(WARN_LEAD "invalid scb during SEQ_SG_FIXUP flags:0x%x "
4817                "scb->cmd:0x%p\n", p->host_no, CTL_OF_SCB(scb),
4818                scb->flags, scb->cmd);
4819         printk(INFO_LEAD "SCSISIGI 0x%x, SEQADDR 0x%x, SSTAT0 0x%x, SSTAT1 "
4820            "0x%x\n", p->host_no, CTL_OF_SCB(scb),
4821            aic_inb(p, SCSISIGI),
4822            aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
4823            aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
4824         printk(INFO_LEAD "SG_CACHEPTR 0x%x, SSTAT2 0x%x, STCNT 0x%x\n",
4825            p->host_no, CTL_OF_SCB(scb), aic_inb(p, SG_CACHEPTR),
4826            aic_inb(p, SSTAT2), aic_inb(p, STCNT + 2) << 16 |
4827            aic_inb(p, STCNT + 1) << 8 | aic_inb(p, STCNT));
4828         break;
4829       }
4830       if(aic7xxx_verbose & VERBOSE_MINOR_ERROR)
4831         printk(INFO_LEAD "Fixing up SG address for sequencer.\n", p->host_no,
4832                CTL_OF_SCB(scb));
4833       /*
4834        * Advance the SG pointer to the next element in the list
4835        */
4836       tmp = aic_inb(p, SG_NEXT);
4837       tmp += SG_SIZEOF;
4838       aic_outb(p, tmp, SG_NEXT);
4839       if( tmp < SG_SIZEOF )
4840         aic_outb(p, aic_inb(p, SG_NEXT + 1) + 1, SG_NEXT + 1);
4841       tmp = aic_inb(p, SG_COUNT) - 1;
4842       aic_outb(p, tmp, SG_COUNT);
4843       sg_addr = le32_to_cpu(scb->sg_list[scb->sg_count - tmp].address);
4844       sg_length = le32_to_cpu(scb->sg_list[scb->sg_count - tmp].length);
4845       /*
4846        * Now stuff the element we just advanced past down onto the
4847        * card so it can be stored in the residual area.
4848        */
4849       aic_outb(p, sg_addr & 0xff, HADDR);
4850       aic_outb(p, (sg_addr >> 8) & 0xff, HADDR + 1);
4851       aic_outb(p, (sg_addr >> 16) & 0xff, HADDR + 2);
4852       aic_outb(p, (sg_addr >> 24) & 0xff, HADDR + 3);
4853       aic_outb(p, sg_length & 0xff, HCNT);
4854       aic_outb(p, (sg_length >> 8) & 0xff, HCNT + 1);
4855       aic_outb(p, (sg_length >> 16) & 0xff, HCNT + 2);
4856       aic_outb(p, (tmp << 2) | ((tmp == 1) ? LAST_SEG : 0), SG_CACHEPTR);
4857       aic_outb(p, aic_inb(p, DMAPARAMS), DFCNTRL);
4858       while(aic_inb(p, SSTAT0) & SDONE) udelay(1);
4859       while(aic_inb(p, DFCNTRL) & (HDMAEN|SCSIEN)) aic_outb(p, 0, DFCNTRL);
4860     }
4861     break;
4862
4863 #ifdef AIC7XXX_NOT_YET 
4864     case TRACEPOINT2:
4865       {
4866         printk(INFO_LEAD "Tracepoint #2 reached.\n", p->host_no,
4867                channel, target, lun);
4868       }
4869       break;
4870
4871     /* XXX Fill these in later */
4872     case MSG_BUFFER_BUSY:
4873       printk("aic7xxx: Message buffer busy.\n");
4874       break;
4875     case MSGIN_PHASEMIS:
4876       printk("aic7xxx: Message-in phasemis.\n");
4877       break;
4878 #endif
4879
4880     default:                   /* unknown */
4881       printk(WARN_LEAD "Unknown SEQINT, INTSTAT 0x%x, SCSISIGI 0x%x.\n",
4882              p->host_no, channel, target, lun, intstat,
4883              aic_inb(p, SCSISIGI));
4884       break;
4885   }
4886
4887   /*
4888    * Clear the sequencer interrupt and unpause the sequencer.
4889    */
4890   unpause_sequencer(p, /* unpause always */ TRUE);
4891 }
4892
4893 /*+F*************************************************************************
4894  * Function:
4895  *   aic7xxx_parse_msg
4896  *
4897  * Description:
4898  *   Parses incoming messages into actions on behalf of
4899  *   aic7xxx_handle_reqinit
4900  *_F*************************************************************************/
4901 static int
4902 aic7xxx_parse_msg(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
4903 {
4904   int reject, reply, done;
4905   unsigned char target_scsirate, tindex;
4906   unsigned short target_mask;
4907   unsigned char target, channel, lun;
4908   unsigned char bus_width, new_bus_width;
4909   unsigned char trans_options, new_trans_options;
4910   unsigned int period, new_period, offset, new_offset, maxsync;
4911   struct aic7xxx_syncrate *syncrate;
4912   struct aic_dev_data *aic_dev;
4913
4914   target = scb->cmd->device->id;
4915   channel = scb->cmd->device->channel;
4916   lun = scb->cmd->device->lun;
4917   reply = reject = done = FALSE;
4918   tindex = TARGET_INDEX(scb->cmd);
4919   aic_dev = AIC_DEV(scb->cmd);
4920   target_scsirate = aic_inb(p, TARG_SCSIRATE + tindex);
4921   target_mask = (0x01 << tindex);
4922
4923   /*
4924    * Parse as much of the message as is available,
4925    * rejecting it if we don't support it.  When
4926    * the entire message is available and has been
4927    * handled, return TRUE indicating that we have
4928    * parsed an entire message.
4929    */
4930
4931   if (p->msg_buf[0] != MSG_EXTENDED)
4932   {
4933     reject = TRUE;
4934   }
4935
4936   /*
4937    * Even if we are an Ultra3 card, don't allow Ultra3 sync rates when
4938    * using the SDTR messages.  We need the PPR messages to enable the
4939    * higher speeds that include things like Dual Edge clocking.
4940    */
4941   if (p->features & AHC_ULTRA2)
4942   {
4943     if ( (aic_inb(p, SBLKCTL) & ENAB40) &&
4944          !(aic_inb(p, SSTAT2) & EXP_ACTIVE) )
4945     {
4946       if (p->features & AHC_ULTRA3)
4947         maxsync = AHC_SYNCRATE_ULTRA3;
4948       else
4949         maxsync = AHC_SYNCRATE_ULTRA2;
4950     }
4951     else
4952     {
4953       maxsync = AHC_SYNCRATE_ULTRA;
4954     }
4955   }
4956   else if (p->features & AHC_ULTRA)
4957   {
4958     maxsync = AHC_SYNCRATE_ULTRA;
4959   }
4960   else
4961   {
4962     maxsync = AHC_SYNCRATE_FAST;
4963   }
4964
4965   /*
4966    * Just accept the length byte outright and perform
4967    * more checking once we know the message type.
4968    */
4969
4970   if ( !reject && (p->msg_len > 2) )
4971   {
4972     switch(p->msg_buf[2])
4973     {
4974       case MSG_EXT_SDTR:
4975       {
4976         
4977         if (p->msg_buf[1] != MSG_EXT_SDTR_LEN)
4978         {
4979           reject = TRUE;
4980           break;
4981         }
4982
4983         if (p->msg_len < (MSG_EXT_SDTR_LEN + 2))
4984         {
4985           break;
4986         }
4987
4988         period = new_period = p->msg_buf[3];
4989         offset = new_offset = p->msg_buf[4];
4990         trans_options = new_trans_options = 0;
4991         bus_width = new_bus_width = target_scsirate & WIDEXFER;
4992
4993         /*
4994          * If our current max syncrate is in the Ultra3 range, bump it back
4995          * down to Ultra2 since we can't negotiate DT transfers using SDTR
4996          */
4997         if(maxsync == AHC_SYNCRATE_ULTRA3)
4998           maxsync = AHC_SYNCRATE_ULTRA2;
4999
5000         /*
5001          * We might have a device that is starting negotiation with us
5002          * before we can start up negotiation with it....be prepared to
5003          * have a device ask for a higher speed then we want to give it
5004          * in that case
5005          */
5006         if ( (scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_SDTR)) !=
5007              (SCB_MSGOUT_SENT|SCB_MSGOUT_SDTR) )
5008         {
5009           if (!(aic_dev->flags & DEVICE_DTR_SCANNED))
5010           {
5011             /*
5012              * We shouldn't get here unless this is a narrow drive, wide
5013              * devices should trigger this same section of code in the WDTR
5014              * handler first instead.
5015              */
5016             aic_dev->goal.width = MSG_EXT_WDTR_BUS_8_BIT;
5017             aic_dev->goal.options = 0;
5018             if(p->user[tindex].offset)
5019             {
5020               aic_dev->needsdtr_copy = 1;
5021               aic_dev->goal.period = max_t(unsigned char, 10,p->user[tindex].period);
5022               if(p->features & AHC_ULTRA2)
5023               {
5024                 aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
5025               }
5026               else
5027               {
5028                 aic_dev->goal.offset = MAX_OFFSET_8BIT;
5029               }
5030             }
5031             else
5032             {
5033               aic_dev->needsdtr_copy = 0;
5034               aic_dev->goal.period = 255;
5035               aic_dev->goal.offset = 0;
5036             }
5037             aic_dev->flags |= DEVICE_DTR_SCANNED | DEVICE_PRINT_DTR;
5038           }
5039           else if (aic_dev->needsdtr_copy == 0)
5040           {
5041             /*
5042              * This is a preemptive message from the target, we've already
5043              * scanned this target and set our options for it, and we
5044              * don't need a SDTR with this target (for whatever reason),
5045              * so reject this incoming SDTR
5046              */
5047             reject = TRUE;
5048             break;
5049           }
5050
5051           /* The device is sending this message first and we have to reply */
5052           reply = TRUE;
5053           
5054           if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
5055           {
5056             printk(INFO_LEAD "Received pre-emptive SDTR message from "
5057                    "target.\n", p->host_no, CTL_OF_SCB(scb));
5058           }
5059           /*
5060            * Validate the values the device passed to us against our SEEPROM
5061            * settings.  We don't have to do this if we aren't replying since
5062            * the device isn't allowed to send values greater than the ones
5063            * we first sent to it.
5064            */
5065           new_period = max_t(unsigned int, period, aic_dev->goal.period);
5066           new_offset = min_t(unsigned int, offset, aic_dev->goal.offset);
5067         }
5068  
5069         /*
5070          * Use our new_period, new_offset, bus_width, and card options
5071          * to determine the actual syncrate settings
5072          */
5073         syncrate = aic7xxx_find_syncrate(p, &new_period, maxsync,
5074                                          &trans_options);
5075         aic7xxx_validate_offset(p, syncrate, &new_offset, bus_width);
5076
5077         /*
5078          * Did we drop to async?  If so, send a reply regardless of whether
5079          * or not we initiated this negotiation.
5080          */
5081         if ((new_offset == 0) && (new_offset != offset))
5082         {
5083           aic_dev->needsdtr_copy = 0;
5084           reply = TRUE;
5085         }
5086         
5087         /*
5088          * Did we start this, if not, or if we went too low and had to
5089          * go async, then send an SDTR back to the target
5090          */
5091         if(reply)
5092         {
5093           /* when sending a reply, make sure that the goal settings are
5094            * updated along with current and active since the code that
5095            * will actually build the message for the sequencer uses the
5096            * goal settings as its guidelines.
5097            */
5098           aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
5099                                new_offset, trans_options,
5100                                AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
5101                                aic_dev);
5102           scb->flags &= ~SCB_MSGOUT_BITS;
5103           scb->flags |= SCB_MSGOUT_SDTR;
5104           aic_outb(p, HOST_MSG, MSG_OUT);
5105           aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
5106         }
5107         else
5108         {
5109           aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
5110                                new_offset, trans_options,
5111                                AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
5112           aic_dev->needsdtr = 0;
5113         }
5114         done = TRUE;
5115         break;
5116       }
5117       case MSG_EXT_WDTR:
5118       {
5119           
5120         if (p->msg_buf[1] != MSG_EXT_WDTR_LEN)
5121         {
5122           reject = TRUE;
5123           break;
5124         }
5125
5126         if (p->msg_len < (MSG_EXT_WDTR_LEN + 2))
5127         {
5128           break;
5129         }
5130
5131         bus_width = new_bus_width = p->msg_buf[3];
5132
5133         if ( (scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_WDTR)) ==
5134              (SCB_MSGOUT_SENT|SCB_MSGOUT_WDTR) )
5135         {
5136           switch(bus_width)
5137           {
5138             default:
5139             {
5140               reject = TRUE;
5141               if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
5142                    ((aic_dev->flags & DEVICE_PRINT_DTR) ||
5143                     (aic7xxx_verbose > 0xffff)) )
5144               {
5145                 printk(INFO_LEAD "Requesting %d bit transfers, rejecting.\n",
5146                   p->host_no, CTL_OF_SCB(scb), 8 * (0x01 << bus_width));
5147               }
5148             } /* We fall through on purpose */
5149             case MSG_EXT_WDTR_BUS_8_BIT:
5150             {
5151               aic_dev->goal.width = MSG_EXT_WDTR_BUS_8_BIT;
5152               aic_dev->needwdtr_copy &= ~target_mask;
5153               break;
5154             }
5155             case MSG_EXT_WDTR_BUS_16_BIT:
5156             {
5157               break;
5158             }
5159           }
5160           aic_dev->needwdtr = 0;
5161           aic7xxx_set_width(p, target, channel, lun, new_bus_width,
5162                             AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
5163         }
5164         else
5165         {
5166           if ( !(aic_dev->flags & DEVICE_DTR_SCANNED) )
5167           {
5168             /* 
5169              * Well, we now know the WDTR and SYNC caps of this device since
5170              * it contacted us first, mark it as such and copy the user stuff
5171              * over to the goal stuff.
5172              */
5173             if( (p->features & AHC_WIDE) && p->user[tindex].width )
5174             {
5175               aic_dev->goal.width = MSG_EXT_WDTR_BUS_16_BIT;
5176               aic_dev->needwdtr_copy = 1;
5177             }
5178             
5179             /*
5180              * Devices that support DT transfers don't start WDTR requests
5181              */
5182             aic_dev->goal.options = 0;
5183
5184             if(p->user[tindex].offset)
5185             {
5186               aic_dev->needsdtr_copy = 1;
5187               aic_dev->goal.period = max_t(unsigned char, 10, p->user[tindex].period);
5188               if(p->features & AHC_ULTRA2)
5189               {
5190                 aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
5191               }
5192               else if( aic_dev->goal.width )
5193               {
5194                 aic_dev->goal.offset = MAX_OFFSET_16BIT;
5195               }
5196               else
5197               {
5198                 aic_dev->goal.offset = MAX_OFFSET_8BIT;
5199               }
5200             } else {
5201               aic_dev->needsdtr_copy = 0;
5202               aic_dev->goal.period = 255;
5203               aic_dev->goal.offset = 0;
5204             }
5205             
5206             aic_dev->flags |= DEVICE_DTR_SCANNED | DEVICE_PRINT_DTR;
5207           }
5208           else if (aic_dev->needwdtr_copy == 0)
5209           {
5210             /*
5211              * This is a preemptive message from the target, we've already
5212              * scanned this target and set our options for it, and we
5213              * don't need a WDTR with this target (for whatever reason),
5214              * so reject this incoming WDTR
5215              */
5216             reject = TRUE;
5217             break;
5218           }
5219
5220           /* The device is sending this message first and we have to reply */
5221           reply = TRUE;
5222
5223           if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
5224           {
5225             printk(INFO_LEAD "Received pre-emptive WDTR message from "
5226                    "target.\n", p->host_no, CTL_OF_SCB(scb));
5227           }
5228           switch(bus_width)
5229           {
5230             case MSG_EXT_WDTR_BUS_16_BIT:
5231             {
5232               if ( (p->features & AHC_WIDE) &&
5233                    (aic_dev->goal.width == MSG_EXT_WDTR_BUS_16_BIT) )
5234               {
5235                 new_bus_width = MSG_EXT_WDTR_BUS_16_BIT;
5236                 break;
5237               }
5238             } /* Fall through if we aren't a wide card */
5239             default:
5240             case MSG_EXT_WDTR_BUS_8_BIT:
5241             {
5242               aic_dev->needwdtr_copy = 0;
5243               new_bus_width = MSG_EXT_WDTR_BUS_8_BIT;
5244               break;
5245             }
5246           }
5247           scb->flags &= ~SCB_MSGOUT_BITS;
5248           scb->flags |= SCB_MSGOUT_WDTR;
5249           aic_dev->needwdtr = 0;
5250           if(aic_dev->dtr_pending == 0)
5251           {
5252             /* there is no other command with SCB_DTR_SCB already set that will
5253              * trigger the release of the dtr_pending bit.  Both set the bit
5254              * and set scb->flags |= SCB_DTR_SCB
5255              */
5256             aic_dev->dtr_pending = 1;
5257             scb->flags |= SCB_DTR_SCB;
5258           }
5259           aic_outb(p, HOST_MSG, MSG_OUT);
5260           aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
5261           /* when sending a reply, make sure that the goal settings are
5262            * updated along with current and active since the code that
5263            * will actually build the message for the sequencer uses the
5264            * goal settings as its guidelines.
5265            */
5266           aic7xxx_set_width(p, target, channel, lun, new_bus_width,
5267                           AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
5268                           aic_dev);
5269         }
5270         
5271         /*
5272          * By virtue of the SCSI spec, a WDTR message negates any existing
5273          * SDTR negotiations.  So, even if needsdtr isn't marked for this
5274          * device, we still have to do a new SDTR message if the device
5275          * supports SDTR at all.  Therefore, we check needsdtr_copy instead
5276          * of needstr.
5277          */
5278         aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
5279                              AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
5280                              aic_dev);
5281         aic_dev->needsdtr = aic_dev->needsdtr_copy;
5282         done = TRUE;
5283         break;
5284       }
5285       case MSG_EXT_PPR:
5286       {
5287         
5288         if (p->msg_buf[1] != MSG_EXT_PPR_LEN)
5289         {
5290           reject = TRUE;
5291           break;
5292         }
5293
5294         if (p->msg_len < (MSG_EXT_PPR_LEN + 2))
5295         {
5296           break;
5297         }
5298
5299         period = new_period = p->msg_buf[3];
5300         offset = new_offset = p->msg_buf[5];
5301         bus_width = new_bus_width = p->msg_buf[6];
5302         trans_options = new_trans_options = p->msg_buf[7] & 0xf;
5303
5304         if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
5305         {
5306           printk(INFO_LEAD "Parsing PPR message (%d/%d/%d/%d)\n",
5307                  p->host_no, CTL_OF_SCB(scb), period, offset, bus_width,
5308                  trans_options);
5309         }
5310
5311         /*
5312          * We might have a device that is starting negotiation with us
5313          * before we can start up negotiation with it....be prepared to
5314          * have a device ask for a higher speed then we want to give it
5315          * in that case
5316          */
5317         if ( (scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_PPR)) !=
5318              (SCB_MSGOUT_SENT|SCB_MSGOUT_PPR) )
5319         { 
5320           /* Have we scanned the device yet? */
5321           if (!(aic_dev->flags & DEVICE_DTR_SCANNED))
5322           {
5323             /* The device is electing to use PPR messages, so we will too until
5324              * we know better */
5325             aic_dev->needppr = aic_dev->needppr_copy = 1;
5326             aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
5327             aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
5328           
5329             /* We know the device is SCSI-3 compliant due to PPR */
5330             aic_dev->flags |= DEVICE_SCSI_3;
5331           
5332             /*
5333              * Not only is the device starting this up, but it also hasn't
5334              * been scanned yet, so this would likely be our TUR or our
5335              * INQUIRY command at scan time, so we need to use the
5336              * settings from the SEEPROM if they existed.  Of course, even
5337              * if we didn't find a SEEPROM, we stuffed default values into
5338              * the user settings anyway, so use those in all cases.
5339              */
5340             aic_dev->goal.width = p->user[tindex].width;
5341             if(p->user[tindex].offset)
5342             {
5343               aic_dev->goal.period = p->user[tindex].period;
5344               aic_dev->goal.options = p->user[tindex].options;
5345               if(p->features & AHC_ULTRA2)
5346               {
5347                 aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
5348               }
5349               else if( aic_dev->goal.width &&
5350                        (bus_width == MSG_EXT_WDTR_BUS_16_BIT) &&
5351                        p->features & AHC_WIDE )
5352               {
5353                 aic_dev->goal.offset = MAX_OFFSET_16BIT;
5354               }
5355               else
5356               {
5357                 aic_dev->goal.offset = MAX_OFFSET_8BIT;
5358               }
5359             }
5360             else
5361             {
5362               aic_dev->goal.period = 255;
5363               aic_dev->goal.offset = 0;
5364               aic_dev->goal.options = 0;
5365             }
5366             aic_dev->flags |= DEVICE_DTR_SCANNED | DEVICE_PRINT_DTR;
5367           }
5368           else if (aic_dev->needppr_copy == 0)
5369           {
5370             /*
5371              * This is a preemptive message from the target, we've already
5372              * scanned this target and set our options for it, and we
5373              * don't need a PPR with this target (for whatever reason),
5374              * so reject this incoming PPR
5375              */
5376             reject = TRUE;
5377             break;
5378           }
5379
5380           /* The device is sending this message first and we have to reply */
5381           reply = TRUE;
5382           
5383           if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
5384           {
5385             printk(INFO_LEAD "Received pre-emptive PPR message from "
5386                    "target.\n", p->host_no, CTL_OF_SCB(scb));
5387           }
5388
5389         }
5390
5391         switch(bus_width)
5392         {
5393           case MSG_EXT_WDTR_BUS_16_BIT:
5394           {
5395             if ( (aic_dev->goal.width == MSG_EXT_WDTR_BUS_16_BIT) &&
5396                             p->features & AHC_WIDE)
5397             {
5398               break;
5399             }
5400           }
5401           default:
5402           {
5403             if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
5404                  ((aic_dev->flags & DEVICE_PRINT_DTR) ||
5405                   (aic7xxx_verbose > 0xffff)) )
5406             {
5407               reply = TRUE;
5408               printk(INFO_LEAD "Requesting %d bit transfers, rejecting.\n",
5409                 p->host_no, CTL_OF_SCB(scb), 8 * (0x01 << bus_width));
5410             }
5411           } /* We fall through on purpose */
5412           case MSG_EXT_WDTR_BUS_8_BIT:
5413           {
5414             /*
5415              * According to the spec, if we aren't wide, we also can't be
5416              * Dual Edge so clear the options byte
5417              */
5418             new_trans_options = 0;
5419             new_bus_width = MSG_EXT_WDTR_BUS_8_BIT;
5420             break;
5421           }
5422         }
5423
5424         if(reply)
5425         {
5426           /* when sending a reply, make sure that the goal settings are
5427            * updated along with current and active since the code that
5428            * will actually build the message for the sequencer uses the
5429            * goal settings as its guidelines.
5430            */
5431           aic7xxx_set_width(p, target, channel, lun, new_bus_width,
5432                             AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
5433                             aic_dev);
5434           syncrate = aic7xxx_find_syncrate(p, &new_period, maxsync,
5435                                            &new_trans_options);
5436           aic7xxx_validate_offset(p, syncrate, &new_offset, new_bus_width);
5437           aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
5438                                new_offset, new_trans_options,
5439                                AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
5440                                aic_dev);
5441         }
5442         else
5443         {
5444           aic7xxx_set_width(p, target, channel, lun, new_bus_width,
5445                             AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
5446           syncrate = aic7xxx_find_syncrate(p, &new_period, maxsync,
5447                                            &new_trans_options);
5448           aic7xxx_validate_offset(p, syncrate, &new_offset, new_bus_width);
5449           aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
5450                                new_offset, new_trans_options,
5451                                AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
5452         }
5453
5454         /*
5455          * As it turns out, if we don't *have* to have PPR messages, then
5456          * configure ourselves not to use them since that makes some
5457          * external drive chassis work (those chassis can't parse PPR
5458          * messages and they mangle the SCSI bus until you send a WDTR
5459          * and SDTR that they can understand).
5460          */
5461         if(new_trans_options == 0)
5462         {
5463           aic_dev->needppr = aic_dev->needppr_copy = 0;
5464           if(new_offset)
5465           {
5466             aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
5467           }
5468           if (new_bus_width)
5469           {
5470             aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
5471           }
5472         }
5473
5474         if((new_offset == 0) && (offset != 0))
5475         {
5476           /*
5477            * Oops, the syncrate went to low for this card and we fell off
5478            * to async (should never happen with a device that uses PPR
5479            * messages, but have to be complete)
5480            */
5481           reply = TRUE;
5482         }
5483
5484         if(reply)
5485         {
5486           scb->flags &= ~SCB_MSGOUT_BITS;
5487           scb->flags |= SCB_MSGOUT_PPR;
5488           aic_outb(p, HOST_MSG, MSG_OUT);
5489           aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
5490         }
5491         else
5492         {
5493           aic_dev->needppr = 0;
5494         }
5495         done = TRUE;
5496         break;
5497       }
5498       default:
5499       {
5500         reject = TRUE;
5501         break;
5502       }
5503     } /* end of switch(p->msg_type) */
5504   } /* end of if (!reject && (p->msg_len > 2)) */
5505
5506   if (!reply && reject)
5507   {
5508     aic_outb(p, MSG_MESSAGE_REJECT, MSG_OUT);
5509     aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
5510     done = TRUE;
5511   }
5512   return(done);
5513 }
5514
5515
5516 /*+F*************************************************************************
5517  * Function:
5518  *   aic7xxx_handle_reqinit
5519  *
5520  * Description:
5521  *   Interrupt handler for REQINIT interrupts (used to transfer messages to
5522  *    and from devices).
5523  *_F*************************************************************************/
5524 static void
5525 aic7xxx_handle_reqinit(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
5526 {
5527   unsigned char lastbyte;
5528   unsigned char phasemis;
5529   int done = FALSE;
5530
5531   switch(p->msg_type)
5532   {
5533     case MSG_TYPE_INITIATOR_MSGOUT:
5534       {
5535         if (p->msg_len == 0)
5536           panic("aic7xxx: REQINIT with no active message!\n");
5537
5538         lastbyte = (p->msg_index == (p->msg_len - 1));
5539         phasemis = ( aic_inb(p, SCSISIGI) & PHASE_MASK) != P_MESGOUT;
5540
5541         if (lastbyte || phasemis)
5542         {
5543           /* Time to end the message */
5544           p->msg_len = 0;
5545           p->msg_type = MSG_TYPE_NONE;
5546           /*
5547            * NOTE-TO-MYSELF: If you clear the REQINIT after you
5548            * disable REQINITs, then cases of REJECT_MSG stop working
5549            * and hang the bus
5550            */
5551           aic_outb(p, aic_inb(p, SIMODE1) & ~ENREQINIT, SIMODE1);
5552           aic_outb(p, CLRSCSIINT, CLRINT);
5553           p->flags &= ~AHC_HANDLING_REQINITS;
5554
5555           if (phasemis == 0)
5556           {
5557             aic_outb(p, p->msg_buf[p->msg_index], SINDEX);
5558             aic_outb(p, 0, RETURN_1);
5559 #ifdef AIC7XXX_VERBOSE_DEBUGGING
5560             if (aic7xxx_verbose > 0xffff)
5561               printk(INFO_LEAD "Completed sending of REQINIT message.\n",
5562                      p->host_no, CTL_OF_SCB(scb));
5563 #endif
5564           }
5565           else
5566           {
5567             aic_outb(p, MSGOUT_PHASEMIS, RETURN_1);
5568 #ifdef AIC7XXX_VERBOSE_DEBUGGING
5569             if (aic7xxx_verbose > 0xffff)
5570               printk(INFO_LEAD "PHASEMIS while sending REQINIT message.\n",
5571                      p->host_no, CTL_OF_SCB(scb));
5572 #endif
5573           }
5574           unpause_sequencer(p, TRUE);
5575         }
5576         else
5577         {
5578           /*
5579            * Present the byte on the bus (clearing REQINIT) but don't
5580            * unpause the sequencer.
5581            */
5582           aic_outb(p, CLRREQINIT, CLRSINT1);
5583           aic_outb(p, CLRSCSIINT, CLRINT);
5584           aic_outb(p,  p->msg_buf[p->msg_index++], SCSIDATL);
5585         }
5586         break;
5587       }
5588     case MSG_TYPE_INITIATOR_MSGIN:
5589       {
5590         phasemis = ( aic_inb(p, SCSISIGI) & PHASE_MASK ) != P_MESGIN;
5591
5592         if (phasemis == 0)
5593         {
5594           p->msg_len++;
5595           /* Pull the byte in without acking it */
5596           p->msg_buf[p->msg_index] = aic_inb(p, SCSIBUSL);
5597           done = aic7xxx_parse_msg(p, scb);
5598           /* Ack the byte */
5599           aic_outb(p, CLRREQINIT, CLRSINT1);
5600           aic_outb(p, CLRSCSIINT, CLRINT);
5601           aic_inb(p, SCSIDATL);
5602           p->msg_index++;
5603         }
5604         if (phasemis || done)
5605         {
5606 #ifdef AIC7XXX_VERBOSE_DEBUGGING
5607           if (aic7xxx_verbose > 0xffff)
5608           {
5609             if (phasemis)
5610               printk(INFO_LEAD "PHASEMIS while receiving REQINIT message.\n",
5611                      p->host_no, CTL_OF_SCB(scb));
5612             else
5613               printk(INFO_LEAD "Completed receipt of REQINIT message.\n",
5614                      p->host_no, CTL_OF_SCB(scb));
5615           }
5616 #endif
5617           /* Time to end our message session */
5618           p->msg_len = 0;
5619           p->msg_type = MSG_TYPE_NONE;
5620           aic_outb(p, aic_inb(p, SIMODE1) & ~ENREQINIT, SIMODE1);
5621           aic_outb(p, CLRSCSIINT, CLRINT);
5622           p->flags &= ~AHC_HANDLING_REQINITS;
5623           unpause_sequencer(p, TRUE);
5624         }
5625         break;
5626       }
5627     default:
5628       {
5629         panic("aic7xxx: Unknown REQINIT message type.\n");
5630         break;
5631       }
5632   } /* End of switch(p->msg_type) */
5633 }
5634
5635 /*+F*************************************************************************
5636  * Function:
5637  *   aic7xxx_handle_scsiint
5638  *
5639  * Description:
5640  *   Interrupt handler for SCSI interrupts (SCSIINT).
5641  *-F*************************************************************************/
5642 static void
5643 aic7xxx_handle_scsiint(struct aic7xxx_host *p, unsigned char intstat)
5644 {
5645   unsigned char scb_index;
5646   unsigned char status;
5647   struct aic7xxx_scb *scb;
5648   struct aic_dev_data *aic_dev;
5649
5650   scb_index = aic_inb(p, SCB_TAG);
5651   status = aic_inb(p, SSTAT1);
5652
5653   if (scb_index < p->scb_data->numscbs)
5654   {
5655     scb = p->scb_data->scb_array[scb_index];
5656     if ((scb->flags & SCB_ACTIVE) == 0)
5657     {
5658       scb = NULL;
5659     }
5660   }
5661   else
5662   {
5663     scb = NULL;
5664   }
5665
5666
5667   if ((status & SCSIRSTI) != 0)
5668   {
5669     int channel;
5670
5671     if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
5672       channel = (aic_inb(p, SBLKCTL) & SELBUSB) >> 3;
5673     else
5674       channel = 0;
5675
5676     if (aic7xxx_verbose & VERBOSE_RESET)
5677       printk(WARN_LEAD "Someone else reset the channel!!\n",
5678            p->host_no, channel, -1, -1);
5679     if (aic7xxx_panic_on_abort)
5680       aic7xxx_panic_abort(p, NULL);
5681     /*
5682      * Go through and abort all commands for the channel, but do not
5683      * reset the channel again.
5684      */
5685     aic7xxx_reset_channel(p, channel, /* Initiate Reset */ FALSE);
5686     aic7xxx_run_done_queue(p, TRUE);
5687     scb = NULL;
5688   }
5689   else if ( ((status & BUSFREE) != 0) && ((status & SELTO) == 0) )
5690   {
5691     /*
5692      * First look at what phase we were last in.  If it's message-out,
5693      * chances are pretty good that the bus free was in response to
5694      * one of our abort requests.
5695      */
5696     unsigned char lastphase = aic_inb(p, LASTPHASE);
5697     unsigned char saved_tcl = aic_inb(p, SAVED_TCL);
5698     unsigned char target = (saved_tcl >> 4) & 0x0F;
5699     int channel;
5700     int printerror = TRUE;
5701
5702     if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
5703       channel = (aic_inb(p, SBLKCTL) & SELBUSB) >> 3;
5704     else
5705       channel = 0;
5706
5707     aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP),
5708              SCSISEQ);
5709     if (lastphase == P_MESGOUT)
5710     {
5711       unsigned char message;
5712
5713       message = aic_inb(p, SINDEX);
5714
5715       if ((message == MSG_ABORT) || (message == MSG_ABORT_TAG))
5716       {
5717         if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
5718           printk(INFO_LEAD "SCB %d abort delivered.\n", p->host_no,
5719             CTL_OF_SCB(scb), scb->hscb->tag);
5720         aic7xxx_reset_device(p, target, channel, ALL_LUNS,
5721                 (message == MSG_ABORT) ? SCB_LIST_NULL : scb->hscb->tag );
5722         aic7xxx_run_done_queue(p, TRUE);
5723         scb = NULL;
5724         printerror = 0;
5725       }
5726       else if (message == MSG_BUS_DEV_RESET)
5727       {
5728         aic7xxx_handle_device_reset(p, target, channel);
5729         scb = NULL;
5730         printerror = 0;
5731       }
5732     }
5733     if ( (scb != NULL) && (scb->flags & SCB_DTR_SCB) ) 
5734     {
5735       /*
5736        * Hmmm...error during a negotiation command.  Either we have a
5737        * borken bus, or the device doesn't like our negotiation message.
5738        * Since we check the INQUIRY data of a device before sending it
5739        * negotiation messages, assume the bus is borken for whatever
5740        * reason.  Complete the command.
5741        */
5742       printerror = 0;
5743       aic7xxx_reset_device(p, target, channel, ALL_LUNS, scb->hscb->tag);
5744       aic7xxx_run_done_queue(p, TRUE);
5745       scb = NULL;
5746     }
5747     if (printerror != 0)
5748     {
5749       if (scb != NULL)
5750       {
5751         unsigned char tag;
5752
5753         if ((scb->hscb->control & TAG_ENB) != 0)
5754         {
5755           tag = scb->hscb->tag;
5756         }
5757         else
5758         {
5759           tag = SCB_LIST_NULL;
5760         }
5761         aic7xxx_reset_device(p, target, channel, ALL_LUNS, tag);
5762         aic7xxx_run_done_queue(p, TRUE);
5763       }
5764       else
5765       {
5766         aic7xxx_reset_device(p, target, channel, ALL_LUNS, SCB_LIST_NULL);
5767         aic7xxx_run_done_queue(p, TRUE);
5768       }
5769       printk(INFO_LEAD "Unexpected busfree, LASTPHASE = 0x%x, "
5770              "SEQADDR = 0x%x\n", p->host_no, channel, target, -1, lastphase,
5771              (aic_inb(p, SEQADDR1) << 8) | aic_inb(p, SEQADDR0));
5772       scb = NULL;
5773     }
5774     aic_outb(p, MSG_NOOP, MSG_OUT);
5775     aic_outb(p, aic_inb(p, SIMODE1) & ~(ENBUSFREE|ENREQINIT),
5776       SIMODE1);
5777     p->flags &= ~AHC_HANDLING_REQINITS;
5778     aic_outb(p, CLRBUSFREE, CLRSINT1);
5779     aic_outb(p, CLRSCSIINT, CLRINT);
5780     restart_sequencer(p);
5781     unpause_sequencer(p, TRUE);
5782   }
5783   else if ((status & SELTO) != 0)
5784   {
5785         unsigned char scbptr;
5786         unsigned char nextscb;
5787         struct scsi_cmnd *cmd;
5788
5789     scbptr = aic_inb(p, WAITING_SCBH);
5790     if (scbptr > p->scb_data->maxhscbs)
5791     {
5792       /*
5793        * I'm still trying to track down exactly how this happens, but until
5794        * I find it, this code will make sure we aren't passing bogus values
5795        * into the SCBPTR register, even if that register will just wrap
5796        * things around, we still don't like having out of range variables.
5797        *
5798        * NOTE: Don't check the aic7xxx_verbose variable, I want this message
5799        * to always be displayed.
5800        */
5801       printk(INFO_LEAD "Invalid WAITING_SCBH value %d, improvising.\n",
5802              p->host_no, -1, -1, -1, scbptr);
5803       if (p->scb_data->maxhscbs > 4)
5804         scbptr &= (p->scb_data->maxhscbs - 1);
5805       else
5806         scbptr &= 0x03;
5807     }
5808     aic_outb(p, scbptr, SCBPTR);
5809     scb_index = aic_inb(p, SCB_TAG);
5810
5811     scb = NULL;
5812     if (scb_index < p->scb_data->numscbs)
5813     {
5814       scb = p->scb_data->scb_array[scb_index];
5815       if ((scb->flags & SCB_ACTIVE) == 0)
5816       {
5817         scb = NULL;
5818       }
5819     }
5820     if (scb == NULL)
5821     {
5822       printk(WARN_LEAD "Referenced SCB %d not valid during SELTO.\n",
5823              p->host_no, -1, -1, -1, scb_index);
5824       printk(KERN_WARNING "        SCSISEQ = 0x%x SEQADDR = 0x%x SSTAT0 = 0x%x "
5825              "SSTAT1 = 0x%x\n", aic_inb(p, SCSISEQ),
5826              aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
5827              aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
5828       if (aic7xxx_panic_on_abort)
5829         aic7xxx_panic_abort(p, NULL);
5830     }
5831     else
5832     {
5833       cmd = scb->cmd;
5834       cmd->result = (DID_TIME_OUT << 16);
5835
5836       /*
5837        * Clear out this hardware SCB
5838        */
5839       aic_outb(p, 0, SCB_CONTROL);
5840
5841       /*
5842        * Clear out a few values in the card that are in an undetermined
5843        * state.
5844        */
5845       aic_outb(p, MSG_NOOP, MSG_OUT);
5846
5847       /*
5848        * Shift the waiting for selection queue forward
5849        */
5850       nextscb = aic_inb(p, SCB_NEXT);
5851       aic_outb(p, nextscb, WAITING_SCBH);
5852
5853       /*
5854        * Put this SCB back on the free list.
5855        */
5856       aic7xxx_add_curscb_to_free_list(p);
5857 #ifdef AIC7XXX_VERBOSE_DEBUGGING
5858       if (aic7xxx_verbose > 0xffff)
5859         printk(INFO_LEAD "Selection Timeout.\n", p->host_no, CTL_OF_SCB(scb));
5860 #endif
5861       if (scb->flags & SCB_QUEUED_ABORT)
5862       {
5863         /*
5864          * We know that this particular SCB had to be the queued abort since
5865          * the disconnected SCB would have gotten a reconnect instead.
5866          * What we need to do then is to let the command timeout again so
5867          * we get a reset since this abort just failed.
5868          */
5869         cmd->result = 0;
5870         scb = NULL;
5871       }
5872     }
5873     /*
5874      * Keep the sequencer from trying to restart any selections
5875      */
5876     aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
5877     /*
5878      * Make sure the data bits on the bus are released
5879      * Don't do this on 7770 chipsets, it makes them give us
5880      * a BRKADDRINT and kills the card.
5881      */
5882     if( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI )
5883       aic_outb(p, 0, SCSIBUSL);
5884
5885     /*
5886      * Delay for the selection timeout delay period then stop the selection
5887      */
5888     udelay(301);
5889     aic_outb(p, CLRSELINGO, CLRSINT0);
5890     /*
5891      * Clear out all the interrupt status bits
5892      */
5893     aic_outb(p, aic_inb(p, SIMODE1) & ~(ENREQINIT|ENBUSFREE), SIMODE1);
5894     p->flags &= ~AHC_HANDLING_REQINITS;
5895     aic_outb(p, CLRSELTIMEO | CLRBUSFREE, CLRSINT1);
5896     aic_outb(p, CLRSCSIINT, CLRINT);
5897     /*
5898      * Restarting the sequencer will stop the selection and make sure devices
5899      * are allowed to reselect in.
5900      */
5901     restart_sequencer(p);
5902     unpause_sequencer(p, TRUE);
5903   }
5904   else if (scb == NULL)
5905   {
5906     printk(WARN_LEAD "aic7xxx_isr - referenced scb not valid "
5907            "during scsiint 0x%x scb(%d)\n"
5908            "      SIMODE0 0x%x, SIMODE1 0x%x, SSTAT0 0x%x, SEQADDR 0x%x\n",
5909            p->host_no, -1, -1, -1, status, scb_index, aic_inb(p, SIMODE0),
5910            aic_inb(p, SIMODE1), aic_inb(p, SSTAT0),
5911            (aic_inb(p, SEQADDR1) << 8) | aic_inb(p, SEQADDR0));
5912     /*
5913      * Turn off the interrupt and set status to zero, so that it
5914      * falls through the rest of the SCSIINT code.
5915      */
5916     aic_outb(p, status, CLRSINT1);
5917     aic_outb(p, CLRSCSIINT, CLRINT);
5918     unpause_sequencer(p, /* unpause always */ TRUE);
5919     scb = NULL;
5920   }
5921   else if (status & SCSIPERR)
5922   {
5923     /*
5924      * Determine the bus phase and queue an appropriate message.
5925      */
5926         char  *phase;
5927         struct scsi_cmnd *cmd;
5928         unsigned char mesg_out = MSG_NOOP;
5929         unsigned char lastphase = aic_inb(p, LASTPHASE);
5930         unsigned char sstat2 = aic_inb(p, SSTAT2);
5931
5932     cmd = scb->cmd;
5933     switch (lastphase)
5934     {
5935       case P_DATAOUT:
5936         phase = "Data-Out";
5937         break;
5938       case P_DATAIN:
5939         phase = "Data-In";
5940         mesg_out = MSG_INITIATOR_DET_ERR;
5941         break;
5942       case P_COMMAND:
5943         phase = "Command";
5944         break;
5945       case P_MESGOUT:
5946         phase = "Message-Out";
5947         break;
5948       case P_STATUS:
5949         phase = "Status";
5950         mesg_out = MSG_INITIATOR_DET_ERR;
5951         break;
5952       case P_MESGIN:
5953         phase = "Message-In";
5954         mesg_out = MSG_PARITY_ERROR;
5955         break;
5956       default:
5957         phase = "unknown";
5958         break;
5959     }
5960
5961     /*
5962      * A parity error has occurred during a data
5963      * transfer phase. Flag it and continue.
5964      */
5965     if( (p->features & AHC_ULTRA3) && 
5966         (aic_inb(p, SCSIRATE) & AHC_SYNCRATE_CRC) &&
5967         (lastphase == P_DATAIN) )
5968     {
5969       printk(WARN_LEAD "CRC error during %s phase.\n",
5970              p->host_no, CTL_OF_SCB(scb), phase);
5971       if(sstat2 & CRCVALERR)
5972       {
5973         printk(WARN_LEAD "  CRC error in intermediate CRC packet.\n",
5974                p->host_no, CTL_OF_SCB(scb));
5975       }
5976       if(sstat2 & CRCENDERR)
5977       {
5978         printk(WARN_LEAD "  CRC error in ending CRC packet.\n",
5979                p->host_no, CTL_OF_SCB(scb));
5980       }
5981       if(sstat2 & CRCREQERR)
5982       {
5983         printk(WARN_LEAD "  Target incorrectly requested a CRC packet.\n",
5984                p->host_no, CTL_OF_SCB(scb));
5985       }
5986       if(sstat2 & DUAL_EDGE_ERROR)
5987       {
5988         printk(WARN_LEAD "  Dual Edge transmission error.\n",
5989                p->host_no, CTL_OF_SCB(scb));
5990       }
5991     }
5992     else if( (lastphase == P_MESGOUT) &&
5993              (scb->flags & SCB_MSGOUT_PPR) )
5994     {
5995       /*
5996        * As per the draft specs, any device capable of supporting any of
5997        * the option values other than 0 are not allowed to reject the
5998        * PPR message.  Instead, they must negotiate out what they do
5999        * support instead of rejecting our offering or else they cause
6000        * a parity error during msg_out phase to signal that they don't
6001        * like our settings.
6002        */
6003       aic_dev = AIC_DEV(scb->cmd);
6004       aic_dev->needppr = aic_dev->needppr_copy = 0;
6005       aic7xxx_set_width(p, scb->cmd->device->id, scb->cmd->device->channel, scb->cmd->device->lun,
6006                         MSG_EXT_WDTR_BUS_8_BIT,
6007                         (AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE),
6008                         aic_dev);
6009       aic7xxx_set_syncrate(p, NULL, scb->cmd->device->id, scb->cmd->device->channel, 0, 0,
6010                            0, AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
6011                            aic_dev);
6012       aic_dev->goal.options = 0;
6013       scb->flags &= ~SCB_MSGOUT_BITS;
6014       if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
6015       {
6016         printk(INFO_LEAD "parity error during PPR message, reverting "
6017                "to WDTR/SDTR\n", p->host_no, CTL_OF_SCB(scb));
6018       }
6019       if ( aic_dev->goal.width )
6020       {
6021         aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
6022       }
6023       if ( aic_dev->goal.offset )
6024       {
6025         if( aic_dev->goal.period <= 9 )
6026         {
6027           aic_dev->goal.period = 10;
6028         }
6029         aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
6030       }
6031       scb = NULL;
6032     }
6033
6034     /*
6035      * We've set the hardware to assert ATN if we get a parity
6036      * error on "in" phases, so all we need to do is stuff the
6037      * message buffer with the appropriate message.  "In" phases
6038      * have set mesg_out to something other than MSG_NOP.
6039      */
6040     if (mesg_out != MSG_NOOP)
6041     {
6042       aic_outb(p, mesg_out, MSG_OUT);
6043       aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
6044       scb = NULL;
6045     }
6046     aic_outb(p, CLRSCSIPERR, CLRSINT1);
6047     aic_outb(p, CLRSCSIINT, CLRINT);
6048     unpause_sequencer(p, /* unpause_always */ TRUE);
6049   }
6050   else if ( (status & REQINIT) &&
6051             (p->flags & AHC_HANDLING_REQINITS) )
6052   {
6053 #ifdef AIC7XXX_VERBOSE_DEBUGGING
6054     if (aic7xxx_verbose > 0xffff)
6055       printk(INFO_LEAD "Handling REQINIT, SSTAT1=0x%x.\n", p->host_no,
6056              CTL_OF_SCB(scb), aic_inb(p, SSTAT1));
6057 #endif
6058     aic7xxx_handle_reqinit(p, scb);
6059     return;
6060   }
6061   else
6062   {
6063     /*
6064      * We don't know what's going on. Turn off the
6065      * interrupt source and try to continue.
6066      */
6067     if (aic7xxx_verbose & VERBOSE_SCSIINT)
6068       printk(INFO_LEAD "Unknown SCSIINT status, SSTAT1(0x%x).\n",
6069         p->host_no, -1, -1, -1, status);
6070     aic_outb(p, status, CLRSINT1);
6071     aic_outb(p, CLRSCSIINT, CLRINT);
6072     unpause_sequencer(p, /* unpause always */ TRUE);
6073     scb = NULL;
6074   }
6075   if (scb != NULL)
6076   {
6077     aic7xxx_done(p, scb);
6078   }
6079 }
6080
6081 #ifdef AIC7XXX_VERBOSE_DEBUGGING
6082 static void
6083 aic7xxx_check_scbs(struct aic7xxx_host *p, char *buffer)
6084 {
6085   unsigned char saved_scbptr, free_scbh, dis_scbh, wait_scbh, temp;
6086   int i, bogus, lost;
6087   static unsigned char scb_status[AIC7XXX_MAXSCB];
6088
6089 #define SCB_NO_LIST 0
6090 #define SCB_FREE_LIST 1
6091 #define SCB_WAITING_LIST 2
6092 #define SCB_DISCONNECTED_LIST 4
6093 #define SCB_CURRENTLY_ACTIVE 8
6094
6095   /*
6096    * Note, these checks will fail on a regular basis once the machine moves
6097    * beyond the bus scan phase.  The problem is race conditions concerning
6098    * the scbs and where they are linked in.  When you have 30 or so commands
6099    * outstanding on the bus, and run this twice with every interrupt, the
6100    * chances get pretty good that you'll catch the sequencer with an SCB
6101    * only partially linked in.  Therefore, once we pass the scan phase
6102    * of the bus, we really should disable this function.
6103    */
6104   bogus = FALSE;
6105   memset(&scb_status[0], 0, sizeof(scb_status));
6106   pause_sequencer(p);
6107   saved_scbptr = aic_inb(p, SCBPTR);
6108   if (saved_scbptr >= p->scb_data->maxhscbs)
6109   {
6110     printk("Bogus SCBPTR %d\n", saved_scbptr);
6111     bogus = TRUE;
6112   }
6113   scb_status[saved_scbptr] = SCB_CURRENTLY_ACTIVE;
6114   free_scbh = aic_inb(p, FREE_SCBH);
6115   if ( (free_scbh != SCB_LIST_NULL) &&
6116        (free_scbh >= p->scb_data->maxhscbs) )
6117   {
6118     printk("Bogus FREE_SCBH %d\n", free_scbh);
6119     bogus = TRUE;
6120   }
6121   else
6122   {
6123     temp = free_scbh;
6124     while( (temp != SCB_LIST_NULL) && (temp < p->scb_data->maxhscbs) )
6125     {
6126       if(scb_status[temp] & 0x07)
6127       {
6128         printk("HSCB %d on multiple lists, status 0x%02x", temp,
6129                scb_status[temp] | SCB_FREE_LIST);
6130         bogus = TRUE;
6131       }
6132       scb_status[temp] |= SCB_FREE_LIST;
6133       aic_outb(p, temp, SCBPTR);
6134       temp = aic_inb(p, SCB_NEXT);
6135     }
6136   }
6137
6138   dis_scbh = aic_inb(p, DISCONNECTED_SCBH);
6139   if ( (dis_scbh != SCB_LIST_NULL) &&
6140        (dis_scbh >= p->scb_data->maxhscbs) )
6141   {
6142     printk("Bogus DISCONNECTED_SCBH %d\n", dis_scbh);
6143     bogus = TRUE;
6144   }
6145   else
6146   {
6147     temp = dis_scbh;
6148     while( (temp != SCB_LIST_NULL) && (temp < p->scb_data->maxhscbs) )
6149     {
6150       if(scb_status[temp] & 0x07)
6151       {
6152         printk("HSCB %d on multiple lists, status 0x%02x", temp,
6153                scb_status[temp] | SCB_DISCONNECTED_LIST);
6154         bogus = TRUE;
6155       }
6156       scb_status[temp] |= SCB_DISCONNECTED_LIST;
6157       aic_outb(p, temp, SCBPTR);
6158       temp = aic_inb(p, SCB_NEXT);
6159     }
6160   }
6161   
6162   wait_scbh = aic_inb(p, WAITING_SCBH);
6163   if ( (wait_scbh != SCB_LIST_NULL) &&
6164        (wait_scbh >= p->scb_data->maxhscbs) )
6165   {
6166     printk("Bogus WAITING_SCBH %d\n", wait_scbh);
6167     bogus = TRUE;
6168   }
6169   else
6170   {
6171     temp = wait_scbh;
6172     while( (temp != SCB_LIST_NULL) && (temp < p->scb_data->maxhscbs) )
6173     {
6174       if(scb_status[temp] & 0x07)
6175       {
6176         printk("HSCB %d on multiple lists, status 0x%02x", temp,
6177                scb_status[temp] | SCB_WAITING_LIST);
6178         bogus = TRUE;
6179       }
6180       scb_status[temp] |= SCB_WAITING_LIST;
6181       aic_outb(p, temp, SCBPTR);
6182       temp = aic_inb(p, SCB_NEXT);
6183     }
6184   }
6185
6186   lost=0;
6187   for(i=0; i < p->scb_data->maxhscbs; i++)
6188   {
6189     aic_outb(p, i, SCBPTR);
6190     temp = aic_inb(p, SCB_NEXT);
6191     if ( ((temp != SCB_LIST_NULL) &&
6192           (temp >= p->scb_data->maxhscbs)) )
6193     {
6194       printk("HSCB %d bad, SCB_NEXT invalid(%d).\n", i, temp);
6195       bogus = TRUE;
6196     }
6197     if ( temp == i )
6198     {
6199       printk("HSCB %d bad, SCB_NEXT points to self.\n", i);
6200       bogus = TRUE;
6201     }
6202     if (scb_status[i] == 0)
6203       lost++;
6204     if (lost > 1)
6205     {
6206       printk("Too many lost scbs.\n");
6207       bogus=TRUE;
6208     }
6209   }
6210   aic_outb(p, saved_scbptr, SCBPTR);
6211   unpause_sequencer(p, FALSE);
6212   if (bogus)
6213   {
6214     printk("Bogus parameters found in card SCB array structures.\n");
6215     printk("%s\n", buffer);
6216     aic7xxx_panic_abort(p, NULL);
6217   }
6218   return;
6219 }
6220 #endif
6221
6222
6223 /*+F*************************************************************************
6224  * Function:
6225  *   aic7xxx_handle_command_completion_intr
6226  *
6227  * Description:
6228  *   SCSI command completion interrupt handler.
6229  *-F*************************************************************************/
6230 static void
6231 aic7xxx_handle_command_completion_intr(struct aic7xxx_host *p)
6232 {
6233         struct aic7xxx_scb *scb = NULL;
6234         struct aic_dev_data *aic_dev;
6235         struct scsi_cmnd *cmd;
6236         unsigned char scb_index, tindex;
6237
6238 #ifdef AIC7XXX_VERBOSE_DEBUGGING
6239   if( (p->isr_count < 16) && (aic7xxx_verbose > 0xffff) )
6240     printk(INFO_LEAD "Command Complete Int.\n", p->host_no, -1, -1, -1);
6241 #endif
6242     
6243   /*
6244    * Read the INTSTAT location after clearing the CMDINT bit.  This forces
6245    * any posted PCI writes to flush to memory.  Gerard Roudier suggested
6246    * this fix to the possible race of clearing the CMDINT bit but not
6247    * having all command bytes flushed onto the qoutfifo.
6248    */
6249   aic_outb(p, CLRCMDINT, CLRINT);
6250   aic_inb(p, INTSTAT);
6251   /*
6252    * The sequencer will continue running when it
6253    * issues this interrupt. There may be >1 commands
6254    * finished, so loop until we've processed them all.
6255    */
6256
6257   while (p->qoutfifo[p->qoutfifonext] != SCB_LIST_NULL)
6258   {
6259     scb_index = p->qoutfifo[p->qoutfifonext];
6260     p->qoutfifo[p->qoutfifonext++] = SCB_LIST_NULL;
6261     if ( scb_index >= p->scb_data->numscbs )
6262     {
6263       printk(WARN_LEAD "CMDCMPLT with invalid SCB index %d\n", p->host_no,
6264         -1, -1, -1, scb_index);
6265       continue;
6266     }
6267     scb = p->scb_data->scb_array[scb_index];
6268     if (!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
6269     {
6270       printk(WARN_LEAD "CMDCMPLT without command for SCB %d, SCB flags "
6271         "0x%x, cmd 0x%lx\n", p->host_no, -1, -1, -1, scb_index, scb->flags,
6272         (unsigned long) scb->cmd);
6273       continue;
6274     }
6275     tindex = TARGET_INDEX(scb->cmd);
6276     aic_dev = AIC_DEV(scb->cmd);
6277     if (scb->flags & SCB_QUEUED_ABORT)
6278     {
6279       pause_sequencer(p);
6280       if ( ((aic_inb(p, LASTPHASE) & PHASE_MASK) != P_BUSFREE) &&
6281            (aic_inb(p, SCB_TAG) == scb->hscb->tag) )
6282       {
6283         unpause_sequencer(p, FALSE);
6284         continue;
6285       }
6286       aic7xxx_reset_device(p, scb->cmd->device->id, scb->cmd->device->channel,
6287         scb->cmd->device->lun, scb->hscb->tag);
6288       scb->flags &= ~(SCB_QUEUED_FOR_DONE | SCB_RESET | SCB_ABORT |
6289         SCB_QUEUED_ABORT);
6290       unpause_sequencer(p, FALSE);
6291     }
6292     else if (scb->flags & SCB_ABORT)
6293     {
6294       /*
6295        * We started to abort this, but it completed on us, let it
6296        * through as successful
6297        */
6298       scb->flags &= ~(SCB_ABORT|SCB_RESET);
6299     }
6300     else if (scb->flags & SCB_SENSE)
6301     {
6302       char *buffer = &scb->cmd->sense_buffer[0];
6303
6304       if (buffer[12] == 0x47 || buffer[12] == 0x54)
6305       {
6306         /*
6307          * Signal that we need to re-negotiate things.
6308          */
6309         aic_dev->needppr = aic_dev->needppr_copy;
6310         aic_dev->needsdtr = aic_dev->needsdtr_copy;
6311         aic_dev->needwdtr = aic_dev->needwdtr_copy;
6312       }
6313     }
6314     cmd = scb->cmd;
6315     if (scb->hscb->residual_SG_segment_count != 0)
6316     {
6317       aic7xxx_calculate_residual(p, scb);
6318     }
6319     cmd->result |= (aic7xxx_error(cmd) << 16);
6320     aic7xxx_done(p, scb);
6321   }
6322 }
6323
6324 /*+F*************************************************************************
6325  * Function:
6326  *   aic7xxx_isr
6327  *
6328  * Description:
6329  *   SCSI controller interrupt handler.
6330  *-F*************************************************************************/
6331 static void
6332 aic7xxx_isr(void *dev_id)
6333 {
6334   struct aic7xxx_host *p;
6335   unsigned char intstat;
6336
6337   p = dev_id;
6338
6339   /*
6340    * Just a few sanity checks.  Make sure that we have an int pending.
6341    * Also, if PCI, then we are going to check for a PCI bus error status
6342    * should we get too many spurious interrupts.
6343    */
6344   if (!((intstat = aic_inb(p, INTSTAT)) & INT_PEND))
6345   {
6346 #ifdef CONFIG_PCI
6347     if ( (p->chip & AHC_PCI) && (p->spurious_int > 500) &&
6348         !(p->flags & AHC_HANDLING_REQINITS) )
6349     {
6350       if ( aic_inb(p, ERROR) & PCIERRSTAT )
6351       {
6352         aic7xxx_pci_intr(p);
6353       }
6354       p->spurious_int = 0;
6355     }
6356     else if ( !(p->flags & AHC_HANDLING_REQINITS) )
6357     {
6358       p->spurious_int++;
6359     }
6360 #endif
6361     return;
6362   }
6363
6364   p->spurious_int = 0;
6365
6366   /*
6367    * Keep track of interrupts for /proc/scsi
6368    */
6369   p->isr_count++;
6370
6371 #ifdef AIC7XXX_VERBOSE_DEBUGGING
6372   if ( (p->isr_count < 16) && (aic7xxx_verbose > 0xffff) &&
6373        (aic7xxx_panic_on_abort) && (p->flags & AHC_PAGESCBS) )
6374     aic7xxx_check_scbs(p, "Bogus settings at start of interrupt.");
6375 #endif
6376
6377   /*
6378    * Handle all the interrupt sources - especially for SCSI
6379    * interrupts, we won't get a second chance at them.
6380    */
6381   if (intstat & CMDCMPLT)
6382   {
6383     aic7xxx_handle_command_completion_intr(p);
6384   }
6385
6386   if (intstat & BRKADRINT)
6387   {
6388     int i;
6389     unsigned char errno = aic_inb(p, ERROR);
6390
6391     printk(KERN_ERR "(scsi%d) BRKADRINT error(0x%x):\n", p->host_no, errno);
6392     for (i = 0; i < ARRAY_SIZE(hard_error); i++)
6393     {
6394       if (errno & hard_error[i].errno)
6395       {
6396         printk(KERN_ERR "  %s\n", hard_error[i].errmesg);
6397       }
6398     }
6399     printk(KERN_ERR "(scsi%d)   SEQADDR=0x%x\n", p->host_no,
6400       (((aic_inb(p, SEQADDR1) << 8) & 0x100) | aic_inb(p, SEQADDR0)));
6401     if (aic7xxx_panic_on_abort)
6402       aic7xxx_panic_abort(p, NULL);
6403 #ifdef CONFIG_PCI
6404     if (errno & PCIERRSTAT)
6405       aic7xxx_pci_intr(p);
6406 #endif
6407     if (errno & (SQPARERR | ILLOPCODE | ILLSADDR))
6408     {
6409       panic("aic7xxx: unrecoverable BRKADRINT.\n");
6410     }
6411     if (errno & ILLHADDR)
6412     {
6413       printk(KERN_ERR "(scsi%d) BUG! Driver accessed chip without first "
6414              "pausing controller!\n", p->host_no);
6415     }
6416 #ifdef AIC7XXX_VERBOSE_DEBUGGING
6417     if (errno & DPARERR)
6418     {
6419       if (aic_inb(p, DMAPARAMS) & DIRECTION)
6420         printk("(scsi%d) while DMAing SCB from host to card.\n", p->host_no);
6421       else
6422         printk("(scsi%d) while DMAing SCB from card to host.\n", p->host_no);
6423     }
6424 #endif
6425     aic_outb(p, CLRPARERR | CLRBRKADRINT, CLRINT);
6426     unpause_sequencer(p, FALSE);
6427   }
6428
6429   if (intstat & SEQINT)
6430   {
6431     /*
6432      * Read the CCSCBCTL register to work around a bug in the Ultra2 cards
6433      */
6434     if(p->features & AHC_ULTRA2)
6435     {
6436       aic_inb(p, CCSCBCTL);
6437     }
6438     aic7xxx_handle_seqint(p, intstat);
6439   }
6440
6441   if (intstat & SCSIINT)
6442   {
6443     aic7xxx_handle_scsiint(p, intstat);
6444   }
6445
6446 #ifdef AIC7XXX_VERBOSE_DEBUGGING
6447   if ( (p->isr_count < 16) && (aic7xxx_verbose > 0xffff) &&
6448        (aic7xxx_panic_on_abort) && (p->flags & AHC_PAGESCBS) )
6449     aic7xxx_check_scbs(p, "Bogus settings at end of interrupt.");
6450 #endif
6451
6452 }
6453
6454 /*+F*************************************************************************
6455  * Function:
6456  *   do_aic7xxx_isr
6457  *
6458  * Description:
6459  *   This is a gross hack to solve a problem in linux kernels 2.1.85 and
6460  *   above.  Please, children, do not try this at home, and if you ever see
6461  *   anything like it, please inform the Gross Hack Police immediately
6462  *-F*************************************************************************/
6463 static irqreturn_t
6464 do_aic7xxx_isr(int irq, void *dev_id)
6465 {
6466   unsigned long cpu_flags;
6467   struct aic7xxx_host *p;
6468   
6469   p = dev_id;
6470   if(!p)
6471     return IRQ_NONE;
6472   spin_lock_irqsave(p->host->host_lock, cpu_flags);
6473   p->flags |= AHC_IN_ISR;
6474   do
6475   {
6476     aic7xxx_isr(dev_id);
6477   } while ( (aic_inb(p, INTSTAT) & INT_PEND) );
6478   aic7xxx_done_cmds_complete(p);
6479   aic7xxx_run_waiting_queues(p);
6480   p->flags &= ~AHC_IN_ISR;
6481   spin_unlock_irqrestore(p->host->host_lock, cpu_flags);
6482
6483   return IRQ_HANDLED;
6484 }
6485
6486 /*+F*************************************************************************
6487  * Function:
6488  *   aic7xxx_init_transinfo
6489  *
6490  * Description:
6491  *   Set up the initial aic_dev values from the BIOS settings and from
6492  *   INQUIRY results
6493  *-F*************************************************************************/
6494 static void
6495 aic7xxx_init_transinfo(struct aic7xxx_host *p, struct aic_dev_data *aic_dev)
6496 {
6497   struct scsi_device *sdpnt = aic_dev->SDptr;
6498   unsigned char tindex;
6499
6500   tindex = sdpnt->id | (sdpnt->channel << 3);
6501   if (!(aic_dev->flags & DEVICE_DTR_SCANNED))
6502   {
6503     aic_dev->flags |= DEVICE_DTR_SCANNED;
6504
6505     if ( sdpnt->wdtr && (p->features & AHC_WIDE) )
6506     {
6507       aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
6508       aic_dev->goal.width = p->user[tindex].width;
6509     }
6510     else
6511     {
6512       aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
6513       pause_sequencer(p);
6514       aic7xxx_set_width(p, sdpnt->id, sdpnt->channel, sdpnt->lun,
6515                         MSG_EXT_WDTR_BUS_8_BIT, (AHC_TRANS_ACTIVE |
6516                                                  AHC_TRANS_GOAL |
6517                                                  AHC_TRANS_CUR), aic_dev );
6518       unpause_sequencer(p, FALSE);
6519     }
6520     if ( sdpnt->sdtr && p->user[tindex].offset )
6521     {
6522       aic_dev->goal.period = p->user[tindex].period;
6523       aic_dev->goal.options = p->user[tindex].options;
6524       if (p->features & AHC_ULTRA2)
6525         aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
6526       else if (aic_dev->goal.width == MSG_EXT_WDTR_BUS_16_BIT)
6527         aic_dev->goal.offset = MAX_OFFSET_16BIT;
6528       else
6529         aic_dev->goal.offset = MAX_OFFSET_8BIT;
6530       if ( sdpnt->ppr && p->user[tindex].period <= 9 &&
6531              p->user[tindex].options )
6532       {
6533         aic_dev->needppr = aic_dev->needppr_copy = 1;
6534         aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
6535         aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
6536         aic_dev->flags |= DEVICE_SCSI_3;
6537       }
6538       else
6539       {
6540         aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
6541         aic_dev->goal.period = max_t(unsigned char, 10, aic_dev->goal.period);
6542         aic_dev->goal.options = 0;
6543       }
6544     }
6545     else
6546     {
6547       aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
6548       aic_dev->goal.period = 255;
6549       aic_dev->goal.offset = 0;
6550       aic_dev->goal.options = 0;
6551     }
6552     aic_dev->flags |= DEVICE_PRINT_DTR;
6553   }
6554 }
6555
6556 /*+F*************************************************************************
6557  * Function:
6558  *   aic7xxx_slave_alloc
6559  *
6560  * Description:
6561  *   Set up the initial aic_dev struct pointers
6562  *-F*************************************************************************/
6563 static int
6564 aic7xxx_slave_alloc(struct scsi_device *SDptr)
6565 {
6566   struct aic7xxx_host *p = (struct aic7xxx_host *)SDptr->host->hostdata;
6567   struct aic_dev_data *aic_dev;
6568
6569   aic_dev = kmalloc(sizeof(struct aic_dev_data), GFP_KERNEL);
6570   if(!aic_dev)
6571     return 1;
6572   /*
6573    * Check to see if channel was scanned.
6574    */
6575   
6576   if (!(p->flags & AHC_A_SCANNED) && (SDptr->channel == 0))
6577   {
6578     if (aic7xxx_verbose & VERBOSE_PROBE2)
6579       printk(INFO_LEAD "Scanning channel for devices.\n",
6580         p->host_no, 0, -1, -1);
6581     p->flags |= AHC_A_SCANNED;
6582   }
6583   else
6584   {
6585     if (!(p->flags & AHC_B_SCANNED) && (SDptr->channel == 1))
6586     {
6587       if (aic7xxx_verbose & VERBOSE_PROBE2)
6588         printk(INFO_LEAD "Scanning channel for devices.\n",
6589           p->host_no, 1, -1, -1);
6590       p->flags |= AHC_B_SCANNED;
6591     }
6592   }
6593
6594   memset(aic_dev, 0, sizeof(struct aic_dev_data));
6595   SDptr->hostdata = aic_dev;
6596   aic_dev->SDptr = SDptr;
6597   aic_dev->max_q_depth = 1;
6598   aic_dev->temp_q_depth = 1;
6599   scbq_init(&aic_dev->delayed_scbs);
6600   INIT_LIST_HEAD(&aic_dev->list);
6601   list_add_tail(&aic_dev->list, &p->aic_devs);
6602   return 0;
6603 }
6604
6605 /*+F*************************************************************************
6606  * Function:
6607  *   aic7xxx_device_queue_depth
6608  *
6609  * Description:
6610  *   Determines the queue depth for a given device.  There are two ways
6611  *   a queue depth can be obtained for a tagged queueing device.  One
6612  *   way is the default queue depth which is determined by whether
6613  *   aic7xxx_default_queue_depth.  The other is by the aic7xxx_tag_info
6614  *   array.
6615  *
6616  *   If tagged queueing isn't supported on the device, then we set the
6617  *   depth to p->host->hostt->cmd_per_lun for internal driver queueing.
6618  *   as the default queue depth.  Otherwise, we use either 4 or 8 as the
6619  *   default queue depth (dependent on the number of hardware SCBs).
6620  *   The other way we determine queue depth is through the use of the
6621  *   aic7xxx_tag_info array which is enabled by defining
6622  *   AIC7XXX_TAGGED_QUEUEING_BY_DEVICE.  This array can be initialized
6623  *   with queue depths for individual devices.  It also allows tagged
6624  *   queueing to be [en|dis]abled for a specific adapter.
6625  *-F*************************************************************************/
6626 static void
6627 aic7xxx_device_queue_depth(struct aic7xxx_host *p, struct scsi_device *device)
6628 {
6629   int tag_enabled = FALSE;
6630   struct aic_dev_data *aic_dev = device->hostdata;
6631   unsigned char tindex;
6632
6633   tindex = device->id | (device->channel << 3);
6634
6635   if (device->simple_tags)
6636     return; // We've already enabled this device
6637
6638   if (device->tagged_supported)
6639   {
6640     tag_enabled = TRUE;
6641
6642     if (!(p->discenable & (1 << tindex)))
6643     {
6644       if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
6645         printk(INFO_LEAD "Disconnection disabled, unable to "
6646              "enable tagged queueing.\n",
6647              p->host_no, device->channel, device->id, device->lun);
6648       tag_enabled = FALSE;
6649     }
6650     else
6651     {
6652       if (p->instance >= ARRAY_SIZE(aic7xxx_tag_info))
6653       {
6654         static int print_warning = TRUE;
6655         if(print_warning)
6656         {
6657           printk(KERN_INFO "aic7xxx: WARNING, insufficient tag_info instances for"
6658                            " installed controllers.\n");
6659           printk(KERN_INFO "aic7xxx: Please update the aic7xxx_tag_info array in"
6660                            " the aic7xxx.c source file.\n");
6661           print_warning = FALSE;
6662         }
6663         aic_dev->max_q_depth = aic_dev->temp_q_depth =
6664                 aic7xxx_default_queue_depth;
6665       }
6666       else
6667       {
6668
6669         if (aic7xxx_tag_info[p->instance].tag_commands[tindex] == 255)
6670         {
6671           tag_enabled = FALSE;
6672         }
6673         else if (aic7xxx_tag_info[p->instance].tag_commands[tindex] == 0)
6674         {
6675           aic_dev->max_q_depth = aic_dev->temp_q_depth =
6676                   aic7xxx_default_queue_depth;
6677         }
6678         else
6679         {
6680           aic_dev->max_q_depth = aic_dev->temp_q_depth = 
6681             aic7xxx_tag_info[p->instance].tag_commands[tindex];
6682         }
6683       }
6684     }
6685   }
6686   if (tag_enabled)
6687   {
6688     if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
6689     {
6690           printk(INFO_LEAD "Tagged queuing enabled, queue depth %d.\n",
6691             p->host_no, device->channel, device->id,
6692             device->lun, aic_dev->max_q_depth);
6693     }
6694     scsi_adjust_queue_depth(device, MSG_ORDERED_TAG, aic_dev->max_q_depth);
6695   }
6696   else
6697   {
6698     if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
6699     {
6700           printk(INFO_LEAD "Tagged queuing disabled, queue depth %d.\n",
6701             p->host_no, device->channel, device->id,
6702             device->lun, device->host->cmd_per_lun);
6703     }
6704     scsi_adjust_queue_depth(device, 0, device->host->cmd_per_lun);
6705   }
6706   return;
6707 }
6708
6709 /*+F*************************************************************************
6710  * Function:
6711  *   aic7xxx_slave_destroy
6712  *
6713  * Description:
6714  *   prepare for this device to go away
6715  *-F*************************************************************************/
6716 static void
6717 aic7xxx_slave_destroy(struct scsi_device *SDptr)
6718 {
6719   struct aic_dev_data *aic_dev = SDptr->hostdata;
6720
6721   list_del(&aic_dev->list);
6722   SDptr->hostdata = NULL;
6723   kfree(aic_dev);
6724   return;
6725 }
6726
6727 /*+F*************************************************************************
6728  * Function:
6729  *   aic7xxx_slave_configure
6730  *
6731  * Description:
6732  *   Configure the device we are attaching to the controller.  This is
6733  *   where we get to do things like scan the INQUIRY data, set queue
6734  *   depths, allocate command structs, etc.
6735  *-F*************************************************************************/
6736 static int
6737 aic7xxx_slave_configure(struct scsi_device *SDptr)
6738 {
6739   struct aic7xxx_host *p = (struct aic7xxx_host *) SDptr->host->hostdata;
6740   struct aic_dev_data *aic_dev;
6741   int scbnum;
6742
6743   aic_dev = (struct aic_dev_data *)SDptr->hostdata;
6744
6745   aic7xxx_init_transinfo(p, aic_dev);
6746   aic7xxx_device_queue_depth(p, SDptr);
6747   if(list_empty(&aic_dev->list))
6748     list_add_tail(&aic_dev->list, &p->aic_devs);
6749
6750   scbnum = 0;
6751   list_for_each_entry(aic_dev, &p->aic_devs, list) {
6752     scbnum += aic_dev->max_q_depth;
6753   }
6754   while (scbnum > p->scb_data->numscbs)
6755   {
6756     /*
6757      * Pre-allocate the needed SCBs to get around the possibility of having
6758      * to allocate some when memory is more or less exhausted and we need
6759      * the SCB in order to perform a swap operation (possible deadlock)
6760      */
6761     if ( aic7xxx_allocate_scb(p) == 0 )
6762       break;
6763   }
6764
6765
6766   return(0);
6767 }
6768
6769 /*+F*************************************************************************
6770  * Function:
6771  *   aic7xxx_probe
6772  *
6773  * Description:
6774  *   Probing for EISA boards: it looks like the first two bytes
6775  *   are a manufacturer code - three characters, five bits each:
6776  *
6777  *               BYTE 0   BYTE 1   BYTE 2   BYTE 3
6778  *              ?1111122 22233333 PPPPPPPP RRRRRRRR
6779  *
6780  *   The characters are baselined off ASCII '@', so add that value
6781  *   to each to get the real ASCII code for it. The next two bytes
6782  *   appear to be a product and revision number, probably vendor-
6783  *   specific. This is what is being searched for at each port,
6784  *   and what should probably correspond to the ID= field in the
6785  *   ECU's .cfg file for the card - if your card is not detected,
6786  *   make sure your signature is listed in the array.
6787  *
6788  *   The fourth byte's lowest bit seems to be an enabled/disabled
6789  *   flag (rest of the bits are reserved?).
6790  *
6791  * NOTE:  This function is only needed on Intel and Alpha platforms,
6792  *   the other platforms we support don't have EISA/VLB busses.  So,
6793  *   we #ifdef this entire function to avoid compiler warnings about
6794  *   an unused function.
6795  *-F*************************************************************************/
6796 #if defined(__i386__) || defined(__alpha__)
6797 static int
6798 aic7xxx_probe(int slot, int base, ahc_flag_type *flags)
6799 {
6800   int i;
6801   unsigned char buf[4];
6802
6803   static struct {
6804     int n;
6805     unsigned char signature[sizeof(buf)];
6806     ahc_chip type;
6807     int bios_disabled;
6808   } AIC7xxx[] = {
6809     { 4, { 0x04, 0x90, 0x77, 0x70 },
6810       AHC_AIC7770|AHC_EISA, FALSE },  /* mb 7770  */
6811     { 4, { 0x04, 0x90, 0x77, 0x71 },
6812       AHC_AIC7770|AHC_EISA, FALSE }, /* host adapter 274x */
6813     { 4, { 0x04, 0x90, 0x77, 0x56 },
6814       AHC_AIC7770|AHC_VL, FALSE }, /* 284x BIOS enabled */
6815     { 4, { 0x04, 0x90, 0x77, 0x57 },
6816       AHC_AIC7770|AHC_VL, TRUE }   /* 284x BIOS disabled */
6817   };
6818
6819   /*
6820    * The VL-bus cards need to be primed by
6821    * writing before a signature check.
6822    */
6823   for (i = 0; i < sizeof(buf); i++)
6824   {
6825     outb(0x80 + i, base);
6826     buf[i] = inb(base + i);
6827   }
6828
6829   for (i = 0; i < ARRAY_SIZE(AIC7xxx); i++)
6830   {
6831     /*
6832      * Signature match on enabled card?
6833      */
6834     if (!memcmp(buf, AIC7xxx[i].signature, AIC7xxx[i].n))
6835     {
6836       if (inb(base + 4) & 1)
6837       {
6838         if (AIC7xxx[i].bios_disabled)
6839         {
6840           *flags |= AHC_USEDEFAULTS;
6841         }
6842         else
6843         {
6844           *flags |= AHC_BIOS_ENABLED;
6845         }
6846         return (i);
6847       }
6848
6849       printk("aic7xxx: <Adaptec 7770 SCSI Host Adapter> "
6850              "disabled at slot %d, ignored.\n", slot);
6851     }
6852   }
6853
6854   return (-1);
6855 }
6856 #endif /* (__i386__) || (__alpha__) */
6857
6858
6859 /*+F*************************************************************************
6860  * Function:
6861  *   read_2840_seeprom
6862  *
6863  * Description:
6864  *   Reads the 2840 serial EEPROM and returns 1 if successful and 0 if
6865  *   not successful.
6866  *
6867  *   See read_seeprom (for the 2940) for the instruction set of the 93C46
6868  *   chip.
6869  *
6870  *   The 2840 interface to the 93C46 serial EEPROM is through the
6871  *   STATUS_2840 and SEECTL_2840 registers.  The CS_2840, CK_2840, and
6872  *   DO_2840 bits of the SEECTL_2840 register are connected to the chip
6873  *   select, clock, and data out lines respectively of the serial EEPROM.
6874  *   The DI_2840 bit of the STATUS_2840 is connected to the data in line
6875  *   of the serial EEPROM.  The EEPROM_TF bit of STATUS_2840 register is
6876  *   useful in that it gives us an 800 nsec timer.  After a read from the
6877  *   SEECTL_2840 register the timing flag is cleared and goes high 800 nsec
6878  *   later.
6879  *-F*************************************************************************/
6880 static int
6881 read_284x_seeprom(struct aic7xxx_host *p, struct seeprom_config *sc)
6882 {
6883   int i = 0, k = 0;
6884   unsigned char temp;
6885   unsigned short checksum = 0;
6886   unsigned short *seeprom = (unsigned short *) sc;
6887   struct seeprom_cmd {
6888     unsigned char len;
6889     unsigned char bits[3];
6890   };
6891   struct seeprom_cmd seeprom_read = {3, {1, 1, 0}};
6892
6893 #define CLOCK_PULSE(p) \
6894   while ((aic_inb(p, STATUS_2840) & EEPROM_TF) == 0)        \
6895   {                                                \
6896     ;  /* Do nothing */                                \
6897   }                                                \
6898   (void) aic_inb(p, SEECTL_2840);
6899
6900   /*
6901    * Read the first 32 registers of the seeprom.  For the 2840,
6902    * the 93C46 SEEPROM is a 1024-bit device with 64 16-bit registers
6903    * but only the first 32 are used by Adaptec BIOS.  The loop
6904    * will range from 0 to 31.
6905    */
6906   for (k = 0; k < (sizeof(*sc) / 2); k++)
6907   {
6908     /*
6909      * Send chip select for one clock cycle.
6910      */
6911     aic_outb(p, CK_2840 | CS_2840, SEECTL_2840);
6912     CLOCK_PULSE(p);
6913
6914     /*
6915      * Now we're ready to send the read command followed by the
6916      * address of the 16-bit register we want to read.
6917      */
6918     for (i = 0; i < seeprom_read.len; i++)
6919     {
6920       temp = CS_2840 | seeprom_read.bits[i];
6921       aic_outb(p, temp, SEECTL_2840);
6922       CLOCK_PULSE(p);
6923       temp = temp ^ CK_2840;
6924       aic_outb(p, temp, SEECTL_2840);
6925       CLOCK_PULSE(p);
6926     }
6927     /*
6928      * Send the 6 bit address (MSB first, LSB last).
6929      */
6930     for (i = 5; i >= 0; i--)
6931     {
6932       temp = k;
6933       temp = (temp >> i) & 1;  /* Mask out all but lower bit. */
6934       temp = CS_2840 | temp;
6935       aic_outb(p, temp, SEECTL_2840);
6936       CLOCK_PULSE(p);
6937       temp = temp ^ CK_2840;
6938       aic_outb(p, temp, SEECTL_2840);
6939       CLOCK_PULSE(p);
6940     }
6941
6942     /*
6943      * Now read the 16 bit register.  An initial 0 precedes the
6944      * register contents which begins with bit 15 (MSB) and ends
6945      * with bit 0 (LSB).  The initial 0 will be shifted off the
6946      * top of our word as we let the loop run from 0 to 16.
6947      */
6948     for (i = 0; i <= 16; i++)
6949     {
6950       temp = CS_2840;
6951       aic_outb(p, temp, SEECTL_2840);
6952       CLOCK_PULSE(p);
6953       temp = temp ^ CK_2840;
6954       seeprom[k] = (seeprom[k] << 1) | (aic_inb(p, STATUS_2840) & DI_2840);
6955       aic_outb(p, temp, SEECTL_2840);
6956       CLOCK_PULSE(p);
6957     }
6958     /*
6959      * The serial EEPROM has a checksum in the last word.  Keep a
6960      * running checksum for all words read except for the last
6961      * word.  We'll verify the checksum after all words have been
6962      * read.
6963      */
6964     if (k < (sizeof(*sc) / 2) - 1)
6965     {
6966       checksum = checksum + seeprom[k];
6967     }
6968
6969     /*
6970      * Reset the chip select for the next command cycle.
6971      */
6972     aic_outb(p, 0, SEECTL_2840);
6973     CLOCK_PULSE(p);
6974     aic_outb(p, CK_2840, SEECTL_2840);
6975     CLOCK_PULSE(p);
6976     aic_outb(p, 0, SEECTL_2840);
6977     CLOCK_PULSE(p);
6978   }
6979
6980 #if 0
6981   printk("Computed checksum 0x%x, checksum read 0x%x\n", checksum, sc->checksum);
6982   printk("Serial EEPROM:");
6983   for (k = 0; k < (sizeof(*sc) / 2); k++)
6984   {
6985     if (((k % 8) == 0) && (k != 0))
6986     {
6987       printk("\n              ");
6988     }
6989     printk(" 0x%x", seeprom[k]);
6990   }
6991   printk("\n");
6992 #endif
6993
6994   if (checksum != sc->checksum)
6995   {
6996     printk("aic7xxx: SEEPROM checksum error, ignoring SEEPROM settings.\n");
6997     return (0);
6998   }
6999
7000   return (1);
7001 #undef CLOCK_PULSE
7002 }
7003
7004 #define CLOCK_PULSE(p)                                               \
7005   do {                                                               \
7006     int limit = 0;                                                   \
7007     do {                                                             \
7008       mb();                                                          \
7009       pause_sequencer(p);  /* This is just to generate some PCI */   \
7010                            /* traffic so the PCI read is flushed */  \
7011                            /* it shouldn't be needed, but some */    \
7012                            /* chipsets do indeed appear to need */   \
7013                            /* something to force PCI reads to get */ \
7014                            /* flushed */                             \
7015       udelay(1);           /* Do nothing */                          \
7016     } while (((aic_inb(p, SEECTL) & SEERDY) == 0) && (++limit < 1000)); \
7017   } while(0)
7018
7019 /*+F*************************************************************************
7020  * Function:
7021  *   acquire_seeprom
7022  *
7023  * Description:
7024  *   Acquires access to the memory port on PCI controllers.
7025  *-F*************************************************************************/
7026 static int
7027 acquire_seeprom(struct aic7xxx_host *p)
7028 {
7029
7030   /*
7031    * Request access of the memory port.  When access is
7032    * granted, SEERDY will go high.  We use a 1 second
7033    * timeout which should be near 1 second more than
7034    * is needed.  Reason: after the 7870 chip reset, there
7035    * should be no contention.
7036    */
7037   aic_outb(p, SEEMS, SEECTL);
7038   CLOCK_PULSE(p);
7039   if ((aic_inb(p, SEECTL) & SEERDY) == 0)
7040   {
7041     aic_outb(p, 0, SEECTL);
7042     return (0);
7043   }
7044   return (1);
7045 }
7046
7047 /*+F*************************************************************************
7048  * Function:
7049  *   release_seeprom
7050  *
7051  * Description:
7052  *   Releases access to the memory port on PCI controllers.
7053  *-F*************************************************************************/
7054 static void
7055 release_seeprom(struct aic7xxx_host *p)
7056 {
7057   /*
7058    * Make sure the SEEPROM is ready before we release it.
7059    */
7060   CLOCK_PULSE(p);
7061   aic_outb(p, 0, SEECTL);
7062 }
7063
7064 /*+F*************************************************************************
7065  * Function:
7066  *   read_seeprom
7067  *
7068  * Description:
7069  *   Reads the serial EEPROM and returns 1 if successful and 0 if
7070  *   not successful.
7071  *
7072  *   The instruction set of the 93C46/56/66 chips is as follows:
7073  *
7074  *               Start  OP
7075  *     Function   Bit  Code  Address    Data     Description
7076  *     -------------------------------------------------------------------
7077  *     READ        1    10   A5 - A0             Reads data stored in memory,
7078  *                                               starting at specified address
7079  *     EWEN        1    00   11XXXX              Write enable must precede
7080  *                                               all programming modes
7081  *     ERASE       1    11   A5 - A0             Erase register A5A4A3A2A1A0
7082  *     WRITE       1    01   A5 - A0   D15 - D0  Writes register
7083  *     ERAL        1    00   10XXXX              Erase all registers
7084  *     WRAL        1    00   01XXXX    D15 - D0  Writes to all registers
7085  *     EWDS        1    00   00XXXX              Disables all programming
7086  *                                               instructions
7087  *     *Note: A value of X for address is a don't care condition.
7088  *     *Note: The 93C56 and 93C66 have 8 address bits.
7089  * 
7090  *
7091  *   The 93C46 has a four wire interface: clock, chip select, data in, and
7092  *   data out.  In order to perform one of the above functions, you need
7093  *   to enable the chip select for a clock period (typically a minimum of
7094  *   1 usec, with the clock high and low a minimum of 750 and 250 nsec
7095  *   respectively.  While the chip select remains high, you can clock in
7096  *   the instructions (above) starting with the start bit, followed by the
7097  *   OP code, Address, and Data (if needed).  For the READ instruction, the
7098  *   requested 16-bit register contents is read from the data out line but
7099  *   is preceded by an initial zero (leading 0, followed by 16-bits, MSB
7100  *   first).  The clock cycling from low to high initiates the next data
7101  *   bit to be sent from the chip.
7102  *
7103  *   The 78xx interface to the 93C46 serial EEPROM is through the SEECTL
7104  *   register.  After successful arbitration for the memory port, the
7105  *   SEECS bit of the SEECTL register is connected to the chip select.
7106  *   The SEECK, SEEDO, and SEEDI are connected to the clock, data out,
7107  *   and data in lines respectively.  The SEERDY bit of SEECTL is useful
7108  *   in that it gives us an 800 nsec timer.  After a write to the SEECTL
7109  *   register, the SEERDY goes high 800 nsec later.  The one exception
7110  *   to this is when we first request access to the memory port.  The
7111  *   SEERDY goes high to signify that access has been granted and, for
7112  *   this case, has no implied timing.
7113  *-F*************************************************************************/
7114 static int
7115 read_seeprom(struct aic7xxx_host *p, int offset, 
7116     unsigned short *scarray, unsigned int len, seeprom_chip_type chip)
7117 {
7118   int i = 0, k;
7119   unsigned char temp;
7120   unsigned short checksum = 0;
7121   struct seeprom_cmd {
7122     unsigned char len;
7123     unsigned char bits[3];
7124   };
7125   struct seeprom_cmd seeprom_read = {3, {1, 1, 0}};
7126
7127   /*
7128    * Request access of the memory port.
7129    */
7130   if (acquire_seeprom(p) == 0)
7131   {
7132     return (0);
7133   }
7134
7135   /*
7136    * Read 'len' registers of the seeprom.  For the 7870, the 93C46
7137    * SEEPROM is a 1024-bit device with 64 16-bit registers but only
7138    * the first 32 are used by Adaptec BIOS.  Some adapters use the
7139    * 93C56 SEEPROM which is a 2048-bit device.  The loop will range
7140    * from 0 to 'len' - 1.
7141    */
7142   for (k = 0; k < len; k++)
7143   {
7144     /*
7145      * Send chip select for one clock cycle.
7146      */
7147     aic_outb(p, SEEMS | SEECK | SEECS, SEECTL);
7148     CLOCK_PULSE(p);
7149
7150     /*
7151      * Now we're ready to send the read command followed by the
7152      * address of the 16-bit register we want to read.
7153      */
7154     for (i = 0; i < seeprom_read.len; i++)
7155     {
7156       temp = SEEMS | SEECS | (seeprom_read.bits[i] << 1);
7157       aic_outb(p, temp, SEECTL);
7158       CLOCK_PULSE(p);
7159       temp = temp ^ SEECK;
7160       aic_outb(p, temp, SEECTL);
7161       CLOCK_PULSE(p);
7162     }
7163     /*
7164      * Send the 6 or 8 bit address (MSB first, LSB last).
7165      */
7166     for (i = ((int) chip - 1); i >= 0; i--)
7167     {
7168       temp = k + offset;
7169       temp = (temp >> i) & 1;  /* Mask out all but lower bit. */
7170       temp = SEEMS | SEECS | (temp << 1);
7171       aic_outb(p, temp, SEECTL);
7172       CLOCK_PULSE(p);
7173       temp = temp ^ SEECK;
7174       aic_outb(p, temp, SEECTL);
7175       CLOCK_PULSE(p);
7176     }
7177
7178     /*
7179      * Now read the 16 bit register.  An initial 0 precedes the
7180      * register contents which begins with bit 15 (MSB) and ends
7181      * with bit 0 (LSB).  The initial 0 will be shifted off the
7182      * top of our word as we let the loop run from 0 to 16.
7183      */
7184     for (i = 0; i <= 16; i++)
7185     {
7186       temp = SEEMS | SEECS;
7187       aic_outb(p, temp, SEECTL);
7188       CLOCK_PULSE(p);
7189       temp = temp ^ SEECK;
7190       scarray[k] = (scarray[k] << 1) | (aic_inb(p, SEECTL) & SEEDI);
7191       aic_outb(p, temp, SEECTL);
7192       CLOCK_PULSE(p);
7193     }
7194
7195     /*
7196      * The serial EEPROM should have a checksum in the last word.
7197      * Keep a running checksum for all words read except for the
7198      * last word.  We'll verify the checksum after all words have
7199      * been read.
7200      */
7201     if (k < (len - 1))
7202     {
7203       checksum = checksum + scarray[k];
7204     }
7205
7206     /*
7207      * Reset the chip select for the next command cycle.
7208      */
7209     aic_outb(p, SEEMS, SEECTL);
7210     CLOCK_PULSE(p);
7211     aic_outb(p, SEEMS | SEECK, SEECTL);
7212     CLOCK_PULSE(p);
7213     aic_outb(p, SEEMS, SEECTL);
7214     CLOCK_PULSE(p);
7215   }
7216
7217   /*
7218    * Release access to the memory port and the serial EEPROM.
7219    */
7220   release_seeprom(p);
7221
7222 #if 0
7223   printk("Computed checksum 0x%x, checksum read 0x%x\n",
7224          checksum, scarray[len - 1]);
7225   printk("Serial EEPROM:");
7226   for (k = 0; k < len; k++)
7227   {
7228     if (((k % 8) == 0) && (k != 0))
7229     {
7230       printk("\n              ");
7231     }
7232     printk(" 0x%x", scarray[k]);
7233   }
7234   printk("\n");
7235 #endif
7236   if ( (checksum != scarray[len - 1]) || (checksum == 0) )
7237   {
7238     return (0);
7239   }
7240
7241   return (1);
7242 }
7243
7244 /*+F*************************************************************************
7245  * Function:
7246  *   read_brdctl
7247  *
7248  * Description:
7249  *   Reads the BRDCTL register.
7250  *-F*************************************************************************/
7251 static unsigned char
7252 read_brdctl(struct aic7xxx_host *p)
7253 {
7254   unsigned char brdctl, value;
7255
7256   /*
7257    * Make sure the SEEPROM is ready before we access it
7258    */
7259   CLOCK_PULSE(p);
7260   if (p->features & AHC_ULTRA2)
7261   {
7262     brdctl = BRDRW_ULTRA2;
7263     aic_outb(p, brdctl, BRDCTL);
7264     CLOCK_PULSE(p);
7265     value = aic_inb(p, BRDCTL);
7266     CLOCK_PULSE(p);
7267     return(value);
7268   }
7269   brdctl = BRDRW;
7270   if ( !((p->chip & AHC_CHIPID_MASK) == AHC_AIC7895) ||
7271         (p->flags & AHC_CHNLB) )
7272   {
7273     brdctl |= BRDCS;
7274   }
7275   aic_outb(p, brdctl, BRDCTL);
7276   CLOCK_PULSE(p);
7277   value = aic_inb(p, BRDCTL);
7278   CLOCK_PULSE(p);
7279   aic_outb(p, 0, BRDCTL);
7280   CLOCK_PULSE(p);
7281   return (value);
7282 }
7283
7284 /*+F*************************************************************************
7285  * Function:
7286  *   write_brdctl
7287  *
7288  * Description:
7289  *   Writes a value to the BRDCTL register.
7290  *-F*************************************************************************/
7291 static void
7292 write_brdctl(struct aic7xxx_host *p, unsigned char value)
7293 {
7294   unsigned char brdctl;
7295
7296   /*
7297    * Make sure the SEEPROM is ready before we access it
7298    */
7299   CLOCK_PULSE(p);
7300   if (p->features & AHC_ULTRA2)
7301   {
7302     brdctl = value;
7303     aic_outb(p, brdctl, BRDCTL);
7304     CLOCK_PULSE(p);
7305     brdctl |= BRDSTB_ULTRA2;
7306     aic_outb(p, brdctl, BRDCTL);
7307     CLOCK_PULSE(p);
7308     brdctl &= ~BRDSTB_ULTRA2;
7309     aic_outb(p, brdctl, BRDCTL);
7310     CLOCK_PULSE(p);
7311     read_brdctl(p);
7312     CLOCK_PULSE(p);
7313   }
7314   else
7315   {
7316     brdctl = BRDSTB;
7317     if ( !((p->chip & AHC_CHIPID_MASK) == AHC_AIC7895) ||
7318           (p->flags & AHC_CHNLB) )
7319     {
7320       brdctl |= BRDCS;
7321     }
7322     brdctl = BRDSTB | BRDCS;
7323     aic_outb(p, brdctl, BRDCTL);
7324     CLOCK_PULSE(p);
7325     brdctl |= value;
7326     aic_outb(p, brdctl, BRDCTL);
7327     CLOCK_PULSE(p);
7328     brdctl &= ~BRDSTB;
7329     aic_outb(p, brdctl, BRDCTL);
7330     CLOCK_PULSE(p);
7331     brdctl &= ~BRDCS;
7332     aic_outb(p, brdctl, BRDCTL);
7333     CLOCK_PULSE(p);
7334   }
7335 }
7336
7337 /*+F*************************************************************************
7338  * Function:
7339  *   aic785x_cable_detect
7340  *
7341  * Description:
7342  *   Detect the cables that are present on aic785x class controller chips
7343  *-F*************************************************************************/
7344 static void
7345 aic785x_cable_detect(struct aic7xxx_host *p, int *int_50,
7346     int *ext_present, int *eeprom)
7347 {
7348   unsigned char brdctl;
7349
7350   aic_outb(p, BRDRW | BRDCS, BRDCTL);
7351   CLOCK_PULSE(p);
7352   aic_outb(p, 0, BRDCTL);
7353   CLOCK_PULSE(p);
7354   brdctl = aic_inb(p, BRDCTL);
7355   CLOCK_PULSE(p);
7356   *int_50 = !(brdctl & BRDDAT5);
7357   *ext_present = !(brdctl & BRDDAT6);
7358   *eeprom = (aic_inb(p, SPIOCAP) & EEPROM);
7359 }
7360
7361 #undef CLOCK_PULSE
7362
7363 /*+F*************************************************************************
7364  * Function:
7365  *   aic2940_uwpro_cable_detect
7366  *
7367  * Description:
7368  *   Detect the cables that are present on the 2940-UWPro cards
7369  *
7370  * NOTE: This function assumes the SEEPROM will have already been acquired
7371  *       prior to invocation of this function.
7372  *-F*************************************************************************/
7373 static void
7374 aic2940_uwpro_wide_cable_detect(struct aic7xxx_host *p, int *int_68,
7375     int *ext_68, int *eeprom)
7376 {
7377   unsigned char brdctl;
7378
7379   /*
7380    * First read the status of our cables.  Set the rom bank to
7381    * 0 since the bank setting serves as a multiplexor for the
7382    * cable detection logic.  BRDDAT5 controls the bank switch.
7383    */
7384   write_brdctl(p, 0);
7385
7386   /*
7387    * Now we read the state of the internal 68 connector.  BRDDAT6
7388    * is don't care, BRDDAT7 is internal 68.  The cable is
7389    * present if the bit is 0
7390    */
7391   brdctl = read_brdctl(p);
7392   *int_68 = !(brdctl & BRDDAT7);
7393
7394   /*
7395    * Set the bank bit in brdctl and then read the external cable state
7396    * and the EEPROM status
7397    */
7398   write_brdctl(p, BRDDAT5);
7399   brdctl = read_brdctl(p);
7400
7401   *ext_68 = !(brdctl & BRDDAT6);
7402   *eeprom = !(brdctl & BRDDAT7);
7403
7404   /*
7405    * We're done, the calling function will release the SEEPROM for us
7406    */
7407 }
7408
7409 /*+F*************************************************************************
7410  * Function:
7411  *   aic787x_cable_detect
7412  *
7413  * Description:
7414  *   Detect the cables that are present on aic787x class controller chips
7415  *
7416  * NOTE: This function assumes the SEEPROM will have already been acquired
7417  *       prior to invocation of this function.
7418  *-F*************************************************************************/
7419 static void
7420 aic787x_cable_detect(struct aic7xxx_host *p, int *int_50, int *int_68,
7421     int *ext_present, int *eeprom)
7422 {
7423   unsigned char brdctl;
7424
7425   /*
7426    * First read the status of our cables.  Set the rom bank to
7427    * 0 since the bank setting serves as a multiplexor for the
7428    * cable detection logic.  BRDDAT5 controls the bank switch.
7429    */
7430   write_brdctl(p, 0);
7431
7432   /*
7433    * Now we read the state of the two internal connectors.  BRDDAT6
7434    * is internal 50, BRDDAT7 is internal 68.  For each, the cable is
7435    * present if the bit is 0
7436    */
7437   brdctl = read_brdctl(p);
7438   *int_50 = !(brdctl & BRDDAT6);
7439   *int_68 = !(brdctl & BRDDAT7);
7440
7441   /*
7442    * Set the bank bit in brdctl and then read the external cable state
7443    * and the EEPROM status
7444    */
7445   write_brdctl(p, BRDDAT5);
7446   brdctl = read_brdctl(p);
7447
7448   *ext_present = !(brdctl & BRDDAT6);
7449   *eeprom = !(brdctl & BRDDAT7);
7450
7451   /*
7452    * We're done, the calling function will release the SEEPROM for us
7453    */
7454 }
7455
7456 /*+F*************************************************************************
7457  * Function:
7458  *   aic787x_ultra2_term_detect
7459  *
7460  * Description:
7461  *   Detect the termination settings present on ultra2 class controllers
7462  *
7463  * NOTE: This function assumes the SEEPROM will have already been acquired
7464  *       prior to invocation of this function.
7465  *-F*************************************************************************/
7466 static void
7467 aic7xxx_ultra2_term_detect(struct aic7xxx_host *p, int *enableSE_low,
7468                            int *enableSE_high, int *enableLVD_low,
7469                            int *enableLVD_high, int *eprom_present)
7470 {
7471   unsigned char brdctl;
7472
7473   brdctl = read_brdctl(p);
7474
7475   *eprom_present  = (brdctl & BRDDAT7);
7476   *enableSE_high  = (brdctl & BRDDAT6);
7477   *enableSE_low   = (brdctl & BRDDAT5);
7478   *enableLVD_high = (brdctl & BRDDAT4);
7479   *enableLVD_low  = (brdctl & BRDDAT3);
7480 }
7481
7482 /*+F*************************************************************************
7483  * Function:
7484  *   configure_termination
7485  *
7486  * Description:
7487  *   Configures the termination settings on PCI adapters that have
7488  *   SEEPROMs available.
7489  *-F*************************************************************************/
7490 static void
7491 configure_termination(struct aic7xxx_host *p)
7492 {
7493   int internal50_present = 0;
7494   int internal68_present = 0;
7495   int external_present = 0;
7496   int eprom_present = 0;
7497   int enableSE_low = 0;
7498   int enableSE_high = 0;
7499   int enableLVD_low = 0;
7500   int enableLVD_high = 0;
7501   unsigned char brddat = 0;
7502   unsigned char max_target = 0;
7503   unsigned char sxfrctl1 = aic_inb(p, SXFRCTL1);
7504
7505   if (acquire_seeprom(p))
7506   {
7507     if (p->features & (AHC_WIDE|AHC_TWIN))
7508       max_target = 16;
7509     else
7510       max_target = 8;
7511     aic_outb(p, SEEMS | SEECS, SEECTL);
7512     sxfrctl1 &= ~STPWEN;
7513     /*
7514      * The termination/cable detection logic is split into three distinct
7515      * groups.  Ultra2 and later controllers, 2940UW-Pro controllers, and
7516      * older 7850, 7860, 7870, 7880, and 7895 controllers.  Each has its
7517      * own unique way of detecting their cables and writing the results
7518      * back to the card.
7519      */
7520     if (p->features & AHC_ULTRA2)
7521     {
7522       /*
7523        * As long as user hasn't overridden term settings, always check the
7524        * cable detection logic
7525        */
7526       if (aic7xxx_override_term == -1)
7527       {
7528         aic7xxx_ultra2_term_detect(p, &enableSE_low, &enableSE_high,
7529                                    &enableLVD_low, &enableLVD_high,
7530                                    &eprom_present);
7531       }
7532       
7533       /*
7534        * If the user is overriding settings, then they have been preserved
7535        * to here as fake adapter_control entries.  Parse them and allow
7536        * them to override the detected settings (if we even did detection).
7537        */
7538       if (!(p->adapter_control & CFSEAUTOTERM))
7539       {
7540         enableSE_low = (p->adapter_control & CFSTERM);
7541         enableSE_high = (p->adapter_control & CFWSTERM);
7542       }
7543       if (!(p->adapter_control & CFAUTOTERM))
7544       {
7545         enableLVD_low = enableLVD_high = (p->adapter_control & CFLVDSTERM);
7546       }
7547
7548       /*
7549        * Now take those settings that we have and translate them into the
7550        * values that must be written into the registers.
7551        *
7552        * Flash Enable = BRDDAT7
7553        * Secondary High Term Enable = BRDDAT6
7554        * Secondary Low Term Enable = BRDDAT5
7555        * LVD/Primary High Term Enable = BRDDAT4
7556        * LVD/Primary Low Term Enable = STPWEN bit in SXFRCTL1
7557        */
7558       if (enableLVD_low != 0)
7559       {
7560         sxfrctl1 |= STPWEN;
7561         p->flags |= AHC_TERM_ENB_LVD;
7562         if (aic7xxx_verbose & VERBOSE_PROBE2)
7563           printk(KERN_INFO "(scsi%d) LVD/Primary Low byte termination "
7564                  "Enabled\n", p->host_no);
7565       }
7566           
7567       if (enableLVD_high != 0)
7568       {
7569         brddat |= BRDDAT4;
7570         if (aic7xxx_verbose & VERBOSE_PROBE2)
7571           printk(KERN_INFO "(scsi%d) LVD/Primary High byte termination "
7572                  "Enabled\n", p->host_no);
7573       }
7574
7575       if (enableSE_low != 0)
7576       {
7577         brddat |= BRDDAT5;
7578         if (aic7xxx_verbose & VERBOSE_PROBE2)
7579           printk(KERN_INFO "(scsi%d) Secondary Low byte termination "
7580                  "Enabled\n", p->host_no);
7581       }
7582
7583       if (enableSE_high != 0)
7584       {
7585         brddat |= BRDDAT6;
7586         if (aic7xxx_verbose & VERBOSE_PROBE2)
7587           printk(KERN_INFO "(scsi%d) Secondary High byte termination "
7588                  "Enabled\n", p->host_no);
7589       }
7590     }
7591     else if (p->features & AHC_NEW_AUTOTERM)
7592     {
7593       /*
7594        * The 50 pin connector termination is controlled by STPWEN in the
7595        * SXFRCTL1 register.  Since the Adaptec docs typically say the
7596        * controller is not allowed to be in the middle of a cable and
7597        * this is the only connection on that stub of the bus, there is
7598        * no need to even check for narrow termination, it's simply
7599        * always on.
7600        */
7601       sxfrctl1 |= STPWEN;
7602       if (aic7xxx_verbose & VERBOSE_PROBE2)
7603         printk(KERN_INFO "(scsi%d) Narrow channel termination Enabled\n",
7604                p->host_no);
7605
7606       if (p->adapter_control & CFAUTOTERM)
7607       {
7608         aic2940_uwpro_wide_cable_detect(p, &internal68_present,
7609                                         &external_present,
7610                                         &eprom_present);
7611         printk(KERN_INFO "(scsi%d) Cables present (Int-50 %s, Int-68 %s, "
7612                "Ext-68 %s)\n", p->host_no,
7613                "Don't Care",
7614                internal68_present ? "YES" : "NO",
7615                external_present ? "YES" : "NO");
7616         if (aic7xxx_verbose & VERBOSE_PROBE2)
7617           printk(KERN_INFO "(scsi%d) EEPROM %s present.\n", p->host_no,
7618                eprom_present ? "is" : "is not");
7619         if (internal68_present && external_present)
7620         {
7621           brddat = 0;
7622           p->flags &= ~AHC_TERM_ENB_SE_HIGH;
7623           if (aic7xxx_verbose & VERBOSE_PROBE2)
7624             printk(KERN_INFO "(scsi%d) Wide channel termination Disabled\n",
7625                    p->host_no);
7626         }
7627         else
7628         {
7629           brddat = BRDDAT6;
7630           p->flags |= AHC_TERM_ENB_SE_HIGH;
7631           if (aic7xxx_verbose & VERBOSE_PROBE2)
7632             printk(KERN_INFO "(scsi%d) Wide channel termination Enabled\n",
7633                    p->host_no);
7634         }
7635       }
7636       else
7637       {
7638         /*
7639          * The termination of the Wide channel is done more like normal
7640          * though, and the setting of this termination is done by writing
7641          * either a 0 or 1 to BRDDAT6 of the BRDDAT register
7642          */
7643         if (p->adapter_control & CFWSTERM)
7644         {
7645           brddat = BRDDAT6;
7646           p->flags |= AHC_TERM_ENB_SE_HIGH;
7647           if (aic7xxx_verbose & VERBOSE_PROBE2)
7648             printk(KERN_INFO "(scsi%d) Wide channel termination Enabled\n",
7649                    p->host_no);
7650         }
7651         else
7652         {
7653           brddat = 0;
7654         }
7655       }
7656     }
7657     else
7658     {
7659       if (p->adapter_control & CFAUTOTERM)
7660       {
7661         if (p->flags & AHC_MOTHERBOARD)
7662         {
7663           printk(KERN_INFO "(scsi%d) Warning - detected auto-termination\n",
7664                  p->host_no);
7665           printk(KERN_INFO "(scsi%d) Please verify driver detected settings "
7666             "are correct.\n", p->host_no);
7667           printk(KERN_INFO "(scsi%d) If not, then please properly set the "
7668             "device termination\n", p->host_no);
7669           printk(KERN_INFO "(scsi%d) in the Adaptec SCSI BIOS by hitting "
7670             "CTRL-A when prompted\n", p->host_no);
7671           printk(KERN_INFO "(scsi%d) during machine bootup.\n", p->host_no);
7672         }
7673         /* Configure auto termination. */
7674
7675         if ( (p->chip & AHC_CHIPID_MASK) >= AHC_AIC7870 )
7676         {
7677           aic787x_cable_detect(p, &internal50_present, &internal68_present,
7678             &external_present, &eprom_present);
7679         }
7680         else
7681         {
7682           aic785x_cable_detect(p, &internal50_present, &external_present,
7683             &eprom_present);
7684         }
7685
7686         if (max_target <= 8)
7687           internal68_present = 0;
7688
7689         if (max_target > 8)
7690         {
7691           printk(KERN_INFO "(scsi%d) Cables present (Int-50 %s, Int-68 %s, "
7692                  "Ext-68 %s)\n", p->host_no,
7693                  internal50_present ? "YES" : "NO",
7694                  internal68_present ? "YES" : "NO",
7695                  external_present ? "YES" : "NO");
7696         }
7697         else
7698         {
7699           printk(KERN_INFO "(scsi%d) Cables present (Int-50 %s, Ext-50 %s)\n",
7700                  p->host_no,
7701                  internal50_present ? "YES" : "NO",
7702                  external_present ? "YES" : "NO");
7703         }
7704         if (aic7xxx_verbose & VERBOSE_PROBE2)
7705           printk(KERN_INFO "(scsi%d) EEPROM %s present.\n", p->host_no,
7706                eprom_present ? "is" : "is not");
7707
7708         /*
7709          * Now set the termination based on what we found.  BRDDAT6
7710          * controls wide termination enable.
7711          * Flash Enable = BRDDAT7
7712          * SE High Term Enable = BRDDAT6
7713          */
7714         if (internal50_present && internal68_present && external_present)
7715         {
7716           printk(KERN_INFO "(scsi%d) Illegal cable configuration!!  Only two\n",
7717                  p->host_no);
7718           printk(KERN_INFO "(scsi%d) connectors on the SCSI controller may be "
7719                  "in use at a time!\n", p->host_no);
7720           /*
7721            * Force termination (low and high byte) on.  This is safer than
7722            * leaving it completely off, especially since this message comes
7723            * most often from motherboard controllers that don't even have 3
7724            * connectors, but instead are failing the cable detection.
7725            */
7726           internal50_present = external_present = 0;
7727           enableSE_high = enableSE_low = 1;
7728         }
7729
7730         if ((max_target > 8) &&
7731             ((external_present == 0) || (internal68_present == 0)) )
7732         {
7733           brddat |= BRDDAT6;
7734           p->flags |= AHC_TERM_ENB_SE_HIGH;
7735           if (aic7xxx_verbose & VERBOSE_PROBE2)
7736             printk(KERN_INFO "(scsi%d) SE High byte termination Enabled\n",
7737                    p->host_no);
7738         }
7739
7740         if ( ((internal50_present ? 1 : 0) +
7741               (internal68_present ? 1 : 0) +
7742               (external_present   ? 1 : 0)) <= 1 )
7743         {
7744           sxfrctl1 |= STPWEN;
7745           p->flags |= AHC_TERM_ENB_SE_LOW;
7746           if (aic7xxx_verbose & VERBOSE_PROBE2)
7747             printk(KERN_INFO "(scsi%d) SE Low byte termination Enabled\n",
7748                    p->host_no);
7749         }
7750       }
7751       else /* p->adapter_control & CFAUTOTERM */
7752       {
7753         if (p->adapter_control & CFSTERM)
7754         {
7755           sxfrctl1 |= STPWEN;
7756           if (aic7xxx_verbose & VERBOSE_PROBE2)
7757             printk(KERN_INFO "(scsi%d) SE Low byte termination Enabled\n",
7758                    p->host_no);
7759         }
7760
7761         if (p->adapter_control & CFWSTERM)
7762         {
7763           brddat |= BRDDAT6;
7764           if (aic7xxx_verbose & VERBOSE_PROBE2)
7765             printk(KERN_INFO "(scsi%d) SE High byte termination Enabled\n",
7766                    p->host_no);
7767         }
7768       }
7769     }
7770
7771     aic_outb(p, sxfrctl1, SXFRCTL1);
7772     write_brdctl(p, brddat);
7773     release_seeprom(p);
7774   }
7775 }
7776
7777 /*+F*************************************************************************
7778  * Function:
7779  *   detect_maxscb
7780  *
7781  * Description:
7782  *   Detects the maximum number of SCBs for the controller and returns
7783  *   the count and a mask in p (p->maxscbs, p->qcntmask).
7784  *-F*************************************************************************/
7785 static void
7786 detect_maxscb(struct aic7xxx_host *p)
7787 {
7788   int i;
7789
7790   /*
7791    * It's possible that we've already done this for multichannel
7792    * adapters.
7793    */
7794   if (p->scb_data->maxhscbs == 0)
7795   {
7796     /*
7797      * We haven't initialized the SCB settings yet.  Walk the SCBs to
7798      * determince how many there are.
7799      */
7800     aic_outb(p, 0, FREE_SCBH);
7801
7802     for (i = 0; i < AIC7XXX_MAXSCB; i++)
7803     {
7804       aic_outb(p, i, SCBPTR);
7805       aic_outb(p, i, SCB_CONTROL);
7806       if (aic_inb(p, SCB_CONTROL) != i)
7807         break;
7808       aic_outb(p, 0, SCBPTR);
7809       if (aic_inb(p, SCB_CONTROL) != 0)
7810         break;
7811
7812       aic_outb(p, i, SCBPTR);
7813       aic_outb(p, 0, SCB_CONTROL);   /* Clear the control byte. */
7814       aic_outb(p, i + 1, SCB_NEXT);  /* Set the next pointer. */
7815       aic_outb(p, SCB_LIST_NULL, SCB_TAG);  /* Make the tag invalid. */
7816       aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS);  /* no busy untagged */
7817       aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS+1);/* targets active yet */
7818       aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS+2);
7819       aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS+3);
7820     }
7821
7822     /* Make sure the last SCB terminates the free list. */
7823     aic_outb(p, i - 1, SCBPTR);
7824     aic_outb(p, SCB_LIST_NULL, SCB_NEXT);
7825
7826     /* Ensure we clear the first (0) SCBs control byte. */
7827     aic_outb(p, 0, SCBPTR);
7828     aic_outb(p, 0, SCB_CONTROL);
7829
7830     p->scb_data->maxhscbs = i;
7831     /*
7832      * Use direct indexing instead for speed
7833      */
7834     if ( i == AIC7XXX_MAXSCB )
7835       p->flags &= ~AHC_PAGESCBS;
7836   }
7837
7838 }
7839
7840 /*+F*************************************************************************
7841  * Function:
7842  *   aic7xxx_register
7843  *
7844  * Description:
7845  *   Register a Adaptec aic7xxx chip SCSI controller with the kernel.
7846  *-F*************************************************************************/
7847 static int
7848 aic7xxx_register(struct scsi_host_template *template, struct aic7xxx_host *p,
7849   int reset_delay)
7850 {
7851   int i, result;
7852   int max_targets;
7853   int found = 1;
7854   unsigned char term, scsi_conf;
7855   struct Scsi_Host *host;
7856
7857   host = p->host;
7858
7859   p->scb_data->maxscbs = AIC7XXX_MAXSCB;
7860   host->can_queue = AIC7XXX_MAXSCB;
7861   host->cmd_per_lun = 3;
7862   host->sg_tablesize = AIC7XXX_MAX_SG;
7863   host->this_id = p->scsi_id;
7864   host->io_port = p->base;
7865   host->n_io_port = 0xFF;
7866   host->base = p->mbase;
7867   host->irq = p->irq;
7868   if (p->features & AHC_WIDE)
7869   {
7870     host->max_id = 16;
7871   }
7872   if (p->features & AHC_TWIN)
7873   {
7874     host->max_channel = 1;
7875   }
7876
7877   p->host = host;
7878   p->host_no = host->host_no;
7879   host->unique_id = p->instance;
7880   p->isr_count = 0;
7881   p->next = NULL;
7882   p->completeq.head = NULL;
7883   p->completeq.tail = NULL;
7884   scbq_init(&p->scb_data->free_scbs);
7885   scbq_init(&p->waiting_scbs);
7886   INIT_LIST_HEAD(&p->aic_devs);
7887
7888   /*
7889    * We currently have no commands of any type
7890    */
7891   p->qinfifonext = 0;
7892   p->qoutfifonext = 0;
7893
7894   printk(KERN_INFO "(scsi%d) <%s> found at ", p->host_no,
7895     board_names[p->board_name_index]);
7896   switch(p->chip)
7897   {
7898     case (AHC_AIC7770|AHC_EISA):
7899       printk("EISA slot %d\n", p->pci_device_fn);
7900       break;
7901     case (AHC_AIC7770|AHC_VL):
7902       printk("VLB slot %d\n", p->pci_device_fn);
7903       break;
7904     default:
7905       printk("PCI %d/%d/%d\n", p->pci_bus, PCI_SLOT(p->pci_device_fn),
7906         PCI_FUNC(p->pci_device_fn));
7907       break;
7908   }
7909   if (p->features & AHC_TWIN)
7910   {
7911     printk(KERN_INFO "(scsi%d) Twin Channel, A SCSI ID %d, B SCSI ID %d, ",
7912            p->host_no, p->scsi_id, p->scsi_id_b);
7913   }
7914   else
7915   {
7916     char *channel;
7917
7918     channel = "";
7919
7920     if ((p->flags & AHC_MULTI_CHANNEL) != 0)
7921     {
7922       channel = " A";
7923
7924       if ( (p->flags & (AHC_CHNLB|AHC_CHNLC)) != 0 )
7925       {
7926         channel = (p->flags & AHC_CHNLB) ? " B" : " C";
7927       }
7928     }
7929     if (p->features & AHC_WIDE)
7930     {
7931       printk(KERN_INFO "(scsi%d) Wide ", p->host_no);
7932     }
7933     else
7934     {
7935       printk(KERN_INFO "(scsi%d) Narrow ", p->host_no);
7936     }
7937     printk("Channel%s, SCSI ID=%d, ", channel, p->scsi_id);
7938   }
7939   aic_outb(p, 0, SEQ_FLAGS);
7940
7941   detect_maxscb(p);
7942
7943   printk("%d/%d SCBs\n", p->scb_data->maxhscbs, p->scb_data->maxscbs);
7944   if (aic7xxx_verbose & VERBOSE_PROBE2)
7945   {
7946     printk(KERN_INFO "(scsi%d) BIOS %sabled, IO Port 0x%lx, IRQ %d\n",
7947       p->host_no, (p->flags & AHC_BIOS_ENABLED) ? "en" : "dis",
7948       p->base, p->irq);
7949     printk(KERN_INFO "(scsi%d) IO Memory at 0x%lx, MMAP Memory at %p\n",
7950       p->host_no, p->mbase, p->maddr);
7951   }
7952
7953 #ifdef CONFIG_PCI
7954   /*
7955    * Now that we know our instance number, we can set the flags we need to
7956    * force termination if need be.
7957    */
7958   if (aic7xxx_stpwlev != -1)
7959   {
7960     /*
7961      * This option only applies to PCI controllers.
7962      */
7963     if ( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI)
7964     {
7965       unsigned char devconfig;
7966
7967       pci_read_config_byte(p->pdev, DEVCONFIG, &devconfig);
7968       if ( (aic7xxx_stpwlev >> p->instance) & 0x01 )
7969       {
7970         devconfig |= STPWLEVEL;
7971         if (aic7xxx_verbose & VERBOSE_PROBE2)
7972           printk("(scsi%d) Force setting STPWLEVEL bit\n", p->host_no);
7973       }
7974       else
7975       {
7976         devconfig &= ~STPWLEVEL;
7977         if (aic7xxx_verbose & VERBOSE_PROBE2)
7978           printk("(scsi%d) Force clearing STPWLEVEL bit\n", p->host_no);
7979       }
7980       pci_write_config_byte(p->pdev, DEVCONFIG, devconfig);
7981     }
7982   }
7983 #endif
7984
7985   /*
7986    * That took care of devconfig and stpwlev, now for the actual termination
7987    * settings.
7988    */
7989   if (aic7xxx_override_term != -1)
7990   {
7991     /*
7992      * Again, this only applies to PCI controllers.  We don't have problems
7993      * with the termination on 274x controllers to the best of my knowledge.
7994      */
7995     if ( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI)
7996     {
7997       unsigned char term_override;
7998
7999       term_override = ( (aic7xxx_override_term >> (p->instance * 4)) & 0x0f);
8000       p->adapter_control &= 
8001         ~(CFSTERM|CFWSTERM|CFLVDSTERM|CFAUTOTERM|CFSEAUTOTERM);
8002       if ( (p->features & AHC_ULTRA2) && (term_override & 0x0c) )
8003       {
8004         p->adapter_control |= CFLVDSTERM;
8005       }
8006       if (term_override & 0x02)
8007       {
8008         p->adapter_control |= CFWSTERM;
8009       }
8010       if (term_override & 0x01)
8011       {
8012         p->adapter_control |= CFSTERM;
8013       }
8014     }
8015   }
8016
8017   if ( (p->flags & AHC_SEEPROM_FOUND) || (aic7xxx_override_term != -1) )
8018   {
8019     if (p->features & AHC_SPIOCAP)
8020     {
8021       if ( aic_inb(p, SPIOCAP) & SSPIOCPS )
8022       /*
8023        * Update the settings in sxfrctl1 to match the termination
8024        * settings.
8025        */
8026         configure_termination(p);
8027     }
8028     else if ((p->chip & AHC_CHIPID_MASK) >= AHC_AIC7870)
8029     {
8030       configure_termination(p);
8031     }
8032   }
8033
8034   /*
8035    * Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1, for both channels
8036    */
8037   if (p->features & AHC_TWIN)
8038   {
8039     /* Select channel B */
8040     aic_outb(p, aic_inb(p, SBLKCTL) | SELBUSB, SBLKCTL);
8041
8042     if ((p->flags & AHC_SEEPROM_FOUND) || (aic7xxx_override_term != -1))
8043       term = (aic_inb(p, SXFRCTL1) & STPWEN);
8044     else
8045       term = ((p->flags & AHC_TERM_ENB_B) ? STPWEN : 0);
8046
8047     aic_outb(p, p->scsi_id_b, SCSIID);
8048     scsi_conf = aic_inb(p, SCSICONF + 1);
8049     aic_outb(p, DFON | SPIOEN, SXFRCTL0);
8050     aic_outb(p, (scsi_conf & ENSPCHK) | aic7xxx_seltime | term | 
8051          ENSTIMER | ACTNEGEN, SXFRCTL1);
8052     aic_outb(p, 0, SIMODE0);
8053     aic_outb(p, ENSELTIMO | ENSCSIRST | ENSCSIPERR, SIMODE1);
8054     aic_outb(p, 0, SCSIRATE);
8055
8056     /* Select channel A */
8057     aic_outb(p, aic_inb(p, SBLKCTL) & ~SELBUSB, SBLKCTL);
8058   }
8059
8060   if (p->features & AHC_ULTRA2)
8061   {
8062     aic_outb(p, p->scsi_id, SCSIID_ULTRA2);
8063   }
8064   else
8065   {
8066     aic_outb(p, p->scsi_id, SCSIID);
8067   }
8068   if ((p->flags & AHC_SEEPROM_FOUND) || (aic7xxx_override_term != -1))
8069     term = (aic_inb(p, SXFRCTL1) & STPWEN);
8070   else
8071     term = ((p->flags & (AHC_TERM_ENB_A|AHC_TERM_ENB_LVD)) ? STPWEN : 0);
8072   scsi_conf = aic_inb(p, SCSICONF);
8073   aic_outb(p, DFON | SPIOEN, SXFRCTL0);
8074   aic_outb(p, (scsi_conf & ENSPCHK) | aic7xxx_seltime | term | 
8075        ENSTIMER | ACTNEGEN, SXFRCTL1);
8076   aic_outb(p, 0, SIMODE0);
8077   /*
8078    * If we are a cardbus adapter then don't enable SCSI reset detection.
8079    * We shouldn't likely be sharing SCSI busses with someone else, and
8080    * if we don't have a cable currently plugged into the controller then
8081    * we won't have a power source for the SCSI termination, which means
8082    * we'll see infinite incoming bus resets.
8083    */
8084   if(p->flags & AHC_NO_STPWEN)
8085     aic_outb(p, ENSELTIMO | ENSCSIPERR, SIMODE1);
8086   else
8087     aic_outb(p, ENSELTIMO | ENSCSIRST | ENSCSIPERR, SIMODE1);
8088   aic_outb(p, 0, SCSIRATE);
8089   if ( p->features & AHC_ULTRA2)
8090     aic_outb(p, 0, SCSIOFFSET);
8091
8092   /*
8093    * Look at the information that board initialization or the board
8094    * BIOS has left us. In the lower four bits of each target's
8095    * scratch space any value other than 0 indicates that we should
8096    * initiate synchronous transfers. If it's zero, the user or the
8097    * BIOS has decided to disable synchronous negotiation to that
8098    * target so we don't activate the needsdtr flag.
8099    */
8100   if ((p->features & (AHC_TWIN|AHC_WIDE)) == 0)
8101   {
8102     max_targets = 8;
8103   }
8104   else
8105   {
8106     max_targets = 16;
8107   }
8108
8109   if (!(aic7xxx_no_reset))
8110   {
8111     /*
8112      * If we reset the bus, then clear the transfer settings, else leave
8113      * them be.
8114      */
8115     aic_outb(p, 0, ULTRA_ENB);
8116     aic_outb(p, 0, ULTRA_ENB + 1);
8117     p->ultraenb = 0;
8118   }
8119
8120   /*
8121    * Allocate enough hardware scbs to handle the maximum number of
8122    * concurrent transactions we can have.  We have to make sure that
8123    * the allocated memory is contiguous memory.  The Linux kmalloc
8124    * routine should only allocate contiguous memory, but note that
8125    * this could be a problem if kmalloc() is changed.
8126    */
8127   {
8128     size_t array_size;
8129     unsigned int hscb_physaddr;
8130
8131     array_size = p->scb_data->maxscbs * sizeof(struct aic7xxx_hwscb);
8132     if (p->scb_data->hscbs == NULL)
8133     {
8134       /* pci_alloc_consistent enforces the alignment already and
8135        * clears the area as well.
8136        */
8137       p->scb_data->hscbs = pci_alloc_consistent(p->pdev, array_size,
8138                                                 &p->scb_data->hscbs_dma);
8139       /* We have to use pci_free_consistent, not kfree */
8140       p->scb_data->hscb_kmalloc_ptr = NULL;
8141       p->scb_data->hscbs_dma_len = array_size;
8142     }
8143     if (p->scb_data->hscbs == NULL)
8144     {
8145       printk("(scsi%d) Unable to allocate hardware SCB array; "
8146              "failing detection.\n", p->host_no);
8147       aic_outb(p, 0, SIMODE1);
8148       p->irq = 0;
8149       return(0);
8150     }
8151
8152     hscb_physaddr = p->scb_data->hscbs_dma;
8153     aic_outb(p, hscb_physaddr & 0xFF, HSCB_ADDR);
8154     aic_outb(p, (hscb_physaddr >> 8) & 0xFF, HSCB_ADDR + 1);
8155     aic_outb(p, (hscb_physaddr >> 16) & 0xFF, HSCB_ADDR + 2);
8156     aic_outb(p, (hscb_physaddr >> 24) & 0xFF, HSCB_ADDR + 3);
8157
8158     /* Set up the fifo areas at the same time */
8159     p->untagged_scbs = pci_alloc_consistent(p->pdev, 3*256, &p->fifo_dma);
8160     if (p->untagged_scbs == NULL)
8161     {
8162       printk("(scsi%d) Unable to allocate hardware FIFO arrays; "
8163              "failing detection.\n", p->host_no);
8164       p->irq = 0;
8165       return(0);
8166     }
8167
8168     p->qoutfifo = p->untagged_scbs + 256;
8169     p->qinfifo = p->qoutfifo + 256;
8170     for (i = 0; i < 256; i++)
8171     {
8172       p->untagged_scbs[i] = SCB_LIST_NULL;
8173       p->qinfifo[i] = SCB_LIST_NULL;
8174       p->qoutfifo[i] = SCB_LIST_NULL;
8175     }
8176
8177     hscb_physaddr = p->fifo_dma;
8178     aic_outb(p, hscb_physaddr & 0xFF, SCBID_ADDR);
8179     aic_outb(p, (hscb_physaddr >> 8) & 0xFF, SCBID_ADDR + 1);
8180     aic_outb(p, (hscb_physaddr >> 16) & 0xFF, SCBID_ADDR + 2);
8181     aic_outb(p, (hscb_physaddr >> 24) & 0xFF, SCBID_ADDR + 3);
8182   }
8183
8184   /* The Q-FIFOs we just set up are all empty */
8185   aic_outb(p, 0, QINPOS);
8186   aic_outb(p, 0, KERNEL_QINPOS);
8187   aic_outb(p, 0, QOUTPOS);
8188
8189   if(p->features & AHC_QUEUE_REGS)
8190   {
8191     aic_outb(p, SCB_QSIZE_256, QOFF_CTLSTA);
8192     aic_outb(p, 0, SDSCB_QOFF);
8193     aic_outb(p, 0, SNSCB_QOFF);
8194     aic_outb(p, 0, HNSCB_QOFF);
8195   }
8196
8197   /*
8198    * We don't have any waiting selections or disconnected SCBs.
8199    */
8200   aic_outb(p, SCB_LIST_NULL, WAITING_SCBH);
8201   aic_outb(p, SCB_LIST_NULL, DISCONNECTED_SCBH);
8202
8203   /*
8204    * Message out buffer starts empty
8205    */
8206   aic_outb(p, MSG_NOOP, MSG_OUT);
8207   aic_outb(p, MSG_NOOP, LAST_MSG);
8208
8209   /*
8210    * Set all the other asundry items that haven't been set yet.
8211    * This includes just dumping init values to a lot of registers simply
8212    * to make sure they've been touched and are ready for use parity wise
8213    * speaking.
8214    */
8215   aic_outb(p, 0, TMODE_CMDADDR);
8216   aic_outb(p, 0, TMODE_CMDADDR + 1);
8217   aic_outb(p, 0, TMODE_CMDADDR + 2);
8218   aic_outb(p, 0, TMODE_CMDADDR + 3);
8219   aic_outb(p, 0, TMODE_CMDADDR_NEXT);
8220
8221   /*
8222    * Link us into the list of valid hosts
8223    */
8224   p->next = first_aic7xxx;
8225   first_aic7xxx = p;
8226
8227   /*
8228    * Allocate the first set of scbs for this controller.  This is to stream-
8229    * line code elsewhere in the driver.  If we have to check for the existence
8230    * of scbs in certain code sections, it slows things down.  However, as
8231    * soon as we register the IRQ for this card, we could get an interrupt that
8232    * includes possibly the SCSI_RSTI interrupt.  If we catch that interrupt
8233    * then we are likely to segfault if we don't have at least one chunk of
8234    * SCBs allocated or add checks all through the reset code to make sure
8235    * that the SCBs have been allocated which is an invalid running condition
8236    * and therefore I think it's preferable to simply pre-allocate the first
8237    * chunk of SCBs.
8238    */
8239   aic7xxx_allocate_scb(p);
8240
8241   /*
8242    * Load the sequencer program, then re-enable the board -
8243    * resetting the AIC-7770 disables it, leaving the lights
8244    * on with nobody home.
8245    */
8246   aic7xxx_loadseq(p);
8247
8248   /*
8249    * Make sure the AUTOFLUSHDIS bit is *not* set in the SBLKCTL register
8250    */
8251   aic_outb(p, aic_inb(p, SBLKCTL) & ~AUTOFLUSHDIS, SBLKCTL);
8252
8253   if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
8254   {
8255     aic_outb(p, ENABLE, BCTL);  /* Enable the boards BUS drivers. */
8256   }
8257
8258   if ( !(aic7xxx_no_reset) )
8259   {
8260     if (p->features & AHC_TWIN)
8261     {
8262       if (aic7xxx_verbose & VERBOSE_PROBE2)
8263         printk(KERN_INFO "(scsi%d) Resetting channel B\n", p->host_no);
8264       aic_outb(p, aic_inb(p, SBLKCTL) | SELBUSB, SBLKCTL);
8265       aic7xxx_reset_current_bus(p);
8266       aic_outb(p, aic_inb(p, SBLKCTL) & ~SELBUSB, SBLKCTL);
8267     }
8268     /* Reset SCSI bus A. */
8269     if (aic7xxx_verbose & VERBOSE_PROBE2)
8270     {  /* In case we are a 3940, 3985, or 7895, print the right channel */
8271       char *channel = "";
8272       if (p->flags & AHC_MULTI_CHANNEL)
8273       {
8274         channel = " A";
8275         if (p->flags & (AHC_CHNLB|AHC_CHNLC))
8276           channel = (p->flags & AHC_CHNLB) ? " B" : " C";
8277       }
8278       printk(KERN_INFO "(scsi%d) Resetting channel%s\n", p->host_no, channel);
8279     }
8280     
8281     aic7xxx_reset_current_bus(p);
8282
8283   }
8284   else
8285   {
8286     if (!reset_delay)
8287     {
8288       printk(KERN_INFO "(scsi%d) Not resetting SCSI bus.  Note: Don't use "
8289              "the no_reset\n", p->host_no);
8290       printk(KERN_INFO "(scsi%d) option unless you have a verifiable need "
8291              "for it.\n", p->host_no);
8292     }
8293   }
8294   
8295   /*
8296    * Register IRQ with the kernel.  Only allow sharing IRQs with
8297    * PCI devices.
8298    */
8299   if (!(p->chip & AHC_PCI))
8300   {
8301     result = (request_irq(p->irq, do_aic7xxx_isr, 0, "aic7xxx", p));
8302   }
8303   else
8304   {
8305     result = (request_irq(p->irq, do_aic7xxx_isr, IRQF_SHARED,
8306               "aic7xxx", p));
8307     if (result < 0)
8308     {
8309       result = (request_irq(p->irq, do_aic7xxx_isr, IRQF_DISABLED | IRQF_SHARED,
8310               "aic7xxx", p));
8311     }
8312   }
8313   if (result < 0)
8314   {
8315     printk(KERN_WARNING "(scsi%d) Couldn't register IRQ %d, ignoring "
8316            "controller.\n", p->host_no, p->irq);
8317     aic_outb(p, 0, SIMODE1);
8318     p->irq = 0;
8319     return (0);
8320   }
8321
8322   if(aic_inb(p, INTSTAT) & INT_PEND)
8323     printk(INFO_LEAD "spurious interrupt during configuration, cleared.\n",
8324       p->host_no, -1, -1 , -1);
8325   aic7xxx_clear_intstat(p);
8326
8327   unpause_sequencer(p, /* unpause_always */ TRUE);
8328
8329   return (found);
8330 }
8331
8332 /*+F*************************************************************************
8333  * Function:
8334  *   aic7xxx_chip_reset
8335  *
8336  * Description:
8337  *   Perform a chip reset on the aic7xxx SCSI controller.  The controller
8338  *   is paused upon return.
8339  *-F*************************************************************************/
8340 static int
8341 aic7xxx_chip_reset(struct aic7xxx_host *p)
8342 {
8343   unsigned char sblkctl;
8344   int wait;
8345
8346   /*
8347    * For some 274x boards, we must clear the CHIPRST bit and pause
8348    * the sequencer. For some reason, this makes the driver work.
8349    */
8350   aic_outb(p, PAUSE | CHIPRST, HCNTRL);
8351
8352   /*
8353    * In the future, we may call this function as a last resort for
8354    * error handling.  Let's be nice and not do any unnecessary delays.
8355    */
8356   wait = 1000;  /* 1 msec (1000 * 1 msec) */
8357   while (--wait && !(aic_inb(p, HCNTRL) & CHIPRSTACK))
8358   {
8359     udelay(1);  /* 1 usec */
8360   }
8361
8362   pause_sequencer(p);
8363
8364   sblkctl = aic_inb(p, SBLKCTL) & (SELBUSB|SELWIDE);
8365   if (p->chip & AHC_PCI)
8366     sblkctl &= ~SELBUSB;
8367   switch( sblkctl )
8368   {
8369     case 0:  /* normal narrow card */
8370       break;
8371     case 2:  /* Wide card */
8372       p->features |= AHC_WIDE;
8373       break;
8374     case 8:  /* Twin card */
8375       p->features |= AHC_TWIN;
8376       p->flags |= AHC_MULTI_CHANNEL;
8377       break;
8378     default: /* hmmm...we don't know what this is */
8379       printk(KERN_WARNING "aic7xxx: Unsupported adapter type %d, ignoring.\n",
8380         aic_inb(p, SBLKCTL) & 0x0a);
8381       return(-1);
8382   }
8383   return(0);
8384 }
8385
8386 /*+F*************************************************************************
8387  * Function:
8388  *   aic7xxx_alloc
8389  *
8390  * Description:
8391  *   Allocate and initialize a host structure.  Returns NULL upon error
8392  *   and a pointer to a aic7xxx_host struct upon success.
8393  *-F*************************************************************************/
8394 static struct aic7xxx_host *
8395 aic7xxx_alloc(struct scsi_host_template *sht, struct aic7xxx_host *temp)
8396 {
8397   struct aic7xxx_host *p = NULL;
8398   struct Scsi_Host *host;
8399
8400   /*
8401    * Allocate a storage area by registering us with the mid-level
8402    * SCSI layer.
8403    */
8404   host = scsi_register(sht, sizeof(struct aic7xxx_host));
8405
8406   if (host != NULL)
8407   {
8408     p = (struct aic7xxx_host *) host->hostdata;
8409     memset(p, 0, sizeof(struct aic7xxx_host));
8410     *p = *temp;
8411     p->host = host;
8412
8413     p->scb_data = kzalloc(sizeof(scb_data_type), GFP_ATOMIC);
8414     if (p->scb_data)
8415     {
8416       scbq_init (&p->scb_data->free_scbs);
8417     }
8418     else
8419     {
8420       /*
8421        * For some reason we don't have enough memory.  Free the
8422        * allocated memory for the aic7xxx_host struct, and return NULL.
8423        */
8424       release_region(p->base, MAXREG - MINREG);
8425       scsi_unregister(host);
8426       return(NULL);
8427     }
8428     p->host_no = host->host_no;
8429   }
8430   return (p);
8431 }
8432
8433 /*+F*************************************************************************
8434  * Function:
8435  *   aic7xxx_free
8436  *
8437  * Description:
8438  *   Frees and releases all resources associated with an instance of
8439  *   the driver (struct aic7xxx_host *).
8440  *-F*************************************************************************/
8441 static void
8442 aic7xxx_free(struct aic7xxx_host *p)
8443 {
8444   int i;
8445
8446   /*
8447    * Free the allocated hardware SCB space.
8448    */
8449   if (p->scb_data != NULL)
8450   {
8451     struct aic7xxx_scb_dma *scb_dma = NULL;
8452     if (p->scb_data->hscbs != NULL)
8453     {
8454       pci_free_consistent(p->pdev, p->scb_data->hscbs_dma_len,
8455                           p->scb_data->hscbs, p->scb_data->hscbs_dma);
8456       p->scb_data->hscbs = p->scb_data->hscb_kmalloc_ptr = NULL;
8457     }
8458     /*
8459      * Free the driver SCBs.  These were allocated on an as-need
8460      * basis.  We allocated these in groups depending on how many
8461      * we could fit into a given amount of RAM.  The tail SCB for
8462      * these allocations has a pointer to the alloced area.
8463      */
8464     for (i = 0; i < p->scb_data->numscbs; i++)
8465     {
8466       if (p->scb_data->scb_array[i]->scb_dma != scb_dma)
8467       {
8468         scb_dma = p->scb_data->scb_array[i]->scb_dma;
8469         pci_free_consistent(p->pdev, scb_dma->dma_len,
8470                             (void *)((unsigned long)scb_dma->dma_address
8471                                      - scb_dma->dma_offset),
8472                             scb_dma->dma_address);
8473       }
8474       kfree(p->scb_data->scb_array[i]->kmalloc_ptr);
8475       p->scb_data->scb_array[i] = NULL;
8476     }
8477   
8478     /*
8479      * Free the SCB data area.
8480      */
8481     kfree(p->scb_data);
8482   }
8483
8484   pci_free_consistent(p->pdev, 3*256, (void *)p->untagged_scbs, p->fifo_dma);
8485 }
8486
8487 /*+F*************************************************************************
8488  * Function:
8489  *   aic7xxx_load_seeprom
8490  *
8491  * Description:
8492  *   Load the seeprom and configure adapter and target settings.
8493  *   Returns 1 if the load was successful and 0 otherwise.
8494  *-F*************************************************************************/
8495 static void
8496 aic7xxx_load_seeprom(struct aic7xxx_host *p, unsigned char *sxfrctl1)
8497 {
8498   int have_seeprom = 0;
8499   int i, max_targets, mask;
8500   unsigned char scsirate, scsi_conf;
8501   unsigned short scarray[128];
8502   struct seeprom_config *sc = (struct seeprom_config *) scarray;
8503
8504   if (aic7xxx_verbose & VERBOSE_PROBE2)
8505   {
8506     printk(KERN_INFO "aic7xxx: Loading serial EEPROM...");
8507   }
8508   switch (p->chip)
8509   {
8510     case (AHC_AIC7770|AHC_EISA):  /* None of these adapters have seeproms. */
8511       if (aic_inb(p, SCSICONF) & TERM_ENB)
8512         p->flags |= AHC_TERM_ENB_A;
8513       if ( (p->features & AHC_TWIN) && (aic_inb(p, SCSICONF + 1) & TERM_ENB) )
8514         p->flags |= AHC_TERM_ENB_B;
8515       break;
8516
8517     case (AHC_AIC7770|AHC_VL):
8518       have_seeprom = read_284x_seeprom(p, (struct seeprom_config *) scarray);
8519       break;
8520
8521     default:
8522       have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)),
8523                                   scarray, p->sc_size, p->sc_type);
8524       if (!have_seeprom)
8525       {
8526         if(p->sc_type == C46)
8527           have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)),
8528                                       scarray, p->sc_size, C56_66);
8529         else
8530           have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)),
8531                                       scarray, p->sc_size, C46);
8532       }
8533       if (!have_seeprom)
8534       {
8535         p->sc_size = 128;
8536         have_seeprom = read_seeprom(p, 4*(p->flags & (AHC_CHNLB|AHC_CHNLC)),
8537                                     scarray, p->sc_size, p->sc_type);
8538         if (!have_seeprom)
8539         {
8540           if(p->sc_type == C46)
8541             have_seeprom = read_seeprom(p, 4*(p->flags & (AHC_CHNLB|AHC_CHNLC)),
8542                                         scarray, p->sc_size, C56_66);
8543           else
8544             have_seeprom = read_seeprom(p, 4*(p->flags & (AHC_CHNLB|AHC_CHNLC)),
8545                                         scarray, p->sc_size, C46);
8546         }
8547       }
8548       break;
8549   }
8550
8551   if (!have_seeprom)
8552   {
8553     if (aic7xxx_verbose & VERBOSE_PROBE2)
8554     {
8555       printk("\naic7xxx: No SEEPROM available.\n");
8556     }
8557     p->flags |= AHC_NEWEEPROM_FMT;
8558     if (aic_inb(p, SCSISEQ) == 0)
8559     {
8560       p->flags |= AHC_USEDEFAULTS;
8561       p->flags &= ~AHC_BIOS_ENABLED;
8562       p->scsi_id = p->scsi_id_b = 7;
8563       *sxfrctl1 |= STPWEN;
8564       if (aic7xxx_verbose & VERBOSE_PROBE2)
8565       {
8566         printk("aic7xxx: Using default values.\n");
8567       }
8568     }
8569     else if (aic7xxx_verbose & VERBOSE_PROBE2)
8570     {
8571       printk("aic7xxx: Using leftover BIOS values.\n");
8572     }
8573     if ( ((p->chip & ~AHC_CHIPID_MASK) == AHC_PCI) && (*sxfrctl1 & STPWEN) )
8574     {
8575       p->flags |= AHC_TERM_ENB_SE_LOW | AHC_TERM_ENB_SE_HIGH;
8576       sc->adapter_control &= ~CFAUTOTERM;
8577       sc->adapter_control |= CFSTERM | CFWSTERM | CFLVDSTERM;
8578     }
8579     if (aic7xxx_extended)
8580       p->flags |= (AHC_EXTEND_TRANS_A | AHC_EXTEND_TRANS_B);
8581     else
8582       p->flags &= ~(AHC_EXTEND_TRANS_A | AHC_EXTEND_TRANS_B);
8583   }
8584   else
8585   {
8586     if (aic7xxx_verbose & VERBOSE_PROBE2)
8587     {
8588       printk("done\n");
8589     }
8590
8591     /*
8592      * Note things in our flags
8593      */
8594     p->flags |= AHC_SEEPROM_FOUND;
8595
8596     /*
8597      * Update the settings in sxfrctl1 to match the termination settings.
8598      */
8599     *sxfrctl1 = 0;
8600
8601     /*
8602      * Get our SCSI ID from the SEEPROM setting...
8603      */
8604     p->scsi_id = (sc->brtime_id & CFSCSIID);
8605
8606     /*
8607      * First process the settings that are different between the VLB
8608      * and PCI adapter seeproms.
8609      */
8610     if ((p->chip & AHC_CHIPID_MASK) == AHC_AIC7770)
8611     {
8612       /* VLB adapter seeproms */
8613       if (sc->bios_control & CF284XEXTEND)
8614         p->flags |= AHC_EXTEND_TRANS_A;
8615
8616       if (sc->adapter_control & CF284XSTERM)
8617       {
8618         *sxfrctl1 |= STPWEN;
8619         p->flags |= AHC_TERM_ENB_SE_LOW | AHC_TERM_ENB_SE_HIGH;
8620       }
8621     }
8622     else
8623     {
8624       /* PCI adapter seeproms */
8625       if (sc->bios_control & CFEXTEND)
8626         p->flags |= AHC_EXTEND_TRANS_A;
8627       if (sc->bios_control & CFBIOSEN)
8628         p->flags |= AHC_BIOS_ENABLED;
8629       else
8630         p->flags &= ~AHC_BIOS_ENABLED;
8631
8632       if (sc->adapter_control & CFSTERM)
8633       {
8634         *sxfrctl1 |= STPWEN;
8635         p->flags |= AHC_TERM_ENB_SE_LOW | AHC_TERM_ENB_SE_HIGH;
8636       }
8637     }
8638     memcpy(&p->sc, sc, sizeof(struct seeprom_config));
8639   }
8640
8641   p->discenable = 0;
8642
8643   /*
8644    * Limit to 16 targets just in case.  The 2842 for one is known to
8645    * blow the max_targets setting, future cards might also.
8646    */
8647   max_targets = ((p->features & (AHC_TWIN | AHC_WIDE)) ? 16 : 8);
8648
8649   if (have_seeprom)
8650   {
8651     for (i = 0; i < max_targets; i++)
8652     {
8653       if( ((p->features & AHC_ULTRA) &&
8654           !(sc->adapter_control & CFULTRAEN) &&
8655            (sc->device_flags[i] & CFSYNCHISULTRA)) ||
8656           (sc->device_flags[i] & CFNEWULTRAFORMAT) )
8657       {
8658         p->flags |= AHC_NEWEEPROM_FMT;
8659         break;
8660       }
8661     }
8662   }
8663
8664   for (i = 0; i < max_targets; i++)
8665   {
8666     mask = (0x01 << i);
8667     if (!have_seeprom)
8668     {
8669       if (aic_inb(p, SCSISEQ) != 0)
8670       {
8671         /*
8672          * OK...the BIOS set things up and left behind the settings we need.
8673          * Just make our sc->device_flags[i] entry match what the card has
8674          * set for this device.
8675          */
8676         p->discenable =
8677           ~(aic_inb(p, DISC_DSB) | (aic_inb(p, DISC_DSB + 1) << 8) );
8678         p->ultraenb =
8679           (aic_inb(p, ULTRA_ENB) | (aic_inb(p, ULTRA_ENB + 1) << 8) );
8680         sc->device_flags[i] = (p->discenable & mask) ? CFDISC : 0;
8681         if (aic_inb(p, TARG_SCSIRATE + i) & WIDEXFER)
8682           sc->device_flags[i] |= CFWIDEB;
8683         if (p->features & AHC_ULTRA2)
8684         {
8685           if (aic_inb(p, TARG_OFFSET + i))
8686           {
8687             sc->device_flags[i] |= CFSYNCH;
8688             sc->device_flags[i] |= (aic_inb(p, TARG_SCSIRATE + i) & 0x07);
8689             if ( (aic_inb(p, TARG_SCSIRATE + i) & 0x18) == 0x18 )
8690               sc->device_flags[i] |= CFSYNCHISULTRA;
8691           }
8692         }
8693         else
8694         {
8695           if (aic_inb(p, TARG_SCSIRATE + i) & ~WIDEXFER)
8696           {
8697             sc->device_flags[i] |= CFSYNCH;
8698             if (p->features & AHC_ULTRA)
8699               sc->device_flags[i] |= ((p->ultraenb & mask) ?
8700                                       CFSYNCHISULTRA : 0);
8701           }
8702         }
8703       }
8704       else
8705       {
8706         /*
8707          * Assume the BIOS has NOT been run on this card and nothing between
8708          * the card and the devices is configured yet.
8709          */
8710         sc->device_flags[i] = CFDISC;
8711         if (p->features & AHC_WIDE)
8712           sc->device_flags[i] |= CFWIDEB;
8713         if (p->features & AHC_ULTRA3)
8714           sc->device_flags[i] |= 2;
8715         else if (p->features & AHC_ULTRA2)
8716           sc->device_flags[i] |= 3;
8717         else if (p->features & AHC_ULTRA)
8718           sc->device_flags[i] |= CFSYNCHISULTRA;
8719         sc->device_flags[i] |= CFSYNCH;
8720         aic_outb(p, 0, TARG_SCSIRATE + i);
8721         if (p->features & AHC_ULTRA2)
8722           aic_outb(p, 0, TARG_OFFSET + i);
8723       }
8724     }
8725     if (sc->device_flags[i] & CFDISC)
8726     {
8727       p->discenable |= mask;
8728     }
8729     if (p->flags & AHC_NEWEEPROM_FMT)
8730     {
8731       if ( !(p->features & AHC_ULTRA2) )
8732       {
8733         /*
8734          * I know of two different Ultra BIOSes that do this differently.
8735          * One on the Gigabyte 6BXU mb that wants flags[i] & CFXFER to
8736          * be == to 0x03 and SYNCHISULTRA to be true to mean 40MByte/s
8737          * while on the IBM Netfinity 5000 they want the same thing
8738          * to be something else, while flags[i] & CFXFER == 0x03 and
8739          * SYNCHISULTRA false should be 40MByte/s.  So, we set both to
8740          * 40MByte/s and the lower speeds be damned.  People will have
8741          * to select around the conversely mapped lower speeds in order
8742          * to select lower speeds on these boards.
8743          */
8744         if ( (sc->device_flags[i] & CFNEWULTRAFORMAT) &&
8745             ((sc->device_flags[i] & CFXFER) == 0x03) )
8746         {
8747           sc->device_flags[i] &= ~CFXFER;
8748           sc->device_flags[i] |= CFSYNCHISULTRA;
8749         }
8750         if (sc->device_flags[i] & CFSYNCHISULTRA)
8751         {
8752           p->ultraenb |= mask;
8753         }
8754       }
8755       else if ( !(sc->device_flags[i] & CFNEWULTRAFORMAT) &&
8756                  (p->features & AHC_ULTRA2) &&
8757                  (sc->device_flags[i] & CFSYNCHISULTRA) )
8758       {
8759         p->ultraenb |= mask;
8760       }
8761     }
8762     else if (sc->adapter_control & CFULTRAEN)
8763     {
8764       p->ultraenb |= mask;
8765     }
8766     if ( (sc->device_flags[i] & CFSYNCH) == 0)
8767     {
8768       sc->device_flags[i] &= ~CFXFER;
8769       p->ultraenb &= ~mask;
8770       p->user[i].offset = 0;
8771       p->user[i].period = 0;
8772       p->user[i].options = 0;
8773     }
8774     else
8775     {
8776       if (p->features & AHC_ULTRA3)
8777       {
8778         p->user[i].offset = MAX_OFFSET_ULTRA2;
8779         if( (sc->device_flags[i] & CFXFER) < 0x03 )
8780         {
8781           scsirate = (sc->device_flags[i] & CFXFER);
8782           p->user[i].options = MSG_EXT_PPR_OPTION_DT_CRC;
8783         }
8784         else
8785         {
8786           scsirate = (sc->device_flags[i] & CFXFER) |
8787                      ((p->ultraenb & mask) ? 0x18 : 0x10);
8788           p->user[i].options = 0;
8789         }
8790         p->user[i].period = aic7xxx_find_period(p, scsirate,
8791                                        AHC_SYNCRATE_ULTRA3);
8792       }
8793       else if (p->features & AHC_ULTRA2)
8794       {
8795         p->user[i].offset = MAX_OFFSET_ULTRA2;
8796         scsirate = (sc->device_flags[i] & CFXFER) |
8797                    ((p->ultraenb & mask) ? 0x18 : 0x10);
8798         p->user[i].options = 0;
8799         p->user[i].period = aic7xxx_find_period(p, scsirate,
8800                                        AHC_SYNCRATE_ULTRA2);
8801       }
8802       else
8803       {
8804         scsirate = (sc->device_flags[i] & CFXFER) << 4;
8805         p->user[i].options = 0;
8806         p->user[i].offset = MAX_OFFSET_8BIT;
8807         if (p->features & AHC_ULTRA)
8808         {
8809           short ultraenb;
8810           ultraenb = aic_inb(p, ULTRA_ENB) |
8811             (aic_inb(p, ULTRA_ENB + 1) << 8);
8812           p->user[i].period = aic7xxx_find_period(p, scsirate,
8813                                           (p->ultraenb & mask) ?
8814                                           AHC_SYNCRATE_ULTRA :
8815                                           AHC_SYNCRATE_FAST);
8816         }
8817         else
8818           p->user[i].period = aic7xxx_find_period(p, scsirate,
8819                                           AHC_SYNCRATE_FAST);
8820       }
8821     }
8822     if ( (sc->device_flags[i] & CFWIDEB) && (p->features & AHC_WIDE) )
8823     {
8824       p->user[i].width = MSG_EXT_WDTR_BUS_16_BIT;
8825     }
8826     else
8827     {
8828       p->user[i].width = MSG_EXT_WDTR_BUS_8_BIT;
8829     }
8830   }
8831   aic_outb(p, ~(p->discenable & 0xFF), DISC_DSB);
8832   aic_outb(p, ~((p->discenable >> 8) & 0xFF), DISC_DSB + 1);
8833
8834   /*
8835    * We set the p->ultraenb from the SEEPROM to begin with, but now we make
8836    * it match what is already down in the card.  If we are doing a reset
8837    * on the card then this will get put back to a default state anyway.
8838    * This allows us to not have to pre-emptively negotiate when using the
8839    * no_reset option.
8840    */
8841   if (p->features & AHC_ULTRA)
8842     p->ultraenb = aic_inb(p, ULTRA_ENB) | (aic_inb(p, ULTRA_ENB + 1) << 8);
8843
8844   
8845   scsi_conf = (p->scsi_id & HSCSIID);
8846
8847   if(have_seeprom)
8848   {
8849     p->adapter_control = sc->adapter_control;
8850     p->bios_control = sc->bios_control;
8851
8852     switch (p->chip & AHC_CHIPID_MASK)
8853     {
8854       case AHC_AIC7895:
8855       case AHC_AIC7896:
8856       case AHC_AIC7899:
8857         if (p->adapter_control & CFBPRIMARY)
8858           p->flags |= AHC_CHANNEL_B_PRIMARY;
8859       default:
8860         break;
8861     }
8862
8863     if (sc->adapter_control & CFSPARITY)
8864       scsi_conf |= ENSPCHK;
8865   }
8866   else
8867   {
8868     scsi_conf |= ENSPCHK | RESET_SCSI;
8869   }
8870
8871   /*
8872    * Only set the SCSICONF and SCSICONF + 1 registers if we are a PCI card.
8873    * The 2842 and 2742 cards already have these registers set and we don't
8874    * want to muck with them since we don't set all the bits they do.
8875    */
8876   if ( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI )
8877   {
8878     /* Set the host ID */
8879     aic_outb(p, scsi_conf, SCSICONF);
8880     /* In case we are a wide card */
8881     aic_outb(p, p->scsi_id, SCSICONF + 1);
8882   }
8883 }
8884
8885 /*+F*************************************************************************
8886  * Function:
8887  *   aic7xxx_configure_bugs
8888  *
8889  * Description:
8890  *   Take the card passed in and set the appropriate bug flags based upon
8891  *   the card model.  Also make any changes needed to device registers or
8892  *   PCI registers while we are here.
8893  *-F*************************************************************************/
8894 static void
8895 aic7xxx_configure_bugs(struct aic7xxx_host *p)
8896 {
8897   unsigned short tmp_word;
8898  
8899   switch(p->chip & AHC_CHIPID_MASK)
8900   {
8901     case AHC_AIC7860:
8902       p->bugs |= AHC_BUG_PCI_2_1_RETRY;
8903       /* fall through */
8904     case AHC_AIC7850:
8905     case AHC_AIC7870:
8906       p->bugs |= AHC_BUG_TMODE_WIDEODD | AHC_BUG_CACHETHEN | AHC_BUG_PCI_MWI;
8907       break;
8908     case AHC_AIC7880:
8909       p->bugs |= AHC_BUG_TMODE_WIDEODD | AHC_BUG_PCI_2_1_RETRY |
8910                  AHC_BUG_CACHETHEN | AHC_BUG_PCI_MWI;
8911       break;
8912     case AHC_AIC7890:
8913       p->bugs |= AHC_BUG_AUTOFLUSH | AHC_BUG_CACHETHEN;
8914       break;
8915     case AHC_AIC7892:
8916       p->bugs |= AHC_BUG_SCBCHAN_UPLOAD;
8917       break;
8918     case AHC_AIC7895:
8919       p->bugs |= AHC_BUG_TMODE_WIDEODD | AHC_BUG_PCI_2_1_RETRY |
8920                  AHC_BUG_CACHETHEN | AHC_BUG_PCI_MWI;
8921       break;
8922     case AHC_AIC7896:
8923       p->bugs |= AHC_BUG_CACHETHEN_DIS;
8924       break;
8925     case AHC_AIC7899:
8926       p->bugs |= AHC_BUG_SCBCHAN_UPLOAD;
8927       break;
8928     default:
8929       /* Nothing to do */
8930       break;
8931   }
8932
8933   /*
8934    * Now handle the bugs that require PCI register or card register tweaks
8935    */
8936   pci_read_config_word(p->pdev, PCI_COMMAND, &tmp_word);
8937   if(p->bugs & AHC_BUG_PCI_MWI)
8938   {
8939     tmp_word &= ~PCI_COMMAND_INVALIDATE;
8940   }
8941   else
8942   {
8943     tmp_word |= PCI_COMMAND_INVALIDATE;
8944   }
8945   pci_write_config_word(p->pdev, PCI_COMMAND, tmp_word);
8946
8947   if(p->bugs & AHC_BUG_CACHETHEN)
8948   {
8949     aic_outb(p, aic_inb(p, DSCOMMAND0) & ~CACHETHEN, DSCOMMAND0);
8950   }
8951   else if (p->bugs & AHC_BUG_CACHETHEN_DIS)
8952   {
8953     aic_outb(p, aic_inb(p, DSCOMMAND0) | CACHETHEN, DSCOMMAND0);
8954   }
8955
8956   return;
8957 }
8958
8959
8960 /*+F*************************************************************************
8961  * Function:
8962  *   aic7xxx_detect
8963  *
8964  * Description:
8965  *   Try to detect and register an Adaptec 7770 or 7870 SCSI controller.
8966  *
8967  * XXX - This should really be called aic7xxx_probe().  A sequence of
8968  *       probe(), attach()/detach(), and init() makes more sense than
8969  *       one do-it-all function.  This may be useful when (and if) the
8970  *       mid-level SCSI code is overhauled.
8971  *-F*************************************************************************/
8972 static int
8973 aic7xxx_detect(struct scsi_host_template *template)
8974 {
8975   struct aic7xxx_host *temp_p = NULL;
8976   struct aic7xxx_host *current_p = NULL;
8977   struct aic7xxx_host *list_p = NULL;
8978   int found = 0;
8979 #if defined(__i386__) || defined(__alpha__)
8980   ahc_flag_type flags = 0;
8981   int type;
8982 #endif
8983   unsigned char sxfrctl1;
8984 #if defined(__i386__) || defined(__alpha__)
8985   unsigned char hcntrl, hostconf;
8986   unsigned int slot, base;
8987 #endif
8988
8989 #ifdef MODULE
8990   /*
8991    * If we are called as a module, the aic7xxx pointer may not be null
8992    * and it would point to our bootup string, just like on the lilo
8993    * command line.  IF not NULL, then process this config string with
8994    * aic7xxx_setup
8995    */
8996   if(aic7xxx)
8997     aic7xxx_setup(aic7xxx);
8998 #endif
8999
9000   template->proc_name = "aic7xxx";
9001   template->sg_tablesize = AIC7XXX_MAX_SG;
9002
9003
9004 #ifdef CONFIG_PCI
9005   /*
9006    * PCI-bus probe.
9007    */
9008   {
9009     static struct
9010     {
9011       unsigned short      vendor_id;
9012       unsigned short      device_id;
9013       ahc_chip            chip;
9014       ahc_flag_type       flags;
9015       ahc_feature         features;
9016       int                 board_name_index;
9017       unsigned short      seeprom_size;
9018       unsigned short      seeprom_type;
9019     } const aic_pdevs[] = {
9020       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7810, AHC_NONE,
9021        AHC_FNONE, AHC_FENONE,                                1,
9022        32, C46 },
9023       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7850, AHC_AIC7850,
9024        AHC_PAGESCBS, AHC_AIC7850_FE,                         5,
9025        32, C46 },
9026       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7855, AHC_AIC7850,
9027        AHC_PAGESCBS, AHC_AIC7850_FE,                         6,
9028        32, C46 },
9029       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7821, AHC_AIC7860,
9030        AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9031        AHC_AIC7860_FE,                                       7,
9032        32, C46 },
9033       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_3860, AHC_AIC7860,
9034        AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9035        AHC_AIC7860_FE,                                       7,
9036        32, C46 },
9037       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_38602, AHC_AIC7860,
9038        AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9039        AHC_AIC7860_FE,                                       7,
9040        32, C46 },
9041       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_38602, AHC_AIC7860,
9042        AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9043        AHC_AIC7860_FE,                                       7,
9044        32, C46 },
9045       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7860, AHC_AIC7860,
9046        AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MOTHERBOARD,
9047        AHC_AIC7860_FE,                                       7,
9048        32, C46 },
9049       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7861, AHC_AIC7860,
9050        AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9051        AHC_AIC7860_FE,                                       8,
9052        32, C46 },
9053       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7870, AHC_AIC7870,
9054        AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MOTHERBOARD,
9055        AHC_AIC7870_FE,                                       9,
9056        32, C46 },
9057       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7871, AHC_AIC7870,
9058        AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7870_FE,     10,
9059        32, C46 },
9060       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7872, AHC_AIC7870,
9061        AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9062        AHC_AIC7870_FE,                                      11,
9063        32, C56_66 },
9064       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7873, AHC_AIC7870,
9065        AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9066        AHC_AIC7870_FE,                                      12,
9067        32, C56_66 },
9068       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7874, AHC_AIC7870,
9069        AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7870_FE,     13,
9070        32, C46 },
9071       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7880, AHC_AIC7880,
9072        AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MOTHERBOARD,
9073        AHC_AIC7880_FE,                                      14,
9074        32, C46 },
9075       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7881, AHC_AIC7880,
9076        AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE,     15,
9077        32, C46 },
9078       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7882, AHC_AIC7880,
9079        AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9080        AHC_AIC7880_FE,                                      16,
9081        32, C56_66 },
9082       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7883, AHC_AIC7880,
9083        AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9084        AHC_AIC7880_FE,                                      17,
9085        32, C56_66 },
9086       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7884, AHC_AIC7880,
9087        AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE,     18,
9088        32, C46 },
9089       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7885, AHC_AIC7880,
9090        AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE,     18,
9091        32, C46 },
9092       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7886, AHC_AIC7880,
9093        AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE,     18,
9094        32, C46 },
9095       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7887, AHC_AIC7880,
9096        AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE | AHC_NEW_AUTOTERM, 19,
9097        32, C46 },
9098       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7888, AHC_AIC7880,
9099        AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE,     18,
9100        32, C46 },
9101       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7895, AHC_AIC7895,
9102        AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9103        AHC_AIC7895_FE,                                      20,
9104        32, C56_66 },
9105       {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7890, AHC_AIC7890,
9106        AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9107        AHC_AIC7890_FE,                                      21,
9108        32, C46 },
9109       {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7890B, AHC_AIC7890,
9110        AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9111        AHC_AIC7890_FE,                                      21,
9112        32, C46 },
9113       {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_2930U2, AHC_AIC7890,
9114        AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9115        AHC_AIC7890_FE,                                      22,
9116        32, C46 },
9117       {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_2940U2, AHC_AIC7890,
9118        AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9119        AHC_AIC7890_FE,                                      23,
9120        32, C46 },
9121       {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7896, AHC_AIC7896,
9122        AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9123        AHC_AIC7896_FE,                                      24,
9124        32, C56_66 },
9125       {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_3940U2, AHC_AIC7896,
9126        AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9127        AHC_AIC7896_FE,                                      25,
9128        32, C56_66 },
9129       {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_3950U2D, AHC_AIC7896,
9130        AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9131        AHC_AIC7896_FE,                                      26,
9132        32, C56_66 },
9133       {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_1480A, AHC_AIC7860,
9134        AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_NO_STPWEN,
9135        AHC_AIC7860_FE,                                      27,
9136        32, C46 },
9137       {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892A, AHC_AIC7892,
9138        AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9139        AHC_AIC7892_FE,                                      28,
9140        32, C46 },
9141       {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892B, AHC_AIC7892,
9142        AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9143        AHC_AIC7892_FE,                                      28,
9144        32, C46 },
9145       {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892D, AHC_AIC7892,
9146        AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9147        AHC_AIC7892_FE,                                      28,
9148        32, C46 },
9149       {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892P, AHC_AIC7892,
9150        AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9151        AHC_AIC7892_FE,                                      28,
9152        32, C46 },
9153       {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899A, AHC_AIC7899,
9154        AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9155        AHC_AIC7899_FE,                                      29,
9156        32, C56_66 },
9157       {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899B, AHC_AIC7899,
9158        AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9159        AHC_AIC7899_FE,                                      29,
9160        32, C56_66 },
9161       {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899D, AHC_AIC7899,
9162        AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9163        AHC_AIC7899_FE,                                      29,
9164        32, C56_66 },
9165       {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899P, AHC_AIC7899,
9166        AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9167        AHC_AIC7899_FE,                                      29,
9168        32, C56_66 },
9169     };
9170
9171     unsigned short command;
9172     unsigned int  devconfig, i, oldverbose;
9173     struct pci_dev *pdev = NULL;
9174
9175     for (i = 0; i < ARRAY_SIZE(aic_pdevs); i++)
9176     {
9177       pdev = NULL;
9178       while ((pdev = pci_get_device(aic_pdevs[i].vendor_id,
9179                                      aic_pdevs[i].device_id,
9180                                      pdev))) {
9181         if (pci_enable_device(pdev))
9182                 continue;
9183         if ( i == 0 ) /* We found one, but it's the 7810 RAID cont. */
9184         {
9185           if (aic7xxx_verbose & (VERBOSE_PROBE|VERBOSE_PROBE2))
9186           {
9187             printk(KERN_INFO "aic7xxx: The 7810 RAID controller is not "
9188               "supported by\n");
9189             printk(KERN_INFO "         this driver, we are ignoring it.\n");
9190           }
9191         }
9192         else if ( (temp_p = kzalloc(sizeof(struct aic7xxx_host),
9193                                     GFP_ATOMIC)) != NULL )
9194         {
9195           temp_p->chip = aic_pdevs[i].chip | AHC_PCI;
9196           temp_p->flags = aic_pdevs[i].flags;
9197           temp_p->features = aic_pdevs[i].features;
9198           temp_p->board_name_index = aic_pdevs[i].board_name_index;
9199           temp_p->sc_size = aic_pdevs[i].seeprom_size;
9200           temp_p->sc_type = aic_pdevs[i].seeprom_type;
9201
9202           /*
9203            * Read sundry information from PCI BIOS.
9204            */
9205           temp_p->irq = pdev->irq;
9206           temp_p->pdev = pdev;
9207           temp_p->pci_bus = pdev->bus->number;
9208           temp_p->pci_device_fn = pdev->devfn;
9209           temp_p->base = pci_resource_start(pdev, 0);
9210           temp_p->mbase = pci_resource_start(pdev, 1);
9211           current_p = list_p;
9212           while(current_p && temp_p)
9213           {
9214             if ( ((current_p->pci_bus == temp_p->pci_bus) &&
9215                   (current_p->pci_device_fn == temp_p->pci_device_fn)) ||
9216                  (temp_p->base && (current_p->base == temp_p->base)) ||
9217                  (temp_p->mbase && (current_p->mbase == temp_p->mbase)) )
9218             {
9219               /* duplicate PCI entry, skip it */
9220               kfree(temp_p);
9221               temp_p = NULL;
9222               continue;
9223             }
9224             current_p = current_p->next;
9225           }
9226           if(pci_request_regions(temp_p->pdev, "aic7xxx"))
9227           {
9228             printk("aic7xxx: <%s> at PCI %d/%d/%d\n", 
9229               board_names[aic_pdevs[i].board_name_index],
9230               temp_p->pci_bus,
9231               PCI_SLOT(temp_p->pci_device_fn),
9232               PCI_FUNC(temp_p->pci_device_fn));
9233             printk("aic7xxx: I/O ports already in use, ignoring.\n");
9234             kfree(temp_p);
9235             continue;
9236           }
9237
9238           if (aic7xxx_verbose & VERBOSE_PROBE2)
9239             printk("aic7xxx: <%s> at PCI %d/%d\n", 
9240               board_names[aic_pdevs[i].board_name_index],
9241               PCI_SLOT(pdev->devfn),
9242               PCI_FUNC(pdev->devfn));
9243           pci_read_config_word(pdev, PCI_COMMAND, &command);
9244           if (aic7xxx_verbose & VERBOSE_PROBE2)
9245           {
9246             printk("aic7xxx: Initial PCI_COMMAND value was 0x%x\n",
9247               (int)command);
9248           }
9249 #ifdef AIC7XXX_STRICT_PCI_SETUP
9250           command |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
9251             PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
9252 #else
9253           command |= PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
9254 #endif
9255           command &= ~PCI_COMMAND_INVALIDATE;
9256           if (aic7xxx_pci_parity == 0)
9257             command &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
9258           pci_write_config_word(pdev, PCI_COMMAND, command);
9259 #ifdef AIC7XXX_STRICT_PCI_SETUP
9260           pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
9261           if (aic7xxx_verbose & VERBOSE_PROBE2)
9262           {
9263             printk("aic7xxx: Initial DEVCONFIG value was 0x%x\n", devconfig);
9264           }
9265           devconfig |= 0x80000040;
9266           pci_write_config_dword(pdev, DEVCONFIG, devconfig);
9267 #endif /* AIC7XXX_STRICT_PCI_SETUP */
9268
9269           temp_p->unpause = INTEN;
9270           temp_p->pause = temp_p->unpause | PAUSE;
9271           if ( ((temp_p->base == 0) &&
9272                 (temp_p->mbase == 0)) ||
9273                (temp_p->irq == 0) )
9274           {
9275             printk("aic7xxx: <%s> at PCI %d/%d/%d\n", 
9276               board_names[aic_pdevs[i].board_name_index],
9277               temp_p->pci_bus,
9278               PCI_SLOT(temp_p->pci_device_fn),
9279               PCI_FUNC(temp_p->pci_device_fn));
9280             printk("aic7xxx: Controller disabled by BIOS, ignoring.\n");
9281             goto skip_pci_controller;
9282           }
9283
9284 #ifdef MMAPIO
9285           if ( !(temp_p->base) || !(temp_p->flags & AHC_MULTI_CHANNEL) ||
9286                ((temp_p->chip != (AHC_AIC7870 | AHC_PCI)) &&
9287                 (temp_p->chip != (AHC_AIC7880 | AHC_PCI))) )
9288           {
9289             temp_p->maddr = ioremap_nocache(temp_p->mbase, 256);
9290             if(temp_p->maddr)
9291             {
9292               /*
9293                * We need to check the I/O with the MMAPed address.  Some machines
9294                * simply fail to work with MMAPed I/O and certain controllers.
9295                */
9296               if(aic_inb(temp_p, HCNTRL) == 0xff)
9297               {
9298                 /*
9299                  * OK.....we failed our test....go back to programmed I/O
9300                  */
9301                 printk(KERN_INFO "aic7xxx: <%s> at PCI %d/%d/%d\n", 
9302                   board_names[aic_pdevs[i].board_name_index],
9303                   temp_p->pci_bus,
9304                   PCI_SLOT(temp_p->pci_device_fn),
9305                   PCI_FUNC(temp_p->pci_device_fn));
9306                 printk(KERN_INFO "aic7xxx: MMAPed I/O failed, reverting to "
9307                                  "Programmed I/O.\n");
9308                 iounmap(temp_p->maddr);
9309                 temp_p->maddr = NULL;
9310                 if(temp_p->base == 0)
9311                 {
9312                   printk("aic7xxx: <%s> at PCI %d/%d/%d\n", 
9313                     board_names[aic_pdevs[i].board_name_index],
9314                     temp_p->pci_bus,
9315                     PCI_SLOT(temp_p->pci_device_fn),
9316                     PCI_FUNC(temp_p->pci_device_fn));
9317                   printk("aic7xxx: Controller disabled by BIOS, ignoring.\n");
9318                   goto skip_pci_controller;
9319                 }
9320               }
9321             }
9322           }
9323 #endif
9324
9325           /*
9326            * We HAVE to make sure the first pause_sequencer() and all other
9327            * subsequent I/O that isn't PCI config space I/O takes place
9328            * after the MMAPed I/O region is configured and tested.  The
9329            * problem is the PowerPC architecture that doesn't support
9330            * programmed I/O at all, so we have to have the MMAP I/O set up
9331            * for this pause to even work on those machines.
9332            */
9333           pause_sequencer(temp_p);
9334
9335           /*
9336            * Clear out any pending PCI error status messages.  Also set
9337            * verbose to 0 so that we don't emit strange PCI error messages
9338            * while cleaning out the current status bits.
9339            */
9340           oldverbose = aic7xxx_verbose;
9341           aic7xxx_verbose = 0;
9342           aic7xxx_pci_intr(temp_p);
9343           aic7xxx_verbose = oldverbose;
9344
9345           temp_p->bios_address = 0;
9346
9347           /*
9348            * Remember how the card was setup in case there is no seeprom.
9349            */
9350           if (temp_p->features & AHC_ULTRA2)
9351             temp_p->scsi_id = aic_inb(temp_p, SCSIID_ULTRA2) & OID;
9352           else
9353             temp_p->scsi_id = aic_inb(temp_p, SCSIID) & OID;
9354           /*
9355            * Get current termination setting
9356            */
9357           sxfrctl1 = aic_inb(temp_p, SXFRCTL1);
9358
9359           if (aic7xxx_chip_reset(temp_p) == -1)
9360           {
9361             goto skip_pci_controller;
9362           }
9363           /*
9364            * Very quickly put the term setting back into the register since
9365            * the chip reset may cause odd things to happen.  This is to keep
9366            * LVD busses with lots of drives from draining the power out of
9367            * the diffsense line before we get around to running the
9368            * configure_termination() function.  Also restore the STPWLEVEL
9369            * bit of DEVCONFIG
9370            */
9371           aic_outb(temp_p, sxfrctl1, SXFRCTL1);
9372           pci_write_config_dword(temp_p->pdev, DEVCONFIG, devconfig);
9373           sxfrctl1 &= STPWEN;
9374
9375           /*
9376            * We need to set the CHNL? assignments before loading the SEEPROM
9377            * The 3940 and 3985 cards (original stuff, not any of the later
9378            * stuff) are 7870 and 7880 class chips.  The Ultra2 stuff falls
9379            * under 7896 and 7897.  The 7895 is in a class by itself :)
9380            */
9381           switch (temp_p->chip & AHC_CHIPID_MASK)
9382           {
9383             case AHC_AIC7870: /* 3840 / 3985 */
9384             case AHC_AIC7880: /* 3840 UW / 3985 UW */
9385               if(temp_p->flags & AHC_MULTI_CHANNEL)
9386               {
9387                 switch(PCI_SLOT(temp_p->pci_device_fn))
9388                 {
9389                   case 5:
9390                     temp_p->flags |= AHC_CHNLB;
9391                     break;
9392                   case 8:
9393                     temp_p->flags |= AHC_CHNLB;
9394                     break;
9395                   case 12:
9396                     temp_p->flags |= AHC_CHNLC;
9397                     break;
9398                   default:
9399                     break;
9400                 }
9401               }
9402               break;
9403
9404             case AHC_AIC7895: /* 7895 */
9405             case AHC_AIC7896: /* 7896/7 */
9406             case AHC_AIC7899: /* 7899 */
9407               if (PCI_FUNC(pdev->devfn) != 0)
9408               {
9409                 temp_p->flags |= AHC_CHNLB;
9410               }
9411               /*
9412                * The 7895 is the only chipset that sets the SCBSIZE32 param
9413                * in the DEVCONFIG register.  The Ultra2 chipsets use
9414                * the DSCOMMAND0 register instead.
9415                */
9416               if ((temp_p->chip & AHC_CHIPID_MASK) == AHC_AIC7895)
9417               {
9418                 pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
9419                 devconfig |= SCBSIZE32;
9420                 pci_write_config_dword(pdev, DEVCONFIG, devconfig);
9421               }
9422               break;
9423             default:
9424               break;
9425           }
9426
9427           /*
9428            * Loading of the SEEPROM needs to come after we've set the flags
9429            * to indicate possible CHNLB and CHNLC assigments.  Otherwise,
9430            * on 394x and 398x cards we'll end up reading the wrong settings
9431            * for channels B and C
9432            */
9433           switch (temp_p->chip & AHC_CHIPID_MASK)
9434           {
9435             case AHC_AIC7892:
9436             case AHC_AIC7899:
9437               aic_outb(temp_p, 0, SCAMCTL);
9438               /*
9439                * Switch to the alt mode of the chip...
9440                */
9441               aic_outb(temp_p, aic_inb(temp_p, SFUNCT) | ALT_MODE, SFUNCT);
9442               /*
9443                * Set our options...the last two items set our CRC after x byte
9444                * count in target mode...
9445                */
9446               aic_outb(temp_p, AUTO_MSGOUT_DE | DIS_MSGIN_DUALEDGE, OPTIONMODE);
9447               aic_outb(temp_p, 0x00, 0x0b);
9448               aic_outb(temp_p, 0x10, 0x0a);
9449               /*
9450                * switch back to normal mode...
9451                */
9452               aic_outb(temp_p, aic_inb(temp_p, SFUNCT) & ~ALT_MODE, SFUNCT);
9453               aic_outb(temp_p, CRCVALCHKEN | CRCENDCHKEN | CRCREQCHKEN |
9454                                TARGCRCENDEN | TARGCRCCNTEN,
9455                        CRCCONTROL1);
9456               aic_outb(temp_p, ((aic_inb(temp_p, DSCOMMAND0) | USCBSIZE32 |
9457                                  MPARCKEN | CIOPARCKEN | CACHETHEN) & 
9458                                ~DPARCKEN), DSCOMMAND0);
9459               aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9460               break;
9461             case AHC_AIC7890:
9462             case AHC_AIC7896:
9463               aic_outb(temp_p, 0, SCAMCTL);
9464               aic_outb(temp_p, (aic_inb(temp_p, DSCOMMAND0) |
9465                                 CACHETHEN | MPARCKEN | USCBSIZE32 |
9466                                 CIOPARCKEN) & ~DPARCKEN, DSCOMMAND0);
9467               aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9468               break;
9469             case AHC_AIC7850:
9470             case AHC_AIC7860:
9471               /*
9472                * Set the DSCOMMAND0 register on these cards different from
9473                * on the 789x cards.  Also, read the SEEPROM as well.
9474                */
9475               aic_outb(temp_p, (aic_inb(temp_p, DSCOMMAND0) |
9476                                 CACHETHEN | MPARCKEN) & ~DPARCKEN,
9477                        DSCOMMAND0);
9478               /* FALLTHROUGH */
9479             default:
9480               aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9481               break;
9482             case AHC_AIC7880:
9483               /*
9484                * Check the rev of the chipset before we change DSCOMMAND0
9485                */
9486               pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
9487               if ((devconfig & 0xff) >= 1)
9488               {
9489                 aic_outb(temp_p, (aic_inb(temp_p, DSCOMMAND0) |
9490                                   CACHETHEN | MPARCKEN) & ~DPARCKEN,
9491                          DSCOMMAND0);
9492               }
9493               aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9494               break;
9495           }
9496           
9497
9498           /*
9499            * and then we need another switch based on the type in order to
9500            * make sure the channel B primary flag is set properly on 7895
9501            * controllers....Arrrgggghhh!!!  We also have to catch the fact
9502            * that when you disable the BIOS on the 7895 on the Intel DK440LX
9503            * motherboard, and possibly others, it only sets the BIOS disabled
9504            * bit on the A channel...I think I'm starting to lean towards
9505            * going postal....
9506            */
9507           switch(temp_p->chip & AHC_CHIPID_MASK)
9508           {
9509             case AHC_AIC7895:
9510             case AHC_AIC7896:
9511             case AHC_AIC7899:
9512               current_p = list_p;
9513               while(current_p != NULL)
9514               {
9515                 if ( (current_p->pci_bus == temp_p->pci_bus) &&
9516                      (PCI_SLOT(current_p->pci_device_fn) ==
9517                       PCI_SLOT(temp_p->pci_device_fn)) )
9518                 {
9519                   if ( PCI_FUNC(current_p->pci_device_fn) == 0 )
9520                   {
9521                     temp_p->flags |= 
9522                       (current_p->flags & AHC_CHANNEL_B_PRIMARY);
9523                     temp_p->flags &= ~(AHC_BIOS_ENABLED|AHC_USEDEFAULTS);
9524                     temp_p->flags |=
9525                       (current_p->flags & (AHC_BIOS_ENABLED|AHC_USEDEFAULTS));
9526                   }
9527                   else
9528                   {
9529                     current_p->flags |=
9530                       (temp_p->flags & AHC_CHANNEL_B_PRIMARY);
9531                     current_p->flags &= ~(AHC_BIOS_ENABLED|AHC_USEDEFAULTS);
9532                     current_p->flags |=
9533                       (temp_p->flags & (AHC_BIOS_ENABLED|AHC_USEDEFAULTS));
9534                   }
9535                 }
9536                 current_p = current_p->next;
9537               }
9538               break;
9539             default:
9540               break;
9541           }
9542
9543           /*
9544            * We only support external SCB RAM on the 7895/6/7 chipsets.
9545            * We could support it on the 7890/1 easy enough, but I don't
9546            * know of any 7890/1 based cards that have it.  I do know
9547            * of 7895/6/7 cards that have it and they work properly.
9548            */
9549           switch(temp_p->chip & AHC_CHIPID_MASK)
9550           {
9551             default:
9552               break;
9553             case AHC_AIC7895:
9554             case AHC_AIC7896:
9555             case AHC_AIC7899:
9556               pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
9557               if (temp_p->features & AHC_ULTRA2)
9558               {
9559                 if ( (aic_inb(temp_p, DSCOMMAND0) & RAMPSM_ULTRA2) &&
9560                      (aic7xxx_scbram) )
9561                 {
9562                   aic_outb(temp_p,
9563                            aic_inb(temp_p, DSCOMMAND0) & ~SCBRAMSEL_ULTRA2,
9564                            DSCOMMAND0);
9565                   temp_p->flags |= AHC_EXTERNAL_SRAM;
9566                   devconfig |= EXTSCBPEN;
9567                 }
9568                 else if (aic_inb(temp_p, DSCOMMAND0) & RAMPSM_ULTRA2)
9569                 {
9570                   printk(KERN_INFO "aic7xxx: <%s> at PCI %d/%d/%d\n", 
9571                     board_names[aic_pdevs[i].board_name_index],
9572                     temp_p->pci_bus,
9573                     PCI_SLOT(temp_p->pci_device_fn),
9574                     PCI_FUNC(temp_p->pci_device_fn));
9575                   printk("aic7xxx: external SCB RAM detected, "
9576                          "but not enabled\n");
9577                 }
9578               }
9579               else
9580               {
9581                 if ((devconfig & RAMPSM) && (aic7xxx_scbram))
9582                 {
9583                   devconfig &= ~SCBRAMSEL;
9584                   devconfig |= EXTSCBPEN;
9585                   temp_p->flags |= AHC_EXTERNAL_SRAM;
9586                 }
9587                 else if (devconfig & RAMPSM)
9588                 {
9589                   printk(KERN_INFO "aic7xxx: <%s> at PCI %d/%d/%d\n", 
9590                     board_names[aic_pdevs[i].board_name_index],
9591                     temp_p->pci_bus,
9592                     PCI_SLOT(temp_p->pci_device_fn),
9593                     PCI_FUNC(temp_p->pci_device_fn));
9594                   printk("aic7xxx: external SCB RAM detected, "
9595                          "but not enabled\n");
9596                 }
9597               }
9598               pci_write_config_dword(pdev, DEVCONFIG, devconfig);
9599               if ( (temp_p->flags & AHC_EXTERNAL_SRAM) &&
9600                    (temp_p->flags & AHC_CHNLB) )
9601                 aic_outb(temp_p, 1, CCSCBBADDR);
9602               break;
9603           }
9604
9605           /*
9606            * Take the LED out of diagnostic mode
9607            */
9608           aic_outb(temp_p, 
9609             (aic_inb(temp_p, SBLKCTL) & ~(DIAGLEDEN | DIAGLEDON)),
9610             SBLKCTL);
9611
9612           /*
9613            * We don't know where this is set in the SEEPROM or by the
9614            * BIOS, so we default to 100%.  On Ultra2 controllers, use 75%
9615            * instead.
9616            */
9617           if (temp_p->features & AHC_ULTRA2)
9618           {
9619             aic_outb(temp_p, RD_DFTHRSH_MAX | WR_DFTHRSH_MAX, DFF_THRSH);
9620           }
9621           else
9622           {
9623             aic_outb(temp_p, DFTHRSH_100, DSPCISTATUS);
9624           }
9625
9626           /*
9627            * Call our function to fixup any bugs that exist on this chipset.
9628            * This may muck with PCI settings and other device settings, so
9629            * make sure it's after all the other PCI and device register
9630            * tweaks so it can back out bad settings on specific broken cards.
9631            */
9632           aic7xxx_configure_bugs(temp_p);
9633
9634           /* Hold a pci device reference */
9635           pci_dev_get(temp_p->pdev);
9636
9637           if ( list_p == NULL )
9638           {
9639             list_p = current_p = temp_p;
9640           }
9641           else
9642           {
9643             current_p = list_p;
9644             while(current_p->next != NULL)
9645               current_p = current_p->next;
9646             current_p->next = temp_p;
9647           }
9648           temp_p->next = NULL;
9649           found++;
9650           continue;
9651 skip_pci_controller:
9652 #ifdef CONFIG_PCI
9653           pci_release_regions(temp_p->pdev);
9654 #endif
9655           kfree(temp_p);
9656         }  /* Found an Adaptec PCI device. */
9657         else /* Well, we found one, but we couldn't get any memory */
9658         {
9659           printk("aic7xxx: Found <%s>\n", 
9660             board_names[aic_pdevs[i].board_name_index]);
9661           printk(KERN_INFO "aic7xxx: Unable to allocate device memory, "
9662             "skipping.\n");
9663         }
9664       } /* while(pdev=....) */
9665     } /* for PCI_DEVICES */
9666   }
9667 #endif /* CONFIG_PCI */
9668
9669 #if defined(__i386__) || defined(__alpha__)
9670   /*
9671    * EISA/VL-bus card signature probe.
9672    */
9673   slot = MINSLOT;
9674   while ( (slot <= MAXSLOT) &&
9675          !(aic7xxx_no_probe) )
9676   {
9677     base = SLOTBASE(slot) + MINREG;
9678
9679     if (!request_region(base, MAXREG - MINREG, "aic7xxx"))
9680     {
9681       /*
9682        * Some other driver has staked a
9683        * claim to this i/o region already.
9684        */
9685       slot++;
9686       continue; /* back to the beginning of the for loop */
9687     }
9688     flags = 0;
9689     type = aic7xxx_probe(slot, base + AHC_HID0, &flags);
9690     if (type == -1)
9691     {
9692       release_region(base, MAXREG - MINREG);
9693       slot++;
9694       continue;
9695     }
9696     temp_p = kmalloc(sizeof(struct aic7xxx_host), GFP_ATOMIC);
9697     if (temp_p == NULL)
9698     {
9699       printk(KERN_WARNING "aic7xxx: Unable to allocate device space.\n");
9700       release_region(base, MAXREG - MINREG);
9701       slot++;
9702       continue; /* back to the beginning of the while loop */
9703     }
9704
9705     /*
9706      * Pause the card preserving the IRQ type.  Allow the operator
9707      * to override the IRQ trigger.
9708      */
9709     if (aic7xxx_irq_trigger == 1)
9710       hcntrl = IRQMS;  /* Level */
9711     else if (aic7xxx_irq_trigger == 0)
9712       hcntrl = 0;  /* Edge */
9713     else
9714       hcntrl = inb(base + HCNTRL) & IRQMS;  /* Default */
9715     memset(temp_p, 0, sizeof(struct aic7xxx_host));
9716     temp_p->unpause = hcntrl | INTEN;
9717     temp_p->pause = hcntrl | PAUSE | INTEN;
9718     temp_p->base = base;
9719     temp_p->mbase = 0;
9720     temp_p->maddr = NULL;
9721     temp_p->pci_bus = 0;
9722     temp_p->pci_device_fn = slot;
9723     aic_outb(temp_p, hcntrl | PAUSE, HCNTRL);
9724     while( (aic_inb(temp_p, HCNTRL) & PAUSE) == 0 ) ;
9725     if (aic7xxx_chip_reset(temp_p) == -1)
9726       temp_p->irq = 0;
9727     else
9728       temp_p->irq = aic_inb(temp_p, INTDEF) & 0x0F;
9729     temp_p->flags |= AHC_PAGESCBS;
9730
9731     switch (temp_p->irq)
9732     {
9733       case 9:
9734       case 10:
9735       case 11:
9736       case 12:
9737       case 14:
9738       case 15:
9739         break;
9740
9741       default:
9742         printk(KERN_WARNING "aic7xxx: Host adapter uses unsupported IRQ "
9743           "level %d, ignoring.\n", temp_p->irq);
9744         kfree(temp_p);
9745         release_region(base, MAXREG - MINREG);
9746         slot++;
9747         continue; /* back to the beginning of the while loop */
9748     }
9749
9750     /*
9751      * We are committed now, everything has been checked and this card
9752      * has been found, now we just set it up
9753      */
9754
9755     /*
9756      * Insert our new struct into the list at the end
9757      */
9758     if (list_p == NULL)
9759     {
9760       list_p = current_p = temp_p;
9761     }
9762     else
9763     {
9764       current_p = list_p;
9765       while (current_p->next != NULL)
9766         current_p = current_p->next;
9767       current_p->next = temp_p;
9768     }
9769
9770     switch (type)
9771     {
9772       case 0:
9773         temp_p->board_name_index = 2;
9774         if (aic7xxx_verbose & VERBOSE_PROBE2)
9775           printk("aic7xxx: <%s> at EISA %d\n",
9776                board_names[2], slot);
9777         /* FALLTHROUGH */
9778       case 1:
9779       {
9780         temp_p->chip = AHC_AIC7770 | AHC_EISA;
9781         temp_p->features |= AHC_AIC7770_FE;
9782         temp_p->bios_control = aic_inb(temp_p, HA_274_BIOSCTRL);
9783
9784         /*
9785          * Get the primary channel information.  Right now we don't
9786          * do anything with this, but someday we will be able to inform
9787          * the mid-level SCSI code which channel is primary.
9788          */
9789         if (temp_p->board_name_index == 0)
9790         {
9791           temp_p->board_name_index = 3;
9792           if (aic7xxx_verbose & VERBOSE_PROBE2)
9793             printk("aic7xxx: <%s> at EISA %d\n",
9794                  board_names[3], slot);
9795         }
9796         if (temp_p->bios_control & CHANNEL_B_PRIMARY)
9797         {
9798           temp_p->flags |= AHC_CHANNEL_B_PRIMARY;
9799         }
9800
9801         if ((temp_p->bios_control & BIOSMODE) == BIOSDISABLED)
9802         {
9803           temp_p->flags &= ~AHC_BIOS_ENABLED;
9804         }
9805         else
9806         {
9807           temp_p->flags &= ~AHC_USEDEFAULTS;
9808           temp_p->flags |= AHC_BIOS_ENABLED;
9809           if ( (temp_p->bios_control & 0x20) == 0 )
9810           {
9811             temp_p->bios_address = 0xcc000;
9812             temp_p->bios_address += (0x4000 * (temp_p->bios_control & 0x07));
9813           }
9814           else
9815           {
9816             temp_p->bios_address = 0xd0000;
9817             temp_p->bios_address += (0x8000 * (temp_p->bios_control & 0x06));
9818           }
9819         }
9820         temp_p->adapter_control = aic_inb(temp_p, SCSICONF) << 8;
9821         temp_p->adapter_control |= aic_inb(temp_p, SCSICONF + 1);
9822         if (temp_p->features & AHC_WIDE)
9823         {
9824           temp_p->scsi_id = temp_p->adapter_control & HWSCSIID;
9825           temp_p->scsi_id_b = temp_p->scsi_id;
9826         }
9827         else
9828         {
9829           temp_p->scsi_id = (temp_p->adapter_control >> 8) & HSCSIID;
9830           temp_p->scsi_id_b = temp_p->adapter_control & HSCSIID;
9831         }
9832         aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9833         break;
9834       }
9835
9836       case 2:
9837       case 3:
9838         temp_p->chip = AHC_AIC7770 | AHC_VL;
9839         temp_p->features |= AHC_AIC7770_FE;
9840         if (type == 2)
9841           temp_p->flags |= AHC_BIOS_ENABLED;
9842         else
9843           temp_p->flags &= ~AHC_BIOS_ENABLED;
9844         if (aic_inb(temp_p, SCSICONF) & TERM_ENB)
9845           sxfrctl1 = STPWEN;
9846         aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9847         temp_p->board_name_index = 4;
9848         if (aic7xxx_verbose & VERBOSE_PROBE2)
9849           printk("aic7xxx: <%s> at VLB %d\n",
9850                board_names[2], slot);
9851         switch( aic_inb(temp_p, STATUS_2840) & BIOS_SEL )
9852         {
9853           case 0x00:
9854             temp_p->bios_address = 0xe0000;
9855             break;
9856           case 0x20:
9857             temp_p->bios_address = 0xc8000;
9858             break;
9859           case 0x40:
9860             temp_p->bios_address = 0xd0000;
9861             break;
9862           case 0x60:
9863             temp_p->bios_address = 0xd8000;
9864             break;
9865           default:
9866             break; /* can't get here */
9867         }
9868         break;
9869
9870       default:  /* Won't get here. */
9871         break;
9872     }
9873     if (aic7xxx_verbose & VERBOSE_PROBE2)
9874     {
9875       printk(KERN_INFO "aic7xxx: BIOS %sabled, IO Port 0x%lx, IRQ %d (%s)\n",
9876         (temp_p->flags & AHC_USEDEFAULTS) ? "dis" : "en", temp_p->base,
9877         temp_p->irq,
9878         (temp_p->pause & IRQMS) ? "level sensitive" : "edge triggered");
9879       printk(KERN_INFO "aic7xxx: Extended translation %sabled.\n",
9880              (temp_p->flags & AHC_EXTEND_TRANS_A) ? "en" : "dis");
9881     }
9882
9883     /*
9884      * All the 7770 based chipsets have this bug
9885      */
9886     temp_p->bugs |= AHC_BUG_TMODE_WIDEODD;
9887
9888     /*
9889      * Set the FIFO threshold and the bus off time.
9890      */
9891     hostconf = aic_inb(temp_p, HOSTCONF);
9892     aic_outb(temp_p, hostconf & DFTHRSH, BUSSPD);
9893     aic_outb(temp_p, (hostconf << 2) & BOFF, BUSTIME);
9894     slot++;
9895     found++;
9896   }
9897
9898 #endif /* defined(__i386__) || defined(__alpha__) */
9899
9900   /*
9901    * Now, we re-order the probed devices by BIOS address and BUS class.
9902    * In general, we follow this algorithm to make the adapters show up
9903    * in the same order under linux that the computer finds them.
9904    *  1: All VLB/EISA cards with BIOS_ENABLED first, according to BIOS
9905    *     address, going from lowest to highest.
9906    *  2: All PCI controllers with BIOS_ENABLED next, according to BIOS
9907    *     address, going from lowest to highest.
9908    *  3: Remaining VLB/EISA controllers going in slot order.
9909    *  4: Remaining PCI controllers, going in PCI device order (reversible)
9910    */
9911
9912   {
9913     struct aic7xxx_host *sort_list[4] = { NULL, NULL, NULL, NULL };
9914     struct aic7xxx_host *vlb, *pci;
9915     struct aic7xxx_host *prev_p;
9916     struct aic7xxx_host *p;
9917     unsigned char left;
9918
9919     prev_p = vlb = pci = NULL;
9920
9921     temp_p = list_p;
9922     while (temp_p != NULL)
9923     {
9924       switch(temp_p->chip & ~AHC_CHIPID_MASK)
9925       {
9926         case AHC_EISA:
9927         case AHC_VL:
9928         {
9929           p = temp_p;
9930           if (p->flags & AHC_BIOS_ENABLED)
9931             vlb = sort_list[0];
9932           else
9933             vlb = sort_list[2];
9934
9935           if (vlb == NULL)
9936           {
9937             vlb = temp_p;
9938             temp_p = temp_p->next;
9939             vlb->next = NULL;
9940           }
9941           else
9942           {
9943             current_p = vlb;
9944             prev_p = NULL;
9945             while ( (current_p != NULL) &&
9946                     (current_p->bios_address < temp_p->bios_address))
9947             {
9948               prev_p = current_p;
9949               current_p = current_p->next;
9950             }
9951             if (prev_p != NULL)
9952             {
9953               prev_p->next = temp_p;
9954               temp_p = temp_p->next;
9955               prev_p->next->next = current_p;
9956             }
9957             else
9958             {
9959               vlb = temp_p;
9960               temp_p = temp_p->next;
9961               vlb->next = current_p;
9962             }
9963           }
9964           
9965           if (p->flags & AHC_BIOS_ENABLED)
9966             sort_list[0] = vlb;
9967           else
9968             sort_list[2] = vlb;
9969           
9970           break;
9971         }
9972         default:  /* All PCI controllers fall through to default */
9973         {
9974
9975           p = temp_p;
9976           if (p->flags & AHC_BIOS_ENABLED) 
9977             pci = sort_list[1];
9978           else
9979             pci = sort_list[3];
9980
9981           if (pci == NULL)
9982           {
9983             pci = temp_p;
9984             temp_p = temp_p->next;
9985             pci->next = NULL;
9986           }
9987           else
9988           {
9989             current_p = pci;
9990             prev_p = NULL;
9991             if (!aic7xxx_reverse_scan)
9992             {
9993               while ( (current_p != NULL) &&
9994                       ( (PCI_SLOT(current_p->pci_device_fn) |
9995                         (current_p->pci_bus << 8)) < 
9996                         (PCI_SLOT(temp_p->pci_device_fn) |
9997                         (temp_p->pci_bus << 8)) ) )
9998               {
9999                 prev_p = current_p;
10000                 current_p = current_p->next;
10001               }
10002             }
10003             else
10004             {
10005               while ( (current_p != NULL) &&
10006                       ( (PCI_SLOT(current_p->pci_device_fn) |
10007                         (current_p->pci_bus << 8)) > 
10008                         (PCI_SLOT(temp_p->pci_device_fn) |
10009                         (temp_p->pci_bus << 8)) ) )
10010               {
10011                 prev_p = current_p;
10012                 current_p = current_p->next;
10013               }
10014             }
10015             /*
10016              * Are we dealing with a 7895/6/7/9 where we need to sort the
10017              * channels as well, if so, the bios_address values should
10018              * be the same
10019              */
10020             if ( (current_p) && (temp_p->flags & AHC_MULTI_CHANNEL) &&
10021                  (temp_p->pci_bus == current_p->pci_bus) &&
10022                  (PCI_SLOT(temp_p->pci_device_fn) ==
10023                   PCI_SLOT(current_p->pci_device_fn)) )
10024             {
10025               if (temp_p->flags & AHC_CHNLB)
10026               {
10027                 if ( !(temp_p->flags & AHC_CHANNEL_B_PRIMARY) )
10028                 {
10029                   prev_p = current_p;
10030                   current_p = current_p->next;
10031                 }
10032               }
10033               else
10034               {
10035                 if (temp_p->flags & AHC_CHANNEL_B_PRIMARY)
10036                 {
10037                   prev_p = current_p;
10038                   current_p = current_p->next;
10039                 }
10040               }
10041             }
10042             if (prev_p != NULL)
10043             {
10044               prev_p->next = temp_p;
10045               temp_p = temp_p->next;
10046               prev_p->next->next = current_p;
10047             }
10048             else
10049             {
10050               pci = temp_p;
10051               temp_p = temp_p->next;
10052               pci->next = current_p;
10053             }
10054           }
10055
10056           if (p->flags & AHC_BIOS_ENABLED)
10057             sort_list[1] = pci;
10058           else
10059             sort_list[3] = pci;
10060
10061           break;
10062         }
10063       }  /* End of switch(temp_p->type) */
10064     } /* End of while (temp_p != NULL) */
10065     /*
10066      * At this point, the cards have been broken into 4 sorted lists, now
10067      * we run through the lists in order and register each controller
10068      */
10069     {
10070       int i;
10071       
10072       left = found;
10073       for (i=0; i<ARRAY_SIZE(sort_list); i++)
10074       {
10075         temp_p = sort_list[i];
10076         while(temp_p != NULL)
10077         {
10078           template->name = board_names[temp_p->board_name_index];
10079           p = aic7xxx_alloc(template, temp_p);
10080           if (p != NULL)
10081           {
10082             p->instance = found - left;
10083             if (aic7xxx_register(template, p, (--left)) == 0)
10084             {
10085               found--;
10086               aic7xxx_release(p->host);
10087               scsi_unregister(p->host);
10088             }
10089             else if (aic7xxx_dump_card)
10090             {
10091               pause_sequencer(p);
10092               aic7xxx_print_card(p);
10093               aic7xxx_print_scratch_ram(p);
10094               unpause_sequencer(p, TRUE);
10095             }
10096           }
10097           current_p = temp_p;
10098           temp_p = (struct aic7xxx_host *)temp_p->next;
10099           kfree(current_p);
10100         }
10101       }
10102     }
10103   }
10104   return (found);
10105 }
10106
10107 /*+F*************************************************************************
10108  * Function:
10109  *   aic7xxx_buildscb
10110  *
10111  * Description:
10112  *   Build a SCB.
10113  *-F*************************************************************************/
10114 static void aic7xxx_buildscb(struct aic7xxx_host *p, struct scsi_cmnd *cmd,
10115                              struct aic7xxx_scb *scb)
10116 {
10117   unsigned short mask;
10118   struct aic7xxx_hwscb *hscb;
10119   struct aic_dev_data *aic_dev = cmd->device->hostdata;
10120   struct scsi_device *sdptr = cmd->device;
10121   unsigned char tindex = TARGET_INDEX(cmd);
10122   int use_sg;
10123
10124   mask = (0x01 << tindex);
10125   hscb = scb->hscb;
10126
10127   /*
10128    * Setup the control byte if we need negotiation and have not
10129    * already requested it.
10130    */
10131   hscb->control = 0;
10132   scb->tag_action = 0;
10133
10134   if (p->discenable & mask)
10135   {
10136     hscb->control |= DISCENB;
10137     /* We always force TEST_UNIT_READY to untagged */
10138     if (cmd->cmnd[0] != TEST_UNIT_READY && sdptr->simple_tags)
10139     {
10140       hscb->control |= MSG_SIMPLE_Q_TAG;
10141       scb->tag_action = MSG_SIMPLE_Q_TAG;
10142     }
10143   }
10144   if ( !(aic_dev->dtr_pending) &&
10145         (aic_dev->needppr || aic_dev->needwdtr || aic_dev->needsdtr) &&
10146         (aic_dev->flags & DEVICE_DTR_SCANNED) )
10147   {
10148     aic_dev->dtr_pending = 1;
10149     scb->tag_action = 0;
10150     hscb->control &= DISCENB;
10151     hscb->control |= MK_MESSAGE;
10152     if(aic_dev->needppr)
10153     {
10154       scb->flags |= SCB_MSGOUT_PPR;
10155     }
10156     else if(aic_dev->needwdtr)
10157     {
10158       scb->flags |= SCB_MSGOUT_WDTR;
10159     }
10160     else if(aic_dev->needsdtr)
10161     {
10162       scb->flags |= SCB_MSGOUT_SDTR;
10163     }
10164     scb->flags |= SCB_DTR_SCB;
10165   }
10166   hscb->target_channel_lun = ((cmd->device->id << 4) & 0xF0) |
10167         ((cmd->device->channel & 0x01) << 3) | (cmd->device->lun & 0x07);
10168
10169   /*
10170    * The interpretation of request_buffer and request_bufflen
10171    * changes depending on whether or not use_sg is zero; a
10172    * non-zero use_sg indicates the number of elements in the
10173    * scatter-gather array.
10174    */
10175
10176   /*
10177    * XXX - this relies on the host data being stored in a
10178    *       little-endian format.
10179    */
10180   hscb->SCSI_cmd_length = cmd->cmd_len;
10181   memcpy(scb->cmnd, cmd->cmnd, cmd->cmd_len);
10182   hscb->SCSI_cmd_pointer = cpu_to_le32(SCB_DMA_ADDR(scb, scb->cmnd));
10183
10184   use_sg = scsi_dma_map(cmd);
10185   BUG_ON(use_sg < 0);
10186
10187   if (use_sg) {
10188     struct scatterlist *sg;  /* Must be mid-level SCSI code scatterlist */
10189
10190     /*
10191      * We must build an SG list in adapter format, as the kernel's SG list
10192      * cannot be used directly because of data field size (__alpha__)
10193      * differences and the kernel SG list uses virtual addresses where
10194      * we need physical addresses.
10195      */
10196     int i;
10197
10198     scb->sg_length = 0;
10199
10200
10201     /*
10202      * Copy the segments into the SG array.  NOTE!!! - We used to
10203      * have the first entry both in the data_pointer area and the first
10204      * SG element.  That has changed somewhat.  We still have the first
10205      * entry in both places, but now we download the address of
10206      * scb->sg_list[1] instead of 0 to the sg pointer in the hscb.
10207      */
10208     scsi_for_each_sg(cmd, sg, use_sg, i) {
10209       unsigned int len = sg_dma_len(sg);
10210       scb->sg_list[i].address = cpu_to_le32(sg_dma_address(sg));
10211       scb->sg_list[i].length = cpu_to_le32(len);
10212       scb->sg_length += len;
10213     }
10214     /* Copy the first SG into the data pointer area. */
10215     hscb->data_pointer = scb->sg_list[0].address;
10216     hscb->data_count = scb->sg_list[0].length;
10217     scb->sg_count = i;
10218     hscb->SG_segment_count = i;
10219     hscb->SG_list_pointer = cpu_to_le32(SCB_DMA_ADDR(scb, &scb->sg_list[1]));
10220   } else {
10221       scb->sg_count = 0;
10222       scb->sg_length = 0;
10223       hscb->SG_segment_count = 0;
10224       hscb->SG_list_pointer = 0;
10225       hscb->data_count = 0;
10226       hscb->data_pointer = 0;
10227   }
10228 }
10229
10230 /*+F*************************************************************************
10231  * Function:
10232  *   aic7xxx_queue
10233  *
10234  * Description:
10235  *   Queue a SCB to the controller.
10236  *-F*************************************************************************/
10237 static int aic7xxx_queue_lck(struct scsi_cmnd *cmd, void (*fn)(struct scsi_cmnd *))
10238 {
10239   struct aic7xxx_host *p;
10240   struct aic7xxx_scb *scb;
10241   struct aic_dev_data *aic_dev;
10242
10243   p = (struct aic7xxx_host *) cmd->device->host->hostdata;
10244
10245   aic_dev = cmd->device->hostdata;  
10246 #ifdef AIC7XXX_VERBOSE_DEBUGGING
10247   if (aic_dev->active_cmds > aic_dev->max_q_depth)
10248   {
10249     printk(WARN_LEAD "Commands queued exceeds queue "
10250            "depth, active=%d\n",
10251            p->host_no, CTL_OF_CMD(cmd), 
10252            aic_dev->active_cmds);
10253   }
10254 #endif
10255
10256   scb = scbq_remove_head(&p->scb_data->free_scbs);
10257   if (scb == NULL)
10258   {
10259     aic7xxx_allocate_scb(p);
10260     scb = scbq_remove_head(&p->scb_data->free_scbs);
10261     if(scb == NULL)
10262     {
10263       printk(WARN_LEAD "Couldn't get a free SCB.\n", p->host_no,
10264              CTL_OF_CMD(cmd));
10265       return 1;
10266     }
10267   }
10268   scb->cmd = cmd;
10269
10270         /*
10271         * Make sure the scsi_cmnd pointer is saved, the struct it points to
10272         * is set up properly, and the parity error flag is reset, then send
10273         * the SCB to the sequencer and watch the fun begin.
10274         */
10275   aic7xxx_position(cmd) = scb->hscb->tag;
10276   cmd->scsi_done = fn;
10277   cmd->result = DID_OK;
10278   aic7xxx_error(cmd) = DID_OK;
10279   aic7xxx_status(cmd) = 0;
10280   cmd->host_scribble = NULL;
10281
10282   /*
10283    * Construct the SCB beforehand, so the sequencer is
10284    * paused a minimal amount of time.
10285    */
10286   aic7xxx_buildscb(p, cmd, scb);
10287
10288   scb->flags |= SCB_ACTIVE | SCB_WAITINGQ;
10289
10290   scbq_insert_tail(&p->waiting_scbs, scb);
10291   aic7xxx_run_waiting_queues(p);
10292   return (0);
10293 }
10294
10295 static DEF_SCSI_QCMD(aic7xxx_queue)
10296
10297 /*+F*************************************************************************
10298  * Function:
10299  *   aic7xxx_bus_device_reset
10300  *
10301  * Description:
10302  *   Abort or reset the current SCSI command(s).  If the scb has not
10303  *   previously been aborted, then we attempt to send a BUS_DEVICE_RESET
10304  *   message to the target.  If the scb has previously been unsuccessfully
10305  *   aborted, then we will reset the channel and have all devices renegotiate.
10306  *   Returns an enumerated type that indicates the status of the operation.
10307  *-F*************************************************************************/
10308 static int __aic7xxx_bus_device_reset(struct scsi_cmnd *cmd)
10309 {
10310   struct aic7xxx_host  *p;
10311   struct aic7xxx_scb   *scb;
10312   struct aic7xxx_hwscb *hscb;
10313   int channel;
10314   unsigned char saved_scbptr, lastphase;
10315   unsigned char hscb_index;
10316   int disconnected;
10317   struct aic_dev_data *aic_dev;
10318
10319   if(cmd == NULL)
10320   {
10321     printk(KERN_ERR "aic7xxx_bus_device_reset: called with NULL cmd!\n");
10322     return FAILED;
10323   }
10324   p = (struct aic7xxx_host *)cmd->device->host->hostdata;
10325   aic_dev = AIC_DEV(cmd);
10326   if(aic7xxx_position(cmd) < p->scb_data->numscbs)
10327     scb = (p->scb_data->scb_array[aic7xxx_position(cmd)]);
10328   else
10329     return FAILED;
10330
10331   hscb = scb->hscb;
10332
10333   aic7xxx_isr(p);
10334   aic7xxx_done_cmds_complete(p);
10335   /* If the command was already complete or just completed, then we didn't
10336    * do a reset, return FAILED */
10337   if(!(scb->flags & SCB_ACTIVE))
10338     return FAILED;
10339
10340   pause_sequencer(p);
10341   lastphase = aic_inb(p, LASTPHASE);
10342   if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
10343   {
10344     printk(INFO_LEAD "Bus Device reset, scb flags 0x%x, ",
10345          p->host_no, CTL_OF_SCB(scb), scb->flags);
10346     switch (lastphase)
10347     {
10348       case P_DATAOUT:
10349         printk("Data-Out phase\n");
10350         break;
10351       case P_DATAIN:
10352         printk("Data-In phase\n");
10353         break;
10354       case P_COMMAND:
10355         printk("Command phase\n");
10356         break;
10357       case P_MESGOUT:
10358         printk("Message-Out phase\n");
10359         break;
10360       case P_STATUS:
10361         printk("Status phase\n");
10362         break;
10363       case P_MESGIN:
10364         printk("Message-In phase\n");
10365         break;
10366       default:
10367       /*
10368        * We're not in a valid phase, so assume we're idle.
10369        */
10370         printk("while idle, LASTPHASE = 0x%x\n", lastphase);
10371         break;
10372     }
10373     printk(INFO_LEAD "SCSISIGI 0x%x, SEQADDR 0x%x, SSTAT0 0x%x, SSTAT1 "
10374          "0x%x\n", p->host_no, CTL_OF_SCB(scb),
10375          aic_inb(p, SCSISIGI),
10376          aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
10377          aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
10378     printk(INFO_LEAD "SG_CACHEPTR 0x%x, SSTAT2 0x%x, STCNT 0x%x\n", p->host_no,
10379          CTL_OF_SCB(scb),
10380          (p->features & AHC_ULTRA2) ? aic_inb(p, SG_CACHEPTR) : 0,
10381          aic_inb(p, SSTAT2),
10382          aic_inb(p, STCNT + 2) << 16 | aic_inb(p, STCNT + 1) << 8 |
10383          aic_inb(p, STCNT));
10384   }
10385
10386   channel = cmd->device->channel;
10387
10388     /*
10389      * Send a Device Reset Message:
10390      * The target that is holding up the bus may not be the same as
10391      * the one that triggered this timeout (different commands have
10392      * different timeout lengths).  Our strategy here is to queue an
10393      * abort message to the timed out target if it is disconnected.
10394      * Otherwise, if we have an active target we stuff the message buffer
10395      * with an abort message and assert ATN in the hopes that the target
10396      * will let go of the bus and go to the mesgout phase.  If this
10397      * fails, we'll get another timeout a few seconds later which will
10398      * attempt a bus reset.
10399      */
10400   saved_scbptr = aic_inb(p, SCBPTR);
10401   disconnected = FALSE;
10402
10403   if (lastphase != P_BUSFREE)
10404   {
10405     if (aic_inb(p, SCB_TAG) >= p->scb_data->numscbs)
10406     {
10407       printk(WARN_LEAD "Invalid SCB ID %d is active, "
10408              "SCB flags = 0x%x.\n", p->host_no,
10409             CTL_OF_CMD(cmd), scb->hscb->tag, scb->flags);
10410       unpause_sequencer(p, FALSE);
10411       return FAILED;
10412     }
10413     if (scb->hscb->tag == aic_inb(p, SCB_TAG))
10414     { 
10415       if ( (lastphase == P_MESGOUT) || (lastphase == P_MESGIN) )
10416       {
10417         printk(WARN_LEAD "Device reset, Message buffer "
10418                 "in use\n", p->host_no, CTL_OF_SCB(scb));
10419         unpause_sequencer(p, FALSE);
10420         return FAILED;
10421       }
10422         
10423       if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
10424         printk(INFO_LEAD "Device reset message in "
10425               "message buffer\n", p->host_no, CTL_OF_SCB(scb));
10426       scb->flags |= SCB_RESET | SCB_DEVICE_RESET;
10427       aic7xxx_error(cmd) = DID_RESET;
10428       aic_dev->flags |= BUS_DEVICE_RESET_PENDING;
10429       /* Send the abort message to the active SCB. */
10430       aic_outb(p, HOST_MSG, MSG_OUT);
10431       aic_outb(p, lastphase | ATNO, SCSISIGO);
10432       unpause_sequencer(p, FALSE);
10433       spin_unlock_irq(p->host->host_lock);
10434       ssleep(1);
10435       spin_lock_irq(p->host->host_lock);
10436       if(aic_dev->flags & BUS_DEVICE_RESET_PENDING)
10437         return FAILED;
10438       else
10439         return SUCCESS;
10440     }
10441   } /* if (last_phase != P_BUSFREE).....indicates we are idle and can work */
10442   /*
10443    * Simply set the MK_MESSAGE flag and the SEQINT handler will do
10444    * the rest on a reconnect/connect.
10445    */
10446   scb->hscb->control |= MK_MESSAGE;
10447   scb->flags |= SCB_RESET | SCB_DEVICE_RESET;
10448   aic_dev->flags |= BUS_DEVICE_RESET_PENDING;
10449   /*
10450    * Check to see if the command is on the qinfifo.  If it is, then we will
10451    * not need to queue the command again since the card should start it soon
10452    */
10453   if (aic7xxx_search_qinfifo(p, cmd->device->channel, cmd->device->id, cmd->device->lun, hscb->tag,
10454                           0, TRUE, NULL) == 0)
10455   {
10456     disconnected = TRUE;
10457     if ((hscb_index = aic7xxx_find_scb(p, scb)) != SCB_LIST_NULL)
10458     {
10459       unsigned char scb_control;
10460
10461       aic_outb(p, hscb_index, SCBPTR);
10462       scb_control = aic_inb(p, SCB_CONTROL);
10463       /*
10464        * If the DISCONNECTED bit is not set in SCB_CONTROL, then we are
10465        * actually on the waiting list, not disconnected, and we don't
10466        * need to requeue the command.
10467        */
10468       disconnected = (scb_control & DISCONNECTED);
10469       aic_outb(p, scb_control | MK_MESSAGE, SCB_CONTROL);
10470     }
10471     if (disconnected)
10472     {
10473       /*
10474        * Actually requeue this SCB in case we can select the
10475        * device before it reconnects.  This can result in the command
10476        * being on the qinfifo twice, but we don't care because it will
10477        * all get cleaned up if/when the reset takes place.
10478        */
10479       if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
10480         printk(INFO_LEAD "Queueing device reset command.\n", p->host_no,
10481                       CTL_OF_SCB(scb));
10482       p->qinfifo[p->qinfifonext++] = scb->hscb->tag;
10483       if (p->features & AHC_QUEUE_REGS)
10484         aic_outb(p, p->qinfifonext, HNSCB_QOFF);
10485       else
10486         aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
10487       scb->flags |= SCB_QUEUED_ABORT;
10488     }
10489   }
10490   aic_outb(p, saved_scbptr, SCBPTR);
10491   unpause_sequencer(p, FALSE);
10492   spin_unlock_irq(p->host->host_lock);
10493   msleep(1000/4);
10494   spin_lock_irq(p->host->host_lock);
10495   if(aic_dev->flags & BUS_DEVICE_RESET_PENDING)
10496     return FAILED;
10497   else
10498     return SUCCESS;
10499 }
10500
10501 static int aic7xxx_bus_device_reset(struct scsi_cmnd *cmd)
10502 {
10503       int rc;
10504
10505       spin_lock_irq(cmd->device->host->host_lock);
10506       rc = __aic7xxx_bus_device_reset(cmd);
10507       spin_unlock_irq(cmd->device->host->host_lock);
10508
10509       return rc;
10510 }
10511
10512
10513 /*+F*************************************************************************
10514  * Function:
10515  *   aic7xxx_panic_abort
10516  *
10517  * Description:
10518  *   Abort the current SCSI command(s).
10519  *-F*************************************************************************/
10520 static void aic7xxx_panic_abort(struct aic7xxx_host *p, struct scsi_cmnd *cmd)
10521 {
10522
10523   printk("aic7xxx driver version %s\n", AIC7XXX_C_VERSION);
10524   printk("Controller type:\n    %s\n", board_names[p->board_name_index]);
10525   printk("p->flags=0x%lx, p->chip=0x%x, p->features=0x%x, "
10526          "sequencer %s paused\n",
10527      p->flags, p->chip, p->features,
10528     (aic_inb(p, HCNTRL) & PAUSE) ? "is" : "isn't" );
10529   pause_sequencer(p);
10530   disable_irq(p->irq);
10531   aic7xxx_print_card(p);
10532   aic7xxx_print_scratch_ram(p);
10533   spin_unlock_irq(p->host->host_lock);
10534   for(;;) barrier();
10535 }
10536
10537 /*+F*************************************************************************
10538  * Function:
10539  *   aic7xxx_abort
10540  *
10541  * Description:
10542  *   Abort the current SCSI command(s).
10543  *-F*************************************************************************/
10544 static int __aic7xxx_abort(struct scsi_cmnd *cmd)
10545 {
10546   struct aic7xxx_scb  *scb = NULL;
10547   struct aic7xxx_host *p;
10548   int    found=0, disconnected;
10549   unsigned char saved_hscbptr, hscbptr, scb_control;
10550   struct aic_dev_data *aic_dev;
10551
10552   if(cmd == NULL)
10553   {
10554     printk(KERN_ERR "aic7xxx_abort: called with NULL cmd!\n");
10555     return FAILED;
10556   }
10557   p = (struct aic7xxx_host *)cmd->device->host->hostdata;
10558   aic_dev = AIC_DEV(cmd);
10559   if(aic7xxx_position(cmd) < p->scb_data->numscbs)
10560     scb = (p->scb_data->scb_array[aic7xxx_position(cmd)]);
10561   else
10562     return FAILED;
10563
10564   aic7xxx_isr(p);
10565   aic7xxx_done_cmds_complete(p);
10566   /* If the command was already complete or just completed, then we didn't
10567    * do a reset, return FAILED */
10568   if(!(scb->flags & SCB_ACTIVE))
10569     return FAILED;
10570
10571   pause_sequencer(p);
10572
10573   /*
10574    * I added a new config option to the driver: "panic_on_abort" that will
10575    * cause the driver to panic and the machine to stop on the first abort
10576    * or reset call into the driver.  At that point, it prints out a lot of
10577    * useful information for me which I can then use to try and debug the
10578    * problem.  Simply enable the boot time prompt in order to activate this
10579    * code.
10580    */
10581   if (aic7xxx_panic_on_abort)
10582     aic7xxx_panic_abort(p, cmd);
10583
10584   if (aic7xxx_verbose & VERBOSE_ABORT)
10585   {
10586     printk(INFO_LEAD "Aborting scb %d, flags 0x%x, SEQADDR 0x%x, LASTPHASE "
10587            "0x%x\n",
10588          p->host_no, CTL_OF_SCB(scb), scb->hscb->tag, scb->flags,
10589          aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
10590          aic_inb(p, LASTPHASE));
10591     printk(INFO_LEAD "SG_CACHEPTR 0x%x, SG_COUNT %d, SCSISIGI 0x%x\n",
10592          p->host_no, CTL_OF_SCB(scb), (p->features & AHC_ULTRA2) ?
10593          aic_inb(p, SG_CACHEPTR) : 0, aic_inb(p, SG_COUNT),
10594          aic_inb(p, SCSISIGI));
10595     printk(INFO_LEAD "SSTAT0 0x%x, SSTAT1 0x%x, SSTAT2 0x%x\n",
10596          p->host_no, CTL_OF_SCB(scb), aic_inb(p, SSTAT0),
10597          aic_inb(p, SSTAT1), aic_inb(p, SSTAT2));
10598   }
10599
10600   if (scb->flags & SCB_WAITINGQ)
10601   {
10602     if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS) 
10603       printk(INFO_LEAD "SCB found on waiting list and "
10604           "aborted.\n", p->host_no, CTL_OF_SCB(scb));
10605     scbq_remove(&p->waiting_scbs, scb);
10606     scbq_remove(&aic_dev->delayed_scbs, scb);
10607     aic_dev->active_cmds++;
10608     p->activescbs++;
10609     scb->flags &= ~(SCB_WAITINGQ | SCB_ACTIVE);
10610     scb->flags |= SCB_ABORT | SCB_QUEUED_FOR_DONE;
10611     goto success;
10612   }
10613
10614 /*
10615  *  We just checked the waiting_q, now for the QINFIFO
10616  */
10617   if ( ((found = aic7xxx_search_qinfifo(p, cmd->device->id, cmd->device->channel,
10618                      cmd->device->lun, scb->hscb->tag, SCB_ABORT | SCB_QUEUED_FOR_DONE,
10619                      FALSE, NULL)) != 0) &&
10620                     (aic7xxx_verbose & VERBOSE_ABORT_PROCESS))
10621   {
10622     printk(INFO_LEAD "SCB found in QINFIFO and aborted.\n", p->host_no,
10623                     CTL_OF_SCB(scb));
10624     goto success;
10625   }
10626
10627 /*
10628  *  QINFIFO, waitingq, completeq done.  Next, check WAITING_SCB list in card
10629  */
10630
10631   saved_hscbptr = aic_inb(p, SCBPTR);
10632   if ((hscbptr = aic7xxx_find_scb(p, scb)) != SCB_LIST_NULL)
10633   {
10634     aic_outb(p, hscbptr, SCBPTR);
10635     scb_control = aic_inb(p, SCB_CONTROL);
10636     disconnected = scb_control & DISCONNECTED;
10637     /*
10638      * If the DISCONNECTED bit is not set in SCB_CONTROL, then we are
10639      * either currently active or on the waiting list.
10640      */
10641     if(!disconnected && aic_inb(p, LASTPHASE) == P_BUSFREE) {
10642       if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
10643         printk(INFO_LEAD "SCB found on hardware waiting"
10644           " list and aborted.\n", p->host_no, CTL_OF_SCB(scb));
10645       /* If we are the only waiting command, stop the selection engine */
10646       if (aic_inb(p, WAITING_SCBH) == hscbptr && aic_inb(p, SCB_NEXT) ==
10647                         SCB_LIST_NULL)
10648       {
10649         aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
10650         aic_outb(p, CLRSELTIMEO, CLRSINT1);
10651         aic_outb(p, SCB_LIST_NULL, WAITING_SCBH);
10652       }
10653       else
10654       {
10655         unsigned char prev, next;
10656         prev = SCB_LIST_NULL;
10657         next = aic_inb(p, WAITING_SCBH);
10658         while(next != SCB_LIST_NULL)
10659         {
10660           aic_outb(p, next, SCBPTR);
10661           if (next == hscbptr)
10662           {
10663             next = aic_inb(p, SCB_NEXT);
10664             if (prev != SCB_LIST_NULL)
10665             {
10666               aic_outb(p, prev, SCBPTR);
10667               aic_outb(p, next, SCB_NEXT);
10668             }
10669             else
10670               aic_outb(p, next, WAITING_SCBH);
10671             aic_outb(p, hscbptr, SCBPTR);
10672             next = SCB_LIST_NULL;
10673           }
10674           else
10675           {
10676             prev = next;
10677             next = aic_inb(p, SCB_NEXT);
10678           }
10679         }
10680       }
10681       aic_outb(p, SCB_LIST_NULL, SCB_TAG);
10682       aic_outb(p, 0, SCB_CONTROL);
10683       aic7xxx_add_curscb_to_free_list(p);
10684       scb->flags = SCB_ABORT | SCB_QUEUED_FOR_DONE;
10685       goto success;
10686     }
10687     else if (!disconnected)
10688     {
10689       /*
10690        * We are the currently active command
10691        */
10692       if((aic_inb(p, LASTPHASE) == P_MESGIN) ||
10693          (aic_inb(p, LASTPHASE) == P_MESGOUT))
10694       {
10695         /*
10696          * Message buffer busy, unable to abort
10697          */
10698         printk(INFO_LEAD "message buffer busy, unable to abort.\n",
10699                           p->host_no, CTL_OF_SCB(scb));
10700         unpause_sequencer(p, FALSE);
10701         return FAILED;
10702       }
10703       /* Fallthrough to below, set ATNO after we set SCB_CONTROL */
10704     } 
10705     aic_outb(p,  scb_control | MK_MESSAGE, SCB_CONTROL);
10706     if(!disconnected)
10707     {
10708       aic_outb(p, HOST_MSG, MSG_OUT);
10709       aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
10710     }
10711     aic_outb(p, saved_hscbptr, SCBPTR);
10712   } 
10713   else
10714   {
10715     /*
10716      * The scb isn't in the card at all and it is active and it isn't in
10717      * any of the queues, so it must be disconnected and paged out.  Fall
10718      * through to the code below.
10719      */
10720     disconnected = 1;
10721   }
10722         
10723   p->flags |= AHC_ABORT_PENDING;
10724   scb->flags |= SCB_QUEUED_ABORT | SCB_ABORT | SCB_RECOVERY_SCB;
10725   scb->hscb->control |= MK_MESSAGE;
10726   if(disconnected)
10727   {
10728     if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
10729       printk(INFO_LEAD "SCB disconnected.  Queueing Abort"
10730         " SCB.\n", p->host_no, CTL_OF_SCB(scb));
10731     p->qinfifo[p->qinfifonext++] = scb->hscb->tag;
10732     if (p->features & AHC_QUEUE_REGS)
10733       aic_outb(p, p->qinfifonext, HNSCB_QOFF);
10734     else
10735       aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
10736   }
10737   unpause_sequencer(p, FALSE);
10738   spin_unlock_irq(p->host->host_lock);
10739   msleep(1000/4);
10740   spin_lock_irq(p->host->host_lock);
10741   if (p->flags & AHC_ABORT_PENDING)
10742   {
10743     if (aic7xxx_verbose & VERBOSE_ABORT_RETURN)
10744       printk(INFO_LEAD "Abort never delivered, returning FAILED\n", p->host_no,
10745                     CTL_OF_CMD(cmd));
10746     p->flags &= ~AHC_ABORT_PENDING;
10747     return FAILED;
10748   }
10749   if (aic7xxx_verbose & VERBOSE_ABORT_RETURN)
10750     printk(INFO_LEAD "Abort successful.\n", p->host_no, CTL_OF_CMD(cmd));
10751   return SUCCESS;
10752
10753 success:
10754   if (aic7xxx_verbose & VERBOSE_ABORT_RETURN)
10755     printk(INFO_LEAD "Abort successful.\n", p->host_no, CTL_OF_CMD(cmd));
10756   aic7xxx_run_done_queue(p, TRUE);
10757   unpause_sequencer(p, FALSE);
10758   return SUCCESS;
10759 }
10760
10761 static int aic7xxx_abort(struct scsi_cmnd *cmd)
10762 {
10763         int rc;
10764
10765         spin_lock_irq(cmd->device->host->host_lock);
10766         rc = __aic7xxx_abort(cmd);
10767         spin_unlock_irq(cmd->device->host->host_lock);
10768
10769         return rc;
10770 }
10771
10772
10773 /*+F*************************************************************************
10774  * Function:
10775  *   aic7xxx_reset
10776  *
10777  * Description:
10778  *   Resetting the bus always succeeds - is has to, otherwise the
10779  *   kernel will panic! Try a surgical technique - sending a BUS
10780  *   DEVICE RESET message - on the offending target before pulling
10781  *   the SCSI bus reset line.
10782  *-F*************************************************************************/
10783 static int aic7xxx_reset(struct scsi_cmnd *cmd)
10784 {
10785   struct aic7xxx_scb *scb;
10786   struct aic7xxx_host *p;
10787   struct aic_dev_data *aic_dev;
10788
10789   p = (struct aic7xxx_host *) cmd->device->host->hostdata;
10790   spin_lock_irq(p->host->host_lock);
10791
10792   aic_dev = AIC_DEV(cmd);
10793   if(aic7xxx_position(cmd) < p->scb_data->numscbs)
10794   {
10795     scb = (p->scb_data->scb_array[aic7xxx_position(cmd)]);
10796     if (scb->cmd != cmd)
10797       scb = NULL;
10798   }
10799   else
10800   {
10801     scb = NULL;
10802   }
10803
10804   /*
10805    * I added a new config option to the driver: "panic_on_abort" that will
10806    * cause the driver to panic and the machine to stop on the first abort
10807    * or reset call into the driver.  At that point, it prints out a lot of
10808    * useful information for me which I can then use to try and debug the
10809    * problem.  Simply enable the boot time prompt in order to activate this
10810    * code.
10811    */
10812   if (aic7xxx_panic_on_abort)
10813     aic7xxx_panic_abort(p, cmd);
10814
10815   pause_sequencer(p);
10816
10817   while((aic_inb(p, INTSTAT) & INT_PEND) && !(p->flags & AHC_IN_ISR))
10818   {
10819     aic7xxx_isr(p);
10820     pause_sequencer(p);
10821   }
10822   aic7xxx_done_cmds_complete(p);
10823
10824   if(scb && (scb->cmd == NULL))
10825   {
10826     /*
10827      * We just completed the command when we ran the isr stuff, so we no
10828      * longer have it.
10829      */
10830     unpause_sequencer(p, FALSE);
10831     spin_unlock_irq(p->host->host_lock);
10832     return SUCCESS;
10833   }
10834     
10835 /*
10836  *  By this point, we want to already know what we are going to do and
10837  *  only have the following code implement our course of action.
10838  */
10839   aic7xxx_reset_channel(p, cmd->device->channel, TRUE);
10840   if (p->features & AHC_TWIN)
10841   {
10842     aic7xxx_reset_channel(p, cmd->device->channel ^ 0x01, TRUE);
10843     restart_sequencer(p);
10844   }
10845   aic_outb(p,  aic_inb(p, SIMODE1) & ~(ENREQINIT|ENBUSFREE), SIMODE1);
10846   aic7xxx_clear_intstat(p);
10847   p->flags &= ~AHC_HANDLING_REQINITS;
10848   p->msg_type = MSG_TYPE_NONE;
10849   p->msg_index = 0;
10850   p->msg_len = 0;
10851   aic7xxx_run_done_queue(p, TRUE);
10852   unpause_sequencer(p, FALSE);
10853   spin_unlock_irq(p->host->host_lock);
10854   ssleep(2);
10855   return SUCCESS;
10856 }
10857
10858 /*+F*************************************************************************
10859  * Function:
10860  *   aic7xxx_biosparam
10861  *
10862  * Description:
10863  *   Return the disk geometry for the given SCSI device.
10864  *
10865  * Note:
10866  *   This function is broken for today's really large drives and needs
10867  *   fixed.
10868  *-F*************************************************************************/
10869 static int
10870 aic7xxx_biosparam(struct scsi_device *sdev, struct block_device *bdev,
10871                 sector_t capacity, int geom[])
10872 {
10873   sector_t heads, sectors, cylinders;
10874   int ret;
10875   struct aic7xxx_host *p;
10876   unsigned char *buf;
10877
10878   p = (struct aic7xxx_host *) sdev->host->hostdata;
10879   buf = scsi_bios_ptable(bdev);
10880
10881   if ( buf )
10882   {
10883     ret = scsi_partsize(buf, capacity, &geom[2], &geom[0], &geom[1]);
10884     kfree(buf);
10885     if ( ret != -1 )
10886       return(ret);
10887   }
10888   
10889   heads = 64;
10890   sectors = 32;
10891   cylinders = capacity >> 11;
10892
10893   if ((p->flags & AHC_EXTEND_TRANS_A) && (cylinders > 1024))
10894   {
10895     heads = 255;
10896     sectors = 63;
10897     cylinders = capacity >> 14;
10898     if(capacity > (65535 * heads * sectors))
10899       cylinders = 65535;
10900     else
10901       cylinders = ((unsigned int)capacity) / (unsigned int)(heads * sectors);
10902   }
10903
10904   geom[0] = (int)heads;
10905   geom[1] = (int)sectors;
10906   geom[2] = (int)cylinders;
10907
10908   return (0);
10909 }
10910
10911 /*+F*************************************************************************
10912  * Function:
10913  *   aic7xxx_release
10914  *
10915  * Description:
10916  *   Free the passed in Scsi_Host memory structures prior to unloading the
10917  *   module.
10918  *-F*************************************************************************/
10919 static int
10920 aic7xxx_release(struct Scsi_Host *host)
10921 {
10922   struct aic7xxx_host *p = (struct aic7xxx_host *) host->hostdata;
10923   struct aic7xxx_host *next, *prev;
10924
10925   if(p->irq)
10926     free_irq(p->irq, p);
10927 #ifdef MMAPIO
10928   if(p->maddr)
10929   {
10930     iounmap(p->maddr);
10931   }
10932 #endif /* MMAPIO */
10933   if(!p->pdev)
10934     release_region(p->base, MAXREG - MINREG);
10935 #ifdef CONFIG_PCI
10936   else {
10937     pci_release_regions(p->pdev);
10938     pci_dev_put(p->pdev);
10939   }
10940 #endif
10941   prev = NULL;
10942   next = first_aic7xxx;
10943   while(next != NULL)
10944   {
10945     if(next == p)
10946     {
10947       if(prev == NULL)
10948         first_aic7xxx = next->next;
10949       else
10950         prev->next = next->next;
10951     }
10952     else
10953     {
10954       prev = next;
10955     }
10956     next = next->next;
10957   }
10958   aic7xxx_free(p);
10959   return(0);
10960 }
10961
10962 /*+F*************************************************************************
10963  * Function:
10964  *   aic7xxx_print_card
10965  *
10966  * Description:
10967  *   Print out all of the control registers on the card
10968  *
10969  *   NOTE: This function is not yet safe for use on the VLB and EISA
10970  *   controllers, so it isn't used on those controllers at all.
10971  *-F*************************************************************************/
10972 static void
10973 aic7xxx_print_card(struct aic7xxx_host *p)
10974 {
10975   int i, j, k, chip;
10976   static struct register_ranges {
10977     int num_ranges;
10978     int range_val[32];
10979   } cards_ds[] = {
10980     { 0, {0,} }, /* none */
10981     {10, {0x00, 0x05, 0x08, 0x11, 0x18, 0x19, 0x1f, 0x1f, 0x60, 0x60, /*7771*/
10982           0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9b, 0x9f} },
10983     { 9, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7850*/
10984           0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
10985     { 9, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7860*/
10986           0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
10987     {10, {0x00, 0x05, 0x08, 0x11, 0x18, 0x19, 0x1c, 0x1f, 0x60, 0x60, /*7870*/
10988           0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
10989     {10, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1a, 0x1c, 0x1f, 0x60, 0x60, /*7880*/
10990           0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
10991     {16, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7890*/
10992           0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9f, 0x9f,
10993           0xe0, 0xf1, 0xf4, 0xf4, 0xf6, 0xf6, 0xf8, 0xf8, 0xfa, 0xfc,
10994           0xfe, 0xff} },
10995     {12, {0x00, 0x05, 0x08, 0x11, 0x18, 0x19, 0x1b, 0x1f, 0x60, 0x60, /*7895*/
10996           0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a,
10997           0x9f, 0x9f, 0xe0, 0xf1} },
10998     {16, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7896*/
10999           0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9f, 0x9f,
11000           0xe0, 0xf1, 0xf4, 0xf4, 0xf6, 0xf6, 0xf8, 0xf8, 0xfa, 0xfc,
11001           0xfe, 0xff} },
11002     {12, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7892*/
11003           0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9c, 0x9f,
11004           0xe0, 0xf1, 0xf4, 0xfc} },
11005     {12, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7899*/
11006           0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9c, 0x9f,
11007           0xe0, 0xf1, 0xf4, 0xfc} },
11008   };
11009   chip = p->chip & AHC_CHIPID_MASK;
11010   printk("%s at ",
11011          board_names[p->board_name_index]);
11012   switch(p->chip & ~AHC_CHIPID_MASK)
11013   {
11014     case AHC_VL:
11015       printk("VLB Slot %d.\n", p->pci_device_fn);
11016       break;
11017     case AHC_EISA:
11018       printk("EISA Slot %d.\n", p->pci_device_fn);
11019       break;
11020     case AHC_PCI:
11021     default:
11022       printk("PCI %d/%d/%d.\n", p->pci_bus, PCI_SLOT(p->pci_device_fn),
11023              PCI_FUNC(p->pci_device_fn));
11024       break;
11025   }
11026
11027   /*
11028    * the registers on the card....
11029    */
11030   printk("Card Dump:\n");
11031   k = 0;
11032   for(i=0; i<cards_ds[chip].num_ranges; i++)
11033   {
11034     for(j  = cards_ds[chip].range_val[ i * 2 ];
11035         j <= cards_ds[chip].range_val[ i * 2 + 1 ] ;
11036         j++)
11037     {
11038       printk("%02x:%02x ", j, aic_inb(p, j));
11039       if(++k == 13)
11040       {
11041         printk("\n");
11042         k=0;
11043       }
11044     }
11045   }
11046   if(k != 0)
11047     printk("\n");
11048
11049   /*
11050    * If this was an Ultra2 controller, then we just hosed the card in terms
11051    * of the QUEUE REGS.  This function is only called at init time or by
11052    * the panic_abort function, so it's safe to assume a generic init time
11053    * setting here
11054    */
11055
11056   if(p->features & AHC_QUEUE_REGS)
11057   {
11058     aic_outb(p, 0, SDSCB_QOFF);
11059     aic_outb(p, 0, SNSCB_QOFF);
11060     aic_outb(p, 0, HNSCB_QOFF);
11061   }
11062
11063 }
11064
11065 /*+F*************************************************************************
11066  * Function:
11067  *   aic7xxx_print_scratch_ram
11068  *
11069  * Description:
11070  *   Print out the scratch RAM values on the card.
11071  *-F*************************************************************************/
11072 static void
11073 aic7xxx_print_scratch_ram(struct aic7xxx_host *p)
11074 {
11075   int i, k;
11076
11077   k = 0;
11078   printk("Scratch RAM:\n");
11079   for(i = SRAM_BASE; i < SEQCTL; i++)
11080   {
11081     printk("%02x:%02x ", i, aic_inb(p, i));
11082     if(++k == 13)
11083     {
11084       printk("\n");
11085       k=0;
11086     }
11087   }
11088   if (p->features & AHC_MORE_SRAM)
11089   {
11090     for(i = TARG_OFFSET; i < 0x80; i++)
11091     {
11092       printk("%02x:%02x ", i, aic_inb(p, i));
11093       if(++k == 13)
11094       {
11095         printk("\n");
11096         k=0;
11097       }
11098     }
11099   }
11100   printk("\n");
11101 }
11102
11103
11104 #include "aic7xxx_old/aic7xxx_proc.c"
11105
11106 MODULE_LICENSE("Dual BSD/GPL");
11107 MODULE_VERSION(AIC7XXX_H_VERSION);
11108
11109
11110 static struct scsi_host_template driver_template = {
11111         .proc_info              = aic7xxx_proc_info,
11112         .detect                 = aic7xxx_detect,
11113         .release                = aic7xxx_release,
11114         .info                   = aic7xxx_info, 
11115         .queuecommand           = aic7xxx_queue,
11116         .slave_alloc            = aic7xxx_slave_alloc,
11117         .slave_configure        = aic7xxx_slave_configure,
11118         .slave_destroy          = aic7xxx_slave_destroy,
11119         .bios_param             = aic7xxx_biosparam,
11120         .eh_abort_handler       = aic7xxx_abort,
11121         .eh_device_reset_handler        = aic7xxx_bus_device_reset,
11122         .eh_host_reset_handler  = aic7xxx_reset,
11123         .can_queue              = 255,
11124         .this_id                = -1,
11125         .max_sectors            = 2048,
11126         .cmd_per_lun            = 3,
11127         .use_clustering         = ENABLE_CLUSTERING,
11128 };
11129
11130 #include "scsi_module.c"
11131
11132 /*
11133  * Overrides for Emacs so that we almost follow Linus's tabbing style.
11134  * Emacs will notice this stuff at the end of the file and automatically
11135  * adjust the settings for this buffer only.  This must remain at the end
11136  * of the file.
11137  * ---------------------------------------------------------------------------
11138  * Local variables:
11139  * c-indent-level: 2
11140  * c-brace-imaginary-offset: 0
11141  * c-brace-offset: -2
11142  * c-argdecl-indent: 2
11143  * c-label-offset: -2
11144  * c-continued-statement-offset: 2
11145  * c-continued-brace-offset: 0
11146  * indent-tabs-mode: nil
11147  * tab-width: 8
11148  * End:
11149  */